2019-2020年高三学业水平测试模拟数学试题 含答案
2019--2020学年度高三模拟考试试卷文科数学含参考答案(三)
F1
F2F1
x0, y0
)
A. 2 B. 4
C. 1
D. 1
第Ⅱ卷(非选择题,共 90 分) 二、填空题:本题共 4 小题,每小题 5 分,共 20 分。
13. 已知 { an } 为等比数列, Sn 是其前 n 项和, S3 2 , S6 4 ,则 S9 ___________。
14. 一个三棱锥的三视图是三个直 角三角形, 如图所示, 则该三棱锥的外接球的表面积为 _________。
p? q 为真命题且 q? p 为假命题,则命题 p 是命题 q 的
充分不必要条件; ②若 p? q 为假命题且 q? p 为真命题, 则命题 p 是命题 q 的必要不充分条件; ③若 p? q
为真命题且 q? p 为真命题,则命题 p 是命题 q 的充要条件;④若 p? q 为假命题且 q? p 为假命题,则命
1)上单调递减, (﹣ 1, +∞)上递增,不符
合题意,
对于 B, f ( x)
1 ,设 t = 1﹣ x,则 y= 1 ,设(﹣∞, 0)上, t = 1﹣ x 为减函数, y= 1 为减
1x
t
t
函数,则 f ( x)在(﹣∞, 0)上单调递增,不符合题意;
对于 C, f (x) 2x ,在(﹣∞, 0)上单调递减,符合题意;
2 ) 在函数 y
2 x 的图象上,则 a 的值为(
)
2
A. 1 2
1
B.
2
C. 3 2
D. 3 2
4. “直线( m﹣2) x+( m+2) y﹣3= 0 与直线( m+2) x+3my+1= 0 相互垂直”是“ m
2019-2020年高三第三次模拟考试数学试题含答案(I).doc
2019-2020年高三第三次模拟考试数学试题含答案(I)一、填空题:本大题共14小题,每小题5分,计70分。
不需写出解题过程,请把答案写在答题纸的指定位置上。
1、若122,34z a i z i =+=-,且12z z 为纯虚数,则实数a = . 解析:122(2)(34)(38)(46)34(34)(34)25z a i a i i a a iz i i i +++-++===--+为纯虚数,故得83a =. 2、设集合{}{}2120,lg(2)A x x xB x y x =+-<==- ,则=⋂B A .(2,3) 3、某市高三数学抽样考试中,对90分及其以上的成绩情况进行统计,其频率 分布直方图如右下图所示,若(130,140] 分数段的人数为90人,则(90,100]分数 段的人数为 .解析:根据直方图,组距为10,在(130,140]内的0.005=频率组距,所以频率为0.05,因为此区间上的频数为90,所以这次抽考的总人数为1800人.因为(90,100]内的0.045=频率组距,所以频率为0.45,设该区间的 人数为x ,则由0.451800x=,得810x =,即(90,100]分数段的人数 为810.4、已知在平面直角坐标系中,不等式组⎪⎩⎪⎨⎧≤≥+-≥+a x y x y x 040表示的平面区域面积是9,则常数a 的值为_________.15、已知一颗骰子的两面刻有数字1,两面刻有数字2,另两面刻有数字3, 现将骰子连续抛掷3次,则三次的点数和为3的倍数的概率为______.136、已知某算法的流程图如右图所示,则输出的最后一个数组为_________.()81,8-7、设等比数列{}n a 的公比为q ,前n 项和为n S.则“||q =627S S =”的(充分而不必要条件、必要而不充分条件、充分必要条件或既不充分也不必要条件) 充分而不必要条件8、如图所示的“双塔”形立体建筑,已知P ABD -和Q CBD -是两个高相等的正三棱锥, 四点,,,A B C D 在同一平面内.要使塔尖,P Q 之间的距离为分数PQDN MED CB A50m ,则底边AB 的长为 m .【解析】由正三棱锥的概念知,顶点,P Q 在底面的射影分别是 正三角形ABD 和正三角形BCD 的中心,因为高相等,所以塔尖,P Q 之间的距离即为两个正三角形中心间的距离, 由平面几何易知,底边AB的长为9、若椭圆22221(0)x y a b a b +=>>的左、右焦点分别为1F 、2F ,线段12F F 被抛物线22y bx =的焦点分成53:两段,则此椭圆的离心率为 . 解析:根据题意,可得2223()5()22bb c c a b c ⎧+=-⎪⎨⎪=+⎩,解得c e a ==. 10、若实数x 、y 满足114422xyx y +++=+,则22x y S =+的最大值是 ▲ .411. 已知直线x =a (0<a <π2)与函数f (x )=sin x 和函数g (x )=cos x 的图象分别交于M ,N 两点,若MN =15,则线段MN 的中点纵坐标为 ▲ .710 12、设)(x f 是定义在R 上的奇函数,且当0≥x 时,x x f =)(,若对任意的]2,[+∈a a x 不等式)(3)(x f a x f ≥+恒成立,则a 的最大值为 ▲ -413.如图,两射线,AM AN 互相垂直,在射线AN 上取一点B 使AB 的长为定值2a ,在射线AN 的左侧以AB 为斜边作一等腰直角三角形ABC .在射线,AM AN 上各有一个动点,D E 满足A D E ∆与ABC ∆的面积之比为3:2,则C D E D ⋅的取值范围为________________.)25,a ⎡+∞⎣14.已知定义在R 上的函数()f x 和()g x 满足''()0,()()()()g x f x g x f x g x ≠⋅<⋅,()()x f x a g x =⋅,(1)(1)5(1)(1)2f f g g -+=-.令()()n f n a g n =,则使数列{}n a 的前n 项和n S 超过15/16的最小自然数n 的值为 .5解题探究:本题主要考查函数与导数以及等比数列的定义、通项公式与前n 项和公式等基础知识,考查运算能力以及灵活地运用所学知识分析问题、解决问题的能力.求解本题,关键在于根据题设条件求出a 的值,从而得到数列{}n a 的通项公式. 解析:∵()()x f x a g x =⋅,且()0g x ≠,∴()()xf x ag x =,从而有(1)(1)15(1)(1)2f f ag g a -+=+=-, 又''2()()()()()0()x f x g x f x g x a g x -=<,知()()xf x ag x =为减函数,于是得12a =,1()2n n a =,由于2341234111115()()()222216a a a a +++=+++=,故得使数列{}n a 的前n 项和n S 超过1516的最小自然数5n =. 二、解答题:本大题共6小题,共90分.请在答题卡指定区域内........作答,解答时应写出文字说明、证明过程或演算步骤. 15.(本小题满分14分) 已知锐角ABC ∆中的三个内角分别为,,A B C . ⑴设BC CA CA AB ⋅=⋅,求证ABC ∆是等腰三角形;⑵设向量(2sin ,s C =,2(cos2,2cos 1)2C t C =-,且s ∥t ,若12sin 13A =, 求sin()3B π-的值.16.(本小题满分14分)在直三棱柱111C B A ABC -中,AC=4,CB=2,AA 1=2,60=∠ACB ,E 、F 分别是BC C A ,11 的中点.(1)证明:平面⊥AEB 平面C C BB 11; (2)证明://1F C 平面ABE ;(3)设P 是BE 的中点,求三棱锥F C B P 11-的体积.16.(1)证明:在中ABC ∆,∵AC =2BC =4,060=∠ACB∴32=AB ,∴222AC BC AB =+,∴BC AB ⊥由已知1BB AB ⊥, ∴C C BB AB 11面⊥又∵C C BB ABE ABE AB 11面,故面⊥⊂ …………5分 (2)证明:取AC 的中点M ,连结FM M C ,1在AB FM ABC //中,∆,而FM ABE ⊄平面,∴直线FM //平面ABE在矩形11A ACC 中,E 、M 都是中点,∴AE M C //1 而1C M ABE ⊄平面,∴直线ABE M C 面//1 又∵M FM M C =⋂1 ∴1//FMC ABE 面面 故AEB F C 面//1 …………………………10分(或解:取AB 的中点G ,连结FG ,EG ,证明1//C F EG ,从而得证)(3)取11B C 的中点H ,连结EH ,则//EH AB且12EH AB ==由(1)C C BB AB 11面⊥,∴11EH BB C C ⊥面, ∵P 是BE 的中点,∴111111111223P B C F E B C F B C F V V S EH --∆==⨯⋅分ABCE F P1A 1B 1C HGB17. (本题满分14分)如图,有一块边长为1(百米)的正方形区域ABCD ,在点A 处有一个可转动的探照灯,其照射角PAQ ∠始终为45(其中点P 、Q 分别在边BC 、CD 上),设,tan PAB t θθ∠==,探照灯照射在正方形ABCD 内部区域的面积S (平方百米)。
2019-2020年高三三模试卷数学试题(理)含答案
2019-2020年高三三模试卷数学试题(理)含答案一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.若复数z 满足34iz i z =+=,则A.1B.2 D.52.已知集合{}{}1012312A B x x =-=-<,,,,,,则R A C B ⋂= A.{}012,, B.{}13-, C.{}12, D.{}103-,, 3.若向量,a b 满足()26a b a b b ==+⋅=,且,则向量a b 与的夹角为A.30°B.45°C.60°D.90°4.已知命题()sin cos p R απαα∃∈-=:,;命题:0q m >是双曲线22221x y m m -=的离心率为.则下面结论正确的是A.()p q ∧⌝是真命题B.()p q ⌝∨是真命题C.p q ∧是假命题D.p q ∨是假命题5.下列函数中既是奇函数,又在区间(0,+∞)上单调递减的函数是 A.11221x y =++ B.11221x y =-+ C.11221x y =+- D.11221x y =-- 6.函数()()sin ln 2x f x x =+的图象可能是7.以下四个命题中:①从匀速传递的产品流水线上,质检员每10分钟从中抽取一件产品进行某项指标检测,这样的抽样是分层抽样;②两个随机变量的线性相关性越强,相关系数的绝对值越接近于1;③若数据123,,x x x ,…,n x 的方差为1,则1232,2,2,,2n x x x x ⋅⋅⋅的方差为2;④对分类变量X 与Y 的随机变量2k 的观测值k 来说,k 越小,判断“X 与Y 有关系”的把握程度越大.其中真命题的个数为A.1B.2C.3D.48.一个空间几何体的三视图如图,则该几何体的体积为A.B.C.3D.39.设点(),a b 是区域240,0,0.x y x y +-≤⎧⎪>⎨⎪>⎩内的随机点,函数()241f x ax bx =-+在区间[)1,+∞上是增函数的概率为 A.12 B.13 C.14 D.1510.设函数()f x 的定义域为D ,若存在非零实数t 使得对于任意()()()x M M D x t D f x t f x ∈⊆+∈+≥,有,且,则称()f x 为M 上的“t 高调函数”. 如果定义域为R 的函数()f x 是奇函数,当()()220,x f x x a a f x ≥=--时,且为R 上的“t 高调函数”,那么实数a 的取值范围是A.22⎡-⎢⎣⎦B.[]1,1-C.1,2⎡-⎢⎣⎦D.2⎡⎤-⎢⎥⎣⎦第II 卷(共100分)二、填空题:本大题共5小题,每小题5分,共25分.把正确答案填写在答题卡给定的横线上.11.某校组织数学竞赛,学生成绩()()()2100,,120,80100N P a P b ξσξξ-≥=<≤=, a b +=则_____________.12.执行如图所示的程序框图,若输入n 的值为12,则输出的S 的值为_________.13.在222sin cos 3cos sin ,ABC a c b A C A C b ∆-===中,已知,且则____.14.若()()201422014012201421x a a x a x a x x R -=+++⋅⋅⋅+∈,则23201423201411112222a a a a a a ++⋅⋅⋅+=___________. 15.已知12,F F 分别是椭圆C 的左右焦点,A 是椭圆C 短轴的一个顶点,B 是直线2AF 与椭圆C 的另一个交点,若12160F AF B ∠=∆,AF的面积为C 的方程为________.三、解答题:本大题共6小题,共75分,解答应写出文字说明,证明过程或演算步骤.16.(本小题满分12分)已知函数()2sin cos sin sin ,44f x x x x x x x R ππ⎛⎫⎛⎫=+++-∈ ⎪ ⎪⎝⎭⎝⎭. (I )求()f x 的最小正周期和单调增区间;(II )若()0002x x x f x π⎛⎫=≤≤ ⎪⎝⎭为的一个零点,求0cos 2x 的值.17. (本小题满分12分)某高校自主招生考试中,所有去面试的考生全部参加了“语言表达能力”和“竞争与团队意识”两个科目的测试,成绩分别为A 、B 、C 、D 、E 五个等级,某考场考生的两科测试成绩数据统计如图,其中“语言表达能力”成绩等级为B 的考生有10人.(I )求该考场考生中“竞争与团队意识”科目成绩等级为A 的人数;(II )已知等级A 、B 、C 、D 、E 分别对应5分,4分,3分,2分,1分.(i )求该考场学生“语言表达能力”科目的平均分(ii )求该考场共有10人得分大于7分,其中有2人10分,2人9分,6人8分,从这10人中随机抽取2人,求2人成绩之和的分布列和数学期望.18. (本小题满分12分)已知数列{}n a 是公差不为零的等差数列,12482,,a a a a =,且成等比数列.(I )求数列{}n a 的通项;(II )设(){}1n n n b a --是等比数列,且257,71b b ==,求数列{}n b 的前n 项和n T .19. (本小题满分12分)在如图所示的几何体中,ABC ∆是边长为2的正三角形,BCD ∆为等腰直角三角形,且,2,BD CD AE AE ==⊥平面ABC ,平面BCD ⊥平面ABC.(I )求证:AC//平面BDE ;(II )求钝二面角C-DE-B 的余弦值.20. (本小题满分13分)设函数()2ln 2,f x x x ax a R =+-∈. (I )若函数()f x 在定义域内为增函数,求实数a 的取值范围;(II )设()()()()2102F x f x a F m F n =+==,若(其中0m n <<),且02m n x +=, 问:函数()()()00,F x x F x 在处的切线能否平行于x 轴?若能,求出该切线方程;若不能,请说明理由.21. (本小题满分14分)在直角坐标系xoy 中,曲线1C 的点均在圆()222:59C x y +-=外,且对1C 上任意一点M ,M 到直线2y =-的距离等于该点与圆2C 上点的距离的最小值.(I )求曲线1C 的方程;(II )设P 为直线4y =-上的一点,过P 作圆2C 的两条切线,分别与曲线1C 相交于点A ,B 和C ,D ,证明:四点A ,B ,C ,D 的横坐标之积为定值.。
2019-2020年高中数学学业水平考试模拟测试卷5套打包下载含解析答案
高中学业水平考试模拟测试卷(一)(时间:90分钟满分100分)一、选择题(共15小题,每小题4分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知集合M={1,2,3,4},集合N={1,3,5},则M∩N 等于()A.{2}B.{2,3}C.{1,3} D.{1,2,3,4,5}解析:M∩N={1,2,3,4}∩{1,3,5}={1,3},故选C.答案:C2.函数f(x)=ln(x-3)的定义域为()A.{x|x>-3} B.{x|x>0} C.{x|x>3} D.{x|x≥3}解析:由x-3>0得x>3,则定义域为{x|x>3}.故选C.答案:C3.下列命题中的假命题是()A.∀x∈R,2x-1>0 B.∀x∈N*,(x-1)2>0C.∃x∈R,lg x<1 D.∃x∈R,tan x=2解析:当x=1∈N*时,x-1=0,不满足(x-1)2>0,所以B为假命题.故选B.答案:B4.设i是虚数单位,若复数z=5(1+i)i,则z的共轭复数为() A.-5+5i B.-5-5i C.5-5i D.5+5i解析:由复数z =5(1+i)i =-5+5i, 得z 的共轭复数为-5-5i.故选B.答案:B5.已知平面向量a =(0,-1),b =(2,2),|λa +b |=2,则λ的值为( )A .1+ 2 B.2-1 C .2 D .1解析:λa +b =(2,2-λ),那么4+(2-λ)2=4,解得,λ=2.故选C.答案:C6.已知点A (1,2),B (3,1),则线段AB 的垂直平分线的方程是( )A .4x +2y =5B .4x -2y =5C .x +2y =5D .x -2y =5解析:线段AB 的中点为⎝ ⎛⎭⎪⎫2,32,k AB =1-23-1=-12, 所以垂直平分线的斜率k =-1k AB =2,所以线段AB 的垂直平分线的方程是y -32=2(x -2) ⇒ 4x -2y -5=0.故选B.答案:B7.如图(1)、(2)、(3)、(4)为四个几何体的三视图,根据三视图可以判断这四个几何体依次分别为( )A .三棱台、三棱柱、圆锥、圆台B .三棱台、三棱锥、圆锥、圆台C .三棱柱、正四棱锥、圆锥、圆台D .三棱柱、三棱台、圆锥、圆台 解析:(1)三视图复原的几何体是放倒的三棱柱.(2)三视图复原的几何体是四棱锥.(3)三视图复原的几何体是圆锥.(4)三视图复原的几何体是圆台.所以(1)(2)(3)(4)的顺序为:三棱柱、正四棱锥、圆锥、圆台.故选C.答案:C8.已知f (x )=x +1x-2(x >0),则f (x )有( ) A .最大值为0B .最小值为0C .最大值为-4D .最小值为-4解析:由x >0,可得1x >0, 即有f (x )=x +1x-2≥2 x ·1x -2=2-2=0, 当且仅当x =1x,即x =1时,取得最小值0. 答案:B9.