2.2.2对数函数及其性质(1)课件(新人教版A必修一)

合集下载

高中数学 2.2.1.1对数课件 新人教A版必修1

高中数学 2.2.1.1对数课件 新人教A版必修1

提示:①a<0,N取某些值时,logaN不存在,如根据指数的运算性质可知,不存在实数x使(-12)x=2成
立,所以log(-
1 2
)2不存在,所以a不能小于0.②a=0,N≠0时,不存在实数x使ax=N,无法定义logaN;N
=0时,任意非零实数x,有ax=N成立,logaN不确定.③a=1,N≠1时,logaN不存在;N=1,loga1有无 数个值,不能确定.
1
30
思考 1 对数恒等式 a logaN=N 成立的条件是什么? 提示:成立的条件是a>0,a≠1且N>0.
思考 2 用 a logaN (a>0 且 a≠1,N>0)化简求值的关键是什么?
提示:用 a logaN (a>0 且 a≠1,N>0)化简求值的关键是凑准公式的结构,尤其是对数的底数和幂底数 要一致,为此要灵活应用幂的运算性质.
思考 根据对数的定义以及对数与指数的关系,你能求出loga1=?logaa=?
提示: ∵对任意a>0且a≠1,都有a0=1, ∴化成对数式为loga1=0; ∵a1=a,∴化成对数式为logaa=1.
1
24
[典例示法] 例3 求下列各式中x的值. (1)logx27=32;(2)log2x=-23; (3)x=log2719;(4)log3(lgx)=1.
题目(1)(2)中的对数式化为指数式是怎样的?题目(3)(4)呢?
3
提示:(1)化为指数式x2
=27,(2)化为指数式2-23
=x,(3)化为指数式27x=19,(4)化为指数式31=lgx.
1
25
[解]
(1)由logx27=32可得x32 =27,
2

学年高中数学第二章基本初等函数Ⅰ2.2对数函数2.2.1第2课时对数运算课件新人教A版必修.ppt

学年高中数学第二章基本初等函数Ⅰ2.2对数函数2.2.1第2课时对数运算课件新人教A版必修.ppt

3.logaMn= nlogaM
(n∈R).
二、对数换底公式 logab=llooggccba(a>0,且 a≠1,b>0,c>0,且 c≠1); 特别地:logab·logba= 1 (a>0,且 a≠1,b>0,且 b≠1).
[双基自测]
1.lg 8+3lg 5 的值为( )
A.-3
B.-1
第 2 课时 对数运算
考纲定位
重难突破
1.掌握对数的运算性质. 重点:对数的运算性质.
2.能熟练运用对数的运算性质进行化 难点:换底公式的应用.
简求值.
01 课前 自主梳理 02 课堂 合作探究 03 课后 巩固提升
课时作业
[自主梳理]
一、对数的运算性质
如果 a>0,且 a≠1,M >0,N>0,那么: 1.loga(M·N)= logaM+logaN . 2.logaMN=logaM-logaN .
b=log510=lg15,
∴1a+1b=lg 2+lg 5=1. 答案:1
4.计算下列各式的值.
(1)12lg3429-lg 4+lg 245;
(2)lg 52+23lg 8+lg 5·lg 20+(lg 2)2.
解析:(1)原式=lg472-lg 4+lg7
5=lg4
2×7 7×4
5=lg(

忽略对数的限制条件导致错误
[典例] 若 lg(x-y)+lg(x+2y)=lg 2+lg x+lg y,求xy的值. [错解] 因为 lg(x-y)+lg(x+2y)=lg[(x-y)(x+2y)]=lg(2xy), 所以(x-y)(x+2y)=2xy,即 x2-xy-2y2=0,

人教A版高中数学必修1课件:2.2.2《对数函数及其性质》课件

人教A版高中数学必修1课件:2.2.2《对数函数及其性质》课件

练习:(1)y log a (9 x 2 ) (2)y log (2 x1) (3 x 2)
3y
log
7
1 1 3x
4y loga 4 x
小结: 1.对数函数的概念. 2.对数函数的定义域. 3.对数函数的图象及其性质,通过对a分类讨 论掌握其性质与图象.
练习:已知函数 f(x)=log2 (2x-1)
即已知y求x的问题。
yx=log2xy
对数函数:
一般地,我们把函数 y log a xa 叫0做且对a数函1
数,其中x是自变量,函数的定义域是(0,+∞).
注意:①对数函数的定义与指数函数类似,都是情势定义,
注意辨别.如:y 2 log 2 x,
能称其为对数型函数.
y l都og不2 是52 对x 数函数,而只
a>1
0<a<1

y
y

o (1, 0)
(1, 0) xo
x
(1) 定义域: (0,+∞)
性 (2) 值域:R
(3) 过点(1,0), 即x=1 时, y=0
(4) 0<x<1时, y<0;
(4) 0<x<1时, y>0;

x>1时, y>0
x>1时, y<0
(5) 在(0,+∞)上是增函数 (5)在(0,+∞)上是减函数
0 1 23 4
连 -1 线 -2
2 4… 1 2…
x
x … 1/4 1/2
列 表
y
y
log 2
log 1
x…
x…
2
-2 2

2.2.2对数函数及其性质课件_1

2.2.2对数函数及其性质课件_1
1 1 (2)由logm5.4>logn5.4,可得log m>log n, 5.4 5.4 ∵y=log5.4x是增函数,故有:
(1)m>1,n>1时,log5.4m>0,log5.4n>0, 1 1 ∵log m>log n,∴log5.4m<log5.4n,∴m<n. 5.4 5.4 (2)0<m<1,0<n<1时,log5.4m<0,log5.4n<0, 1 1 由log m>log n可得log5.4m<log5.4n,∴m<n. 5.4 5.4 (3)m>1,0<n<1时,log5.4m>0,log5.4n<0,则 1 > 恒成立,∴m>n. log5.4n 1 log5.4m
• [答案] B • [解析] 方法1:对数函数的图象分布与底 数a的关系是第一象限内逆时针a值由大到 小,故b>a>d>c,∴选B. • 方法 2 :在上图中画出直线 y = 1 ,分别与 ① 、 ② 、 ③ 、 ④ 交 于 A(a,1) 、 B(b,1) 、 C(c,1)、D(d,1),由图可知c<d<1<a<b. • [ 点评 ] 两个单调性相同的对数函数,它 们的图象在位于直线 x = 1 右侧的部分是 “底大图低”.
• (2)考查对数函数y=log2x和y=log7x的图象, 如下图
• 当 x>1 时, y = log2x 的图象在 y = log7x 图象 上方. • ∴当x=5时,∴log25>log75.(此题也可用换 底公式来解.)

