扩孔锚栓计算5.27
膨胀锚拴计算
NRdc=
AcN 0 NRkc= NRkc × 0 × ψ sN × ψ reN × ψ ecN × ψ ucrN AcN 在上面公式中: NRdc:混凝土锥体破坏时的受拉承载力设计值; NRkc:混凝土锥体破坏时的受拉承载力标准值; k:地震作用下锚固承载力降低系数,按表 7.0.5[JGJ145-2004]选取; γ RcN: 混凝土锥体破坏时的受拉承载力分项系数, 按表 4.2.6[JGJ145-2004]采用, 取 3; NRkc:开裂混凝土单锚栓受拉,理想混凝土锥体破坏时的受拉承载力标准值; NRkc=7.0× 其中: fcuk:混凝土立方体抗压强度标准值,当其在 45-60MPa 间时,应乘以降低系数 0.95;
g g
(JGJ145-2004 6.2.1)
其中VSd : 锚栓群总剪力设计值,根据上面计算取 3410.88N VRdc : 混凝土楔形体破坏时的受剪承载力设计值 VRkc γ RcV AcV AcV
0
VRdc = k ×
(JGJ145-2004 6.2.3-1)
VRkc =VRkc ×
0
×ψ sV × ψ hV × ψ aV × ψ ecV × ψ ucrV
h
5、锚栓混凝土锥体受拉破坏承载力校核
校核依据 NSd ≤ NRdc
g g
(JGJ145-2004 6.1.1)
其中NSd : 锚栓群受拉区总拉力设计值,根据上面计算取 4002.61N NRdc : 混凝土锥体破坏受拉承载力设计值 因锚固点位于普通混凝土结构受拉面,故锚固区基材为开裂混凝土。混凝土锥体受拉破 坏时的受拉承载力设计值 Nrdc 应按下列公式计算: NRkc γ RcN
h V
4、锚栓受拉承载力校核
锚栓计算
锚栓计算本设计采用化学植筋作为后锚固连接件。
本计算主要依据《混凝土结构后锚固技术规程》JGJ 145-2004。
后锚固连接设计,应根据被连接结构类型、锚固连接受力性质及锚栓类型的不同,对其破坏型态加以控制。
本设计只考虑锚栓钢材抗剪复合破坏类型和混凝土破坏类型。
并认为锚栓是群锚锚栓。
1 后锚固载荷信息本工程锚栓受拉力和剪力V g sd: 总剪力设计值:V g sd=8.723KNN g sd: 总拉力设计值:N g sd=34.000KNM: 弯矩设计值:M=1.240000KN·m本设计的锚栓是在拉剪复合力的作用之下工作,所以拉剪复合受力下锚栓或植筋钢材破坏和混凝土破坏时的承载力,应按照下列公式计算:1)()(2,2,≤+sRd h Sd s Rd h Sd V V N N N Rs sRk s Rd N N ,,,γ=V Rs sRk s Rd V V ,,,γ=1)()(5.1,5.1,≤+cRd g Sd c Rd g Sd V V N NN Rc cRk c Rd N N ,,,γ=V Rc cRk c Rd V V ,,,γ=式中hSdN ---- 群锚中受力最大锚栓的拉力设计值;g SdN ---- 群锚受拉区总拉力设计值; h SdV ---- 群锚中受力最大锚栓的剪力设计值;g SdV ---- 群锚总剪力设计值; sRd N , ---- 锚栓受拉承载力设计值; sRk N , ---- 锚栓受拉承载力标准值;s Rd V , ---- 锚栓受剪承载力设计值; sRk V , ---- 锚栓受剪承载力标准值; cRd N , ---- 混凝土锥体受拉破坏承载力设计值;cRk N , ---- 混凝土锥体受拉破坏承载力标准值;cRd V , ---- 混凝土楔形体受剪破坏承载力设计值;cRk V , ---- 混凝土楔形体受剪破坏承载力标准值;γRs,N----锚栓钢材受拉破坏,锚固承载力分项系数=1.50;γRs,V----锚栓钢材受剪破坏,锚固承载力分项系数=1.50;γRc,N----混凝土锥体受拉破坏,锚固承载力分项系数=2.15;γRc,V----混凝土楔形体受剪破坏,锚固承载力分项系数=1.80;γRcp----混凝土剪撬受剪破坏,锚固承载力分项系数=1.80;γRsp----混凝土劈裂受拉破坏,锚固承载力分项系数=2.15;锚栓的分布如下图所示:锚板:X=300.0mmY=200.0mm锚栓设置:s11=230.0mms21=130.0mm锚基边距:无边缘效应: c>10*h ef2 锚栓钢材受拉破坏承载力h----混凝土基材厚度=400.0mm;混凝土基材等级:强度等级C30;d----锚栓杆、螺杆外螺纹公称直径及钢筋直径=12.0mm;d o----钻孔直径=14.0mm;d f----锚板钻孔直径=14.0mm;h1----钻孔深度=110.00mm;h ef----锚栓有效锚固深度=110.00mm ;T inst----安装扭矩=40.00N.m ;f stk----锚栓极限抗拉强度标准值=500.00Mpa ;A s----锚栓应力截面面积=84.622mm 2;n----群锚锚栓个数=4;幕墙后锚固连接设计中的锚栓是在轴心拉力与弯矩共同作用下工作,弹性分析时,受力最大锚栓的拉力设计值应按下列规定计算:① 当021≥⋅-∑iyyM n N 时∑⋅+=21i h Sd y y M n N N② 当021<⋅-∑iyyM n N 时∑+⋅=2'1').(i h Sdy y M L N N式中M ---- 弯矩设计值(N.m );h SdN ---- 群锚中受力最大锚栓的拉力设计值;iy y ,1 ---- 锚栓1及i 至群锚形心轴的垂直距离(mm );''1,i y y ---- 锚栓1及i 至受压一侧最外排锚栓的垂直距离(mm );L---- 轴力N 作用点至受压一侧最外排锚栓的垂直距离(mm )。
膨胀锚拴计算
一、膨胀锚拴计算1、锚栓计算信息描述V: 剪力设计值:V=3410.88NN: 法向力设计值:N=2547.82Ne2: 锚栓中心与锚板平面距离: 60mmM: 弯矩设计值(N.mm):M=V ×e2=3410.88×60=204653N.mmT: 扭矩设计值(N.mm): 0N.mm当前计算锚栓类型: 膨胀锚栓锚栓材料类型: 不锈钢锚栓-A2-70锚栓直径: 12mm锚栓底板孔径: 13mm锚栓处混凝土开孔直径: 14mm锚栓有效锚固深度: 80mm锚栓底部混凝土级别: 混凝土-C25底部混凝土为未开裂混凝土底部混凝土基材厚度: 400mm混凝土开裂及边缘配筋情况: 边缘为无筋的开裂混凝土锚栓锚固区混凝土配筋描述: 其它情况2、锚栓承受拉力计算锚栓布置示意图如下:125075505012550225175锚栓布置示意图d :锚栓直径12mmdf:锚栓底板孔径13mm在拉力和弯矩共同作用下,锚栓群有两种可能的受力形式。