要完成下列两项调查:(1)某社区有100户高收入家庭,210户中等收入家庭,90户低收入家庭,从中抽取100户调查消费购买力的某项指标;(2)从某中学高二年级的10名体育特长生中抽取3人调查学习负担情况,应采取的抽样方法是( )A .(1)用系统抽样法,(2)用简单随机抽样法B .(1)用分层抽样法,(2)用系统抽样法C .(1)用分层抽样法,(2)用简单随机抽样法D .(1)(2)都用分层抽样法解析:根据简单随机抽样及分层抽样的特点,可知(1)应用分层抽样法,(2)应用简单随机抽样法.故选C.答案:C10.在△ABC 中,A ∶B =1∶2,sin C =1,则a ∶b ∶c =( )A .1∶2∶3B .3∶2∶1C .2∶3∶1D .1∶3∶2 解析:在△ABC 中,A ∶B =1∶2,sin C =1, 可得A =30°,B =60°,C =90°.a ∶b ∶c =sin A ∶sin B ∶sin C =12∶32∶1=1∶3∶2.故选D. 答案:D11.等差数列{a n }中,a 3+a 4+a 5=12,那么{a n }的前7项和S 7=( )A .22B .24C .26D .28解析:因为等差数列{a n }中,a 3+a 4+a 5=12, 所以3a 4=a 3+a 4+a 5=12,解得a 4=4,所以S 7=7(a 1+a 7)2=7×2a 42=7a 4=28.故选D.答案:D12.抛物线y =14x 2的焦点到准线的距离是( ) A.14 B.12 C .2 D .4解析:方程化为标准方程为x 2=4y .所以2p =4,p =2.所以焦点到准线的距离为2.故选C.答案:C13.⎝ ⎛⎭⎪⎫cos π12-sin π12⎝ ⎛⎭⎪⎫cos π12+sin π12=( ) A .-32 B .-12 C.12 D.32解析:⎝ ⎛⎭⎪⎫cos π12-sin π12⎝ ⎛⎭⎪⎫cos π12+sin π12=cos 2 π12-sin 2 π12=cos π6=32.故选D. 答案:D14.已知某几何体的三视图都是边长为2的正方形,若将该几何体削成球,则球的最大表面积是( )A .16πB .8πC .4πD .2π解析:因为三视图均为边长为2的正方形,所以几何体是边长为2的正方体,将该几何体削成球,则球的最大半径为1,表面积是4π×12=4π.故选C.答案:C15.已知数列{a n }的前n 项和为S n ,且a 1=-10,a n +1=a n +3(n ∈N *),则S n 取最小值时,n 的值是( )A .3B .4C .5D .6解析:在数列{a n }中,由a n +1=a n +3,得a n +1-a n =3(n ∈N *), 所以数列{a n }是公差为3的等差数列.又a 1=-10,所以数列{a n }是公差为3的递增等差数列.由a n =a 1+(n -1)d =-10+3(n -1)=3n -13≥0,解得n ≥133. 因为n ∈N *,所以数列{a n }中从第五项开始为正值.所以当n =4时,S n 取最小值.故选B.答案:B二、填空题(共4小题,每小题4分,共16分.)16.若点(2,1)在y =a x (a >0,且a ≠1)关于y =x 对称的图象上,则a =________.解析:因为点(2,1)在y =a x (a >0,且a ≠1)关于y =x 对称的图象上, 所以点(1,2)在y =a x (a >0,且a ≠1)的图象上,所以2=a 1,解得a =2.答案:217.已知f (x )=x 2+(m +1)x +(m +1)的图象与x 轴没有公共点,则m 的取值范围是________(用区间表示).解析:依题意Δ=(m +1)2-4(m +1)=(m +1)(m -3)<0⇒-1<m <3, 故m 的取值范围用区间表示为(-1,3).答案:(-1,3)18.设f (x )=⎩⎪⎨⎪⎧lg x ,x >0,10x ,x ≤0,则f (f (-2))=________.解析:因为x =-2<0,所以f (-2)=10-2=1100>0, 所以f (10-2)=lg10-2=-2,即f (f (-2))=-2.答案:-2 19.已知4x +9y=1,且x >0,y >0,则x +y 的最小值是________. 解析:因为4x +9y =1,且x >0,y >0, 所以x +y =⎝ ⎛⎭⎪⎫4x +9y (x +y )=13+4y x +9x y ≥13+2 4y x ·9x y =25, 当且仅当4y x =9x y,即x =10且y =15时取等号. 答案:25三、解答题(共2小题,每小题12分,共24分.解答须写出文字说明,证明过程和演算步骤.)20.已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且2c ·cos B -b =2a .(1)求角C 的大小;(2)设角A 的平分线交BC 于D ,且AD =3,若b =2,求△ABC 的面积.解:(1)由已知及余弦定理得2c ×a 2+c 2-b 22ac=2a +b, 整理得a 2+b 2-c 2=-ab, 所以cos C =a 2+b 2-c 22ab =-ab 2ab =-12, 又0<C <π, 所以C =2π3,即角C 的大小为2π3. (2)由(1)知C =2π3,依题意画出图形.在△ADC 中,AC =b =2,AD =3,由正弦定理得sin ∠CDA =AC ×sin C AD =23×32=22, 又△ADC 中,C =2π3, 所以∠CDA =π4, 故∠CAD =π-2π3-π4=π12. 因为AD 是角∠CAB 的平分线, 所以∠CAB =π6, 所以△ABC 为等腰三角形,且BC =AC = 2.所以△ABC 的面积S =12BC ·AC ·sin 2π3=12×2×2×32=32. 21.已知圆C 经过A (3,2)、B (1,6)两点,且圆心在直线y =2x 上.(1)求圆C 的方程;(2)若直线l 经过点P (-1,3)且与圆C 相切,求直线l 的方程. 解:(1)方法1:设圆C 的方程为(x -a )2+(y -b )2=r 2(r >0), 依题意得,⎩⎪⎨⎪⎧(3-a )2+(2-b )2=r 2,(1-a )2+(6-b )2=r 2,b =2a ,解得a =2,b =4,r 2=5.所以圆C 的方程为(x -2)2+(y -4)2=5. 方法2:因为A (3,2)、B (1,6),所以线段AB 中点D 的坐标为(2,4), 直线AB 的斜率k AB =6-21-3=-2,因此直线AB 的垂直平分线l '的方程是y -4=12(x -2),即x -2y +6=0. 圆心C 的坐标是方程组⎩⎨⎧x -2y +6=0,y =2x ,的解.解此方程组,得⎩⎨⎧x =2,y =4,即圆心C 的坐标为(2,4). 圆C 的半径长r =|AC |=(3-2)2+(2-4)2= 5.所以圆C 的方程为(x -2)2+(y -4)2=5.(2) 由于直线l 经过点P (-1,3),当直线l 的斜率不存在时,x =-1与圆C :(x -2)2+(y -4)2=5相离,不合题意.当直线l 的斜率存在时,可设直线l 的方程为y -3=k (x +1),即kx -y +k +3=0.因为直线l 与圆C 相切,且圆C 的圆心为(2,4),半径为5,所以有|2k -4+k +3|k 2+1= 5.解得k =2或k =-12. 所以直线l 的方程为y -3=2(x +1)或y -3=-12(x +1), 即2x -y +5=0或x +2y -5=0.高中学业水平考试模拟测试卷(二)(时间:90分钟 满分100分)一、选择题(共15小题,每小题4分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知集合M ={-1,0,1},N ={0,1,2},则M ∪N =( )A .{-1,0,1,2}B .{-1,0,1}C .{-1,0,2}D .{0,1}解析:因为集合M ={-1,0,1},N ={0,1,2}, 所以M ∪N ={-1,0,1,2}.答案:A2.“sin A =12”是“A =30°”的( ) A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件解析:因为sin 30°=12,所以“sin A =12”是“A =30°”的必要条件;150°,390°等角的正弦值也是12,故“sin A =12”不是“A =30°”的充分条件.故选B. 答案:B3.已知a =(4,2),b =(6,y ),且a ⊥b ,则y 的值为( )A .-12B .-3C .3D .12 解析:因为a =(4,2),b =(6,y ),且a ⊥b,所以a ·b =0,即4×6+2y =0, 解得y =-12.故选A. 答案:A4.若a <b <0,则下列不等式:①|a |>|b |;②1a >1b ;③a b +b a >2;④a 2<b 2中,正确的有( )A .1个B .2个C .3个D .4个解析:对于①,根据不等式的性质,可知若a <b <0,则|a |>|b |,故正确;对于②,若a <b <0,两边同除以ab ,则a ab <bab ,即1b <1a ,故正确;对于③,若a <b <0,则a b >0,b a >0,根据基本不等式即可得到a b +ba >2,故正确; 对于④,若a <b <0,则a 2>b 2,故不正确.故选C.答案:C5.已知α是第二象限角,sin α=513,则cos α=( )A .-513B .-1213C.513D.1213解析:因为α是第二象限角,sin α=513,所以cos α=- 1-⎝ ⎛⎭⎪⎫5132=-1213.故选B. 答案:B6.下列函数中,既是偶函数,又在区间(0,+∞)上单调递减的函数是( )A .y =x -2B .y =x -1C .y =x 2-2D .y =log 12x解析:因为y =x -1是奇函数,y =log 12x 不具有奇偶性,故排除B ,D ;又函数y =x 2-2在区间(0,+∞)上是单调递增函数,故排除C.故选A.答案:A7.不等式组⎩⎪⎨⎪⎧x -3y +6≥0,x -y +2<0,表示的平面区域是( )解析:由题意可知,(0,0)在x -3y +6=0的下方,满足x -3y +6≥0;(0,0)在直线x -y +2=0的下方,不满足x -y +2<0. 故选B.答案:B8.一个容量为20的样本数据,分组后,组距与频数如下,A.120B.14C.12D.710解析:根据题意,样本在(10,50]上的频数为2+3+4+5=14, 所求的频率为P =1420=710.故选D.答案:D9.cos 40°sin 80°+sin 40°sin 10°=( ) A.12B .-32C .cos 50° D.32解析:cos 40°sin 80°+sin 40°sin 10°=cos 40°cos 10°+sin 40°sin 10°=cos(40°-10°)=32.答案:D10.函数y =log 2(x 2-3x +2)的递减区间是( )A .(-∞,1)B .(2,+∞) C.⎝ ⎛⎭⎪⎫-∞,32 D.⎝ ⎛⎭⎪⎫32,+∞ 解析:由x 2-3x +2>0,得x <1或x >2,又y =log 2(x 2-3x +2)的底数是2,所以在(-∞,1)上递减.故选A.答案:A11.为了大力弘扬中华优秀传统文化,某校购进了《三国演义》《水浒传》《红楼梦》和《西游记》若干套,如果每班每学期可以随机领取两套不同的书籍,那么该校高一(1)班本学期领到《三国演义》和《水浒传》的概率为( )A.23B.12C.14D.16解析:记《三国演义》《水浒传》《红楼梦》和《西游记》为a 、b 、c 、d ,则该校高一(1)班本学期领到两套书的所有情况有ab 、ac 、ad 、bc 、bd 、 cd 共6种,符合条件的情况为ab 共1种,故概率为16,选D.答案:D12.将函数y =sin ⎝ ⎛⎭⎪⎫2x +π8的图象沿x 轴向左平移m (m >0)个单位后,得到一个奇函数的图象,则m 的最小值为( )A.7π16B.15π16C.7π8D.π16解析:y =sin ⎝⎛⎭⎪⎫2x +π8的图象向左平移m 个单位长度后得到y =sin ⎣⎢⎡⎦⎥⎤2(x +m )+π8, 因为y =sin ⎣⎢⎡⎦⎥⎤2(x +m )+π8为奇函数, 所以sin ⎝⎛⎭⎪⎫2m +π8=0. 所以2m +π8=k π,k ∈Z ,即有m =k π2-π16,k ∈Z ,所以正数m 的最小值为7π16.答案:A13.已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的离心率为3,则双曲线的渐近线方程为( )A .y =±2xB .y =±22xC .y =±12x D .y =±2x解析:由双曲线的离心率为3, 则e =ca =3,即c =3a,b =c 2-a 2=3a 2-a 2=2a ,由双曲线的渐近线方程为y =±ba x, 得其渐近线方程为y =±2x .故选D.答案:D14.函数f (x )=log 2x +x -2的零点所在的区间是( ) A .(0,1)B .(1,2)C .(2,3)D .(3,4)解析:函数f (x )=log 2x +x -2的图象在(0,+∞)上连续不断,f (1)=0+1-2<0,f (2)=1+2-2>0,故函数f (x )=log 2x +x -2的零点所在的区间是(1,2).故选B. 答案:B15.已知向量AC →,AD →和AB →在正方形网格中的位置如图所示,若AC →=λAB→+μAD →,则λ+μ=( )A .2B .-2C .3D .-3解析:以A 为原点,AD 所在直线为x 轴,与AD 垂直的直线为y 轴建立直角坐标系,那么AD →=(1,0),AB →=(1,2),AC →=(2,-2),那么⎩⎨⎧λ+μ=2,2λ=-2,解得λ=-1,μ=3,所以λ+μ=2.故选A.答案:A二、填空题(共4小题,每小题4分,共16分.)16.函数y =a x -1+1(a >0,且a ≠1)的图象恒过定点________. 解析:当x -1=0,即x =1时,y =2.所以函数y =a x -1+1(a >0,且a ≠1)的图象恒过定点(1,2).答案:(1,2)17.等差数列{a n }中,a 2=3,a 3+a 4=9,则a 1a 6=________. 解析:由等差数列的通项公式可得,a 3+a 4=2a 1+5d =9,a 1+d =3,所以a 1=2,d =1,所以a 1a 6=2×7=14.答案:1418.某学院A ,B ,C 三个专业共有1 200名学生,为了调查这些学生勤工俭学的情况,拟用分层抽样的方法抽取一个容量为120的样本.已知该学院A 专业有380名学生,B 专业有420名学生,则该学院C 专业应抽取________名学生.解析:抽样比为1∶10,而C 学院的学生有 1 200-380-420=400(名),所以按抽样比抽取40名.答案:4019.设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若b cos C +c cos B =a sin A ,则∠A 的度数为________.解析:根据正弦定理可得,sin B cos C +sin C cos B =sin 2A ⇔sin(B +C )=sin 2A ,而sin(B +C )=sin A ,所以sin A =sin 2A ,所以sin A =1,所以∠A =90°.答案:90°三、解答题(共2小题,每小题12分,共24分.解答须写出文字说明,证明过程和演算步骤.)20.已知函数f (x )=2sin ⎝⎛⎭⎪⎫2x -π6+a ,a 为常数.(1)求函数f (x )的最小正周期;(2)若x ∈⎣⎢⎡⎦⎥⎤0,π2时,f (x )的最小值为-2,求a 的值.解:(1)f (x )=2sin ⎝ ⎛⎭⎪⎫2x -π6+a . 所以f (x )的最小正周期T =2π2=π.(2)当x ∈⎣⎢⎡⎦⎥⎤0,π2时,2x -π6∈⎣⎢⎡⎦⎥⎤-π6,5π6,所以x =0时,f (x )取得最小值,即2sin ⎝ ⎛⎭⎪⎫-π6+a =-2,故a =-1.21.已知函数f (x )=1+1x -x α(α∈R),且f (3)=-53.(1)求α的值; (2)求函数f (x )的零点;(3)判断f (x )在(-∞,0)上的单调性,并给予证明. 解:(1)由f (3)=-53,得1+13-3α=-53,解得α=1.(2)由(1),得f (x )=1+1x -x .令f (x )=0,即1+1x -x =0,也就是x 2-x -1x =0,解得x =1±52.经检验,x =1±52是1+1x -x =0的根, 所以函数f (x )的零点为1±52.(3)函数f (x )=1+1x -x 在(-∞,0)上是减函数.证明如下:设x 1,x 2∈(-∞,0),且x 1<x 2,则f (x 1)-f (x 2)=⎝ ⎛⎭⎪⎫1+1x 1-x 1-⎝ ⎛⎭⎪⎫1+1x 2-x 2=(x 2-x 1)⎝ ⎛⎭⎪⎫1x 1x 2+1. 因为x 1<x 2<0,所以x 2-x 1>0,x 1x 2>0,所以f (x 1)-f (x 2)>0,即f (x 1)>f (x 2),所以f (x )=1+1x -x 在(-∞,0)上是减函数.高中学业水平考试模拟测试卷(三)(时间:90分钟 满分100分)一、选择题(共15小题,每小题4分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知集合M ={-1,0,1},N ={x |x 2=x },则M ∩N =( ) A .{1}B .{0,1}C .{-1,0}D .{-1,0,1}解析:x 2-x =0⇒x (x -1)=0⇒N ={0,1},所以M ∩N ={0,1}. 答案:B2.已知等比数列{a n }的公比为2,则a 4a 2值为( )A.14B.12C .2D .4解析:a 4a 2=q 2=4.答案:D3.已知a ⊥b ,|a |=2,|b |=3且向量3a +2b 与ka -b 互相垂直,则k 的值为( )A .-32B.32C .±32D .1解析:命题“存在x 0∈R ,x 20-1=0”的否定为“对任意的x ∈R ,x 2-1≠0”.答案:D4.直线l 过点(1,-2),且与直线2x +3y -1=0垂直,则l 的方程是( )A .2x +3y +4=0B .2x +3y -8=0C .3x -2y -7=0D .3x -2y -1=0解析:设直线l :3x -2y +c =0,因为(1,-2)在直线上,所以3-2×(-2)+c =0,解得c =-7,即直线l 的方程为3x -2y -7=0.