锂离子电池隔膜-ppt(精)4

合集下载

锂离子电池隔膜

锂离子电池隔膜

功能性隔膜开发
针对特定应用场景,开发 具有自关闭、耐高温、耐 高压等功能的特殊隔膜。
前景预测
随着新能源汽车市场的持 续增长和储能领域的快速 发展,锂离子电池隔膜市 场需求将持续旺盛。同时 ,技术创新将推动隔膜产 品不断升级,提高电池性 能和安全性。
政策法规影响因素分析
环保政策
随着全球环保意识的提高,各国政府将加强对电池生产和 使用环节的环保监管,对隔膜材料的环保性能提出更高要 求。
产品特点
不同厂商的锂离子电池隔膜产品具有各自的特点。例如,日本厂商的产品在品质和性能方面具有较高的水平,但 价格相对较高;韩国厂商的产品则具有较高的性价比;中国厂商的产品在价格方面具有优势,但在品质和性能方 面仍有提升空间。
竞争格局与发展趋势
竞争格局
当前,锂离子电池隔膜市场呈现出寡头竞争的格局。 日本、韩国和中国等国家的主要厂商占据了市场的大 部分份额,其他小型厂商则主要在中低端市场进行竞 争。
锂离子电池隔膜
$number {01}
目 录
• 锂离子电池隔膜概述 • 锂离子电池隔膜结构与性能 • 锂离子电池隔膜制备技术 • 锂离子电池隔膜应用领域 • 锂离子电池隔膜市场现状与竞争
格局 • 锂离子电池隔膜未来发展趋势与
挑战
01
锂离子电池隔膜概述
定义与作用
定义
锂离子电池隔膜是锂电池的关键 内层组件之一,置于电池正负极 之间,具有选择性透过离子的功 能。
能源政策
各国政府为推动新能源产业发展,将出台一系列扶持政策, 包括税收优惠、补贴等,降低锂离子电池成本,间接推动 隔膜市场发展。
安全标准
针对锂离子电池安全事故频发的问题,政府将制定更为严 格的安全标准,要求隔膜具有更高的热稳定性和机械强度。

《锂离子电池隔膜》课件

《锂离子电池隔膜》课件

到关注。企业需要采取有效措施,降低生产过程中的环境污染。
03
市场波动
锂离子电池隔膜市场的需求受电动汽车和储能市场的影响较大,市场波
动较大。企业需要加强市场分析和预测,以应对市场波动带来的风险。
06
锂离子电池隔膜的未来展望
新材料与新技术的研发
总结词
随着科技的不断进步,新材料和新技术 在锂离子电池隔膜领域的应用将更加广 泛。
机械性能
隔膜的机械稳定性对电池 的寿命和安全性至关重要 。
•·
拉伸强度:隔膜应具有足 够的拉伸强度,以承受电 池充放电过程中的应力。
厚度与均匀性:隔膜的厚 度应均匀,以确保电池的 一致性和稳定性。
穿刺强度:隔膜应具有一 定的抗穿刺能力,防止因 针刺等意外因素导致的电 池短路。
热性能
•·
热收缩率:隔膜的热收缩率应尽 可能低,以确保电池在充放电过 程中的结构稳定性。
03
锂离子电池隔膜的性能要求
电化学性能
隔膜在电化学反应中的表现,直接影响 电池的充放电性能。
离子选择性:隔膜应具有适当的离子选 择性,使锂离子能够顺利通过,而其他 离子或分子则受到阻碍。
电子绝缘性:隔膜应具有良好的电子绝 缘性,防止正负极直接接触而发生短路 。
•·
离子电导率:隔膜应具有较高的离子电 导率,以降低内阻,提高电池的充放电 效率。
VS
详细描述
随着对锂离子电池隔膜性能要求的提高, 新材料和新技术的发展将为隔膜的研发提 供更多可能性。例如,新型纳米材料、高 分子材料等具有优异性能的新材料,以及 先进的制备技术、改性技术等,都可能为 锂离子电池隔膜的改进和优化提供支持。
提高生产效率与降低成本
总结词
提高生产效率和降低成本是锂离子电池隔膜 未来的重要发展方向。