总结评述: (1) 是利用对数函数的单调 性比较两个数的大小,底数范围未明确指 定时,要对底数进行讨论来比较两个对数 的大小,例如比较loga3和loga2的大小,要 讨论a>1和0<a<1两种情况. • 对于(3)就不能直接利用对数函数的单调性 比较大小,这时可在两个数中间插入一个 已知数 ( 如 1 或 0 等 ) 间接比较两个对数的大 小.

对数函数及其图象与性质(一)1课件人教新课标

对数函数及其图象与性质(一)1课件人教新课标
思想方法:
1、类比思想 2、数形结合的思想 3、分类讨论思想
作业设置: 学案中【课后作业】
分别以y log2 x 和 y log 1 x 为例,用描点法画图.
y2
x y log2 x
1 -1
2
10 21
42 6 2.6 83
1
3
y log 2 x
2
0
1
-1
0 1 2 3 45678x
-2
-1
-2.6 -2
-3
-3
y log 1 x
2
知识探究:对数函数y=logax(a>0且a≠1)的图象和性质
3. 指数函数的图象和性质
y=ax
图 象
定义域
a>1
y y=ax
(0,1)
y=1
O
x
R
0<a<1
y=ax y (0,1) y=1 Ox
值域
定点 单调性 函数值 的符号
(0,+∞)
过点(0,1),即x=0时,y=1
在R上是增函数
x>0时,y>1; x<0时,0<y<1
在R上是减函数
x>0时,0<y<1; x<0时,y>1
所以,t 是关于P的函数。
知识探究:
1、对数函数定义:形如 y loga x(a 0, 且a 1) 的函数叫
做对数函数,其中 x 是自变量;
定义域是(0, +∞). 对数函数的情势:
练习:1、判断下列函数是否是对数函数(1)系数为1
(1)y
lo2)底数是大于0且不等于
课堂导学:求对数函数定义域问题
应用一:求下列函数的定义域
课堂导学:求对数函数定义域问题
应用一:求下列函数的定义域

对数函数及其性质(第一课时)课件-高一上学期数学人教A版(2019)必修第一册

对数函数及其性质(第一课时)课件-高一上学期数学人教A版(2019)必修第一册


(1)A已.知cab0.3a0.4 ,A.b cB.lobga34ab,cc lBo.g0.a3 4C,b.则b(c a c )C. b Da.bc c a D.b c a
A. c b a B. a b c
C.b a c
D.b c a
例题讲练
(2)设 a log3 , b log2 3 , c log3 2 ,则(
x lxogaloyg(a ya ( 0a且 a0 且 1a),1x),也是x 也以是y以为自y 为变自量变的量函的数函(数其(中其y 中 0y, 0x , Rx ),R ), 根据根我据们我的们认的知认习知惯习,惯我,们我把们x 把 lxogaloyg中a 字y 中母字x 母, xy,对调y 对,调, 写成写y成 lyogaloxg(a 其x (中其x 中 0x, 0y, Ry ).R ).
例题讲练
【练习习 55】】
((11))已已知知ff((xx))的的定定义义域域为为[0[,10],1,] ,则函则数函数f [lof g[l1o(g31(3x)] 的x)定] 的义定域义为域___为____________._____.
22
例题讲练
(2)已知函数 y f [lg(x 1)] 的定义域为 (0,99] ,则函数 y f [log2 (x 2)] 的定义域为__________.
§4.4 对数函数及其性质 (第一课时)
人教版高中数学必修一
课堂引入:
通过前面的学习我们知道,某细胞经过 x 次分裂后,变成的细胞个数 y 2x ,
得由到一由y 个y2指x 数2x函x数x.lo由gglo22gyyy2y2对x 于对任于x意任的意lo细的g2胞细y个胞,数个对数y于,任y 我,意们我的都们细可都胞以可个通以数过通y对过,数对我运数们算运都算可 得到以得唯通到一唯过的一对的数x 与运x 之与算对之得应对到,应唯所,一以所的细以x胞细与分胞之裂分对次裂应数次,所数x以也x细可也胞以可分看以裂出看次以出数细以x胞细也个胞可数个以数y看为y成自为以变自细变胞个 量的数量函的y数函为.数自.变量的函数. 同样同地样,地根,据根指据数指与数对与数对的数关的系关,系由,y由 ayx(aax ( 0a且 a0 且 1a)可1)以可得以到得:到:

2.2.2 对数函数及其性质 (1)

2.2.2 对数函数及其性质 (1)

(3) y log2 x log2 (4 x)
2
例1:求下列函数定义域:
2 y log x (1) a
(2)y loga (4 x)
(3) y log2 x log2 (4 x)
2
二、对数函数的图像
对数函数:y = loga x (a>0,且a≠ 1)
图象与性质
x y 3log 5. 2 5
2. y=log(x-1)x 4.y=lnx
例1:求下列函数定义域:
2 y log x (1) a
(2)y loga (4 x)
2 解(1)因为 x 0
(2)因为 4 x 0 所以函数的定义域为
所以函数的定义域为
{x x 0}
{x x 4}
a N
b
,那么数 b叫做
以a为底 N的对数,记作 loga N b a叫做对数的底数,N叫做真数。
由前面的学习我们知道:如果有一种细胞分裂时, 由1个分裂成2个,2个分裂成4个,· · ·,1个这样的细 胞分裂x次会得到多少个细胞?
y2
x
如果知道了细胞的个数y,如何确定分裂的次 数x呢? 由对数式与指数式的互化可知:
当x=1时,总有loga1=0
a 1且0 x 1时, loga x 0
o
x 1
o
图象
x
(0, )
R
y
y loga ( x a>1)
a>1
y
y loga ( x 0<a<1)
(1,0)
0<a<1
(1,0)
x 1
x
定义域
值域 定点 单调性