答案:C5.已知直线的点斜式方程是y -2=-3(x -1),那么此直线的倾斜角为( )A.π6B.π3C.2π3D.5π6解析:因为k =tan α=-3, 所以α=π-π3=2π3,故选C.答案:C6.已知复数z 满足z i =2+i ,i 是虚数单位,则|z |=( ) A.2B. 3C .2D. 5解析:由题意得z =2+ii =1-2i ,所以|z |= 5. 答案:D7.要得到函数y =cos(2x +1)的图象,只要将函数y =cos 2x 的图象( )A .向左平移1个单位B .向右平移1个单位C .向左平移12个单位D .向右平移12个单位解析:y =cos 2x →y =cos(2x +1)=cos ⎣⎢⎡⎦⎥⎤2⎝⎛⎭⎪⎫x +12.故选C.答案:C8.下列说法不正确的是( )A .空间中,一组对边平行且相等的四边形一定是平行四边形B .同一平面的两条垂线一定共面C .过直线上一点可以作无数条直线与这条直线垂直,且这些直线都在同一个平面内D .过一条直线有且只有一个平面与已知平面垂直解析:A .一组对边平行且相等就决定了是平行四边形,故A 正确; B .由线面垂直的性质定理知,同一平面的两条垂线互相平行,因而共面,故B 正确; C .由线面垂直的定义知,这些直线都在同一个平面内即直线的垂面,故C 正确;D .由实际例子,如把书本打开,且把书脊垂直放在桌上,则由无数个平面满足题意,故D 不正确.故选D.9.函数f (x )=x 3-2的零点所在的区间是( ) A .(-2,0) B .(0,1)C .(1,2)D .(2,3)解析:因为f (1)=13-2=-1<0,f (2)=23-2=6>0.所以零点所在的区间为(1,2).答案:C10.已知等差数列{a n }中,a 2=2,a 4=6,则前4项的和S 4等于( ) A .8B .10C .12D .14解析:设等差数列{a n }的公差为d ,则a 4=a 2+(4-2)d ⇒d =6-22=2,a 1=a 2-d =2-2=0,所以S 4=4(a 1+a 4)2=2(0+6)=12.故选C.答案:C11.某几何体的三视图及其尺寸如图所示,则这个几何体的体积是( )A .6B .9C .18D .36解析:由题意可知,几何体是以正视图为底面的三棱柱, 其底面面积S =12×4×52-42=6,高是3,所以它的体积为V =Sh =18.故选C.12.双曲线x 2m -y 23+m =1的一个焦点为(2,0),则m 的值为( )A.12B .1或3C.1+22D.2-12解析:因为双曲线的焦点为(2,0),在x 轴上且c =2,所以m +3+m =c 2=4,所以m =12.答案:A13.设x ,y 满足约束条件⎩⎪⎨⎪⎧x +y -6≤0,x -3y +2≤0,3x -y -2≥0,则z =x -2y 的最小值为( )A .-10B .-6C .-1D .0解析:由z =x -2y 得y =12x -z2,作出不等式组对应的平面区域如图(阴影部分),平移直线y =12x -z2,由图象可知,当直线y =12x -z 2过点B 时,直线y =12x -z2的截距最大,此时z 最小,由⎩⎨⎧x +y -6=0,3x -y -2=0,解得⎩⎨⎧x =2,y =4,即B (2,4).代入目标函数z =x -2y ,得z =2-8=-6,所以目标函数z =x -2y 的最小值是-6.故选B. 答案:B14.sin 47°-sin 17°cos 30°cos 17°=( )A .-32B .-12C.12D.32解析:sin 47°-sin 17°cos 30°cos 17°=sin (30°+17°)-sin 17°cos 30°cos 17°=sin 30°cos 17°+cos 30°sin 17°-sin 17°cos 30°cos 17°=sin 30°cos 17°cos 17°=sin 30°=12.故选C.答案:C15.小李从甲地到乙地的平均速度为a ,从乙地到甲地的平均速度为b (a >b >0),他往返甲、乙两地的平均速度为v ,则( )A .v =a +b 2B .v =ab C.ab <v <a +b 2 D .b <v <ab解析:设甲地到乙地的距离为s .则他往返甲、乙两地的平均速度为v =2ss a +s b =2aba +b ,因为a >b >0,所以2aa +b>1,所以v =2aba +b >b .v =2aba +b <2ab2ab =ab .所以b <v <ab .故选D. 答案:D二、填空题(共4小题,每小题4分,共16分.)16.首项为1,公比为2的等比数列的前4项和S 4=________. 解析:S 4=1-241-2=15.答案:1517.若函数f (x )=log a (x +m )+1(a >0且a ≠1)恒过定点(2,n ),则m +n 的值为________.解析:f (x )=log a (x +m )+1过定点(2,n ),则log a (2+m )+1=n 恒成立,所以⎩⎨⎧2+m =1,1=n ,⇒⎩⎨⎧m =-1,n =1,所以m +n =0.答案:018.已知函数f (x )=⎩⎪⎨⎪⎧log 2x ,x >0,3x ,x ≤0,则f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫14的值是________.解析:f ⎝ ⎛⎭⎪⎫14=log 214=-2,f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫14=f (-2)=3-2=19.答案:1919.已知椭圆的中心在原点,焦点在x 轴上,离心率为55,且过点P (-5,4),则椭圆的方程为______________.解析:设椭圆的方程为x 2a 2+y 2b 2=1(a >b >0),将点(-5,4)代入得25a 2+16b 2=1, 又离心率e =c a =55,即e 2=c 2a 2=a 2-b 2a 2=15,所以a 2=45,b 2=36,故椭圆的方程为x 245+y 236=1.答案:x 245+y 236=1三、解答题(共2小题,每小题12分,共24分.解答须写出文字说明,证明过程和演算步骤.)20.已知圆C :(x -1)2+y 2=9内有一点P (2,2),过点P 作直线l 交圆C 于A 、B 两点.(1)当l 经过圆心C 时,求直线l 的方程; (2)当弦AB 被点P 平分时,求直线l 的方程; (3)当直线l 的倾斜角为45°时,求弦AB 的长.解:(1)已知圆C :(x -1)2+y 2=9的圆心为C (1,0),因为直线过点P 、C ,所以直线l 的斜率为2,直线l 的方程为y =2(x -1),即2x -y -2=0.(2)当弦AB 被点P 平分时,l ⊥PC ,直线l 的方程为y -2=-12(x -2),即x +2y -6=0.(3)当直线l 的倾斜角为45°时,斜率为1,直线l 的方程为y -2=x -2,即x -y =0.圆心到直线l 的距离为12,圆的半径为3,所以弦AB 的长为232-⎝ ⎛⎭⎪⎫122=34.21.已知等差数列{a n }满足a 2+a 5=8,a 6-a 3=3. (1)求数列{a n }的前n 项和S n ;(2)若b n =1S n+3·2n -2,求数列{b n }的前n 项和T n .解:(1)由a 6-a 3=3得数列{a n }的公差d =a 6-a 33=1,由a 2+a 5=8,得2a 1+5d =8,解得a 1=32,所以S n =na 1+n (n -1)2d =n (n +2)2.(2)由(1)可得1S n =2n (n +2)=1n -1n +2,所以b n =1S n +3·2n -2=1n -1n +2+3·2n -2.所以T n =b 1+b 2+b 3+…+b n =⎝ ⎛⎭⎪⎫1-13+⎝ ⎛⎭⎪⎫12-14+…+⎝ ⎛⎭⎪⎪⎫1n -1n +2+32(1+2+…+2n -1)=⎝⎛⎭⎪⎫1+12+13+…+1n -(13+14+…+1n +1n +1+1n +2)+32×2n-12-1=32-1n +1-1n +2+32×(2n -1)=3·2n -1-1n +1-1n +2.高中学业水平考试模拟测试卷(四)(时间:90分钟 满分100分)一、选择题(共15小题,每小题4分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知集合P ={1,2},Q ={2,3},全集U ={1,2,3},则∁U (P ∩Q )等于( )A .{3}B .{2,3}C .{2}D .{1,3}解析:因为全集U ={1,2,3},集合P ={1,2},Q ={2,3},所以P ∩Q ={2},所以∁U (P ∩Q )={1,3},故选D. 答案:D2.圆x 2+y 2-4x +6y +11=0的圆心和半径分别是( ) A .(2,-3); 2 B .(2,-3);2 C .(-2,3);1D .(-2,3); 2解析:圆x 2+y 2-4x +6y +11=0的标准方程为(x -2)2+(y +3)2=2,据此可知圆心坐标为(2,-3),圆的半径为2,故选A.答案:A3.已知a ⊥b ,|a |=2,|b |=3且向量3a +2b 与ka -b 互相垂直,则k 的值为( )A .-32B.32C .±32D .1解析:因为3a +2b 与ka -b 互相垂直, 所以(3a +2b )·(ka -b )=0, 所以3ka 2+(2k -3)a ·b -2b 2=0, 因为a ⊥b ,所以a ·b =0, 所以12k -18=0,k =32.答案:B4.若cos ⎝ ⎛⎭⎪⎫π12-θ=13,则sin ⎝ ⎛⎭⎪⎫5π12+θ=( )A.13 B.223C .-13D .-223解析:因为cos ⎝ ⎛⎭⎪⎫π12-θ=13, 所以sin ⎝ ⎛⎭⎪⎫5π12+θ=sin ⎣⎢⎡⎦⎥⎤π2-⎝⎛⎭⎪⎫π12-θ=cos ⎝ ⎛⎭⎪⎫π12-θ=13,故选A.答案:A5.已知函数f (x )=x +1+1x -2,则f (x )的定义域是( )A .[-1,2)B .[-1,+∞)C .(2,+∞)D .[-1,2)∪(2,+∞)解析:根据题意得⎩⎨⎧x +1≥0,x -2≠0,解得x ≥-1且x ≠2,故f (x )的定义域为[-1,2)∪(2,+∞),故选D.答案:D6.若双曲线x 2a -y 2=1的一条渐近线方程为y =3x ,则正实数a 的值为( )A .9B .3C.13D.19解析:双曲线x 2a -y 2=1的渐近线方程为y =±xa ,由题意可得1a =3,解得a =19,故选D.答案:D7.若直线l 过点(-1,2)且与直线2x -3y +4=0垂直,则l 的方程为( )A .3x +2y -1=0B .2x +3y -1=0C .3x +2y +1=0D .2x -3y -1=0解析:因为2x -3y +4=0的斜率k =23,所以直线l 的斜率k ′=-32,由点斜式可得l 的方程为y -2=-32(x +1),即3x +2y -1=0,故选A.答案:A8.已知AB →=(1,-1,0),C (0,1,-2),若CD →=2AB →,则点D 的坐标为( )A .(-2,3,-2)B .(2,-3,2)C .(-2,1,2)D .(2,-1,-2)解析:设点D 的坐标为(x ,y ,z ),又C (0,1,-2),所以CD→=(x ,y -1,z +2),因为AB→=(1,-1,0),CD →=2AB →,所以(x ,y -1,z +2)=(2,-2,0),即⎩⎪⎨⎪⎧x =2,y =-1,z =-2,则点D 的坐标为(2,-1,-2).故选D.答案:D9.已知平面α,β和直线m ,直线m 不在平面α,β内,若α⊥β,则“m ∥β”是“m ⊥α”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件解析:由α⊥β,m ∥β,可得m ⊥α或m ∥α或m 与α既不垂直也不平行,故充分性不成立;由α⊥β,m ⊥α可得m ∥β,故必要性成立,故选B.答案:B10.将函数y =sin ⎝ ⎛⎭⎪⎫2x +π3的图象经怎样平移后,所得的图象关于点⎝ ⎛⎭⎪⎫-π12,0成中心对称( ) A .向左平移π12个单位 B .向右平移π12个单位C .向左平移π6个单位 D .向右平移π6个单位解析:将函数y =sin ⎝ ⎛⎭⎪⎫2x +π3的图象向左平移φ个单位,得y =sin ⎝⎛⎭⎪⎫2x +2φ+π3的图象,因为该图象关于点⎝⎛⎭⎪⎫-π12,0成中心对称,所以2×⎝ ⎛⎭⎪⎫-π12+2φ+π3=k π(k ∈Z),则φ=k π2-π12(k ∈Z),当k =0时,φ=-π12,故应将函数y =sin ⎝ ⎛⎭⎪⎫2x +π3的图象向右平移π12个单位,选B. 答案:B11.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若C =π3,c=7,b =3a ,则△ABC 的面积为( )A.2-34B.334C. 2D.2+34解析:已知C =π3,c =7,b =3a ,所以由余弦定理可得7=a 2+b 2-ab =a 2+9a 2-3a 2=7a 2,解得a =1,则b =3,所以S △ABC =12ab sin C =12×1×3×32=334.故选B.答案:B12.函数y =x 33x -1的图象大致是( )解析:因为y =x 33x-1的定义域为{x |x ≠0},所以排除选项A ;当x =-1时,y =32>0,故排除选项B ;当x →+∞时,y →0,故排除选项D ,故选C.答案:C13.若实数x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≤2,2x -3y ≤9,x ≥0,则z =x 2+y 2的最大值是( )A.10B .4C .9D .10解析:作出约束条件⎩⎪⎨⎪⎧x +y ≤2,2x -3y ≤9,x ≥0,的可行域,如图中阴影部分所示,因为A (0,-3),C (0,2),所以|OA |>|OC |.联立⎩⎨⎧x +y =2,2x -3y =9,解得B (3,-1).因为x 2+y 2的几何意义为可行域内的动点与原点距离的平方,且|OB |2=9+1=10,所以z =x 2+y 2的最大值是10.故选D.答案:D14.已知等差数列{a n }的前n 项和是S n ,公差d 不等于零,若a 2,a 3,a 6成等比数列,则( )A .a 1d >0,dS 3>0B .a 1d >0,dS 3<0C .a 1d <0,dS 3>0D .a 1d <0,dS 3<0解析:由a 2,a 3,a 6成等比数列,可得a 23=a 2a 6,则(a 1+2d )2=(a 1+d)(a1+5d),即2a1d+d2=0,因为公差d不等于零,所以a1d<0,2a1+d=0,所以dS3=d(3a1+3d)=32d2>0.故选C.答案:C15.如图所示,在正三角形ABC中,D,E,F分别为各边的中点,G,H,I,J分别为AF,AD,BE,DE的中点.将△ABC沿DE,EF,DF折成三棱锥以后,HG与IJ所成角的度数为()A.90°B.60°C.45°D.0°解析:将△ABC沿DE,EF,DF折成三棱锥以后,点A,B,C 重合为点M,得到三棱锥M-DEF,如图.因为I、J分别为BE、DE 的中点,所以IJ∥侧棱MD,故GH与IJ所成的角等于侧棱MD与GH 所成的角.因为∠AHG=60°,即∠MHG=60°,所以GH与IJ所成的角的度数为60°,故选B.答案:B二、填空题(共4小题,每小题4分,共16分.)16.设公比不为1的等比数列{a n }满足a 1a 2a 3=-18,且a 2,a 4,a 3成等差数列,则公比q =______,数列{a n }的前4项的和为_______.解析:公比不为1的等比数列{a n }满足a 1a 2a 3=-18,所以a 32=-18,解得a 2=-12,a 3=-12q ,a 4=-12q 2,又a 2,a 4,a 3成等差数列,故2a 4=a 2+a 3,解得q =-12,a 1=1,由S n =a 1(1-q n )1-q可得S 4=58.答案:-12 5817.设函数f (x )(x ∈R)满足|f (x )-x 2|≤14,|f (x )+1-x 2|≤34,则f (1)=________.解析:由|f (x )-x 2|≤14,得-14≤f (x )-x 2≤14.由|f (x )+1-x 2|≤34,得-34≤f (x )-x 2+1≤34,即-74≤f (x )-x 2≤-14, 所以f (x )-x 2=-14,则f (1)-1=-14,故f (1)=34.答案:3418.若半径为10的球面上有A 、B 、C 三点,且AB =83,∠ACB =60°,则球心O 到平面ABC 的距离为________.解析:在△ABC 中,AB =83,∠ACB =60°,由正弦定理可求得其外接圆的直径为83sin 60°=16,即半径为8,又球心在平面ABC 上的射影是△ABC 的外心,故球心到平面ABC 的距离、球的半径及三角形外接圆的半径构成了一个直角三角形,设球面距为d ,则有d 2=102-82=36,解得d =6.故球心O 到平面ABC 的距离为6.答案:619.已知动点P 是边长为2的正方形ABCD 的边上任意一点,MN 是正方形ABCD 的外接圆O 的一条动弦,且MN =2,则PM →·PN →的取值范围是________.解析:如图,取MN 的中点H ,连接PH ,则PM →=PH →+12NM →=PH →-12MN →,PN →=PH →+12MN →.因为MN =2,所以PM →·PN →=PH →2-14MN →2=PH →2-12≥-12,当且仅当点P ,H 重合时取到最小值.当P ,H 不重合时,连接PO ,OH ,易得OH =22, 则PH →2=(PO →+OH →)2=PO →2+2PO →·OH→+OH →2=PO →2+12-2|PO →||OH →|·cos ∠POH =PO →2+12-2|PO →|·cos ∠POH ≤PO →2+12+2|PO →|≤32+2,当且仅当P ,O ,H 三点共线,且P 在A ,B ,C ,D 其中某一点处时取到等号,所以PM →·PN→=PH →2-12≤2+1, 故PM →·PN →的取值范围为⎣⎢⎡⎦⎥⎤-12,2+1. 