首先假定锚栓群绕自身的中心进行转动,经过分析得到锚栓群形心坐标为[112.5,87.5],各锚栓到锚栓形心点的Y 向距离平方之和为∑y 2=2812.5y 坐标最高的锚栓为2号锚栓,该点的y 坐标为125,该点到形心点的y 向距离为 y1= 125-87.5 = 37.5mmy 坐标最低的锚栓为1号锚栓,该点的y 坐标为50,该点到形心点的y 向距离为 y2= 50-87.5 = -37.5mm所以锚栓群的最大和最小受力为:N min =N n + M ×y2∑y 2 =2547.822 + 204653×(-37.5)2812.5=-1454.79NN max =N n + M ×y1∑y 2 =2547.822 + 204653×(37.5)2812.5=4002.61N由于N min <0,说明连接下部受压,在弯矩作用下构件绕最底排锚栓转动,此时,分析计算得到各锚栓到底排锚栓的Y 向距离平方之和为∑yd 2=5625最高锚栓点到底排锚栓点的y 向距离为yd= 125-50 = 75mme:拉力作用点到锚栓群转动中心的距离为37.5mm锚栓所受最大拉力为N max =(M+N ×e)×yd ∑yd 2 =(204653+2547.82×37.5)×755625=4002.61N所以单个锚栓承受的最大拉力为4002.61N各锚栓承受的拉力如下表:所有锚栓承受的拉力总和为4002.61N3、锚栓承受剪力计算单独考虑剪力作用,V :3410.88Nny :参与V 受剪的锚栓数目为2个单个锚栓承受的剪力为(x 方向V VSx = 0)V V S = V n y(JGJ145-2004 5.3.2-2)=3410.882=1705.44N所以锚栓群在剪力V 作用下,锚栓的最大剪力设计值为V Smax = V V S= 1705.44N故V h Sd = V Smax = 1705.44N 4、锚栓受拉承载力校核校核依据 N h Sd ≤ N Rds (JGJ145-2004 6.1.1)其中N h Sd : 锚栓群中拉力最大的锚栓的拉力设计值,根据上面计算取4002.61N N Rds : 锚栓钢材破坏受拉力设计值D : 锚栓直径为12mmA s : 锚栓截面面积为113.097mm 2f stk :锚栓极限抗拉强度标准值N Rks :锚栓钢材破坏受拉承载力标准值γ RSN :锚栓钢材破坏受拉承载力分项系数,按表4.2.6采用f stk = 700N/mm 2f yk = 450N/mm 2γ RSN = 1.3×f stk f yk= 2.02222>1.55 按表4.2.6取2.02222N Rks = A s ×f stk= 113.097×700= 79168.1NN Rds = NRks γ RSN= 79168.12.02222= 39149.1N由于 N h Sd =4002.61N ≤NRds ,所以锚栓钢材满足强度要求考虑拉拔安全系数2,则锚栓拉拔试验强度值最少要求达到8.00523kN 5、锚栓混凝土锥体受拉破坏承载力校核校核依据 N g Sd ≤ N Rdc (JGJ145-2004 6.1.1)其中N g Sd : 锚栓群受拉区总拉力设计值,根据上面计算取4002.61NN Rdc : 混凝土锥体破坏受拉承载力设计值因锚固点位于普通混凝土结构受拉面,故锚固区基材为开裂混凝土。
锚栓规程
目次编辑本段简介化学锚栓是一种新型的紧固材料,由化学药剂与金属杆体组成的。
可用于各种幕墙、大理石干挂施工中的后加埋件安装,也可用于设备安装,公路、桥梁护栏安装;建筑物加固改造等场合。
由于其玻璃管内装着的化学试剂易燃易爆,所以厂家必须经过国家有关部门的批准才能生产,整个生产过程需要有严密的安全措施,并使用和工作人员完全隔离的流水线生产。
如果通过手工作业不但违反了国家的有关规定,而且非常危险。
化学锚栓是继膨胀锚栓之后出现的一种新型锚栓,是通过特制的化学粘接剂,将螺杆胶结固定于砼基材钻孔中,以实现对固定件锚固的复合件。
编辑本段分类膨胀型锚栓 expansion anchors:利用膨胀件挤压锚孔孔壁形成锚固作用的锚栓安卡锚栓:这种是国外引进的一种地脚螺栓,一般进口设备的地脚螺栓都是这种安卡锚栓,尤其是欧洲设备,在锚栓的后部有一个开口式金属套,打入地基后、扳紧罗纹,开口涨大固定.后切底锚栓:就是我们市场上很常见的带套的膨胀螺栓,不能单独固定,需要与固定物相挤压后固定,主要是它的开口套的结构限制.击芯锚栓:锚栓后部开口,中心有一根钢钉,当锚栓植入地基后,只需要敲击钢钉,钢钉下沉后将开口涨大固定.编辑本段特点产品名称:建筑锚栓产品特点:该产品经本公司设计室在原有基础上改进细节,增加了钉管与墙体之间的相克制性,而且改变了原来尼龙灯芯的外观力学性能,整体上使变的更加合理,更加成熟。
1、采用优质尼龙6,复合塑料精制而成。
2、耐侯性能和抗老化性能好,在-40℃至+70℃温度环境中长期稳定。
3、抗震动,抗风化,抗断裂,牢固持久。
4、可锤击敲入,施工方便,快捷,经济,安全。
适用范围:施工步骤:1、定位:保温板粘贴在墙体之后,确定锚固点位置。
2、钻孔:穿过已就位的保温板,按规定尺寸钻孔(注意:入墙实际孔深应在6cm以上)。
3、置入:将套管直接插于打好的钉孔至管盘与保温板靠紧。
4、敲入:将钢钉用手锤敲于钉管中(钢钉应与保温板平行为准)。
化学锚栓版,锚栓计算书
预埋件计算书==================================================================== 计算软件:MTS钢结构设计系列软件MTSTool v2.0.1.6计算时间:2011年04月01日13:49:10====================================================================一. 预埋件基本资料采用化学锚栓:单螺母扩孔型锚栓库_6.8级-M20排列为(环形布置):4行;行间距140mm;2列;列间距150mm;锚板选用:SB20_Q235锚板尺寸:L*B= 400mm×600mm,T=20基材混凝土:C30基材厚度:300mm锚筋布置平面图如下:二. 预埋件验算:1 化学锚栓群抗拉承载力计算轴向拉力为:N=50kNX向弯矩值为:Mx=100kN·mY向弯矩值为:My=30kN·m锚栓总个数:n=4×2=8个所选化学锚栓抗拉承载力为(锚栓库默认值):Nc=90.574kN承载力降低系数为:0.7实际抗拉承载力取为:Nc=90.574×0.7=63.402这里要考虑抗震组合工况:γRE=0.85故有允许抗拉承载力值为:Nc=63.402/γRE=74.59kN故有:0 < 74.59kN,满足2 化学锚栓群抗剪承载力计算X方向剪力:Vx=60kNY方向剪力:Vy=190kN扭矩:T=30kN·mX方向受剪锚栓个数:n x=8个Y方向受剪锚栓个数:n y=8个剪切荷载通过受剪化学锚栓群形心时,受剪化学锚栓的受力应按下式确定:V ix V=V x/n x=60000/8=7500×10-3=7.5kNV iy V=V y/n y=190000/8=23750×10-3=23.75kN化学锚栓群在扭矩T作用下,各受剪化学锚栓的受力应按下列公式确定:V ix T=T*y i/(Σx i2+Σy i2)V iy T=T*x i/(Σx i2+Σy i2)化学锚栓群在剪力和扭矩的共同作用下,各受剪化学锚栓的受力应按下式确定:V