锂离子电池隔膜基础知识ppt课件

锂离子电池隔膜基础知识ppt课件

(2)化学稳定性。隔膜在电解液中应当
隔 膜 特 性 之 理 化 性 能
保持长期的稳定性,在强氧化发应。 和强还原的条件下,不与电解液和 电极物质隔膜的化学稳定性是通过 测定耐电解液腐蚀能力和胀缩率来 评价的。 (3)热稳定性。电池在充放电过程中会 释放热量,尤其在短路或过充电的 时候,会有大量热量放出。因此, 当温度升高的时候,隔膜应当保持 原来的完整性和一定的机械强度, 继续起到正负电极的隔离作用,防 止短路的发生。
微 孔 膜 结 构 关与 系性 能 之 间 的
2.自动关断保护性能是锂离子电池隔膜的一 种安全保护性能,是锂离子电池限制温度 升高及防止短路的有效方法。隔膜的闭孔 温度和熔融破裂温度是该性能的主要参数 。闭孔温度是指外部短路或非正常大电流 通过时所产生的热量使隔膜微孔闭塞时的 温度。熔融破裂温度是指将隔膜加热,当 温度超过试样熔点使试样发生破裂时的温 度。由于电池短路使电池内部温度升高, 当电池隔离膜温度到达闭孔温度时微孔闭 塞阻断电流通过,但热惯性会使温度进一 步上升,有可能达到熔融破裂温度而造成 隔膜破裂,电池短路。因此,闭孔温度和 熔融破裂温度相差越大越好,此时电池的 安全性越好。

隔膜是一种具有纳米级微孔的 高分子功能材料。也叫电池隔 膜、隔膜纸、多孔膜、离子交 换膜、分离膜、离子渗透膜等。 生产方法:湿法、干法(单项 拉伸、吹膜法、双向拉伸)
隔 膜 及 制 法 介 绍

湿 法 介 绍
湿法也叫热致相分离法(TIPS),或 者溶剂萃取成孔法,其化学原理是 相分离。 基本过程是指在高温下将 聚合物溶于高沸点、低挥发性的溶 剂中形成均相液,然后降温冷却, 导致溶液产生液-固相分离或液- 液相分离,再选用挥发性试剂将高 沸点溶剂萃取出来,经过干燥获得 一定结构形状的高分子微孔膜。 湿法生产的特点是产品均匀性好, 安全性好 ,机械性能良好,孔曲折 度高。

锂离子电池隔膜培训PPT课件

锂离子电池隔膜培训PPT课件
方法A: 使垂直通过试样的气流稳定在一个恒定的流量,测定在该条件下试样两侧所 形成的压差,计算空气流通阻力等参数。
方法B: 通过调节使试样两侧形成一个恒定的压差,测定一定时间内垂直通过试样给 定面积的气流流量,计算透气率等参数。
11
5.孔隙率
隔膜孔隙率的定义是空隙的体积占整个体积的比例,微孔材料中常见的孔通常 包含通孔、盲孔、闭孔 3 种结构。
弯曲度 弯曲度主要指隔膜分切后产生的弧形,弧形明显时会造成叠片不齐,卷绕时
产生涡状,造成极片外露进而短路。将隔膜条平铺于桌面上,与钢板尺边缘进 行平行度的对比,可以得到隔膜的弧度。
10
4.透气度
透气度反映隔膜的透过能力,一般采用 Gurley 法进行测定,即一定体积的 气体,在一定压力条件下通过给定面积的隔膜所需要的时间。与电池内阻成正比, 数值越大,内阻越大。
15
6.浸润性
目前对浸润性的测试主要有目测法和用接触角仪进行接触角的测量。 目测法是用微量注射器吸取电解液,滴加在隔膜上并开始计时,观察电解液何时将 隔膜完全浸润,并停止计时。 此种方法无法定量的表征隔膜对电解液的浸润性,但可用于甄别对电解液浸润性不 好的隔膜,一般 2~3s 内可完全浸润的隔膜视为浸润性较好。
5
隔膜种类 (Separator classification)
6
隔膜性能指标 (Performance index)
7
1.红外光谱
红外光谱可用于确定隔膜的化学组成,例如聚乙烯(PE)、聚丙烯(PP)、聚 酰亚胺(PI)等,通过了解隔膜的化学组成可初步定性判定隔膜的熔断温度、பைடு நூலகம்孔 特性、电化学稳定性等基本特性。
目前孔隙率的测试方法主要有吸液法、计算法和测试法。

锂离子电池隔膜简介

锂离子电池隔膜简介

锂离子全固态电池的普及还有很长的路要走,而今年拐点已到的半固态电池还需要传统的隔膜来隔离正负极,导离子绝缘电子,随着市场需求的越来越高:高比能、长寿命、快充、高安全、低成本、产品一致性,对隔膜的要求也越来越高,今天我们就来聊一下锂离子电池的隔膜。

