常微分方程论文
常微分方程课程设计论文
![常微分方程课程设计论文](https://img.taocdn.com/s3/m/637b5943c4da50e2524de518964bcf84b9d52ddb.png)
常微分方程课程设计论文一、教学目标本课程的教学目标是使学生掌握常微分方程的基本概念、方法和应用。
通过本课程的学习,学生应能理解并熟练运用常微分方程解决实际问题,具备一定的数学建模能力。
具体来说,知识目标包括:1.掌握常微分方程的定义、解的概念和性质;2.熟悉一阶、二阶线性微分方程的求解方法;3.了解常微分方程在自然科学和工程技术中的应用。
技能目标包括:1.能够熟练地求解一阶、二阶线性微分方程;2.能够运用常微分方程进行简单的数学建模;3.能够运用计算机软件辅助求解常微分方程。
情感态度价值观目标包括:1.培养学生的逻辑思维能力和科学精神;2.增强学生对数学应用价值的认识,提高学习兴趣;3.培养学生团队协作和自主学习能力。
二、教学内容根据教学目标,本课程的教学内容主要包括:1.常微分方程的基本概念,如解、通解、特解等;2.一阶微分方程的求解方法,如可分离变量法、齐次方程法、伯努利方程法等;3.二阶线性微分方程的求解方法,如常系数方程、变系数方程、线性非齐次方程等;4.常微分方程的应用,如物理、生物学、经济学等领域的问题。
三、教学方法为了达到教学目标,本课程将采用以下教学方法:1.讲授法:系统地传授常微分方程的基本概念、方法和应用;2.讨论法:学生分组讨论,培养学生的思考能力和团队协作精神;3.案例分析法:通过分析实际问题,引导学生运用常微分方程进行数学建模;4.实验法:利用计算机软件,让学生亲自动手求解实际问题,提高实际操作能力。
四、教学资源为了支持教学内容和教学方法的实施,本课程将准备以下教学资源:1.教材:《常微分方程》;2.参考书:相关领域的学术论文、专著等;3.多媒体资料:教学PPT、视频讲座等;4.实验设备:计算机、数学软件等。
五、教学评估本课程的评估方式包括平时表现、作业、考试等,以全面客观地评价学生的学习成果。
平时表现主要考察学生的课堂参与、提问、讨论等,占总评的20%;作业包括练习题和数学建模项目,占总评的30%;考试包括期中考试和期末考试,占总评的50%。
常微分方程边值问题与不动点定论文
![常微分方程边值问题与不动点定论文](https://img.taocdn.com/s3/m/f53c16be5a8102d276a22fed.png)
目录引言 (1)1预备知识 (2)定义1.1(奇异Sturm-Liouville边值问题的正解) (2)引理1.1.1 (2)定义1.2(凸集的概念) (3)定义1.3锥的定义 (3)定义1.4(全连续算子的概念) (3)1.5 (常微分边值问题的定义) (4)定义1.6混合单调算子得定义) (4)2 常微分方程边值问题正解得存在性 (5)2.1 奇异Sturm-Liouville常微分边值问题的正解存在在 (5)子 (8)2.2 一类二阶边值问题的存在性 (9)3一类混合单调算子应用 (11)3.1一类混合单调算子的存在唯一性?........................ 错误!未定义书签。
3.2 求常微分边值问题的例题 (13)结束语 (15)参考文献 (15)致 (16)常微分方程边值问题与不动点定(数学与统计学院 11级数学与应用数学2班)指导教师:攀峰引言从历史上看在有了微积分这个概念以后,紧接着出现了常微分方程。
发展初期是属于“求通解”得时代,当人们从初期的热潮中结束要从维尔证明了卡帝方程中是一定不会存在一般性的初等解的时候开始的,并且柯西紧接着又提出了初值问题,常微分方程开始从重视“求通解”转向重视“求定解”的历史时代。
大学我们都学习了常微分方程这门学科,如果要研究它的定解问题,我们首先就会知道是常微分方程的初值问题。
然而,在科学技术、生产实际问题中,我们还是提出了另一类定解问题-边值问题。
对于常微分方程边值问题,伟大的科学家最早在解决二阶线性微分方程时,提出了分离变量法。
[]1.在牛顿时期,科学家们已经提出过常微分的边值问题,牛顿也对常微分边值问题进行过研究,并且在1666年10月牛顿已经在这个领域取得了很大的成就,但是由于种种原因当时并没有整理成论文,所以没有及时出版。
但在1687年他终于把在常微分方程上研究的成果发表了,虽然不是在数学著作中,却是他的一本力学著作中(《自然哲学的数学原理》)。
常微分论文关于一阶微分方程的解的存在的探讨
![常微分论文关于一阶微分方程的解的存在的探讨](https://img.taocdn.com/s3/m/b2cb73df83c4bb4cf6ecd157.png)
常微分方程论文学院:数学科学学院班级:12级统计班指导教师:宋旭霞小组成员:张维萍付佳奇张韦丽张萍日期:2014.06.06关于一阶微分方程的解的存在的探讨摘要:分析了解的存在唯一性定理,它明确地肯定了方程的解在一定条件下的存在性和唯一性,并且对此加以证明。
另外,由于能得到精确解的微分方程为数不多,微分方程的近似解法具有重要的意义,而解的存在唯一性是进行近似计算的前提,如果解本身不存在,而近似求解就失去意义。
如果存在不唯一,不能确定所求的是哪个解。
而解的存在唯一性定理保证了所求解的存在性和唯一性。
关键词:微分方程 连续 可微 近似计算 误差估计 一、存在性与唯一性定理:(1)显式一阶微分方程),(y x f dxdy= (3.1) 这里),(y x f 是在矩形域:00:||,||R x x a y y b -≤-≤ (3.2) 上连续。
(一)、定理1:如果函数),(y x f 满足以下条件:1)在R 上连续:2)在R 上关于变量y 满足李普希兹(Lipschitz )条件,即存在常数0L >,使对于R 上任何一对点1(,)x y ,2(,)x y 均有不等式1212(,)(,)f x y f x y L y y -≤-成立,则方程(3.1)存在唯一的解()y x ϕ=,在区间0||x x h -≤上连续,而且满足初始条件00()x y ϕ= (3.3) 其中,min(,),max (,)x y R bh a M f x y M∈==,L 称为Lipschitz 常数.解题思路:1) 求解初值问题(3.1)的解等价于积分方程00(,)xx y y f x y dx =+⎰的连续解。
2) 构造近似解函数列{()}n x ϕ任取一个连续函数0()x ϕ,使得00|()|x y b ϕ-≤,替代上述积分方程右端的y ,得到 0100()(,())xx x y f x x dx ϕϕ=+⎰如果10()()x x ϕϕ≡,那么0()x ϕ是积分方程的解,否则,又用1()x ϕ替代积分方程右端的y ,得到 0201()(,())xx x y f x x dx ϕϕ=+⎰如果21()()x x ϕϕ≡,那么1()x ϕ是积分方程的解,否则,继续进行,得到 001()(,())xn n x x y f x x dx ϕϕ-=+⎰(3.4)于是得到函数序列{()}n x ϕ.3) 函数序列{()}n x ϕ在区间00[,]x h x h -+上一致收敛于()x ϕ,即 lim ()()n n x x ϕϕ→∞=存在,对(3.4)取极限,得到00010lim ()lim (,()) =(,())xn n x n n xx x y f x x dxy f x x dx ϕϕϕ-→∞→∞=++⎰⎰,即00()(,())xx x y f x x dx ϕϕ=+⎰.4) ()x φ是积分方程00(,)xx y y f x y dx =+⎰在00[,]x h x h -+上的连续解.(二)、五个命题这种一步一步求出方程解的方法——逐步逼近法.在定理的假设条件下,分五个命题来证明定理. 为了讨论方便,只考虑区间00x x x h ≤≤+,对于区间00x h x x -≤≤的讨论完全类似.命题 1 设()y x ϕ=是方程(3.1)定义于区间00x x x h ≤≤+上,满足初始条件00()x y ϕ=(3.3)的解,则()y x ϕ=是积分方程00(,)xx y y f x y dx =+⎰00x x x h ≤≤+(3.5)的定义于00x x x h ≤≤+上的连续解.反之亦然.证明 因为()y x ϕ=是方程(3.1)满足00()x y ϕ=的解,于是有()(,())d x f x x dxϕϕ= 两边取0x 到x 的积分得到0()()(,())xx x x f x x dx ϕϕϕ-=⎰00x x x h ≤≤+即有00()(,())xx x y f x x dx ϕϕ=+⎰00x x x h ≤≤+所以()y x ϕ=是积分方程00(,)xx y y f x y dx =+⎰定义在区间00x x x h ≤≤+上的连续解.反之,如果()y x ϕ=是积分方程(3.5)上的连续解,则00()(,())xx x y f x x dx ϕϕ=+⎰ 00x x x h ≤≤+ (3.6)由于),(y x f 在R 上连续,从而(,())f x x ϕ连续,两边对x 求导,可得()(,())d x f x x dxϕϕ= 而且 00()x y ϕ=,故()y x ϕ=是方程(3.1)定义在区间00x x x h ≤≤+上,且满足初始条件00()x y ϕ=的解. 