答案:⎣⎢⎡⎦⎥⎤-12,2+1三、解答题(共2小题,每小题12分,共24分.解答须写出文字说明,证明过程和演算步骤.)20.已知△ABC 的三个内角A ,B ,C 的对边分别为a ,b ,c .若sin 2A +sin 2B -sin 2C =sin A sin B .(1)求角C 的大小;(2)若△ABC 的面积为23,c =23,求△ABC 的周长. 解:(1)由sin 2 A +sin 2 B -sin 2 C =sin A sin B 及正弦定理,得a 2+b 2-c 2=ab ,由余弦定理得cos C =a 2+b 2-c 22ab =12,因为C ∈(0,π),所以C =π3.(2)由(1)知C =π3.由△ABC 的面积为23得12ab ·32=23,解得ab =8,由余弦定理得c 2=a 2+b 2-2ab ×12=(a +b )2-3ab =12,所以(a +b )2=36,a +b =6, 故△ABC 的周长为6+2 3.21.如图,直线l 与椭圆C :x 24+y 22=1交于M ,N 两点,且|MN |=2,点N 关于原点O 的对称点为P .(1)若直线MP 的斜率为-12,求此时直线MN 的斜率k 的值;(2)求点P 到直线MN 的距离的最大值.解:(1)设直线MP 的斜率为k ′,点M (x ,y ),N (s ,t ), 则P (-s ,-t ),k ′=-12,且x 24+y 22=1,s 24+t 22=1,所以y 2=2-x 22,t 2=2-s22.又k ′·k =y +t x +s ·y -t x -s =y 2-t 2x 2-s 2=⎝⎛⎭⎪⎫2-x 22-⎝ ⎛⎭⎪⎫2-s 22x 2-s 2=-12.且k ′=-12,所以k =1.(2)当直线MN 的斜率k 存在时,设其方程为y =kx +m ,由⎩⎪⎨⎪⎧x 24+y 22=1,y =kx +m ,消去y ,得(1+2k 2)x 2+4kmx +2m 2-4=0,则Δ=8(4k 2-m 2+2)>0, x 1+x 2=-4km1+2k 2,x 1·x 2=2m 2-41+2k2, 由|MN |=1+k 2|x 1-x 2|=1+k 2·8(4k 2-m 2+2)1+2k2=2, 化简得m 2=(2k 2+1)(2k 2+3)2k 2+2. 设点O 到直线MN 的距离为d ,则P 到MN 的距离为2d , 又d =|m |1+k2,则4d 2=4(2k 2+1)(2k 2+3)(2k 2+2)(k 2+1)= 2(4k 4+8k 2+3)k 4+2k 2+1=8-2(k 2+1)2<8,所以0<2d <2 2.当直线MN 的斜率不存在时, 则M (-2,1),N (-2,-1),则P (2,1),此时点P 到直线MN 的距离为2 2. 综上,点P 到直线MN 的距离的最大值为2 2.高中学业水平考试模拟测试卷(五)(时间:90分钟 满分100分)一、选择题(共15小题,每小题4分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.集合A ={1,2,3},B ={2,4,5},则A ∪B =( ) A .{2}B .{6}C .{1,3,4,5,6}D .{1,2,3,4,5}解析:A ∪B ={1,2,3}∪{2,4,5}={1,2,3,4,5},故选D. 答案:D2.设p :log 2x 2>2,q :x >2,则p 是q 成立的( ) A .必要不充分条件 B .充分不必要条件 C .充分必要条件D .既不充分也不必要条件解析:由log 2x 2>2得,x 2>4,解得x <-2或x >2,所以p 是q 成立的必要不充分条件.故选A.答案:A3.角θ的终边经过点P (4,y ),且sin θ=-35,则tan θ=( )A .-43B.43C .-34D.34解析:因为角θ的终边经过点P (4,y ), 且sin θ=-35=y16+y 2,所以y =-3,则tan θ=y4=-34,故选C.答案:C4.某超市货架上摆放着某品牌红烧牛肉方便面,如图是它们的三视图,则货架上的红烧牛肉方便面至少有( )A .8桶B .9桶C .10桶D .11桶解析:易得第一层有4桶,第二层最少有3桶,第三层最少有2桶,所以至少共有9桶,故选B.答案:B5.在等差数列{a n }中,a 3+a 4+a 5+a 6+a 7=450,则a 2+a 8等于( )A .45B .75C .180D .360解析:由a 3+a 4+a 5+a 6+a 7=(a 3+a 7)+(a 4+a 6)+a 5=5a 5=450,得到a 5=90,则a 2+a 8=2a 5=180.故选C.答案:C6.已知过点A (-2,m )和B (m ,4)的直线与直线2x +y +1=0平行,则m 的值为( )A .-8B .0C .2D .10解析:因为直线2x +y +1=0的斜率等于-2,且过点A (-2,m )和B (m ,4)的直线与直线2x +y +1=0平行,所以k AB =-2,所以4-mm +2=-2,解得m =-8,故选A.答案:A7.已知向量a =(3,0),b =(0,-1),c =(k ,3),若(a -2b )⊥c ,则k =( )A .2B .-2C.32D .-32解析:由a =(3,0),b =(0,-1),得a -2b =(3,2),若(a -2b )⊥c ,则(a -2b )·c =0,所以3k +23=0,所以k =-2,故选B.答案:B8.设α,β是两个不同的平面,l 是一条直线,以下命题正确的是( )A .若l ⊥α,α⊥β,则l ⊂βB .若l ∥α,α∥β,则l ⊂βC .若l ⊥α,α∥β,则l ⊥βD .若l ∥α,α⊥β,则l ⊥β 解析:由α,β是两个不同的平面,l 是一条直线,知: 在A 中,若l ⊥α,α⊥β,则l ∥β或l ⊂β,故A 错误; 在B 中,若l ∥α,α∥β,则l ∥β或l ⊂β,故B 错误;在C 中,若l ⊥α,α∥β,则由线面垂直的判定定理得l ⊥β,故C 正确;在D 中,若l ∥α,α⊥β,则l 与β相交、平行或l ⊂β,故D 错误,故选C.答案:C9.在△ABC 中,内角A ,B ,C 的对边分别是a ,b ,c ,若sin 2A +sin 2B -sin 2C =0,a 2+c 2-b 2-ac =0,c =2,则a =( )A. 3 B .1C.12D.32解析:因为sin 2A +sin 2B -sin 2C =0, 所以a 2+b 2-c 2=0,即C 为直角, 因为a 2+c 2-b 2-ac =0,所以cos B =a 2+c 2-b 22ac =12,B =π3,因此a =c cos π3=1.故选B.答案:B10.已知等比数列{a n }的前n 项和为S n ,且满足2S n =2n +1+λ,则λ的值为( )A .4B .2C .-2D .-4解析:根据题意,当n =1时,2S 1=2a 1=4+λ,当n ≥2时,a n=S n -S n -1=2n -1.因为数列{a n }是等比数列,所以a 1=1,故4+λ2=1,解得λ=-2.故选C.答案:C11.若以双曲线x 22-y 2b 2=1(b >0)的左、右焦点和点(1,2)为顶点的三角形为直角三角形,则b 等于( )A.12B .1C. 2D .2解析:由题意,双曲线x 22-y 2b2=1(b >0)的左、右焦点分别为(-c ,0)、(c ,0),因为两焦点和点(1,2)为顶点的三角形为直角三角形,所以(1-c ,2)·(1+c ,2)=0,所以1-c 2+2=0,所以c =3,因为a =2,所以b =1.故选B. 答案:B12.已知函数f (x )=2sin ⎝ ⎛⎭⎪⎫2x +π6,若将它的图象向右平移π6个单位长度,得到函数g (x )的图象,则函数g (x )图象的一条对称轴方程为( )A .x =π12B .x =π4C .x =π3D .x =2π3解析:由题意得g (x )=2sin[2(x -π6)+π6]=2sin ⎝ ⎛⎭⎪⎫2x -π6,令2x -π6=k π+π2,k ∈Z ,得x =k π2+π3,k ∈Z ,当k =0时,得x =π3,所以函数g (x )图象的一条对称轴方程为x =π3.故选C.答案:C13.已知正方体ABCD-A 1B 1C 1D 1中,点E 是线段BC 的中点,点M 是直线BD 1上异于B ,D 1的点,则平面DEM 可能经过下列点中的( )A .AB .C 1C .A 1D .C解析:连接A 1D ,A 1E ,因为A 1D 1∥BE ,所以A 1,D 1,B ,E 四点共面.设A 1E ∩BD 1=M ,显然平面DEM 与平面A 1DE 重合,从而平面DEM 经过点A 1.故答案为C.答案:C14.已知x 、y 满足⎩⎪⎨⎪⎧x -y ≥0,x +y -4≥0,x ≤4,则3x -y 的最小值为()A .4B .6C .12D .16解析:由约束条件⎩⎪⎨⎪⎧x -y ≥0,x +y -4≥0,x ≤4,作出可行域如图,联立⎩⎨⎧x +y -4=0,x -y =0,解得A (2,2),令z =3x -y ,化为y =3x -z ,由图可知,当直线y =3x -z 过点A 时,直线在y 轴上的截距最大,z 有最小值为4.故选A.答案:A15.若正数x ,y 满足x +4y -xy =0,则3x +y 的最大值为( )A.13B.38C.37D .1解析:由x +4y -xy =0可得x +4y =xy ,左右两边同时除以xy 得1y +4x =1,求3x +y的最大值,即求x +y 3=x 3+y 3的最小值, 所以⎝ ⎛⎭⎪⎫x 3+y 3×1=⎝ ⎛⎭⎪⎫x 3+y 3×⎝ ⎛⎭⎪⎫1y +4x =x 3y +4y 3x +13+43≥2x 3y ×4y 3x +13+43=3,当且仅当x 3y =4y3x 时取等号,所以3x +y的最大值为13.所以选A. 答案:A二、填空题(共4小题,每小题4分,共16分.) 16.函数f (x )=1-x +x +3-1的定义域是________. 解析:要使函数f (x )有意义,则⎩⎨⎧1-x ≥0,x +3≥0,即⎩⎨⎧x ≤1,x ≥-3,解得-3≤x ≤1,故函数的定义域为[-3,1].答案:[-3,1]17.已知一个长方体的同一顶点处的三条棱长分别为1,3,2,则其外接球的半径为________,表面积为________.解析:设长方体的外接球的半径为R ,则长方体的体对角线长就等于外接球的直径,即2R =12+(3)2+22,解得R =2,所以外接球的表面积为S =4πR 2=8π.答案:2 8π18.在平面直角坐标系xOy 中,已知过点A (2,-1)的圆C 和直线x +y =1相切,且圆心在直线y =-2x 上,则圆C 的标准方程为________.解析:因为圆心在y =-2x 上,所以可设圆心坐标为(a ,-2a ),又因为圆过A (2,-1),且圆C 和直线x +y =1相切,所以(a -2)2+(-2a +1)2=|a -2a -1|2,解得a =1,所以圆半径r =|1-2-1|2=2,圆心坐标为(1,-2),所以圆方程为(x -1)2+(y +2)2=2.答案:(x -1)2+(y +2)2=219.已知函数f (x )是定义在R 上的奇函数,且当x >0时,f (x )=⎝ ⎛⎭⎪⎫12|x -1|+m ,若函数f (x )有5个零点,则实数m 的取值范围是________.解析:由题意,函数f (x )是奇函数,f (x )有5个零点,其中x =0是1个,只需x >0时有2个零点即可,当x >0时,f (x )=⎝ ⎛⎭⎪⎫12|x -1|+m ,转化为函数y =-m 和f (x )=⎝ ⎛⎭⎪⎫12|x -1|的图象交点个数即可,画出函数的图象,如图所示.结合图象可知只需12<-m <1,即-1<m <-12.答案:⎝ ⎛⎭⎪⎫-1,-12 三、解答题(共2小题,每小题12分,共24分.解答须写出文字说明,证明过程和演算步骤.)20.在锐角△ABC 中,a ,b ,c 分别为内角A ,B ,C 的对边,且满足(2c -a )cos B -b cos A =0.(1)求角B 的大小;(2)已知c =2,AC 边上的高BD =3217,求△ABC 的面积S 的值. 解:(1)因为(2c -a )cos B -b cos A =0,所以由正弦定理得(2sin C -sin A )cos B -sin B cos A =0, 所以2sin C cos B -sin(A +B )=0, 因为A +B =π-C 且sin C ≠0,所以2sin C cos B -sin C =0,即cos B =12.因为B ∈(0,π),所以B =π3.(2)因为S =12ac sin ∠ABC =12BD ·b ,代入c ,BD =3217,sin ∠ABC =32,得b =73a ,由余弦定理得:b 2=a 2+c 2-2ac ·cos ∠ABC =a 2+4-2a .代入b =73a ,得a 2-9a +18=0,解得⎩⎨⎧a =3,b =7,或⎩⎨⎧a =6,b =27,又因为△ABC 是锐角三角形,所以a 2<c 2+b 2,所以a =3,所以S △ABC =12ac sin ∠ABC =12×2×3×32=332.21.设椭圆C :x 2a 2+y 2b 2=1(a >b >0),其右顶点是A (2,0),离心率为12. (1)求椭圆C 的方程;(2)若直线l 与椭圆C 交于两点M ,N (M ,N 不同于点A ),若AM →·AN →=0,求证:直线l 过定点,并求出定点坐标.(1)解:因为椭圆C 的右顶点是A (2,0),离心率为12,所以a =2,c a =12,所以c =1,则b =3,所以椭圆的标准方程为x 24+y 23=1.(2)证明:当直线MN 斜率不存在时,设MN :x =m , 与椭圆方程x 24+y 23=1联立得:|y |=3⎝ ⎛⎭⎪⎫1-m 24,|MN |=23⎝ ⎛⎭⎪⎫1-m 24. 设直线MN 与x 轴交于点B ,则|MB |=|AB |,即3⎝⎛⎭⎪⎫1-m 24=2-m ,所以m =27或m =2(舍),。
2019-2020年高考(学业水平考试)数学试卷 含答案
2019-2020年高考(学业水平考试)数学试卷 含答案xx.1 一.填空题(本大题共12题,每题3分,共36分)1.复数3+4i (i 为虚数单位)的实部是 ;2.若=3,则x= ;3.直线y=x-1与直线y=2的夹角为 ;4.函数=的定义域为 ;5.三阶行列式121004531--中,元素5的代数余子式的值为 ; 6.函数的反函数的图像经过点(2,1),则实数a= ;7.在中,若A=,B=,BC=,则AC= ;8.4个人排成一排照相,不同排列方式的种数为 。
(结果用数值表示)9.无穷等比数列的首项为2,公比为,则的各项和为 ;10.若2+i (i 为虚数单位)是关于x 的实系数一元二次方程的一个虚根,则a= ; 11.函数y=在区间[0,m]上的最小值为0,最大值为1,则实数m 的取值范围是 ; 12.在平面直角坐标系xOy 中,点A,B 是圆上的两个动点,且满足|AB|=,则的最小值为 ;二.选择题(本大题共12小题,每题3分,共36分)13.满足且的角属于( )A.第一象限B.第二象限C.第三象限D.第四象限14.半径为1的球的表面积为 ( )A. B. C.2 D.415.在的二项展开式中,的系数是( )A.2B.6C.15D. 2016.幂函数的大致图象是( )17.已知向量,,则向量在向量方向上的投影为( )A.1B. 2C.(1,0)D.(0,2)18.设直线l 与平面平行,直线m 在平面上,那么( )A.直线l 平行于直线mB.直线l 与直线m 异面C.直线l 与直线m 没公共点D.直线l 与直线m 不垂直19.用数学归纳法证明等式)(223212*∈+=++++N n n n n 的第(ⅱ)步中,假设n=k 时原等式成立,那么在n=k+1时,需要证明的等式为( )A.)1()1(22)1(2232122+++++=++++++k k k k k kB.)1()1(2)1(223212+++=++++++k k k kC.)1()1(22)1(2)12(232122+++++=++++++++k k k k k k kD.)1()1(2)1(21223212+++=++++++++k k k k k )(20.关于与的焦距和渐近线,下列说法正确的是( )A.焦距相等,渐近线相同B.焦距相等,渐近线不同C.焦距不相等,渐近线相同D.焦距不相等,渐近线不相同21.设函数y=的定义域为R ,则“f (0)=0”是“y=f (x )”为奇函数的( )A.充分不必要条件B.必要不充分条件C.充要条件D. 既不充分也不必要条件22. 下列关于实数a ,b 的不等式中,不恒成立的是( )A. B.C. D.23.设单位向量和既不平行也不垂直,则非零向量,,有结论:①若,则;②若,则;关于以上两个结论,正确的判断是( )A.①成立,②不成立B.①不成立,②成立C.①成立,②成立D.①不成立,②不成立24.对于椭圆:),0,(12222b a b a by a x ≠>=+,若点()满足,则称该点在椭圆内,在平面直角坐标系中,若点A 在过点(2,1)的任意椭圆内或上,则满足条件的点A 构成的图形为( )A.三角形及其内部B.矩形及其内部C.圆及其内部D.椭圆及其内部三.解答题:(本大题共5小题,共8+8+8+12+12=48分)25.如图,已知正三棱柱的体积为,底面边长为3,求异面直线与AC 所成角的大小;26.已知函数=,求的最小正周期及最大值,并指出取得最大值是x 的值。
2019_2020年高考数学学业水平测试一轮复习模拟测试卷一含解析