高中数学第二章基本初等函数(Ⅰ)2.2.2对数函数及其性质课件新人教A版必修1

高中数学第二章基本初等函数(Ⅰ)2.2.2对数函数及其性质课件新人教A版必修1
它是指数函数 y a x (a 0且a 1) 的反函数.
理论
2.对数函数的图象
由于对数函数 y log a x与指数函数y a x 互为反函数,所以 y log a x 的图象与 y a x
的图象关于直线 y x 对称. 看一般图象:
5
4
3
y=ax (a>1) 2
1
44
33
y=ax 22
∴函数 y loga x2的定义域是 x | x 0
(2)由 4 x 0 得 x 4
∴函数 y loga (4 x) 的定义域是 x | x 4
(3) 由 9 x2 0 得 3 x 3
∴函数 y loga(9 x2) 的定义域是 x | 3 x 3
举例
例2 求下列函数的反函数
在R上是减函数
引例
引例: y 2 x 有无反函数?若有,则求出.
分析:视察图象知,有反函数
由 y 2x 得 x log 2 y 所以,反函数为:
4
fx3 = 2x
2
1
-4
-2
2
y log 2 x x (0,)
理论
1.对数函数的定义:
函数 y log a x (a 0且a 1) 叫做对数函数(logarithmic function), 其中x是自变量,函数的定义域为 (0,) , 值域为 (,) .
1 y 1 x 1;
2
2 y (1) x2 3 (x 0).
2
解 (: 1)
y
1
x
1
1 x
y
1
2
2
(2)
x log1 ( y 1)
2
f 1( x) log1 ( x 1)

2.2.2 对数函数及其性质

2.2.2   对数函数及其性质

3 y x ( x R) 的反函数,并且画出原来的函数和它 例13:求函数
的反函数的图象。
解:由y x 3,得 x 3 y ∴函数 y x 的反函数是: y 3 x ( x R)
3 3 y x ( x R)和它的反函数 y 3 x ( x R) 的图象如图所示: 函数
(2)在定义域上是增函数
注:函数 y log a x(a 0且a 1) 的图象与 y log 1 x(a 0且a 1) 的 a 图象关于 x轴对称。 练习: 1. 函数 y log 4.3 x 的值域是( D )
A.(0,) C义:
一般地,我们把函数 y log a x(a 0, 且a 1) 叫做对数函数, 其中 x 是自变量,函数的定义域是(0,) 。
注:
x y a 1.由于指数函数 中的底数a满足a 0且a 1 ,则对数函数 y log a x 中的底数 a 也必须满足 a 0且a 1。
二、对数函数的图象和性质:
例2:函数 y log2 x 和 y log1 x 的图象。
2
一般地,对数函数y log a x(a 0,且a 1)的图象和性质 如下表所示:
0 a 1
图象
a 1
定义域 值域 性质 (2)在定义域上是减函数
(0,)
R
(1)过定点(1,0),即x=1时,y=0
x f 1 ( y)
y 注:在函数 x f 1 ( y)中,表示自变量,表示函数。但在习惯上, x 我们一般用 x 表示自变量,用 y表示函数,为此我们常常对调函数 x f 1 ( y)中的字母 x, y,把它改写为 y f 1 ( x)。
2.如果函数 y f ( x)有反函数 f 1 ( x) ,那么函数 y f 1 ( x) 的反函 数就是y f ( x) 。

高中数学人教A版必修1课件:2、2、2对数函数及其性质

高中数学人教A版必修1课件:2、2、2对数函数及其性质
则f,对于集合A中的任何一个元素,在集合B中都有唯一的一
个元素和它对应,那么这样的对应(包括集合A,B以及A到B
的对应法则f)叫做集合A到集合B的映射,记作: f : A B
其中,如果 a A,b B ,且元素a和元素b对应,那么我们
把元素b叫做元素a的象,元素a叫做元素b的原象
说明:1 映射 f : A B有方向性,即它只表示从集合A
a 1
0 a 1
y
y

y loga x
(1,0)

o (1,0)
xo
x
y loga x
定义域 性值 域 质 单调性
奇偶性 过定点
(0,)
(0,)
R 在(0,)上递增
R 在(0,)上递减
非奇非偶
非奇非偶
(1,0), 即x=1时,y=0
单调性的应用
例 比较对数值大小
1. 同底的两个对数比较
⑴ log 23.4 , log 28.5 ⑵ log 0.31.8 , log 0.32.7 ⑶ log a5.1 , log a5.9 ( a>0 , a≠1 ) 解:(3)当a>1时,函数y=log ax在(0,+∞)上是增函数, log a5.1<log a5.9 当0<a<1时,函数y=log ax在(0,+∞)上是减函数, log a5.1>log a5.9
⑧ y log 1 x
概念辨析
例2 下列函数是对数函数的是(D) A. y=log2(3x-2) B. y=log(x-1)x C. y=log0.3x2 D. y=lnx
2.对数函数的图像和性质
用描点法作y=log2x与y=log0.5x的图象.
x
1 4

高中数学必修1课件:2.2.2《对数函数及其性质》 (共22张PPT)

高中数学必修1课件:2.2.2《对数函数及其性质》 (共22张PPT)

值域: R
自左向右看图象逐渐上升 在(0,+∞)上是: 增函数

x … 1/4 1/2 1 2 4 …
表 y log 2 x … -2 -1 0 1 2 …
y log 1 x … 2
2
1 0 -1 -2 …
y

2

1 11
这两个函数 的图象有什
42
0 1 23 4
x 么关系呢?
连 线
-1
-2
关于x轴对称
2.2 对数函数
2.2.2 对数函数及其性质 Nhomakorabea复习回顾
1 指数函数的概念;
复 习
2 指数函数的图像与性质:
3 对数的概念和基本运算法则
对数函数的概念
一般地,函数y =
(a>0,且a≠1)
叫做对数函数.其中 x是自变量.
注意:
1.对数函数对底数的限制条件:a>0,且a≠1
2.函数的定义域是(0,+∞).
a>1
0<a<1
图y
y
象 0 (1,0)
x
0 (1,0) x
定义域 : ( 0,+∞)

值域 : R
过定点(1 ,0), 即当x =1时,y=0
在(0,+∞)上是增函数
质 当x>1时,y>0
当x=1时,y=0 当0<x<1时,y<0
在(0,+∞)上是减函数
当x>1时,y<0 当x=1时,y=0 当0<x<1时,y>0
作y=log2x的图象

x
1/4 1/2 1 2
表 y=log2x -2 -1 0 1

数学:2.2.2《对数函数及其性质》课件(新人教A版必修1)

数学:2.2.2《对数函数及其性质》课件(新人教A版必修1)

