2020年浙江省湖州市中考数学试题及解析

合集下载

2020年浙江省湖州市中考数学试题及参考答案

2020年浙江省湖州市中考数学试题及参考答案

2020年浙江省湖州市中考数学试题及参考答案考生须知:1.全卷分卷Ⅰ和卷Ⅱ两部分,共8页。

考试时刻为100分钟。

2.第四题为自选题,供考生选做,此题得分将计入本学科的总分,但考生所得总分最多为120分。

3.卷Ⅰ中试题〔第1-12小题〕的答案填涂在答题卡上,写在试卷上无效。

题号二 13-18三四〔自选题〕总分1920 21 22 23 24 25 26 得分 复评人一、选择题〔此题有12个小题,每题3分,共36分〕 下面每题给出的四个选项中,只有一个是正确的。

请选出各题中一个最符合题意的选项,并在答题卡上将相应题次中的对应字母方框涂黑,不选、多项选择、错选均不给分。

1.-1的相反数是〔 〕A 、-1B 、0C 、0.1D 、1 2.方程x 2(x -1)=0的根是〔 〕 A 、0 B 、1 C 、0,-1 D 、0,13.有一道四选一的选择题,某同学完全靠靠推测获得结果,那么那个同学答对的概率是〔 〕A 、1/2B 、1/4C 、1/3D 、1/54.函数21+-=x y 中,自变量x 的取值范畴是〔 〕A 、x ≠2B 、x ≤-2C 、x ≠-2D 、x ≥-25.在如下图的长方体中,和平面AC 垂直的棱有〔 〕 A 、2条 B 、4条 C 、6条 D 、8条6.一元二次方程x 2+2x -7=0的两个根为x 1、x 2,那么x 1+x 2的值是〔 〕 A 、-12 B 、02 C 、-7 D 、7 7.如图,A 、B 是⊙O 上的两点,AC 是⊙O 的切线,∠B=65º,那么∠BAC=〔 〕 A 、35º B 、25º C 、50º D 、65º8.菱湖是全国闻名的淡水鱼产地,某养鱼专业户为了估量他承包的鱼塘时有多少条鱼〔假设那个鱼塘里养的是同一种鱼〕,先捕上100条鱼做上标记,然后放回塘里,过了一段时刻,待带标记的鱼和塘里的鱼混合后,再捕上100条,发觉其中带标记的鱼有10条,那么塘里大约有鱼〔 〕 A 、-1 B 、0 C 、0.1 D 、1 9.如图:三个正比例函数的图像分不对应的解析式是①y=ax ,②y=bx ,③y=cx ,那么a 、b 、c 的大小关系是〔 〕 A 、a >b >c B 、c >b >a C 、b >a >c D 、b >c >a10.Rt △ABC 的斜边AB=5,一条直角边AC=3,以直线BC 为轴旋转一周得到一个圆锥,那么那个圆锥的侧面积为〔 〕 A 、8π B 、12π C 、15π D 、20π11.二次函数y=ax 2+bx+c 的图像如下图,那么在〝①a <0,②b >0,③c <0,④b 2-4ac >0”中正确的判定是〔 〕 A 、①②③④ B 、④ C 、①②③ D 、①④12.如图,在等边△ABC 中,M 、N 分不是边AB ,AC 的中点,D 为MN 上任意一点,BD ,CD 的延长线分不交于AB ,AC 于点E ,F 。

2020年浙江省湖州市中考数学测评试卷附解析

2020年浙江省湖州市中考数学测评试卷附解析

2020年浙江省湖州市中考数学测评试卷学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.在“石头、剪子、布”的游戏中(剪子赢布,布赢石头,石头赢剪子),当你出“剪子”时,对手胜你的概率是()A.12B.13C.23D.142.对于反比例函数6yx=,当6x-≤时,y的取值范围是()A.y≥1-B.y≤1-C.1-≤y <0 D.y≥13.已知一组数据:10,8,6,10,9,13,11,11,10,10,则下列各组中,频率为0.2的是()A.5.5~7.5 B.9.5~11.5 C.7.5~9.5 D.11.5~13.54.小亮早晨从家骑车到学校,先上坡后下坡,行程情况如图所示.若返回时,上坡、下坡的速度仍保持不变,那么小明从学校骑车回家用的时间是()A.37.2分钟B.48分钟C.30分钟D.33分钟5.不等式732122x x--+<的负整数解有()A.1 个B.2 个C.3 个D.4 个6.对于数据3,3,2,3,6,3,10,3,6,3,2. 有以下结论:①这组数据的众数是3;②这组数据的众数与中位数的数值不等;③这组数据的中位教与平均数的数值相等;④这组数据的平均数与众数的数值相等.其中正确的有()A.1个B. 2个C.3个D.4个7.为了参加市中学生篮球运动会.校篮球队准备购买10双运动鞋,各种尺码的统计如表所示.则这10双运动鞋尺码的众数和中位数分别为()尺码/厘米2525.52626.527购买量/双242l1A. 25C.26厘米.26厘米D.25.5厘米.25.5厘米8.由四个大小相同的小正方体搭成的几何体的左视图如图,则这个几何体的搭法不可能是( )A .B .C .D . 9.下列计算27a 8÷31a 3÷9a 2的顺序不正确的是( ) A .(27÷31÷9)a 8-3-2 B .(27a 8÷31a 3)÷9a 2 C .27a 8÷(31a 3÷9a 2) D .(27a 8÷9a 2)÷31a 3 10.化简(-2x )3·y 4÷12x 3y 2的结果是( )A .61y 2B .-61y 2C .-32y 2D .-32xy 2 二、填空题11.一斜坡的坡比为 1:2,其最高点的垂直距离为 50m ,则该斜坡的长为 m .12.如图所示,Rt △ABC 中,∠B=15°,若 AC=2,则BC= .13. 已知抛物线y=x 2+bx +c 与y 轴交于点A ,与 x 轴的正半轴交于B 、C 两点,且BC =2,S △ABC = 3,那么b = .14.2002年上海市二月下旬每日最高气温分别为(单位:℃):13,13,12,9,11,16,12,10.则二月下旬气温的极差为 ℃.15.如图,直线1a ∥2a ,点A 在直线1a 上,点B 、C 在直线2a 上,BC=5,△ABC 的面积为10,则直线1a 与直线2a 之间的距离是 .16.在下式的“□”里,分别填上适当的代数式,使等式成立:□+□=1a b. 17.如图,在ΔABC 中,D 是边BC 上一点,AD 平分∠BAC ,在AB 上截取AE=AC ,连结DE ,已知DE=2cm ,BD=3cm ,线段BC= .18.一个搬运小组有 x 名工人,平均每名工人每小时搬运货物 1 吨、要在 14 小时内将y 吨货搬完.如果增加 2 名工人,恰好提前 2 小时完成任务;如果减少 4名工人,就要推迟10 小时完成. 则x= ,y= . 19.用平面去截一个立方体,所得到的截面可能是 .20.观察下列等式9-1=8;16-4=12;25 -9= 16;36--16=20;…这些等式反映出自然数间的某种规律,设n(n ≥1)表示自然数,用关于 n 的等式表示 这个规律为 .21.(1) 2(7)-的平方根是 ;(2) 2(3 1.733)-算术平方根是 .三、解答题22.如图,在△ABC 中,∠C= 90°,∠A = 30°,0 为AB 上一点,BO=m ,⊙O 的半径为12cm ,当m 在什么范围内取值,BC 与⊙O 相离?相切?相交?23.己知点E 、F 在△ABC 的边AB 所在的直线上,且AE=BF ,HF ∥EG ∥AC ,FH 、HG 分别交BC 所在的直线于点H 、G .(1)如图1,如果点E 、F 在边AB 上,那么EG+FH=AC ;(2)如图2,如果点E 在边AB 上,点F 在AB 的延长线上,那么线段EG 、FH 、AC 的长度关系是 ;(3)如图3,如果点E 在AB 的反向延长线上,点F 在AB 的延长线上,那么线段EG 、FH 、AC 的长度关系是 ;对(1)(2)(3)三种情况的结论,请任选一个给予证明.24.已知扇形的圆心角为120°,面积为300πcm2.(1)求扇形的弧长;(2)若把此扇形卷成一个圆锥,则这个圆锥的全面积是多少?π400π20,25.如图,在直角梯形ABCD中,AD∥BC,∠C= 90°,BC=16,DC= 12,AD=21. 动点P从点D 出发,沿射线DA的方向以每秒 2个单位长度的速度运动,动点 Q从点C出发,在线段CB上以每秒 1个单位长度的速度向点 B运动,点P,Q分别从点D,C同时出发,当点Q运动到点B时,点P随之停止运动. 设运动的时间为t(s).(1)当t=2s时,求△BPQ的面积;(2)若点A,B,Q,P构成的四边形为平行四边形,求运动时间t;(3)当t为何值时,以B,P,Q三点为顶点的三角形是等腰三角形?26.写出下列命题的逆命题,并判断逆命题的真假,如果是假命题请反举例说明.(1)对顶角相等;(2)等腰三角形的两底角的平分线相等;(3)在三角形中,钝角所对的边最大.27.已知223+=,求xy的值.x yx y()4+=,21228.如图所示,四边形ABCD 中,AB=CD ,BC=AD ,请你添一条辅助线,把它分成两个全等的三角形.你有几种添法?分别说明理由.29.先化简,再求值. (1)222963()3x x x x +--,其中2x =-; (2)222222(53)()(53)a b a b a b -++-+,其中1a =-,1b =.30.“5·12”汶川大地震后,灾区急需大量帐篷.某服装厂原有4条成衣生产线和5条童装生产线,工厂决定转产,计划用3天时间赶制1000顶帐篷支援灾区.若启用1条成衣生产线和2条童装生产线,一天可以生产帐篷105顶;若启用2条成衣生产线和3条童装生产线,一天可以生产帐篷178顶.(1)每条成衣生产线和童装生产线平均每天生产帐篷各多少顶?(2)工厂满负荷全面转产,是否可以如期完成任务?如果你是厂长,你会怎样体现你的社会责任感?【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.B2.C3.C4.A5.A6.A7.D8.D9.C10.C二、填空题11..7.4613.-414.715.4cm16. 答案不唯一;如:22a a b -、22b a b - 17.5cm18.10,14419.三角形或正方形或长方形20.22(2)4(1)n n n +-=+21.7±三、解答题22.当m >时相离;当m =时 相切;当0m <时相交. 23.(2)AC FH EG =+(3)AC FH EG =-,证明略.24.ππ400,2025.(1)84 (2)5s 或373s (3)163s 或72s 26.(1)逆命题:相等的角是对顶角,是假命题,举例略;(2)逆命题:若一个三角形有两个角的平分线相等,则这个三角形是等腰三角形,是真命题;(3)逆命题:在三角形中,最大边所对的角是钝角,是假命题.如直角三角形27.1228. 连结AC 或连结BD ,都是根据SSS 说明三角形全等29.(1) 268x x +,20 (2) 225a b -,-430.(1)设每条成衣生产线和童装生产线平均每天生产帐篷各x 、y 顶,则⎩⎨⎧=+=+178321052y x y x ,解得x=41,y=32. 答:每条成衣生产线平均每天生产帐篷41顶,每条童装生产线平均每天生产帐篷32顶.(2)由3(4×41+5×32)=972<1000知,即使工厂满负荷全面转产,还不能如期完成任务. 可以从加班生产、改进技术等方面进一步挖掘生产潜力,或者动员其它厂家支援等,想法尽早完成生产任务,为灾区人民多做贡献.。