高中学业水平考试模拟测试卷(一)(时间:90分钟 满分100分)一、选择题(共15小题,每小题4分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知集合M ={1,2,3,4},集合N ={1,3,5},则M ∩N 等于( ) A .{2} B .{2,3}C .{1,3}D .{1,2,3,4,5}解析:M ∩N ={1,2,3,4}∩{1,3,5}={1,3},故选C. 答案:C2.函数f (x )=ln(x -3)的定义域为( ) A .{x |x >-3}B .{x |x >0}C .{x |x >3}D .{x |x ≥3}解析:由x -3>0得x >3,则定义域为{x |x >3}.故选C. 答案:C3.下列命题中的假命题是( ) A .∀ x ∈R ,2x -1>0 B .∀x ∈N *,(x -1)2>0 C .∃ x ∈R ,lg x <1D .∃x ∈R ,tan x =2解析:当x =1∈N *时,x -1=0,不满足(x -1)2>0,所以B 为假命题.故选B. 答案:B4.设i 是虚数单位,若复数z =5(1+i)i ,则z 的共轭复数为( ) A .-5+5iB .-5-5iC .5-5iD .5+5i解析:由复数z =5(1+i)i =-5+5i, 得z 的共轭复数为-5-5i.故选B. 答案:B5.已知平面向量a =(0,-1),b =(2,2),|λa +b |=2,则λ的值为( ) A .1+ 2B.2-1C .2D .1解析:λa +b =(2,2-λ),那么4+(2-λ)2=4,解得,λ=2.故选C. 答案:C6.已知点A (1,2),B (3,1),则线段AB 的垂直平分线的方程是( ) A .4x +2y =5 B .4x -2y =5 C .x +2y =5 D .x -2y =5解析:线段AB 的中点为⎝ ⎛⎭⎪⎫2,32,k AB =1-23-1=-12, 所以垂直平分线的斜率k =-1k AB =2,所以线段AB 的垂直平分线的方程是y -32=2(x -2) ⇒ 4x -2y -5=0.故选B.答案:B7.如图(1)、(2)、(3)、(4)为四个几何体的三视图,根据三视图可以判断这四个几何体依次分别为( )A .三棱台、三棱柱、圆锥、圆台B .三棱台、三棱锥、圆锥、圆台C .三棱柱、正四棱锥、圆锥、圆台D .三棱柱、三棱台、圆锥、圆台解析:(1)三视图复原的几何体是放倒的三棱柱.(2)三视图复原的几何体是四棱锥.(3)三视图复原的几何体是圆锥.(4)三视图复原的几何体是圆台.所以(1)(2)(3)(4)的顺序为:三棱柱、正四棱锥、圆锥、圆台.故选C.答案:C8.已知f (x )=x +1x-2(x >0),则f (x )有( )A .最大值为0B .最小值为0C .最大值为-4D .最小值为-4解析:由x >0,可得1x >0, 即有f (x )=x +1x-2≥2x ·1x-2=2-2=0, 当且仅当x =1x,即x =1时,取得最小值0.答案:B9.要完成下列两项调查:(1)某社区有100户高收入家庭,210户中等收入家庭,90户低收入家庭,从中抽取100户调查消费购买力的某项指标;(2)从某中学高二年级的10名体育特长生中抽取3人调查学习负担情况,应采取的抽样方法是( )A .(1)用系统抽样法,(2)用简单随机抽样法B .(1)用分层抽样法,(2)用系统抽样法C .(1)用分层抽样法,(2)用简单随机抽样法D .(1)(2)都用分层抽样法解析:根据简单随机抽样及分层抽样的特点,可知(1)应用分层抽样法,(2)应用简单随机抽样法.故选C.答案:C10.在△ABC 中,A ∶B =1∶2,sin C =1,则a ∶b ∶c =( ) A .1∶2∶3 B .3∶2∶1 C .2∶3∶1 D .1∶3∶2解析:在△ABC 中,A ∶B =1∶2,sin C =1, 可得A =30°,B =60°,C =90°.a ∶b ∶c =sin A ∶sin B ∶sin C =12∶32∶1=1∶3∶2.故选D. 答案:D11.等差数列{a n }中,a 3+a 4+a 5=12,那么{a n }的前7项和S 7=( ) A .22B .24C .26D .28解析:因为等差数列{a n }中,a 3+a 4+a 5=12, 所以3a 4=a 3+a 4+a 5=12, 解得a 4=4,所以S 7=7(a 1+a 7)2=7×2a 42=7a 4=28.故选D.答案:D12.抛物线y =14x 2的焦点到准线的距离是( )A.14B.12C .2D .4解析:方程化为标准方程为x 2=4y .所以2p =4,p =2.所以焦点到准线的距离为2.故选C.答案:C13.⎝ ⎛⎭⎪⎫cos π12-sin π12⎝ ⎛⎭⎪⎫cos π12+sin π12=( ) A .-32B .-12C.12D.32解析:⎝ ⎛⎭⎪⎫cos π12-sin π12⎝ ⎛⎭⎪⎫cos π12+sin π12=cos 2 π12-sin 2 π12=cos π6=32.故选D.答案:D14.已知某几何体的三视图都是边长为2的正方形,若将该几何体削成球,则球的最大表面积是( )A .16πB .8πC .4πD .2π解析:因为三视图均为边长为2的正方形,所以几何体是边长为2的正方体,将该几何体削成球,则球的最大半径为1,表面积是4π×12=4π.故选C.答案:C15.已知数列{a n }的前n 项和为S n ,且a 1=-10,a n +1=a n +3(n ∈N *),则S n 取最小值时,n 的值是( )A .3B .4C .5D .6解析:在数列{a n }中,由a n +1=a n +3,得a n +1-a n =3(n ∈N *), 所以数列{a n }是公差为3的等差数列.又a 1=-10,所以数列{a n }是公差为3的递增等差数列.由a n =a 1+(n -1)d =-10+3(n -1)=3n -13≥0,解得n ≥133. 因为n ∈N *,所以数列{a n }中从第五项开始为正值.所以当n =4时,S n 取最小值.故选B.答案:B二、填空题(共4小题,每小题4分,共16分.)16.若点(2,1)在y =a x(a >0,且a ≠1)关于y =x 对称的图象上,则a =________. 解析:因为点(2,1)在y =a x(a >0,且a ≠1)关于y =x 对称的图象上, 所以点(1,2)在y =a x (a >0,且a ≠1)的图象上,所以2=a 1,解得a =2. 答案:217.已知f (x )=x 2+(m +1)x +(m +1)的图象与x 轴没有公共点,则m 的取值范围是________(用区间表示).解析:依题意Δ=(m +1)2-4(m +1)=(m +1)(m -3)<0⇒-1<m <3, 故m 的取值范围用区间表示为(-1,3).答案:(-1,3)18.设f (x )=⎩⎪⎨⎪⎧lg x ,x >0,10x ,x ≤0,则f (f (-2))=________.解析:因为x =-2<0,所以f (-2)=10-2=1100>0, 所以f (10-2)=lg10-2=-2,即f (f (-2))=-2.答案:-219.已知4x +9y=1,且x >0,y >0,则x +y 的最小值是________.解析:因为4x +9y=1,且x >0,y >0, 所以x +y =⎝ ⎛⎭⎪⎫4x +9y (x +y )=13+4y x +9x y≥13+24y x ·9xy=25,当且仅当4y x =9xy,即x =10且y =15时取等号.答案:25三、解答题(共2小题,每小题12分,共24分.解答须写出文字说明,证明过程和演算步骤.)20.已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且2c ·cos B -b =2a . (1)求角C 的大小;(2)设角A 的平分线交BC 于D ,且AD =3,若b =2,求△ABC 的面积.解:(1)由已知及余弦定理得2c ×a 2+c 2-b 22ac =2a +b, 整理得a 2+b 2-c 2=-ab, 所以cos C =a 2+b 2-c 22ab =-ab 2ab =-12,又0<C <π, 所以C =2π3,即角C 的大小为2π3.(2)由(1)知C =2π3,依题意画出图形.在△ADC 中,AC =b =2,AD =3,由正弦定理得sin ∠CDA =AC ×sin C AD =23×32=22, 又△ADC 中,C =2π3, 所以∠CDA =π4, 故∠CAD =π-2π3-π4=π12. 因为AD 是角∠CAB 的平分线, 所以∠CAB =π6, 所以△ABC 为等腰三角形,且BC =AC= 2.所以△ABC 的面积S =12BC ·AC ·sin 2π3=12×2×2×32=32.21.已知圆C 经过A (3,2)、B (1,6)两点,且圆心在直线y =2x 上. (1)求圆C 的方程;(2)若直线l 经过点P (-1,3)且与圆C 相切,求直线l 的方程.解:(1)方法1:设圆C 的方程为(x -a )2+(y -b )2=r 2(r >0), 依题意得,⎩⎪⎨⎪⎧(3-a )2+(2-b )2=r 2,(1-a )2+(6-b )2=r 2,b =2a ,解得a =2,b =4,r 2=5.所以圆C 的方程为(x -2)2+(y -4)2=5.方法2:因为A (3,2)、B (1,6),所以线段AB 中点D 的坐标为(2,4), 直线AB 的斜率k AB =6-21-3=-2, 因此直线AB 的垂直平分线l '的方程是y -4=12(x -2),即x -2y +6=0.圆心C 的坐标是方程组⎩⎪⎨⎪⎧x -2y +6=0,y =2x ,的解.解此方程组,得⎩⎪⎨⎪⎧x =2,y =4,即圆心C 的坐标为(2,4).圆C 的半径长r =|AC |=(3-2)2+(2-4)2= 5.所以圆C 的方程为(x -2)2+(y -4)2=5. (2) 由于直线l 经过点P (-1,3),当直线l 的斜率不存在时,x =-1与圆C :(x -2)2+(y -4)2=5相离,不合题意. 当直线l 的斜率存在时,可设直线l 的方程为y -3=k (x +1),即kx -y +k +3=0. 因为直线l 与圆C 相切,且圆C 的圆心为(2,4),半径为5,所以有|2k -4+k +3|k 2+1= 5.解得k =2或k =-12.所以直线l 的方程为y -3=2(x +1)或y -3=-12(x +1), 即2x -y +5=0或x +2y -5=0.。
四川省成都市2019-2020学年普通高中学生学业水平测试数学试题-含答案
四川省成都市2019-2020学年普通高中学生学业水平测试数学试题-含答案2019年四川省成都市普通高中生学业水平考试数学试题注意事项:1.考生在答题前需使用0.5毫米黑色签字笔填写姓名、座号、考生号、县区和科类到答题卡和试卷规定的位置上。
2.选择题需使用2B铅笔将答案标号涂黑,如需改动,需使用橡皮擦干净后再涂其他答案标号。
在试卷上作答无效。
3.答案必须使用0.5毫米黑色签字笔写在答题卡各题目指定区域内相应的位置,如需改动,需先划掉原来的答案,再写上新的答案。
不能使用涂改液、胶带纸、修正带。
不按要求作答的答案无效。
一、选择题1.把复数z的共轭复数记为-z,i为虚数单位,若z=1+i,则(1+z)·-z=()A.3-i。
B.3+1.C.1+3i。
D.3- 解析:(1+z)·z=(2+i)(1-i)=3-i。
答案:A2.设U=R,M={x|x^2-2x>0},则∁U M=()A.[0,2]。
B.(0,2)。
C.(-∞,0)∪(2,+∞)。
D.(-∞,0]∪[2,+∞)解析:因为M={x|x^2-2x>0}={x|x>2或x<0},所以∁UM={x|0≤x≤2}.答案:A3.若函数f(x)=(2x+1)(x-a)/(x+1)(x+2),为奇函数,则a=()A.1.B.2.C.-1.D.-2解析:因为f(x)为奇函数,所以f(-1)=-f(1),即(-1-a)/(1-a)=-1,解得a=1.答案:A4.命题“∀x>0,x^2+x>0”的否定是()A.∃x>0,x^2+x≤0.B.∃x>0,x+x≤0C.∀x>0,x^2+x≤0.D.∀x≤0,x^2+x>0解析:根据全称命题的否定是特称命题,可知该命题的否定是:∃x>0,x^2+x≤0.答案:B5.若等比数列{an}满足an·an+1=16n,则公比为()A.2.B.4.C.8.D.16解析:由an·an+1=an^2·q=16n,得q>0,又an+1/an=q,所以q^2=an+1/an=16,所以q=4.答案:B6.根据图中的三视图,可以确定多面体的形状。
2019-2020学年高中学业水平数学模拟测试卷5
高中学业水平考试模拟测试卷(五)(时间:90分钟满分100分)一、选择题(共15小题,每小题4分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.集合A={1,2,3},B={2,4,5},则A∪B=()A.{2} B.{6}C.{1,3,4,5,6} D.{1,2,3,4,5}解析:A∪B={1,2,3}∪{2,4,5}={1,2,3,4,5},故选D.答案:D2.设p:log2x2>2,q:x>2,则p是q成立的()A.必要不充分条件B.充分不必要条件C.充分必要条件D.既不充分也不必要条件解析:由log2x2>2得,x2>4,解得x<-2或x>2,所以p是q成立的必要不充分条件.故选A.答案:A3.角θ的终边经过点P(4,y),且sin θ=-35,则tan θ=()A.-43 B.43C.-34 D.34解析:因为角θ的终边经过点P(4,y),且sin θ=-35=y16+y2,所以y=-3,则tan θ=y4=-34,故选C.答案:C4.某超市货架上摆放着某品牌红烧牛肉方便面,如图是它们的三视图,则货架上的红烧牛肉方便面至少有( )A .8桶B .9桶C .10桶D .11桶解析:易得第一层有4桶,第二层最少有3桶,第三层最少有2桶,所以至少共有9桶,故选B.答案:B5.在等差数列{a n }中,a 3+a 4+a 5+a 6+a 7=450,则a 2+a 8等于( )A .45B .75C .180D .360解析:由a 3+a 4+a 5+a 6+a 7=(a 3+a 7)+(a 4+a 6)+a 5=5a 5=450,得到a 5=90,则a 2+a 8=2a 5=180.故选C.答案:C6.已知过点A (-2,m )和B (m ,4)的直线与直线2x +y +1=0平行,则m 的值为( )A .-8B .0C .2D .10解析:因为直线2x +y +1=0的斜率等于-2,且过点A (-2,m )和B (m ,4)的直线与直线2x +y +1=0平行,所以k AB =-2,所以4-mm +2=-2,解得m =-8,故选A. 答案:A7.已知向量a =(3,0),b =(0,-1),c =(k ,3),若(a -2b )⊥c ,则k =( )A .2B .-2C.32D .-32解析:由a =(3,0),b =(0,-1),得a -2b =(3,2),若(a -2b )⊥c ,则(a -2b )·c =0,所以3k +23=0,所以k =-2,故选B.答案:B8.设α,β是两个不同的平面,l 是一条直线,以下命题正确的是( )A .若l ⊥α,α⊥β,则l ⊂βB .若l ∥α,α∥β,则l ⊂βC .若l ⊥α,α∥β,则l ⊥βD .若l ∥α,α⊥β,则l ⊥β 解析:由α,β是两个不同的平面,l 是一条直线,知: 在A 中,若l ⊥α,α⊥β,则l ∥β或l ⊂β,故A 错误; 在B 中,若l ∥α,α∥β,则l ∥β或l ⊂β,故B 错误; 在C 中,若l ⊥α,α∥β,则由线面垂直的判定定理得l ⊥β,故C 正确;在D 中,若l ∥α,α⊥β,则l 与β相交、平行或l ⊂β,故D 错误,故选C.答案:C9.在△ABC 中,内角A ,B ,C 的对边分别是a ,b ,c ,若sin 2A +sin 2B -sin 2C =0,a 2+c 2-b 2-ac =0,c =2,则a =( )A. 3B .1C.12D.32解析:因为sin 2A +sin 2B -sin 2C =0, 所以a 2+b 2-c 2=0,即C 为直角, 因为a 2+c 2-b 2-ac =0,所以cos B =a 2+c 2-b 22ac =12,B =π3,因此a =c cos π3=1.故选B.答案:B10.已知等比数列{a n }的前n 项和为S n ,且满足2S n =2n +1+λ,则λ的值为( )A .4B .2C .-2D .-4解析:根据题意,当n =1时,2S 1=2a 1=4+λ,当n ≥2时,a n=S n -S n -1=2n -1.因为数列{a n }是等比数列,所以a 1=1,故4+λ2=1,解得λ=-2.故选C.答案:C11.若以双曲线x 22-y 2b 2=1(b >0)的左、右焦点和点(1,2)为顶点的三角形为直角三角形,则b 等于( )A.12B .1C. 2D .2解析:由题意,双曲线x 22-y 2b 2=1(b >0)的左、右焦点分别为(-c ,0)、(c ,0),因为两焦点和点(1,2)为顶点的三角形为直角三角形,所以(1-c ,2)·(1+c ,2)=0,所以1-c 2+2=0,所以c =3,因为a =2,所以b =1.故选B. 答案:B12.已知函数f (x )=2sin ⎝⎛⎭⎪⎫2x +π6,若将它的图象向右平移π6个单位长度,得到函数g (x )的图象,则函数g (x )图象的一条对称轴方程为( )A .x =π12B .x =π4C .x =π3D .x =2π3解析:由题意得g (x )=2sin[2(x -π6)+π6]=2sin ⎝ ⎛⎭⎪⎫2x -π6,令2x -π6=k π+π2,k ∈Z ,得x =k π2+π3,k ∈Z ,当k =0时,得x =π3,所以函数g (x )图象的一条对称轴方程为x =π3.故选C.答案:C13.已知正方体ABCD-A 1B 1C 1D 1中,点E 是线段BC 的中点,点M 是直线BD 1上异于B ,D 1的点,则平面DEM 可能经过下列点中的( )A .AB .C 1C .A 1D .C解析:连接A 1D ,A 1E ,因为A 1D 1∥BE ,所以A 1,D 1,B ,E 四点共面.设A 1E ∩BD 1=M ,显然平面DEM 与平面A 1DE 重合,从而平面DEM 经过点A 1.故答案为C.答案:C14.已知x 、y 满足⎩⎪⎨⎪⎧x -y ≥0,x +y -4≥0,x ≤4,则3x -y 的最小值为()A .4B .6C .12D .16解析:由约束条件⎩⎪⎨⎪⎧x -y ≥0,x +y -4≥0,x ≤4,作出可行域如图,联立⎩⎪⎨⎪⎧x +y -4=0,x -y =0,解得A (2,2),令z =3x -y ,化为y =3x -z ,由图可知,当直线y =3x -z 过点A 时,直线在y 轴上的截距最大,z 有最小值为4.故选A.答案:A15.若正数x ,y 满足x +4y -xy =0,则3x +y的最大值为( ) A.13B.38C.37D .1解析:由x +4y -xy =0可得x +4y =xy ,左右两边同时除以xy 得1y +4x =1,求3x +y的最大值,即求x +y 3=x 3+y 3的最小值, 所以⎝ ⎛⎭⎪⎫x 3+y 3×1=⎝ ⎛⎭⎪⎫x 3+y 3×⎝ ⎛⎭⎪⎫1y +4x =x 3y +4y 3x +13+43≥2x 3y ×4y3x+13+43=3,当且仅当x 3y =4y3x 时取等号,所以3x +y 的最大值为13.