(1)定义域: R (2)值域: (0,+∞) 性 (3)过定点 (0,1) (4)单调性 质
a>1时, 在R上是增函数; 0<a<1时,在R上是减函数
(1)定义域: (0,+∞) (2)值域: R (3)过定点 (1,0) (4)单调性
a>1时,在(0,+∞)是增函数; 0<a<1时,在(0,+∞)是减函数
(2) y | log 2 x |
(1)
(2)
已知1 x 10, 试比较(lg x) , lg x , lg(lg x)的大小.
2 2
例3:求函数 y=log3x(1≤x≤3)的值域.
变式: (1)求函数 y=log3(x2-4x+7)的值域.
(2)已知函数y=logax(a>0,a≠1), 当x∈[3,9]时,函数的最大值比最小值大1,
(5)奇偶性: 非奇非偶
(5)奇偶性: 非奇非偶
二.新课讲授
例1 解下列关于x的不等式:
(1) log0.5 x > log0.5 (1-x) (2) log2 (x+3) - 2 <0
变式:0<a <1,0<b<1,且a
2 (3) log x < 1 3
logb (x -3)
<1,求 x
依据:(1)若a 1, log a m log a n m n 0
例1 说明函数 y log3 ( x 2) 和 y log3 x
的图象的关系.
y log3 x 向左平移2个单位 y log3 ( x 2) y log3 x 向上平移2个单位 y log3 x 2

2.2.2对数函数及其性质运算(1)课件

2.2.2对数函数及其性质运算(1)课件
注: 例2是利用对数函数的增减性比较两个对数的大 小的,对底数与1的大小关系未明确指出时,要分情况 对底数进行讨论来比较两个对数的大小.
练习1:
比较下列各题中两个值的大小:
⑴ log106 ⑵ log0.56 < log108 log0.54 < ⑶ log0.10.5 > log0.10.6 ⑷ log1.51.6 > log1.51.4
y log 1 x
y log 1 x
2
x
3
对数函数的图象与性质:
函数 底数
y
y = log a x ( a>0 且 a≠1 ) a>1
y 1
0<a<1
图象 定义域
o
1
x
o
x
(0,+∞)
(0,+∞)
值域 定点
值分布
R (1,0)
当 x>1 时,y>0 当 0<x <1 时, y<0
R (1,0)
⑵因为函数y=log0.3x在(0,+∞)上是减函数, 且1.8<2.7,所以log 0.31.8>log 0.32.7.
小结:对于同底不同真数的对数大小比较,应利 用对数函数的单调性判断大小。
⑶ loga5.1 , loga5.9 ( a>0 , a≠1 )
解:①当a>1时,函数y=log ax在(0,+∞)上是增函 数,于是log a5.1<log a5.9; ②当0<a<1时,函数y=log ax在(0,+∞)上是 减函数,于是log a5.1>log a5.9.
例2.比较下列各组数中两个值的大小: (1) log23.4 , log28.5; ⑵ log0.31.8, log0.32.7; ⑶ loga5.1 , loga5.9 (a>0,a≠1 ).

高中数学第二章基本初等函数(Ⅰ)2.2对数函数2.2.2对数函数及其性质课件1新人教A必修1

高中数学第二章基本初等函数(Ⅰ)2.2对数函数2.2.2对数函数及其性质课件1新人教A必修1

[答案] A [解析] ∵函数y=logax的图象一直上升, ∴函数y=logax为单调增函数,∴a>1,故选A.
3.下列函数中是对数函数的是 ( A.y=log1 x
4 4
)
B.y=log1 (x+1) D.y=log1 x+1
4
C.y=2· log1 x
4
[答案] A
[解析] 形如y=logax(a>0,且a≠1)的函数才是对数函数,
[规律总结] 对于对数概念要注意以下两点:
(1)在函数的定义中,a>0且a≠1. (2)在解析式y=logax中,logax的系数必须为1,真数必须为x, 底数a必须是大于0且不等于1的常数.
跟踪练习
指出下列函数中,哪些是对数函数? ①y=5x;②y=-log3x;③y=log0.5 x;④y=log3 x;⑤y
预习自测
1.下列函数是对数函数的是 ( A.y=2+log3x B.y=loga(2a)(a>0,且 a≠1) C.y=logax2(a>0,且 a≠1) D.y=lnx )
[答案] D
[解析] 判断一个函数是否为对数函数,其关键是看其是
否具有“y=logax”的形式,A,B,C全错,D正确.
2. 函数 y=logax 的图象如图所示, 则实数 a 的可能取值为 ( ) A.5 1 B.5 1 C.e 1 D.2
2.对数函数的图象和性质 一般地,对数函数y=logax(a>0,且a≠1)的图象和性质如下表 所示:
a>1
0<a<1
图象
a> 1
0<a<1
,+∞) 定义域:(0 ______ R 值域:______
性质
(1,0) ,即当 x=1 时,y=0 图象过定点______ 增函数 在(0,+∞)上是______ 减函数 在(0,+∞)上是______

新人教A版必修一对数函数的概念对数函数图像和性质课件(22张)

新人教A版必修一对数函数的概念对数函数图像和性质课件(22张)
;
(2)下列函数中,是对数函数的是
.(填序号)
①y=log4x;②y=log2(3x);③y=logx2;④y=log3(x-1);⑤y=log2x2;
1
⑥y= 2 log3x.
探究一
探究二
探究三
易错辨析
解析:(1)设 f(x)=logax(a>0,且 a≠1),
1
依题意有 loga4=-1,故 a=4,
探究三
易错辨析
对于含有偶次根式中被开方式为对数式时,要注意被开方的代数
式为非负,还要顾及对数式中本身的真数大于0这一隐含信息,错解
中显然忘记了真数大于0这一隐含条件.
1
2
3
4
5
6
1.下列函数中,是对数函数的是(
A.y=log2x-1
B.y=logx3x
C.y= log 1 x
D.y=3log5x
2
探究一
探究二
探究三
易错辨析
变式训练2函数f(x)=3x(0<x≤2)的反函数的定义域为(
A.(0,+∞)
B.(1,9]
C.(0,1)
D.[9,+∞)
解析:∵ 0<x≤2,∴1<3x≤9,
即函数f(x)的值域为(1,9].
故函数f(x)的反函数的定义域为(1,9].
答案:B
)
探究一
探究二
探究三
易错辨析
C.
2
D.x2
解析:由题意,知 f(x)=logax.∵f(x)的图像过点(√,a),
1
∴a=loga√.∴a=2.∴f(x)=log 1 x.故选 B.
2
答案:B
函数y=logax(a>0,且a≠1)的反函数是y=ax(a>0,且a≠1);函数

第二章 2.2.2 第1课时 对数函数及其性质(一)