iδ=[(V ix V+V ix T)2+(V iy V+V iy T)2]0.5结合上面已经求出的剪力作用下的单个化学锚栓剪力值及上面在扭矩作用下的单个锚栓剪力值公式分别对化学锚栓群中(边角)锚栓进行合成后的剪力进行计算(边角锚栓存在最大合成剪力):取4个边角化学锚栓中合剪力最大者为:V iδ=[(7500+3663.43)2+(23750+1308.368)2]0.5=27.433kN所选化学锚栓抗剪承载力为(锚栓库默认值):Vc=53.855kN承载力降低系数为:0.7实际抗剪承载力取为:Vc=53.855×0.7=37.698这里要考虑抗震组合工况:γRE=0.85故有允许抗剪承载力值为:Vc=37698.272/0.85=44.351kN故有:V iδ=27.433kN < 44.351kN,满足3 化学锚栓群在拉剪共同作用下计算当化学锚栓连接承受拉力和剪力复合作用时,混凝土承载力应符合下列公式:(βN)2+(βV)2≤1式中:βN=N h/Nc=0/106.557=0βV=V iδ/Vc=39.189/63.358=0.6185故有:(βN)2+(βV)2=02+0.61852=0.3826 ≤1 ,满足三. 预埋件构造验算:锚固长度限值计算:锚固长度为300,最小限值为160,满足!锚板厚度限值计算:按《混凝土结构设计规范2002版》10.9.6规定,锚板厚度宜大于锚筋直径的0.6倍,故取锚板厚度限值:T=0.6×d=0.6×20=12mm锚筋间距b取为列间距,b=150 mm锚筋的间距:b=150mm,按规范且有受拉和受弯预埋件的锚板厚度尚宜大于b/8=18.75mm, 故取锚板厚度限值:T=150/8=18.75mm锚板厚度为20,最小限值为18.75,满足!行间距为140,最小限值为120,满足!列边距为150,最小限值为60,满足!行边距为90,最小限值为40,满足!列边距为125,最小限值为40,满足!。
锚栓规程
目次1总则2术语与符号3材料3.1混凝土基材3.2锚栓3.3锚固胶4设计基本规定4.1锚栓分类及适用范围4.2锚固设计原则5锚固连接内力分析5.1一般规定5.2群锚受拉内力计算5.3群锚受剪内力计算6承载能力极限状态计算6.1受拉承载力计算6.2受剪承载力计算6.3拉剪复合受力承载力计算7锚固抗震设计8构造措施9锚固施工与验收9.1基本要求9.2锚孔9.3锚栓的安装与锚固9.4锚固质量检查与验收附录A 锚固承载力现场检验方法本规程用词用语说明条文说明1 总则1.0.1为使混凝土结构后锚固连接设计与施工做到技术先进、安全可靠、经济合理,制订本规程。
1.0.2本规程适用于被连接件以普通混凝土为基材的后锚固连接设计、施工与验收,不适用以砌体或轻混凝土为基材的锚固。
1.0.3 后锚固连接设计应考虑被连接结构的类型(结构构件与非结构构件)、锚栓受力状况(受拉、受压、受弯、受剪、及其组合)、荷载类型及锚固连接的安全等级(重要与一般)等因素的综合影响。
1.0.4后锚固连接设计、施工与验收,除满足本规程的规定外,尚应符合国家现行有关标准、规范的规定。
2 术语和符号2.1 术语2.1.1 后锚固Post-installed fastenings通过相关技术手段在既有混凝土结构上的锚固。
2.1.2锚栓Anchor将被连接件锚固到混凝土基材上的锚固组件。
2.1.3膨胀型锚栓Expansion anchors利用膨胀件挤压锚孔孔壁形成锚固作用的锚栓(图2.1.3-1,图2.1.3-2)。
2.1.4扩孔型锚栓Undercut anchors通过锚孔底部扩孔与锚栓膨胀件之间的锁键形成锚固作用的锚栓(图2.1.4)。
2.1.5粘结型锚栓Bonded anchors通过粘结剂在锚孔中固化形成锚固作用的锚栓,包括螺杆及内螺纹管等(图2.1.5)。
2.1.6化学植筋Bonded rebars以化学粘结剂—锚固胶,将带肋钢筋胶结固定于混凝土基材锚孔中的一种后锚固生根钢筋(图2.1.6)。
化学锚栓埋件的计算
化学锚栓埋件的计算首先是锚栓的类型和尺寸。
常见的锚栓类型有膨胀锚栓、胶囊锚栓和钻孔锚栓。
不同类型的锚栓具有不同的载荷能力和适用范围。
锚栓的尺寸包括直径和长度,直径决定了锚栓的强度,长度决定了锚栓在混凝土中的嵌入深度。
其次是混凝土的强度。
混凝土的强度直接影响着化学锚栓埋件的承载力。
混凝土的强度一般由抗压强度表示,常见的混凝土抗压强度等级有C15、C20、C25等。
需要根据混凝土的抗压强度确定化学锚栓埋件的承载力。
第三是锚栓的安装方式。
化学锚栓的安装方式主要有预埋法和现场施工法两种。
预埋法是将化学锚栓在混凝土浇筑前预先埋入,现场施工法是混凝土浇筑后再进行化学锚栓的安装。
不同的安装方式会影响到化学锚栓的承载力计算。
计算化学锚栓埋件的承载力时,首先需要确定锚栓的最大拉力和最大剪力。
最大拉力一般由设备或结构的重量和悬挂方式决定。
最大剪力一般由受拉设备或结构施加的横向力决定。
根据最大拉力和最大剪力,可以计算出化学锚栓胶的有效承载力。
化学锚栓胶的有效承载力一般由制造商提供,也可以通过实验获得。
有效承载力可以通过公式计算得到,公式为有效承载力=化学锚栓胶的极限粘结强度×锚栓的有效面积。
其中,极限粘结强度是化学锚栓胶在固化后的强度,有效面积是浸入混凝土中的锚栓的有效面积。
最后,需要根据化学锚栓胶的有效承载力和使用工况进行验算。
使用工况一般包括静载荷、冲击荷载、地震荷载等,需要根据具体情况进行选择。
通过验算可以确保化学锚栓埋件在使用过程中的安全可靠性。
总之,化学锚栓埋件的计算涉及到锚栓的类型和尺寸、混凝土的强度、锚栓的安装方式、最大拉力和最大剪力以及化学锚栓胶的有效承载力。
通过合理的计算方法和验算,可以确保化学锚栓埋件的安全可靠使用。
《锚栓规程》
目次1总则2术语与符号3材料3.1混凝土基材3.2锚栓3.3锚固胶4设计基本规定4.1锚栓分类及适用范围4.2锚固设计原则5锚固连接内力分析5.1一般规定5.2群锚受拉内力计算5.3群锚受剪内力计算6承载能力极限状态计算6.1受拉承载力计算6.2受剪承载力计算6.3拉剪复合受力承载力计算7锚固抗震设计8构造措施9锚固施工与验收9.1基本要求9.2锚孔9.3锚栓的安装与锚固9.4锚固质量检查与验收附录A 锚固承载力现场检验方法本规程用词用语说明条文说明1 总则1.0.1为使混凝土结构后锚固连接设计与施工做到技术先进、安全可靠、经济合理,制订本规程。
1.0.2本规程适用于被连接件以普通混凝土为基材的后锚固连接设计、施工与验收,不适用以砌体或轻混凝土为基材的锚固。
1.0.3 后锚固连接设计应考虑被连接结构的类型(结构构件与非结构构件)、锚栓受力状况(受拉、受压、受弯、受剪、及其组合)、荷载类型及锚固连接的安全等级(重要与一般)等因素的综合影响。
1.0.4后锚固连接设计、施工与验收,除满足本规程的规定外,尚应符合国家现行有关标准、规范的规定。
2 术语和符号2.1 术语2.1.1 后锚固Post-installed fastenings通过相关技术手段在既有混凝土结构上的锚固。
