苏教版九年级下册数学[相似三角形的性质--知识点整理及重点题型梳理](提高)
苏教版九年级下册数学[用相似三角形解决问题—知识点整理及重点题型梳理](提高)
苏教版九年级下册数学[用相似三角形解决问题—知识点整理及重点题型梳理](提高)本文介绍了相似三角形解决问题的知识点,包括平行投影和中心投影。
要点一是平行投影,介绍了物体在平行光线下产生的影子,以及物高与影长的关系。
要点二是中心投影,介绍了点光源下物体产生的影子,以及离点光源远近对影子长度的影响。
通过这些知识点,可以解决一些实际问题。
需要注意的是,在利用影长计算物高时,要注意测量两物体在同一时刻的影长。
在中心投影下,一个重要的结论是,点光源、物体边缘上的点以及它们在影子上的对应点在同一条直线上。
可以根据其中两个点来求出第三个点的位置。
要点诠释:物体的中心投影受到光源和物体位置及方向的影响。
改变光源或物体的方向会导致影子方向的变化。
但不论如何改变,光源、物体和它们的影子始终分离在物体的两侧。
要点三、中心投影与平行投影的区别与联系1.联系:中心投影和平行投影都是研究物体投影的一种方法。
平行投影是在平行光线下形成的投影,例如太阳光线和月光。
中心投影是从一点发出的光线所形成的投影,例如灯泡和手电筒的光线。
在平行投影中,改变物体的方向和位置会导致投影方向和位置的变化。
在中心投影中,同一灯光下,改变物体的位置和方向也会导致投影的变化。
固定物体的位置和方向,改变灯光的位置,物体投影的方向和位置也会发生变化。
2.区别:太阳光线是平行的,因此太阳光下的影子长度与物体高度成比例。
灯光是发散的,灯光下的影子与物体高度不一定成比例。
在同一时刻,太阳光下的影子方向总是在同一方向,而灯光下的影子可能在同一方向,也可能在不同方向。
要点诠释:在解决有关投影的问题时,必须先判断是平行投影还是中心投影,然后根据它们的特点进一步解决问题。
要点四、相似三角形的应用1.测量高度测量不能到达顶部的物体的高度,通常使用“在同一时刻物高与影长的比例相等”的原理解决。
要点诠释:测量旗杆高度的方法包括平面镜测量法、影子测量法、手臂测量法和标杆测量法。
苏教版九年级相似知识点
苏教版九年级相似知识点相似是数学中一个重要的概念,也是学习几何的基础之一。
在几何中,相似指的是两个图形在形状上相似,但是大小不一样。
通过相似性,我们可以利用已知的信息来推导出未知的信息,解决实际问题。
本文将介绍苏教版九年级中与相似相关的知识点。
1. 相似三角形相似三角形是指两个三角形在形状上相似,对应的角度相等,对应的边成比例。
在求解相似三角形的问题时,我们可以利用一些特定的相似性质,如AAA判定相似、SAS判定相似和SSS判定相似等。
这些性质可以帮助我们简化计算过程,得出准确的结果。
2. 相似比在相似三角形中,对应的边成比例。
我们可以利用相似比来表示这种比例关系。
相似比是指已知相似三角形的两个对应边的比值。
例如,如果两个三角形ABC和DEF相似,与角A对应的边和与角D对应的边的比值为a:b,与角B对应的边和与角E对应的边的比值为c:d,那么相似比为a:b=c:d。
通过相似比,我们可以计算出未知边的长度,解决各种实际问题。
3. 相似多边形除了三角形,多边形也可以相似。
相似多边形是指两个多边形在形状上相似,对应的角度相等,对应的边成比例。
在求解相似多边形的问题时,我们可以利用相似比来简化计算过程,得出准确的结果。
4. 比例尺比例尺是指图形在实际尺寸与其缩小或放大后的尺寸之间的比例关系。
在实际问题中,我们经常需要根据图纸上的比例尺来计算实际尺寸,或者根据实际尺寸来绘制图纸。
5. 三角形的应用相似三角形在实际问题中有广泛的应用。
例如,我们可以利用相似三角形的性质来计算高楼大厦的高度、电线杆的高度、塔的高度等。
通过相似三角形的计算,我们可以在不进行实际测量的情况下,得出准确的结果。
6. 相似几何体除了平面图形,立体图形也可以相似。
相似几何体是指两个立体图形在形状上相似,对应的面相似,对应的棱和对应的面的比例成比。
通过相似几何体的性质,我们可以计算出未知的长度、面积和体积,解决实际问题。
总结起来,苏教版九年级中的相似知识点包括相似三角形、相似比、相似多边形、比例尺、三角形的应用和相似几何体等。
初三《相似三角形》知识点总结
相似三角形知识点总结知识点1、三角对应相等,三边对应成比例的三角形叫相似三角形。
如△ABC 与△A /B /C /相似,记作: △ABC ∽△A /B /C /。
相似三角形的比叫相似比相似三角形的定义既是相似三角形的性质,也是三角形相似的判定方法。
注意:(1)相似比是有顺序的。
(2)对应性,两个三角形相似时,通常把对应顶点写在对应位置,这样写比较容易找到相似三角形的对应角和对应边。
(3)顺序性:相似三角形的相似比是有顺序的,若△ABC ∽△A /B /C /,相似比为k ,则△A /B /C /与△ABC 的相似比是1k知识点2、相似三角形与全等三角形的关系(1)两个全等的三角形是相似比为1的相似三角形。
(2)两个等边三角形一定相似,两个等腰三角形不一定相似。
(3)二者的区别在于全等要对应边相等,而相似要求对应边成比例。
知识点3、平行线分线段成比例定理1. 比例线段的有关概念:在比例式::中,、叫外项,、叫内项,、叫前项,a bc da b c d a d b c a c ()b 、d 叫后项,d 叫第四比例项,如果b=c ,那么b 叫做a 、d 的比例中项。
把线段AB 分成两条线段AC 和BC ,使AC 2=AB ·BC ,叫做把线段AB 黄金分割,C 叫做线段AB 的黄金分割点。
2. 比例性质:①基本性质:a bc dadbc ②合比性质:±±a b c d a b b c d d③等比性质:……≠……a bc dm nb dn a c m bdna b()03. 平行线分线段成比例定理(1)平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例.已知l1∥l2∥l3,A D l1B E l2CF l3可得EF BC DEAB DFEF ACBC DFEF ABBC DFDE ACAB EFDE BCAB或或或或等.(2)推论:平行于三角形一边的直线截其它两边(或两边的延长线)所得的对应线段成比例. AD EBC由DE ∥BC 可得:AC AEABAD EAEC ADBD ECAE DBAD 或或.此推论较原定理应用更加广泛,条件是平行.(3)推论的逆定理:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例.那么这条直线平行于三角形的第三边.此定理给出了一种证明两直线平行方法,即:利用比例式证平行线.(4)定理:平行于三角形的一边,并且和其它两边相交的直线,所截的三角形的三边与原三角形三边对应成比例. 知识点4:相似三角形的性质①相似三角形的对应角相等②相似三角形的对应边成比例③相似三角形对应高的比、对应中线的比和对应角平分线的比都等于相似比④相似三角形周长的比等于相似比⑤相似三角形面积的比等于相似比的平方知识点5:相似三角形的判定:①两角对应相等,两个三角形相似②两边对应成比例且夹角相等,两三角形相似③三边对应成比例,两三角形相似④如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角形相似⑤平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似⑥直角三角形被斜边上的高分成的两个直角三角形和原三角形相似如果两个三角形的两角分别于另一个三角形的两角对应相等,那么这两个三角形相似。
相似三角形知识点归纳(全)
《相似三角形》—中考考点归纳与典型例题知识点1 有关相似形的概念(1)形状相同的图形叫相似图形,在相似多边形中,最简单的是相似三角形.(2)如果两个边数相同的多边形的对应角相等,对应边成比例,这两个多边形叫做相似多 边形.相似多边形对应边长度的比叫做相似比(相似系数).知识点2 比例线段的相关概念、比例的性质(1)定义:在四条线段d c b a ,,,中,如果b a 和的比等于d c 和的比,那么这四条线段d c b a ,,,叫做成比例线段,简称比例线段.注:①比例线段是有顺序的,如果说a 是d c b ,,的第四比例项,那么应得比例式为:ad c b =. ②()()()a bc d a c d c b d b ad bc a ⎧=⎪⎪⎪=⇔=⎨⎪⎪=⎪⎩,交换内项,交换外项.同时交换内外项 核心内容:bc ad = (2)黄金分割:把线段AB 分成两条线段)(,BC AC BC AC >,且使AC 是BC AB 和的比例中项,即2AC AB BC =⋅,叫做把线段AB 黄金分割,点C 叫做线段AB 的黄金分割点,其中AB AC 215-=≈0.618AB.即12AC BC AB AC ==简记为:长短=全长 注:①黄金三角形:顶角是360的等腰三角形②黄金矩形:宽与长的比等于黄金数的矩形 (3)合、分比性质:a c abcd b d b d±±=⇔=.注:实际上,比例的合比性质可扩展为:比例式中等号左右两个比的前项,后项之间发生同样和差变化比例仍成立.如:⎪⎪⎩⎪⎪⎨⎧+-=+--=-⇒=d c d c b a b a ccd a a b d c b a 等等.(4)等比性质:如果)0(≠++++====n f d b nmf e d c b a那么ban f d b m e c a =++++++++ .知识点3 比例线段的有关定理平行线分线段成比例定理:三条平行线截两条直线,所截得的对应线段成比例. 已知AD ∥BE ∥CF,可得AB DE AB DE BC EF BC EF AB BCBC EF AC DF AB DE AC DF DE =====或或或或等. 特别在三角形中: 由DE ∥BC 可得:ACAEAB AD EA EC AD BD EC AE DB AD ===或或知识点4 相似三角形的概念(1)定义:对应角相等,对应边成比例的三角形,叫做相似三角形.相似用符号“∽”表示,读作“相似于” .相似三角形对应边的比叫做相似比(或相似系数).相似三角形对应角相等,对应边成比例.注:①对应性:即把表示对应顶点的字母写在对应位置上 ②顺序性:相似三角形的相似比是有顺序的.③两个三角形形状一样,但大小不一定一样. ④全等三角形是相似比为1的相似三角形.(2)三角形相似的判定方法1、平行法:(图上)平行于三角形一边的直线和其它两边(或两边的延长线)相交,所构成的三角形与原三角形相似.2、判定定理1:简述为:两角对应相等,两三角形相似.AA3、判定定理2:简述为:两边对应成比例且夹角相等,两三角形相似.SAS4、判定定理3:简述为:三边对应成比例,两三角形相似.SSS5、判定定理4:直角三角形中,“HL ” 全等与相似的比较:三角形全等三角形相似两角夹一边对应相等(ASA) 两角一对边对应相等(AAS) 两边及夹角对应相等(SAS) 三边对应相等(SSS)、(HL )两角对应相等两边对应成比例,且夹角相等三边对应成比例“HL ”如图,Rt △ABC 中,∠BAC=90°,AD 是斜边BC 上的高,则∽==>AD 2=BD ·DC ,∽==>AB 2=BD ·BC ,∽==>AC 2=CD ·BC .知识点5 相似三角形的性质(1)相似三角形对应角相等,对应边成比例.(2)相似三角形周长的比等于相似比.E BD DB C(3)相似三角形对应高的比,对应中线的比和对应角平分线的比都等于相似比. (4)相似三角形面积的比等于相似比的平方.知识点6 相似三角形的几种基本图形:(1) 如图:称为“平行线型”的相似三角形(有“A 型”与“X 型”图)(2) 如图:其中∠1=∠2,则△ADE ∽△ABC 称为“斜交型”的相似三角形。
初三数学《相似三角形》知识点归纳