2020年浙江省湖州市中考数学试题及答案

2020年浙江省湖州市中考数学试题及答案

2020年浙江省湖州市中考数学试题及答案一.选择题(共10小题)1.数4的算术平方根是()A.2B.﹣2C.±2D.2.近几年来,我国经济规模不断扩大,综合国力显著增强.2019年我国国内生产总值约991000亿元,则数991000用科学记数法可表示为()A.991×103B.99.1×104C.9.91×105D.9.91×1063.已知某几何体的三视图如图所示,则该几何体可能是()A.B.C.D.4.如图,已知四边形ABCD内接于⊙O,∠ABC=70°,则∠ADC的度数是()A.70°B.110°C.130°D.140°5.数据﹣1,0,3,4,4的平均数是()A.4B.3C.2.5D.26.已知关于x的一元二次方程x2+bx﹣1=0,则下列关于该方程根的判断,正确的是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.实数根的个数与实数b的取值有关7.四边形具有不稳定性,对于四条边长确定的四边形.当内角度数发生变化时,其形状也会随之改变.如图,改变正方形ABCD的内角,正方形ABCD变为菱形ABC′D′.若∠D′AB=30°,则菱形ABC′D′的面积与正方形ABCD的面积之比是()A.1B.C.D.8.已知在平面直角坐标系xOy中,直线y=2x+2和直线y=x+2分别交x轴于点A和点B.则下列直线中,与x轴的交点不在线段AB上的直线是()A.y=x+2B.y=x+2C.y=4x+2D.y=x+29.如图,已知OT是Rt△ABO斜边AB上的高线,AO=BO.以O为圆心,OT为半径的圆交OA于点C,过点C作⊙O的切线CD,交AB于点D.则下列结论中错误的是()A.DC=DT B.AD=DT C.BD=BO D.2OC=5AC10.七巧板是我国祖先的一项卓越创造,流行于世界各地.由边长为2的正方形可以制作一副中国七巧板或一副日本七巧板,如图1所示.分别用这两副七巧板试拼如图2中的平行四边形或矩形,则这两个图形中,中国七巧板和日本七巧板能拼成的个数分别是()A.1和1B.1和2C.2和1D.2和2二.填空题(共6小题)11.计算:﹣2﹣1=.12.化简:=.13.如图,已知AB是半圆O的直径,弦CD∥AB,CD=8.AB=10,则CD与AB之间的距离是.14.在一个布袋里放有1个白球和2个红球,它们除颜色外其余都相同,从布袋里摸出1个球,记下颜色后放回,搅匀,再摸出1个球.将2个红球分别记为红Ⅰ,红Ⅱ.两次摸球的所有可能的结果如表所示,第二次白红Ⅰ红Ⅱ第一次白白,白白,红Ⅰ白,红Ⅱ红Ⅰ红Ⅰ,白红Ⅰ,红Ⅰ红Ⅰ,红Ⅱ红Ⅱ红Ⅱ,白红Ⅱ,红Ⅰ红Ⅱ,红Ⅱ则两次摸出的球都是红球的概率是.15.在每个小正方形的边长为1的网格图形中,每个小正方形的顶点称为格点,顶点都是格点的三角形称为格点三角形.如图,已知Rt△ABC是6×6网格图形中的格点三角形,则该图中所有与Rt△ABC相似的格点三角形中.面积最大的三角形的斜边长是.16.如图,已知在平面直角坐标系xOy中,Rt△OAB的直角顶点B在x轴的正半轴上,点A在第一象限,反比例函数y=(x>0)的图象经过OA的中点C.交AB于点D,连结CD.若△ACD的面积是2,则k的值是.三.解答题(共8小题)17.计算:+|﹣1|.18.解不等式组.19.有一种升降熨烫台如图1所示,其原理是通过改变两根支撑杆夹角的度数来调整熨烫台的高度.图2是这种升降熨烫台的平面示意图.AB和CD是两根相同长度的活动支撑杆,点O是它们的连接点,OA=OC,h(cm)表示熨烫台的高度.(1)如图2﹣1.若AB=CD=110cm,∠AOC=120°,求h的值;(2)爱动脑筋的小明发现,当家里这种升降熨烫台的高度为120cm时,两根支撑杆的夹角∠AOC是74°(如图2﹣2).求该熨烫台支撑杆AB的长度(结果精确到lcm).(参考数据:sin37°≈0.6,cos37°≈0.8,sin53°≈0.8,cos53°≈0.6.)20.为了解学生对网上在线学习效果的满意度,某校设置了:非常满意、满意、基本满意、不满意四个选项,随机抽查了部分学生,要求每名学生都只选其中的一项,并将抽查结果绘制成如图统计图(不完整).请根据图中信息解答下列问题:(1)求被抽查的学生人数,并补全条形统计图;(温馨提示:请画在答题卷相对应的图上)(2)求扇形统计图中表示“满意”的扇形的圆心角度数;(3)若该校共有1000名学生参与网上在线学习,根据抽查结果,试估计该校对学习效果的满意度是“非常满意”或“满意”的学生共有多少人?21.如图,已知△ABC是⊙O的内接三角形,AD是⊙O的直径,连结BD,BC平分∠ABD.(1)求证:∠CAD=∠ABC;(2)若AD=6,求的长.22.某企业承接了27000件产品的生产任务,计划安排甲、乙两个车间的共50名工人,合作生产20天完成.已知甲、乙两个车间利用现有设备,工人的工作效率为:甲车间每人每天生产25件,乙车间每人每天生产30件.(1)求甲、乙两个车间各有多少名工人参与生产?(2)为了提前完成生产任务,该企业设计了两种方案:方案一甲车间租用先进生产设备,工人的工作效率可提高20%,乙车间维持不变.方案二乙车间再临时招聘若干名工人(工作效率与原工人相同),甲车间维持不变.设计的这两种方案,企业完成生产任务的时间相同.①求乙车间需临时招聘的工人数;②若甲车间租用设备的租金每天900元,租用期间另需一次性支付运输等费用1500元;乙车间需支付临时招聘的工人每人每天200元.问:从新增加的费用考虑,应选择哪种方案能更节省开支?请说明理由.23.已知在△ABC中,AC=BC=m,D是AB边上的一点,将∠B沿着过点D的直线折叠,使点B落在AC边的点P处(不与点A,C重合),折痕交BC边于点E.(1)特例感知如图1,若∠C=60°,D是AB的中点,求证:AP=AC;(2)变式求异如图2,若∠C=90°,m=6,AD=7,过点D作DH⊥AC于点H,求DH和AP的长;(3)化归探究如图3,若m=10,AB=12,且当AD=a时,存在两次不同的折叠,使点B 落在AC边上两个不同的位置,请直接写出a的取值范围.24.如图,已知在平面直角坐标系xOy中,抛物线y=﹣x2+bx+c(c>0)的顶点为D,与y 轴的交点为C.过点C的直线CA与抛物线交于另一点A(点A在对称轴左侧),点B在AC 的延长线上,连结OA,OB,DA和DB.(1)如图1,当AC∥x轴时,①已知点A的坐标是(﹣2,1),求抛物线的解析式;②若四边形AOBD是平行四边形,求证:b2=4c.(2)如图2,若b=﹣2,=,是否存在这样的点A,使四边形AOBD是平行四边形?若存在,求出点A的坐标;若不存在,请说明理由.参考答案一.选择题(共10小题)1-5 ACABD6-10 ABCDD二.填空题(共6小题)11.答案为:﹣312.答案为:.13.答案为3.14.答案为:.15.答案为:5.16.答案为:.三.解答题(共8小题)17.计算:+|﹣1|.解:原式=2+﹣1=3﹣1.18.解不等式组.解:,解①得x<1;解②得x<﹣6.故不等式组的解集为x<﹣6.19.有一种升降熨烫台如图1所示,其原理是通过改变两根支撑杆夹角的度数来调整熨烫台的高度.图2是这种升降熨烫台的平面示意图.AB和CD是两根相同长度的活动支撑杆,点O是它们的连接点,OA=OC,h(cm)表示熨烫台的高度.(1)如图2﹣1.若AB=CD=110cm,∠AOC=120°,求h的值;(2)爱动脑筋的小明发现,当家里这种升降熨烫台的高度为120cm时,两根支撑杆的夹角∠AOC是74°(如图2﹣2).求该熨烫台支撑杆AB的长度(结果精确到lcm).(参考数据:sin37°≈0.6,cos37°≈0.8,sin53°≈0.8,cos53°≈0.6.)解:(1)过点B作BE⊥AC于E,∵OA=OC,∠AOC=120°,∴∠OAC=∠OCA==30°,∴h=BE=AB•sin30°=110×=55;(2)过点B作BE⊥AC于E,∵OA=OC,∠AOC=74°,∴∠OAC=∠OCA==53°,∴AB=BE÷sin53°=120÷0.8=150(cm),即该熨烫台支撑杆AB的长度约为150cm.20.为了解学生对网上在线学习效果的满意度,某校设置了:非常满意、满意、基本满意、不满意四个选项,随机抽查了部分学生,要求每名学生都只选其中的一项,并将抽查结果绘制成如图统计图(不完整).请根据图中信息解答下列问题:(1)求被抽查的学生人数,并补全条形统计图;(温馨提示:请画在答题卷相对应的图上)(2)求扇形统计图中表示“满意”的扇形的圆心角度数;(3)若该校共有1000名学生参与网上在线学习,根据抽查结果,试估计该校对学习效果的满意度是“非常满意”或“满意”的学生共有多少人?解:(1)抽查的学生数:20÷40%=50(人),抽查人数中“基本满意”人数:50﹣20﹣15﹣1=14(人),补全的条形统计图如图所示:(2)360°×=108°,答:扇形统计图中表示“满意”的扇形的圆心角度数为108°;(3)1000×(+)=700(人),答:该校共有1000名学生中“非常满意”或“满意”的约有700人.21.如图,已知△ABC是⊙O的内接三角形,AD是⊙O的直径,连结BD,BC平分∠ABD.(1)求证:∠CAD=∠ABC;(2)若AD=6,求的长.解:(1)∵BC平分∠ABD,∴∠DBC=∠ABC,∵∠CAD=∠DBC,∴∠CAD=∠ABC;(2)∵∠CAD=∠ABC,∴=,∵AD是⊙O的直径,AD=6,∴的长=××π×6=π.22.某企业承接了27000件产品的生产任务,计划安排甲、乙两个车间的共50名工人,合作生产20天完成.已知甲、乙两个车间利用现有设备,工人的工作效率为:甲车间每人每天生产25件,乙车间每人每天生产30件.(1)求甲、乙两个车间各有多少名工人参与生产?(2)为了提前完成生产任务,该企业设计了两种方案:方案一甲车间租用先进生产设备,工人的工作效率可提高20%,乙车间维持不变.方案二乙车间再临时招聘若干名工人(工作效率与原工人相同),甲车间维持不变.设计的这两种方案,企业完成生产任务的时间相同.①求乙车间需临时招聘的工人数;②若甲车间租用设备的租金每天900元,租用期间另需一次性支付运输等费用1500元;乙车间需支付临时招聘的工人每人每天200元.问:从新增加的费用考虑,应选择哪种方案能更节省开支?请说明理由.解:(1)设甲车间有x名工人参与生产,乙车间各有y名工人参与生产,由题意得:,解得.∴甲车间有30名工人参与生产,乙车间各有20名工人参与生产.(2)①设方案二中乙车间需临时招聘m名工人,由题意得:=,解得m=5.经检验,m=5是原方程的解,且符合题意.∴乙车间需临时招聘5名工人.②企业完成生产任务所需的时间为:=18(天).∴选择方案一需增加的费用为900×18+1500=17700(元).选择方案二需增加的费用为5×18×200=18000(元).∵17700<18000,∴选择方案一能更节省开支.23.已知在△ABC中,AC=BC=m,D是AB边上的一点,将∠B沿着过点D的直线折叠,使点B落在AC边的点P处(不与点A,C重合),折痕交BC边于点E.(1)特例感知如图1,若∠C=60°,D是AB的中点,求证:AP=AC;(2)变式求异如图2,若∠C=90°,m=6,AD=7,过点D作DH⊥AC于点H,求DH和AP的长;(3)化归探究如图3,若m=10,AB=12,且当AD=a时,存在两次不同的折叠,使点B 落在AC边上两个不同的位置,请直接写出a的取值范围.(1)证明:∵AC=BC,∠C=60°,∴△ABC是等边三角形,∴AC=AB,∠A=60°,由题意,得DB=DP,DA=DB,∴DA=DP,∴△ADP使得等边三角形,∴AP=AD=AB=AC.(2)解:∵AC=BC=6,∠C=90°,∴AB===12,∵DH⊥AC,∴DH∥BC,∴△ADH∽△ABC,∴=,∵AD=7,∴=,∴DH=,将∠B沿过点D的直线折叠,情形一:当点B落在线段CH上的点P1处时,如图2﹣1中,∵AB=12,∴DP1=DB=AB﹣AD=5,∴HP1===,∴A1=AH+HP1=4,情形二:当点B落在线段AH上的点P2处时,如图2﹣2中,同法可证HP2=,∴AP2=AH﹣HP2=3,综上所述,满足条件的AP的值为4或3.(3)如图3中,过点C作CH⊥AB于H,过点D作DP⊥AC于P.∵CA=CB,CH⊥AB,∴AH=HB=6,∴CH===8,当DB=DP时,设BD=PD=x,则AD=12﹣x,∵tanA==,∴=,∴x=,∴AD=AB﹣BD=,观察图形可知当6≤a<时,存在两次不同的折叠,使点B落在AC边上两个不同的位置.24.如图,已知在平面直角坐标系xOy中,抛物线y=﹣x2+bx+c(c>0)的顶点为D,与y 轴的交点为C.过点C的直线CA与抛物线交于另一点A(点A在对称轴左侧),点B在AC 的延长线上,连结OA,OB,DA和DB.(1)如图1,当AC∥x轴时,①已知点A的坐标是(﹣2,1),求抛物线的解析式;②若四边形AOBD是平行四边形,求证:b2=4c.(2)如图2,若b=﹣2,=,是否存在这样的点A,使四边形AOBD是平行四边形?若存在,求出点A的坐标;若不存在,请说明理由.【分析】(1)①先确定出点C的坐标,再用待定系数法即可得出结论;②先确定出抛物线的顶点坐标,进而得出DF=,再判断出△AFD≌△BCO,得出DF=OC,即可得出结论;(2)先判断出抛物线的顶点坐标D(﹣1,c+1),设点A(m,﹣m2﹣2m+c)(m<0),判断出△AFD≌△BCO(AAS),得出AF=BC,DF=OC,再判断出△ANF∽△AMC,得出=,进而求出m的值,得出点A的纵坐标为c﹣<c,进而判断出点M的坐标为(0,c﹣),N(﹣1,c﹣),进而得出CM=,DN=,FN=﹣c,进而求出c=,即可得出结论.解:(1)①∵AC∥x轴,点A(﹣2,1),∴C(0,1),将点A(﹣2,1),C(0,1)代入抛物线解析式中,得,∴,∴抛物线的解析式为y=﹣x2﹣2x+1;②如图1,过点D作DE⊥x轴于E,交AB于点F,∵AC∥x轴,∴EF=OC=c,∵点D是抛物线的顶点坐标,∴D(,c+),∴DF=DE﹣EF=c+﹣c=,∵四边形AOBD是平行四边形,∴AD=DO,AD∥OB,∴∠DAF=∠OBC,∵∠AFD=∠BCO=90°,∴△AFD≌△BCO(AAS),∴DF=OC,∴=c,即b2=4c;(2)如图2,∵b=﹣2.∴抛物线的解析式为y=﹣x2﹣2x+c,∴顶点坐标D(﹣1,c+1),假设存在这样的点A使四边形AOBD是平行四边形,设点A(m,﹣m2﹣2m+c)(m<0),过点D作DE⊥x轴于点E,交AB于F,∴∠AFD=∠EFC=∠BCO,∵四边形AOBD是平行四边形,∴AD=BO,AD∥OB,∴∠DAF=∠OBC,∴△AFD≌△BCO(AAS),∴AF=BC,DF=OC,过点A作AM⊥y轴于M,交DE于N,∴DE∥CO,∴△ANF∽△AMC,∴=,∵AM=﹣m,AN=AM﹣NM=﹣m﹣1,∴,∴,∴点A的纵坐标为﹣(﹣)2﹣2×(﹣)+c=c﹣<c,∵AM∥x轴,∴点M的坐标为(0,c﹣),N(﹣1,c﹣),∴CM=c﹣(c﹣)=,∵点D的坐标为(﹣1,c+1),∴DN=(c+1)﹣(c﹣)=,∵DF=OC=c,∴FN=DN﹣DF=﹣c,∵=,∴,∴c=,∴c﹣=,∴点A纵坐标为,∴A(﹣,),∴存在这样的点A,使四边形AOBD是平行四边形.。