构造Picard 的逐次逼近函数序列{()}n x ϕ.0000100()()(,()) x nn x x y x y f d x x x h ϕϕξϕξξ-=⎧⎪⎨=+≤≤+⎪⎩⎰(1,2,)n = (3.7)命题2 对于所有的n ,(3.6)中的函数()n x ϕ在00x x x h ≤≤+上有定义,连续且满足不等式 0|()|n x y b ϕ-≤ (3.8) 证明 用数学归纳法证明当1n =时,0100()(,)xx x y f y d ϕξξ=+⎰,显然1()x ϕ在00x x x h ≤≤+上有定义、连续且有10000|()||(,)||(,)|()x xx x x y f y d f y d M x x Mh b ϕξξξξ-=≤≤-≤≤⎰⎰即命题成立.假设n k =命题2成立,也就是在00x x x h ≤≤+上有定义、连续且满足不等式 0|()|k x y b ϕ-≤当1n k =+时,10()(,())xk k x x y f dx ϕξϕξ+=+⎰由于),(y x f 在R 上连续,从而(,())k f x x ϕ在00x x x h ≤≤+上连续,于是得知1()k x ϕ+在00x x x h ≤≤+上有定义、连续,而且有100|()||(,())|()xk k x x y f d M x x Mh b ϕξϕξξ+-≤≤-≤≤⎰即命题2对1n k =+时也成立.由数学归纳法知对所有的n 均成立.命题3 函数序列{()}n x ϕ在00x x x h ≤≤+上是一致收敛的.记lim ()()n n x x ϕϕ→∞=,00x x x h ≤≤+证明 构造函数项级数 011()[()()]kk k x x x ϕϕϕ∞-=+-∑ 00x x x h ≤≤+ (3.9)它的部分和为011()()[()()]()nn kk n k S x x x x x ϕϕϕϕ-==+-=∑于是{()}n x ϕ的一致收敛性与级数(3.9)的一致收敛性等价. 为此,对级数(3.9)的通项进行估计.1000|()()||(,())|()xx x x f d M x x ϕϕξϕξξ-≤≤-⎰ (3.10)2110|()()||(,())(,())|xx x x f f d ϕϕξϕξξϕξξ-≤-⎰由Lipschitz 条件得知2110020|()()||()()|ξ() ()2!xx xx x x L d L M x d MLx x ϕϕϕξϕξξξ-≤-≤-≤-⎰⎰设对于正整数n ,有不等式110|()()|() !n n n n ML x x x x n ϕϕ---≤- 成立,则由Lipschitz 条件得知,当00x x x h ≤≤+时,有0111010|()()||(,())(,())| |()()|ξ() ! ()(+1)!xn n n n x xn n x n x nx nn x x f f d L d ML x d n ML x x n ϕϕξϕξξϕξξϕξϕξξξ+--+-≤-≤-≤-≤-⎰⎰⎰于是由数学归纳法可知, 对所有正整数k ,有1110|()()|() !!k k kk k k ML ML x x x x h k k ϕϕ----≤-≤ 00x x x h ≤≤+ (3.11)由正项级数11!kK k h MLk ∞-=∑ 的收敛性,利用Weierstrass 判别法,级数(3.9)在00x x x h ≤≤+ 上一致收敛.因而序列{()}n x ϕ在00x x x h ≤≤+上一致收敛. 设lim ()()n n x x ϕϕ→∞=,则()x ϕ也在00x x x h ≤≤+上连续,且0|()|x y b ϕ-≤命题4 ()x ϕ是积分方程(3.5)的定义在00x x x h ≤≤+上的连续解.证明 由Lipschitz 条件 |(,())(,())||()()|n n f x x f x x L x x ϕϕϕϕ-≤-以及{()}n x ϕ在00x x x h ≤≤+上一致收敛于()x ϕ,可知(,())n f x x ϕ在00x x x h ≤≤+上一致收敛于(,())f x x ϕ.因此000101lim ()lim (,())=lim (,())xn n x n n xn x n x y f d y f d ϕξϕξξξϕξξ-→∞→∞-→∞=++⎰⎰即 00()(,()) xn x x y f d ϕξϕξξ=+⎰故()x ϕ是积分方程(3.5)的定义在00x x x h ≤≤+上的连续解.命题5设()x ψ是积分方程(3.5)的定义在00x x x h ≤≤+上的一个连续解,则()()x x ϕψ≡,00x x x h ≤≤+.证明 设()|()()|g x x x ϕψ=-,则()g x 是定义在00x x x h ≤≤+的非负连续函数,由于 00()(,()) xx x y f d ϕξϕξξ=+⎰0()(,()) xx x y f d ψξψξξ=+⎰而且(,)f x y 满足Lipschitz 条件,可得()|()()||[(,())(,())]||(,())(,())| |()()|()xx xx xxx x g x x x f f d f f d L d L g d ϕψξϕξξψξξξϕξξψξξϕξψξξξξ=-=-≤-≤-=⎰⎰⎰⎰令0()()xx u x Lg d ξξ=⎰,则()u x 是00x x x h ≤≤+的连续可微函数,且0()0u x =,0()()g x u x ≤≤,()()u x Lg x '=,()()u x Lu x '≤,(()())0Lx u x Lu x e -'-≤,即(())0Lx u x e -'≤,于是在00x x x h ≤≤+上, 00()()0Lx Lx u x e u x e --≤=故()()0g x u x ≤≤,即()0g x ≡,00x x x h ≤≤+,命题得证.(三)、对定理说明附注:1、存在唯一性定理中min(,)bh a M=的几何意义.在矩形域R 中(,)f x y M ≤,故方程过00(,)x y 的积分曲线()y x ϕ=的斜率必介于M -与M 之间,过点00(,)x y 分别作斜率为M -与M 的直线.当b M a ≤时,即b a M ≤,(如图(a)所示),解()y x ϕ=在00x a x x a -≤≤+上有定义;当b M a ≥时,即b a M≤,(如图(b)所示),不能保证解在00x a x x a -≤≤+上有定义,它有可能在区间内就跑到矩形R 外去,只有当00b b x x x M M-≤≤+才能保证解()y x ϕ=在R 内,故要求解的存在范围是0||x x h -≤.2、 由于李普希兹条件的检验是比较费事的,而我们能够用一个较强的,但却易于验证的条件来代替他,即如果函数),(y x f 在矩形域R 上关于y 的偏导数),('y x f y 存在并有界,即'(,)y f x y L ≤,则李普希兹条件条件成立. 事实上212121212(,())|(,)(,)|||||||f x y y y f x y f x y y y y L y y θ∂+--=-∂≤-这里12(,),(,),01x y x y R θ∈<<. 如果),('y x f y 在R 上连续,它在R 上当然满足李普希兹条件.但是,满足李普希兹条件的函数),(y x f 不一定有偏导数存在.例如函数(,)||f x y y =在任 何区域都满足李普希兹条件,但它在0y =处没有导数. 3、设方程(3.1)是线性的,即方程为()()dyP x y Q x dx=+ 易知,当(),()P x Q x 在区间[,]αβ上连续时,定理1的条件就能满足,且对任一初值000(,),[,]x y x αβ∈所确定的解在整个区间[,]αβ上有定义、连续.实际上,对于一般方程(3.1),由初值所确定的解只能定义在0||x x h -≤上,是因为在构造逐步逼近函数序列{()}n x ϕ时,要求它不越出矩形域R ,此时,右端函数对y 没有任何限制,只要取0[,]max |()()|x M P x y Q x αβ∈=+.4、Lipschitz 条件 是保证初值问题解惟一的充分条件,而非必要条件. 例如 试证方程0 =0ln || 0 y dy y y dx y ≠⎧=⎨⎩经过xoy 平面上任一点的解都是唯一的.证明 0y ≠时, (,)ln ||f x y y y =,在0y ≠上连续, (,)1ln ||y f x y y '=+也在0y ≠上连续,因此对x 轴外的任一点00(,)x y ,方程满足00()y x y =的解都是唯一存在的.又由ln ||dyy y dx= 可得方程的通解为xce y e=±,其中xce y e=为上半平面的通解,xce y e=-为下半平面的通解,它们不可能与0y =相交.注意到0y =是方程的解,因此对x 轴上的任一点0(,0)x ,只有0y =通过,从而保证xoy 平面上任一点的解都是唯一的. 但是|(,)(,0)||ln ||||ln |||||f x y f x y y y y -==因为0lim |ln |||y y →=+∞,故不可能存在0L >,使得|(,)(,0)|||f x y f x L y -≤所以方程右端函数在0y =的任何邻域并不满足Lipschitz 条件.此题说明Lipschitz 条件 是保证初值问题解惟一的充分条件,而非必要条件. 2)考虑一阶隐方程(,,)0F x y y '= (3.12)由隐函数存在定理,若在000(,,)x y y '的某一邻域内F 连续且000(,,)0F x y y '=,而0Fy ∂≠'∂,则必可把y 唯一地表为,x y 的函数(,)y f x y '= (3.13)并且(,)f x y 于00(,)x y 的某一邻域连续,且满足000(,)y f x y '=如果F 关于所有变元存在连续的偏导数,则(,)f x y 对,x y 也存在连续的偏导数,并且/f F F y y y ∂∂∂=-'∂∂∂ (3.14) 显然它是有界的,由定理1可知,方程(3.13)满足初始条件的0()0y x =解存在且唯一.