初三数学《相似三角形》知识提纲(孟老师归纳)一:比例的性质及平行线分线段成比例定理(一)相关概念:1.两条线段的比:两条线段的比就是两条线段长度的比 在同一长度单位下两条线段a ,b 的长度分别为m ,n ,那么就说这两条线段 的比是,或写成a :b=m :n ; 其中 a 叫做比的前项,b 叫做比的后项 2:比例尺= 图上距离/实际距离3:成比例线段:在四条线段a ,b ,c ,d 中,如果其中两条线段的比等于另外两条线段的比,那么这四条线段叫做成比例线段,简称比例线段,记作:cda b =(或a :b=c :d ) ① 线段a ,d 叫做比例外项,线段b ,c 叫做比例内项, ② 线段a 叫首项,d 叫a ,b ,c 的第四比例项。
③ 比例中项:若c a b c a b cbb a ,,2是则即⋅==的比例中项. (二)比例式的性质 1.比例的基本性质:bc ad dcb a =⇔= 2. 合比:若,则或a b c d a b b c d d a b a c d c =±=±±=±3.等比:若……(若……)a b c d e f mn k b d f n =====++++≠0则…………a c e m b d f n a b mn k++++++++===4、黄金分割:把线段AB 分成两条线段AC ,BC (AC>BC ),并且使AC 是AB 和BC 的比例中项,叫做把线段AB 黄金分割,点C 叫做线段AB 的黄金分割点,其中AC=215-AB ≈0.618AB , (三)平行线分线段成比例定理1.平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例.如图:当AD∥BE∥CF 时,都可得到=.=,= ,语言描述如下:=, =,=.(4)上述结论也适合下列情况的图形:nm b a =图(2) 图(3) 图(4) 图(5)2.推论:平行于三角形一边的直线截其它两边(或两边的延长线)所得的对应线段成比例.l 3l 2l 1ABCD E E D CBA D EBCA l 1l 2l 3AB CD EA 型 X 型由DE ∥BC 可得:ACAEAB AD EA EC AD BD EC AE DB AD ===或或. 3.推论的逆定理:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例.那么这条直线平行于三角形的第三边.如上图:若 = . = ,=,则AD ∥BE ∥CF此定理给出了一种证明两直线平行方法,即:利用比例式证平行线.4.定理:平行于三角形的一边,并且和其它两边相交的直线,所截的三角形的三边......与原三角形....三边..对应成比例. 二:相似三角形: (一):定义:1:对应角相等,对应边成比例的三角形,叫做相似三角形。
九年级数学下册 相似三角形知识点总结
九年级数学下册相似三角形知识点总结第17讲相似三角形一、知识清单梳理知识点一:比例线段关键点拨与对应举例比例线段是四条线段中的两组成比例的线段,常用的比例等式是ac=bd。
在列比例等式时,需要注意四条线段的大小顺序,防止出现比例混乱。
已知比例式的值,可以通过基本性质ad=bc(b、d≠0)来求相关字母代数式的值。
常用引入参数法,将所有的量都统一用含同一参数的式子表示,再求代数式的值。
另外,合比性质和等比性质也是比例线段的重要性质。
知识点二:相似三角形的性质与判定两角对应相等的两个三角形相似(AAA)。
如果两个三角形的对应边成比例,那么这两个三角形也相似(SAS)。
如果一个三角形的一个角和另一个三角形的两个角分别相等,那么这两个三角形也相似(AAS)。
如果一个三角形的三条边分别与另一个三角形的三条边成比例,那么这两个三角形也相似(SSS)。
在相似三角形中,对应角相等,对应边成比例,相似三角形的比值是一个定值。
知识点三:黄金分割黄金分割是指将一条线段分割成两部分,使其中一部分与全长之比等于另一部分与这部分之比。
这个比例值约等于1:0.618,即黄金比。
在数学、艺术等领域中都有广泛的应用。
知识点四:平行线段成比例如果两条直线被一组平行线所截,所得的对应线段成比例。
如果一条直线平行于三角形的一边,与另外两边相交,所构成的三角形和原三角形相似。
在利用平行线所截线段成比例求线段长或线段比时,需要注意根据图形列出比例等式,灵活运用比例基本性质求解。
二、例题解析例1:如图,已知D,E分别是△ABC的边BC和AC上的点,AE=2,CE=3,要使DE∥AB,那么BC:CD应等于多少?解析:根据题意,可以列出比例等式XXX因为DE∥AB,所以有BD/DC=BE/EA=5/2.代入比例等式中,得到BC/CD=5/3.例2:把长为10cm的线段进行黄金分割,那么较长线段长为多少?解析:根据黄金分割的定义,设较长线段为x,较短线段为y,则有x/y=y/(x-y)=0.618.解得x=5.18cm,所以较长线段长为5(5.18-1)cm。
相似三角形知识点整理精选全文完整版
可编辑修改精选全文完整版相似三角形知识点整理重点、难点分析:1、相似三角形的判定性质是本节的重点也是难点.2、利用相似三角形性质判定解决实际应用的问题是难点。
☆内容提要☆ 一、本章的两套定理第一套(比例的有关性质):涉及概念:①第四比例项②比例中项③比的前项、后项,比的内项、外项④黄金分割等。
第二套:二、有关知识点: 1.相似三角形定义:对应角相等,对应边成比例的三角形,叫做相似三角形。
2.相似三角形的表示方法:用符号“∽”表示,读作“相似于”。
3.相似三角形的相似比:相似三角形的对应边的比叫做相似比。
4.相似三角形的预备定理:平行于三角形一边的直线和其他两边(或两边的延长线)相交,所截成的三角形与原三反比性质:cda b = 更比性质:dbc a a c bd ==或 合比性质:ddc b b a ±=± ⇒=⇔=bc ad d c b a (比例基本定理) ban d b m c a n d b n m d c b a =++++++⇒≠+++=== :)0(等比性质 相似基本定理 推论(骨干定理)平行线分线段成比例定理(基本定理)应用于△中 相似三角形定理1定理2 定理3 Rt △ 推论推论的逆定理推论角形相似。
5.相似三角形的判定定理:(1)三角形相似的判定方法与全等的判定方法的联系列表如下:类型斜三角形直角三角形全等三角形的判定SAS SSS AAS(ASA)HL相似三角形的判定两边对应成比例夹角相等三边对应成比例两角对应相等一条直角边与斜边对应成比例从表中可以看出只要将全等三角形判定定理中的“对应边相等”的条件改为“对应边成比例”就可得到相似三角形的判定定理,这就是我们数学中的用类比的方法,在旧知识的基础上找出新知识并从中探究新知识掌握的方法。
6.直角三角形相似:(1)直角三角形被斜边上的高分成两个直角三角形和原三角形相似。
(2)如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似。
6.5 相似三角形的性质-苏科版数学九年级下册精品讲义
第6章 图形的相似6.5相似三角形的性质知识点01 相似三角形的性质1. 相似三角形周长的比等于相似比(1) ∽,则由比例性质可得:。
(2)相似多边形周长的比等于相似比.【即学即练1】在一张缩印出来的纸上,一个三角形的一条边由原图中的6cm 变成了2cm ,则缩印出的三角形的周长是原图中三角形周长的( )A .B .C .D .【答案】A【分析】根据相似三角形的周长比等于相似比计算,得到答案.【详解】解:∵三角形的一条边由原图中的6cm 变成了2cm ,∴原三角形与缩印出的三角形是相似比为3:1,∴原三角形与缩印出的三角形的周长比为3:1,∴缩印出的三角形的周长是原图中三角形周长的,故选:A.2. 相似三角形面积的比等于相似比的平方∽,则,分别作出与的高和,则【微点拨】相似多边形面积的比等于相似比的平方.【即学即练2】在中,AD平分交边BC于点D,点E在线段AD上,若,则与的面积比为( )A.16:45B.1:9C.2:9D.1:3【答案】C【分析】根据等高三角形的面积比等于底边的长度比,得到,再根据相似三角形的面积比等于相似比的平方,得到的面积比,即可得到答案;【详解】解:∵AD平分∠BAC,∴∠BAE=∠CAD,∵∠ABE=∠C,∴,∵,∴,,,∴.故选C ;知识点02 相似三角形中对应线段的比1.相似三角形的对应角相等,对应边的比相等.2. 相似三角形中的对应线段的比等于相似比.相似三角形对应高,对应中线,对应角平分线的比都等于相似比.【微点拨】要特别注意“对应”两个字,在应用时,要注意找准对应线段.【即学即练3】如下图所示,在△ABC 中,点D 在线段AC 上,且△ABC ∽△ADB ,则下列结论一定正确的是( )A .B .C .D .【答案】A 【分析】根据相似三角形对应边成比例列式整理即可得解.【详解】解:∵△ABC ∽△ADB ,∴,∴AB 2=AC •AD .故选:A .考法01利用三角形性质求解能力拓展【典例1】如图所示,D为AB边上一点,AD:DB=3:4,交BC于点E,则S△BDE:S△AEC等于()A.16:21B.3:7C.4:7D.4:3【答案】A【分析】根据相似三角形的面积比等于相似比的平方及平行线分线段成比例,不难求得.【详解】解:∵,∴,且,∴,,∴,∵,与的高相等,∴,∴.故选:A.考法02 证明三角形的对应线段成比例【典例2】如图,在中,点D、E分别在AB、AC边上,,BE与CD相交于点F,下列结论正确的是()A.B.C.D.【答案】C【分析】利用平行线的性质可得内错角相等,即可得出和,在根据相似三角形的性质及等量代换即可得出答案.【详解】解:,,,,,,由,,,,,故选:C .题组A 基础过关练1.如图,在中,是斜边上的高,若,,则的长为( )A .8B .10C .9D .12【答案】C【分析】在与中,利用两角对应相等的两个三角形相似,对应边对应成比例,即可求解.【详解】解:如图所示,∵,,分层提分∴,,∴,,∴,∴,即,且,,∴,故选:.2.在△ABC中,点D、E分别在边AB、AC上,下列比例式中不能得到DE BC的是( )A.B.C.D.【答案】B【分析】根据两边成比例且夹角相等的两个三角形相似逐项进行判断即可得到结论.【详解】解:如图,解:A.∵,∠A=∠A,∴△ADE∽△ABC,∴∠ADE=∠ABC,∴DE BC;故选项不符合题意;B.当时,△ADE与△ABC不一定相似,∴∠ADE不一定等于∠B,∴不能得到DE BC,故选项符合题意;C.∵,∴,∵∠A=∠A,∴△ADE∽△ABC,∴∠ADE=∠ABC,∴DE BC;故选项不符合题意;D.∵,∠A=∠A,∴△ADE∽△ABC,∴∠ADE=∠ABC,∴DE BC;故选项不符合题意;故选:B.3.如图,已知△ABE∽△CDE,AD、BC相交于点E,△ABE与△CDE的周长之比是,若AE=2、BE=1,则BC的长为( )A.3B.4C.5D.6【答案】D【分析】根据相似三角形的性质可得AE:CE=2:5,从而得到CE=5,即可求解.【详解】解:∵△ABE∽△CDE,△ABE与△CDE的周长之比是,∴AE:CE=2:5,∵AE=2,∴CE=5,∵BE=1,∴BC=BE+EC=1+5=6,故选:D.4.如图,在△ABC中,点D,E分别在AB,AC上,且,AD=1,BD=2,DE=2那么BC的值为()A.2B.4C.6D.8【答案】C【分析】证明利用对应边对应成比例即可求出.【详解】解:∵∴∴∴∴故选C.5.如果两个相似三角形对应边的比是3∶4,那么它们的对应周长的比是()A.3∶4B.C.9∶16D.3∶7【答案】A【分析】直接利用相似三角形的性质得出答案.【详解】解:∵两个相似三角形对应边的比为3:4,∴它们的周长比是:3:4.故选:A.6.已知,,,则的周长之比为____.【答案】4∶3【分析】根据相似三角形的周长之比等于相似比即可得解.【详解】解:∵,,,∴;故答案为:4∶3.7.如图,光源P在水平横杆AB的上方,照射横杆AB得到它在平地上的影子为CD(点P、A、C在一条直线上,点P、B、D在一条直线上),不难发现AB//CD.已知AB=1.5m,CD=4.5m,点P到横杆AB的距离是1m,则点P到地面的距离等于______m.【答案】3【分析】作PF⊥CD于点F ,利用AB∥CD,推导△PAB∽△PCD,再利用相似三角形对应高之比是相似比求解即可.