2020年浙江省湖州市中考数学测试试题附解析

2020年浙江省湖州市中考数学测试试题附解析

2020年浙江省湖州市中考数学测试试题 学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.在一个暗箱里放有a 个除颜色外其它完全相同的球,这a 个球中红球只有3个.每次将球搅拌均匀后,任意摸出一个球记下颜色再放回暗箱.通过大量重复摸球实验后发现,摸到红球的频率稳定在25%,那么可以推算出a 大约是( )A .12B .9C .4D .3 2.如图,⊙O 1和⊙O 2内切,它们的半径分别为3和1,过O 1作⊙O 2的切线,切点为A ,则O 1A 的长为( )A .2B .4C D3.如图,△ABC 和△DEF 是位似图形,且位似比为 2:3,则EF BC 等于( ) A .12 B .13 C .14 D .234. 一个二次函数,当x=0时,y=-5;当x=-1时,y=-4;当x=-2时,y=5,则这个二 次函数的关系式是( )A .y=4x 2-3x-5B .y=4x 2+3x+5C .y=4x 2-3x+5D .y=4x 2+3x-5 5.下列图形中,中心对称图形的是( ) A .B .C .D . 6.下列各组条件中,不能判定四边形是平行四边形的是( ) A .两组对边分别相等B .两组对角分别相等C .一组对边平行且相等D .一组对边平行,另一组对边相等7.若20x y -=,则2()xy -的值为( ) A .64B .64-C .16D .16- 8.小明向大家介绍自己家的位置,其表述正确的是( )A .在学校的正南方向B .在正南方向300米处C .距学校300米处D .在学校正南方向300米处9.数学老师抽一名同学回答问题,抽到女同学是( )A .必然事件B .不确定事件C .不可能事件D .无法判断10.如图所示的四个图案,它们绕中心旋转一定的度数后都能和原来的图形相互重合,其中有一个图案与其余三个图案旋转的度数不同,它是()11.如图所示,△ABC≌△BAD.A与B,C与D是对应顶点,若AB=4cm,BD=4.5 cm,AD=1.5 cm,则BC的长为()A 4.5 cm B.4 cm C.1.5 cm D.不能确定12.下列各直线的表示法中,正确的是()A.B.C.D.13.1134(1)324-⨯-⨯的结果是()A.112B.142C.748-D.748二、填空题14.如图所示,是一个几何体的俯视图和左视图,则这个几何体是.15.某电视台举行的歌手大奖赛,每场比赛都有编号为 1~10 号共 10 道综合素质测试题供选手随机抽取作答,在某场比赛中,前两位选手已分别抽走了 2 号、7 号题,第 3位选手抽中 8 号题的概率是.16.升国旗时,某同学站在离旗杆底部 24m 处行注目礼,当国旗升至旗杆顶端时,该同学视线的仰角 (视线与水平线的夹角 )恰为60°,若双眼离地面 1.5m,则旗杆的高度为m.(精确到 1 m)17.如图,等边三角形ABC的内切圆的面积为π9,则⊿ABC的周长为.18.如图,在⊙O中,弦AB⊥弦CD于E,OF⊥AB于F,OG⊥CD于G,若AE=8cm,EB=4cm,则OG=___________cm.19.在航天知识竞赛中包括甲同学在内的6名同学的平均分为74分,其中甲同学考了89分,则A B C D H E F G 除甲以外的5名同学的平均分为 分.20.完成某项工程,甲单独做需 a(h),乙单独做需 b(h),甲、乙两人合作完成这项工程需 h.21.请你任意写出一个自然数 ,一个负分数 , 个非负数三、解答题22.已知一纸箱中放有大小均匀的x 只白球和y 只黄球,从箱中随机地取出一只白球的概率是25. (1)试写出y 与x 的函数关系式;(2)当10x =时,再往箱中放进20只白球,求随机地取出一只黄球的概率P .23.某社区拟筹资金2000元,计划在一块上、下底分别是10米、20米的梯形空地上种植花木(如图所示),他们想在BMC AMD ∆∆和地带种植单价为10元/米2的太阳花,当AMD ∆地带种满花后,已经花了500元,请你预算一下,若继续在BMC ∆地带种植同样的太阳花,资金是否够用?并说明理由.24.已知:如图,E ,F 分别是△ABC 的边AB ,BC 的中点.G ,H 是AC 上的三等分点,EG ,FH 的延长线相交于D.求证:(1)BG =DH ;(2)四边形ABCD 是平行四边形.25.某校要从甲、乙两名跳远运动员中挑选一人参加全市比赛,在最近的l0次选拔赛中,他们的成绩(单位:cm)如下:甲:585,596,610,598, 612, 597,604,600,613,601;乙:613,618,580,574,618,593,585,590,598,604.(1)他们的平均成绩分别是多少?(2)甲、乙两人这l0次比赛成绩的方差分别是多少?(3)这两名运动员的运动成绩各有什么特点?(4)历届比赛表明,成绩达到5.96 m就很可能冠军,你认为为了夺冠应选谁参加这项比赛?如果历届比赛成绩表明,成绩达到6.10 m就能打破记录,那么你认为为了打破记录应选谁参加这项比赛?26.如图是由6个相同的正方形拼成的图形,请你将其中一个正方形移动到合适的位置,使它与另5个正方形能拼成一个正方体的表面展开图.(请在图中将要移动的那个正方形涂黑,并画出移动后的正方形)27.如图所示,木工师傅用角尺画出工件边缘的两条垂线,这两条垂线平行吗?为什么?28.用七巧板可以拼出许多独特且有意义的图案,如图是用七巧板拼出的航天飞机图案,请你用七巧板再设计一个图案,并写上一句贴切、诙谐的解说词.29.计算下列各题(1))9()11()4()3(--+--+- (2)()39112-⨯÷- (3)⎪⎭⎫ ⎝⎛+-⨯-654331112 (4)[2 – 5 ×(21-)2 ]÷)41(- (5)32725.0-()212--(6) 用计算器计算: )]2(222[413-⨯+--π.(精确到0.01)30.图中 3×3 方格是从月历表中取下的,正中方格的日期是n ,请用适当的代数式填 入各个空格,表示所填入空格的日期,然后比较两条对角线的五个日期数之和,你发现了什么规律?【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.A2.C3.D4.D5.B6.D7.A8.D9.B10.B11.C12.D13.D二、填空题14.圆柱15.1816. 417.318 18.219.7120.ab a b+21. 答案不唯一,如:依次填5,32-,0三、解答题22.解:(1)由题意得25x y x =+ ,即522x y x =+,∴32y x =. (2)由(1)知当10x =时,310152y =⨯=. ∴取得黄球的概率15151102015453P ===++. 23. 解:梯形ABCD 中,AD ∥BC,可以证得AMD ∆∽BMD ∆,AD=10,BC=20 41)2010(2==∆∆BMC AMD S S∵22200)(5010500m S m S BMC AMD =∴=÷=∆∆,还需要资金200×10=2000(元),而剩余资金为2000-500=1500<2000, 所以资金不够用.24.提示:(1)连结BH ,则BH ∥DG ,BG ∥DH ;(2)连结BD 交AC 于点O ,由(1)得OG =OH ,OB =OD .25. (1)601.6x =甲cm ,597.3x =乙cm ;(2)265S =甲.84cm 2,2221.41S =乙cm 2 ;(3)略;(4)为了夺冠,应选甲参赛,为了打破纪录,应选乙参赛26.如图所示(答案不唯一).27.平行,利用∠ACD=∠BEF28.略29.(1)-9; (2) 27; (3)-19; (4)-3 ; (5)-14.5; (6) -6.9130.两条对角线上的三个日期数之和都等于3n。