从而得到下面的定理.定理2 如果在点000(,,)x y y '的某一邻域中: ⅰ) (,,)F x y y '关于所有变元(,,)x y y '连续,且存在连续的偏导数;ⅱ)000(,,)0F x y y '= ⅲ)000(,,)0F x y y y '∂≠'∂ 则方程(3.12)存在唯一的解0() || y y x x x h =-≤(h 为足够小的正数)满足初始条件0000(), ()y x y y x y ''== (3.15) (四)、近似计算和误差估计求方程近似解的方法——Picard 的逐次逼近法0000100()()(,()) x nn x x y x y f d x x x h ϕϕξϕξξ-=⎧⎪⎨=+≤≤+⎪⎩⎰对方程的第n 次近似解()n x ϕ和真正解()x ϕ在0||x x h -≤内的误差估计式1|()()|(1)!n n n ML x x h n ϕϕ+-≤+ (3.16)此式可用数学归纳法证明.000|()()||(,())|()xx x x f d M x x Mh ϕϕξϕξξ-≤≤-≤⎰设有不等式1110|()()|() !!n n nn n ML ML x x x x h n n ϕϕ----≤-≤成立,则0110110|()()||(,())(,())| |()()|ξ()! ()(+1)!(+1)!xn n x xn x n x nx n n n n x x f f d L d ML x d n ML ML x x hn n ϕϕξϕξξϕξξϕξϕξξξ--++-≤-≤-≤-≤-≤⎰⎰⎰ 例1 讨论初值问题22dyx y dx=+, (0)0y = 解的存在唯一性区间,并求在此区间上与真正解的误差不超过0.05的近似解,其中,:11,11R x y -≤≤-≤≤.解 (,)1max |(,|2,1,1,min{,}2x y Rb M f x y a b h a M ∈======,由于|||2|2f y L y∂=≤=∂,根据误差估计式(3.16)11|()()|0.05(1)!(1)!n n n ML x x h n n ϕϕ+-≤=<++可知3n =.于是0()0x ϕ=322100()[()]3xx x x x dx ϕϕ=+=⎰3722210()[()]363xx x x x x dx ϕϕ=+=+⎰37111522320()[()]363207959535xx x x x x x x dx ϕϕ=+=+++⎰3()x ϕ就是所求的近似解,在区间1122x -≤≤上,这个解与真正解得误差不超过0.05. 1、求初值问题⎪⎩⎪⎨⎧=+=0)0(2y yx dx dy 的第三次近似解;解 由解的存在唯一性定理知,1),2)中的初值问题的解分别在)0,0(,)0,1(的邻域内存在且唯一。
常微分方程的发展史毕业论文
![常微分方程的发展史毕业论文](https://img.taocdn.com/s3/m/b3796323cbaedd3383c4bb4cf7ec4afe05a1b110.png)
常微分方程的发展史毕业论文常微分方程(Ordinary Differential Equations,ODE)是描述自变量只有一个的函数与其导数之间关系的数学方程。
它是应用数学中的重要分支,广泛应用于物理、工程、生物等领域。
本文将介绍常微分方程的发展史,并探讨其在数学和应用方面的重要性。
常微分方程的历史可以追溯到17世纪。
当时,牛顿的《自然哲学的数学原理》(Principia Mathematica)的出版,为微分方程的研究奠定了基础。
著名的数学家欧拉和拉普拉斯也做出了许多对微分方程的重要贡献。
19世纪,微分方程的研究取得了突破性进展。
拉格朗日、拉普拉斯和普朗克等学者提出了一些重要的微分方程理论。
其中,拉普拉斯将微分方程的理论发展为一个完整的科学,提供了定义、分类和解法。
此外,阿贝尔、亥姆霍兹和斯托克斯等学者对微分方程的特殊类型进行了深入研究。
20世纪初,随着数值计算和计算机的发展,微分方程的研究进入了一个新的阶段。
数值方法的出现使得人们能够求解更加复杂的微分方程。
例如,飞机设计需要解决空气动力学方程,而人们使用数值方法来模拟空气流动。
另一个重要的进展是变分法和泛函分析在微分方程研究中的应用,使得人们能够处理更加一般的微分方程。
随着数学和应用领域的发展,常微分方程的研究也取得了新的进展。
例如,关于常微分方程的稳定性和周期性解的研究,为深入理解动力系统的稳定性提供了理论基础。
人们还将常微分方程的方法推广到偏微分方程的研究中,为更多实际问题的建模和求解提供了工具。
在应用方面,常微分方程广泛应用于物理学、工程学和生物学等领域。
物理学中的力学、电磁学和量子力学等问题都可以用微分方程来描述。
工程学中,微分方程被用于建模和控制系统的研究与设计。
而生物学中,微分方程被用于描述生物体内的生物化学反应、人口增长和疾病传播等问题。
总之,常微分方程作为数学的重要分支,在数学理论和应用研究上都有着重要的地位。
它的发展史见证了人类对于自然界的认识和技术能力的提升,为解决复杂实际问题提供了有力的工具。
常微分方程课程论文参考课题
![常微分方程课程论文参考课题](https://img.taocdn.com/s3/m/d45c7306f6ec4afe04a1b0717fd5360cba1a8db2.png)
常微分方程课程论文参考课题1.人口预测模型研究
2.传染病模型研究
3.经济增长模型研究
4.饮酒驾车模型研究
5.吸烟模型研究
6.烟雾扩散模型研究
7.捕鱼业持续收获模型研究
8.军备竞赛模型研究
9.种群竞争模型研究
10.种群依存模型研究
11.食饵—捕食者模型研究
12.船舶航行的微分方程模型
13.供应链系统的微分方程模型
14.航空发动机的微分方程模型
15.广告投入策略的微分方程模型
16.河流污染的微分方程模型
17.动态投入产出模型
18.矿产资源投入产出模型
19.水产品价格模型
20.企业员工动态稳定模型
21.信贷风险管理问题
22.价格动态模型(价格系统)
23.污水处理系统模型
24.动态金融资产配置的微分方程模型25.汽车悬架系统的微分方程模型26.地震预报的微分方程模型
27.网络数据传输的微分方程模型28.***中的微分方程模型
29.微分方程理论在***方面的应用30.二阶常系数微分方程的解法研究31.一阶常系数微分方程的积分因子研究。
二阶常微分方程的解法及其应用本科毕业论文
![二阶常微分方程的解法及其应用本科毕业论文](https://img.taocdn.com/s3/m/523b4cc5a5e9856a561260e3.png)
毕业论文(设计)原创性声明本人所呈交的毕业论文(设计)是我在导师的指导下进行的研究工作及取得的研究成果。
据我所知,除文中已经注明引用的内容外,本论文(设计)不包含其他个人已经发表或撰写过的研究成果。
对本论文(设计)的研究做出重要贡献的个人和集体,均已在文中作了明确说明并表示谢意。
作者签名:日期:毕业论文(设计)授权使用说明本论文(设计)作者完全了解**学院有关保留、使用毕业论文(设计)的规定,学校有权保留论文(设计)并向相关部门送交论文(设计)的电子版和纸质版。
有权将论文(设计)用于非赢利目的的少量复制并允许论文(设计)进入学校图书馆被查阅。
学校可以公布论文(设计)的全部或部分内容。
保密的论文(设计)在解密后适用本规定。
作者签名:指导教师签名:日期:日期:注意事项1.设计(论文)的内容包括:1)封面(按教务处制定的标准封面格式制作)2)原创性声明3)中文摘要(300字左右)、关键词4)外文摘要、关键词5)目次页(附件不统一编入)6)论文主体部分:引言(或绪论)、正文、结论7)参考文献8)致谢9)附录(对论文支持必要时)2.论文字数要求:理工类设计(论文)正文字数不少于1万字(不包括图纸、程序清单等),文科类论文正文字数不少于1.2万字。
3.附件包括:任务书、开题报告、外文译文、译文原文(复印件)。
4.文字、图表要求:1)文字通顺,语言流畅,书写字迹工整,打印字体及大小符合要求,无错别字,不准请他人代写2)工程设计类题目的图纸,要求部分用尺规绘制,部分用计算机绘制,所有图纸应符合国家技术标准规范。