【详解】解:如图,过点P作PF⊥CD于点F,交AB于点E,∵AB∥CD,∴△PAB∽△PCD,PE⊥AB,∵△PAB∽△PCD,∴,(相似三角形对应高之比是相似比)即:,解得PF=3.故答案为:3.8.如图,△ABC∽△CAD,∠ACB=∠D=90°,_____.【答案】AB•DC【分析】根据相似三角形的性质解答即可.【详解】解:∵∠ACB=∠D=90°,且△ABC∽△CAD,∴,即=AB•DC,故答案为:AB•DC.9.如图,在矩形ABCD中,AB=2,BC=3,点E是AD的中点,CF⊥BE于点F,求FC的长.【答案】2.4【分析】根据已知可证明△ABE~∆FCB,然后利用相似三角形的性质进行计算即可解答.【详解】解:∵AD∥BC,∴∠AEB=∠CBF,∵∠A=90°,∠CFB=90°,∴△ABE∽△FCB∴,∵BC=3,E是AD的中点,∴AE=1.5 ,∴BE=2.5,∴,∴FC=2.4.10.如图,在△ABC中,D,E分别是AB,AC边上的点,且AD:AB=AE:AC=2:3.(1)求证:△ADE∽△ABC;(2)若DE=4,求BC的长.【答案】(1)见解析;(2)BC=6.【分析】(1)直接根据相似三角形的判定方法判定即可;(2)利用相似三角形的性质即可求解.【详解】(1)证明:∵∠A=∠A,AD:AB=AE:EC=2:3,即,∴△ADE∽△ABC;(2)解:∵△ADE∽△ABC,∴,,∴BC=6.题组B 能力提升练1.下列命题中,是真命题的是( )A.有一组邻边相等的平行四边形是菱形B.小明爬山时发现上山比下山的盲区小C.若点P是线段AB的黄金分割点,则D.相似三角形的周长比等于相似比的平方【答案】A【分析】根据菱形的判定方法、黄金分割的定义、相似三角形的性质进行判断即可.【详解】解:A、有一组邻边相等的平行四边形是菱形,是真命题,故A正确;B、爬山时上山比下山的盲区大,原命题是假命题,故B错误;C、若点P是线段AB的黄金分割点,AP>BP时,则,原命题错误,故C错误;D、相似三角形的周长比等于相似比,原命题错误,故D错误.故选:A.2.如图,O是△ABC的重心,AN,CM相交于点O,那么△MON与△BMN的面积的比是()A.1:2B.2:3C.1:3D.1:4【答案】C【分析】利用三角形重心的性质得到MO:MC=1:3和点N是BC的中点,从而得到△MON和△MNC的面积比、△BMN和△CMN的面积比,然后综合两个面积比求得结果.【详解】解:∵点O是△ABC的重心,∴MO:MC=1:3,点N是BC的中点,∴,∴,故选:C.3.若,且与的面积比是,则与对应角平分线之比为()A.B.C.D.【答案】B【分析】根据相似三角形的面积之比等于相似比的平方求出相似比,再根据相似三角形的性质即可得到答案.【详解】解:∵,且与的面积比是,∴与的相似比是,∴与对应角平分线之比为,故选:B.4.如图,在ABC中,D,E分别是边AB,AC的中点.若ADE的面积为,则四边形DBCE的面积为( )A.B.1C.D.2【答案】C【分析】先根据三角形的中位线定理证明,则△ADE∽△ABC,再根据相似三角形面积的比等于相似比的平方求出△ABC的面积,即可由求出四边形DBCE的面积.【详解】解:∵D、E分别为AB、AC的中点,∴,AE=CE=AB,∴,∴△ADE∽△ABC,∴,∴,∴,故选:C.5.如图,在Rt ABC中,∠C=90°,AC=3,BC=4.以BC上点O为圆心作⊙O分别与AB、AC相切E、C 两点,与BC的另一交点为D,则线段BD的长为________【答案】1【分析】连接OE,OE⊥AB,OE=OC,AC⊥OC,△BEO∽△BCA,故,故可得OC的长,即可得出BD的长.【详解】解:如图,连接OE,∵AB是⊙O的切线,∴OE⊥AB,OE=OC,∵AC⊥OC,∴BEO∽BCA,∴,∵∠C=90°,AC=3,BC=4,∴AB=5,∴,∴,∴OE=,∴OC=,∴BD=BC-2×OC=4-2×.故答案为:1.6.如图,点G是的中线上一点,且,作,垂足为点E,若,则点A到的距离为______________.【答案】【分析】过点作,则的长即为到的距离,证明,根据相似三角形的性质即可求解.【详解】解:如图,过点作,则的长即为到的距离,∵,,∴,∴,∴,∵,∴,∵,∴,,故答案为:.7.如图,已知AB CD,AD与BC相交于点P,,若AP=6,则PD的长是_____.【答案】10【分析】证明,再根据相似三角形的面积比等于相似比的平方计算即可.【详解】解:∵AB CD,∴,∴,即,解得:PD=10,故答案为:10.8.如图,在中,,,点从点出发,沿着边向点以的速度运动,点从点出发,沿着边向点以的速度运动.如果与同时出发,那么经过______秒和相似.【答案】4或【分析】分两种情况讨论,由相似三角形对应边成比例列方程求解即可.【详解】解:设经过x秒,△PQC和△ABC相似,∴CP=8-x(cm),CQ=2x(cm),当△PCQ∽△ACB,则,∴,∴x=4,当△PCQ∽△BCA,则,∴,∴x=,综上所述:经过4或秒,△PQC和△ABC相似.故答案为:4或.9.如图,四边形中,,且,E、F分别是、的中点,与交于点M.(1)求证:;(2)若,求BM.【答案】(1)见解析;(2)【分析】(1)根据已知条件可得四边形是平行四边形,从而得到,即可求证;(2)根据相似三角形的对应边成比例求出相似比,即可求得线段的长.【详解】(1)证明:,E是的中点,,,四边形是平行四边形,,,,;(2)解:,F是的中点,,,,,又,.10.如图,在△ABC中,∠C=90°,AC=3,CB=5,D是BC边上一点,且DB=1,点E是AC边上的一个点,且AE,过点E作交AD于点F.(1)求EF的长.(2)求证:△DEF∽△ABD.【答案】(1);(2)证明见解析【分析】(1)利用,证明△AEF∽△ACD,根据对应边对应成比例进行计算即可;(2)利用勾股定理求出AD,利用,求出AF,利用求出DF,从而得出,在利用外角的性质,得到,即可得证.【详解】(1)解:∵CB=5,DB=1,∴,∵,∴,∵,∴△AEF∽△ACD,∴,即:,∴;(2)证明:∵∠C=90°,AC=3,CD=4,∴,∵∴△AEF∽△ACD,∴,即:,∴,∴,∵,∴,∵,又∵,∴,∴△DEF∽△ABD题组C 培优拔尖练1.如图,在梯形中,,,对角线与相交于点O,把、、、的面积分别记作,那么下列结论中,不正确()A.B.C.D.【答案】C【分析】由,推出,推出,利用等高模型以及相似三角形的性质解决问题即可.【详解】解:∵,∴,∴,∴,,∴选项A,B,D正确,选项C错误,故选:C.2.如图,中,,,为边上一动点,将绕点逆时针旋转得到,使得点的对应点与,在同一直线上,若,则的长为()A.3B.4C.6D.9【答案】B【分析】由旋转和平行线的性质易证,从而易证,即得出,代入数据即可求出BD的长.【详解】∵,∴.由旋转的性质可知,∴.又∵,∴,∴,即,∴.故选B.3.如图,在△ABC中,AH⊥BC于H,BC=12,AH=8,D、E分别为AB、AC上的点,G、F是BC上的两点,四边形DEFG是正方形,正方形的边长DE为( )A.4.8B.4C.6.4D.6【答案】A【分析】利用相似三角形对应高的比也等于相似比,可以求出x,注意所画图形是正方形,用同一未知数表示未知边,即可求出.【详解】解:设△ABC的高AH交DE于点M,正方形的边长为x.由正方形DEFG得,DE∥FG,即DE∥BC,∵AH⊥BC,∴AM⊥DE.由DE∥BC得△ADE∽△ABC,∴,把BC=12,AH=8,DE=x,AM=8-x代入上式得:,解得:x=4.8.答:正方形的边长是4.8.故选:A.4.如图,在中,D,C,E三点在一条直线上,,,,则的长为()A.1.5B.1.6C.1.7D.1.8【答案】B【分析】设对角线AC与BD交于点O,过点O作于M,利用平行四边形性质得BO=DO,得MC=MD,然后利用相似三角形的判定与性质得出CF的长.【详解】解:设对角线AC与BD交于点O,在中,,,过点O作于M(如图),,,,,.故选B.5.如图Rt AOB∽DOC,∠AOB=∠COD=90°,M为OA的中点,OA=6,OB=8,直线AD,CB交于P 点,连接MP,AOB保持不动,将COD绕O点旋转,则MP的最大值是_____.【答案】9【分析】根据相似三角形的判定定理证明COB∽DOA,得到∠OBC=∠OAD,得到O、B、P、A共圆,求出MS和PS,根据三角形三边关系解答即可.【详解】解:取AB的中点S,连接MS、PS,则PM≤MS+PS,∵∠AOB=90°,OA=6,OB=8,∴AB=10,∵∠AOB=∠COD=90°,∴∠COB=∠DOA,∵AOB∽DOC,∴,∴COB∽DOA,∴∠OBC=∠OAD,∴O、B、P、A共圆,∴∠APB=∠AOB=90°,又S是AB的中点,∴PS=AB=5,∵M为OA的中点,S是AB的中点,∴MS=OB=4,∴MP的最大值是4+5=9,故答案为:9.6.如图,为等边边上的高,,为高上任意一点,则的最小值为_____.【答案】【分析】连接,交于点,此时最小,过点作于点,证明,然后求得,在中,勾股定理即可求解.【详解】解:如图所示:连接,交于点,此时最小,过点作于点,∵为等边边上的高,∴点与点关于对称,又∵,∴,∴,∵,∴,∴,∴,∴,解得:,∴,∴,∴在中,∴的最小值为:.故答案为:.7.如图,在矩形纸片中,,,点在上,将沿折叠,点恰落在边上的点处;点在上,将沿折叠,点恰落在线段上的点处,有下列结论:①;②;③;④;其中正确的是______.(填写正确结论的序号)【答案】①③④【分析】利用折叠性质得∠CBE=∠FBE,∠ABG=∠FBG,BF=BC=10,BH=BA=6,AG=GH,则可得到∠EBG=∠ABC,于是可对①进行判断;在Rt ABF中利用勾股定理计算出AF=8,则DF=AD-AF=2,设AG=x,则GH=x,GF=8-x,HF=BF-BH=4,利用勾股定理得到,解得x=3,所以AG=3,GF=5,于是可对④进行判断;接着证明ABF∽DFE,利用相似比得到,而=2,所以,所以DEF与ABG不相似,于是可对②进行判断;分别计算和可对③进行判断.【详解】解:∵BCE沿BE折叠,点C恰落在边AD上的点F处;点G在AF上,将ABG沿BG折叠,点A恰落在线段BF上的点H处,∴∠CBE=∠FBE,∠ABG=∠FBG,BF=BC=10,BH=BA=6,AG=GH,∴∠EBG=∠EBF+∠FBG=∠CBF+∠ABF=∠ABC=45°,所以①正确;在Rt ABF中,AF==8,∴DF=AD-AF=10-8=2,设AG=x,则GH=x,GF=8-x,HF=BF-BH=10-6=4,在Rt GFH中,∵,∴,解得x=3,∴GF=5,∴AG+DF=FG=5,所以④正确;∵BCE沿BE折叠,点C恰落在边AD上的点F处,∴∠BFE=∠C=90°,∴∠EFD+∠AFB=90°,而∠AFB+∠ABF=90°,∴∠ABF=∠EFD,∴ABF∽DFE,∴,∴,而,∴,∴DEF与ABG不相似;所以②错误.∵=×6×3=9,=×3×4=6,∴.所以③正确.故答案为:①③④.8.如图,在平行四边形ABCD中,点E在DC上,DE:EC=3:2,连接AE交BD于点F,则=________.【答案】9:25【分析】先由DE:EC=3:2,得DE:DC=3:5,再根据平行四边形ABCD,得AB CD,AB=CD,所以,△DEF∽△BAF,然后根据相似三角形的性质,面积比等于相似比的平方求解.【详解】解:∵DE:EC=3:2,∴DE:DC=3:5,∵平行四边形ABCD,∴AB CD,AB=CD,∴,△DEF∽△BAF,∴,故答案为:9∶25.9.如图,在△ABC中,过点A作,交∠ACB的平分线于点D,点E是BC上,连接DE,交AB于点F,.(1)求证:四边形ACED是菱形;(2)当,时,直接写出的值.【答案】(1)见解析;(2)【分析】(1)根据可得,即可证明四边形是平行四边形,然后根据平行线的性质以及角平分线得出,则可根据邻边相等的平行四边形为菱形;(2)根据菱形的性质可得,从而求出的长,然后根据可得,根据相似三角形对应边成比例可得结论.