备战中考数学专题复习锐角三角函数的综合题含详细答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、锐角三角函数真题与模拟题分类汇编(难题易错题)

1.小红将笔记本电脑水平放置在桌子上,显示屏OB与底板OA所在水平线的夹角为120°时,感觉最舒适(如图1),侧面示意图为图2;使用时为了散热,她在底板下面垫入散热架ACO'后,电脑转到AO'B'位置(如图3),侧面示意图为图4.已知OA=OB=24cm,O'C⊥OA于点C,O'C=12cm.

(1)求∠CAO'的度数.

(2)显示屏的顶部B'比原来升高了多少?

(3)如图4,垫入散热架后,要使显示屏O'B'与水平线的夹角仍保持120°,则显示屏O'B'应绕点O'按顺时针方向旋转多少度?

【答案】(1)∠CAO′=30°;(2)(36﹣12)cm;(3)显示屏O′B′应绕点O′按顺时针方向旋转30°.

【解析】

试题分析:(1)通过解直角三角形即可得到结果;

(2)过点B作BD⊥AO交AO的延长线于D,通过解直角三角形求得

BD=OBsin∠BOD=24×=12,由C、O′、B′三点共线可得结果;

(3)显示屏O′B′应绕点O′按顺时针方向旋转30°,求得∠EO′B′=∠FO′A=30°,既是显示屏O′B′应绕点O′按顺时针方向旋转30°.

试题解析:(1)∵O′C⊥OA于C,OA=OB=24cm,

∴sin∠CAO′=,

∴∠CAO′=30°;

(2)过点B作BD⊥AO交AO的延长线于D,∵sin∠BOD=,∴BD=OBsin∠BOD,

∵∠AOB=120°,∴∠BOD=60°,∴BD=OBsin∠BOD=24×=12,∵O′C⊥OA,

∠CAO′=30°,

∴∠AO′C=60°,∵∠AO′B′=120°,∴∠AO′B′+∠AO′C=180°,

∴O′B′+O′C﹣BD=24+12﹣12=36﹣12,

∴显示屏的顶部B′比原来升高了(36﹣12)cm;

(3)显示屏O′B′应绕点O′按顺时针方向旋转30°,

理由:∵显示屏O′B与水平线的夹角仍保持120°,

∴∠EO′F=120°,

∴∠FO′A=∠CAO′=30°,

∵∠AO′B′=120°,

∴∠EO′B′=∠FO′A=30°,

∴显示屏O′B′应绕点O′按顺时针方向旋转30°.

考点:解直角三角形的应用;旋转的性质.

2.如图,将一副直角三角形拼放在一起得到四边形ABCD,其中∠BAC=45°,∠ACD=30°,点E为CD边上的中点,连接AE,将△ADE沿AE所在直线翻折得到△AD′E,D′E交AC于F 点.若AB=6cm.

(1)AE的长为 cm;

(2)试在线段AC上确定一点P,使得DP+EP的值最小,并求出这个最小值;

(3)求点D′到BC的距离.

【答案】(1);(2)12cm;(3)cm.

【解析】

试题分析:(1)首先利用勾股定理得出AC的长,进而求出CD的长,利用直角三角形斜边上的中线等于斜边的一半进而得出答案:

∵∠BAC=45°,∠B=90°,∴AB=BC=6cm,∴AC=12cm.

∵∠ACD=30°,∠DAC=90°,AC=12cm,∴(cm).

∵点E为CD边上的中点,∴AE=DC=cm.

(2)首先得出△ADE为等边三角形,进而求出点E,D′关于直线AC对称,连接DD′交AC 于点P,根据轴对称的性质,此时DP+EP值为最小,进而得出答案.

(3)连接CD′,BD′,过点D′作D′G⊥BC于点G,进而得出△ABD′≌△CBD′(SSS),则∠D′BG=45°,D′G=GB,进而利用勾股定理求出点D′到BC边的距离.

试题解析:解:(1).

(2)∵Rt△ADC中,∠ACD=30°,∴∠ADC=60°,

∵E为CD边上的中点,∴DE=AE.∴△ADE为等边三角形.

∵将△ADE沿AE所在直线翻折得△AD′E,∴△AD′E为等边三角形,∠AED′=60°.

∵∠EAC=∠DAC﹣∠EAD=30°,∴∠EFA=90°,即AC所在的直线垂直平分线段ED′.

∴点E,D′关于直线AC对称.

如答图1,连接DD′交AC于点P,∴此时DP+EP值为最小,且DP+EP=DD′.

∵△ADE是等边三角形,AD=AE=,

∴,即DP+EP最小值为12cm.

(3)如答图2,连接CD′,BD′,过点D′作D′G⊥BC于点G,

∵AC垂直平分线ED′,∴AE=AD′,CE=CD′,

∵AE=EC,∴AD′=CD′=.

在△ABD′和△CBD′中,∵,∴△ABD′≌△CBD′

(SSS).∴∠D′BG=∠D′BC=45°.∴D′G=GB.

设D′G长为xcm,则CG长为cm,

在Rt△GD′C中,由勾股定理得,

解得:(不合题意舍去).

∴点D′到BC边的距离为cm.

考点:1.翻折和单动点问题;2.勾股定理;3.直角三角形斜边上的中线性质;4.等边

三角形三角形的判定和性质;5.轴对称的应用(最短线路问题);6.全等三角形的判定和性质;7.方程思想的应用.

3.如图,在Rt△ABC中,∠BAC=90°,∠B=60°,BC=16cm,AD是斜边BC上的高,垂足为D,BE=1cm.点M从点B出发沿BC方向以1cm/s的速度运动,点N从点E出发,与点M 同时同方向以相同的速度运动,以MN为边在BC的上方作正方形MNGH.点M到达点D 时停止运动,点N到达点C时停止运动.设运动时间为t(s).

(1)当t为何值时,点G刚好落在线段AD上?

(2)设正方形MNGH与Rt△ABC重叠部分的图形的面积为S,当重叠部分的图形是正方形时,求出S关于t的函数关系式并写出自变量t的取值范围.

(3)设正方形MNGH的边NG所在直线与线段AC交于点P,连接DP,当t为何值时,

△CPD是等腰三角形?

【答案】(1)3;(2);(3)t=9s或t=(15﹣6)s.

【解析】

试题分析:(1)求出ED的距离即可求出相对应的时间t.

(2)先求出t的取值范围,分为H在AB上时,此时BM的距离,进而求出相应的时间.同样当G在AC上时,求出MN的长度,继而算出EN的长度即可求出时间,再通过正方形的面积公式求出正方形的面积.

(3)分DP=PC和DC=PC两种情况,分别由EN的长度便可求出t的值.

试题解析:∵∠BAC=90°,∠B=60°,BC=16cm

∴AB=8cm,BD=4cm,AC=8cm,DC=12cm,AD=4cm.

(1)∵当G刚好落在线段AD上时,ED=BD﹣BE=3cm

∴t=s=3s.

(2)∵当MH没有到达AD时,此时正方形MNGH是边长为1的正方形,令H点在AB 上,

则∠HMB=90°,∠B=60°,MH=1

∴BM=cm.∴t=s.

当MH到达AD时,那么此时的正方形MNGH的边长随着N点的继续运动而增大,令G点在AC上,

相关文档
最新文档