图表整洁,布局合理,文字注释必须使用工程字书写,不准用徒手画3)毕业论文须用A4单面打印,论文50页以上的双面打印4)图表应绘制于无格子的页面上5)软件工程类课题应有程序清单,并提供电子文档5.装订顺序1)设计(论文)2)附件:按照任务书、开题报告、外文译文、译文原文(复印件)次序装订3)其它目录1 引言........................................................................................................................................ - 7 -2 二阶常系数常微分方程的几种解法 ............................................................................ - 7 - 2.1特征方程法 ...................................................................................................................... - 7 - 2.1.1 特征根是两个实根的情形 ..................................................................................... - 8 - 2.1.2 特征根有重根的情形 .............................................................................................. - 8 - 2.2常数变易法 .................................................................................................................... - 10 -2.3拉普拉斯变换法 ........................................................................................................... - 11 -3 常微分方程的简单应用................................................................................................. - 12 - 3.1 特征方程法 ................................................................................................................... - 13 - 3.2 常数变易法 ................................................................................................................... - 15 -3.3 拉普拉斯变换法 .......................................................................................................... - 16 -4 总结及意义........................................................................................................................ - 17 - 参考文献................................................................................................................................. - 18 -二阶常微分方程的解法及其应用摘要:本文主要介绍了二阶常系数微分方程的三种解法:特征方程法、常数变异法和拉普拉斯变换法,并着重讨论了特征方程根为实根、复根及重根的情形。
常微分方程的发展史毕业论文
![常微分方程的发展史毕业论文](https://img.taocdn.com/s3/m/b6abfe938662caaedd3383c4bb4cf7ec4afeb668.png)
常微分方程的发展史摘要:常微分方程是17世纪与微积分同时诞生的一门理论性极强且应用广泛的数学学科之一,本文从常微分方程的起源谈起,分四个时期介绍其发展过程。
本文从常微分方程的起源发展、理论知识及基本原理、应用等方面出发,系统地介绍常微分方程的发展史和在数学发展中的重要意义。
引言:随着科技进步和工业现代化的发展,物理、化学、生物、工程、航空航天、医学、经济和金融领域中的许多原理和规律都可以描述成适当的常微分方程,如牛顿的运动定律、万有引力定律、机械能守恒定律,能量守恒定律、人口发展规律、生态种群竞争、疾病传染、遗传基因变异、股票的涨伏趋势、利率的浮动、市场均衡价格的变化等。
而数学建模通常是针对生产、管理、社会、经济等领域中提出的原始问题进行解决的过程。
这些问题基本上没有经过任何的加工处理,也没有固定的形式,也看不出明确的解决方法,因此,数学建模的过程是一项培养我们大学生创造能力和创新思维能力的“实践”,通过数学建模,把生活中的具有实际的现实意义的问题结合上所学的理论知识当中,真正做到学有所用,学以致用。
对这些问题的描述、认识和分析就归结为对相应的常微分方程描述的数学模型的研究。
因此,常微分方程的理论和方法不仅广泛应用于自然科学,而且越来越多的应用于社会科学的各个领域。
关键词:常微分方程起源发展一、常微分方程的思想萌芽微分方程就是联系着自变量,未知函数以及其导数的关系式,微分方程理论的发展是随着微积分理论的建立发展起来的。
一般地, 客观世界的事件的联系是服从一定的客观规律的, 而这种联系, 用数学语言表述出来, 即抽象为微分方程,一旦求出其解或研究清楚其动力学行为, 变量之间的规律就一目了然了。
例如在物体运动中,位移的计算就与瞬时速度之间有着紧密的联系,其结果往往形成一个微分方程, 一旦求出其解或研究清楚其动力学行为,就明确掌握了物体的运动规律。
1.1 常微分方程的产生背景随着微积分的建立,微分方程理论也发展起来。
《常微分方程的数值解法》论文
![《常微分方程的数值解法》论文](https://img.taocdn.com/s3/m/a4c344c7162ded630b1c59eef8c75fbfc77d9460.png)
《常微分方程的数值解法》论文《常微分方程的数值解法》常微分方程(ODE)是研究物理过程的重要工具,其伴随着极大的应用价值。
当一个物理系统被简化为一个常微分方程,它就可以用于描述物理学中的各种现象。
但是,大多数现实系统的常微分方程未能得到解析解,因此,数值解法就变得非常重要。
本文将研究并比较几种常见的常微分方程数值解法,诸如Euler法、奇异点法、Runge-Kutta法、前向差分法等,以便更好地提供协助解决常微分方程。
首先,Euler法是常用的数值解法之一,它主要用于解决常微分方程模型。
其核心思想是将微分方程通过采用不断变化的步长对状态量求近似值,并通过预测下一步的值来求解微分方程,从而达到求解常微分方程的目的,且操作简单、容易理解。
但是,由于其步长的不动性,往往使得其精度较低,因此,当遇到复杂环境时,Euler法的表现就有些不尽如人意。
此外,另一种常见的数值解法是奇异点法。
此法将一个微分方程情况分解成多个分段函数,每一段函数都可以精确求解,从而可以求解复杂的微分方程。
它的特点是分段的每一部分的精度和复杂度都较低,而且运行效率也较快,但是,奇异点法的精度需要在段间合理设定,然后再进行微调,以保证数值模拟的准确性。
其次,Runge-Kutta法是一种常用的数值解法,它可以有效地求解一些常微分方程,其原理是利用积分函数插值,然后利用积分函数求近似值,最后根据边界条件求取解析结果。
Runge-Kutta法的步长可以随着计算过程的进行而逐步变化,这样可以使得误差得到有效控制,而且可以有效地控制误差,保证算法精度,但是由于其计算效率较低,因此在求解复杂的常微分方程时,Runge-Kutta法的表现并不尽人意。
最后,前向差分法是一种求解常微分方程的数值解法,它利用求取未知函数的一阶导数和二阶导数的值,然后通过求解一次和二次中点差分的方式,从而得到数值解。
它的有点是能够得到较高的精确度,且即使步长变化时也可以控制误差,但前向差分法要求在微分方程中必须有高阶导数,这就要求微分方程是复杂的,除此之外,除了必须计算高次导数外,它的计算量也比较大。
大学数学微积分论文(专业推荐范文10篇)7700字
![大学数学微积分论文(专业推荐范文10篇)7700字](https://img.taocdn.com/s3/m/708d7af0647d27284b7351e5.png)
大学数学微积分论文(专业推荐范文10篇)7700字大学数学微积分包括极限、微分学、积分学及其应用,也包括求导数的运算,是一套关于变化率的理论。
本篇文章就向大家介绍几篇大学数学微积分论文,希望大家通过以下论文,跟大家一起探讨这个课题。
大学数学微积分论文专业推荐10篇之第一篇:浅析微积分在大学数学学习和生活中的应用摘要:经济社会的发展和科技的进步,计算机应用领域的扩大,也不断拓展了微积分的应用范围。
微积在大学数学学习和生活中很常见,应用广泛。
本文主要针对微积分在大学数学学习和生活中的应用进行了分析。
关键词:微积分;大学数学;学习生活;应用;数学作为一项重要的工具,在社会长期发展中发挥着重要的作用,尤其是在其他学科知识的学习、日常生活的应用等方面,数学工具不可或缺。
在大学中,微积分属于大学数学的一个分支,其研究对象是函数的微分、积分及其他内容。
微积分是很多在校大学生的必修课程,同时,在生活中也有广泛的应用空间。
研究微积分,具有重要的现实意义。
1. 大学教学中微积分的应用大学教育的过程中,很多专业知识的学习中都需要运用到微积分,可以说,大学教学中微积分的应用十分广泛,尤其是数学教学和学习,微积分是高等数学研究的一个分支,且在具体的学习中有重要的指导意义。
具体应用分析如下。
1.1 数学建模。