所以选A.答案:A二、填空题(共4小题,每小题4分,共16分.) 16.函数f (x )=1-x +x +3-1的定义域是________.解析:要使函数f (x )有意义,则⎩⎪⎨⎪⎧1-x ≥0,x +3≥0,即⎩⎪⎨⎪⎧x ≤1,x ≥-3,解得-3≤x ≤1,故函数的定义域为[-3,1].答案:[-3,1]17.已知一个长方体的同一顶点处的三条棱长分别为1,3,2,则其外接球的半径为________,表面积为________.解析:设长方体的外接球的半径为R ,则长方体的体对角线长就等于外接球的直径,即2R =12+(3)2+22,解得R =2,所以外接球的表面积为S =4πR 2=8π.答案:2 8π18.在平面直角坐标系xOy 中,已知过点A (2,-1)的圆C 和直线x +y =1相切,且圆心在直线y =-2x 上,则圆C 的标准方程为________.解析:因为圆心在y =-2x 上,所以可设圆心坐标为(a ,-2a ),又因为圆过A (2,-1),且圆C 和直线x +y =1相切,所以(a -2)2+(-2a +1)2=|a -2a -1|2,解得a =1,所以圆半径r=|1-2-1|2=2,圆心坐标为(1,-2),所以圆方程为(x -1)2+(y +2)2=2.答案:(x -1)2+(y +2)2=219.已知函数f (x )是定义在R 上的奇函数,且当x >0时,f (x )=⎝ ⎛⎭⎪⎫12|x -1|+m ,若函数f (x )有5个零点,则实数m 的取值范围是________.解析:由题意,函数f (x )是奇函数,f (x )有5个零点,其中x =0是1个,只需x >0时有2个零点即可,当x >0时,f (x )=⎝ ⎛⎭⎪⎫12|x -1|+m ,转化为函数y =-m 和f (x )=⎝ ⎛⎭⎪⎫12|x -1|的图象交点个数即可,画出函数的图象,如图所示.结合图象可知只需12<-m <1,即-1<m <-12.答案:⎝ ⎛⎭⎪⎫-1,-12 三、解答题(共2小题,每小题12分,共24分.解答须写出文字说明,证明过程和演算步骤.)20.在锐角△ABC 中,a ,b ,c 分别为内角A ,B ,C 的对边,且满足(2c -a )cos B -b cos A =0.(1)求角B 的大小;(2)已知c =2,AC 边上的高BD =3217,求△ABC 的面积S 的值.解:(1)因为(2c -a )cos B -b cos A =0,所以由正弦定理得(2sin C -sin A )cos B -sin B cos A =0, 所以2sin C cos B -sin(A +B )=0, 因为A +B =π-C 且sin C ≠0,所以2sin C cos B -sin C =0,即cos B =12.因为B ∈(0,π),所以B =π3.(2)因为S =12ac sin ∠ABC =12BD ·b ,代入c ,BD =3217,sin ∠ABC =32,得b =73a , 由余弦定理得:b 2=a 2+c 2-2ac ·cos ∠ABC =a 2+4-2a .代入b =73a ,得a 2-9a +18=0,解得⎩⎪⎨⎪⎧a =3,b =7,或⎩⎪⎨⎪⎧a =6,b =27,又因为△ABC 是锐角三角形, 所以a 2<c 2+b 2,所以a =3,所以S △ABC =12ac sin ∠ABC =12×2×3×32=332.21.设椭圆C :x 2a 2+y 2b 2=1(a >b >0),其右顶点是A (2,0),离心率为12. (1)求椭圆C 的方程;(2)若直线l 与椭圆C 交于两点M ,N (M ,N 不同于点A ),若AM →·AN →=0,求证:直线l 过定点,并求出定点坐标.(1)解:因为椭圆C 的右顶点是A (2,0),离心率为12,所以a =2,c a =12,所以c =1,则b =3,所以椭圆的标准方程为x 24+y 23=1.(2)证明:当直线MN 斜率不存在时,设MN :x =m , 与椭圆方程x 24+y 23=1联立得:|y |=3⎝ ⎛⎭⎪⎫1-m 24,|MN |=23⎝ ⎛⎭⎪⎫1-m 24. 设直线MN 与x 轴交于点B ,则|MB |=|AB |,即3⎝ ⎛⎭⎪⎫1-m 24=2-m ,所以m =27或m =2(舍),所以直线l 过定点⎝⎛⎭⎪⎫27,0.当直线MN 斜率存在时,设直线MN 斜率为k ,M (x 1,y 1),N (x 2,y 2),则直线MN :y =kx +n (k ≠0),与椭圆方程x 24+y 23=1联立,得(4k 2+3)x 2+8knx +4n 2-12=0,所以x 1+x 2=-8kn4k 2+3,x 1x 2=4n 2-124k 2+3,Δ=(8kn )2-4(4k 2+3)(4n 2-12)>0,k ∈R.所以y 1y 2=(kx 1+n )(kx 2+n )=k 2x 1x 2+kn (x 1+x 2)+n 2, 由AM →·AN →=0,则(x 1-2,y 1)·(x 2-2,y 2)=0,即x 1x 2-2(x 1+x 2)+4+y 1y 2=0,所以7n 2+4k 2+16kn =0,所以n =-27k 或n =-2k ,所以直线MN :y =k ⎝ ⎛⎭⎪⎫x -27或y =k (x -2), 所以直线过定点⎝ ⎛⎭⎪⎫27,0或(2,0)(舍去). 综上知,直线过定点⎝ ⎛⎭⎪⎫27,0.。
2019-2020学年高中数学学业水平考试仿真模拟考试题三(含解析)
2019-2020学年高中数学学业水平考试仿真模拟考试题三(含解析)本试题卷包括选择题、填空题和解答题三部分.时量:120分钟,满分:100分一、选择题(本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1. 三视图如右图的几何体是A. 三棱锥B. 四棱锥C. 四棱台D. 三棱台【答案】B【解析】根据三视图可知,该几何体底面是四边形,侧面是三角形,因此可知该几何体是四棱锥,选B2.已知集合,,若,则的值为()A. B.C. D.【答案】B【解析】【分析】根据可得出关于的等式,解出即可.【详解】集合,,,,解得.故选:B.【点睛】本题考查利用集合的包含关系求参数,考查计算能力,属于基础题.3.函数的单调递增区间是()A. ,B. ,C. ,D. ,【答案】D【解析】【分析】根据正弦函数的单调性,并采用整体法,可得结果.【详解】由令所以函数的单调递增区间为,故选:D【点睛】本题考查正弦型函数的单调递增区间,重点在于把握正弦函数的单调性,同时对于整体法的应用,使问题化繁为简,属基础题.4.某程序框图如图所示,该程序运行后输出的的值是()A. 4B. 5C. 6D. 7【答案】A【解析】【分析】根据框图,模拟计算即可得出结果.【详解】程序执行第一次,,,第二次,,第三次,,第四次,,跳出循环,输出,故选A.【点睛】本题主要考查了程序框图,循环结构,属于中档题. 5.10名工人某天生产同一零件,生产的件数是15,17,14,10,15,17,17,16,14,12.设其平均数为a,中位数为b,众数为c,则有().A. B. C. D.【答案】B【解析】【分析】根据所给数据,分别求出平均数为a,中位数为b,众数为c,然后进行比较可得选项.【详解】,中位数为,众数为.故选:B.【点睛】本题主要考查统计量的求解,明确平均数、中位数、众数的求解方法是求解的关键,侧重考查数学运算的核心素养.6.已知直线,给出以下三个命题:①若平面平面,则直线平面;②若直线平面,则平面平面;③若直线不平行于平面,则平面不平行于平面.其中正确的命题是()A. ②B. ③C. ①②D. ①③【答案】D【解析】【分析】利用线面平行和面面平行的性质和判定定理对三个命题分析进行选择.【详解】①因为直线a⊂α,平面α∥平面β,则α内的每一条直线都平行平面β.显然正确.②因为当平面α与平面β相交时,仍然可以存在直线a⊂α使直线a∥平面β.故错误.③只要一个平面内有一条直线不平行与另一个平面,两平面就不会平行.故正确.故选D.【点睛】本题考查命题真假的判断,考查空间中线线、线面、面面间的位置关系等基础知识,考查空间想象能力.7.函数的零点所在的区间是()A. B.C. D.【答案】B【解析】【分析】求出函数的零点,即可得出该函数零点所在的区间.【详解】令,即,解得,,因此,函数的零点所在的区间是.故选:B.【点睛】本题考查函数零点所在区间的判断,一般利用零点存在定理来判断,考查推理能力,属于基础题.8.在中,角,,的对边分别是,,,已知,,,则()A. 2B.C.D. 4【答案】C【解析】分析:已知两边和夹角直接应用余弦定理即可.详解:已知,,,根据余弦定理得到点睛:本题主要考查正弦定理边角互化及余弦定理的应用与特殊角的三角函数,属于简单题. 对余弦定理一定要熟记两种形式:(1);(2),同时还要熟练掌握运用两种形式的条件.另外,在解与三角形、三角函数有关的问题时,还需要记住等特殊角的三角函数值,以便在解题中直接应用.9.直线与圆相交于A、B两点,则AB 的长度等于A. 1B.C.D.【答案】D【解析】试题分析:根据题意可知圆心到直线的距离是,根据圆中的特殊三角形,可知半弦长,所以弦长为,故选D.考点:直线被圆截得的弦长问题.10.已知是公差为1的等差数列,为的前项和,若,则()A. B. C. D.【答案】B【解析】试题分析:由得,解得.考点:等差数列.二、填空题(本大题共5小题,每小题4分,共20分)11.在△ABC中,AB=1, BC=2, B=60°,则AC= .【答案】【解析】.12.在长方体中,与棱垂直且异面的棱的条数是______.【答案】【解析】【分析】作出图形,根据线面垂直的性质可得出结论.【详解】如下图所示:平面,平面,与棱垂直且异面的棱有、、、,共条.故答案为:.【点睛】本题考查异面垂直的直线的寻找,考查推理能力,属于基础题.13.过点且平行于直线的直线方程为______.【答案】【解析】【分析】求出直线的斜率,然后利用点斜式可得出所求直线的方程,化为一般式即可.【详解】直线的斜率为,因此,所求直线的方程为,即.故答案为:.【点睛】本题考查利用两直线平行求直线方程,可利用平行直线系方程求解,一般要求出直线的斜率,利用点斜式得出直线的方程,考查计算能力,属于基础题.14.水平放置的斜二测直观图如图所示,已知,,则边上的中线的长度为______.【答案】【解析】【分析】由已知中直观图中线段的长,可分析出实际为一个直角边长分别为、的直角三角形,进而根据勾股定理求出斜边,结合直角三角形斜边上的中线等于斜边的一半可得答案.【详解】在直观图中,,,所以在中,,,为直角,,因此,边上的中线的长度为.故答案为:.【点睛】本题考查的知识点是斜二测画法直观图,其中掌握斜二测画法直观图与原图中的线段关系是解答的关键.15.设,,且,则的最小值为______.【答案】【解析】【分析】将等式变形为,由此得出,展开后利用基本不等式可得出的最小值.【详解】等式两边同时除以得,,,,当且仅当时,等号成立,因此,的最小值为.故答案为:.【点睛】本题考查利用基本不等式求最值,涉及的妙用,解题时将注意将定值条件化简变形,考查计算能力,属于中等题.三、解答题(本大题共5小题,共40分,解答应写出文字说明,证明过程或演算步骤)16.已知是的一个内角,向量,且,求角的大小.【答案】【解析】分析】利用平面向量数量积的坐标运算得出,利用辅助角公式化简得出,再结合角的取值范围可得出角的值.【详解】因为,且,所以,所以,即又因为,所以,所以,得.【点睛】本题考查三角形中角的计算,涉及平面向量数量积的坐标运算与辅助角公式的应用,考查计算能力,属于基础题. 17.某校研究性学习小组从汽车市场上随机抽取20辆纯电动汽车,调查其续驶里程(单次充电后能行驶的最大里程),被调查汽车的续驶里程全部介于50公里和300公里之间,将统计结果分成5组:,绘制成如图所示的频率分布直方图.(1)求直方图中的值及续驶里程在的车辆数;(2)若从续驶里程在的车辆中随机抽取2辆车,求其中恰有一辆车的续驶里程在内的概率.【答案】(1),5;(2).【解析】分析】(1)利用所有小矩形的面积之和为1,求得的值,求得续驶里程在的车辆的概率,再利用频数=频率样本容量求车辆数;(2)由(1)知续驶里程在的车辆数为5辆,其中落在内的车辆数为3辆,利用列举法求出从这5辆汽车中随机抽取2辆,所有可能的情况,以及恰有一辆车的续驶里程在内的情况,利用古典概型概率公式可得结果.【详解】(1)由频率分布直方图中所有小矩形的面积之和为1可得:,解得:,∴续驶里程在的车辆数为:(辆).(2)设“恰有一辆车的续驶里程在内”为事件M由(1)知续驶里程在的车辆数为5辆,其中落在内的车辆数为3辆,分别记为A、B、C,落在内的车辆数2辆,分别记为a、b,从这5辆汽车中随机抽取2辆,所有可能的情况如下:,,,,,,,,,共10种且每种情况都等可能被抽到,事件M包含的情况有:,,,,,共6种,所以由古典概型概率公式有:,即恰有一辆车的续驶里程在内的概率为.【点睛】本题主要考查直方图的应用,以及古典概型概率公式的应用,属于中档题.利用古典概型概率公式求概率时,找准基本事件个数是解题的关键,基本亊件的探求方法有 (1)枚举法:适合给定的基本事件个数较少且易一一列举出的;(2)树状图法:适合于较为复杂的问题中的基本亊件的探求.在找基本事件个数时,一定要按顺序逐个写出:先,….,再,…..依次….…这样才能避免多写、漏写现象的发生.18.已知等差数列的公差为,且,,成等比数列.(1)设数列的通项公式;(2)设,求数列的前项和.【答案】(1);(2).【解析】【分析】(1)根据已知条件得出关于的方程,解出的值,然后利用等差数列的通项公式可得出数列的通项公式;(2)求出,然后利用分组求和法结合等差数列和等比数列的求和公式可求出.【详解】(1)等差数列的公差为,,,,,成等比数列,,即,解得,;(2)..【点睛】本题考查等差数列通项公式的求解,同时也考查了分组求和法,考查计算能力,属于基础题.19.已知圆C经过、两点,且圆心在直线上.(1)求圆C的方程;(2)若直线经过点且与圆C相切,求直线的方程.【答案】(1);(2)【解析】试题分析:(1)根据圆心在弦的垂直平分线上,先求出弦的垂直平分线的方程与联立可求得圆心坐标,再用两点间的距离公式求得半径,进而求得圆的方程;(2)当直线斜率不存在时,与圆相切,方程为;当直线斜率存在时,设斜率为,写出其点斜式方程,利用圆心到直线的距离等于半径建立方程求解出的值.试题解析:(1)依题意知线段的中点坐标是,直线的斜率为,故线段的中垂线方程是即,解方程组得,即圆心的坐标为,圆的半径,故圆的方程是(2)若直线斜率不存在,则直线方程是,与圆相离,不合题意;若直线斜率存在,可设直线方程是,即,因为直线与圆相切,所以有,解得或.所以直线的方程是或.20.已知函数.(1)若,求的值;(2)求函数的定义域;(3)若对任意的,不等式恒成立,求实数的取值范围.【答案】(1);(2);(3).【解析】【分析】(1)由可得出关于的等式,即可得出实数的值;(2)根据对数真数大于零、分母不为零可得出关于的不等式组,解不等式组即可得出函数的定义域;(3)令,由可得出,参变量分离得,求出二次函数在上的最大值,即可得出实数的取值范围.【详解】(1),,解得;(2)对于函数,有,解得且.因此,函数的定义域为;(3),令,由,得,参变量分离得,二次函数的图象开口向下,对称轴为直线.所以,函数在区间上单调递减,当时,该函数取得最大值,即,.因此,实数取值范围为.【点睛】本题考查利用函数值求参数、函数定义域的求解以及不等式恒成立问题的求解,考查参变量分离法的应用,考查运算求解能力,属于中等题.2019-2020学年高中数学学业水平考试仿真模拟考试题三(含解析)本试题卷包括选择题、填空题和解答题三部分.时量:120分钟,满分:100分一、选择题(本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1. 三视图如右图的几何体是A. 三棱锥B. 四棱锥C. 四棱台D. 三棱台【答案】B【解析】根据三视图可知,该几何体底面是四边形,侧面是三角形,因此可知该几何体是四棱锥,选B2.已知集合,,若,则的值为()A. B.C. D.【答案】B【解析】【分析】根据可得出关于的等式,解出即可.【详解】集合,,,,解得.故选:B.【点睛】本题考查利用集合的包含关系求参数,考查计算能力,属于基础题.3.函数的单调递增区间是()A. ,B. ,C. ,D. ,【答案】D【解析】【分析】根据正弦函数的单调性,并采用整体法,可得结果.【详解】由令所以函数的单调递增区间为,故选:D【点睛】本题考查正弦型函数的单调递增区间,重点在于把握正弦函数的单调性,同时对于整体法的应用,使问题化繁为简,属基础题.4.某程序框图如图所示,该程序运行后输出的的值是()A. 4B. 5C. 6D. 7【答案】A【解析】【分析】根据框图,模拟计算即可得出结果.【详解】程序执行第一次,,,第二次,,第三次,,第四次,,跳出循环,输出,故选A.【点睛】本题主要考查了程序框图,循环结构,属于中档题.5.10名工人某天生产同一零件,生产的件数是15,17,14,10,15,17,17,16,14,12.设其平均数为a,中位数为b,众数为c,则有().A. B. C. D.【答案】B【解析】【分析】根据所给数据,分别求出平均数为a,中位数为b,众数为c,然后进行比较可得选项.【详解】,中位数为,众数为.故选:B.【点睛】本题主要考查统计量的求解,明确平均数、中位数、众数的求解方法是求解的关键,侧重考查数学运算的核心素养.6.已知直线,给出以下三个命题:①若平面平面,则直线平面;②若直线平面,则平面平面;③若直线不平行于平面,则平面不平行于平面.其中正确的命题是()A. ②B. ③C. ①②D. ①③【答案】D【解析】【分析】利用线面平行和面面平行的性质和判定定理对三个命题分析进行选择.【详解】①因为直线a⊂α,平面α∥平面β,则α内的每一条直线都平行平面β.显然正确.②因为当平面α与平面β相交时,仍然可以存在直线a⊂α使直线a∥平面β.故错误.③只要一个平面内有一条直线不平行与另一个平面,两平面就不会平行.故正确.故选D.【点睛】本题考查命题真假的判断,考查空间中线线、线面、面面间的位置关系等基础知识,考查空间想象能力.7.函数的零点所在的区间是()A. B.C. D.【答案】B【解析】【分析】求出函数的零点,即可得出该函数零点所在的区间.