第二章 2.2.2 第1课时  对数函数及其性质(一)

2.2.2 对数函数及其性质 第1课时 对数函数及其性质(一)学习目标 1.理解对数函数的概念.2.掌握对数函数的性质.3.了解对数函数在生产实际中的简单应用.知识点一 对数函数的概念一般地,把函数y =log a x (a >0,且a ≠1)叫做对数函数,其中x 是自变量,函数的定义域是(0,+∞).知识点二 对数函数的图象与性质对数函数y =log a x (a >0,且a ≠1)的图象和性质如下表:1.由y =log a x ,得x =a y ,所以x >0.( √ )2.y =2log 2x 是对数函数.( × )3.y =a x 与y =log a x 的单调区间相同.( × )4.由log a 1=0,可得y =log a x 恒过定点(1,0).( √ )题型一 对数型函数的定义域 例1 求下列函数的定义域. (1)y =log a (3-x )+log a (3+x ); (2)y =log 2(16-4x ). 考点 对数函数的定义域 题点 对数函数的定义域解 (1)由⎩⎪⎨⎪⎧3-x >0,3+x >0,得-3<x <3,∴函数的定义域是(-3,3). (2)由16-4x >0,得4x <16=42, 由指数函数的单调性得x <2,∴函数y =log 2(16-4x )的定义域为(-∞,2).反思感悟 求含对数式的函数定义域关键是真数大于0,底数大于0且不为1.如需对函数式变形,需注意真数底数的取值范围是否改变. 跟踪训练1 求下列函数的定义域. (1)y =x 2-4lg (x +3);(2)y =12-x+ln(x +1). 考点 对数函数的定义域 题点 对数函数的定义域解 (1)要使函数有意义,需⎩⎪⎨⎪⎧x 2-4≥0,x +3>0,x +3≠1,即⎩⎪⎨⎪⎧x ≤-2或x ≥2,x >-3,x ≠-2,即-3<x <-2或x ≥2,故所求函数的定义域为(-3,-2)∪[2,+∞).(2)要使函数有意义,需⎩⎪⎨⎪⎧2-x >0,x +1>0,即⎩⎪⎨⎪⎧x <2,x >-1,∴-1<x <2. 故所求函数的定义域为(-1,2). 题型二 对数型函数的求值问题例2 已知函数f (x )=⎩⎪⎨⎪⎧2x ,x ≤0,log 3x ,x >0,(1)求f ⎝⎛⎭⎫f ⎝⎛⎭⎫127的值; (2)若f (a )=12,求a 的值.解 (1)∵f ⎝⎛⎭⎫127=log 3127=-3, ∴f ⎝⎛⎭⎫f ⎝⎛⎭⎫127=f (-3)=2-3=18. (2)当a >0时,由f (a )=12,得log 3a =12.∴a =123= 3.当a ≤0时,由f (a )=12,得2a =12,∴a =-1,综上所述a 的值为-1或 3.反思感悟 理解运算对象,选择运算方法即对于分段函数要注意分类讨论,掌握运算法则,即指数、对数的运算法则,求得运算结果,所以本题充分体现了数学运算的核心素养. 跟踪训练2 已知函数f (x )=log 3(x +1),若f (a )=1,则a 等于( ) A.0 B.1 C.2 D.3 答案 C解析 ∵f (a )=log 3(a +1)=1,∴a +1=3,∴a =2.题型三 对数函数的图象问题例3 (1)函数y =x +a 与y =log a x 的图象只可能是下图中的( )答案 C(2)画出函数y =lg|x -1|的图象. 考点 对数函数的图象题点 含绝对值的对数函数的图象 解 (1)先画出函数y =lg x 的图象(如图).(2)再画出函数y =lg|x |的图象(如图).(3)最后画出函数y =lg|x -1|的图象(如图).延伸探究1.把本例(1)的条件“y =log a x ”改为“y =log a (-x )”,则函数y =a -x 与y =log a (-x )的图象可能是( )答案 C解析 ∵在y =log a (-x )中,-x >0,∴x <0, ∴图象只能在y 轴的左侧,故排除A ,D ; 当a >1时,y =log a (-x )是减函数, y =a -x =⎝⎛⎭⎫1a x 是减函数,故排除B ; 当0<a <1时,y =log a (-x )是增函数, y =a -x =⎝⎛⎭⎫1a x 是增函数,∴C 满足条件,故选C. 2.把本例(2)改为f (x )=|log 2(x +1)|+2,试作出其图象. 解 第一步:作y =log 2x 的图象,如图①所示.第二步:将y=log2x的图象沿x轴向左平移1个单位长度,得y=log2(x+1)的图象,如图②所示.第三步:将y=log2(x+1)的图象在x轴下方的部分作关于x轴的对称变换,得y=|log2(x+1)|的图象,如图③所示.第四步:将y=|log2(x+1)|的图象沿y轴向上平移2个单位长度,即得到所求的函数图象,如图④所示.反思感悟现在画图象很少单纯依靠描点,大多是以基本初等函数为原料加工,所以一方面要掌握一些常见的平移、对称变换的结论,另一方面要关注定义域、值域、单调性、关键点.1.下列函数为对数函数的是()A.y=log a x+1(a>0且a≠1)B.y=log a(2x)(a>0且a≠1)C.y=log(a-1)x(a>1且a≠2)D.y=2log a x(a>0且a≠1)考点对数函数的概念题点对数函数的概念答案 C2.函数y=log2(x-2)的定义域是()A.(0,+∞)B.(1,+∞)C.(2,+∞)D.[4,+∞)考点对数函数的定义域题点对数函数的定义域答案 C3.函数f(x)=3-x+lg(x+1)的定义域为()A.[-1,3)B.(-1,3)C.(-1,3]D.[-1,3] 答案 C4.已知a >0,且a ≠1,函数y =a x 与y =log a (-x )的图象只能是下图中的( )答案 B解析 由y =log a (-x ),知-x >0,即x <0,可排除A ,C.当a >1时,B 适合. 5.若函数f (x )=2log a (2-x )+3(a >0,且a ≠1)过定点P ,则点P 的坐标是__________. 考点 对数函数的性质 题点 对数函数图象过定点问题 答案 (1,3)1.含有对数符号“log ”的函数不一定是对数函数.判断一个函数是否为对数函数,不仅要含有对数符号“log ”,还要符合对数函数的概念,即形如y =log a x (a >0,且a ≠1)的形式.如:y =2log 2x ,y =log 5x5都不是对数函数,可称其为对数型函数.2.研究y =log a f (x )的性质如定义域、值域、比较大小,均需依托对数函数的相应性质.一、选择题 1.