数学建模主要用于把一个抽象的生活问题用具体的数学模型做简化和假设,在此基础上,运算得出一个相对合理的对应方案。
数学建模在现实生活中具有较强的实际意义。
在传统的数学应用中,人们运用微积分建构了多个数学模型,并且为科学研究做出了很大的贡献。
历史上将数学模型运用到科学研究的典型例子,牛顿借助自己研究的微积分,提出万有引力定律,这些典型的现实性案例,都证明了微积分在数学建模中的重要作用。
1.2 等式证明中的微积分使用。
在变量关系的研究过程中,会涉及到有关等式作证明的问题,可以利用微积分无线分割的思想,在处理数学问题的过程中,以简御繁,其次,微积分中的值订立、函数的增减性、极值的判定等,都在在等式的证明中有重要的作用,在具体的运用中,能简化等式,降低了普通方法证明等式时的技巧性和高难度性,因此,微积分的使用让等式证明更加简化和简单。
常微分方程教学方法论文
![常微分方程教学方法论文](https://img.taocdn.com/s3/m/3e3fcd11aef8941ea66e0524.png)
常微分方程教学方法论文常微分方程教学方法论文常微分方程教学方法论文【1】摘要:作者结合常微分方程课程的特点主要从教学内容、教学方法和培养学生的创新能力等方面提出了看法.关键词:常微分方程教学方法能力培养常微分方程是一门应用型课程,它在自动控制、弹道的计算,导弹飞行和习机的稳定性的研究、生物物种模型的研究等学科上有着广泛的应用,因此对常微分方程的教学研究有着重要的意义.1.提高学生对常微分方程类型的识别能力,对具体问题进行具体分析.在微分方程的学习过程中,首先要分清微分方程的类型,针对不同的类型的方程应用不同的解法,如:首先要分清方程的类型,它不是恰当方程,就不能直接用求恰当方程的方法计算,那么就要寻找方程的积分因子,使其转化为恰当方程,但由于同一种类型的方程可以用多种解法求解,因此如何选择快捷、简便方法求解方程,是学生应该认真思考的问题.如:例2:求解方程ydx+(y-x)dy=0.方法2简便快捷,通过本例可知学生在解方程过程中,不能思想僵化,机械地采用常规解法解题,应该掌握问题的共性的同时发现它的特性,做到具体问题具体分析.2.注重培养学生的逻辑推理、归纳能力.3.开设实践课,培养学生的应用能力.由于常微分方程应用非常广泛,因此我们在教学中不能只停留在理论的讲解上,更要注重常微分方程在其他学科中的应用。
我们在教学过程中应开设实践课,培养学生的应用能力.在实践课教学过程中,我们先要结合一些实际问题,建立研究对象的数学模型,根据其内在规律列出微分方程或微分方程组,然后研究解的问题.例如池州学院数学与计算机科学系将这门课的教学内容与数学建模紧密结合,结合大学生数学建模竞赛在实践课堂中以竞赛的课题为例,编写一些生动有实际背景的数学模型为实践课教材,通过教材讲解怎样构建数学模型,怎样用微分方程的手法研究问题、解决问题,并引导学生用所学的方法,联系实际模型培养学生解决问题的能力和创新能力.4.熟练掌握数学软件,促进常微分方程的教学和应用.计算机软件的快速发展为我们进行常微分方程的学习和研究提供了有力的辅助,首先利用数学软件的计算功能直接求解方程,降低了解题难度,减少人工繁琐重复的计算;其次利用计算机软件的数值计算和绘图功能使我们很方便了解或探索微分方程的性态.根据应用的普遍性和各自的特色功能,我们主要学习的数学软件为Mathematica、MATLAB、Maple,例如Mathematica是一款科学计算软件,很好地结合了数值和符号计算引擎、图形系统、编程语言、文本系统和与其他的.应用程序的高级连接;MATLAB在数值计算方面首屈一指.MATLAB可以进行矩阵运算、绘制函数和数据、实现算法、创建用户界面、连接其他编程语言的程序;Maple系统内置高级技术解决建模和仿真中的数学问题,包括世界上最强大的符号计算、无限精度数值计算、创新的互联网连接、强大的4GL语言等.结合常微分方程的学习和研究,我们利用计算机软件在如下的四个方面进行辅助计算:一是用于求平衡点的代数方程和方程组的求解及用于线性微分方程求解指数函数与矩阵特征值、特征向量的计算;二是通过计算机符号计算程序直接求解方程;三是通过计算机软件描绘常微分方程积分或辅助曲线的图形;四是常微分方程的特殊解法,如Laplace transform、power-series solution.参考文献:[1]王高雄,周之铭,朱思铭,王寿松.常微分方程.第三版[M].北京:高教出版社,2006,7.[2]丁同仁,李承治.常微分方程教程.第二版[M].北京:高教出版社,2004.[3]陶祥兴,张松艳.精品课程的建设与实践――以常微分方程课为例[J].宁波大学学报,2007,29,(5):104-107.[4]王言芹.浅谈常微分方程教学的几点体会[J].科技信息,2010,29:29-30.[5]张伟平.本科数学专业常微分方程教学改革与实践[J].高等理科教育,2003,(1):58.常微分方程的教学论文【2】摘要:常微分方程是一门重要的数学基础课,作者结合教学经验,对常微分方程的教学方法进行初步探讨。
常微分方程在数学建模中应用论文
![常微分方程在数学建模中应用论文](https://img.taocdn.com/s3/m/9cb594277375a417866f8f88.png)
论常微分方程在数学建模中的应用摘要:常微分方程的形成和发展与去多学科密切相关,诸如力学、天文学等。
如果想用数学解决实际问题,就必须建立模型。
本文重点介绍了常微分方程理论与数学建模结合起来,在人口预测中的应用。
关键词:常微分方程数学建模人口预测引言纵观微分方程的发展史,我们发现微分方程与物理、天文学以及日异月新的科学技术有着密切的联系。
牛顿在研究天体力学和机械力学的时候,就利用了微分方程这个工具,从理论上得到了行星运动的规律。
后来,法国天文学家勒维烈和英国天文学家亚当斯使用微分方程各自计算出那时尚未发现的海王星的位置。
这些都证明微分方程在改造自然和认识自然方面有着巨大的力量。
微分方程是自变量、未知函数及函数的导数(或微分)组成的关系式。
在解决实际问题的过程中,我们又得出了常微分方程的概念:如果在一个微分方程中出现的未知函数中只含有一个自变量,那么这个方程则称为常微分方程,也可以简单的叫做微分方程.在反映客观现实世界运动过程的量与量之间的关系中,大量存在满足微分方程关系似的数学模型,需要我们通过求解常微分方程来了解未知函数的性质。
常微分方程是解决实际问题的重要工具。
常微分方程在数学建模中的应用举例微分方程在数学建模中的应用大体是:首先,建立数学模型,根据问题的目的、要求具体分析做出相应的简化和假设;然后按照规律列出微分方程,求出方程的解;最后将实际对象带入结果中,对问题进行描述、分析、预测和控制。
2.1人口指数增长模型最简单的人口增长模型是:记今年人口为,年后人口为,年增长率为,则(4.1)这个公式的基本前提是年增长率保持不变。
二百多年前英国人口学家马尔萨斯调查了英国一百多年的人口统计资料,得出了人口的增长率是常数的假设,并据此建立了著名的人口指数增长模型。
记时刻的人口为,当考察一个国家或一个较大地区的人口时,是一个很大的整数,为了利用微积分这一数学工具,将视为连续、可微函数。
记初始时刻的人口为,假设人口增长率为常数,即单位时间内的增量与的比例系数。
常微分方程课程论文参考课题
![常微分方程课程论文参考课题](https://img.taocdn.com/s3/m/9d1f3309b6360b4c2e3f5727a5e9856a57122650.png)
常微分方程课程论文参考课题1.人口预测模型研究2.传染病模型研究3.经济增长模型研究4.饮酒驾车模型研究5.吸烟模型研究6.烟雾扩散模型研究7.捕鱼业持续收获模型研究8.军备竞赛模型研究9.种群竞争模型研究10.种群依存模型研究11.食饵—捕食者模型研究12.船舶航行的微分方程模型13.供应链系统的微分方程模型14.航空发动机的微分方程模型15.广告投入策略的微分方程模型16.河流污染的微分方程模型17.动态投入产出模型18.矿产资源投入产出模型19.水产品价格模型20.企业员工动态稳定模型21.信贷风险管理问题22.价格动态模型(价格系统)23.污水处理系统模型24.动态金融资产配置的微分方程模型25.汽车悬架系统的微分方程模型26.地震预报的微分方程模型27.网络数据传输的微分方程模型28.***中的微分方程模型29.微分方程理论在***方面的应用30.二阶常系数微分方程的解法研究一阶常系数微分方程的积分因子研究下面是诗情画意的句子欣赏,不需要的朋友可以编辑删除!!谢谢1. 染火枫林,琼壶歌月,长歌倚楼。
岁岁年年,花前月下,一尊芳酒。
水落红莲,唯闻玉磬,但此情依旧。
2. 玉竹曾记凤凰游,人不见,水空流。
3. 他微笑着,在岁月的流失中毁掉自己。
4. 还能不动声色饮茶,踏碎这一场,盛世烟花。
5. 红尘嚣浮华一世转瞬空。
6. 我不是我你转身一走苏州里的不是我。
7. 几段唏嘘几世悲欢可笑我命由我不由天。
8. 经流年梦回曲水边看烟花绽出月圆。
9. 人生在世,恍若白驹过膝,忽然而已。
然,我长活一世,却能记住你说的每一话。
10. 雾散,梦醒,我终于看见真实,那是千帆过尽的沉寂。
11. 纸张有些破旧,有些模糊。
可每一笔勾勒,每一抹痕迹,似乎都记载着跨越千年万载的思念。
12. 生生的两端,我们彼此站成了岸。
13. 缘聚缘散缘如水,背负万丈尘寰,只为一句,等待下一次相逢。
14. 握住苍老,禁锢了时空,一下子到了地老天荒15. 人永远看不破的镜花水月,不过我指间烟云世间千年,如我一瞬。
常微分方程毕业论文.