2.1.2锚栓Anchor将被连接件锚固到混凝土基材上的锚固组件。
2.1.3膨胀型锚栓 Expansion anchors利用膨胀件挤压锚孔孔壁形成锚固作用的锚栓(图2.1.3-1,图2.1.3-2)。
2.1.4扩孔型锚栓 Undercut anchors通过锚孔底部扩孔与锚栓膨胀件之间的锁键形成锚固作用的锚栓(图2.1.4)。
2.1.5粘结型锚栓 Bonded anchors通过粘结剂在锚孔中固化形成锚固作用的锚栓,包括螺杆及内螺纹管等(图2.1.5)。
2.1.6化学植筋Bonded rebars以化学粘结剂—锚固胶,将带肋钢筋胶结固定于混凝土基材锚孔中的一种后锚固生根钢筋(图2.1.6)。
锚栓技术设计要点
锚栓技术设计要点目录1 锚栓类型及材料 (1)1.1 化学锚栓 (1)1.2 机械锚栓 (1)2 适用范围 (1)2.1 适用范围 (1)2.2 涉及规范及标准 (3)3 设计要点 (3)3.1锚固连接内力计算 (3)3.2 受拉承载力计算 (4)3.3 受剪承载力计算 (8)3.4 拉剪复合受力承载力计算 (10)3.5 抗震承载力验算 (10)4 构造规定 (11)4.1 混凝土基材 (11)4.2 锚栓及锚栓布置 (12)4.3 抗震构造措施 (12)锚栓技术设计要点1 锚栓类型及材料锚栓是将被连接件锚固到基材上的锚固组件产品,分为机械锚栓和化学锚栓。
1.1 化学锚栓化学锚栓是由金属螺杆和锚固胶组成,通过锚固胶形成锚固作用的锚栓。
化学锚栓按照其使用范围可分为两种:适用于开裂混凝土和不开裂混凝土的化学锚栓及适用于不开裂的混凝土的化学锚栓。
按照受力机理可分为两种:普通化学锚栓和特殊倒锥形化学锚栓。
特殊倒锥形化学锚栓,在安装时通过锚固胶与倒锥形螺栓杆之间滑移可形成类似于机械锚栓的膨胀力。
1.2 机械锚栓机械锚栓,是利用锚栓与锚孔之间的摩擦作用或锁键作用形成锚固的锚栓。
按照其工作机理分为两类:扩底型锚栓、膨胀型锚栓。
扩底型锚栓:通过锚孔底部扩孔与锚栓组件之间的锁键形成锚固作用的锚栓,分为自扩底锚栓和模扩地锚栓。
膨胀型锚栓:利用膨胀件加压锚孔孔壁形成锚固作用的锚栓,分为扭矩控制式膨胀型锚栓和位移控制式膨胀型锚栓。
按照其使用范围可分为两种:适用于开裂混凝土和不开裂混凝土的机械锚栓及适用于不开裂的混凝土的机械锚栓。
2 适用范围2.1 适用范围锚栓应按照锚栓性能、基材形状、锚固连接的受力性质、被连接结构类型、抗震设防等要求选用。
锚栓用于结构构件连接时的适用范围锚栓用于非结构构件连接时的适用范围注:1 表中受压是指锚板受压,锚栓本身不是承受压力;2 适用于开裂混凝土的锚栓是指卯足开裂混凝土及裂缝反复开合下锚固性能要求的锚栓。
锚栓锚固长度的计算
一、问题的提出《钢结构设计手册上册》(第三版)、《钢结构节点设计手册》(第二版)、《地脚螺栓(锚栓)通用图》HG/T21545-2006中的钢锚栓锚固长度有较大差异。
结合具体工程实例:山东富伦钢厂余热回收锅炉框架,抗震设防烈度7度0.1g。
经过计算地脚螺栓选用M20 Q235B,锚栓类型采用直钩锚栓。
基础混凝土等级C20。
根据《钢结构设计手册上册》(第三版)表10-6 锚栓锚固长度为400mm。
根据《钢结构节点设计手册》(第二版)表9-75 锚栓锚固长度为520mm根据《地脚螺栓(锚栓)通用图》HG/T21545-2006锚栓锚固长度为410×1.05=430mm因此按哪本手册(图集)进行设计的问题就产生了。
二、分析计算计算方法一:地脚螺栓埋入基础中的的锚固长度属于混凝土结构范畴,地脚螺栓的有小直径面积及地脚螺栓的强度设计值属于钢结构范畴,因此地脚螺栓的锚固长度可根据《混凝土结构设计规范》GB50010-2002、与《钢结构设计规范》GB50017-2003进行分析计算,la=α×fy/ft×d (《混凝土结构设计规范》GB50010-2002 9.3.1-1)α取0.16 (《混凝土结构设计规范》GB50010-2002 表9.3.1)ft取1.1N/mm2(《混凝土结构设计规范》GB50010-2002 表4.14)fy取140 N/mm2(《钢结构设计规范》GB50017-2003 表 3.4.1-4)la=0.16×140 N/mm2 / 1.1N/mm2×20mm=408mm根据《建筑抗震设防分类标准》GB50223-95 7.04条余热锅炉框架为丙类建筑。
抗震等级三级(《混凝土结构设计规范》GB50010-2002 表11.1.4)laE=1.05 la=408×1.05=429mm计算方法二:根据二力平衡原理得出理论公式: fy·Ae=2πr·la·ft根据上述计算方法可得出下表:抗震设防等级6度基础混凝土等C20地脚螺栓型号材质方法一计算结果节点手册结构手册图集理论公式M20 Q235B(Q345B) 408mm(525mm) 520mm(700mm) 400mm(500mm) 410mm(530mm) 496mm(638mm)M22 Q235B(Q345B) 448mm(576mm) 570mm(770mm) 440mm(550mm) 450mm(580mm) 559mm(719mm)M24 Q235B(Q345B) 489mm(629mm) 620mm(840mm) 480mm(600mm) 490mm(630mm) 596mm(766mm)抗震设防等级7度基础混凝土等C20地脚螺栓型号材质方法一计算结果节点手册结构手册图集理论公式M20 Q235B(Q345B) 429mm(551mm) 520mm(700mm) 400mm(500mm) 431mm(557mm) 496mm(638mm)M22 Q235B(Q345B) 471mm(605mm) 570mm(770mm) 440mm(550mm) 473mm(609mm) 559mm(719mm)M24 Q235B(Q345B) 514mm(661mm) 620mm(840mm) 480mm(600mm) 515mm(662mm) 596mm(766mm)抗震设防等级8度基础混凝土等C20地脚螺栓型号材质方法一计算结果节点手册结构手册图集理论公式M20 Q235B(Q345B) 449mm(578mm) 520mm(700mm) 400mm(500mm) 451mm(583mm) 496mm(638mm)M22 Q235B(Q345B) 493mm(634mm) 570mm(770mm) 440mm(550mm) 495mm(638mm) 559mm(719mm)M24 Q235B(Q345B) 538mm(692mm) 620mm(840mm) 480mm(600mm) 539mm(693mm) 596mm(766mm)分析上表中的数据可以得出:《地脚螺栓(锚栓)通用图》HG/T21545-2006中的锚栓锚固长度和计算过的结果几乎完全一致。
锚栓规程
目次编辑本段简介化学锚栓是一种新型的紧固材料,由化学药剂与金属杆体组成的。
可用于各种幕墙、大理石干挂施工中的后加埋件安装,也可用于设备安装,公路、桥梁护栏安装;建筑物加固改造等场合。