【详解】令,即,解得,,因此,函数的零点所在的区间是.故选:B.【点睛】本题考查函数零点所在区间的判断,一般利用零点存在定理来判断,考查推理能力,属于基础题.8.在中,角,,的对边分别是,,,已知,,,则()A. 2B.C.D. 4【答案】C【解析】分析:已知两边和夹角直接应用余弦定理即可.详解:已知,,,根据余弦定理得到点睛:本题主要考查正弦定理边角互化及余弦定理的应用与特殊角的三角函数,属于简单题. 对余弦定理一定要熟记两种形式:(1);(2),同时还要熟练掌握运用两种形式的条件.另外,在解与三角形、三角函数有关的问题时,还需要记住等特殊角的三角函数值,以便在解题中直接应用.9.直线与圆相交于A、B两点,则AB的长度等于A. 1B.C.D.【答案】D【解析】试题分析:根据题意可知圆心到直线的距离是,根据圆中的特殊三角形,可知半弦长,所以弦长为,故选D.考点:直线被圆截得的弦长问题.10.已知是公差为1的等差数列,为的前项和,若,则()A. B. C. D.【答案】B【解析】试题分析:由得,解得.考点:等差数列.二、填空题(本大题共5小题,每小题4分,共20分)11.在△ABC中,AB=1, BC=2, B=60°,则AC= .【答案】【解析】.12.在长方体中,与棱垂直且异面的棱的条数是______.【答案】【解析】【分析】作出图形,根据线面垂直的性质可得出结论.【详解】如下图所示:平面,平面,与棱垂直且异面的棱有、、、,共条.故答案为:.【点睛】本题考查异面垂直的直线的寻找,考查推理能力,属于基础题.13.过点且平行于直线的直线方程为______.【答案】【解析】【分析】求出直线的斜率,然后利用点斜式可得出所求直线的方程,化为一般式即可.【详解】直线的斜率为,因此,所求直线的方程为,即.故答案为:.【点睛】本题考查利用两直线平行求直线方程,可利用平行直线系方程求解,一般要求出直线的斜率,利用点斜式得出直线的方程,考查计算能力,属于基础题.14.水平放置的斜二测直观图如图所示,已知,,则边上的中线的长度为______.【答案】【解析】【分析】由已知中直观图中线段的长,可分析出实际为一个直角边长分别为、的直角三角形,进而根据勾股定理求出斜边,结合直角三角形斜边上的中线等于斜边的一半可得答案.【详解】在直观图中,,,所以在中,,,为直角,,因此,边上的中线的长度为.故答案为:.【点睛】本题考查的知识点是斜二测画法直观图,其中掌握斜二测画法直观图与原图中的线段关系是解答的关键.15.设,,且,则的最小值为______.【答案】【解析】【分析】将等式变形为,由此得出,展开后利用基本不等式可得出的最小值.【详解】等式两边同时除以得,,,,当且仅当时,等号成立,因此,的最小值为.故答案为:.【点睛】本题考查利用基本不等式求最值,涉及的妙用,解题时将注意将定值条件化简变形,考查计算能力,属于中等题.三、解答题(本大题共5小题,共40分,解答应写出文字说明,证明过程或演算步骤)16.已知是的一个内角,向量,且,求角的大小.【答案】【解析】分析】利用平面向量数量积的坐标运算得出,利用辅助角公式化简得出,再结合角的取值范围可得出角的值.【详解】因为,且,所以,所以,即又因为,所以,所以,得.【点睛】本题考查三角形中角的计算,涉及平面向量数量积的坐标运算与辅助角公式的应用,考查计算能力,属于基础题.17.某校研究性学习小组从汽车市场上随机抽取20辆纯电动汽车,调查其续驶里程(单次充电后能行驶的最大里程),被调查汽车的续驶里程全部介于50公里和300公里之间,将统计结果分成5组:,绘制成如图所示的频率分布直方图.(1)求直方图中的值及续驶里程在的车辆数;(2)若从续驶里程在的车辆中随机抽取2辆车,求其中恰有一辆车的续驶里程在内的概率.【答案】(1),5;(2).【解析】分析】(1)利用所有小矩形的面积之和为1,求得的值,求得续驶里程在的车辆的概率,再利用频数=频率样本容量求车辆数;(2)由(1)知续驶里程在的车辆数为5辆,其中落在内的车辆数为3辆,利用列举法求出从这5辆汽车中随机抽取2辆,所有可能的情况,以及恰有一辆车的续驶里程在内的情况,利用古典概型概率公式可得结果.【详解】(1)由频率分布直方图中所有小矩形的面积之和为1可得:,解得:,∴续驶里程在的车辆数为:(辆).(2)设“恰有一辆车的续驶里程在内”为事件M由(1)知续驶里程在的车辆数为5辆,其中落在内的车辆数为3辆,分别记为A、B、C,落在内的车辆数2辆,分别记为a、b,从这5辆汽车中随机抽取2辆,所有可能的情况如下:,,,,,,,,,共10种且每种情况都等可能被抽到,事件M包含的情况有:,,,,,共6种,所以由古典概型概率公式有:,即恰有一辆车的续驶里程在内的概率为.【点睛】本题主要考查直方图的应用,以及古典概型概率公式的应用,属于中档题.利用古典概型概率公式求概率时,找准基本事件个数是解题的关键,基本亊件的探求方法有 (1)枚举法:适合给定的基本事件个数较少且易一一列举出的;(2)树状图法:适合于较为复杂的问题中的基本亊件的探求.在找基本事件个数时,一定要按顺序逐个写出:先,….,再,…..依次….…这样才能避免多写、漏写现象的发生.18.已知等差数列的公差为,且,,成等比数列.(1)设数列的通项公式;(2)设,求数列的前项和.【答案】(1);(2).【解析】【分析】(1)根据已知条件得出关于的方程,解出的值,然后利用等差数列的通项公式可得出数列的通项公式;(2)求出,然后利用分组求和法结合等差数列和等比数列的求和公式可求出.【详解】(1)等差数列的公差为,,,,,成等比数列,,即,解得,;(2)..【点睛】本题考查等差数列通项公式的求解,同时也考查了分组求和法,考查计算能力,属于基础题.19.已知圆C经过、两点,且圆心在直线上.(1)求圆C的方程;(2)若直线经过点且与圆C相切,求直线的方程.【答案】(1);(2)【解析】试题分析:(1)根据圆心在弦的垂直平分线上,先求出弦的垂直平分线的方程与联立可求得圆心坐标,再用两点间的距离公式求得半径,进而求得圆的方程;(2)当直线斜率不存在时,与圆相切,方程为;当直线斜率存在时,设斜率为,写出其点斜式方程,利用圆心到直线的距离等于半径建立方程求解出的值.试题解析:(1)依题意知线段的中点坐标是,直线的斜率为,故线段的中垂线方程是即,解方程组得,即圆心的坐标为,圆的半径,故圆的方程是(2)若直线斜率不存在,则直线方程是,与圆相离,不合题意;若直线斜率存在,可设直线方程是,即,因为直线与圆相切,所以有,解得或.所以直线的方程是或.20.已知函数.(1)若,求的值;(2)求函数的定义域;(3)若对任意的,不等式恒成立,求实数的取值范围.【答案】(1);(2);(3).【解析】【分析】(1)由可得出关于的等式,即可得出实数的值;(2)根据对数真数大于零、分母不为零可得出关于的不等式组,解不等式组即可得出函数的定义域;(3)令,由可得出,参变量分离得,求出二次函数在上的最大值,即可得出实数的取值范围.【详解】(1),,解得;(2)对于函数,有,解得且.因此,函数的定义域为;(3),令,由,得,参变量分离得,二次函数的图象开口向下,对称轴为直线.所以,函数在区间上单调递减,当时,该函数取得最大值,即,.因此,实数取值范围为.【点睛】本题考查利用函数值求参数、函数定义域的求解以及不等式恒成立问题的求解,考查参变量分离法的应用,考查运算求解能力,属于中等题.。
2019-2020年高中学业水平数学模拟测试卷(三)
高中学业水平考试模拟测试卷(三)(时间:90分钟 满分100分)一、选择题(共15小题,每小题4分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知集合M ={-1,0,1},N ={x |x 2=x },则M ∩N =( ) A .{1}B .{0,1}C .{-1,0}D .{-1,0,1}解析:x 2-x =0⇒x (x -1)=0⇒N ={0,1},所以M ∩N ={0,1}. 答案:B2.已知等比数列{a n }的公比为2,则a 4a 2值为( )A.14B.12C .2D .4解析:a 4a 2=q 2=4.答案:D3.已知a ⊥b ,|a |=2,|b |=3且向量3a +2b 与ka -b 互相垂直,则k 的值为( )A .-32B.32C .±32D .1解析:命题“存在x 0∈R ,x 20-1=0”的否定为“对任意的x ∈R ,x 2-1≠0”.答案:D4.直线l 过点(1,-2),且与直线2x +3y -1=0垂直,则l 的方程是( )A .2x +3y +4=0B .2x +3y -8=0C .3x -2y -7=0D .3x -2y -1=0解析:设直线l :3x -2y +c =0,因为(1,-2)在直线上,所以3-2×(-2)+c =0,解得c =-7,即直线l 的方程为3x -2y -7=0.答案:C5.已知直线的点斜式方程是y -2=-3(x -1),那么此直线的倾斜角为( )A.π6B.π3C.2π3D.5π6解析:因为k =tan α=-3, 所以α=π-π3=2π3,故选C.答案:C6.已知复数z 满足z i =2+i ,i 是虚数单位,则|z |=( ) A.2B. 3C .2D. 5解析:由题意得z =2+ii =1-2i ,所以|z |= 5. 答案:D7.要得到函数y =cos(2x +1)的图象,只要将函数y =cos 2x 的图象( )A .向左平移1个单位B .向右平移1个单位C .向左平移12个单位D .向右平移12个单位解析:y =cos 2x →y =cos(2x +1)=cos ⎣⎢⎡⎦⎥⎤2⎝⎛⎭⎪⎫x +12.故选C.答案:C8.下列说法不正确的是()A.空间中,一组对边平行且相等的四边形一定是平行四边形B.同一平面的两条垂线一定共面C.过直线上一点可以作无数条直线与这条直线垂直,且这些直线都在同一个平面内D.过一条直线有且只有一个平面与已知平面垂直解析:A.一组对边平行且相等就决定了是平行四边形,故A正确;B.由线面垂直的性质定理知,同一平面的两条垂线互相平行,因而共面,故B正确;C.由线面垂直的定义知,这些直线都在同一个平面内即直线的垂面,故C正确;D.由实际例子,如把书本打开,且把书脊垂直放在桌上,则由无数个平面满足题意,故D不正确.故选D.答案:D9.函数f(x)=x3-2的零点所在的区间是()A.(-2,0) B.(0,1) C.(1,2) D.(2,3)解析:因为f(1)=13-2=-1<0,f(2)=23-2=6>0.所以零点所在的区间为(1,2).答案:C10.已知等差数列{a n}中,a2=2,a4=6,则前4项的和S4等于()A.8 B.10 C.12 D.14解析:设等差数列{a n }的公差为d ,则a 4=a 2+(4-2)d ⇒d =6-22=2,a 1=a 2-d =2-2=0,所以S 4=4(a 1+a 4)2=2(0+6)=12.故选C.答案:C11.某几何体的三视图及其尺寸如图所示,则这个几何体的体积是( )A .6B .9C .18D .36解析:由题意可知,几何体是以正视图为底面的三棱柱, 其底面面积S =12×4×52-42=6,高是3,所以它的体积为V=Sh =18.故选C.答案:C12.双曲线x 2m -y 23+m =1的一个焦点为(2,0),则m 的值为( )A.12B .1或3C.1+22D.2-12解析:因为双曲线的焦点为(2,0),在x 轴上且c =2,所以m +3+m =c 2=4,所以m =12.答案:A13.设x ,y 满足约束条件⎩⎪⎨⎪⎧x +y -6≤0,x -3y +2≤0,3x -y -2≥0,则z =x -2y 的最小值为( )A .-10B .-6C .-1D .0解析:由z =x -2y 得y =12x -z2,作出不等式组对应的平面区域如图(阴影部分),平移直线y =12x -z2,由图象可知,当直线y =12x -z 2过点B 时,直线y =12x -z2的截距最大,此时z 最小,由⎩⎨⎧x +y -6=0,3x -y -2=0,解得⎩⎨⎧x =2,y =4,即B (2,4).代入目标函数z =x -2y ,得z =2-8=-6,所以目标函数z =x -2y 的最小值是-6.故选B. 答案:B14.sin 47°-sin 17°cos 30°cos 17°=( )A .-32B .-12C.12D.32解析:sin 47°-sin 17°cos 30°cos 17°=sin (30°+17°)-sin 17°cos 30°cos 17°=sin 30°cos 17°+cos 30°sin 17°-sin 17°cos 30°cos 17°=sin 30°cos 17°cos 17°=sin 30°=12.故选C.答案:C15.小李从甲地到乙地的平均速度为a ,从乙地到甲地的平均速度为b (a >b >0),他往返甲、乙两地的平均速度为v ,则( )A .v =a +b 2B .v =ab C.ab <v <a +b 2 D .b <v <ab解析:设甲地到乙地的距离为s .则他往返甲、乙两地的平均速度为v =2ss a +s b =2aba +b ,因为a >b >0,所以2aa +b>1,所以v =2aba +b >b .v =2aba +b <2ab2ab =ab .所以b <v <ab .故选D. 答案:D二、填空题(共4小题,每小题4分,共16分.)16.首项为1,公比为2的等比数列的前4项和S 4=________. 解析:S 4=1-241-2=15.答案:1517.若函数f (x )=log a (x +m )+1(a >0且a ≠1)恒过定点(2,n ),则m +n 的值为________.解析:f (x )=log a (x +m )+1过定点(2,n ),则log a (2+m )+1=n恒成立,所以⎩⎨⎧2+m =1,1=n ,⇒⎩⎨⎧m =-1,n =1,所以m +n =0.答案:018.已知函数f (x )=⎩⎪⎨⎪⎧log 2x ,x >0,3x ,x ≤0,则f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫14的值是________.解析:f ⎝ ⎛⎭⎪⎫14=log 214=-2,f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫14=f (-2)=3-2=19.答案:1919.已知椭圆的中心在原点,焦点在x 轴上,离心率为55,且过点P (-5,4),则椭圆的方程为______________.解析:设椭圆的方程为x 2a 2+y 2b 2=1(a >b >0),将点(-5,4)代入得25a 2+16b2=1, 又离心率e =ca =55,即e 2=c 2a 2=a 2-b 2a 2=15,所以a 2=45,b 2=36,故椭圆的方程为x 245+y 236=1.答案:x 245+y 236=1三、解答题(共2小题,每小题12分,共24分.解答须写出文字说明,证明过程和演算步骤.)20.已知圆C :(x -1)2+y 2=9内有一点P (2,2),过点P 作直线l 交圆C 于A 、B 两点.(1)当l 经过圆心C 时,求直线l 的方程; (2)当弦AB 被点P 平分时,求直线l 的方程; (3)当直线l 的倾斜角为45°时,求弦AB 的长.解:(1)已知圆C :(x -1)2+y 2=9的圆心为C (1,0),因为直线过点P 、C ,所以直线l 的斜率为2,直线l 的方程为y =2(x -1),即2x -y -2=0.(2)当弦AB 被点P 平分时,l ⊥PC ,直线l 的方程为y -2=-12(x-2),即x +2y -6=0.(3)当直线l 的倾斜角为45°时,斜率为1,直线l 的方程为y -2=x -2,即x -y =0.圆心到直线l 的距离为12,圆的半径为3,所以弦AB 的长为232-⎝ ⎛⎭⎪⎫122=34.21.已知等差数列{a n }满足a 2+a 5=8,a 6-a 3=3. (1)求数列{a n }的前n 项和S n ;(2)若b n =1S n+3·2n -2,求数列{b n }的前n 项和T n .解:(1)由a 6-a 3=3得数列{a n }的公差d =a 6-a 33=1,由a 2+a 5=8,得2a 1+5d =8,解得a 1=32,所以S n =na 1+n (n -1)2d =n (n +2)2.(2)由(1)可得1S n =2n (n +2)=1n -1n +2,所以b n =1S n +3·2n -2=1n -1n +2+3·2n -2.所以T n =b 1+b 2+b 3+…+b n =⎝ ⎛⎭⎪⎫1-13+⎝ ⎛⎭⎪⎫12-14+…+⎝ ⎛⎭⎪⎪⎫1n-1n +2+32(1+2+…+2n -1)=⎝⎛⎭⎪⎫1+12+13+…+1n -(13+14+…+1n +1n +1+1n +2)+32×2n-12-1=32-1n +1-1n +2+32×(2n -1)=3·2n -1-1n +1-1n +2.。
2019-2020学年高中学业水平数学模拟测试卷3