![常微分方程毕业论文.](https://img.taocdn.com/s3/m/763be73176eeaeaad0f330ad.png)
安阳师范学院本科学生毕业论文一阶常微分方程初等解法作专年学日学生诚信承诺书本人郑重承诺:所呈交的论文是我个人在导师指导下进行的研究工作及取得的研究成果.尽我所知,除了文中特别加以标注和致谢的地方外,论文中不包含其他人已经发表或撰写的研究成果,也不包含为获得安阳师范学院或其他教育机构的学位或证书所使用过的材料.与我一同工作的同志对本研究所做的任何贡献均已在论文中作了明确的说明并表示了谢意.签名:日期:论文使用授权说明本人完全了解安阳师范学院有关保留、使用学位论文的规定,即:学校有权保留送交论文的复印件,允许论文被查阅和借阅;学校可以公布论文的全部或部分内容,可以采用影印、缩印或其他复制手段保存论文.签名:导师签名:日期:一阶常微分方程初等解法田丰(安阳师范学院数学与统计学院,河南安阳 100801066)摘要: 文章对一阶常微分方程运用变量分离,积分因子,恰当微分方程等各类初等解法进行了归纳与总结,同时结合例题演示了常微分方程的求解问题。
关键词:一阶常微分方程;变量分离;恰当微分方程;积分因子1 引言常微分方程在微积分概念出现后即已出现,对常微分方程的研究也可分为几个阶段.发展初期是对具体的常微分方程希望能用初等函数或超越函数表示其解,属于“求通解”时代.莱布尼茨曾专门研究利用变量变换解决一阶常微分方程的求解问题,而欧拉则试图用积分因子处理.但是求解热潮最终被刘维尔证明里卡蒂方程不存在一般初等解而中断.加上柯西初值问题的提出,常微分方程从“求通解”转向“求定解”时代.在20世纪六七十年代以后,常微分方程由于计算机技术的发展迎来了新的时期,从求“求所有解”转入“求特殊解”时代,发现了具有新性质的特殊的解和方程,如混沌(解)、奇异吸引子及孤立子等. 微分方程里各项的次数,其实说的是方程各项中未知函数(y)及其导数(y',y'',y'''……)的次数但是一般接触到的有解析解的微分方程都不会超过1次,所以齐次一般指的就是方程各项中未知函数(y)及其导数(y',y'',y'''……)的次数为1也就是说方程各项中必须出现且只出现单独的y,y',y'',y'''……,而不出现它们的平方、n次方,也不出现它们互相相乘,也不出现常数项(次数为0)其中的常见的求解一阶微分2 一阶常微分方程的初等解法2.1 变量分离法2.1.1 一般变量分离法()()dy f x y dxϕ=, )1.2( 的方程,称为变量分离方程,()f x ,()y ϕ分别是x ,y 的连续函数.这是一类最简单的一阶函数.如果()0y ϕ≠,我们可将)1.2(改写成()()dy f x dx y ϕ=, 这样,变量就分离开来了.两边积分,得到 ()()dy f x dx c y ϕ=+⎰⎰. )2.2(这里我们把积分常数c 明确写出来,而把⎰)(y dy ϕ, ⎰dx x f )(分别理解为)(1y ϕ,)(x f 的原函数.常数c 的取值必须保证)2.2(有意义,如无特别声明,以后也做这样理解. 因)2.2(式不适合0)(=y ϕ情形.但是如果存在0y 使0)(0=y ϕ,则直接验证知0y y =也是)1.2(的解.因此,还必须寻求0)(=y ϕ的解0y ,当0y y =不包括在方程的通解)2.2(中时,必须补上特解0y y =例1 求解方程dx dy -=xy 解 将变量分离,得到xdx ydy -=,两边积分,即得22222c x y +-=, 因而,通解为c y x =+22.这里c 是任意正常数,或者解出y ,写出显函数形式的解2x c y -±=.例2 求解方程y x p dxdy )(=, )1.3( 的通解,其中是)(x p x 的连续函数解 将变量分离,得到dx x p y dy )(=, 两边积分,即cdx x p y ~)(||ln +=⎰. 这里c~是任意常数.由对数定义,有 c dx x p ey ~)(||+⎰=, 即dx x p c e e y ⎰⋅±=)(~,令c e c =±~,得到⎰=dx x p ce y )(, )2.3( 此外,0=y 显然也是方程)1.3(的解,如果允许)2.3(中允许0=c 则0=y 也就包括在)2.3(中,因而)1.3(的通解为)2.3(,其中c 为任意常数2.1.2 用变量分离解齐次微分方程2.1.2.1 用变量分离法解齐次微分方程类型一形如)(yx g dx dy =, 的方程,称为齐次微分方程,这里)(u g 是u 的连续函数.作变量变换xy u =, 即ux y =,于是u dxdu x dx dy +=. 代入原方程可得)(u g u dxdu x =+, 整理后,得到x u u g dx du -=)(. )3.2( 因)3.2(是一个变量分离方程.则可按照变量分离方法求解,然后代回原来的变量,即可得到原方程的解例3 求解方程x y xy dx dy tan += 解 这是齐次微分方程,以u dxdu x dx dy u x y +==及代入,则原方程变为 ,tan u u u dxdu x +=+ 即xu dx du tan =. )3.3( 将上式分离变量,既有,cot x dx udu = 两边积分,得到cx u ~||ln |sin |ln +=. 这里c~是任意常数,整理后,得到 u sin =,~x e c ⋅±c e=±~得到 cx u =sin . )4.3( 此外,方程)3.3(还有解 0tan =u .如果在)3.3(中允许0=c ,则0tan =u 也就包括在)4.3(中,这就是说,方程)3.3(的通解为)4.3(带回原来的变量,得到方程的通解为.sin cx x y=例4 求解方程y xy dx dyx =+2(0<x )解 将方程改写为x yx y dx dy +=2,这是齐次微分方程.以u dx dux dx dy u x y+==及代入,则原方程变为 .2u dx dux =)5.3( 分离变量,得到,2x dxu du =两边积分,得到)5.3(的通解.)ln(c x u +-=即当0)ln(>+-c x 时,2])[ln(c x u +-=.这里c 时任意常数.此外,方程)5.3(还有解.0=u注意,此解并不包括在通解)5.3(中.代入原来的变量,即得原方程的通解为.])[ln(2c x x y +-=2.1.2.2用变量分离法解齐次微分方程类型二形如222111c y b x a c y b x a dx dy ++++=, )4.2( 的方程不可直接进行变量分离,但是可以经过变量变换后化为变量分离方程,这里1a ,1b ,1c ,2a ,2b ,2c 均为常数.可分为三种情况来讨论:()1k c c b b a a ===212121(常数)的情形 这时方程可化为k dxdy =, 有通解c kx y +=,其中c 为任意常数.()2212121c c k b b a a ≠==的情形. 令y b x a u 22+=,这时有212222c u c ku b a dx dy b a dx du +++=+=. 是变量分离方程()32121b b a a ≠及21,c c 不全为零的情形 因为方程右端分子,分母都是y x ,的一次多项式,因此⎩⎨⎧=++=++.0,0222111c y b x a c y b x a 代表Oxy 平面上两条相交的直线,设交点为()βα,,若令⎩⎨⎧-=-=,,βαy Y x X 则方程可化为⎩⎨⎧=+=+,0,02211y b x a y b x a 从而方程)4.2(变为.2211⎪⎭⎫ ⎝⎛=++=X Y g Y b X a Y b X a dX dY 因此,求解上述变量分离方程,最后代回原方程,即可得到原方程的解.)4(021==c c 的情形, 此时直接变换xy u =即可. 例5 求解方程111dy dx x y =+-+. 解 令1u x y =-+,则有1y u x -=--,代入所求方程()111d u x dx u---=+, 整理可得1du dx u=-, 由变量分离得22u x c =-+,故所求方程的解为()212x y x c -++=.例6 求解方程 31-++-=y x y x dx dy . 解 解方程组⎩⎨⎧=-+=+-,03,01y x y x 得.2,1==y x 令⎩⎨⎧+=+=,1,1Y y X x 代入上式方程,则有YX YX dX dY +-=. 再令,uX Y XYu ==即则上式可化为 du uu uX dX 2211--+=, 两边积分,得cu u X ~|12|ln ln 22+-+-=, 因此c e u u X ~22)12(±=-+,记,1~c e c=±并带回原变量,得1222c X XY Y =-+,122)1()2)(1(2)2(c x y x y =----+-.此外容易验证0122=-+u u ,即2220,Y XY X +-=也是方程的解 ,因此方程的通解为c x y x xy y =---+26222,其中c 为任意的常数. 2.2常数变易法2.2.1常数变易法类型一一阶线性微分方程()(),x Q y x P dxdy+= 其中()()x Q x P ,在考虑的区间上是x 的连续函数,若Q ()0=x ,方程变为(),y x P dxdy= 称其为一阶齐次线性微分方程,若(),0≠x Q 称其为一阶非齐次线性微分方程.变易分离方程,易求得它的通解为(),⎰=dxx P ce y这里c 是任意常数.现在讨论非齐次线性方程的通解的求法.不难看出,是特殊情形,两者既有联系又有差别,因此可以设想它们的解也应该有一定的联系而又有差别,现试图利用方程的通解的形式去求出方程的通解,显然,如果中c 恒保持为常数,它们不可能是的解.可以设想在中将常数c 变易为x 的待定函数,使它满足方程,从而求出(),x c 为此,令()(),dxx P e x c y ⎰=两边同时微分,得到()()()()().dx x P dxx P e x P x c e dxx dc dx dy ⎰+⎰= 代入原方程,得到()()()()()()()()(),x Q e x c x P e x P x c e dxx dc dx x P dx x P dx x P +⎰=⎰+⎰ 即()()(),⎰=-dx x P e x Q dxx dc两边同时积分,得到()()(),1c dx e x Q x c dxx P +⎰=-⎰这里1c 是任意常数,求得到()()().1⎪⎭⎫ ⎝⎛+⎰⎰=⎰-c dx e x Q e y dx x P dxx P就是方程的通解.这种将常数变为待定函数的方法通常被称之为常数变易法.例7 求方程22y x y dx dy -=的通解 解 原方程可改写为yy x dy dx 22-=, 即y x ydy dx -=2, )6.3( 首先,求出齐次线性微分方程x ydy dx 2=, 的通解为2cy x =.其次,利用常数变易法求非齐次线性微分方程)6.3(的通解 把c 看成)(y c ,将方程2cy x =两边同时微分得y y c y dyy dc dy dx )(2)(2+=. 代入)6.3(,得到ydy y dc 1)(-=, 两边同时积分,即可求得cy y c ~ln )(+-=. 从而,原方程的通解为)ln ~(2y cy x -=, 这里c~是任意常数.2.2.2常数变易法类型二形如n y x Q y x P dxdy)()(+=, )5.2( 的方程,称为伯努利方程,这里)(x P ,)(x Q 为x 的连续函数,n ≠0,1是常数.利用变量变换可将伯努利微分方程化为线性微分方程.事实上,对于0≠y ,用n y -乘)5.2(的两边,得到)()(1x Q x P y dxdyy n n+=--, 引入变量变换n y z -=1,从而dxdyy n dx dz n--=)1(. 