2020年浙江省湖州市中考数学试卷原卷附解析

2020年浙江省湖州市中考数学试卷原卷附解析

A B C E2020年浙江省湖州市中考数学试卷原卷 学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.由几个大小相同的小正方体组成的立体图形的俯视..图如图所示,则这个立体图形应是下图中的( )A .B .C .D .2.已知∠BAC=45°,一动点O 在射线AB 上运动,设OA=x ,如果半径为1的⊙O 与射线AC 有公共点,那么x 的取值范围是( )A .20≤≤xB .21≤x <C .21<x ≤D .2>x 3.如图,⊙I 是ABC △的内切圆,D ,E ,F 为三个切点,若52DEF =∠,则A ∠的度数为( )A .76B .68C .52D .38 4.2008年8月8日,五环会旗将在“鸟巢”高高飘扬,会旗上的五环(如图)间的位置关系有( )A .相交或相切B .相交或内含C .相交或相离D .相切或相离 5.如图,⊙O 1和⊙O 2内切,它们的半径分别为3和1,过O 1作⊙O 2的切线,切点为A ,则O 1A 的长为( )A .2B .4C 3D 5 6.下列命题是假命题的是( )A .四个角相等的四边形是矩形B .对角线互相平分的四边形是平行四边形C .四条边相等的四边形是菱形D .对角线互相垂直且相等的四边形是正方形7.如图,在△ABC 中,∠B 的外角平分线和∠C 的外角平分线交于点E ,则∠BEC 等于( )A .12 (90°-∠A )B .90°-∠AC .12(180°-∠A ) D .180°-∠A 8.在对50个数进行整理的频数分布表中,各组的频数之和与频率之和分别等于 ( )A .50,1B . 50,50C .1,50D .1,19.下列各命题的逆命题不成立的是( )A .两直线平行,内错角相等B .若两个数的绝对值相等,则这两个数也相等C .全等三角形的对应边相等D .如果a b =,那么22a b =10.在菱形ABCD 中,若∠A :∠B=2:1,则∠CAD 的平分线AE 与边CD 间的关系是( )A .相等B .互相垂直但边CD 不一定被AE 平分C .不垂直但边CD 被AE 平分D .垂直且边CD 被AE 平分11.口ABCD 的周长为36 cm ,AB=BC=2cm ,则AD ,CD 的长度分别为( )A .12 cm ,6 cmB .8 cm ,10 cmC .6 cm ,12 cmD .10 cm ,8 cm12. 将方程2440y y ++=的左边配成完全平方后得( ) A .2(4)0y += B .2(4)0y -= C .2(2)0y +=D .2(2)0y -= 13.已知函数y kx b =+的图象如图所示,则2y kx b =+的图象可能是( )A .B .C .D . 14.已知946a b -和4m 45a b 是同类项,则代数式1210m -的值是( ) A . 17B .37C .-17D . 98 15.绝对值等于本身的数是( )A .正数B .0C .负数或0D . 正数或 0 二、填空题16.A ,B ,C ,D 在同一平面内,从①AB ∥CD ;②AB=CD ;③CB ∥AD ;④CB=AD 这四个条件中任选两个,能使四边形ABCD 是平行四边形的概率是 .17.等角的余角相等,改写成“如果……那么……”的形式: ,该命题是(填“真”或“假”)命题.18.给出下列几个几何体:圆柱、四棱柱、直五棱柱、球、立方体.请选出其中是多面体的几何体是 .19.如图,同时自由转动两个转盘,指针落在每一个数上的机会均等,转盘停止后,两个指针同时落在奇数上的概率是 .20.填上适当的数,使等式成立:24x x -+ =(x- )221.一个搬运小组有 x 名工人,平均每名工人每小时搬运货物 1 吨、要在 14 小时内将y 吨货搬完.如果增加 2 名工人,恰好提前 2 小时完成任务;如果减少 4名工人,就要推迟10 小时完成. 则x= ,y= .22.从 1,2,3,4,5 中任选两个数,这两个数的和恰好等于7 有种可能.23.一个正数有个平方根,0有个平方根,负数平方根.三、解答题24.如图是一个食品包装盒的侧面展开图.(1)请写出这个包装盒的多面体形状的名称;(2)请根据图中所标的尺寸,计算这个多面体的侧面积和全面积(侧面积与两个底面体之和).25.如图所示,一根 4m 的竹竿斜靠在墙上.(1)如果竹竿与地面 60°角,那么竹竿下湍离墙角有多远?(2)如果竹竿上端顺墙下滑到高度为2. 3 m处停止,那么此时竹竿与地面所成的锐角的大小是多少?26.已知c a bka b b c c a===+++,则一次函数y kx k=+一定经过哪些象限?27.已知:如图,在△ABC中,AB∥DE∥FG,BE=CG.求证:DE+FG=AB.28.如图所示,AB,CD相交于点0,AC∥DB,A0=B0,E,F分别是0C,OD的中点.求证:四边形AEBF是平行四边形.29.剪一块面积为150cm2的长方形铁片,使它的长比宽多5 cm,这块铁片应怎样剪?30.小明在做一次函数的一道练习题时,作业本被顽皮的小弟弟不小心泼洒了墨水,结果图象和部分列表数据被污浊了. 请你根据题中提供的信息,帮助小明补全表格和图象,并回答相关问题.(1)列表:表中污浊处的x= ,y= ;(2)图象:(3)请写出y与x的函数解析式(写出计算过程);(4)求函数图象与两条坐标轴所围成的三角形的面积.【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.A2.A3.A4.C5.C6.D7.C8.A9.D10.D11.B12.C13.C14.A15.D二、填空题16.17.如果两个角是相等角的余角,那么这两个角相等18.四棱柱、直五棱柱、立方体19.92520. 4,221.10,14422.223.2,1,没有三、解答题24.(1)这个多面体是六棱柱;(2)侧面积为6ab ;全面积为26ab +. 25.(1)如图,AB= 4 , ∠B =60° ,∠ACB=90°,01cos602BC AB ==,∴BC=2 m (2)如图, 2.3A C '=,4A B ''=,∴ 2.3sin 4A B C ''∠=,∴35559o A B C '''''∠≈ 26.当 a+b+c=0 时,则 a+b=-c ,∴1c k a b ==-+ 当0a b c ++≠时,1()()()2a b c k a b b c c a ++==+++++, ∵1y x =--经过第四象限,1122y x =+经过第三象限, ∴y kx k =+必经过三象限. 27.提示:过点E 作EH ∥AC 交AB 于H ,证明△BHE ≌△GFC .28.证明△AOC ≌△BOD ,得OC=OD ,由已知可得0E=OF ,则四边形AEBF 是平行四边形 29.长 15 cm ,宽 10 cm30.(1)-1,-1 (2)略 (3)23y x =-+ (4)94。

2020年浙江省湖州市中考数学试卷(教师版)

2020年浙江省湖州市中考数学试卷(教师版)