功能性电池的隔膜一般由:基膜+涂覆层组成,对隔膜的要求有:a.有一定的机械强度,保证在电池变形条件下不破裂;b.具有良好的离子透过能力,以降低电池内阻;c.优良的电子绝缘性,以保证电极间有效的隔离;d.具备抗化学及电化学腐蚀的能力,在电解液中稳定性好;e.吸收电解液的能力强;f.成本低,适于大规模工业化生产;g.杂质含量少,性能稳定。

隔膜的分类如下:大类分为干法与湿法工艺(干法隔膜的孔直,倍率性能好,但湿法隔膜的其他综合方面的电性能明显优于干法隔膜):干法单向拉伸:制造工艺:类似于硬弹性纤维方法-晶片分离,原料选择方面有PP(聚丙烯),PE(聚乙烯)分子高的原材料拉伸/穿刺强度高但加工流动性差,分子量低的反之。

干法双向拉伸:制造工艺:在聚丙烯中加入具有成核作用的β晶型成核剂,形成特定的β晶型,然后在双向拉伸的过程中发生β晶型向α晶型的转变,晶体体积收缩产生微孔,孔的形成原理为晶型转变。

原料选择方面有PP(聚丙烯),β晶型成核剂。

湿法隔膜:制造工艺为热致相分离法,工艺如下:关键工序如下:投料配比(PP:oil)影响生产过程的稳定性,孔隙率大小及厚度的均匀性;熔融挤出:选择塑化及混合效果好的挤出机,影响生产稳定性及性能均匀性;冷却铸片:将熔体冷却形成厚片,影响聚合物的结晶及相分离;MD/TD拉伸:产生相分离,使分子链取向,影响孔径大小分布,机械强度,热收缩等;萃取工艺:将小分子从油膜中萃取出来;热定型:影响隔膜热收缩,孔隙率,厚度;电镜图如下:隔膜涂覆介绍:一:油性涂覆:(1)油性浸涂(效率低<5m/min,透气值增加约40-60%)(2)油性辊涂二:水性涂覆:(1)水性辊涂(2)水性喷涂(3)水性点涂其中辊涂对比喷涂容易堵孔,造成透气值变大。

锂离子电池隔膜基础ppt课件

锂离子电池隔膜基础ppt课件
下,隔膜的厚度越薄越好。现在,新型的高能电池大都采用膜厚 20μm或 16μm的单层隔膜;电动汽车(EV)和混合电动汽车(HEV)所用电池的隔膜在 40μm左右,这是电池大电流放电和高容量的需要,而且隔膜越厚,其机械强 度就越好,在组装电池过程中不易短路。
隔膜 构造 厚度
Celgard2320 PP/PE/PP 25/20/16
东燃 PE 20/16
旭化成 PE
20/16
宇部 PP/PE/PP
20
.
(2)孔径和分布。
作为电池隔膜材料,本身具有微孔结构,容许吸纳电解 液;为了保证电池中一致的电极/电解液界面性质和均 一的电流密度,微孔在整个隔膜材料中的分布应当均匀。 孔径的大小与分布的均一性对电池性能有直接的影响: 孔径太大,容易使正负极直接接触或易被锂枝晶刺穿而 造成短路;孔径太小则会增大电阻。微孔分布不匀,工 作时会形成局部电流过大,影响电池的性能。
Temperature (°C)
2.隔膜的制造工艺
隔膜的制备方法
干法
单向拉伸 双向拉伸
熔融拉伸(MSCS) 美国celgard、日 本宇部
热致相分(TIPS) 湿法
日本的旭化成、东燃, 美国的Entek
优点:较好的控
制孔径及孔隙率。
缺点:需使用溶
剂,产生污染,提 高成本。
.
干法制备隔膜
定义:干法是将聚烯烃树脂熔融、挤压、吹制成结晶性高分子薄膜,经过结晶
.
(3)孔隙率。
透过性可用在一定时间和压力下通过隔膜气体的量的多少来表征,主要反 映了锂离子透过隔膜的通畅性。孔隙率对膜的透过性和电解液的容纳量 非常重要。大多数商用锂离子电池隔膜的孔隙率在40%- 50%之间。
P%(WwWd)(Vbb)