代入方程)5.2(,得到)()1()()1(x Q n z x P n dxdz-+-=, 这是线性微分方程,可按照前面介绍的方法来求出它的通解,然后代换原来的变量,便得到方程的通解.此外,当0>n 时,方程还有解0=y .例8 求方程的26xy xydx dy -=通解 解 这是2=n 时的伯努利微分方程.令1-=y z ,算得x z xdx dz +-=6, 这是线性微分方程,求得它的通解为826x xc z +=.代入原来的变量y ,得到8126x x c y +=, 或者c x y x =-886, 这就是原方程的通解. 此外,方程还有解0=y 2.3 利用恰当微分方程求解法 对于一阶微分方程()(),,0M x y dx N x y dy +=,若有M Ny x∂∂=∂∂,则该方程必为恰当微分方程. 下面讨论如何求得该恰当微分方程的解. 把(),uM x y x∂=∂看作只关于自变量y 的函数,对它积分可得 ()(),u M x y dx y ϕ=+⎰由此式可得N dyy d dx y x M y y u =+∂∂=∂∂⎰)(),(ϕ, 由此可得dx y x M yN dy y d ⎰∂∂-=),()(ϕ, 又因为]),([]),([⎰⎰∂∂∂∂-∂∂=∂∂-∂∂dx y x M yx x N dx y x M y N x ]),([⎰∂∂∂∂-∂∂=dx y x M x y x N0=∂∂-∂∂=yMx N , 故等式右边只含有y ,积分可得dy ydx x M y N y ⎰⎰∂∂-=]),([)(ϕ, 进而可得dy dx y x M yN dx y x M u ⎰⎰⎰∂∂-+=]),([),(. 则恰当微分方程的通解为c dy dx y x M y N dx y x M =∂∂-+⎰⎰⎰]),([),(, 这里c 是任意常数.例10 求解方程0)1()1(cos 2=-++dy yxy dx y x .解 因为221,1yx N y y M -=∂∂-=∂∂,故方程是恰当微分方程.把方程重新分项组合,得到0)1()1(cos 2=-++dy yxy dx y x ,即0||ln sin 2=-++yxdyydx y d x d , 或者写成0)||ln (sin =++yxy x d .于是,方程的通解为c yxy x =++||ln sin , 这里c 是任意常数2.4 利用积分因子求解法函数(),x y μ为()(),,0M x y dx N x y dy +=积分因子的充要条件是()()M N y xμμ∂∂=∂∂, 即()M N NM x y y xμμμ∂∂∂∂-=-∂∂∂∂. 假设原方程存在只与x 有关的积分因子()x μμ=,则0xμ∂=∂,则μ为原方程的积分因子的充要条件是()M N x y x μμ∂∂∂=-∂∂∂,即()()M Ny x x Nφ∂∂-∂∂=仅是关于x 的函数.此时可求得原方程的一个积分因子为()x dxe φμ⎰=.同样有只与y 有关的积分因子的充要条件是()()M N y xy Mϕ∂∂-∂∂=-是仅为y的函数,此时可求得方程的一个积分因子为()y dye ϕμ⎰=例9 求解方程0)(=-+dy x y ydx . 解 这里,1,1,,-=∂∂=∂∂-==XNy M x y N y M 方程不是恰当的. 因为yy M 2-=∂∂只与y 有关,故方程有只与y 的积分因子 2||ln 221ye eu y y==⎰=--, 以21yu =乘方程两边,得到 0112=-+yxdydy y dx y , 或者写成02=+-y dyyxdy ydx , 因而通解为c y yx=+||ln .3 结束语文章详细介绍了一阶常微分方程的初等解法,即把一阶常微分方程的解通过初等函数或它们的积分表达出来。
二阶变系数齐次常微分方程的解法及其应用
![二阶变系数齐次常微分方程的解法及其应用](https://img.taocdn.com/s3/m/c7fd6e06a45177232e60a243.png)
2011届本科毕业论文二阶变系数齐次常微分方程的解法及其应用所在学院:数学科学学院专业班级:数学07-(4)实验班学生姓名:曼则热古丽.图尔荪指导教师:吐尔洪.艾尔米丁答辩日期:2011年5月11日新疆师范大学教务处目录引言................................................................................................................. 错误!未定义书签。
1 二阶变系数齐次常微分方程的通解及其应用..................................... 错误!未定义书签。
2 二阶变系数齐次方程的两个解法及其应用............................................. 错误!未定义书签。
2.1利用常数变易法解二阶变系数齐次线性微分方程....................... 错误!未定义书签。
2.2未知函数代换................................................................................... 错误!未定义书签。
3二阶变系数线性微分方程的一般求解法及其应用.................................. 错误!未定义书签。
3.1二阶变系数线性微分方程的一般求解法....................................... 错误!未定义书签。
3.2应用................................................................................................... 错误!未定义书签。
4 总结............................................................................................................. 错误!未定义书签。
微分方程在材料学科研究中的应用论文
![微分方程在材料学科研究中的应用论文](https://img.taocdn.com/s3/m/3ae82b387275a417866fb84ae45c3b3567ecdda5.png)
微分方程在材料学科研究中的应用论文【摘要】微分方程是一项有效的数学工具,在材料科学研究中得到了广泛的应用。
本文综述了微分方程在研究材料力学性能、物理性能、热传导和质量传输方面的应用。
【关键词】微分方程材料学科应用微分方程指含有自变量、自变量的函数及其导数的等式,是常微分方程和偏微分方程的总称。
20世纪以来,随着大量边缘科学的产生和开展,也出现不少新型的微分方程。
20世纪70年代随着数学向化学和生物学的渗透,出现了大量的反响扩散方程。
常微分方程的解会含有一个或多个任意常数,其个数就是方程的阶数。
偏微分方程的解会含有一个或多个任意函数,其个数随方程的阶数而定。
微分方程在物理学、力学中的重要应用,不在于求方程的任一解,而是求得满足某些补充条件的解,称为求解定解问题。
随着微分方程的开展和在各学科研究中的应用,微分方程也逐渐应用于材料科学的研究。
本文综述了微分方程在研究材料的力学性能、物理性能、热传导和质量传输方面的应用情况。
王秀芬利用微分方程模型对温控材料受力弯曲变形进展了研究。
结合数学建模思想及材料力学相关知识对温控设备受力时发生弯曲变化情况,通过实例建立微分方程模型,通过对模型的分析研究寻求温控设备能自动调节温度的最正确规律。
她利用求解细杆弯曲变形的问题时常建立挠曲轴近似微分方程然后求解,带入条件后推导出模型。
通过对模型的分析她发现,当细杆发生弯曲时,弹簧与钢臂的夹角不为90°,且弹簧的长度相对于未发生变形时发生变化,因此她结合条件后改良了模型。
通过计算结果发现,相对误差很小,实际值与计算值吻合程度很高,模型相当准确,可用于准确求解细杆的弯曲情况。
金伟良利用微分方程。
研究了锈蚀钢筋混凝土梁受弯承载力计算模型。
综合考虑锈蚀钢筋混凝土梁中材料性能的退化和钢筋与混凝土黏结性能的退化,根据梁截面平衡方程和钢筋与混凝土的变形协调方程建立梁中受拉钢筋轴力微分方程,给出了微分方程的滑移边界条件和钢筋轴力连续边界条件,定义梁弯曲破坏的两种极限状态:混凝土压碎和钢筋屈服,通过计算推导出钢筋轴力微分方程通过研究发现,模型计算结果与试验结果吻合很好,说明本模型的计算结果是可靠的,可以将本模型的计算结果运用到实际的工程之中,为混凝土构造耐久性评估提供了理论根底。
论文模版(一篇关于微分方程的论文)
![论文模版(一篇关于微分方程的论文)](https://img.taocdn.com/s3/m/0805478683d049649b66581d.png)
本科生毕业设计 (论文)题目:论积分因子的存在条件及其求法教学单位 _计算机科学与技术学院姓名 ___ 彭倩___学号___ 200531105002年级 _____2005级_________专业 _ 数学与应用数学指导教师 ___ 宋荣荣职称 _____ 讲师___ _____2009 年 5 月 7 日摘要在常微分方程理论的形成过程中, 求解常微分方程曾出现过许多方法, 如分离变量法、变量替换法、常数变易法以及积分因子法等等. 其中尤以积分因子法出现的最晚, 而作用也最大.积分因子法的实质是把常微分方程转化为恰当方程, 由于恰当方程的通解很容易得出, 这样我们也就能很容易求得常微分方程的解.因此用积分因子法解常微分方程的关键是找到积分因子.本文首先介绍了二元微分方程的恰当方程的定义, 然后在二元非恰当方程的条件下引出积分因子的定义和存在条件. 通过探讨积分因子的存在条件,本文得到了几种求常微分方程积分因子的基本求法:观察法、公式法、分组法和几种特殊类型方程积分因子的求法. 并对各种积分因子求法作了详细论证.然后根据二元原函数存在条件及积分因子的求法来推导三元原函数存在条件及积分因子的求解方法.