2020年浙江省湖州市中考数学试卷参考答案与试题解析一、选择题(本题有10小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的.请选出各题中一个最符合题意的选项,并在答题卷上将相应题次中对应字母的方框涂黑,不选、多选、错选均不给分.1.(3分)数4的算术平方根是()A.2B.﹣2C.±2D.【分析】算术平方根的定义:一个非负数的正的平方根,即为这个数的算术平方根,由此即可求出结果.【解答】解:∵2的平方为4,∵4的算术平方根为2.故选:A.2.(3分)近几年来,我国经济规模不断扩大,综合国力显著增强.2019年我国国内生产总值约991000亿元,则数991000用科学记数法可表示为()A.991×103B.99.1×104C.9.91×105D.9.91×106【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.【解答】解:将991000用科学记数法表示为:9.91×105.故选:C.3.(3分)已知某几何体的三视图如图所示,则该几何体可能是()A.B.C.D.【分析】根据两个视图是长方形得出该几何体是锥体,再根据俯视图是圆,得出几何体是圆锥.【解答】解:∵主视图和左视图是三角形,∵几何体是锥体,∵俯视图的大致轮廓是圆,∵该几何体是圆锥.故选:A.4.(3分)如图,已知四边形ABCD内接于∵O,∵ABC=70°,则∵ADC的度数是()A.70°B.110°C.130°D.140°【分析】根据圆内接四边形的性质即可得到结论.【解答】解:∵四边形ABCD内接于∵O,∵ABC=70°,∵∵ADC=180°﹣∵ABC=180°﹣70°=110°,故选:B.5.(3分)数据﹣1,0,3,4,4的平均数是()A.4B.3C.2.5D.2【分析】根据题目中的数据,可以求得这组数据的平均数,本题得以解决.【解答】解:==2,故选:D.6.(3分)已知关于x的一元二次方程x2+bx﹣1=0,则下列关于该方程根的判断,正确的是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.实数根的个数与实数b的取值有关【分析】先计算出判别式的值,再根据非负数的性质判断∵>0,然后利用判别式的意义对各选项进行判断.【解答】解:∵∵=b2﹣4×(﹣1)=b2+4>0,∵方程有两个不相等的实数根.故选:A.7.(3分)四边形具有不稳定性,对于四条边长确定的四边形.当内角度数发生变化时,其形状也会随之改变.如图,改变正方形ABCD的内角,正方形ABCD变为菱形ABC′D′.若∵D′AB=30°,则菱形ABC′D′的面积与正方形ABCD的面积之比是()A.1B.C.D.【分析】根据30°角所对的直角边等于斜边的一半可知菱形ABC′D′的高等于AB的一半,再根据正方形的面积公式和平行四边形的面积公式即可得解.【解答】解:根据题意可知菱形ABC′D′的高等于AB的一半,∵菱形ABC′D′的面积为,正方形ABCD的面积为AB2.∵菱形ABC′D′的面积与正方形ABCD的面积之比是.故选:B.8.(3分)已知在平面直角坐标系xOy中,直线y=2x+2和直线y=x+2分别交x轴于点A 和点B.则下列直线中,与x轴的交点不在线段AB上的直线是()A.y=x+2B.y=x+2C.y=4x+2D.y=x+2【分析】求得A、B的坐标,然后分别求得各个直线与x的交点,进行比较即可得出结论.【解答】解:∵直线y=2x+2和直线y=x+2分别交x轴于点A和点B.∵A(﹣1,0),B(﹣3,0)A、y=x+2与x轴的交点为(﹣2,0);故直线y=x+2与x轴的交点在线段AB上;B、y=x+2与x轴的交点为(﹣,0);故直线y=x+2与x轴的交点在线段AB上;C、y=4x+2与x轴的交点为(﹣,0);故直线y=4x+2与x轴的交点不在线段AB上;D、y=x+2与x轴的交点为(﹣,0);故直线y=x+2与x轴的交点在线段AB上;故选:C.9.(3分)如图,已知OT是Rt∵ABO斜边AB上的高线,AO=BO.以O为圆心,OT为半径的圆交OA于点C,过点C作∵O的切线CD,交AB于点D.则下列结论中错误的是()A.DC=DT B.AD=DT C.BD=BO D.2OC=5AC 【分析】如图,连接OD.想办法证明选项A,B,C正确即可解决问题.【解答】解:如图,连接OD.∵OT是半径,OT∵AB,∵DT是∵O的切线,∵DC是∵O的切线,∵DC=DT,故选项A正确,∵OA=OB,∵AOB=90°,∵∵A=∵B=45°,∵DC是切线,∵CD∵OC,∵∵ACD=90°,∵∵A=∵ADC=45°,∵AC=CD=DT,∵AC=CD=DT,故选项B正确,∵OD=OD,OC=OT,DC=DT,∵∵DOC∵∵DOT(SSS),∵∵DOC=∵DOT,∵OA=OB,OT∵AB,∵AOB=90°,∵∵AOT=∵BOT=45°,∵∵DOT=∵DOC=22.5°,∵∵BOD=∵ODB=67.5°,∵BO=BD,故选项C正确,故选:D.10.(3分)七巧板是我国祖先的一项卓越创造,流行于世界各地.由边长为2的正方形可以制作一副中国七巧板或一副日本七巧板,如图1所示.分别用这两副七巧板试拼如图2中的平行四边形或矩形,则这两个图形中,中国七巧板和日本七巧板能拼成的个数分别是()A.1和1B.1和2C.2和1D.2和2【分析】根据要求拼平行四边形矩形即可.【解答】解:中国七巧板和日本七巧板能拼成的个数都是2,如图所示:故选:D.二、填空题(本题有6小题,每小题4分,共24分)11.(4分)计算:﹣2﹣1=﹣3.【分析】本题需先根据有理数的减法法则,判断出结果的符号,再把绝对值合并即可.【解答】解:﹣2﹣1=﹣3故答案为:﹣312.(4分)化简:=.【分析】直接将分母分解因式,进而化简得出答案.【解答】解:==.故答案为:.13.(4分)如图,已知AB 是半圆O 的直径,弦CD ∵AB ,CD =8,AB =10,则CD 与AB 之间的距离是 3 .【分析】过点O 作OH ∵CD 于H ,连接OC ,如图,根据垂径定理得到CH =DH =4,再利用勾股定理计算出OH =3,从而得到CD 与AB 之间的距离.【解答】解:过点O 作OH ∵CD 于H ,连接OC ,如图,则CH =DH =CD =4, 在Rt∵OCH 中,OH ==3,所以CD 与AB 之间的距离是3. 故答案为3.14.(4分)在一个布袋里放有1个白球和2个红球,它们除颜色外其余都相同,从布袋里摸出1个球,记下颜色后放回,搅匀,再摸出1个球.将2个红球分别记为红∵,红∵,两次摸球的所有可能的结果如表所示,第二次 第一次 白红∵红∵白 白,白 白,红∵ 白,红∵ 红∵ 红∵,白 红∵,红∵ 红∵,红∵ 红∵红∵,白红∵,红∵ 红∵,红∵则两次摸出的球都是红球的概率是.【分析】根据图表可知共有9种等可能的结果,再找出两次摸出的球都是红球的情况数,然后根据概率公式即可得出答案.【解答】解:根据图表给可知,共有9种等可能的结果,两次摸出的球都是红球的有4种,则两次摸出的球都是红球的概率为;故答案为:.15.(4分)在每个小正方形的边长为1的网格图形中,每个小正方形的顶点称为格点,顶点都是格点的三角形称为格点三角形.如图,已知Rt∵ABC是6×6网格图形中的格点三角形,则该图中所有与Rt∵ABC相似的格点三角形中.面积最大的三角形的斜边长是5.【分析】根据Rt∵ABC的各边长得出与其相似的三角形的两直角边之比为1:2,在6×6的网格图形中可得出与Rt∵ABC相似的三角形的短直角边长应小于4,在图中尝试可画出符合题意的最大三角形,从而其斜边长可得.【解答】解:∵在Rt∵ABC中,AC=1,BC=2,∵AB=,AC:BC=1:2,∵与Rt∵ABC相似的格点三角形的两直角边的比值为1:2,若该三角形最短边长为4,则另一直角边长为8,但在6×6网格图形中,最长线段为6,但此时画出的直角三角形为等腰直角三角形,从而画不出端点都在格点且长为8的线段,故最短直角边长应小于4,在图中尝试,可画出DE=,EF=2,DF=5的三角形,∵===,∵∵ABC∵∵DEF,∵∵DEF=∵C=90°,∵此时∵DEF的面积为:×2÷2=10,∵DEF为面积最大的三角形,其斜边长为:5.故答案为:5.16.(4分)如图,已知在平面直角坐标系xOy中,Rt∵OAB的直角顶点B在x轴的正半轴上,点A在第一象限,反比例函数y=(x>0)的图象经过OA的中点C.交AB于点D,连结CD.若∵ACD的面积是2,则k的值是.【分析】作辅助线,构建直角三角形,利用反比例函数k的几何意义得到S∵OCE=S∵OBD=k,根据OA的中点C,利用∵OCE∵∵OAB得到面积比为1:4,代入可得结论.【解答】解:连接OD,过C作CE∵AB,交x轴于E,∵∵ABO=90°,反比例函数y=(x>0)的图象经过OA的中点C,∵S∵COE=S∵BOD=,S∵ACD=S∵OCD=2,∵CE∵AB,∵∵OCE∵∵OAB,∵,∵4S∵OCE=S∵OAB,∵4×k=2+2+k,∵k=,故答案为:.三、解答题(本题有8小题,共66分)17.(6分)计算:+|﹣1|.【分析】首先利用二次根式的性质化简二次根式,利用绝对值的性质计算绝对值,然后再算加减即可.【解答】解:原式=2+﹣1=3﹣1.18.(6分)解不等式组.【分析】先求出不等式组中每一个不等式的解集,再求出它们的公共部分即可求解.【解答】解:,解∵得x<1;解∵得x<﹣6.故不等式组的解集为x<﹣6.19.(6分)有一种升降熨烫台如图1所示,其原理是通过改变两根支撑杆夹角的度数来调整熨烫台的高度.图2是这种升降熨烫台的平面示意图.AB和CD是两根相同长度的活动支撑杆,点O是它们的连接点,OA=OC,h(cm)表示熨烫台的高度.(1)如图2﹣1.若AB=CD=110cm,∵AOC=120°,求h的值;(2)爱动脑筋的小明发现,当家里这种升降熨烫台的高度为120cm时,两根支撑杆的夹角∵AOC是74°(如图2﹣2).求该熨烫台支撑杆AB的长度(结果精确到1cm).(参考数据:sin37°≈0.6,cos37°≈0.8,sin53°≈0.8,cos53°≈0.6.)【分析】(1)过点B作BE∵AC于E,根据等腰三角形的性质得到∵OAC=∵OCA==30°,根据三角函数的定义即可得到结论;(2)过点B作BE∵AC于E,根据等腰三角形的性质和三角函数的定义即可得到结论.【解答】解:(1)过点B作BE∵AC于E,∵OA=OC,∵AOC=120°,∵∵OAC=∵OCA==30°,∵h=BE=AB•sin30°=110×=55;(2)过点B作BE∵AC于E,∵OA=OC,∵AOC=74°,∵∵OAC=∵OCA==53°,∵AB=BE÷sin53°=120÷0.8=150(cm),即该熨烫台支撑杆AB的长度约为150cm.20.(8分)为了解学生对网上在线学习效果的满意度,某校设置了:非常满意、满意、基本满意、不满意四个选项,随机抽查了部分学生,要求每名学生都只选其中的一项,并将抽查结果绘制成如图统计图(不完整).请根据图中信息解答下列问题:(1)求被抽查的学生人数,并补全条形统计图;(温馨提示:请画在答题卷相对应的图上)(2)求扇形统计图中表示“满意”的扇形的圆心角度数;(3)若该校共有1000名学生参与网上在线学习,根据抽查结果,试估计该校对学习效果的满意度是“非常满意”或“满意”的学生共有多少人?【分析】(1)从两个统计图中可知,在抽查人数中,“非常满意”的人数为20人,占调查人数的40%,可求出调查人数,进而求出“基本满意”的人数,即可补全条形统计图;(2)样本中“满意”占调查人数的,即30%,因此相应的圆心角的度数为360°的30%;(3)样本中“非常满意”或“满意”的占调查人数的(+),进而估计总体中“非常满意”或“满意”的人数.【解答】解:(1)抽查的学生数:20÷40%=50(人),抽查人数中“基本满意”人数:50﹣20﹣15﹣1=14(人),补全的条形统计图如图所示:(2)360°×=108°,答:扇形统计图中表示“满意”的扇形的圆心角度数为108°;(3)1000×(+)=700(人),答:该校共有1000名学生中“非常满意”或“满意”的约有700人.21.(8分)如图,已知∵ABC是∵O的内接三角形,AD是∵O的直径,连结BD,BC平分∵ABD.(1)求证:∵CAD=∵ABC;(2)若AD=6,求的长.【分析】(1)由角平分线的性质和圆周角定理可得∵DBC=∵ABC=∵CAD;(2)由圆周角定理可得,由弧长公式可求解.【解答】解:(1)∵BC平分∵ABD,∵∵DBC=∵ABC,∵∵CAD=∵DBC,∵∵CAD=∵ABC;(2)∵∵CAD=∵ABC,∵=,∵AD是∵O的直径,AD=6,∵的长=××π×6=π.22.(10分)某企业承接了27000件产品的生产任务,计划安排甲、乙两个车间的共50名工人,合作生产20天完成.已知甲、乙两个车间利用现有设备,工人的工作效率为:甲车间每人每天生产25件,乙车间每人每天生产30件.(1)求甲、乙两个车间各有多少名工人参与生产?(2)为了提前完成生产任务,该企业设计了两种方案:方案一甲车间租用先进生产设备,工人的工作效率可提高20%,乙车间维持不变.方案二乙车间再临时招聘若干名工人(工作效率与原工人相同),甲车间维持不变.设计的这两种方案,企业完成生产任务的时间相同.∵求乙车间需临时招聘的工人数;∵若甲车间租用设备的租金每天900元,租用期间另需一次性支付运输等费用1500元;乙车间需支付临时招聘的工人每人每天200元.问:从新增加的费用考虑,应选择哪种方案能更节省开支?请说明理由.【分析】(1)设甲车间有x名工人参与生产,乙车间各有y名工人参与生产,由题意得关于x和y的方程组,求解即可.(2)∵设方案二中乙车间需临时招聘m名工人,由题意,以企业完成生产任务的时间为等量关系,列出关于m的分式方程,求解并检验即可;∵用生产任务数量27000除以方案一中甲和乙完成的生产任务之和可得企业完成生产任务的时间,然后分别按方案一和方案二计算费用并比较大小即可.【解答】解:(1)设甲车间有x名工人参与生产,乙车间各有y名工人参与生产,由题意得:,解得.∵甲车间有30名工人参与生产,乙车间各有20名工人参与生产.(2)∵设方案二中乙车间需临时招聘m名工人,由题意得:=,解得m=5.经检验,m=5是原方程的解,且符合题意.∵乙车间需临时招聘5名工人.∵企业完成生产任务所需的时间为:=18(天).∵选择方案一需增加的费用为900×18+1500=17700(元).选择方案二需增加的费用为5×18×200=18000(元).∵17700<18000,∵选择方案一能更节省开支.23.(10分)已知在∵ABC中,AC=BC=m,D是AB边上的一点,将∵B沿着过点D的直线折叠,使点B落在AC边的点P处(不与点A,C重合),折痕交BC边于点E.(1)特例感知如图1,若∵C=60°,D是AB的中点,求证:AP=AC;(2)变式求异如图2,若∵C=90°,m=6,AD=7,过点D作DH∵AC于点H,求DH 和AP的长;(3)化归探究如图3,若m=10,AB=12,且当AD=a时,存在两次不同的折叠,使点B 落在AC边上两个不同的位置,请直接写出a的取值范围.【分析】(1)证明∵ADP是等边三角形即可解决问题.(2)分两种情形:情形一:当点B落在线段CH上的点P1处时,如图2﹣1中.情形二:当点B落在线段AH上的点P2处时,如图2﹣2中,分别求解即可.(3)如图3中,过点C作CH∵AB于H,过点D作DP∵AC于P.求出DP=DB时AD的值,结合图形即可判断.【解答】(1)证明:∵AC=BC,∵C=60°,∵∵ABC是等边三角形,∵AC=AB,∵A=60°,由题意,得DB=DP,DA=DB,∵DA=DP,∵∵ADP使得等边三角形,∵AP=AD=AB=AC.(2)解:∵AC=BC=6,∵C=90°,∵AB===12,∵DH∵AC,∵DH∵BC,∵∵ADH∵∵ABC,∵=,∵AD=7,∵=,∵DH=,将∵B沿过点D的直线折叠,情形一:当点B落在线段CH上的点P1处时,如图2﹣1中,∵AB=12,∵DP1=DB=AB﹣AD=5,∵HP1===,∵A1=AH+HP1=4,情形二:当点B落在线段AH上的点P2处时,如图2﹣2中,同法可证HP2=,∵AP2=AH﹣HP2=3,综上所述,满足条件的AP的值为4或3.(3)如图3中,过点C作CH∵AB于H,过点D作DP∵AC于P.∵CA=CB,CH∵AB,∵AH=HB=6,∵CH===8,当DB=DP时,设BD=PD=x,则AD=12﹣x,∵tan A==,∵=,∵x=,∵AD=AB﹣BD=,观察图形可知当6<a<时,存在两次不同的折叠,使点B落在AC边上两个不同的位置.24.(12分)如图,已知在平面直角坐标系xOy中,抛物线y=﹣x2+bx+c(c>0)的顶点为D,与y轴的交点为C.过点C的直线CA与抛物线交于另一点A(点A在对称轴左侧),点B在AC的延长线上,连结OA,OB,DA和DB.(1)如图1,当AC∵x轴时,∵已知点A的坐标是(﹣2,1),求抛物线的解析式;∵若四边形AOBD是平行四边形,求证:b2=4c.(2)如图2,若b=﹣2,=,是否存在这样的点A,使四边形AOBD是平行四边形?若存在,求出点A的坐标;若不存在,请说明理由.【分析】(1)∵先确定出点C的坐标,再用待定系数法即可得出结论;∵先确定出抛物线的顶点坐标,进而得出DF=,再判断出∵AFD∵∵BCO,得出DF=OC,即可得出结论;(2)先判断出抛物线的顶点坐标D(﹣1,c+1),设点A(m,﹣m2﹣2m+c)(m<0),判断出∵AFD∵∵BCO(AAS),得出AF=BC,DF=OC,再判断出∵ANF∵∵AMC,得出=,进而求出m的值,得出点A的纵坐标为c﹣<c,进而判断出点M的坐标为(0,c﹣),N(﹣1,c﹣),进而得出CM=,DN=,FN=﹣c,进而求出c=,即可得出结论.【解答】解:(1)∵∵AC∵x轴,点A(﹣2,1),∵C(0,1),将点A(﹣2,1),C(0,1)代入抛物线解析式中,得,∵,∵抛物线的解析式为y=﹣x2﹣2x+1;∵如图1,过点D作DE∵x轴于E,交AB于点F,∵AC∵x轴,∵EF=OC=c,∵点D是抛物线的顶点坐标,∵D(,c+),∵DF=DE﹣EF=c+﹣c=,∵四边形AOBD是平行四边形,∵AD=DO,AD∵OB,∵∵DAF=∵OBC,∵∵AFD=∵BCO=90°,∵∵AFD∵∵BCO(AAS),∵DF=OC,∵=c,即b2=4c;(2)如图2,∵b=﹣2.∵抛物线的解析式为y=﹣x2﹣2x+c,∵顶点坐标D(﹣1,c+1),假设存在这样的点A使四边形AOBD是平行四边形,设点A(m,﹣m2﹣2m+c)(m<0),过点D作DE∵x轴于点E,交AB于F,∵∵AFD=∵EFC=∵BCO,∵四边形AOBD是平行四边形,∵AD=BO,AD∵OB,∵∵DAF=∵OBC,∵∵AFD∵∵BCO(AAS),∵AF=BC,DF=OC,过点A作AM∵y轴于M,交DE于N,∵DE∵CO,∵∵ANF∵∵AMC,∵=,∵AM=﹣m,AN=AM﹣NM=﹣m﹣1,∵,∵,∵点A的纵坐标为﹣(﹣)2﹣2×(﹣)+c=c﹣<c,∵AM∵x轴,∵点M的坐标为(0,c﹣),N(﹣1,c﹣),∵CM=c﹣(c﹣)=,∵点D的坐标为(﹣1,c+1),∵DN=(c+1)﹣(c﹣)=,∵DF=OC=c,∵FN=DN﹣DF=﹣c,∵=,∵,∵c=,∵c﹣=,∵点A纵坐标为,∵A(﹣,),∵存在这样的点A,使四边形AOBD是平行四边形.。