【详解】(1)证明:,,即,,四边形是平行四边形,,,平分,,,,四边形是菱形;(2)四边形是菱形;,,,,,.10.如图,在中,点D、E分别在边AB、AC上,BE、CD交于点O,.(1)如果,求AC的长;(2)如果△ADE的面积为1,求的面积.【答案】(1)18;(2)2【分析】(1)首先证明,利用相似三角形的性质解决问题即可.(2)证明,利用等高模型即可解决问题.【详解】(1)解:∵,∴=,∵,∴,∴,∴,∴=,,∴=,∵,∴.(2)∵=,∴,∴.11.如图,在正方形中,点M是边上的一点(不与B、C重合),点N在边的延长线上.且满足连接、,与边交于点E.(1)求证:;(2)求证:.【答案】(1)证明见解析;(2)证明见解析【分析】(1)根据正方形的性质、全等三角形的判定定理证明,根据全等三角形的性质即可证明;(2)证明,根据相似三角形的性质即可证明.【详解】(1)证明:∵四边形ABCD是正方形,∴,,又∵,∴,∴,在和中,,∴,∴;(2)证明:∵四边形ABCD是正方形,∴,∵,,∴,∴,又∵,∴,∴,∴.12.如图,在Rt ABC中,∠C=90°,∠BAC的平分线AD交BC于点D,点E是AB上一点,以AE为直径的⊙O过点D,且交AC于点F.(1)求证:BC是⊙O的切线;(2)若CD=6,AC=8,求AE.【答案】(1)见解析;(2)12.5【分析】(1)连接OD,根据平行线判定推出OD AC,推出OD⊥BC,根据切线的判定推出即可;(2)求出AD,连接DE,证DCA∽EDA,得出比例式,代入数值求解即可.【详解】(1)证明:连接OD,∵OA=OD,∴∠OAD=∠ODA,∵AD平分∠BAC,∴∠BAD=∠CAD,∴∠ODA=∠CAD,∴OD AC,∵∠C=90°,∴∠ODC=90°,∴OD⊥BC,∵OD为半径,∴BC是⊙O切线;(2)解:在Rt ADC中,AC=8,CD=6,由勾股定理得:AD=10.连接DE,∵AE为直径,∴∠EDA=∠C=90°,∵∠CAD=∠EAD,∴DCA∽EDA,∴,∴,AE=12.5.13.矩形中,,将绕点A逆时针旋转得到,使点落在延长线上(图1)(1)若,求的度数与的长度;(2)如图2将向右平移得,两直角边与拒形相交于点E、F;当平移的距离是多少时,能使与相似,(先填空,再完成解答)解:设平移的距离为x,则______________________(用含x的代数式表示)【答案】(1)37°,4(2),,或x=3.4【分析】(1)根据矩形的性质得出AD=BC=6,BC AD,∠B=90°,求出∠CAD=∠BCA=53°,则37°即可解答;由勾股定理求出=AC=10,进而求得;(2)设平移的距离为x,则,然后再解直角三角形表示出,进而表示出,同理表示出,然后根据相似三角形的性质列方程求解即可;【详解】(1)解:∵四边形ABCD是矩形,∴BC=AD=6,BC AD,∠B=90°,∴∠CAD=∠BCA=53°,∴∠BAC=90°-∠BCA=90°-53°=37°,∵将绕点A逆时针旋转得到∴37°在Rt△CBA中,AB=8,BC=6,由勾股定理得:=AC=10∴.(2)解:设平移的距离为x,则,∵∴,解得:∴同理:∵与相似∴或∴或,解得或x=3.4∴当或x=3.4时,与相似.14.【问题呈现】(1)如图1,和都是等边三角形,连接BD、CE.求证:BD=CE.【类比探究】(2)如图2,和都是等腰直角三角形,∠ABC=∠ADE=90°,连接BD、CE,则___________.【拓展提升】(3)如图3,和都是直角三角形,∠ABC=∠ADE=90°,∠DAE=∠BAC=30°,连接BD、CE.①求的值;②延长交于点G.交于点F.求.【答案】(1)见解析;(2);(3)①;②30°【分析】(1)证明BAD CAE,从而得出结论;(2)证明BAD∽CAE,进而得出结果;(3)①利用含30度的直角三角形的性质以及勾股定理得到,再证明BAD∽CAE,进而得出结果;②由BAD∽CAE,得出∠ACE=∠ABD,进而得出∠BGC=∠BAC.【详解】(1)证明:∵ABC和ADE都是等边三角形,∴AD=AE,AB=AC,∠DAE=∠BAC=60°,∴∠DAE∠BAE=∠BAC∠BAE,∴∠BAD=∠CAE,∴BAD CAE(SAS),∴BD=CE;(2)解:∵ABC和ADE都是等腰直角三角形,∴,∠DAE=∠BAC=45°,∴∠DAE∠BAE=∠BAC∠BAE,∴∠BAD=∠CAE,∴BAD∽CAE,∴;故答案为:;(3)解:①∵∠ABC=∠ADE=90°,∠DAE=∠BAC=30°,∴AE=2DE,AC=2BC,由勾股定理得AD=DE,AB=BC,∴,同理BAD∽CAE,∴;②∵BAD∽CAE,∴∠ACE=∠ABD,∵∠AFC=∠BFG,∴∠BGC=∠BAC=30°.。
《相似三角形的性质》 知识清单
《相似三角形的性质》知识清单相似三角形是初中数学中的重要内容,具有许多独特的性质。
掌握这些性质对于解决几何问题、培养逻辑思维和空间想象能力都有着至关重要的作用。
下面就让我们来详细了解一下相似三角形的性质。
一、相似三角形的定义如果两个三角形的对应角相等,对应边成比例,那么这两个三角形就叫做相似三角形。
二、相似三角形的性质1、对应角相等相似三角形的对应角相等,这是相似三角形的最基本性质。
也就是说,如果两个三角形相似,那么它们的三个角分别相等。
例如,若△ABC 与△A'B'C'相似,则∠A =∠A',∠B =∠B',∠C =∠C'。
2、对应边成比例相似三角形的对应边成比例。
设△ABC 与△A'B'C'相似,相似比为k,则有:AB/A'B' = BC/B'C' = AC/A'C' = k3、对应高的比等于相似比相似三角形对应高的比等于相似比。
例如,△ABC 与△A'B'C'相似,AD 和 A'D'分别是它们对应的高,则 AD/A'D' = k。
4、对应中线的比等于相似比相似三角形对应中线的比等于相似比。
中线是连接三角形顶点和对边中点的线段。
5、对应角平分线的比等于相似比相似三角形对应角平分线的比等于相似比。
角平分线将一个角平分为两个相等的角。
6、周长的比等于相似比相似三角形周长的比等于相似比。
三角形的周长是三边长度之和。
若△ABC 与△A'B'C'相似,相似比为 k,设△ABC 的周长为 L1,△A'B'C'的周长为 L2,则 L1/L2 = k。
7、面积的比等于相似比的平方相似三角形面积的比等于相似比的平方。
若△ABC 与△A'B'C'相似,相似比为 k,则它们的面积比为 S1/S2= k²。
苏教版九年级下册数学[《图形的相似》全章复习与巩固--知识点整理及重点题型梳理](提高)
苏教版九年级下册数学重难点突破知识点梳理及重点题型巩固练习《图形的相似》全章复习与巩固--知识讲解(提高)【学习目标】1、了解比例的基本性质,线段的比、成比例线段;2、掌握黄金分割的定义、性质及应用;3、理解相似三角形、相似多边形、相似比的概念;熟练掌握三角形相似的判定方法以及相似三角形的性质,并能够运用性质与判定解决有关问题;4、了解位似的概念,做的位似是特殊的相似变换,会利用位似的方法,讲一个图形放大或缩小;5、了解平行投影和中心投影的基本概念与性质,能综合运用图形相似的知识解决一些简单的实际问题.【知识网络】【要点梳理】要点一、比例线段及黄金分割1.比例线段:对于四条线段a、b、c、d,如果其中两条线段的比与另两条线段的比相等,如a:b=c:d,我们就说这四条线段是成比例线段,简称比例线段.要点诠释:(1)若a :b =c :d ,则ad=bc ;(d 也叫第四比例项)(2)若a :b=b :c ,则b 2=ac (b 称为a 、c 的比例中项).2.黄金分割的定义:如图,将一条线段AB 分割成大小两条线段AP 、PB ,若小段与大段的长度之比等于大段的长度与全长之比,即AB AP AP PB (此时线段AP 叫作线段PB 、AB 的比例中项),则P 点就是线段AB 的黄金分割点(黄金点),这种分割就叫黄金分割.3. 黄金矩形与黄金三角形:黄金矩形:若矩形的两条邻边长度的比值约为0.618,这种矩形称为黄金矩形.黄金三角形:顶角为36°的等腰三角形,它的底角为72°,恰好是顶角的2倍,人们称这种三角形为黄金三角形.黄金三角形性质:底角平分线将其腰黄金分割.要点二、相似图形1.相似图形:在数学上,我们把形状相同的图形称为相似图形(similar figures). 要点诠释:(1) 相似图形就是指形状相同,但大小不一定相同的图形;(2) “全等”是“相似”的一种特殊情况,即当“形状相同”且“大小相同”时,两个图形全等.2.相似多边形各角分别相等,各边成比例的两个多边形,它们的形状相同,称为相似多边形. 要点诠释:(1)相似多边形的定义既是判定方法,又是它的性质.(2)相似多边形对应边的比称为相似比.要点三、相似三角形1. 相似三角形的判定:判定方法(一):平行于三角形一边的直线与其他两边相交,所截得的三角形与原三角形相似.判定方法(二):两角分别相等的两个三角形相似.要点诠释:要判定两个三角形是否相似,只需找到这两个三角形的两个对应角相等即可,对于直角三角形而言,若有一个锐角对应相等,那么这两个三角形相似.判定方法(三):两边成比例夹角相等的两个三角形相似.要点诠释:此方法要求用三角形的两边及其夹角来判定两个三角形相似,应用时必须注意这个角必须是两边的夹角,否则,判断的结果可能是错误的.判定方法(四):三边成比例的两个三角形相似.相似三角形的性质:(1)相似三角形的对应角相等,对应边的比相等;(2)相似三角形对应高,对应中线,对应角平分线的比都等于相似比;(3)相似三角形周长的比等于相似比;(4)相似三角形面积的比等于相似比的平方.3.相似多边形的性质:(1)相似多边形的对应角相等,对应边的比相等.(2)相似多边形的周长比等于相似比.(3)相似多边形的面积比等于相似比的平方.要点四、图形的位似及投影1.位似多边形定义:如果两个相似多边形任意一组对应顶点所在的直线都经过同一个点O,且每组对应点与点O 点的距离之比都等于一个定值k,例如,如下图,OA′=k·OA(k≠0),那么这样的两个多边形叫做位似多边形,点O叫做位似中心.要点诠释:位似图形与相似图形的区别:位似图形是一种特殊的相似图形,而相似图形未必能构成位似图形.2.位似图形的性质:(1)位似图形的对应点相交于同一点,此点就是位似中心;(2) 位似图形的对应点到位似中心的距离之比等于相似比;(3)位似图形中不经过位似中心的对应线段平行.3.作位似图形的步骤第一步:在原图上找若干个关键点,并任取一点作为位似中心;第二步:作位似中心与各关键点连线;第三步:在连线上取关键点的对应点,使之满足放缩比例;第四步:顺次连接各对应点.要点诠释:位似中心可以取在多边形外、多边形内,或多边形的一边上、或顶点,下面是位似中心不同的画法.4.平行投影在平行光的照射下,物体所产生的影称为平行投影.(1)等高的物体垂直地面放置时,如图1所示,在太阳光下,它们的影子一样长.(2)等长的物体平行于地面放置时,如图2所示,它们在太阳光下的影子一样长,且影长等于物体本身的长度.(3)在同一时刻,不同物体的物高与影长成正比例.即:=.甲物体的高甲物体的影长乙物体的高乙物体的影长利用上面的关系式可以计算高大物体的高度,比如旗杆的高度等. 注意:利用影长计算物高时,要注意的是测量两物体在同一时刻的影长.5.中心投影在点光源的照射下,物体所产生的影称为中心投影.(1)等高的物体垂直地面放置时,如图1所示,在灯光下,离点光源近的物体它的影子短,离点光源远的物体它的影子长.(2)等长的物体平行于地面放置时,如图2所示.一般情况下,离点光源越近,影子越长;离点光源越远,影子越短,但不会比物体本身的长度还短.【典型例题】类型一、黄金分割1.如图,用纸折出黄金分割点:裁一张正方的纸片ABCD ,先折出BC 的中点E ,再折出线段AE ,然后通过折叠使EB 落到线段EA 上,折出点B 的新位置B ′,因而EB ′=EB .类似地,在AB 上折出点B ″使AB ″=AB ′.这是B ″就是AB 的黄金分割点.请你证明这个结论.