由于其玻璃管内装着的化学试剂易燃易爆,所以厂家必须经过国家有关部门的批准才能生产,整个生产过程需要有严密的安全措施,并使用和工作人员完全隔离的流水线生产。
如果通过手工作业不但违反了国家的有关规定,而且非常危险。
化学锚栓是继膨胀锚栓之后出现的一种新型锚栓,是通过特制的化学粘接剂,将螺杆胶结固定于砼基材钻孔中,以实现对固定件锚固的复合件。
编辑本段分类膨胀型锚栓 expansion anchors:利用膨胀件挤压锚孔孔壁形成锚固作用的锚栓安卡锚栓:这种是国外引进的一种地脚螺栓,一般进口设备的地脚螺栓都是这种安卡锚栓,尤其是欧洲设备,在锚栓的后部有一个开口式金属套,打入地基后、扳紧罗纹,开口涨大固定.后切底锚栓:就是我们市场上很常见的带套的膨胀螺栓,不能单独固定,需要与固定物相挤压后固定,主要是它的开口套的结构限制.击芯锚栓:锚栓后部开口,中心有一根钢钉,当锚栓植入地基后,只需要敲击钢钉,钢钉下沉后将开口涨大固定.编辑本段特点产品名称:建筑锚栓产品特点:该产品经本公司设计室在原有基础上改进细节,增加了钉管与墙体之间的相克制性,而且改变了原来尼龙灯芯的外观力学性能,整体上使变的更加合理,更加成熟。
1、采用优质尼龙6,复合塑料精制而成。
2、耐侯性能和抗老化性能好,在-40℃至+70℃温度环境中长期稳定。
3、抗震动,抗风化,抗断裂,牢固持久。
4、可锤击敲入,施工方便,快捷,经济,安全。
适用范围:施工步骤:1、定位:保温板粘贴在墙体之后,确定锚固点位置。
2、钻孔:穿过已就位的保温板,按规定尺寸钻孔(注意:入墙实际孔深应在6cm以上)。
3、置入:将套管直接插于打好的钉孔至管盘与保温板靠紧。
4、敲入:将钢钉用手锤敲于钉管中(钢钉应与保温板平行为准)。
预埋件及化学锚栓计算
预埋件及化学锚栓计算 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998后置埋件及化学螺栓计算一、设计说明与本部分预埋件对应的主体结构采用混凝土强度等级为C30。
在工程中尽量采用预埋件,但当实际工程中需要采用后置埋件,需对后置埋件进行补埋计算。
本部分后置埋件由4-M12×110mm膨胀、扩孔锚栓,250×200×10mm镀锌钢板组成,形式如下:埋件示意图当前计算锚栓类型:后扩底机械锚栓;锚栓材料类型:A2-70;螺栓行数:2排;螺栓列数:2列;最外排螺栓间距:H=100mm;最外列螺栓间距:B=130mm;螺栓公称直径:12mm;锚栓底板孔径:13mm;锚栓处混凝土开孔直径:14mm;锚栓有效锚固深度:110mm;锚栓底部混凝土级别:C30;二、荷载计算V x:水平方轴剪力;V y:垂直方轴剪力;N:轴向拉力;D x:水平方轴剪力作用点到埋件距离,取100 mm;D y:垂直方轴剪力作用点到埋件距离,取200 mm;M x:绕x轴弯矩;M y :绕y 轴弯矩;T :扭矩设计值T=500000 N·mm ; V x =2000 N V y =4000 N N=6000 N M x1=300000 N·mmM x2= V y D x =4000×100=400000 N·mm M x =M x1+M x2=700000 N·mm M y = 250000 N·mmM y2= V x D y =2000×200=400000 N·mm M y =M y1+M y2=650000 N·mm 三、锚栓受拉承载力计算 (一)、单个锚栓最大拉力计算1、在轴心拉力作用下,群锚各锚栓所承受的拉力设计值:1/sd N k N n ;(依据《混凝土结构后锚固技术规程》JGJ145-2013 第5.2.1条)式中,sd N :锚栓所承受的拉力设计值; N :总拉力设计值; n :群锚锚栓个数;1k :锚栓受力不均匀系数,取。
锚栓规程
前言根据建设部建标[1998]58号文的要求,规程编制组经广泛调查研究,认真总结工程实践经验,参考有关国际标准和国外先进标准,并在广泛征求意见基础上,制定了本规程。
本规程的主要技术内容是:总则,术语和符号,材料,设计基本规定,锚固连接内力分析,承载能力极限状态计算,锚固抗震设计,构造措施,锚固施工与验收及锚固承载力现场检验方法。
本规程由建设部建筑工程标准技术归口单位中国建筑科学研究院归口管理,授权由主编单位负责具体解释。
本规程主编单位是:中国建筑科学研究院(地址:北京市北三环东路30号;邮政编码:100013)。
本规程参加单位是:中科院大连化物所,河南省建筑科学研究院,慧鱼(太仓)建筑锚栓有限公司,喜利得(中国)有限公司。
本规程主要起草人是:万墨林、韩继云、邸小坛、贺曼罗、吴金虎、王稚、萧雯。
目次1总则2术语与符号3材料3.1混凝土基材3.2锚栓3.3锚固胶4设计基本规定4.1锚栓分类及适用范围4.2锚固设计原则5锚固连接内力分析5.1一般规定5.2群锚受拉内力计算5.3群锚受剪内力计算6承载能力极限状态计算6.1受拉承载力计算6.2受剪承载力计算6.3拉剪复合受力承载力计算7锚固抗震设计8构造措施9锚固施工与验收9.1基本要求9.2锚孔9.3锚栓的安装与锚固9.4锚固质量检查与验收附录A 锚固承载力现场检验方法本规程用词用语说明条文说明1 总则1.0.1为使混凝土结构后锚固连接设计与施工做到技术先进、安全可靠、经济合理,制订本规程。
1.0.2本规程适用于被连接件以普通混凝土为基材的后锚固连接设计、施工与验收,不适用以砌体或轻混凝土为基材的锚固。
1.0.3 后锚固连接设计应考虑被连接结构的类型(结构构件与非结构构件)、锚栓受力状况(受拉、受压、受弯、受剪、及其组合)、荷载类型及锚固连接的安全等级(重要与一般)等因素的综合影响。
1.0.4后锚固连接设计、施工与验收,除满足本规程的规定外,尚应符合国家现行的有关强制性标准的规定。
化学锚栓埋件的计算(形式三)
Ac,v=1.5C1(1.5C1+C2)=
第2页
化学锚栓埋件的凝土强度等级 C25 钢角码钢材材质 Q235B 混凝土梁高度 h= 400 锚栓直径 d= 10 hef= 锚栓有效锚固深度 90 锚栓个数 n= 2 y = 锚栓1至群锚形心轴的垂直距离 40 1 ∑yi2= 3200 锚栓i至群锚形心轴的垂直距离平方和 y1'= 锚栓1至受压一侧最外排锚栓的垂直距离 80 2 锚栓i至受压一侧最外排锚栓距离平方和 ∑yi' = 6400 轴力至受压一侧最外排锚栓的垂直距离 L= 40 C1= 沿剪力方向锚栓与混凝土边缘的距离 200 C2= 沿非剪力方向锚栓与混凝土边缘的距离 200 锚栓与混凝土边缘的最小距离 C= 200 剪力与垂直于构件自由边方向轴线夹角 α = 0 剪力合力点至锚板外表面之间的距离 e= 110 a1= 钢角码宽度 150 δ = 钢角码厚度 6 轴心拉力 N= 10.00 剪力 V= 10.00 弯矩 M=Ve= 1.10 fcu,k= 25.00 混凝土立方体抗压强度标准值 NRd,s= 13.80 锚栓受拉承载力设计值 VRd,s= 12.60 锚栓受剪承载力设计值 γ Rc,V= 1.80 砼楔形体受剪破坏锚固承载力分项系数 钢角码抗拉抗压强度设计值 f= 215 fv= 钢角码抗剪强度设计值 125 三、化学锚栓的验算 取锚栓直径d= 取锚栓个数n= 1、群锚中受力最大锚栓的拉力设计值Nhsd:
mm mm mm 个 mm mm mm mm mm mm mm mm 度 mm mm mm kN kN kN.m N/mm2 kN kN N/mm2 N/mm2 10 2 mm 个
第1页
Nhsd=N/n+My1/Σ yi2= 18.75 kN Nhsd=(NL+M)y1'/Σ yi'2= 18.75 kN 因为N/n-My1/Σ yi2= -8.75 kN < 0 取Nhsd= 18.75 kN > NRd,s 锚栓强度不满足要求。 2、群锚中受力最大锚栓的剪力设计值Vhsd: 10hef= 900 mm > C 取n= 1 个 Vhsd=V/n= 10.00 kN < VRd,s 锚栓强度满足要求。 3、拉剪作用下锚栓的承载力: (Nhsd/NRd,s)2+(Vhsd/VRd,s)2= 2.48 >1 锚栓强度不满足要求。 四、砼楔形体破坏受剪承载力的验算 1、剪切荷载下锚栓的有效长度lf: 8d= 80 mm < hef 取lf= 80 mm 2、开裂混凝土,单根锚栓垂直构件边缘受剪,混凝土理想楔形体破坏时的受剪承载力标准值V0Rk,c: V0Rk,c=0.45d0.5(lf/d)0.2(fcu,k)0.5C11.5= 30.50 kN 3、边距比C2/C1对受剪承载力的降低影响系数ψ s,v: ψ s,v=0.7+0.3C2/(1.5C1)= 0.90 <1 取ψ s,v= 0.90 4、边距与构件厚度比C1/h对受剪承载力的提高影响系数ψ h,v: ψ h,v=(1.5C1/h)1/3= 0.91 <1 取ψ h,v= 1.00 5、剪力与垂直于构件自由边方向轴线之夹角α 对受剪承载力的影响系数ψ α ,v: ψ α ,v= 1.00 6、荷载偏心对群锚受剪承载力的降低影响系数ψ ec,v: ψ ec,v=1/(1+2e/3C1)= 0.73 <1 取ψ ec,v= 0.73 7、未裂混凝土及锚固区配筋对受剪承载力的提高影响系数ψ ucr,v: ψ ucr,v= 1.20 8、单锚受剪,混凝土破坏楔形体在侧向的投影面面积A0c,v: A0c,v=4.5C12= 180000 mm2 9、群锚受剪,混凝土破坏楔形体在侧向的投影面面积Ac,v: 150000 mm2 10、群锚垂直构件边缘受剪,混凝土楔形体破坏时的受剪承载能力标准值VRk,c: VRk,c=V0Rk,c(Ac,v/A0c,v)ψ s,vψ h,vψ α ,vψ ec,vψ ucr,v= 20.09 kN 11、群锚垂直构件边缘受剪,混凝土楔形体破坏时的受剪承载能力设计值VRd,c: VRd,c=VRk,c/γ Rc,V= 11.16 kN > V 砼楔形体破坏受剪承载力满足要求。 五、钢角码厚度的验算 取钢角码厚度δ = 6 mm σ =(N/a1δ +6M/1.05a12δ )/2= 28.84 N/mm2 < f 钢角码正应力满足要求。 τ =1.5V/2a1δ = 8.33 N/mm2 < fv 钢角码剪应力满足要求。
混凝土结构连接化学螺栓锚栓计算表
ψv
ψS,V
ψh,V
ψa,V ψe,V
ψu,VC2ຫໍສະໝຸດ C1ev0.84840772 0.8333333 1
1 0.981729 1.4
120
180
5
3、基材 混凝土受 剪承载力 设计值
基材混凝土 受剪承载力 设计值 (N)
基材混凝土受 剪承载力修正 系数
锚栓外径 0.3次方 (㎜)
混凝土立方 体抗压强度 标准值 (MPa)
18080.1404 0.95 1.206525 25
120
5
1314.5
(二)受 剪破坏
1、混凝 土呈半锥 体破坏侧 向投影面 积基准值 与实际较 小面积的 比值;
考虑边距中距 对承载力影响 系数
受剪破坏侧向 投影面积基准
值
剪力对应方 向边距 (㎜)
混凝土破坏 侧向实际投
影面积
剪力对应方 向侧面边距
(㎜)
锚栓的间距 (㎜)
混凝土厚度 (㎜)
锚栓的有效 深度(㎜)
(Ac,V)/(A○ c,V)
(A○ c,V)
C1 (Ac,V) C2 S1、S2
h
hef
0.74074074 145800 180
108000 120
160
270
120
2、基材 混凝土受 剪承载力 修正系数
基材混凝土受 剪承载力修正 系数
考虑各项因 边距深度 素基材受拉 等影响系 修正系数 数
ψN
ψS,N
1.20652508 0.8
偏心群锚 影响力系 数
拉力对受
考虑边距中 距对承载力 影响系数
拉锚栓形 心的偏心
距(㎜)
影响范围 最小间距 (㎜)
扩孔锚栓计算5.27
第七章后置埋件计算一、设计说明与本部分预埋件对应的主体结构采用混凝土强度等级为C30。
在工程中尽量采用预埋件,但当实际工程中需要采用后置埋件,需对后置埋件进行补埋计算。
本部分后置埋件由4-M12×110mm膨胀、扩孔锚栓,250×200×10mm镀锌钢板组成,形式如下:埋件示意图当前计算锚栓类型:后扩底机械锚栓;锚栓材料类型:A2-70;螺栓行数:2排;螺栓列数:2列;最外排螺栓间距:H=100mm;最外列螺栓间距:B=130mm;螺栓公称直径:12mm;锚栓底板孔径:13mm;锚栓处混凝土开孔直径:14mm;锚栓有效锚固深度:110mm;锚栓底部混凝土级别:C30;二、荷载计算V x :水平方轴剪力; V y :垂直方轴剪力; N :轴向拉力;D x :水平方轴剪力作用点到埋件距离,取100 mm ; D y :垂直方轴剪力作用点到埋件距离,取200 mm ; M x :绕x 轴弯矩; M y :绕y 轴弯矩;T :扭矩设计值T=500000 N·mm ; V x =2000 N V y =4000 N N=6000 N M x1=300000 N·mmM x2= V y D x =4000×100=400000 N·mm M x =M x1+M x2=700000 N·mm M y = 250000 N·mmM y2= V x D y =2000×200=400000 N·mm M y =M y1+M y2=650000 N·mm三、锚栓受拉承载力计算 (一)、单个锚栓最大拉力计算1、在轴心拉力作用下,群锚各锚栓所承受的拉力设计值:1/sd N k N n ;(依据《混凝土结构后锚固技术规程》JGJ145-2013 第5.2.1条)式中,sd N :锚栓所承受的拉力设计值; N :总拉力设计值; n :群锚锚栓个数;1k :锚栓受力不均匀系数,取1.1。
锚栓规程
目次1总则2术语与符号3材料3.1混凝土基材3.2锚栓3.3锚固胶4设计基本规定4.1锚栓分类及适用范围4.2锚固设计原则5锚固连接内力分析5.1一般规定5.2群锚受拉内力计算5.3群锚受剪内力计算6承载能力极限状态计算6.1受拉承载力计算6.2受剪承载力计算6.3拉剪复合受力承载力计算7锚固抗震设计8构造措施9锚固施工与验收9.1基本要求9.2锚孔9.3锚栓的安装与锚固9.4锚固质量检查与验收附录A 锚固承载力现场检验方法本规程用词用语说明条文说明1 总则1.0.1为使混凝土结构后锚固连接设计与施工做到技术先进、安全可靠、经济合理,制订本规程。