2020年浙江省湖州市中考数学试题附解析

2020年浙江省湖州市中考数学试题附解析

2020年浙江省湖州市中考数学试题学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.如图,一个小球从A 点沿制定的轨道下落,在每个交叉口都有向左或向右两种机会均等的结果,小球最终到达 H 点的概率是( )A .12B .14C .16D .182.河堤的横断面如图所示,堤坝 BC 高 5m ,迎水斜坡的长是 10 m ,则斜坡 AB 的坡度是( )A .1:2B .2:3C .`1:3D .1:33.若点 (x 1,y 1)、(x 2,y 2)和 (x 3,y 3)分别在反比例函数2y x=-的图象上,且1230x x x <<<,则下列判断中正确的是( )A .123y y y <<B .312y y y <<C .231y y y <<D .321y y y <<4.把方程2460x x --=配方,化为2()x m n +=的形式应为( )A .2(4)6x -=B .2(2)4x -=C .2(2)0x -=D .2(2)10x -= 5.若式子5x +在实数范围内有意义,则x 的取值范围是( )A .x>-5B .x<-5C .x ≠-5D .x ≥-56.下列函数中,自变量x 的取值范围是2x >的函数是( )A .2y x =-B .12y x =-C .21y x =-D .121y x =- 7.如图,AB ∥CD ,AD ,BC 相交于0点,∠BAD=35°,∠BOD=76°,则∠C 的度数是( )A .31°B .35°C .41°D .76°8.下列图形中:角、线段、直角三角形、等边三角形、长方形,其中一定是轴对称图形的有( )A .2个B .3个C .4个D .5个 9.方程组2321x y x y +=⎧⎨-=⎩的解是( ) A .53x y =-⎧⎨=⎩ B .11x y =-⎧⎨=-⎩ C .11x y =⎧⎨=⎩ D .35x y =⎧⎨=-⎩10.计算991002(0.6)(1)3-⋅-的值是( ) A .53 B .53- C .35 D .35- 11.现规定一种新的运算“※”:a ※b =a b ,如3※2=32=8,则3※12等于( ) A .18 B .8 C .16 D .3212.给出下述几种说法,其中正确的说法有( )①763万精确到万位;②1.2亿精确到0.1;③8067保留2个有效数字的近似值是8.1 ×103;④22.20精确到0.01.A .3个B .2个C .1个D .0个二、填空题13.已知⊙O 的半径为 3 cm ,圆外一点 B 到圆心距离为 6 cm ,由点 B 引⊙O 的切线BA ,则点B 与切点、圆心构成的三角形的最小锐角是 .14.若等腰三角形的顶角为 120°,腰长2cm ,则周长为 cm .15.数3和12的比例中项是 _.16.已知:如图,AB 、CD 是⊙O 的直径,D 是AE 的中点,AE 与CD 交于点 F ,OF=3,则BE 的长为 .17.如图,在正方形ABCD 中,以对角线AC 为一边作菱形AEFC ,则∠FAB= .18.对120个数据进行整理并绘制成频数分布表,各组的频数之和等于 ,各组的频率之和等于.19.如图,AE⊥BD于点C,BD被AE平分,AB=DE,则可判定△ABC≌△ECD.理由是.解答题20.若11xy=⎧⎨=-⎩是方程组2421ax y bx by a+=⎧⎨-=-⎩的解,则a b+= .21.如图,∠B=∠DEF,AB=DE,要证明△ABC ≌△DEF,(1)若以“ASA”为依据,需添加的条件是;(2)若以“SAS”为依据,需添加的条件是 .22.如图,A,B,C,D,E,F是平面上的6个点,则∠A+∠B+∠C+∠D+∠E+∠F的度数是.23.甲袋装有1 个红球9个白球,乙袋装着9 个红球1个白球,两个口袋中的球都已经搅匀,如果你想取出一个红球,选袋成功的机会较大.三、解答题24.如图,AB是⊙O的直径,BD是⊙O的弦,延长BD到点C,使DC=BD,连结AC•交⊙O于点F.①请问AB与AC的大小有什么关系?为什么?②按角的大小分类,请你判断△ABC是哪一类的三角形,请说明理由.25.求证:等腰三角形两腰上的高相等.26.先阅读一段文字,再回答下列问题:已知在平面内两点坐标P 1(x 1,y 1),P 2(x 2,y 2),其两点间距离公式为12PP =x 轴或垂直于x 轴时,两点间距离公式可简化成21x x -或21y y -.(1)已知A(3,5)、B(-2,-l),试求A 、B 两点的距离;(2)已知A 、B 在平行于y 轴的直线上,点A 的纵坐标为5,点B 的纵坐标为-l ,试求A 、B 两点的距离;(3)已知一个三角形各顶点坐标为A(0,6)、B(-3,2)、C(3,2),你能断定此三角形的形状吗?说明理由.27.(1)你能找出几个使不等式2 2.515x -≥⋅成立的 x 的值吗?(2)x=3,5,7 能使不等式225 1.5x -⋅≥成立吗?28.如图,A ,B ,C ,D 四张卡片上分别写有-257,π四个实数,从中任取两张卡片.(1)请列举出所有可能的结果(用字母A ,B .C ,D 表示);(2)求取到的两个数都是无理数的概率.29.如图所示,有一条小船,A BCD(1)若把小船平移,使点A平移到点B,请你在图中画出平移后的小船;(2)若该小船先从点A航行到达岸边l的点P处补给后再航行到点B,但要求航程最短,试在图中画出点P的位置.30.两个代数式的和是22+,试求出另一个代数式.x xy-+,其中一个代数式是223x xy y【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.B2.C3.B4.D5.D6.B7.C8.C9.C10.B11.AA二、填空题13.30°14.4+.6±16.617.22.5°18.120,119.HL20.421.∠A = ∠D,BC=EF(或BE=CF)22.360°23.乙三、解答题24.①AB=AC,连AD;②锐角三角形,连BF,证∠ABC<90°,∠ACB<90°,∠BAC<90°25.略.26.(2)6;(3)等腰三角形(1)能,x=2,3,4,…;(2)成立28.(1)所有可能结果 AB,AC,AD,BC,BD,CD (2)1 629.略30.2x2-3xy+y2。

2020年浙江省湖州市中考数学试卷(教师版)

2020年浙江省湖州市中考数学试卷(教师版)