【答案与解析】 设正方形ABCD 的边长为2, E 为BC 的中点,∴BE=1∴AE=225AB BE +=,又B ′E=BE=1, ∴AB ′=AE-B ′E=5-1,∵AB ″=AB ′=5-1∴AB ″:AB=(5-1):2∴点B ″是线段AB 的黄金分割点.【总结升华】本题考查了黄金分割的应用,知道黄金比并能求出黄金比是解题的关键. 举一反三【变式】如图,已知△ABC 中,D 是AC 边上一点,∠A=36°,∠C=72°,∠ADB=108°. 求证:(1)AD=BD=BC ; (2)点D 是线段AC 的黄金分割点.【答案】(1)∵∠A=36°,∠C=72°,∴∠ABC=72°,∠ADB=108°,∴∠ABD=36°,∴△ADB 、△BDC 是等腰三角形,∴AD=BD=BC .(2)∵∠DBC=∠A=36°,∠C=∠C ,∴△ABC ∽△BDC ,∴BC :AC=CD :BC ,∴BC 2=AC •DC , ∵BC=AD ,∴AD 2=AC •DC ,∴点D 是线段AC 的黄金分割点.类型二、相似三角形2. 已知:如图,∠ABC =∠CDB =90°,AC =a ,BC =b ,当BD 与a 、b 之间满足怎样的关系时,这两个三角形相似?【答案与解析】解:∵AC =a ,BC =b ,∴AB=22a b -,①当△ABC ∽△BDC 时,BD BC AB AC=, 即22b a b BD a-=. ②当△ABC ∽△CDB 时,BD BC CB AC=, 即2b BD a=. 【总结升华】相似三角形中未明确对应点和对应边时,要注意分类讨论.举一反三【变式】如图,在矩形ABCD 中,AB=6,BC=8,沿直线MN 对折,使A 、C 重合,直线MN 交AC 于O.(1)求证:△COM∽△CBA; (2)求线段OM 的长度.【答案】(1)证明:A与C关于直线MN对称,∴AC MN,∴∠COM=90°,在矩形ABCD中,∠B=90°,∴∠COM=∠B ,又∠ACB=∠ACB,∴△COM∽△CBA ,(2)在Rt△CBA中,AB=6,BC=8,∴AC=10 ,∴OC=5,△COM∽△CBA,∴OC OM=BC AB,∴OM=15 4.类型三、相似三角形的综合应用3.(2015•杭州)如图,在△ABC中(BC>AC),∠ACB=90°,点D在AB边上,DE⊥AC 于点E.(1)若=,AE=2,求EC的长;(2)设点F在线段EC上,点G在射线CB上,以F,C,G为顶点的三角形与△EDC 有一个锐角相等,FG交CD于点P.问:线段CP可能是△CFG的高线还是中线?或两者都有可能?请说明理由.【答案与解析】解:(1)∵∠ACB=90°,DE⊥AC,∴DE∥BC,∴,∵,AE=2,∴EC=6;(2)①如图1,若∠CFG=∠ECD,此时线段CP是△CFG的FG边上的中线.证明:∵∠CFG+∠CGF=90°,∠ECD+∠PCG=90°,又∵∠CFG=∠ECD,∴∠CGF=∠PCG,∴CP=PG,∵∠CFG=∠ECD,∴CP=FP,∴PF=PG=CP,∴线段CP是△CFG的FG边上的中线;②如图2,若∠CFG=∠EDC,此时线段CP为△CFG的FG边上的高线.证明:∵DE⊥AC,∴∠EDC+∠ECD=90°,∵∠CFG=∠EDC,∴∠CFG+∠ECD=90°,∴∠CPF=90°,∴线段CP为△CFG的FG边上的高线.③如图3,当CD为∠ACB的平分线时,CP既是△CFG的FG边上的高线又是中线.【总结升华】本题主要考查了平行线分线段成比例定理、等腰三角形的判定、三角形的有关概念,分类讨论,能全面的思考问题是解决问题的关键.4. 如图,M 为线段AB 的中点,AE 与BD 交于点C ,∠DME=∠A=∠B=α ,且DM 交AC 于F ,ME 交BC 于G .(1)写出图中三对相似三角形,并证明其中的一对;(2)连结FG ,如果α=45°,AB =42,AF =3,求FG 的长. 【答案与解析】 (1)△AMF∽△BGM,△DMG∽△DBM,△EMF∽△EAM以下证明△AMF∽△BGM.∵∠AFM=∠DME+∠E=∠A+∠E=∠BMG,∠A=∠B∴△AMF∽△BGM.(2)当α=45°时,可得AC⊥BC 且AC =BC∵M 为AB 的中点,∴AM=BM =22,又∵AMF∽△BGM,∴AF BM AM BG=, ∴3832222=⨯=⋅=AF BM AM BG , 又∵α=45°,AB =42,∴AC=BC=4,∴84433CG =-=,431CF =-=, ∴2222451()33FG CF CG =+=+= . 【总结升华】本题考查了相似三角形知识的综合运用,并且渗透了转化思想.5. 如图,已知在梯形ABCD 中,AD//BC ,AD=2,BC=4,点M 是AD 的中点,△MBC 是等边三角形.(1)求证:梯形ABCD 是等腰梯形.(2)动点P 、Q 分别在线段BC 和MC 上运动,且∠MPQ=60°保持不变.设PC=x ,MQ=y ,求y 与x 的函数关系式.【答案与解析】(1)∵MBC △是等边三角形∴60MB MC MBC MCB ===︒,∠∠∵M 是AD 中点,∴AM MD =,∵AD BC ∥,∴60AMB MBC ==︒∠∠,60DMC MCB ==︒∠∠,∴AMB DMC △≌△,∴AB DC =,∴梯形ABCD 是等腰梯形.(2)在等边MBC △中,4MB MC BC ===,60MBC MCB ==︒∠∠, 又∵60MPQ =︒∠,∴120BMP BPM BPM QPC +=+=︒∠∠∠∠,∴BMP QPC =∠∠,∴BMP CQP △∽△, ∴PC CQ BM BP=, ∵PC x MQ y ==, ∴44BP x QC y =-=-, , ∴444x y x-=- , ∴2144y x x =-+. 【总结升华】利用相似三角形得到的比例式,构建线段关系求得函数关系,关键是能够灵活运用所学知识来解题.举一反三【变式】如图所示,在Rt △ABC 中,∠A=90°,AB=8,AC=6.若动点D 从点B 出发,沿线段BA 运动到点A 为止,运动速度为每秒2个单位长度.过点D 作DE ∥BC 交AC 于点E ,设动点D 运动的时间为x 秒,AE 的长为y .(1)求出y 关于x 的函数关系式,并写出自变量x 的取值范围;(2)当x为何值时,△BDE的面积S有最大值,最大值为多少?【答案】(1)∵DE∥BC,所以△ADE∽△ABC,∴.又∵AB=8,AC=6,,,∵,即,自变量x的取值范围为.(2).所以当时,S有最大值,且最大值为6.类型四、图形的位似6.如图,△ABC中,A、B两点在x轴的上方,点C的坐标是(﹣1,0).以点C为位似中心,在x轴的下方作△ABC的位似图形△A′B′C,并把△ABC的边长放大到原来的2倍.设点B的对应点B′的横坐标是2,求点B的横坐标.【思路点拨】过B和B′向x轴引垂线,构造相似比为1:2的相似三角形,那么利用相似比和所给B′的横坐标即可求得点B的横坐标.【答案与解析】解:过点B、B'分别作BD⊥x轴于D,B'E⊥x轴于E,∴∠BDC=∠B'EC=90°.∵△ABC的位似图形是△A'B'C,∴点B、C、B'在一条直线上,∴∠BCD=∠B'CE,∴△BCD∽△B'CE.∴,又∵,∴,又∵点B'的横坐标是2,点C的坐标是(﹣1,0),∴CE=3,∴.∴,∴点B的横坐标为.【总结升华】难点是利用对应点向x轴引垂线构造相似三角形,关键是利用相似比解决问题.类型五、用相似三角形解决问题7.(2014•陕西)某一天,小明和小亮来到一河边,想用遮阳帽和皮尺测量这条河的大致宽度,两人在确保无安全隐患的情况下,先在河岸边选择了一点B(点B与河对岸岸边上的一棵树的底部点D所确定的直线垂直于河岸).①小明在B点面向树的方向站好,调整帽檐,使视线通过帽檐正好落在树的底部点D处,如图所示,这时小亮测得小明眼睛距地面的距离AB=1.7米;②小明站在原地转动180°后蹲下,并保持原来的观察姿态(除身体重心下移外,其他姿态均不变),这时视线通过帽檐落在了DB延长线上的点E处,此时小亮测得BE=9.6米,小明的眼睛距地面的距离CB=1.2米.根据以上测量过程及测量数据,请你求出河宽BD是多少米?【思路点拨】根据题意求出∠BAD=∠BCE,然后根据两组角对应相等,两三角形相似求出△BAD和△BCE相似,再根据相似三角形对应边成比例列式求解即可.【答案与解析】解:由题意得,∠BAD=∠BCE,∵∠ABD=∠CBE=90°,∴△BAD∽△BCE,∴=,∴=,解得BD=13.6.答:河宽BD是13.6米.【总结升华】本题考查了相似三角形的应用,读懂题目信息得到两三角形相等的角并确定出相似三角形是解题的关键,也是本题的难点.。
苏教版九年级下册数学[用相似三角形解决问题—知识点整理及重点题型梳理](基础)
苏教版九年级下册数学重难点突破知识点梳理及重点题型巩固练习用相似三角形解决问题—知识讲解(基础)【学习目标】1.以分析实际例子为背景,认识平行投影和中心投影的基本概念与性质;2.通过典型实例认识现实生活中物体的相似,能运用图形相似的知识解决一些简单的实际问题(如何把实际问题抽象为数学问题).【要点梳理】要点一、平行投影1.一般地,用光线照射物体,在某个平面(地面或墙壁等)上得到的影子,叫做物体的投影.只要有光线,有被光线照到的物体,就存在影子.太阳光线可看做平行的,象这样在平行光的照射下,物体所产生的影称为平行投影.由此我们可得出这样两个结论:(1)等高的物体垂直地面放置时,如图1所示,在太阳光下,它们的影子一样长.(2)等长的物体平行于地面放置时,如图2所示,它们在太阳光下的影子一样长,且影长等于物体本身的长度.2. 物高与影长的关系(1)在不同时刻,同一物体的影子的方向和大小可能不同.不同时刻,物体在太阳光下的影子的大小在变,方向也在改变,就北半球而言,从早晨到傍晚,物体影子的指向是:西→西北→北→东北→东,影长也是由长变短再变长.(2)在同一时刻,不同物体的物高与影长成正比例.即:=.甲物体的高甲物体的影长乙物体的高乙物体的影长利用上面的关系式可以计算高大物体的高度,比如旗杆的高度等.注意:利用影长计算物高时,要注意的是测量两物体在同一时刻的影长.要点诠释:1.平行投影是物体投影的一种,是在平行光线的照射下产生的.利用平行投影知识解题要分清不同时刻和同一时刻.2.物体与影子上的对应点的连线是平行的就说明是平行光线.要点二、中心投影若一束光线是从一点发出的,在点光源的照射下,物体所产生的影称为中心投影.这个“点”就是中心,相当于物理上学习的“点光源”.生活中能形成中心投影的点光源主要有手电筒、路灯、台灯、投影仪的灯光、放映机的灯光等.相应地,我们会得到两个结论:(1)等高的物体垂直地面放置时,如图1所示,在灯光下,离点光源近的物体它的影子短,离点光源远的物体它的影子长.(2)等长的物体平行于地面放置时,如图2所示.一般情况下,离点光源越近,影子越长;离点光源越远,影子越短,但不会比物体本身的长度还短.在中心投影的情况下,还有这样一个重要结论:点光源、物体边缘上的点以及它在影子上的对应点在同一条直线上,根据其中两个点,就可以求出第三个点的位置.要点诠释:光源和物体所处的位置及方向影响物体的中心投影,光源或物体的方向改变,则该物体的影子的方向也发生变化,但光源、物体的影子始终分离在物体的两侧.要点三、中心投影与平行投影的区别与联系1.联系:(1)中心投影、平行投影都是研究物体投影的一种,只不过平行投影是在平行光线下所形成的投影,通常的平行光线有太阳光线、月光等,而中心投影是从一点发出的光线所形成的投影,通常状况下,灯泡的光线、手电筒的光线等都可看成是从某一点发射出来的光线.(2)在平行投影中,同一时刻改变物体的方向和位置,其投影也跟着发生变化;在中心投影中,同一灯光下,改变物体的位置和方向,其投影也跟着发生变化.在中心投影中,固定物体的位置和方向,改变灯光的位置,物体投影的方向和位置也要发生变化.2.区别:(1)太阳光线是平行的,故太阳光下的影子长度都与物体高度成比例;灯光是发散的,灯光下的影子与物体高度不一定成比例.(2)同一时刻,太阳光下影子的方向总是在同一方向,而灯光下的影子可能在同一方向,也可能在不同方向.要点诠释:在解决有关投影的问题时必须先判断准确是平行投影还是中心投影,然后再根据它们的具体特点进一步解决问题.要点四、相似三角形的应用1.测量高度测量不能到达顶部的物体的高度,通常使用“在同一时刻物高与影长的比例相等”的原理解决.【课程名称:相似三角形的性质及应用 394500:应用举例及总结】要点诠释:测量旗杆的高度的几种方法:平面镜测量法影子测量法手臂测量法标杆测量法2.测量距离测量不能直接到达的两点间的距离,常构造如下两种相似三角形求解。