1.0.2本规程适用于被连接件以普通混凝土为基材的后锚固连接设计、施工与验收,不适用以砌体或轻混凝土为基材的锚固。
1.0.3 后锚固连接设计应考虑被连接结构的类型(结构构件与非结构构件)、锚栓受力状况(受拉、受压、受弯、受剪、及其组合)、荷载类型及锚固连接的安全等级(重要与一般)等因素的综合影响。
1.0.4后锚固连接设计、施工与验收,除满足本规程的规定外,尚应符合国家现行有关标准、规范的规定。
2 术语和符号2.1 术语2.1.1 后锚固Post-installed fastenings通过相关技术手段在既有混凝土结构上的锚固。
2.1.2锚栓Anchor将被连接件锚固到混凝土基材上的锚固组件。
2.1.3膨胀型锚栓Expansion anchors利用膨胀件挤压锚孔孔壁形成锚固作用的锚栓(图2.1.3-1,图2.1.3-2)。
2.1.4扩孔型锚栓Undercut anchors通过锚孔底部扩孔与锚栓膨胀件之间的锁键形成锚固作用的锚栓(图2.1.4)。
2.1.5粘结型锚栓Bonded anchors通过粘结剂在锚孔中固化形成锚固作用的锚栓,包括螺杆及内螺纹管等(图2.1.5)。
2.1.6化学植筋Bonded rebars以化学粘结剂—锚固胶,将带肋钢筋胶结固定于混凝土基材锚孔中的一种后锚固生根钢筋(图2.1.6)。
锚栓规程
目次1总则2术语与符号3材料3.1混凝土基材3.2锚栓3.3锚固胶4设计基本规定4.1锚栓分类及适用范围4.2锚固设计原则5锚固连接内力分析5.1一般规定5.2群锚受拉内力计算5.3群锚受剪内力计算6承载能力极限状态计算6.1受拉承载力计算6.2受剪承载力计算6.3拉剪复合受力承载力计算7锚固抗震设计8构造措施9锚固施工与验收9.1基本要求9.2锚孔9.3锚栓的安装与锚固9.4锚固质量检查与验收附录A 锚固承载力现场检验方法本规程用词用语说明条文说明1 总则1.0.1为使混凝土结构后锚固连接设计与施工做到技术先进、安全可靠、经济合理,制订本规程。
1.0.2本规程适用于被连接件以普通混凝土为基材的后锚固连接设计、施工与验收,不适用以砌体或轻混凝土为基材的锚固。
1.0.3 后锚固连接设计应考虑被连接结构的类型(结构构件与非结构构件)、锚栓受力状况(受拉、受压、受弯、受剪、及其组合)、荷载类型及锚固连接的安全等级(重要与一般)等因素的综合影响。
1.0.4后锚固连接设计、施工与验收,除满足本规程的规定外,尚应符合国家现行有关标准、规范的规定。
2 术语和符号2.1 术语2.1.1 后锚固Post-installed fastenings通过相关技术手段在既有混凝土结构上的锚固。
2.1.2锚栓Anchor将被连接件锚固到混凝土基材上的锚固组件。
2.1.3膨胀型锚栓Expansion anchors利用膨胀件挤压锚孔孔壁形成锚固作用的锚栓(图2.1.3-1,图2.1.3-2)。
2.1.4扩孔型锚栓Undercut anchors通过锚孔底部扩孔与锚栓膨胀件之间的锁键形成锚固作用的锚栓(图2.1.4)。
2.1.5粘结型锚栓Bonded anchors通过粘结剂在锚孔中固化形成锚固作用的锚栓,包括螺杆及内螺纹管等(图2.1.5)。
2.1.6化学植筋Bonded rebars以化学粘结剂—锚固胶,将带肋钢筋胶结固定于混凝土基材锚孔中的一种后锚固生根钢筋(图2.1.6)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第七章后置埋件计算一、设计说明与本部分预埋件对应的主体结构采用混凝土强度等级为C30。
在工程中尽量采用预埋件,但当实际工程中需要采用后置埋件,需对后置埋件进行补埋计算。
本部分后置埋件由4-M12×110mm膨胀、扩孔锚栓,250×200×10mm镀锌钢板组成,形式如下:埋件示意图当前计算锚栓类型:后扩底机械锚栓;锚栓材料类型:A2-70;螺栓行数:2排;螺栓列数:2列;最外排螺栓间距:H=100mm;最外列螺栓间距:B=130mm;螺栓公称直径:12mm;锚栓底板孔径:13mm;锚栓处混凝土开孔直径:14mm;锚栓有效锚固深度:110mm;锚栓底部混凝土级别:C30;二、荷载计算V x :水平方轴剪力; V y :垂直方轴剪力; N :轴向拉力;D x :水平方轴剪力作用点到埋件距离,取100 mm ; D y :垂直方轴剪力作用点到埋件距离,取200 mm ; M x :绕x 轴弯矩; M y :绕y 轴弯矩;T :扭矩设计值T=500000 N·mm ; V x =2000 N V y =4000 N N=6000 N M x1=300000 N·mmM x2= V y D x =4000×100=400000 N·mm M x =M x1+M x2=700000 N·mm M y = 250000 N·mmM y2= V x D y =2000×200=400000 N·mm M y =M y1+M y2=650000 N·mm三、锚栓受拉承载力计算 (一)、单个锚栓最大拉力计算1、在轴心拉力作用下,群锚各锚栓所承受的拉力设计值:1/sd N k N n ;(依据《混凝土结构后锚固技术规程》JGJ145-2013 第5.2.1条)式中,sd N :锚栓所承受的拉力设计值; N :总拉力设计值; n :群锚锚栓个数;1k :锚栓受力不均匀系数,取1.1。
1/ 1.16000/41650sd N k N n N ==⨯=2、在拉力和绕y 轴弯矩共同作用下,锚栓群有两种可能的受力形式,具体如下所示;(依据《混凝土结构后锚固技术规程》JGJ145-2013 第5.2.2条)假定锚栓群绕自身的中心进行转动,经过分析得到锚栓群形心坐标为(125,100),各锚栓到锚栓形心点的x 向距离平方之和为:∑x 2=4×652=16900 mm 2;x 坐标最高的锚栓为4号锚栓,该点的x 坐标为190,该点到形心点的x 轴距离为:x 1= 190-125=65mm ;x 坐标最低的锚栓为1号锚栓,该点的x 坐标为60,该点到形心点的x 轴距离为:x 2= 60-125=-65mm ;锚栓群的最大和最小受力分别为:2min 2600065000065-1000 N 416900y M x N N n x ⨯=+=-=∑ 1max 26000650000654000 N 416900y M x N N n x ⨯=+=+=∑由于N min <0,说明连接下部受压,在弯矩作用下构件绕最左排锚栓转动,此时,分析计算得到各锚栓到左排锚栓的x 轴距离平方之和为:∑x d 2=33800 mm 2;最右锚栓点到最左锚栓点的x 轴距离为:x d =190-60=130 mm ; L y :轴力N 作用点至受压一侧最外棑锚栓的垂直距离,取65 mm ; 那么,锚栓所受最大拉力实际为:min 2130()(650000600065)4000 N 33800d y y d x N M NL x =+=+⨯⨯=∑ 综上,锚栓群在拉力和垂直弯矩共同作用下,锚栓的最大拉力设计值为4000 N 。