2020年浙江省湖州市中考数学试卷参考答案与试题解析一、选择题(本题有10小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的.请选出各题中一个最符合题意的选项,并在答题卷上将相应题次中对应字母的方框涂黑,不选、多选、错选均不给分.1.(3分)数4的算术平方根是()A.2B.﹣2C.±2D.【分析】算术平方根的定义:一个非负数的正的平方根,即为这个数的算术平方根,由此即可求出结果.【解答】解:∵2的平方为4,∵4的算术平方根为2.故选:A.2.(3分)近几年来,我国经济规模不断扩大,综合国力显著增强.2019年我国国内生产总值约991000亿元,则数991000用科学记数法可表示为()A.991×103B.99.1×104C.9.91×105D.9.91×106【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.【解答】解:将991000用科学记数法表示为:9.91×105.故选:C.3.(3分)已知某几何体的三视图如图所示,则该几何体可能是()A.B.C.D.【分析】根据两个视图是长方形得出该几何体是锥体,再根据俯视图是圆,得出几何体是圆锥.【解答】解:∵主视图和左视图是三角形,∵几何体是锥体,∵俯视图的大致轮廓是圆,∵该几何体是圆锥.故选:A.4.(3分)如图,已知四边形ABCD内接于∵O,∵ABC=70°,则∵ADC的度数是()A.70°B.110°C.130°D.140°【分析】根据圆内接四边形的性质即可得到结论.【解答】解:∵四边形ABCD内接于∵O,∵ABC=70°,∵∵ADC=180°﹣∵ABC=180°﹣70°=110°,故选:B.5.(3分)数据﹣1,0,3,4,4的平均数是()A.4B.3C.2.5D.2【分析】根据题目中的数据,可以求得这组数据的平均数,本题得以解决.【解答】解:==2,故选:D.6.(3分)已知关于x的一元二次方程x2+bx﹣1=0,则下列关于该方程根的判断,正确的是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.实数根的个数与实数b的取值有关【分析】先计算出判别式的值,再根据非负数的性质判断∵>0,然后利用判别式的意义对各选项进行判断.【解答】解:∵∵=b2﹣4×(﹣1)=b2+4>0,∵方程有两个不相等的实数根.故选:A.7.(3分)四边形具有不稳定性,对于四条边长确定的四边形.当内角度数发生变化时,其形状也会随之改变.如图,改变正方形ABCD的内角,正方形ABCD变为菱形ABC′D′.若∵D′AB=30°,则菱形ABC′D′的面积与正方形ABCD的面积之比是()A.1B.C.D.【分析】根据30°角所对的直角边等于斜边的一半可知菱形ABC′D′的高等于AB的一半,再根据正方形的面积公式和平行四边形的面积公式即可得解.【解答】解:根据题意可知菱形ABC′D′的高等于AB的一半,∵菱形ABC′D′的面积为,正方形ABCD的面积为AB2.∵菱形ABC′D′的面积与正方形ABCD的面积之比是.故选:B.8.(3分)已知在平面直角坐标系xOy中,直线y=2x+2和直线y=x+2分别交x轴于点A 和点B.则下列直线中,与x轴的交点不在线段AB上的直线是()A.y=x+2B.y=x+2C.y=4x+2D.y=x+2【分析】求得A、B的坐标,然后分别求得各个直线与x的交点,进行比较即可得出结论.【解答】解:∵直线y=2x+2和直线y=x+2分别交x轴于点A和点B.∵A(﹣1,0),B(﹣3,0)A、y=x+2与x轴的交点为(﹣2,0);故直线y=x+2与x轴的交点在线段AB上;B、y=x+2与x轴的交点为(﹣,0);故直线y=x+2与x轴的交点在线段AB上;C、y=4x+2与x轴的交点为(﹣,0);故直线y=4x+2与x轴的交点不在线段AB上;D、y=x+2与x轴的交点为(﹣,0);故直线y=x+2与x轴的交点在线段AB上;故选:C.9.(3分)如图,已知OT是Rt∵ABO斜边AB上的高线,AO=BO.以O为圆心,OT为半径的圆交OA于点C,过点C作∵O的切线CD,交AB于点D.则下列结论中错误的是()A.DC=DT B.AD=DT C.BD=BO D.2OC=5AC 【分析】如图,连接OD.想办法证明选项A,B,C正确即可解决问题.【解答】解:如图,连接OD.∵OT是半径,OT∵AB,∵DT是∵O的切线,∵DC是∵O的切线,∵DC=DT,故选项A正确,∵OA=OB,∵AOB=90°,∵∵A=∵B=45°,∵DC是切线,∵CD∵OC,∵∵ACD=90°,∵∵A=∵ADC=45°,∵AC=CD=DT,∵AC=CD=DT,故选项B正确,∵OD=OD,OC=OT,DC=DT,∵∵DOC∵∵DOT(SSS),∵∵DOC=∵DOT,∵OA=OB,OT∵AB,∵AOB=90°,∵∵AOT=∵BOT=45°,∵∵DOT=∵DOC=22.5°,∵∵BOD=∵ODB=67.5°,∵BO=BD,故选项C正确,故选:D.10.(3分)七巧板是我国祖先的一项卓越创造,流行于世界各地.由边长为2的正方形可以制作一副中国七巧板或一副日本七巧板,如图1所示.分别用这两副七巧板试拼如图2中的平行四边形或矩形,则这两个图形中,中国七巧板和日本七巧板能拼成的个数分别是()A.1和1B.1和2C.2和1D.2和2【分析】根据要求拼平行四边形矩形即可.【解答】解:中国七巧板和日本七巧板能拼成的个数都是2,如图所示:故选:D.二、填空题(本题有6小题,每小题4分,共24分)11.(4分)计算:﹣2﹣1=﹣3.【分析】本题需先根据有理数的减法法则,判断出结果的符号,再把绝对值合并即可.【解答】解:﹣2﹣1=﹣3故答案为:﹣312.(4分)化简:=.【分析】直接将分母分解因式,进而化简得出答案.【解答】解:==.故答案为:.13.(4分)如图,已知AB 是半圆O 的直径,弦CD ∵AB ,CD =8,AB =10,则CD 与AB 之间的距离是 3 .【分析】过点O 作OH ∵CD 于H ,连接OC ,如图,根据垂径定理得到CH =DH =4,再利用勾股定理计算出OH =3,从而得到CD 与AB 之间的距离.【解答】解:过点O 作OH ∵CD 于H ,连接OC ,如图,则CH =DH =CD =4, 在Rt∵OCH 中,OH ==3,所以CD 与AB 之间的距离是3. 故答案为3.14.(4分)在一个布袋里放有1个白球和2个红球,它们除颜色外其余都相同,从布袋里摸出1个球,记下颜色后放回,搅匀,再摸出1个球.将2个红球分别记为红∵,红∵,两次摸球的所有可能的结果如表所示,第二次 第一次 白红∵红∵白 白,白 白,红∵ 白,红∵ 红∵ 红∵,白 红∵,红∵ 红∵,红∵ 红∵红∵,白红∵,红∵ 红∵,红∵则两次摸出的球都是红球的概率是.【分析】根据图表可知共有9种等可能的结果,再找出两次摸出的球都是红球的情况数,然后根据概率公式即可得出答案.【解答】解:根据图表给可知,共有9种等可能的结果,两次摸出的球都是红球的有4种,则两次摸出的球都是红球的概率为;故答案为:.15.(4分)在每个小正方形的边长为1的网格图形中,每个小正方形的顶点称为格点,顶点都是格点的三角形称为格点三角形.如图,已知Rt∵ABC是6×6网格图形中的格点三角形,则该图中所有与Rt∵ABC相似的格点三角形中.面积最大的三角形的斜边长是5.【分析】根据Rt∵ABC的各边长得出与其相似的三角形的两直角边之比为1:2,在6×6的网格图形中可得出与Rt∵ABC相似的三角形的短直角边长应小于4,在图中尝试可画出符合题意的最大三角形,从而其斜边长可得.【解答】解:∵在Rt∵ABC中,AC=1,BC=2,∵AB=,AC:BC=1:2,∵与Rt∵ABC相似的格点三角形的两直角边的比值为1:2,若该三角形最短边长为4,则另一直角边长为8,但在6×6网格图形中,最长线段为6,但此时画出的直角三角形为等腰直角三角形,从而画不出端点都在格点且长为8的线段,故最短直角边长应小于4,在图中尝试,可画出DE=,EF=2,DF=5的三角形,∵===,∵∵ABC∵∵DEF,∵∵DEF=∵C=90°,∵此时∵DEF的面积为:×2÷2=10,∵DEF为面积最大的三角形,其斜边长为:5.故答案为:5.16.(4分)如图,已知在平面直角坐标系xOy中,Rt∵OAB的直角顶点B在x轴的正半轴上,点A在第一象限,反比例函数y=(x>0)的图象经过OA的中点C.交AB于点D,连结CD.若∵ACD的面积是2,则k的值是.【分析】作辅助线,构建直角三角形,利用反比例函数k的几何意义得到S∵OCE=S∵OBD=k,根据OA的中点C,利用∵OCE∵∵OAB得到面积比为1:4,代入可得结论.【解答】解:连接OD,过C作CE∵AB,交x轴于E,∵∵ABO=90°,反比例函数y=(x>0)的图象经过OA的中点C,∵S∵COE=S∵BOD=,S∵ACD=S∵OCD=2,∵CE∵AB,∵∵OCE∵∵OAB,∵,∵4S∵OCE=S∵OAB,∵4×k=2+2+k,∵k=,故答案为:.三、解答题(本题有8小题,共66分)17.(6分)计算:+|﹣1|.【分析】首先利用二次根式的性质化简二次根式,利用绝对值的性质计算绝对值,然后再算加减即可.【解答】解:原式=2+﹣1=3﹣1.18.(6分)解不等式组.【分析】先求出不等式组中每一个不等式的解集,再求出它们的公共部分即可求解.【解答】解:,解∵得x<1;解∵得x<﹣6.故不等式组的解集为x<﹣6.19.(6分)有一种升降熨烫台如图1所示,其原理是通过改变两根支撑杆夹角的度数来调整熨烫台的高度.图2是这种升降熨烫台的平面示意图.AB和CD是两根相同长度的活动支撑杆,点O是它们的连接点,OA=OC,h(cm)表示熨烫台的高度.(1)如图2﹣1.若AB=CD=110cm,∵AOC=120°,求h的值;(2)爱动脑筋的小明发现,当家里这种升降熨烫台的高度为120cm时,两根支撑杆的夹角∵AOC是74°(如图2﹣2).求该熨烫台支撑杆AB的长度(结果精确到1cm).(参考数据:sin37°≈0.6,cos37°≈0.8,sin53°≈0.8,cos53°≈0.6.)【分析】(1)过点B作BE∵AC于E,根据等腰三角形的性质得到∵OAC=∵OCA==30°,根据三角函数的定义即可得到结论;(2)过点B作BE∵AC于E,根据等腰三角形的性质和三角函数的定义即可得到结论.【解答】解:(1)过点B作BE∵AC于E,∵OA=OC,∵AOC=120°,∵∵OAC=∵OCA==30°,∵h=BE=AB•sin30°=110×=55;(2)过点B作BE∵AC于E,∵OA=OC,∵AOC=74°,∵∵OAC=∵OCA==53°,∵AB=BE÷sin53°=120÷0.8=150(cm),即该熨烫台支撑杆AB的长度约为150cm.20.(8分)为了解学生对网上在线学习效果的满意度,某校设置了:非常满意、满意、基本满意、不满意四个选项,随机抽查了部分学生,要求每名学生都只选其中的一项,并将抽查结果绘制成如图统计图(不完整).请根据图中信息解答下列问题:(1)求被抽查的学生人数,并补全条形统计图;(温馨提示:请画在答题卷相对应的图上)(2)求扇形统计图中表示“满意”的扇形的圆心角度数;(3)若该校共有1000名学生参与网上在线学习,根据抽查结果,试估计该校对学习效果的满意度是“非常满意”或“满意”的学生共有多少人?【分析】(1)从两个统计图中可知,在抽查人数中,“非常满意”的人数为20人,占调查人数的40%,可求出调查人数,进而求出“基本满意”的人数,即可补全条形统计图;(2)样本中“满意”占调查人数的,即30%,因此相应的圆心角的度数为360°的30%;(3)样本中“非常满意”或“满意”的占调查人数的(+),进而估计总体中“非常满意”或“满意”的人数.【解答】解:(1)抽查的学生数:20÷40%=50(人),抽查人数中“基本满意”人数:50﹣20﹣15﹣1=14(人),补全的条形统计图如图所示:(2)360°×=108°,答:扇形统计图中表示“满意”的扇形的圆心角度数为108°;(3)1000×(+)=700(人),答:该校共有1000名学生中“非常满意”或“满意”的约有700人.21.(8分)如图,已知∵ABC是∵O的内接三角形,AD是∵O的直径,连结BD,BC平分∵ABD.(1)求证:∵CAD=∵ABC;(2)若AD=6,求的长.【分析】(1)由角平分线的性质和圆周角定理可得∵DBC=∵ABC=∵CAD;(2)由圆周角定理可得,由弧长公式可求解.【解答】解:(1)∵BC平分∵ABD,∵∵DBC=∵ABC,∵∵CAD=∵DBC,∵∵CAD=∵ABC;(2)∵∵CAD=∵ABC,∵=,∵AD是∵O的直径,AD=6,∵的长=××π×6=π.22.(10分)某企业承接了27000件产品的生产任务,计划安排甲、乙两个车间的共50名工人,合作生产20天完成.已知甲、乙两个车间利用现有设备,工人的工作效率为:甲车间每人每天生产25件,乙车间每人每天生产30件.(1)求甲、乙两个车间各有多少名工人参与生产?(2)为了提前完成生产任务,该企业设计了两种方案:方案一甲车间租用先进生产设备,工人的工作效率可提高20%,乙车间维持不变.方案二乙车间再临时招聘若干名工人(工作效率与原工人相同),甲车间维持不变.设计的这两种方案,企业完成生产任务的时间相同.∵求乙车间需临时招聘的工人数;∵若甲车间租用设备的租金每天900元,租用期间另需一次性支付运输等费用1500元;乙车间需支付临时招聘的工人每人每天200元.问:从新增加的费用考虑,应选择哪种方案能更节省开支?请说明理由.【分析】(1)设甲车间有x名工人参与生产,乙车间各有y名工人参与生产,由题意得关于x和y的方程组,求解即可.(2)∵设方案二中乙车间需临时招聘m名工人,由题意,以企业完成生产任务的时间为等量关系,列出关于m的分式方程,求解并检验即可;∵用生产任务数量27000除以方案一中甲和乙完成的生产任务之和可得企业完成生产任务的时间,然后分别按方案一和方案二计算费用并比较大小即可.【解答】解:(1)设甲车间有x名工人参与生产,乙车间各有y名工人参与生产,由题意得:,解得.∵甲车间有30名工人参与生产,乙车间各有20名工人参与生产.(2)∵设方案二中乙车间需临时招聘m名工人,由题意得:=,解得m=5.经检验,m=5是原方程的解,且符合题意.∵乙车间需临时招聘5名工人.∵企业完成生产任务所需的时间为:=18(天).∵选择方案一需增加的费用为900×18+1500=17700(元).选择方案二需增加的费用为5×18×200=18000(元).∵17700<18000,∵选择方案一能更节省开支.23.(10分)已知在∵ABC中,AC=BC=m,D是AB边上的一点,将∵B沿着过点D的直线折叠,使点B落在AC边的点P处(不与点A,C重合),折痕交BC边于点E.(1)特例感知如图1,若∵C=60°,D是AB的中点,求证:AP=AC;(2)变式求异如图2,若∵C=90°,m=6,AD=7,过点D作DH∵AC于点H,求DH 和AP的长;(3)化归探究如图3,若m=10,AB=12,且当AD=a时,存在两次不同的折叠,使点B 落在AC边上两个不同的位置,请直接写出a的取值范围.【分析】(1)证明∵ADP是等边三角形即可解决问题.(2)分两种情形:情形一:当点B落在线段CH上的点P1处时,如图2﹣1中.情形二:当点B落在线段AH上的点P2处时,如图2﹣2中,分别求解即可.(3)如图3中,过点C作CH∵AB于H,过点D作DP∵AC于P.求出DP=DB时AD的值,结合图形即可判断.【解答】(1)证明:∵AC=BC,∵C=60°,∵∵ABC是等边三角形,∵AC=AB,∵A=60°,由题意,得DB=DP,DA=DB,∵DA=DP,∵∵ADP使得等边三角形,∵AP=AD=AB=AC.(2)解:∵AC=BC=6,∵C=90°,∵AB===12,∵DH∵AC,∵DH∵BC,∵∵ADH∵∵ABC,∵=,∵AD=7,∵=,∵DH=,将∵B沿过点D的直线折叠,情形一:当点B落在线段CH上的点P1处时,如图2﹣1中,∵AB=12,∵DP1=DB=AB﹣AD=5,∵HP1===,∵A1=AH+HP1=4,情形二:当点B落在线段AH上的点P2处时,如图2﹣2中,同法可证HP2=,∵AP2=AH﹣HP2=3,综上所述,满足条件的AP的值为4或3.(3)如图3中,过点C作CH∵AB于H,过点D作DP∵AC于P.∵CA=CB,CH∵AB,∵AH=HB=6,∵CH===8,当DB=DP时,设BD=PD=x,则AD=12﹣x,∵tan A==,∵=,∵x=,∵AD=AB﹣BD=,观察图形可知当6<a<时,存在两次不同的折叠,使点B落在AC边上两个不同的位置.24.(12分)如图,已知在平面直角坐标系xOy中,抛物线y=﹣x2+bx+c(c>0)的顶点为D,与y轴的交点为C.过点C的直线CA与抛物线交于另一点A(点A在对称轴左侧),点B在AC的延长线上,连结OA,OB,DA和DB.(1)如图1,当AC∵x轴时,∵已知点A的坐标是(﹣2,1),求抛物线的解析式;∵若四边形AOBD是平行四边形,求证:b2=4c.(2)如图2,若b=﹣2,=,是否存在这样的点A,使四边形AOBD是平行四边形?若存在,求出点A的坐标;若不存在,请说明理由.【分析】(1)∵先确定出点C的坐标,再用待定系数法即可得出结论;∵先确定出抛物线的顶点坐标,进而得出DF=,再判断出∵AFD∵∵BCO,得出DF=OC,即可得出结论;(2)先判断出抛物线的顶点坐标D(﹣1,c+1),设点A(m,﹣m2﹣2m+c)(m<0),判断出∵AFD∵∵BCO(AAS),得出AF=BC,DF=OC,再判断出∵ANF∵∵AMC,得出=,进而求出m的值,得出点A的纵坐标为c﹣<c,进而判断出点M的坐标为(0,c﹣),N(﹣1,c﹣),进而得出CM=,DN=,FN=﹣c,进而求出c=,即可得出结论.【解答】解:(1)∵∵AC∵x轴,点A(﹣2,1),∵C(0,1),将点A(﹣2,1),C(0,1)代入抛物线解析式中,得,∵,∵抛物线的解析式为y=﹣x2﹣2x+1;∵如图1,过点D作DE∵x轴于E,交AB于点F,∵AC∵x轴,∵EF=OC=c,∵点D是抛物线的顶点坐标,∵D(,c+),∵DF=DE﹣EF=c+﹣c=,∵四边形AOBD是平行四边形,∵AD=DO,AD∵OB,∵∵DAF=∵OBC,∵∵AFD=∵BCO=90°,∵∵AFD∵∵BCO(AAS),∵DF=OC,∵=c,即b2=4c;(2)如图2,∵b=﹣2.∵抛物线的解析式为y=﹣x2﹣2x+c,∵顶点坐标D(﹣1,c+1),假设存在这样的点A使四边形AOBD是平行四边形,设点A(m,﹣m2﹣2m+c)(m<0),过点D作DE∵x轴于点E,交AB于F,∵∵AFD=∵EFC=∵BCO,∵四边形AOBD是平行四边形,∵AD=BO,AD∵OB,∵∵DAF=∵OBC,∵∵AFD∵∵BCO(AAS),∵AF=BC,DF=OC,过点A作AM∵y轴于M,交DE于N,∵DE∵CO,∵∵ANF∵∵AMC,∵=,∵AM=﹣m,AN=AM﹣NM=﹣m﹣1,∵,∵,∵点A的纵坐标为﹣(﹣)2﹣2×(﹣)+c=c﹣<c,∵AM∵x轴,∵点M的坐标为(0,c﹣),N(﹣1,c﹣),∵CM=c﹣(c﹣)=,∵点D的坐标为(﹣1,c+1),∵DN=(c+1)﹣(c﹣)=,∵DF=OC=c,∵FN=DN﹣DF=﹣c,∵=,∵,∵c=,∵c﹣=,∵点A纵坐标为,∵A(﹣,),∵存在这样的点A,使四边形AOBD是平行四边形.。