给出下列函数:①223log y x ;②y =log 3(x -1);③y =log (x +1)x ;④y =log πx .其中是对数函数的有( ) A.1个 B.2个 C.3个 D.4个 考点 对数函数的概念 题点 对数函数的概念 答案 A解析 ①②不是对数函数,因为对数的真数不是只含有自变量x ;③不是对数函数,因为对数的底数不是常数;④是对数函数.2.已知函数f (x )=11-x的定义域为M ,g (x )=ln(1+x )的定义域为N ,则M ∩N 等于( ) A.{x |x >-1} B.{x |x <1} C.{x |-1<x <1}D.∅考点 对数函数的定义域 题点 对数函数的定义域 答案 C解析 ∵M ={x |1-x >0}={x |x <1}, N ={x |1+x >0}={x |x >-1}, ∴M ∩N ={x |-1<x <1}.3.函数y =log 2(x -1)2-x 的定义域是( )A.(1,2]B.(1,2)C.(2,+∞)D.(-∞,2) 答案 B解析 由⎩⎪⎨⎪⎧ x -1>0,2-x >0,得⎩⎪⎨⎪⎧x >1,x <2,∴1<x <2.∴函数的定义域为(1,2).4.下列函数中,与函数y =x 相等的是( ) A.y =(x )2 B.y =x 2 C.2log 2xy =D.y =log 22x答案 D解析 因为y =log 22x 的定义域为R ,且根据对数恒等式知y =x . 5.函数y =log a (2x -3)+1的图象恒过定点P ,则点P 的坐标是( ) A.(2,1) B.(2,0) C.(2,-1) D.(1,1) 答案 A解析 令2x -3=1,则x =2.∴y =log a (2x -3)+1的图象恒过定点(2,1).6.函数y =a x 与y =-log a x (a >0,且a ≠1)在同一坐标系中的图象形状可能是( )答案 A7.已知函数f (x )=log a (x +2),若图象过点(6,3),则f (2)的值为( ) A.-2 B.2 C.12 D.-12考点 对数函数的性质 题点 对数函数图象过定点问题 答案 B解析 代入(6,3),3=log a (6+2)=log a 8, 即a 3=8,∴a =2.∴f (x )=log 2(x +2),∴f (2)=log 2(2+2)=2.8.若函数f (x )=log a (x +b )的图象如图所示,其中a ,b 为常数,则函数g (x )=a x +b 的图象大致是( )考点 对数函数的图象题点 同一坐标系下的指数函数与对数函数的图象 答案 D解析 由f (x )的图象可知0<a <1,0<b <1, ∴g (x )的图象应为D. 二、填空题9.函数f (x )=log 2x -2的定义域是________. 答案 [4,+∞)解析 由题意知⎩⎪⎨⎪⎧ x >0,log 2x -2≥0,即⎩⎪⎨⎪⎧x >0,x ≥4,∴x ≥4,∴函数f (x )的定义域为[4,+∞). 10.已知0<a <1,0<b <1,若log (3)1b x a -<,则x 的取值范围是__________.考点 对数不等式 题点 解对数不等式 答案 (3,4)解析 ∵0<a <1, ∴log (3)1b x a-<=a 0等价于log b (x -3)>0=log b 1.∵0<b <1,∴⎩⎪⎨⎪⎧x -3>0,x -3<1,解得3<x <4.11.函数12log (3)y x a =- 的定义域是⎝⎛⎭⎫23,+∞,则a =________. 答案 2解析 由12log (3)y x a =-知,3x -a >0,即x >a3.∴a 3=23,即a =2. 三、解答题12.求下列函数的定义域: (1)f (x )=log (x -1)(3-x ); (2)f (x )=2x +3x -1+log 2(3x -1). 解 (1)由题意知⎩⎪⎨⎪⎧3-x >0,x -1>0,x -1≠1,解得1<x <3,且x ≠2,故f (x )的定义域是(1,2)∪(2,3). (2)由题意知⎩⎪⎨⎪⎧2x +3≥0,x -1≠0,3x -1>0,解得x >13,且x ≠1.故f (x )的定义域是⎝⎛⎭⎫13,1∪(1,+∞).13.若函数f (x )为定义在R 上的奇函数,且x ∈(0,+∞)时,f (x )=lg(x +1),求f (x )的解析式,并画出大致图象.解 ∵f (x )为R 上的奇函数,∴f (0)=0. 又当x ∈(-∞,0)时,-x ∈(0,+∞), ∴f (-x )=lg(1-x ).又f (-x )=-f (x ), ∴f (x )=-lg(1-x ),∴f (x )的解析式为f (x )=⎩⎪⎨⎪⎧lg (x +1),x >0,0,x =0,-lg (1-x ),x <0,∴f (x )的大致图象如图所示,14.已知log a (3a -1)恒为正,则a 的取值范围是________. 考点 对数函数的图象 题点 对数函数的图象答案 ⎩⎨⎧⎭⎬⎫a ⎪⎪13<a <23或a >1 解析 由题意知log a (3a -1)>0=log a 1. 当a >1时,y =log a x 是增函数, ∴3a -1>1,解得a >23,∴a >1;当0<a <1时,y =log a x 是减函数,∴⎩⎪⎨⎪⎧3a -1<1,3a -1>0,解得13<a <23.∴13<a <23. 综上所述,a 的取值范围是⎩⎨⎧⎭⎬⎫a ⎪⎪13<a <23或a >1. 15.已知函数f (x )=log 21+x1-x .(1)求证:f (x 1)+f (x 2)=f ⎝ ⎛⎭⎪⎫x 1+x 21+x 1x 2;(2)若f ⎝⎛⎭⎪⎫a +b 1+ab =1,f (-b )=12,求f (a )的值.(1)证明 左边=log 21+x 11-x 1+log 21+x 21-x 2=log 2⎝ ⎛⎭⎪⎫1+x 11-x 1·1+x 21-x 2=log 21+x 1+x 2+x 1x 21-x 1-x 2+x 1x 2.右边=log 21+x 1+x 21+x 1x 21-x 1+x 21+x 1x 2=log 21+x 1+x 2+x 1x 21+x 1x 2-x 1-x 2. 所以左边=右边.(2)解 因为f (-b )=log 21-b 1+b =-log 21+b 1-b =12, 所以f (b )=log 21+b 1-b=-12, 利用(1)可知f (a )+f (b )=f ⎝⎛⎭⎪⎫a +b 1+ab ,所以f (a )-12=1, 解得f (a )=32.。