锂离子电池隔膜

锂离子电池隔膜

主要应用领域
电动汽车
锂离子电池隔膜在电动汽车领域的应用最为广泛,主要作为电池组件的核心材料之一,用于隔开正负极材料,防止短 路和电池爆炸等安全问题。
储能领域
储能领域是锂离子电池隔膜的另一个重要应用领域,主要涉及电力、通信、智能电网等领域。在这些领域中,锂离子 电池隔膜用于储存电能,并在需要时释放出来。
产品特点
干法工艺制备的隔膜具有机械强度高、耐高温、热稳定性好等优点,同 时干法工艺可以生产出厚度较大的隔膜,适用于高功率密度的锂离子电 池。
工艺比较与优化
生产成本
湿法工艺使用的是水溶剂,生产成本较低;而干法工艺使用的是有机溶剂,生产成本较高。因此,在考虑生产成 本的前提下,湿法工艺更具优势。
产品性能
市场竞争
随着市场规模的不断扩大,锂离子电池隔膜领域的竞争也 越来越激烈。新进入者和现有企业之间的竞争将进一步加 剧。因此,企业需要不断提高产品质量和服务水平,加强 品牌建设和市场推广,以保持竞争优势。
05
锂离子电池隔膜的环保与可持续发展
生产过程中的环保要求
02
01
03
原材料选择
使用环保材料,如可再生资源,减少对环境的破坏。
作用
隔膜在锂离子电池中起到至关重要的作用,它决定了电池的容量 、内阻、安全性以及电池的寿命。
隔膜的组成与结构
组成
锂离子电池隔膜主要由聚烯烃材 料制成,其表面涂有陶瓷涂层以 增强其热稳定性。
结构
隔膜的结构通常呈现出多孔性, 这些孔隙允许锂离子通过,却阻 止了电子的直接流通,从而实现 了正负极之间的隔离。
06
研究与发展趋势
研究现状与成果
聚烯烃隔膜
聚烯烃隔膜具有高孔隙率、低成 本和良好的热稳定性,是锂离子 电池的主要隔膜类型。目前,研 究者通过优化隔膜的孔径、厚度 和拉伸强度等参数,提高了隔膜 的电化学性能和安全性。

锂离子电池隔膜基础ppt课件

锂离子电池隔膜基础ppt课件

Ls d
tGur
5.18
L d
式中:τ-孔的曲折度,Ls-气体或液体实际 通过的路程,d-隔膜的厚度
式中:tGur-Gurley值;τ-孔的曲折度;L膜厚(cm); ε-孔隙率;d-孔径
用压降仪来测量电池隔膜的透气率
东燃16u 东然20u celgard20u celgard25u
隔膜空气渗透性/s
械性能的耐久性; 7. 隔膜不含有电解液能溶解的颗粒和金属及对电池
有害的物质。
.
隔膜作用
1. 将电池的正负极隔离以防止短路 2. 吸附电池中电化学反应进行必须的的电解质
溶液,确保有高的离子电导率 3. 保证在电池发生异常时为提高电池的安全性
而附加的使电池反应停止的功能
.
对隔膜的要求:
a.有一定的机械强度,保证在电池变形条件下不破 裂;
下,隔膜的厚度越薄越好。现在,新型的高能电池大都采用膜厚 20μm或 16μm的单层隔膜;电动汽车(EV)和混合电动汽车(HEV)所用电池的隔膜在 40μm左右,这是电池大电流放电和高容量的需要,而且隔膜越厚,其机械强 度就越好,在组装电池过程中不易短路。
隔膜 构造 厚度
Celgard2320 PP/PE/PP 25/20/16
采用单轴拉伸时,膜在拉伸方向与垂直拉伸方向强度不同,而采用双轴拉伸制备的隔 膜其强度在两个方向上基本一致。
东然-16u 东燃-20u Celgard-20u Celgard-25u
抗拉强度均值/Mpa 132.2 141.7 199.6 205.9
伸长率均值/% 89.64 107.96 48.06 77.16
.
(3)孔隙率。
透过性可用在一定时间和压力下通过隔膜气体的量的多少来表征,主要反 映了锂离子透过隔膜的通畅性。孔隙率对膜的透过性和电解液的容纳量 非常重要。大多数商用锂离子电池隔膜的孔隙率在40%- 50%之间。