关键词:常微分方程;积分因子;恰当方程;三元原函数.AbstractTheory of ordinary differential equations in the formation process, the solution of ordinary differential equations there have been many methods, such as separation of variables, variable substitution method, constant variation, and so integral factor method. Especially integral factor method appears the latest, The biggest role. integral factor method is the essence of ordinary differential equations into appropriate, as the appropriate general solution of the equation is easy to draw, so we can easily obtain the solution of ordinary differential equations. therefore integral factor method the key to solution of ordinary differential equations is to find the integrating factor.In this paper, the dual differential equations first introduced the definition of the appropriate equation, and then in the dual non-appropriate conditions equation integrating factor leads to the definition and conditions for the existence of. By exploring the conditions for the existence of the integrating factor, this paper has been seeking several ordinary differential equations integral factor of the basic method: To observe the law, the formula law, sub-law and several special types of integral equation method factor. and a variety of integral factor a detailed appraisal method. and then the original function in accordance with the conditions for the existence of binary and integral factor of the law is derived for three conditions for the existence of the original function and the integral factor method.Key words: ordinary differential equations; integral factor; proper equation; Ternary primitive function.目录第一章绪论 (5)1.1课题背景及目的 (5)1.2国内外研究状况和相关领域中已有的成果 (5)1.3研究方法、论文构成及研究内容 (6)1.3.1研究方法 (6)1.3.2 论文研究内容 (6)第二章二元微分方程积分因子的定义及其存在条件 (7)2.1 积分因子的定义 (7)2.2积分因子存在条件 (8)2.3积分因子的几种解法 (9)2.3.1 观察法 (9)2.3.2 公式法 (9)2.3.3 分组法 (12)2.3.4 几种特殊类型方程积分因子的求法 (13)第三章三元微分方程积分因子的存在条件及解法 (14)3.1三元原函数存在条件 (14)3.2 三元微分方程积分因子存在的条件 (15)3.3 三元微分方程积分因子的解法 (16)结论 (20)参考文献 (21)致谢 (21)第一章绪论1.1课题背景及目的微分方程差不多是和微积分同时产生的,苏格兰数学家耐普尔创立对数的时候,就讨论过微分方程的近似解. 牛顿在建立微积分的同时,对简单的微分方程用级数来求解. 后来瑞士数学家雅各布·贝努利、欧拉、法国数学家克雷洛、达朗贝尔、拉格朗日等人又不断地研究和丰富了微分方程的理论.常微分方程的形成与发展是和力学、天文学、物理学,以及其他科学技术的发展密切相关的. 数学的其他分支的新发展,如复变函数、李群、组合拓扑学等,都对常微分方程的发展产生了深刻的影响,当前计算机的发展更是为常微分方程的应用及理论研究提供了非常有力的工具.微分方程可以精确地表述事物变化所遵循的基本规律. 随着微分方程的理论的逐步完善,只要列出相应的微分方程并找到解方程的方法, 微分方程也就成了最有生命力的数学分支. 事实上,大部分的常微分方程求不出十分精确的解,而只能得到近似解. 当然,这个近似解的精确程度是比较高的.现在,常微分方程在很多学科领域内有着重要的应用,自动控制、各种电子学装置的设计、弹道的计算、飞机和导弹飞行的稳定性的研究、化学反应过程稳定性的研究等. 这些问题都可以化为求常微分方程的解,或者化为研究解的性质的问题. 应该说,应用常微分方程理论已经取得了很大的成就. 解常微分方程大致有分离变量法、变量替换法、常数变易法以及积分因子法等等,其中,积分因子法尤为重要,本论文主要讨论积分因子存在条件及其解法,通过积分因子使常微分方程化为全微分方程形式来求解.1.2 国内外研究状况和相关领域中已有的成果积分因子的概念是由瑞士大数学家欧拉提出来的,而且他还确定了可采用积分因子的微分方程类型,证明了凡是可用分离变量求解的微分方程都可以用积分因子求解,但反之不然.随着微分方程理论的不断深入研究,积分因子的应用越来越广. 经过许多人的研究证明:不仅仅是可用分离变量求解的微分方程可以用积分因子法求解,甚至只要微分方程的解存在,都可以采用积分因子法求解. 只是有些方程求积分因子比求方程的解本身更为复杂.目前国内的伍军、刘许成、阎淑芳等人对积分因子的求法作了详细的研究,并取得了许多重大的成果. 尽管目前还没有找到求积分因子的普通解法,但已在相当大的范围内,给出了一些微分方程的存在某些特殊类型积分因子的求法。
数值分析小论文 土木工程学院-常微分方程数值解法
![数值分析小论文 土木工程学院-常微分方程数值解法](https://img.taocdn.com/s3/m/cb362f8184868762caaed55c.png)
题目:常微分方程数值解法在钢筋混凝土梁变形分析的应用算法:常微分方程数值解法组号:第9组组员:马宁涛邵鹏飞王丽君申陆林郭娜王倩聂广虎常微分方程数值解法在钢筋混凝土梁变形分析的应用邵鹏飞,马宁涛,申陆林,聂广虎(河南理工大学土木工程学院河南焦作454003)摘要:为了获得钢筋混凝土梁变形的规律,运用常微分方程数值解法,使用Matlab数值分析软件,根据实验数据对均布荷载集度在简支梁上不同位置所产生的弯矩值和挠度值的关系进行了函数分析,得出在保证梁的强度及其安全变形条件下,找到梁上最危险点,并提出了相关的措施建议。
结果表明:简支梁的位置中点处即为梁上最薄弱、危险位置。
这个规律可以有针对性的对钢筋混凝土梁进行加固处理提供理论依据,使梁具有更强的耐久性、抗拉及抗压性。
关键词:Matlab;材料力学;结构力学;数值分析;裂缝Using the Numerical Method for Ordinary Differential Equations to Distort the Analysis Application In the Simple Reinforced Concrete BeamShao Pengfei,Ma Ningtao,Shen Lulin,Nie Guanghu(School of Civil Engineering, Henan Polytechinc University, Jiaozuo, Henan, China, 454003) Abstract:In order to obtain the rule which the simple reinforced concrete beam distorts, using the numerical method for ordinary differential equations,and the Matlab numerical analysis software,having carried on the functional analysis to the relationship of bending moment value and amount of deflection value which is produced by equispaced load collection in the simple beam different position according to the experimental data,obtaining to find the most hazard point of the simple beam in guaranteeing the simple beam's intensity and the safe distortion condition,and statementing the related measure suggestions.The results indicate that the simple beam's center point position is the simple beam's weakest and most dangerous position. This rule can provide the theory basis to carry on reinforcement processing of the simple reinforced concrete beam that is target-oriented,causing the simple beam to have the stronger durability, tensile strength and compressive strength.Key words:Matlab;Materials mechanics;Structure mechanics;Numerical analysis;Crack 0.问题背景在土木工程学科结构工程研究设计领域的钢筋混凝土梁变形分析中,绘制内力图.寻找到危险点的位置是完成梁的截面设计或强度校核的关键环节,并对此危险点提出措施进行加固,防止梁发生破坏。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《关于常微分方程解法的探究》
班级:数学与应用数学131
学号:
姓名:丁延辉
日期:2016年5月25号
摘要
常微分方程的形成与发展和很多学科有着密切的联系,例如力学、天文学、物理学等.数学的其他分支的快速发展,产生出很多新兴学科,这些新兴学科的产生都对常微分方程的发展有着深刻的影响,而且当前计算机的快速发展更是为常微分方程的应用及理论研究提供了非常有力的工具。并且常微分方程是微积分学的重要组成部分,广泛用于具体问题的研究中。因此,由实际问题列出微分方程后,其解法非常关键,微分方程的类型有很多种,解题时先判断微分方程是哪种类型,可以帮助我们更快解题,所以我们有必要归纳整理一下各类型(主要是一阶和二阶)的微分方程及其相应解法。
关键词:微分方程降阶法变量代换法齐次型一阶线性
1一阶微分方程
变量可分离的微分方程
形如
(1)
的方程,称为变量分离方程, , 分别是 , 的连续函数.这是一类最简单的一阶函数.如果 ,我们可将( )改写成
这样变量就分离开来了.两边积分,得到
为任意常数.由该式所确定的函数关系式 就是常微分方程的解.
例1:求解 的通解。
解: → → →通解:
齐次型微分方程(变量代换的思想)
一阶微分方程可以化成 的形式。
求解: ,
(可分离变量) 通解
例2:解方程
一阶线性微分方程
若
称为一阶齐次线性微分方程。
若
( )
ቤተ መጻሕፍቲ ባይዱ称为一阶非齐次线性微分方程。
一阶非齐次微分方程的通解等于对应的齐次方程的通解与非齐次方程的一个特解之和。
解
的通解如下:可分离变量的一阶微分方程
(齐次方程通解)采用积分因子法求
的一个特解如下
( )
的通解为:
伯努利方程
形如:
当 时, 一阶线性微分方程
当 时, 可分离变量微分方程
求通解过程:
作变量代换
2.高阶微分方程的降阶法(以二阶为例)
二阶及二阶以上的微分方程称为高阶微分方程,求高阶微分方程通解的方法成为降阶法
y(n)=f(x)型:
解法:
y"=f(x,y')型