人教版数学必修一.2对数函数图像及其性质PPT课件

人教版数学必修一.2对数函数图像及其性质PPT课件

人教版数学必修一.2对数函数图像及 其性质P PT课件
2.(71页)探究:
画出对数函数 y log 3 x和y log 1 x的图象。
y
1.函数图象分布在哪些 象限? 一、四
2
2.函数图象有哪些
1 11
特殊点? (1,0)
42
0 1 23 4
3
y log 2 x y log 3 x
x
3.函数图象的单调性 -1 与底数a的关系? -2
注:例2是利用对数函数的增减性比较两个对数 的大小的,对底数与1的大小关系未明确指出时,要分 情况对底数进行讨论来比较两个对数的大小.
人教版数学必修一.2对数函数图像及 其性质P PT课件
例3 比较下列各组中两个值的大小:
⑴.log 67 , log 7 6 ; ⑵.log 32 , log 2 0.8 .
x
定义域
奇偶性 值域
定点
单调性 函数值 符号
(0,+∞)
非奇非偶函数
非奇非偶函数
R ( 1 , 0 ) 即 x = 1 时,y = 0 在 ( 0 , + ∞ ) 上是增函数 在 ( 0 , + ∞ ) 上是减函数
当 x>1 时,y>0
当 x>1 时,y<0
当 0<x <1 时, y<0 当 0<x<1 时,y>0
x…
列 表
y log 2
y log 1
x
x
… …
2
y

2

1 11
42
0 12

-1
线
-2
1/4 1/2 1
-2 -1 0 2 10
y=log2x
34

高中数学 2.2.2 对数函数及其性质 第2课时 对数函数性质的应用课件 新人教A版必修1

高中数学 2.2.2 对数函数及其性质 第2课时 对数函数性质的应用课件 新人教A版必修1

x∈(0,1)⇒y∈_(_-__∞_,__0_) ; x∈(0,1)⇒y∈_(_0_,__+__∞_);
x∈[1,+∞)
x∈[1,+∞)
⇒y∈__[_0,__+__∞_)__
⇒y∈__(_-__∞_,__0_]_
第九页,共48页。
新知导学 1.对数复合函数的单调性 复合函数y=f[g(x)]是由y=f(x)与y=g(x)复合而成,若f(x) 与g(x)的单调性相同,则其复合函数f[g(x)]为_增__函__数___;若f(x) 与g(x)的单调性相反,则其复合函数f[g(x减)]为函数__(_h_á_n_sh_ù_). 对于对数型复合函数y=logaf(x)来说,函数y=logaf(x)可看 成是y=logau与u=f(x)两个简单函数复合而成的,由复合函数单 调性“同增异减”的规律即可判断(pànduàn).另外,在求复合 函数的单调性时,首先要考虑函数的定义域.
第二十八页,共48页。
(2)设 u=3+2x-x2,
则 u=-(x-1)2+4≤4.
∵u>0,∴0<u≤4.
又 y=log1 u 在(0,+∞)上是减函数,
2
∴log1 u≥log1 4=-2,
2
2
∴y=log1 (3+2x-x2)的值域为{y|y≥-2}.
2
第二十九页,共48页。
规律总结(zǒngjié):求复合函数y =f[g(x)]值域的方法设y=f(t),t=g(x),先求t=g(x)的值域再求 y=f(x)的值域.
第二十页,共48页。
③因为 0>log0.23>log0.24,所以log10.23<log10.24,即 log30.2 <log40.2.
④因为函数 y=log3x 是增函数,且 π>3,所以 log3π>log33 =1.

2016高一人教A版数学必修1课件:2.2.2第1课时 对数函数的图象及性质

2016高一人教A版数学必修1课件:2.2.2第1课时 对数函数的图象及性质

服/务/教/师 免/费/馈/赠
返回菜单 第五页,编辑于星期六:点 十六分。
人教A版数学·必修1
• 1.判断:(正确的打“√”,错误的打 “×”)
• (1)y = log2x2 与 y = logx3 都 不 是 对 数 函 数.( )
• (2) 对 数 函 数 的 图 象 一 定 在 y 轴 右 侧.( )
服/务/教/师 免/费/馈/赠
返回菜单 第十六页,编辑于星期六:点 十六分。
人教A版数学·必修1
• 求下列函数的定义域:
(1)y= lg(2-x);
(2)y=log3(31x-2); (3)y=log(2x-1)(-4x+8).
• 【思路探究】 对于(1)首先要保证根式有
意义,对于(2)首先要保证分母不为0,对于
• 【解】 当a>1时,a越大图象越靠近x 轴,
• ∴C2对应的a值大于C4对应的a值,
• ∴C2对应的a值为2.2,C4对应的a值为1.1.
• 当0<a<1时,a越小图象越靠近x轴,
服/务/教/师 免/费/馈/赠
返回菜单 第二十四页,编辑于星期六:点 十六分。
人教A版数学·必修1
∴C1 对应的 a 值为110,C3 对应的 a 值为12. 综上所述,C1,C2,C3,C4 对应的 a 值依次为110, 2.2,12,1.1.
【解析】 因为 y= xln(1-x),所以x1≥ -0x, >0,
解得 0≤x<1.
【答案】 B
服/务/教/师 免/费/馈/赠
返回菜单 第八页,编辑于星期六:点 十六分。
人教A版数学·必修1
• 4.(1)函数y=loga(x-1)+1(a>0,且a≠1) 恒过定点________.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