锂离子电池隔膜及粘结剂基础知识PPT共22页

锂离子电池隔膜及粘结剂基础知识PPT共22页
天 真而不 幼稚, 勇敢而 鲁莽, 倔强而 有原则 ,热情 而不冲 动,乐 观而不 盲目。 ——马 克思
6、最大的骄傲于最大的自卑都表示心灵的最软弱无力。——斯宾诺莎 7、自知之明是最难得的知识。——西班牙 8、勇气通往天堂,怯懦通往地狱。——塞内加 9、有时候读书是一种巧妙地避开思考的方法。——赫尔普斯 10、阅读一切好书如同和过去最杰出的人谈话。——笛卡儿
锂离子电池隔膜及粘结 剂基础知识
6、纪律是自由的第一条件。——黑格 尔 7、纪律是集体的面貌,集体的声音, 集体的 动作, 集体的 表情, 集体的 信念。 ——马 卡连柯
8、我们现在必须完全保持党的纪律, 否则一 切都会 陷入污 泥中。 ——马 克思 9、学校没有纪律便如磨坊没有水。— —夸美 纽斯

《锂离子电池隔膜》课件

《锂离子电池隔膜》课件
《锂离子电池隔膜》PPT 课件
本课件介绍了锂离子电池隔膜的重要性和功能,以及其在各个领域的应用。 深入浅出地解释了电池的结构和不同种类的隔膜,探讨了隔膜的特性和制备 方法,并展望了未来的发展前景和研究方向。
一、锂离子电池简介
定义
锂离子电池是一种以锂离子 嵌入和脱嵌为基础的充放电 电池。
优点
高能量密度、长循环寿命、 低自放电率、无记忆效应。
汽车行业
用于纯电动汽车和混合动力车的 动力电池。
电子设备行业
用于智能手机、平板电脑等便携 式设备。
新能源行业
用于储能系统、太阳能发电站等。
八、结论
锂离子电池隔膜的重要性
隔膜是锂离子电池中重要的组成部分,直接影响电池性能和安全性。
发展前景和研究方向
继续提高电导率、优化孔隙结构,改善隔膜的热稳定性和安全性。
应用领域
智能手机、电动车、储能系 统等。
二、锂离子电池结构
正极材料
通常是由锂化合物构 成的,如氧化钴、磷 酸铁锂等。
负极材料
通常是由石墨或硅等 材料构成。
电解质
通常是有机溶液,如 聚合物电解质。
隔膜
隔离正极和负极,控 制离子传输速度,防 止短路。
三、锂离子电池隔膜的作用
1 隔离正负极之间
防止直接接触,避免短路。
3 热稳定性
耐ቤተ መጻሕፍቲ ባይዱ温环境,防止起火爆炸。
2 孔隙率
影响电池的能量密度。
4 电化学稳定性
抵抗电解质的分解和电池的寿命衰减。
六、锂离子电池隔膜的制备
1
溶液铸膜法
将聚合物溶液涂覆在带有导电层的基材上。
2
拉伸法
通过拉伸、拉伸和层叠的方法形成薄膜。

锂电池隔膜.ppt

锂电池隔膜.ppt
隔膜应有的基本要求
1.电绝缘性好(非电子导体); 2.对电解质离子有很好的透过性,电阻低; 3.对电解质具有化学稳定性和电化学稳定性; 4.对电解质润湿性好 ; 5.具有一定的机械强度,厚度尽可能小 ;
1
隔膜性能
主要指外观;厚度;面密度;电阻;干态及湿 态抗拉强度;孔率;孔径;吸液率;吸液速率; 保持电解液能力;耐电解液腐蚀能力.
4
基本要求
1.足够的隔离性和电子绝缘性,能够保证正负极的机械隔离 和阻止活性物质的迁移; 2.有一定的孔径,对锂离子有很好的透过性,保证低的电阻和 高的离子导电率; 3.有足够的化学和电化学稳定性,一定的耐湿性和耐腐蚀性; 4.对电解液浸润性好 5.有足够的力学性能和防震能力,厚度尽可能小; 6.占的体积小,易于实现薄膜化; 7.自动关断保护性能好;
%Transmittance
80
60
40
20
11446511.8.1324472.31 1436.73 149
1304.10 1254.74
1167.52
1200
Wavenumbers (cm-1)
1000
997.66 972.63
899.05 840.59
穿刺强度:与电极板表面的粗糙程度有关,电极使用 不同的材料要求隔膜的穿刺强度也不同.
9
隔膜的内部结构
1.孔径:可用压汞法测定;通过汞的体积和压力,微 孔的大小有关;
2.孔率:单位膜的体积中孔的体积百分率;可用比 重法测定:孔率=D0-D/D0
3. 孔的曲折度:膜的厚度和气体或液体在实际膜 当中通过的路径比例.(电池放电一般对膜的电 阻而言,低曲折系数是有利的;对短路时的 shutdown来讲,高的曲折系数有利.)