3、在拉力和绕x 轴弯矩共同作用下,锚栓群有两种可能的受力形式,具体如下所示;(依据《混凝土结构后锚固技术规程》JGJ145-2013 第5.2.2条)假定锚栓群绕自身的中心进行转动,各锚栓到锚栓形心点的y 向距离平方之和为:∑y 2=4×502=10000 mm 2;y 坐标最高的锚栓为4号锚栓,该点的y 坐标为150,该点到形心点的y 轴距离为:y 1= 150-100 = 50mm ;y 坐标最低的锚栓为1号锚栓,该点的y 坐标为50,该点到形心点的y 轴距离为:y 2= 50-100 = -50mm ;锚栓群的最大和最小受力分别为:2min 26000700000502000 N 410000x h M y N N n y ⨯=-=-=-∑ 1min 26000700000505000 N 410000x M y N N n y ⨯=+=+=∑ 由于N hmin <0,说明连接下部受压,在弯矩作用下构件绕最下排锚栓转动,此时,分析计算得到各锚栓到下排锚栓的y 轴距离平方之和为:∑y d 2=20000;最上锚栓点到最下锚栓点的y 轴距离为:y d = 150-50 = 100mm ; L x :轴力N 作用点至受压一侧最外棑锚栓的垂直距离,取50mm ; 因此,锚栓所受最大拉力实际为:min 2100()(700000600050)5000 N 20000d h x x d y N M NL y =+=+⨯⨯=∑ 综上,锚栓群在拉力和水平弯矩共同作用下,锚栓的最大拉力设计值为5000 N 。
(二)、锚栓受拉区总拉力计算计算依据:g sdsi N N =∑,//1/h si d i N N y y =;(依据《混凝土结构后锚固技术规程》JGJ145-2013 第5.2.3条)式中,gsd N :锚栓受拉区总拉力设计值;si N :锚栓中受拉锚栓i 的拉力设计值;hsd N :锚栓中最大锚栓的拉力设计值;/1y :锚栓1至受压一侧最外排锚栓的垂直距离;/i y :锚栓i 至受压一侧最外排锚栓的垂直距离。
g sd si N N =∑,//1/h si d i N N y y =四、混凝土锥体受拉承载力计算计算依据:,,,/Rd c Rk c Rc N N N γ=,,0,,,,,0,c N Rk c Rk cs N re N ec N c NA N N A ψψψ=;(依据《混凝土结构后锚固技术规程》JGJ145-2013 第6.1.3条)对于开裂混凝土:,0 1.5Rd c ef N =;对于不开裂混凝土:,0 1.5Rd cefN = 式中,Rk,c N :混凝土锥体破坏受拉承载力标准值;0Rk,c N :单根锚栓受拉时,混凝土理想锥体破坏受拉承载力标准值;Rc,N γ:混凝土锥体破坏受拉承载力分项系数,根据《混凝土结构后锚固技术规程》JGJ145-2013 第4.3.10条,取3.0;cu,k f :混凝土立方体抗压强度标准值。
当cu,k f 不小于45 N/mm 2且不大于60N/mm 2时,应乘以降低系数0.95;ef h :锚栓有效锚固深度。
对于膨胀型螺栓及扩底型锚栓,为膨胀锥体与孔壁最大挤压点的深度;0c,N A :根锚栓受拉且无间距、边距影响时,混凝土理想锥体破坏投影面面积;c,N A :单根锚栓或群锚受拉时,混凝土实际锥体破坏投影面面积;s,N ψ:边距c 对受拉承载力的影响系数;re,N ψ:表层混凝土因密集配筋的剥离作用对受拉承载力的影响系数; ec,N ψ:荷载偏心e N 对受拉承载力的影响系数。
另外,根据《混凝土结构后锚固技术规程》JGJ145-2013 第6.1.9条规定:群栓有三个及以上边缘且锚栓的最大边距max c 不大于,cr N c (见下图),计算混凝土锥体受拉破坏的受拉承载力设计值,Rd c N 时,应取/ef h 代替ef h 、/,cr N s 代替,cr N s 、/,cr N c 代替,cr N c 用于计算0Rk,c N 、0c,N A 、c,N A 、s,N ψ及ec,N ψ。
/max max ,,max()ef ef ef cr N cr Nc sh h h c s =, //,,efcr Ncr N efh ss h =//,,0.5cr N cr N c s =1、0c,N A 计算过程:(依据《混凝土结构后锚固技术规程》JGJ145-2013 第6.1.4条)计算公式:02c,N cr,N A s =式中,2cr,N s :混凝土锥体破坏且无间距效应和边缘效应情况下,每根锚栓达到受拉承载力标准值的临界间距,应取为ef 3h 。
2、c,N A 计算过程:(依据《混凝土结构后锚固技术规程》JGJ145-2013 第6.1.5条) (1)、单根锚栓,靠近构件边缘布置,且c 1不大于cr,N c 时(下左图):计算公式:c,N 1cr,N ,(0.5)cr N A c s s =+(2)、双栓,垂直于构件边缘布置,且c 1不大于cr,N c ,s 1不大于cr,N s 时(上右图):计算公式:c,N 11cr,N ,(0.5)cr N A c s s s =++(3)、双栓,平行于构件边缘布置,且c 2不大于cr,N c ,s 1不大于cr,N s 时(下左图):计算公式:c,N 2cr,N 1,(0.5)()cr N A c s s s =++(4)、四栓,位于构件角部,且c 1不大于cr,N c ,c 2不大于cr,N c ,s 1不大于cr,N s ,s 2不大于cr,N s 时(下右图)计算公式:c,N 11cr,N 22cr,N (0.5)(0.5)A c s s c s s =++++ 式中,c 1:方向1的边距;c 2:方向2的边距; s 1:方向1的间距; s 2:方向2的间距;cr,N c :混凝土椎体破坏且无间距效应及边缘效应情况下,每根锚栓达到受拉承载力标准值的临界边距,应取为ef 1.5h 。
3、s,N ψ计算过程:(依据《混凝土结构后锚固技术规程》JGJ145-2013 第6.1.6条)计算公式:s,N cr,N0.70.3c c ψ=+式中,c :边距,有多个边距时应取最小值。
4、re,N ψ计算过程:(依据《混凝土结构后锚固技术规程》JGJ145-2013 第6.1.7条)计算公式:re,N 0.5200ef h ψ=+另外,当re,N ψ的计算值大于1.0时,应取1.0;当锚固区钢筋间距s 不小于150mm 时,或钢筋直径d 不大于10mm 且s 不小于100mm 时,re,N ψ应取1.0。
5、ec,N ψ计算过程:(依据《混凝土结构后锚固技术规程》JGJ145-2013 第6.1.8条)ec,N N cr,N112/e s ψ=+式中,N e :受拉锚栓合力点相对于群锚受拉锚栓重心的偏心距。