苏科版九年级下册数学相似三角形知识梳理与典例分析
学科教师辅导教案授课类型复习(相似三角形)教学目标1、了解相似形、相似三角形的定义和性质2、会判定三角形相似星级★★★★★(自由分配)进门测选择题:1、在相同时间的物高与影长成比例,如果物高为1.5米的测竿的影长为2.5米,那么影长为30米的旗竿的高度是()A 20mB 16mC 18mD 15m2、如图,三角形ABC中,D、E分别是AB、AC上的点,DE∥BC,DE=1,BC=3,AB=6则AD的长是()A 1B 1.5C 2D 2.53、如图在矩形ABCD中,AE=BF,EF与BD交于点G,则图中的相似三角形共有()对A 4B 5C 6D 84、如图,CD是Rt⊿ABC斜边上的高,AD=9,CD=6则BD=()A 4.5B 5C 3D 45、如图四边形ABCD是正方形,E是DC的中点,P是BC上的一点,下列条件:①∠APB=∠EPC;②∠BAP=∠CEP;③P是BC的中点;④BP:BC=2:3。
其中能得到⊿ABP与⊿ECP相似的有()个A 4B 3C 2D 1知识点归纳相似形 定义:形状相同的图形叫做相似形性质:相似多边形的对应角相等,对应边成比例相似比:相似多边形对应边的比叫做相似比相似三角形 对应角相等、对应边成比例的两个三角形是相似三角形相似三角形的对应角相等、对应边成比例判定:各角对应相等、各边对应相等成比例的两个多边形相似三角形的重心:三角形的三条中线交于一点,这点叫做三角形的重心。
黄金分割: 黄金比,0.618或者2分之 根号5 — 11.平行线分线段成比例的基本事实两条直线被一组平行线所截,所得的对应线段成比例2.三角形相似的条件1平行于三角形一边的直线与其它两边相交,所截得的三角形与原三角形相似3.三角形相似的条件2定理:两角分别相等的两个三角形相似4.三角形相似的条件3定理:两边成比例且夹角相等的两个三角形相似5.三角形相似的条件4定理:三边成比例的两个三角形相似判定两个三角形相似的基本思路(1)若已知一对 等角,则可找另一对 等角,或说明夹已知等角的两边或比例(2)若已知两边成比例,则可说明其夹角相等,或说明第三边也成比例(3)若出现平行线,则利用“平行于三角形一边的直线与其它两边(或两边的延长线)相交,所构成的三角形与原三角形相似”来判定例一 在平行四边形ABCD 中,过点B 作BE ⊥CD 于E ,连结AE ,F 为AE 上的一点,且∠BFE=∠C(1) 求证:∆ABF ∽∆EAD(2) 若∠BAE=o30,AD=2,求BF 的长例二 已知在平行四边形ABCD 中,E 是AB 的中点,AF=31AD ,连结E 、F 交AC 于G 求:AG :AC 的值课堂练习 1、如图6,⊿ABC 中,D 为BC 边上的中点,E 是AD 的中点,BE 的延长线交AC 于F 则AF :FC=A 1:5B 1:4C 1:3D 1:22、如图7,⊿ABC 中,DE ∥BC ,和CD 交于F ,若AD :DB=2:3则BF :FE=( )A 5:2B 2:3C 5:3D 3:23、如图8,在四边形ABCD 中,E 是AB 上的一点,EC ∥AD ,DE ∥BC ,若===∆∆∆ECd ADE BEC s s s 则3,1( )A 2B 1.5C 3D 24、如图9,这是圆桌正上方的灯光照射桌面,在地面上形成的阴影示意图,已知桌面的直径是1.6m ,阴影的直径是2.4m ,那么灯泡距地面( )mA 2.5B 3C 3.6D 45、如图10,BD 、CE 是⊿ABC 的中线,P 、Q 分别为BD 、CD 的中点则PQ:BC=( )A 1:3B 1:4C 1:5D 1:6二、填空题:1、 已知:0543≠==z y x 则=+++-z y x z y x 2、 在平行四边形ABCD 中,E 是BC 上的一点,BE :EC=2:3,AE 交BD 于F ,则BF :FD=3、 如图,正方形ABCD 的边长是2,BE=EC ,MN=1,线段MN 的两端点在CD 、AD 上滑动,当DM= 时,⊿ABE 与⊿DMN 相似。
九年级相似三角形知识点总结及例题讲解
相似三角形基本知识知识点一:放缩与相似1.图形的放大或缩小,称为图形的放缩运动。
2.把形状相同的两个图形说成是相似的图形,或者就说是相似性。
注意:⑴相似图形强调图形形状相同,与它们的位置、颜色、大小无关。
⑵相似图形不仅仅指平面图形,也包括立体图形相似的情况。
⑶我们可以这样理解相似形:两个图形相似,其中一个图形可以看作是由另一个图形放大或缩小得到的.⑷若两个图形形状与大小都相同,这时是相似图形的一种特例一一全等形.3.相似多边形的性质:如果两个多边形是相似形,那么这两个多边形的对应角相等,对应边的长度成比例。
注意:X两个相似的女边形是全等形时,他们的对应边的长度的比值是1.知识点二:比例线段有关概念及性质(1)有关概念1、比:选用同一长度单位量得两条线段。
a、b的长度分别是m、n,那么就说这两条线段的比是8 :b=m:na _ m(或厂T)2、比的前项,比的后项:两条线段的比a: b中。
a叫做比的前项,b叫做比的后项。
说明:求两条线段的比时,对这两条线段要用同一单位长度。
3、比例:两个比相等的式子叫做比例,如厂7Λ _ C4、比例外项:在比例厂7 (或a:b=c: d)中a、d叫做比例外项。
« _ C5、比例内项:在比例厂7(或8:b=C: d)中b、C叫做比例内项。
α _ c6、第四比例项:在比例丁万(或a: b二c:d)中,d叫a、b、C的第四比例项。
d _b7、比例中项:如果比例中两个比例内项相等,即比例为厂万(或a:b=b:C时,我们把b叫做a和d的比例中项。
8、比例线段:对于四条线段a、b、c、d,如果其中两条线段的长度的比与另两条线段的长度的比相等,即-=-(或a: b=c: d),那么,这四条线段叫做成比例线段,简称比例线段。
(注总:在求线段比时,线段单位b d 要统一,单位不统一应先化成同一单位)(2)比例性质1.基本性质:— = — <=> Cld = beb d(两外项的积等于两内项积)a Cb dFd GC (把比的前项、后项交换)2.反比性质:3•更比性质(交换比例的内项或外项):-=^(交换内项)C a(交换外项)b d b a侗时交换内外项)C a4.合比性质:?=匚=P =仝L(分子加(减)分母,分母不变)b d b d■注意:实际上,比例的合比性质可扩展为:比例式中等号左右两个比的前项.后项之间b _ a _ d _ C发生同样和差变化比例仍成立.⅛∣:- = -^ " C .b d a_b _c_d.a + b c + d5•等比性质:(分子分母分别相加,比值不变•)a Ce m Zt f G …a+ c + e + ・・• + 〃】a如果—=—=—= ・・・ =—(b + d + / +・-• + n ≠ 0),那么---------------------- =—.b Clf n/? + 〃 + /+ ・• + 〃/?注意:⑴此性质的证明运用r “设£法”,这种方法是有关比例汁算,变形中一种常用方法.(2)应用等比性质时.要考虑到分母是否为零・(3)可利用分式性质将连等式的每一个比的前项与后项同时乘以一个数,再利用等比性质也成立. 知识点三:黄金分割Λ C RCD定义:在线段AB上,点C把线段/1B分成两条线段AC和BC (AC> BC),如果—=—•即AC⅛A AB AC BxBC,那么称线段AB彼点C黄金分割,点C叫做线段SB的黄金分割点,SC与AB的比叫做黄金√5-1比。
苏教版九年级下册数学[相似图形--知识点整理及重点题型梳理]
苏教版九年级下册数学重难点突破知识点梳理及重点题型巩固练习相似多边形--知识讲解【学习目标】1、掌握相似多边形的概念及性质运用;2、掌握相似三角形的概念及相关求值问题.【要点梳理】要点一、相似三角形定义:在△ABC 和△A′B′C′中,如果∠A=∠A′,∠B=∠B′,∠C=∠C′,''''''AB BC CA A B B C C A ==,那么△ABC 和△A′B′C′相似,记做△ABC∽△A′B′C′.相似三角形的性质:相似三角形的对应角相等,对应边成比例.相似三角形的对应边的比叫作相似比.一般地,若△ABC 与△A′B′C′的相似比为k ,则△A′B′C′与△ABC 的相似比为1k. 要点诠释:全等三角形是相似比为1的相似三角形.全等三角形是相似三角形的一个特例.要点二、相似多边形相似多边形:对于两个边数相等的多边形,如果他们的对应角相等,对应边成比例,那么这两个多边形叫作相似多边形.相似多边形对应边的比叫做相似比.如果四边形ABCD 与四边形A 1B 1C 1D 1相似,且点A,B,C,D 分别与点A 1,B 1,C 1,D 1对应,则记作:“四边形ABC D∽四边形A 1B 1C 1D 1”.相似多边形的性质:相似多边形的对应角相等,对应边成比例.要点诠释:用相似多边形定义判定特殊多边形的相似情况:(1)对应角都相等的两个多边形不一定相似,如:矩形;(2)对应边的比都相等的两个多边形不一定相似,如:菱形;(3)边数相同的正多边形都相似,如:正方形,正五边形.【典型例题】类型一、相似三角形1.已知:如图,△ADE ∽△ABC ,AB=10cm ,AD=6cm ,BC=12cm ,∠A=56°,∠ADE=40°.求:(1)∠ACB 的度数;(2)DE 的长.【总结升华】本题主要考查了相似三角形的性质,对应角相等,对应边的比相等.2. 如图,△ABC中,AI、BI分别平分∠BAC、∠ABC.CE是△ABC的外角∠ACD的平分线,交BI延长线于E,连接CI.(1)△ABC变化时,设∠BAC=2α.若用α表示∠BIC和∠E;(2)若AB=1,且△ABC与△ICE相似,求相应AC长.【思路点拨】(1)根据三角形的外角等于不相邻的两个内角的和即可求解.(2)根据相似三角形对应边的比相等,即可求解.【答案与解析】【总结升华】两三角形相似,注意根据对应边的不同,分情况讨论是解决本题的关键.举一反三【变式】已知:如图Rt△ABC∽Rt△BDC,若AB=3,AC=4.(1)求BD、CD的长;(2)过B作BE⊥DC于E,求BE的长.【答案】(1)Rt△ABC中,根据勾股定理得:类型二、相似多边形3.(2014•镇江) 如图:矩形ABCD 的长AB=30,宽BC=20.(1)如图(1)若沿矩形ABCD 四周有宽为1的环形区域,图中所形成的两个矩形ABCD 与A ′B ′C ′D ′相似吗?请说明理由;(2)如图(2),x 为多少时,图中的两个矩形ABCD 与A ′B ′C ′D ′相似?【答案与解析】解:(1)不相似,AB=30,A ′B ′=28,BC=20,B ′C ′=18,而≠;(2)矩形ABCD 与A ′B ′C ′D ′相似,则=, 则:=,解得x=1.5,或=,解得x=9.∴当x=1.5或9时,图中的两个矩形ABCD 与A ′B ′C ′D ′相似.【总结升华】两个边数相同的多边形,必须同时满足“对应边的比都相等,对应角都相等”这两个条件才能相似,缺一不可.举一反三 【变式】如图,梯形ABCD中,AD ∥BC ,E 、F 两点分别在AB 、DC 上.若AE=4,EB=6,DF=2,FC=3,且梯形AEFD 与梯形EBCF 相似,则AD 与BC 的长度比为( )A.1:2B. 2:3C. 2:5D.4:9【答案】D.4.(2014•南通)如图,点E是菱形ABCD对角线CA的延长线上任意一点,以线段AE为边作一个菱形AEFG,且菱形AEFG∽菱形ABCD,连接EB,GD.(1)求证:EB=GD;(2)若∠DAB=60°,AB=2,AG=,求GD的长.【思路点拨】(1)利用相似多边形的对应角相等和菱形的四边相等证得三角形全等后即可证得两条线段相等;(2)连接BD交AC于点P,则BP⊥AC,根据∠DAB=60°得到112BP AB==,然后求得EP=2,最后利用勾股定理求得EB的长即可求得线段GD的长即可.【答案与解析】(1)证明:∵菱形AEFG∽菱形ABCD,∴∠EAG=∠BAD,∴∠EAG+∠GAB=∠BAD+∠GAB,∴∠EAB=∠GAD,∵AE=AG,AB=AD,∴△AEB≌△AGD,∴EB=GD;(2)解:连接BD交AC于点P,则BP⊥AC,∵∠DAB=60°,∴∠PAB=30°,∴BP=AB=1,AP==,AE=AG=,∴EP=2,∴EB===,∴GD=.【总结升华】本题考查了相似多边形的性质,解题的关键是了解相似多边形的对应边的比相等,对应角相等.。