锂离子电池隔膜培训

锂离子电池隔膜培训

隔膜制造工艺 –干法 (Dry process)
干法隔膜按照拉伸取向分为单拉和双拉
干法隔膜工艺是隔膜制备过程中最常采用的方法,该工艺是将高分 子聚合物、添加剂等原料混合形成均匀熔体,挤出时在拉伸应力下形成 片晶结构,热处理片晶结构获得硬弹性的聚合物薄膜,之后在一定的温 度下拉伸形成狭缝状微孔,热定型后制得微孔膜。目前干法工艺主要包 括干法单向拉伸和双向拉伸两种工艺。
弯曲度 弯曲度主要指隔膜分切后产生的弧形,弧形明显时会造成叠片不齐,卷绕时
产生涡状,造成极片外露进而短路。将隔膜条平铺于桌面上,与钢板尺边缘进 行平行度的对比,可以得到隔膜的弧度。
4.透气度
透气度反映隔膜的透过能力,一般采用 Gurley 法进行测定,即一定体积的 气体,在一定压力条件下通过给定面积的隔膜所需要的时间。与电池内阻成正比, 数值越大,内阻越大。
指标
14-35μm
35-60%
10-25 S/in2.100cc.1.22Kpa 干法0.1-0.3μm 湿法0.01-1μm 干法MD<3%, TD<1% 湿法MD<5%, TD<3% PE: 128-135℃ PP: 150-166℃
MD≥140Mpa, TD≥75Mpa
>4.4N
性能影响 内阻、容量、穿刺强度 内阻、机械强度和闭孔性 内阻 内阻、短路率、一致性
5.孔隙率
测试法是通过毛细管流动分析仪或压汞仪测试得到。仪器测试法得到的结 果与测试原理、实验条件的选择密切相关,且孔隙率为仪器根据孔径分布测量 情况的计算结果。
毛细管流动分析仪是通过泡点法即采用惰性气体冲破已润湿的隔膜,测量 气体流出的压力值,通过计算得到孔径参数; 压汞仪是采用压汞法即测量汞压入孔 所 施 压 力 计 算 出 孔 径 参 数 。

锂离子电池隔膜共58页文档

锂离子电池隔膜共58页文档

锂离子电池隔膜
51、没有哪个社会可以制订一部永远 适用的 宪法, 甚至一 条永远 适用的 法律。 ——杰 斐逊 52、法律源于人的自卫本能。——英 格索尔
53、人们通常会发现,法律就是这样 一种的 网,触 犯法律 的人, 小的可 以穿网 而过, 大的可 以破网 而出, 只有中 等的才 会坠入 网中。 ——申 斯通 54、法律就是法律它是一座雄伟的大 夏,庇 护着我 们大家 ;它的 每一块 砖石都 垒在另 一块砖 石上。 ——高 尔斯华 绥 55、今天的法律,才不会再掉进坑里。——黑格尔 32、希望的灯一旦熄灭,生活刹那间变成了一片黑暗。——普列姆昌德 33、希望是人生的乳母。——科策布 34、形成天才的决定因素应该是勤奋。——郭沫若 35、学到很多东西的诀窍,就是一下子不要学很多。——洛克
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