变一变还能口答吗?
log10 6 10 8 log10 m 10 n 则 m n < log < <log < > log log 0.5 6 0.5 8 log 0.5 m>log 0.5 n 则 m n
< log 2 m 2 n 则 m n log > log 2 0.6 2 0.8 > log
2.2.2
第一课时 对数函数的概念与图象
本节课的学习预告:
1.对数函数的定义
2.画出对数函数的图象 3.对数函数性质与应用
考古学家一般通过提取附着在出土文物、古遗 址上死亡的残留物,利用 t log 1 P
估计出土文物或古遗址的年代。
5730
2
t 能不能看成是 P 的函数?
根据问题的实际意义可知,对于每一个碳14 含量P,通过对应关系 t log P ,都有唯
a
只要比较(a-1)(b-1)与0的大小
一、对数函数的定
对数函数y=logax
a>1 图 象 性 质
y
0 (1,0) x
(a>0,a≠1) 的图象与性质
0<a<1
y
0 (1,0) x
定义域 : ( 0,+∞) 值 域 : R 过点(1 ,0), 即当x =1时,y=0 在(0,+∞)上是增函数 在(0,+∞)上是减函数
5730
1 2
一确定的年代 t 与它对应,所以,t 是P的函数。
一般地,函数y = loga x (a>0,且 a≠ 1)叫做对数函数.其中 x是自变量, 函数的定义域是( 0 , +∞)
求下列函数的定义域:
想 为什么函数的定义域是(0,+∞)? 1 1 (3) y一log ( 4) y 即真数大于0? x 1 log 3 x 想 (1){x|x≠0}(2){x|x<4} (3){x|x>1} (4){x|x>0且x≠1} ?
⑵ ∵log3π>log31=0 log20.8<log21=0 ∴ log3π>log20.8
注意:利用对数函数的增减性比较两个对数的大 小.当不能直接进行比较时,可在两个对数中间插入 一个已知数(如1或0等),间接比较上述两个对数的大 小 小技巧:判断对数 log b 与0的大小是
a
只要比较(a-1)(b-1)与0的大小
y
下列是6个对数函数的图象,比较它们底 数的大小 规律:在 x=1的右边 看图象,图象越高底数越小.即图高底小
y log a1 x
y log a2 x y log a3 x
0 1
x
y log a4 x
y log a5 x y log a6 x
y
图 形
y=log
2
x
y=log
作y=log2x图象
列 表 描 点
连 线
X y=log2x
y
2 1
0
11 42
1/4 1/2 -2 -1
1 0
2 1
4 2
….. …
1
2
3
4
x
-1 -2
作y=log0.5x图像 列 y log 2 x 表
y
2
x
1/4
-2 2
1/2
-1 1
1
0 0
2
1 -1
4
2 -2
y log 1 x
2 1
10
x
0
1
y=log
0.5
y=log 0.1 x x
x
补充 底数互为倒数的两个对数函数的图象 性质 关于x轴对称。 一 补充 底数a>1时,底数越大,其图象越接近x 性质 轴。 底数0<a<1时,底数越小,其图象越接近 二
x轴。

比较下列各组中,两个值的大小: (1) log23.4与 log28.5 (2) log 0.3 1.8与 log 0.3 2.7
3 3
3 3
log1.5 6 1.5 8 < log
< log1.5 m 1.5 n 则 m n < log

比较下列各组中两个值的大小: log 67 , log 7 6 ; ⑵ log 3π , log 2 0.8 .
提示 : log aa=1 提示: log a1=0
解: ⑴∵log67>log66=1 log76<log77=1 ∴ log67>log76
解法1:画图找点比高低 解法2:利用对数函数的单调性 y log2 x 考察函数y=log 2 x , y log28.5 ∵a=2 > 1, log23.4 ∴函数在区间(0,+∞) 上是增函数;
0
1 3.4 8.5
x
∵3.4<8.5
∴ log23.4< log28.5
∴ log23.4< log28.5
对数函数y=logax (a>0,且a≠1)
的图象与性质
a>1 图 象 性 质
0<a<1
( 0,+∞) 定义域 : 值 域 : R (1 ,0), 即当x =1时,y=0 过定点
在(0,+∞)上是 增函数 当x>1时, y>0 当x=1时, y=0 当0<x<1时,y<0
在(0,+∞)上是 减函数 当x>1时, y<0 当x=1时, y=0 当0<x<1时,y>0
(1)作业 Ⅰ 熟记对数函数
的图象和性质
Ⅱ P74.习题2.2
7,8
小结

比较下列各组中,两个值的大小: (1) log23.4与 log28.5 (2) log 0.3 1.8与 log 0.3 2.7 比较两个同底对数值的大小时: 1.观察底数是大于1还是小于1( a>1时为增函数


0<a<1时为减函数)
2.比较真数值的大小;
3.根据单调性得出结果。
比较下列各组中,两个值的大小: •(3) loga5.1与 loga5.9
0
11 42
描 点 连 线
1
2
3
4
x
-1 -2
这两个函 数的图象 有什么关 系呢?
关于x轴对称
(3)根据对称性(关于x轴对称)已知 f ( x) log 3 x 的图象,你能画出 y 1
f ( x) log 1 x 的图象吗?
3
o
1
x
(4)当 0<a<1时与a>1时的图象又怎么画呢?
jihehuaban
解: ①若a>1则函数在区间(0,+∞)上是增函数;
∵5.1<5.9 ∴ loga5.1 < loga5.9 ②若0<a<1则函数在区间(0,+∞)上是减函 数; ∵5.1<5.9
∴ loga5.1 > loga5.9
注意:若底数不确定,那就要对底数进行分类讨论
即0<a<1 和 a > 1
你能口答吗?

比较下列各组中,两个值的大小: (1) log23.4与 log28.5 (2) log 0.3 1.8与 log 0.3 2.7 (2)解法1:画图找点比高低 解法2:考察函数y=log 0.3 x ,
∵a=0.3< 1,
∴函数在区间(0,+∞)上是减函数;
∵1.8<2.7
∴ log 0.3 1.8> log 0.3 2.7

比较下列各组中两个值的大小: log 67 , log 7 6 ; ⑵ log 3π , log 2 0.8 .
提示 : log aa=1 提示: log a1=0
(3)巩固练习:P73
T3
注意:利用对数函数的增减性比较两个对数的大 小.当不能直接进行比较时,可在两个对数中间插入 一个已知数(如1或0等),间接比较上述两个对数的大 小 小技巧:判断对数 log b 与0的大小是
7
(1) y log a x 2
(2) y log a (4 x)
巩固练习(1):P73方框练习T2
对数函数:y = loga x (a>0,且a≠ 1) 图象与性质
在同一坐标系中用描点法画出对数函数
y log 2 x和y log 1 x 的图象。
作图步骤:
2
①列表,
②描点,
③连线。
当x>1时,y>0 当x=1时,y=0 当0<x<1时,y<0
当x>1时,y<0 当x=1时,y=0 当0<x<1时,y>0
比较两个对数值的大小.
㈠ 若底数为同一常数,则可由对数 函数的单调性直接进行判断. ㈡ 若底数为同一字母,则按对数函 数的单调性对底数进行分类讨论. ㈢ 若底数、真数都不相同,则常借 助1、0、-1等中间量进行比较
相关文档
最新文档