相似三角形知识点归纳
相似三角形知识点归纳下面是关于相似三角形的一些重要知识点的归纳:1.相似三角形的定义:当两个三角形的对应角度相等时,它们称为相似三角形。
记作△ABC∽△DEF。
2.相似三角形的性质:相似三角形具有以下重要性质:-对应角度相等:如果△ABC∽△DEF,则∠A=∠D,∠B=∠E,∠C=∠F。
-对应边长度比相等:如果△ABC∽△DEF,则AB/DE=BC/EF=AC/DF。
-对应高度比相等:如果△ABC∽△DEF,则h₁/h₂=AB/DE=BC/EF=AC/DF,其中h₁和h₂分别为两个三角形的高度。
3.相似三角形的证明方法:-AA相似定理:如果两个三角形的两个角度分别相等,则它们相似。
根据该定理,只需证明两个对应角度相等即可证明两个三角形相似。
-SAS相似定理:如果两个三角形中的一对对应边的比相等,且对应角度相等,则这两个三角形相似。
-SSS相似定理:如果两个三角形的三对对应边比分别相等,则这两个三角形相似。
4.相似三角形的应用:-计算长度比例:根据相似三角形的性质,可以通过已知长度比例的一组相似三角形,来计算其他边的长度比例。
-求解角度:通过已知相似三角形的对应角度相等,可以求解未知的角度。
-计算面积比例:相似三角形的面积比等于边长比的平方。
所以,通过已知相似三角形的边长比,可以计算出面积比。
5.重要的相似三角形定理:-长边分割定理:如果一条直线平行于一个边,且与另外两条边相交,这条直线将三角形分割成两个相似的三角形。
-三角形的垂直角定理:在一个直角三角形中,斜边与任意一个锐角的两个垂直角相等。
总结起来,相似三角形是几何学中一个重要的概念。
通过理解相似三角形的定义、性质、证明方法以及应用,我们可以去解决各种几何问题。
相似三角形的知识点需要掌握好,也是我们在解决几何问题过程中的重要工具。
九年级相似三角形知识点总结
九年级相似三角形知识点总结
相似三角形是指具有完全相同形状但大小不同的三角形。
其主要知识点总结如下:
1. 相似三角形的定义:若两个三角形的对应角相等,则它们是相似的。
2. 相似三角形的判定:若两个三角形的对应边成比例,则它们是相似的。
3. 相似三角形的性质:
- 对应角相等:对应的角度是相等的。
- 对应边成比例:对应边的长度之比是相等的。
- 对应的高线成比例:对应的高线的长度之比是相等的。
- 对应的面积成比例:对应的面积的大小之比是相等的。
4. 相似三角形的性质推理:
- 两个三角形中,如果两边成比例,则其对应的夹角也相等。
- 两个三角形中,如果两角相等,则其对应的边成比例。
- 如果两个三角形中,对应的角度和边成比例,则这两个三
角形是相似的。
5. 相似三角形的应用:
- 利用相似三角形的性质可以求解两个图形的边或角度之比。
- 利用相似三角形的性质可以求解两个图形的面积之比。
- 利用相似三角形的性质可以进行图形的放大或缩小。
这些是九年级相似三角形的主要知识点总结,掌握了这些知识,可以更好地理解和应用相似三角形的相关概念和性质。
苏教版九年级下册数学[用相似三角形解决问题—知识点整理及重点题型梳理](提高)
苏教版九年级下册数学重难点突破知识点梳理及重点题型巩固练习用相似三角形解决问题—知识讲解(提高)【学习目标】1.以分析实际例子为背景,认识平行投影和中心投影的基本概念与性质;2.通过典型实例认识现实生活中物体的相似,能运用图形相似的知识解决一些简单的实际问题(如何把实际问题抽象为数学问题).【要点梳理】要点一、平行投影1.一般地,用光线照射物体,在某个平面(地面或墙壁等)上得到的影子,叫做物体的投影.只要有光线,有被光线照到的物体,就存在影子.太阳光线可看做平行的,象这样在平行光的照射下,物体所产生的影称为平行投影.由此我们可得出这样两个结论:(1)等高的物体垂直地面放置时,如图1所示,在太阳光下,它们的影子一样长.(2)等长的物体平行于地面放置时,如图2所示,它们在太阳光下的影子一样长,且影长等于物体本身的长度.2. 物高与影长的关系(1)在不同时刻,同一物体的影子的方向和大小可能不同.不同时刻,物体在太阳光下的影子的大小在变,方向也在改变,就北半球而言,从早晨到傍晚,物体影子的指向是:西→西北→北→东北→东,影长也是由长变短再变长.(2)在同一时刻,不同物体的物高与影长成正比例.即:=.甲物体的高甲物体的影长乙物体的高乙物体的影长利用上面的关系式可以计算高大物体的高度,比如旗杆的高度等.注意:利用影长计算物高时,要注意的是测量两物体在同一时刻的影长.要点诠释:1.平行投影是物体投影的一种,是在平行光线的照射下产生的.利用平行投影知识解题要分清不同时刻和同一时刻.2.物体与影子上的对应点的连线是平行的就说明是平行光线.要点二、中心投影若一束光线是从一点发出的,在点光源的照射下,物体所产生的影称为中心投影.这个“点”就是中心,相当于物理上学习的“点光源”.生活中能形成中心投影的点光源主要有手电筒、路灯、台灯、投影仪的灯光、放映机的灯光等.相应地,我们会得到两个结论:(1)等高的物体垂直地面放置时,如图1所示,在灯光下,离点光源近的物体它的影子短,离点光源远的物体它的影子长.(2)等长的物体平行于地面放置时,如图2所示.一般情况下,离点光源越近,影子越长;离点光源越远,影子越短,但不会比物体本身的长度还短.在中心投影的情况下,还有这样一个重要结论:点光源、物体边缘上的点以及它在影子上的对应点在同一条直线上,根据其中两个点,就可以求出第三个点的位置.要点诠释:光源和物体所处的位置及方向影响物体的中心投影,光源或物体的方向改变,则该物体的影子的方向也发生变化,但光源、物体的影子始终分离在物体的两侧.要点三、中心投影与平行投影的区别与联系1.联系:(1)中心投影、平行投影都是研究物体投影的一种,只不过平行投影是在平行光线下所形成的投影,通常的平行光线有太阳光线、月光等,而中心投影是从一点发出的光线所形成的投影,通常状况下,灯泡的光线、手电筒的光线等都可看成是从某一点发射出来的光线.(2)在平行投影中,同一时刻改变物体的方向和位置,其投影也跟着发生变化;在中心投影中,同一灯光下,改变物体的位置和方向,其投影也跟着发生变化.在中心投影中,固定物体的位置和方向,改变灯光的位置,物体投影的方向和位置也要发生变化.2.区别:(1)太阳光线是平行的,故太阳光下的影子长度都与物体高度成比例;灯光是发散的,灯光下的影子与物体高度不一定成比例.(2)同一时刻,太阳光下影子的方向总是在同一方向,而灯光下的影子可能在同一方向,也可能在不同方向.要点诠释:在解决有关投影的问题时必须先判断准确是平行投影还是中心投影,然后再根据它们的具体特点进一步解决问题.要点四、相似三角形的应用1.测量高度测量不能到达顶部的物体的高度,通常使用“在同一时刻物高与影长的比例相等”的原理解决.【课程名称:相似三角形的性质及应用394500:应用举例及总结】要点诠释:测量旗杆的高度的几种方法:平面镜测量法影子测量法手臂测量法标杆测量法2.测量距离测量不能直接到达的两点间的距离,常构造如下两种相似三角形求解。
九年级数学相似三角形知识点汇总参考(搜集整理全面细致)
九年级数学相似三角形知识点汇总参考一、比例线段及比例的性质1.比例线段:(1)线段的比:如果选用同一长度单位量得两条线段a,b的长度分别是m,n,那么就说这两条线段的比是a:b=m:n,或写成,其中a叫做比的前项;b叫做比的后项.(2)成比例线段:在四条线段中,如果其中两条线段的比等于另外两条线段的比,那么这四条线段叫做成比例线段,简称比例线段.(3)比例的项:已知四条线段a,b,c,d,如果,那么a,b,c,d,叫做组成比例的项,线段a,d叫做比例外项,线段b,c叫做比例内项,线段d还叫做a,b,c的第四比例项.(4)比例中项:如果作为比例线段的内项是两条相同的线段,即a:b=b:c或,那么线段b叫做线段a和c的比例中项.2.比例的性质(1)比例的基本性质:(2)反比性质:(3)更比性质: 或(4)合比性质:(5)等比性质: 且3.平行线分线段成比例定理(1)三角形一边的平行线性质定理: 平行于三角形一边的直线截其他两边(或两边的延长线)所得的对应线段成比例.(2)三角形一边的平行线性质定理推论:平行于三角形一边并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边的对应成比例.(3)三角形一边的平行线判定定理:如果一条直线截三角形的两边所得的对应线段成比例,那么这条直线平行于三角形的第三边.(4)三角形一边的平行线判定定理推论:如果一条直线截三角形两边的延长线(这两边的延长线在第三边的同侧)所得的对应线段成比例,那么这条直线平行于三角形的第三边.(5)平行线分线段成比例定理:两条直线被三条平行的直线所截,截得的对应线段成比例.(6)平行线等分线段定理:两条直线被三条平行的直线所截,如果在一条直线上截得的线段相等,那么在另一条直线上截得的线段也相等.这几个定理主要提出由平行线可得到比例式;反之,有比例可得到平行线.首先要弄清三个基本图形:这三个基本图形的用途是: 1.由平行线产生比例式 基本图形(1): 若l 1//l 2//l 3,则或或或 基本图形(2): 若DE//BC ,则或或或 基本图形(3): 若AC//BD ,则或或或在这里必须注意正确找出对应线段,不要弄错位置. 2.由比例式产生平行线段 基本图形(2):若, , , ,, 之一成立,则DE//BC. 基本图形(3):若,,,,,之一成立,则AC//DB.4.三角形的重心三角形三条中线的交点叫做三角形的重心.二、黄金分割 1.黄金分割是指把一条线段(AB)分成两条线段,使其中较大的线段(AC)是原线段(AB)与较小线段(BC)的比例中项(AC 2=AB·BC),C 点为黄金分割点. 2.黄金分割的求法 ①代数求法:已知:线段AB ,求作:线段AB 的黄金分割点C.分析:设C 点为所求作的黄金分割点,则AC 2=AB·CB,设AB =,AC =x ,那么 CB =-x , 由AC 2=AB·CB,得:x 2=·(-x)=0, 根据求根公式,得:x =整理后,得:x 2+x -∴(不合题意,舍去),即AC =AB≈0.618AB, 则C 点可作.②黄金分割的几何求法(尺规法):已知:线段AB , 求作:线段AB 的黄金分割点C. 作法:如图:(1)过B 点作BD ⊥AB ,使BD =AB.(2)连结AD ,在AD 上截取DE =DB.(3)在AB 上截取AC =AE. 则点C 就是所求的黄金分割点.证明:∵AC =AE =AD -AB ,而AD =∴AC =.5-1三、相似三角形 1.相似多边形(1)相似多边形的特征:相似多边形的对应角相等,对应边的比相等.(2)相似多边形的识别:如果两个多边形的对应角相等,对应边的比相等,那么这两个多边形相似. (3)相似比:我们把相似多边形对应边的比称为相似比. (4)相似多边形的性质①相似多边形的对应角相等,对应边的比相等. ②相似多边形的周长比等于相似比.③相似多边形的面积比等于相似比的平方. 2.相似三角形(1)相似三角形的定义:形状相同的三角形是相似三角形. (2)相似三角形的表示方法:用“∽”表示,读作相似于.