锂离子电池隔膜性能参数
①厚度
对于消耗型锂离子电池(手机、笔记本电脑、数 码相机中使用的电池),25微米的隔膜逐渐成为标准。 然而,由于人们对便携式产品的使用的日益增长,更 薄的隔膜,比如说 20 微米、18 微米、16 微米、甚至 更薄的隔膜开始大范围的应用。 对于动力电池来说,由于装配过程的机械要求, 往往需要更厚的隔膜,当然对于动力用大电池,安全 性也是非常重要的,而厚一些的隔膜往往同时意味着 更好的安全性, EV/HEV 使用的是厚度为 40 微米左右 的隔膜。
微孔尺寸分布均匀 膜厚度范围宽 横向拉伸强度好 抗穿刺强度高 更适合动力ห้องสมุดไป่ตู้池
干法双拉 PE 的微孔结构 (20,000倍)
造孔工程技术
湿法
湿法又称相分离法或热致相分离法,将高沸点小分子作
为致孔剂添加到聚烯烃中,加热熔融成均匀体系,然后降
温发生相分离,拉伸后用有机溶剂萃取出小分子,可制备 出相互贯通的微孔膜材料。
采用该法的具有代表性的公司有日本旭化成、东燃及美
国Entek等,目前主要用于单层的PE隔膜。
湿法 PE 的微孔结构 (20,000倍)
虽然孔隙率和透气性 可控范围大,但由于 湿法工艺需要消耗大 量的有机溶剂,一方 面要考虑溶剂的回收 利用,工艺复杂度增 加,使成本增加,另 一方面,污染环境。
从干、湿两种方法上看,干法双向拉伸工艺生
④化学稳定性
要求隔膜在电化学反应中是惰性的,且对强还原、 强氧化不活泼,机械强度不衰减,不产生杂质。一般 认为,目前隔膜用材料PE或PP可满足化学惰性要求。
⑤孔径
防止电极颗粒直接通过隔膜 ,要求隔膜孔径为0.010.1μm, 小于 0.01μm 时,锂离子穿透能力太小 ,大于 0.1μm时,电池内部枝晶生成时电池易短路。 目前所使用的电极颗粒一般在 10 微米的量级,而所 使用的导电添加剂则在 10 纳米的量级,不过很幸运的 是一般碳黑颗粒倾向于团聚形成大颗粒。一般来说,亚 微米孔径的隔膜足以阻止电极颗粒的直接通过,当然也 不排除有些电极表面处理不好,粉尘较多导致的一些诸 如微短路等情况。
造孔工程技术
单向拉伸工艺 干法 双向拉伸工艺 生产工艺
湿法
造孔工程技术
干法单向拉伸工艺 干法单向拉伸工艺是通过生产硬弹性纤维的方法,制备 出低结晶度的高取向聚丙烯或聚乙烯薄膜,在高温退火获 得高结晶度的取向薄膜。这种薄膜先在低温下进行拉伸形 成微缺陷,然后高温下使缺陷拉开,形成微孔。 该工艺经过几十年的发展在美国、日本已经非常成熟, 现在美国Celgard公司、日本UBE公司采用此种工艺生产单 层PP、PE以及三层PP/PE/PP复合膜。由于受国外专利保护 及知识产权方面的制约,国内采用单向拉伸方法制备隔膜 的工业化进展很慢。
⑨孔隙率
大多数锂离子电池隔膜孔隙率在 30%-50%之间。孔隙 率的大小和内阻有一定的关系,但不同种隔膜之间的 空隙率的绝对值无法直接比较。
锂离子电池隔膜生产工艺
基体材料
聚烯烃材料具有优异的力学性能、化学稳定性和相 对廉价的特点。隔膜基体材料主要包括聚丙烯、聚乙烯 材料和添加剂。隔膜所采用基体材料对隔膜力学性能以 及与电解液的浸润度有直接的联系。尽管近年来有研究 用聚偏氟乙烯、纤维素复合膜等材料制备锂离子电池隔 膜,但至今商品化的电池隔膜材料仍主要采用聚乙烯、 聚丙烯微孔膜。
③浸润度
为保证电池的内阻不是太大,要求隔膜是能够被电 池所用电解液完全浸润,这与隔膜材料本身和隔膜的 表面及内部微观结构相关。 粗略判断:取典型电解液(如 EC : DMC=1:1 , 1M LiPF6),滴在隔膜表面,看是否液滴会迅速消失被隔 膜吸收 。 精确判断:用超高时间分辨的摄像机记录从液滴接触 隔膜到液滴消失的过程,计算时间,通过时间的长短 来比较两种隔膜的浸润度。
⑥穿刺强度
穿刺强度:在一定的速度(每分钟 3-5 米)下,让一 个没有锐边缘的直径为1mm 的针刺向环状固定的隔膜,为 穿透隔膜所施加在针上的最大力。 由于测试的时候所用的方法和实际电池中的情况有很大 的差别,直接比较两种隔膜的穿刺强度不是特别合理,但 在微结构一定的情况下,相对来说穿刺强度高的,其装配 不良率低。但单纯追求高穿刺强度,必然导致隔膜的其他 性能下降。
⑦热稳定性
隔膜需要在电池使用的温度范围内(-20℃~60℃)保 持热稳定。一般来说目前隔膜使用的PE或PP材料均可以满 足上述要求。 通常,真空条件下,90℃恒温60分钟,隔膜横向纵向收 缩应小于5%。
⑧热关闭温度
热关闭温度:将模拟电池(两平面电极中间夹一隔 膜,使用通用锂离子电池用电解液)加热,当内阻提 高三个数量级时的温度。 闭孔温度:外部短路或非正常大电流通过时产生的 热量使隔膜微孔闭塞时的温度。 熔融破裂温度:将隔膜加热,当温度超过试样熔点 使试样发生破裂时的温度。
用这种方法生产的隔膜 具有扁长的微孔结构, 由于只进行单向拉伸, 隔膜的横向强度比较差 , 但正是由于没有进行横 向拉伸 , 横向几乎没有热 收缩。
干法单拉 PP 的微孔结构 (20,000倍)
造孔工程技术
干法双向拉伸工艺
干法双向拉伸工艺是中国科学院化学研究所在20世纪90年 代初开发出的具有自主知识产权的工艺(CN1062357)。 通过在聚丙烯中加入具有成核作用的β晶型改进剂,利用 聚丙烯不同相态间密度的差异,在拉伸过程中发生晶型转 变形成微孔。
商品化隔膜的典型特征参数
本技术制作工艺
挤出机
精密计量泵
模 头
纵 拉