高中学业水平考试模拟测试卷(三)(时间:90分钟 满分100分)一、选择题(共15小题,每小题4分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知集合M ={-1,0,1},N ={x |x 2=x },则M ∩N =( ) A .{1}B .{0,1}C .{-1,0}D .{-1,0,1}解析:x 2-x =0⇒x (x -1)=0⇒N ={0,1},所以M ∩N ={0,1}. 答案:B2.已知等比数列{a n }的公比为2,则a 4a 2值为( )A.14B.12C .2D .4解析:a 4a 2=q 2=4.答案:D3.已知a ⊥b ,|a |=2,|b |=3且向量3a +2b 与ka -b 互相垂直,则k 的值为( )A .-32B.32C .±32D .1解析:命题“存在x 0∈R ,x 20-1=0”的否定为“对任意的x ∈R ,x 2-1≠0”.答案:D4.直线l 过点(1,-2),且与直线2x +3y -1=0垂直,则l 的方程是( )A .2x +3y +4=0B .2x +3y -8=0C .3x -2y -7=0D .3x -2y -1=0解析:设直线l :3x -2y +c =0,因为(1,-2)在直线上,所以3-2×(-2)+c =0,解得c =-7,即直线l 的方程为3x -2y -7=0.答案:C5.已知直线的点斜式方程是y -2=-3(x -1),那么此直线的倾斜角为( )A.π6B.π3C.2π3D.5π6解析:因为k =tan α=-3, 所以α=π-π3=2π3,故选C.答案:C6.已知复数z 满足z i =2+i ,i 是虚数单位,则|z |=( ) A.2B. 3C .2D. 5解析:由题意得z =2+ii =1-2i ,所以|z |= 5. 答案:D7.要得到函数y =cos(2x +1)的图象,只要将函数y =cos 2x 的图象( )A .向左平移1个单位B .向右平移1个单位C .向左平移12个单位D .向右平移12个单位解析:y =cos 2x →y =cos(2x +1)=cos ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x +12.故选C.答案:C8.下列说法不正确的是( )A .空间中,一组对边平行且相等的四边形一定是平行四边形B .同一平面的两条垂线一定共面C.过直线上一点可以作无数条直线与这条直线垂直,且这些直线都在同一个平面内D.过一条直线有且只有一个平面与已知平面垂直解析:A.一组对边平行且相等就决定了是平行四边形,故A正确;B.由线面垂直的性质定理知,同一平面的两条垂线互相平行,因而共面,故B正确;C.由线面垂直的定义知,这些直线都在同一个平面内即直线的垂面,故C正确;D.由实际例子,如把书本打开,且把书脊垂直放在桌上,则由无数个平面满足题意,故D不正确.故选D.答案:D9.函数f(x)=x3-2的零点所在的区间是()A.(-2,0) B.(0,1) C.(1,2) D.(2,3)解析:因为f(1)=13-2=-1<0,f(2)=23-2=6>0.所以零点所在的区间为(1,2).答案:C10.已知等差数列{a n}中,a2=2,a4=6,则前4项的和S4等于()A.8 B.10 C.12 D.14解析:设等差数列{a n}的公差为d,则a4=a2+(4-2)d⇒d=6-2 2=2,a1=a2-d=2-2=0,所以S4=4(a1+a4)2=2(0+6)=12.故选C.答案:C11.某几何体的三视图及其尺寸如图所示,则这个几何体的体积是()A .6B .9C .18D .36解析:由题意可知,几何体是以正视图为底面的三棱柱, 其底面面积S =12×4×52-42=6,高是3,所以它的体积为V=Sh =18.故选C.答案:C12.双曲线x 2m -y 23+m =1的一个焦点为(2,0),则m 的值为( )A.12B .1或3C.1+22D.2-12解析:因为双曲线的焦点为(2,0),在x 轴上且c =2,所以m +3+m =c 2=4,所以m =12.答案:A13.设x ,y 满足约束条件⎩⎪⎨⎪⎧x +y -6≤0,x -3y +2≤0,3x -y -2≥0,则z =x -2y 的最小值为( )A .-10B .-6C .-1D .0解析:由z =x -2y 得y =12x -z2,作出不等式组对应的平面区域如图(阴影部分),平移直线y =12x -z2,由图象可知,当直线y =12x -z 2过点B 时,直线y =12x -z2的截距最大,此时z 最小,由⎩⎪⎨⎪⎧x +y -6=0,3x -y -2=0,解得⎩⎪⎨⎪⎧x =2,y =4,即B (2,4).代入目标函数z =x-2y ,得z =2-8=-6,所以目标函数z =x -2y 的最小值是-6.故选B. 答案:B14.sin 47°-sin 17°cos 30°cos 17°=( )A .-32B .-12C.12D.32解析:sin 47°-sin 17°cos 30°cos 17°=sin (30°+17°)-sin 17°cos 30°cos 17°=sin 30°cos 17°+cos 30°sin 17°-sin 17°cos 30°cos 17°=sin 30°cos 17°cos 17°=sin 30°=12.故选C.答案:C15.小李从甲地到乙地的平均速度为a ,从乙地到甲地的平均速度为b (a >b >0),他往返甲、乙两地的平均速度为v ,则( )A .v =a +b 2B .v =ab C.ab <v <a +b 2 D .b <v <ab解析:设甲地到乙地的距离为s .则他往返甲、乙两地的平均速度为v =2ss a +s b=2aba +b ,因为a >b >0,所以2aa +b>1, 所以v =2ab a +b >b .v =2ab a +b <2ab2ab =ab .所以b <v <ab .故选D. 答案:D二、填空题(共4小题,每小题4分,共16分.)16.首项为1,公比为2的等比数列的前4项和S 4=________. 解析:S 4=1-241-2=15.答案:1517.若函数f (x )=log a (x +m )+1(a >0且a ≠1)恒过定点(2,n ),则m +n 的值为________.解析:f (x )=log a (x +m )+1过定点(2,n ),则log a (2+m )+1=n恒成立,所以⎩⎪⎨⎪⎧2+m =1,1=n ,⇒⎩⎪⎨⎪⎧m =-1,n =1,所以m +n =0.答案:018.已知函数f (x )=⎩⎪⎨⎪⎧log 2x ,x >0,3x ,x ≤0,则f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫14的值是________.解析:f ⎝ ⎛⎭⎪⎫14=log 214=-2,f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫14=f (-2)=3-2=19.答案:1919.已知椭圆的中心在原点,焦点在x 轴上,离心率为55,且过点P (-5,4),则椭圆的方程为______________.解析:设椭圆的方程为x 2a 2+y 2b 2=1(a >b >0),将点(-5,4)代入得25a 2+16b2=1, 又离心率e =ca =55,即e 2=c 2a 2=a 2-b 2a 2=15,所以a 2=45,b 2=36,故椭圆的方程为x 245+y 236=1.答案:x 245+y 236=1三、解答题(共2小题,每小题12分,共24分.解答须写出文字说明,证明过程和演算步骤.)20.已知圆C :(x -1)2+y 2=9内有一点P (2,2),过点P 作直线l 交圆C 于A 、B 两点.(1)当l 经过圆心C 时,求直线l 的方程; (2)当弦AB 被点P 平分时,求直线l 的方程; (3)当直线l 的倾斜角为45°时,求弦AB 的长.解:(1)已知圆C :(x -1)2+y 2=9的圆心为C (1,0),因为直线过点P 、C ,所以直线l 的斜率为2,直线l 的方程为y =2(x -1),即2x -y -2=0.(2)当弦AB 被点P 平分时,l ⊥PC ,直线l 的方程为y -2=-12(x-2),即x +2y -6=0.(3)当直线l 的倾斜角为45°时,斜率为1,直线l 的方程为y -2=x -2,即x -y =0.圆心到直线l 的距离为12,圆的半径为3,所以弦AB 的长为232-⎝ ⎛⎭⎪⎫122=34.21.已知等差数列{a n }满足a 2+a 5=8,a 6-a 3=3. (1)求数列{a n }的前n 项和S n ;(2)若b n =1S n+3·2n -2,求数列{b n }的前n 项和T n .解:(1)由a 6-a 3=3得数列{a n }的公差d =a 6-a 33=1,由a 2+a 5=8,得2a 1+5d =8,解得a 1=32,所以S n =na 1+n (n -1)2d =n (n +2)2.(2)由(1)可得1S n =2n (n +2)=1n -1n +2,所以b n =1S n +3·2n -2=1n -1n +2+3·2n -2.所以T n =b 1+b 2+b 3+…+b n =⎝ ⎛⎭⎪⎫1-13+⎝ ⎛⎭⎪⎫12-14+…+⎝ ⎛⎭⎪⎫1n -1n +2+32(1+2+…+2n -1)= ⎝⎛⎭⎪⎫1+12+13+…+1n -(13+14+…+1n +1n +1+1n +2)+32×2n -12-1=32-1n +1-1n +2+32×(2n -1)=3·2n -1-1n +1-1n +2.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019-2020年高三学业水平测试模拟数学试题 含答案10.函数在区间内的零点个数是( )A .0B .1C .2D .3 11.如果执行图1的框图,输入N=5,则输出的数等于( )A . B. C. D.12.过原点且倾斜角为的直线被 圆所截得的弦长为( ) A . B .2 C . D .13.如图,矩形中,点为边的中点,若在矩形内部随机取一个点,则点取自内部的概率等于( )A .B .C .D .14.设变量满足约束条件⎪⎩⎪⎨⎧≥≤+-≥-241y y x y x A.10 B.12 C.13 D.1415.已知、是两条不同的直线,是一个平面,则下列命题中正确的是( )A .若则B .若,则C .若则D .若则16.在中,为边的中点,,点在上且满足则等于( )A .B .C .D .17.为了得到函数的图象,只需把函数的函数( ) A .向左平移 个单位长度 B .向右平移 个单位长度C .向左平移 个单位长度D .向右平移 个单位长度 18.已知2lg 8lg 2lg ,0,0=+>>yxy x ,则的最小值是( )A .2B .C .4D .19.已知为抛物线上的动点,点在轴上的射影为,点的坐标是,则的最小值是( )A .8B .C .10D . 20.已知函数23)1(3)(2++-=x xk x f ,当时,恒为正值,则实数的取值范围是( )A .B .俯视图侧视图正视图C .D .二.填空题(本大题共5小题,每小题3分,共15分。
把答案填在题中横线上)21.某年级有男生560人,女生420人,用分层抽样的方法从该年级全体学生中抽取一个容量为280的样本,则此样本中男生人数为______________________.22.在中,2,45,30==∠=∠a B A,则_____________.23.在等差数列中,,则数列的前9项和等于____________.24.如图是一几何体的三视图,(单位:m ),则此几何体的体积为__________.25.设函数,)(,)(22x exe x g x e ex xf =+=对任意不等式恒成立,则正数的取值范围是________________________.三.解答题(本大题共4小题,共40分,解答题应写出文字说明、证明过程或演算步骤) 26.(本小题满分8分)已知等比数列的公比,. (1)求数列的通项公式;(2)求数列的前项和. 27.(本小题满分10分)已知角且()()0sin 3cos 2sin 3cos 4=+-αααα. (1)求的值;(2)求的值.28.(本小题满分10分)已知函数),,()(23R c b a c bx ax x x f ∈+++=在与时都取得极值. (1)求的值与函数的单调区间;(2)若函数在区间内恰有两个零点,求的取值范围.29.(本小题满分12分)离心率为的椭圆)0(1:2222>>=+b a by a x C 的左、右焦点分别为,为坐标原点.(1)求椭圆的方程;(2)若过点的直线与椭圆交于相异两点,且,求直线的方程.武清区xx 高中数学水平测试模拟试题参考答案一.选择题1.D 2.D 3.B 4.C 5.C 6.C 7.B 8.C 9.A 10.B11.D 12.D 13.C 14.C 15.B 16.D 17.A 18.C 19.B 20.B 二.填空题21.160 22.2 23.9 24. 25. 26. (1)...................................................................................................2分 数列的通项公式………………………………..4分(2)………………………………………………….6分⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛--=nn21132211211…………………………….8分27.(1) ()()0sin 3cos 2sin 3cos 4=+-ααααααααsin 3cos 2sin 3cos 4-==∴或 ……………………1分……………………………………………3分7tan 11tan 4tan -=-+=⎪⎭⎫ ⎝⎛+∴ααπα…………………………………5分(2)且⎪⎪⎩⎪⎪⎨⎧==∴53cos 54sin αα解得……………………………………………………7分1034354235321sin 3sin cos 3cos 3cos +=⨯+⨯=+=⎪⎭⎫⎝⎛-∴απαπαπ………10分 28.(1) …………………………………………………………1分与时都取得极值⎪⎩⎪⎨⎧=++='=+⨯-=-'∴023)1(032234)32(b a f b a f 解得 ⎪⎩⎪⎨⎧-=-=221b a此时()()12323)(2-+=--='x x x x x f ,显然与是函数的极值点…… 3分令则令则单调增区间为,单调减区间为…………………………5分 (2)由(1)问,得……………………………………………………………………………………8分 函数在区间内恰有两个零点 或,即或的取值范围为或……………………………………………10分 29.(1) 且……………………………………………………………………2分椭圆的标准方程为 …………………………………………4分 (2)当直线的方程为时,,不符合条件 …………5分 2设直线的方程为,点,则⎪⎩⎪⎨⎧=++=145122y x ky x 消去,得()01685422=-++ky y k (……………7分 (8)分()()()5452015485416 111222222212122121++-=++-++-=+++=++=∴k k k k k k y y k y y k ky ky x x ………………9分9315416545202222121-=+-++-=+=⋅k k k y y x x OM ………………10分解得 …………………………………………………11分直线的方程为 ………………………………………12分2019-2020年高三学业水平测试模拟物理试题含答案本试卷分第Ι卷(选择题)和第Ⅱ卷(非选择题)两部分,共100分,考试用时90分钟。
第Ι卷一、选择题(本卷共20小题,每题3分,共60分。
在每小题列出的四个选项中,只有一项是最符合题目要求的)1.在力学范围内,国际单位制的三个基本物理量是()A.质量、位移、力B.力、质量、时间C.速度、质量、时间D.质量、长度、时间2.下列物理量中,属于矢量的是()A.功 B.位移C.温度 D.重力势能3.下列图象中,表示物体做匀加速直线运动的是()4.关于力的说法正确的是()A.形状规则物体的重心一定在其几何中心B.相互接触的物体间一定有弹力C.存在摩擦力的两物体间一定有弹力D.静止的物体受到的摩擦力一定是静摩擦力5.两个做匀变速直线运动的物体,物体A的加速度a1=3m/s2,物体B的加速度a2=–5m/s2,则以下判断正确的是()A.物体A的加速度大B.物体B的加速度大C.物体A的速度变化大D.物体B的速度变化大6.一辆汽车由静止起做匀加速直线运动,4s末速度变为10 m/s()A.汽车的加速度为2m/s2B.汽车的位移为40mC.汽车的平均速度为2.5m/sD.2s末汽车的速度为5m/s7.如图所示,小球系在竖直拉紧的细绳下端,且恰与光滑斜面接触并处于静止状态,则小球的受力是()A.重力和绳的拉力B.重力、绳的拉力和斜面的支持力C.重力和斜面的支持力D.绳的拉力和小球对斜面的压力8.如图所示,两同学共提一桶水,两人手臂间的夹角取哪个数值时,手臂所受的拉力最小()A.O0 B.600C.900 D.12009.关于物体的惯性,下列说法正确的是()A.速度大的物体不能很快地停下来,是因为物体速度越大惯性越大B.静止的火车起动时,速度变化很慢,是因为静止的物体惯性大C.乒乓球可以快速抽杀,是因为乒乓球惯性小D.宇宙飞船中的物体不具有惯性10.某同学乘电梯从一楼到六楼,在电梯刚起动时()A.该同学处于超重状态B.该同学处于失重状态C.该同学的重力变大D.该同学的重力变小11.人站在体重计上称体重时,下列说法正确的是()A.人对体重计的压力和体重计对人的支持力是一对平衡力B.人对体重计的压力和体重计对人的支持力是一对作用力和反作用力C.人所受的重力和人对体重计的压力是一对平衡力D.人所受的重力和人对体重计的压力是一对作用力和反作用力12. 如图所示,某同学让带有水的伞绕伞柄旋转,可以看到伞面上的水滴沿伞边缘水平飞出。
若不考虑空气阻力,水滴飞出后的运动是()A.匀速直线运动B.平抛运动C.自由落体运动D.圆周运动13.质量为xx kg的小汽车以10 m/s的速度通过半径为50 m的拱形桥顶点时对路面的压力为(g取10 m/s2)()A.2×104 N B.2.4×104 NC.1.6×104 N D.2.6×104 N14.如图所示,物体在力F的作用下沿水平面移动了一段位移L,甲、乙、丙、丁四种情况下,力F和位移L的大小以及 角均相同,则力F做功相同的是()A.甲图与乙图B.乙图与丙图C.丙图与丁图D.乙图与丁图15. A、B两物体的质量之比为1∶4,速度之比为4∶1,则A、B的动能之比是()A.1∶1 B. 4∶1C.2∶1 D.1∶416.一质量为1kg的物体被人用手由静止开始向上提升了1m,这时物体的速度为2m/s,取g= 10m/s2。
则下列结论正确的是()A.手对物体做功2JB.合力对物体做功12JC.物体克服重力做功12JD.物体的机械能增加12J17.真空中两个静止的点电荷,它们之间的作用力为F。
若将两点电荷的带电量都增大为原来的2倍,而距离减少为原来的,则它们之间的作用力变为()A.2F B.4FC.8F D.16F18.下图中,运动电荷的速度方向、磁场方向和电荷的受力方向之间的关系正确的是()A B C D1219.在《验证机械能守恒定律》实验中,除铁架台、铁夹、学生电源、打点计时器(附有纸带)和重物外,还必需选用的仪器是( )A .秒表B .刻度尺C .天平D .弹簧秤20.如图所示,在“探究加速度与力、质量的关系”的演示实验中,若1、2两个相同的小车所受水平拉力分别为、,车中所放砝码的质量分别为、,打开夹子后经过相同的时间两车的位移分别为、,则在实验误差允许的范围内,有( )A .当、时,B .当、时,C .当、时,D .当、时, 第Ⅱ卷二、填空题(本题共4小题,每空2分,共8分)21.如图所示,A 、B 两轮半径之比为1﹕3,两轮转动时,接触点不发生打滑现象。