如:△ABC 和△DEF 相似,可以写成△ABC ∽△DEF ,也可以写成△DEF ∽△ABC ,读作△ABC 相似于△DEF. (3)相似三角形的性质:①相似三角形的对应角相等,对应边的比相等. ②相似三角形对应边上的高的比相等,对应边上的中线的比相等,对应角的角平分线的比相等,都等于相似比. ③相似三角形的周长的比等于相似比,面积的比等于相似比的平方. (4)相似三角形的判定:①平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似; ②如果两个三角形的三组对应边的比相等,那么这两个三角形相似;③如果两个三角形的两组对应边的比相等,并且相应的夹角相等,那么这两个三角形相似; ④如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似.⑤如果一个直角三角形的斜边和一条直角边与另一个三角形的斜边和一条直角边的比对应相等,那么这两个直角三角形相似.(5)相似三角形应用举例相似三角形的知识在实际生产和生活中有着广泛的应用,可以解决一些不能直接测量的物体的长度问题,加深学生对相似三角形的理解和认识.四、实数与向量相乘 1.实数与向量相乘的意义一般的,设为正整数,为向量,我们用表示个相加;用表示个相加.又当为正整数时,表示与同向且长度为的向量. 诠释:设P 为一个正数,P 就是将的长度进行放缩,而方向保持不变;—P 也就是将的长度进行放缩,但方向相反.2.向量数乘的定义一般地,实数与向量的相乘所得的积是一个向量,记作,它的长度与方向规定如下:(1)如果时,则:①的长度:;②的方向:当时,与同方向;当时,与反方向;(2)如果时,则:,的方向任意.实数与向量相乘,叫做向量的数乘.n a a nn a a n -n -m a m n a mnk a ka k 0,a 0且≠≠ka ||||||ka k a =ka 0k >ka a 0k <ka a k 0,a=0=或0ka =ka k a(1)向量数乘结果是一个与已知向量平行(或共线)的向量; (2)实数与向量不能进行加减运算;(3)表示向量的数乘运算,书写时应把实数写在向量前面且省略乘号,注意不要将表示向量的箭头写在数字上面;(4)向量的数乘体现几何图形中的位置关系和数量关系. 3.实数与向量相乘的运算律 设为实数,则:(1)(结合律);(2)(向量的数乘对于实数加法的分配律);(3) (向量的数乘对于向量加法的分配律) 4.平行向量定理(1)单位向量:长度为1的向量叫做单位向量. 诠释:任意非零向量与它同方向的单位向量的关系:,.(2)平行向量定理:如果向量与非零向量平行,那么存在唯一的实数,使.诠释:(1)定理中,,的符号由与同向还是反向来确定.(2)定理中的“”不能去掉,因为若,必有,此时可以取任意实数,使得成立. (3)向量平行的判定定理:是一个非零向量,若存在一个实数,使,则向量与非零向量平行. (4)向量平行的性质定理:若向量与非零向量平行,则存在一个实数,使. (5)A 、B 、C 三点的共线若存在实数λ,使 .要点五、向量的线性运算 1.向量的线性运算定义向量的加法、减法、实数与向量相乘以及它们的混合运算叫做向量的线性运算. 诠释:(1)如果没有括号,那么运算的顺序是先将实数与向量相乘,再进行向量的加减. (2)如果有括号,则先做括号内的运算,按小括号、中括号、大括号依次进行. 2.向量的分解平面向量基本定理:如果是同一平面内两个不共线(或不平行)的向量,那么对于这一平面内的任一向量,有且只有一对实数,使得.ka m n 、()()m na mn a =()m n a ma na +=+m (+b)=m a a mb +a 0a 0a a a =01a a a=b a m b ma =b m a=m b a a 0≠a 0=b 0=m b ma =a m b ma =b a b a m b ma =⇔AB //BC ⇔AB BC λ=12,e e a 12,λλ1122a e e λλ=+(1)同一平面内两个不共线(或不平行)向量叫做这一平面内所有向量的一组基底.一组基底中,必不含有零向量.(2) 一个平面向量用一组基底表示为形式,叫做向量的分解,当相互垂直时,就称为向量的正分解.(3) 以平面内任意两个不共线的向量为一组基底,该平面内的任意一个向量都可表示成这组基底的线性组合,基底不同,表示也不同.3.用向量方法解决平面几何问题 (1)利用已知向量表示未知向量用已知向量来表示另外一些向量,除利用向量的加、减、数乘运算外,还应充分利用平面几何的一些定理,因此在求向量时要尽可能转化到平行四边形或三角形中,利用三角形中位线、相似三角形对应边成比例等平面几何的性质,把未知向量转化为与已知向量有直接关系的向量来求解. (2)用向量方法研究平面几何的问题的“三步曲”:①建立平面几何与向量的联系,将平面几何问题转化为向量问题. ②通过向量运算,研究几何元素的关系. ③把运算结果“翻译”成几何关系.12,e e 12,e e 1122a e e λλ=+12,e e。
九年级数学下册 6.3 相似图形 相似三角形的性质是什么?素材 (新版)苏科版
相似三角形的性质是什么?
难易度:★★★
关键词:相似三角形的性质
答案:
(1)相似三角形对应角相等,对应边成比例. (2)相似三角形对应高的比,对应中线的比和对应角平分线的比都等于相似比. (3)相似三角形周长的比等于相似比
【举一反三】
典例:如果两个相似三角形的相似比是,那么它们的面积比是()
A
. B
. C
. D .
思路导引:一般来讲,解决本题要把握相似三角形的性质即:(1)相似三角形对应角相等,对应边成比例. (2)相似三角形对应高的比,对应中线的比和对应角平分线的比都等于相似比. (3)相似三角形周长的比等于相似比
标准答案:B
1。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
苏教版九年级下册数学
重难点突破
知识点梳理及重点题型巩固练习
相似三角形的性质--知识讲解(提高)
【学习目标】
探索相似三角形的性质,能运用性质解决有关的计算或证明问题.
【要点梳理】
要点一、相似三角形的性质
1. 相似三角形周长的比等于相似比 ∽,则
由比例性质可得:
B
类似地,我们还可以得到:
相似多边形周长的比等于相似比.
2. 相似三角形面积的比等于相似比的平方
∽,则分别作出与的高和,则21122=1122
ABC
A B C BC AD k B C k A D S k S B C A D B C A D '''''''⋅⋅⋅⋅=='''''''''⋅⋅△△
B A'
D'
要点诠释:相似三角形的性质是通过比例线段的性质推证出来的.
如果把两个相似多边形分成若干个相似的三角形,我们还可以得到:
相似多边形面积的比等于相似比的平方.
要点二、相似三角形中对应线段的比
【课程名称:相似三角形的性质及应用394500
:相似形的性质】
1.相似三角形的对应角相等,对应边的比相等.
2. 相似三角形中的对应线段的比等于相似比.
相似三角形对应高,对应中线,对应角平分线的比都等于相似比.
要点诠释:要特别注意“对应”两个字,在应用时,要注意找准对应线段.
【典型例题】
类型一、相似三角形的性质
1.(2015•合肥校级四模)如图,己知:Rt△ABC中,∠BAC=9O°,AD⊥BC于D,E 是AC的中点,ED交AB延长线于F,求证:
①△ABD∽△CAD;
②AB:AC=DF:AF.
【思路点拨】(1)由Rt△ABC中,∠BAC=9O°,AD⊥BC,易得∠BAD=∠ACD,又由
∠ADB=∠ADC,即可证得△ABD∽△CAD;
(2)由△ABD∽△CAD,即可得,易证得△AFD∽△DFB,可得,继而证
得结论.
【答案与解析】证明:(1)∵AD⊥BC,
∴∠ADB=∠ADC=90°,
∴∠BAD+∠DAC=90°,∠DAC+∠ACD=90°,
∴∠BAD=∠ACD,
∵∠ADB=∠ADC,
∴△ABD∽△CAD;
(2)∵△ABD∽△CAD,
∴,
∵E是AC中点,∠ADC=90°,
∴ED=EC,
∴∠ACD=∠EDC,
∵∠EDC=∠BDF,∠ACD=∠BAD,
∴∠BAD=∠BDF,
∵∠AFD=∠DFB,
∴△AFD∽△DFB,
∴
, ∴.
【总结升华】此题考查了相似三角形的判定与性质以及直角三角形的性质.此外,注意掌握数形结合思想的应用.
举一反三:
【变式】在锐角△ABC 中,AD,CE 分别为BC,AB 边上的高,△ABC 和△BDE 的面积分别等于18和2,DE=2,求AC 边上的高.
【答案】过点B 做BF ⊥AC,垂足为点F ,
∵AD,CE 分别为BC,AB 边上的高,
∴∠ADB=∠CEB=90°,
又∵∠B=∠B ,
∴Rt △ADB ∽Rt △CEB, ∴,BD AB BD BE BE CB AB CB
==即, 且∠B=∠B ,
∴△EBD ∽△CBA, ∴2
21189BED
BCA DE AC S S ⎛⎫=== ⎪⎝⎭△△, ∴13
DE AC =, 又∵DE=2,
∴AC=6, ∴11862
ABC AC BF S =⋅=∴△,BF=.
2.已知:如图,在△ABC与△CAD中,DA∥BC,CD与AB相交于E点,且AE︰EB=1︰2,EF∥BC交AC于F点,△ADE的面积为1,求△BCE和△AEF的面积.
B
【答案与解析】
解:∵DA∥BC,
∴△ADE∽△BCE.
∴S△ADE:S△BCE=AE2:BE2.
∵AE︰BE=1:2,
∴S△ADE:S△BCE=1:4.
∵S△ADE=1,
∴S△BCE=4.
∵S△ABC:S△BCE=AB:BE=3:2,
∴S△ABC=6.
∵EF∥BC,
∴△AEF∽△ABC.
∵AE:AB=1:3,
∴S△AEF:S△ABC=AE2:AB2=1:9.
∴S△AEF==.
【总结升华】注意,同底(或等底)三角形的面积比等于该底上的高的比;同高(或等高)三角形的面积比等于对应底边的比.当两个三角形相似时,它们的面积比等于对应线段比的平方,即相似比的平方.
举一反三:
【变式】已知如图,梯形ABCD中,AB∥CD,△COD与△AOB的周长比为1:2,则CD:AB=,S△COB:S△COD=
.
【答案】1:2;2:1
【课程名称:相似三角形的性质及应用
394500
:例题分析2】
3.(2015•柳州)如图,矩形EFGH内接于△ABC,且边FG
落在BC上.若BC=3,
AD=2,EF=EH,求EH的长?
【思路点拨】设EH=3x,表示出EF,由AD﹣EF表示出三角形AEH的边EH上的高,根据三角形AEH与三角形ABC相似,利用相似三角形对应边上的高之比等于相似比求出x的值,即为EH的长.
【答案与解析】
解:∵四边形EFGH是矩形,
∴EH∥BC,
∴△AEH∽△ABC,
∵AM⊥EH,AD⊥BC,
∴=,
设EH=3x,则有EF=2x,AM=AD﹣EF=2﹣2x,
∴=,
解得:x=,
则EH=.
故答案为:.
【总结升华】此题考查了相似三角形的判定与性质,以及矩形的性质,熟练掌握相似三角形的判定与性质是解本题的关键.
类型二、相似三角形中对应线段的比
4.△ABC∽△A′B′C′,
''
1 2 =
AB
A B
,AB边上的中线CD=4cm,△ABC的周长为20cm,△A′B′C′的面积是64cm2,求:
(1)A′B′边上的中线C′D′的长;
(2)△A′B′C′的周长;
(3)△ABC的面积.
【答案与解析】
(1)∵△ABC∽△A′B′C′,
''
1 2 =
AB
A B
,AB边上的中线CD=4cm,
∴
''
1 2 =
CD
C D
,
∴C′D′=4cm×2=8cm,
∴A′B′边上的中线C′D′的长为8cm;
(2)∵△ABC∽△A′B′C′,
''
1 2 =
AB
A B
,△ABC的周长为20cm,∴=,
∴C△A′B′C′=20cm×2=40cm,
∴△A′B′C′的周长为40cm;
(3)∵△ABC∽△A′B′C′,
''
1 2 =
AB
A B
,△A′B′C′的面积是64cm2,
∴==,
∴S△ABC=64cm2÷4=16cm2,
∴△ABC的面积是16cm2.
【总结升华】本题主要考查了相似三角形的性质,掌握相似三角形的周长的比等于相似比;相似三角形的对应线段(对应中线、对应角平分线、对应边上的高)的比也等于相似比;相似三角形的面积的比等于相似比的平方.。