生产车间
产的隔膜在物理性能、机械性能方面更占优势, 能够满足动力电池大电流充放电的要求。所以, 干法双向拉伸工艺生产的隔膜更适合应用于电 动汽车用动力电池。
复合隔膜
此种隔膜有两层(PP/PE)隔膜、三层(PP/PE/PP) 隔膜。三层膜在温度升高时,中部的PE在130度熔化 收缩造成热关闭,但是由于外部的PP熔化温度为160 度,隔膜还可以保持一定的安全性,因此三层膜也较 适用于动力电池。目前Celgard与UBE掌握此种技术及 专利权。
锂离子电池隔膜基础知识
1
教程大纲



锂离子电池隔膜简介 锂离子电池隔膜生产工艺 隔膜市场现状 隔膜部分生产设备
隔膜简介
在锂离子电池中,隔膜的作用主要有两 个方面:一方面起到分隔正、负极,防止短 路的作用;另一方面,隔膜能够让锂离子通 过,形成充放电回路。 隔膜性能的优劣直接影响着电池内阻、 放电容量、循环使用寿命以及安全性能。隔 膜越薄,孔隙率越高,电池内阻越小,高倍 率放电性能越好,性能优异的隔膜对提高电 池的综合性能具有重要的作用。
隔膜性能对电池性能的影响
隔膜市场的现状
国内隔膜的总体水平落后
国内由于多方面技术上的综合差距,不能达到 国外一样的精密控制。产品差距主要在于厚度、 强度、孔隙率等指标不能得到整体兼顾,且量产 批次稳定性较差。
因此研究开发低成本、制作工艺简单、孔径尺 寸适当、空隙率高、机械强度能满足要求的微孔 聚合物隔膜对于提高电池性能和降低电池成本具 有重要的实际意义。
②透气率
MacMullin 数 :含电解液的隔膜的电阻率和电解液本 身的电阻率之间的比值 。此数值越小越好,消耗型锂离 子电池的这个数值为接近 8。 Gurley 数 :一定体积的气体,在一定压力条件下通 过一定面积的隔膜所需要的时间。与隔膜装配的电池的内 阻成正比,即该数值越大,则内阻越大。 单纯比较两种不同隔膜的 Gurley 数是没有意义的, 因为可能两种隔膜的微观结构完全不一样;但同一种隔膜 的 Gurley 数的大小能很好的反应出内阻的大小,因为同 一种隔膜相对来说微观结构是一样的或可比较的。
全球主要隔膜生产企业产能分布(2010年)
厂商 美国 Celgard 宇部 UBE 格瑞恩 佛山 金辉 星源 材质 新时 科技
产能 (Mm2/ 年 )
11000
2000
3500
1600
1500
500
根据台湾工研院的数据,预计到2013年隔膜需求量可达5.63 亿平米,产值近17亿美元,但由上面的产能表可见,隔膜的产 能远不能满足市场需求。
锂离子电池隔膜作用示意图
锂离子电池隔膜实物图
锂离子电池对隔膜的要求
① 具有电子绝缘性,保证正负极的机械隔离; ② 有一定的孔径和孔隙率,保证低的电阻和高 的离子电导率,对锂离子有很好的透过性; ③ 耐电解液腐蚀,电化学稳定性好; ④ 对电解液的浸润性好并具有足够的吸液保湿 能力; ⑤ 具有足够的力学性能,包括穿刺强度、拉伸 强度等; ⑥ 空间稳定性和平整性好; ⑦ 热稳定性和自动关断保护性能好。
相关文档
最新文档