2020年浙江省湖州市中考数学试卷(含答案解析)

2020年浙江省湖州市中考数学试卷(含答案解析)

2020年浙江省湖州市中考数学试卷副标题题号一二三总分得分一、选择题(本大题共10小题,共30.0分)1.4的算术平方根是()A. 2B. −2C. ±2D. √22.近几年来,我国经济规模不断扩大,综合国力显著增强.2019年我国国内生产总值约991000亿元,则数991000用科学记数法可表示为()A. 991×103B. 99.1×104C. 9.91×105D. 9.91×1063.已知某几何体的三视图如图所示,则该几何体可能是()A.B.C.D.4.如图,已知四边形ABCD内接于⊙O,∠ABC=70°,则∠ADC的度数是()A. 70°B. 110°C. 130°D. 140°5.数据−1,0,3,4,4的平均数是()A. 4B. 3C. 2.5D. 26.已知关于x的一元二次方程x2+bx−1=0,则下列关于该方程根的判断,正确的是()A. 有两个不相等的实数根B. 有两个相等的实数根C. 没有实数根D. 实数根的个数与实数b的取值有关7.四边形具有不稳定性,对于四条边长确定的四边形.当内角度数发生变化时,其形状也会随之改变.如图,改变正方形ABCD的内角,正方形ABCD变为菱形ABC′D′.若∠D′AB=30°,则菱形ABC′D′的面积与正方形ABCD的面积之比是()A. 1B. 12C. √22D. √328.已知在平面直角坐标系xOy中,直线y=2x+2和直线y=23x+2分别交x轴于点A和点B.则下列直线中,与x轴的交点不在线段AB上的直线是()A. y=x+2B. y=√2x+2C. y=4x+2D. y=2√33x+2 9.如图,已知OT是Rt△ABO斜边AB上的高线,AO=BO.以O为圆心,OT为半径的圆交OA于点C,过点C作⊙O的切线CD,交AB于点D.则下列结论中错误的是()A. DC=DTB. AD=√2DTC. BD=BOD. 2OC=5AC10.七巧板是我国祖先的一项卓越创造,流行于世界各地.由边长为2的正方形可以制作一副中国七巧板或一副日本七巧板,如图1所示.分别用这两副七巧板试拼如图2中的平行四边形或矩形,则这两个图形中,中国七巧板和日本七巧板能拼成的个数分别是()A. 1和1B. 1和2C. 2和1D. 2和2二、填空题(本大题共6小题,共24.0分)11.计算:−2−1=______.12.化简:x+1x2+2x+1=______.13.如图,已知AB是半圆O的直径,弦CD//AB,CD=8.AB=10,则CD与AB之间的距离是______.14.在一个布袋里放有1个白球和2个红球,它们除颜色外其余都相同,从布袋里摸出1个球,记下颜色后放回,搅匀,再摸出1个球.将2个红球分别记为红Ⅰ,红Ⅱ.两次摸球的所有可能的结果如表所示,第二次第一次白红Ⅰ红Ⅱ白白,白白,红Ⅰ白,红Ⅱ红Ⅰ红Ⅰ,白红Ⅰ,红Ⅰ红Ⅰ,红Ⅱ红Ⅱ红Ⅱ,白红Ⅱ,红Ⅰ红Ⅱ,红Ⅱ则两次摸出的球都是红球的概率是______.15.在每个小正方形的边长为1的网格图形中,每个小正方形的顶点称为格点,顶点都是格点的三角形称为格点三角形.如图,已知Rt△ABC是6×6网格图形中的格点三角形,则该图中所有与Rt△ABC相似的格点三角形中.面积最大的三角形的斜边长是______.16. 如图,已知在平面直角坐标系xOy 中,Rt △OAB 的直角顶点B 在x 轴的正半轴上,点A 在第一象限,反比例函数y =kx (x >0)的图象经过OA 的中点C.交AB 于点D ,连结CD.若△ACD 的面积是2,则k 的值是______.三、解答题(本大题共8小题,共66.0分) 17. 计算:√8+|√2−1|.18. 解不等式组{3x −2<x, ①13x <−2, ②.19. 有一种升降熨烫台如图1所示,其原理是通过改变两根支撑杆夹角的度数来调整熨烫台的高度.图2是这种升降熨烫台的平面示意图.AB 和CD 是两根相同长度的活动支撑杆,点O 是它们的连接点,OA =OC ,ℎ(cm)表示熨烫台的高度. (1)如图2−1.若AB =CD =110cm ,∠AOC =120°,求h 的值;(2)爱动脑筋的小明发现,当家里这种升降熨烫台的高度为120cm 时,两根支撑杆的夹角∠AOC 是74°(如图2−2).求该熨烫台支撑杆AB 的长度(结果精确到lcm). (参考数据:sin37°≈0.6,cos37°≈0.8,sin53°≈0.8,cos53°≈0.6.)20.为了解学生对网上在线学习效果的满意度,某校设置了:非常满意、满意、基本满意、不满意四个选项,随机抽查了部分学生,要求每名学生都只选其中的一项,并将抽查结果绘制成如图统计图(不完整).请根据图中信息解答下列问题:(1)求被抽查的学生人数,并补全条形统计图;(温馨提示:请画在答题卷相对应的图上)(2)求扇形统计图中表示“满意”的扇形的圆心角度数;(3)若该校共有1000名学生参与网上在线学习,根据抽查结果,试估计该校对学习效果的满意度是“非常满意”或“满意”的学生共有多少人?21.如图,已知△ABC是⊙O的内接三角形,AD是⊙O的直径,连结BD,BC平分∠ABD.(1)求证:∠CAD=∠ABC;(2)若AD=6,求CD⏜的长.22.某企业承接了27000件产品的生产任务,计划安排甲、乙两个车间的共50名工人,合作生产20天完成.已知甲、乙两个车间利用现有设备,工人的工作效率为:甲车间每人每天生产25件,乙车间每人每天生产30件.(1)求甲、乙两个车间各有多少名工人参与生产?(2)为了提前完成生产任务,该企业设计了两种方案:方案一甲车间租用先进生产设备,工人的工作效率可提高20%,乙车间维持不变.方案二乙车间再临时招聘若干名工人(工作效率与原工人相同),甲车间维持不变.设计的这两种方案,企业完成生产任务的时间相同.①求乙车间需临时招聘的工人数;②若甲车间租用设备的租金每天900元,租用期间另需一次性支付运输等费用1500元;乙车间需支付临时招聘的工人每人每天200元.问:从新增加的费用考虑,应选择哪种方案能更节省开支?请说明理由.23.已知在△ABC中,AC=BC=m,D是AB边上的一点,将∠B沿着过点D的直线折叠,使点B落在AC边的点P处(不与点A,C重合),折痕交BC边于点E.AC;(1)特例感知如图1,若∠C=60°,D是AB的中点,求证:AP=12(2)变式求异如图2,若∠C=90°,m=6√2,AD=7,过点D作DH⊥AC于点H,求DH和AP的长;(3)化归探究如图3,若m=10,AB=12,且当AD=a时,存在两次不同的折叠,使点B落在AC边上两个不同的位置,请直接写出a的取值范围.24.如图,已知在平面直角坐标系xOy中,抛物线y=−x2+bx+c(c>0)的顶点为D,与y轴的交点为C.过点C的直线CA与抛物线交于另一点A(点A在对称轴左侧),点B在AC的延长线上,连结OA,OB,DA和DB.(1)如图1,当AC//x轴时,①已知点A的坐标是(−2,1),求抛物线的解析式;②若四边形AOBD是平行四边形,求证:b2=4c.(2)如图2,若b=−2,BCAC =35,是否存在这样的点A,使四边形AOBD是平行四边形?若存在,求出点A的坐标;若不存在,请说明理由.答案和解析1.【答案】A【解析】【分析】此题主要考查了算术平方根的定义,算术平方根的概念易与平方根的概念混淆而导致错误.算术平方根的定义:一个非负数的正的平方根,即为这个数的算术平方根,由此即可求出结果. 【解答】解:∵2的平方为4, ∴4的算术平方根为2. 故选A . 2.【答案】C【解析】解:将991000用科学记数法表示为:9.91×105. 故选:C .科学记数法的表示形式为a ×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同. 此题考查科学记数法的表示方法,表示时关键要正确确定a 的值以及n 的值. 3.【答案】A【解析】解:∵主视图和左视图是三角形, ∴几何体是锥体,∵俯视图的大致轮廓是圆, ∴该几何体是圆锥. 故选:A .根据两个视图是长方形得出该几何体是锥体,再根据俯视图是圆,得出几何体是圆锥. 此题考查由三视图判断几何体,三视图里有两个相同可确定该几何体是柱体,锥体还是球体,由另一个视图确定其具体形状. 4.【答案】B【解析】【分析】本题考查了圆内接四边形的性质,熟练掌握圆内接四边形的性质是解题的关键.根据圆内接四边形的性质即可得到结论. 【解答】解:∵四边形ABCD 内接于⊙O ,∠ABC =70°, ∴∠ADC =180°−∠ABC =180°−70°=110°, 故选:B . 5.【答案】D【解析】解:x −=−1+0+3+4+45=2,故选:D .根据题目中的数据,可以求得这组数据的平均数,本题得以解决. 本题考查算术平均数,解答本题的关键是明确算术平均数的计算方法. 6.【答案】A【解析】解:∵△=b2−4×(−1)=b2+4>0,∴方程有两个不相等的实数根.故选:A.先计算出判别式的值,再根据非负数的性质判断△>0,然后利用判别式的意义对各选项进行判断.本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2−4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.7.【答案】B【解析】解:根据题意可知菱形ABC′D′的高等于AB的一半,∴菱形ABC′D′的面积为12AB2,正方形ABCD的面积为AB2.∴菱形ABC′D′的面积与正方形ABCD的面积之比是12.故选:B.根据30°角所对的直角边等于斜边的一半可知菱形ABC′D′的高等于AB的一半,再根据正方形的面积公式和平行四边形的面积公式即可得解.本题主要考查了正方形与菱形的面积,熟知30°角所对的直角边等于斜边的一半是解答本题的关键.8.【答案】C【解析】解:∵直线y=2x+2和直线y=23x+2分别交x轴于点A和点B.∴A(−1,0),B(−3,0)A、y=x+2与x轴的交点为(−2,0);故直线y=x+2与x轴的交点在线段AB上;B、y=√2x+2与x轴的交点为(−√2,0);故直线y=√2x+2与x轴的交点在线段AB 上;C、y=4x+2与x轴的交点为(−12,0);故直线y=4x+2与x轴的交点不在线段AB上;D、y=2√33x+2与x轴的交点为(−√3,0);故直线y=2√33x+2与x轴的交点在线段AB上;故选:C.求得A、B的坐标,然后分别求得各个直线与x的交点,进行比较即可得出结论.本题考查了一次函数图象上点的坐标特征,图象上的点的坐标适合解析式.9.【答案】D【解析】【分析】本题考查切线的判定和性质,等腰直角三角形的判定和性质,全等三角形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.如图,连接OD.想办法证明选项A,B,C正确即可解决问题.【解答】解:如图,连接OD.∵OT是半径,OT⊥AB,∴DT是⊙O的切线,∵DC是⊙O的切线,∴DC=DT,故选项A正确,∵OA=OB,∠AOB=90°,∴∠A=∠B=45°,∵DC是切线,∴CD⊥OC,∴∠ACD=90°,∴∠A=∠ADC=45°,∴AC=CD=DT,∴AC=√2CD=√2DT,故选项B正确,∵OD=OD,OC=OT,DC=DT,∴△DOC≌△DOT(SSS),∴∠DOC=∠DOT,∵OA=OB,OT⊥AB,∠AOB=90°,∴∠AOT=∠BOT=45°,∴∠DOT=∠DOC=22.5°,∴∠BOD=∠ODB=67.5°,∴BO=BD,故选项C正确,故选:D.10.【答案】D【解析】解:中国七巧板和日本七巧板能拼成的个数都是2,如图所示:故选:D.根据要求拼平行四边形矩形即可.本题考查七巧板,正方形的性质,平行四边形的性质,矩形的性质等知识,解题的关键是理解题意,灵活运用所学知识解决问题.11.【答案】−3【解析】解:−2−1=−3故答案为:−3本题需先根据有理数的减法法则,判断出结果的符号,再把绝对值合并即可.本题主要考查了有理数的减法,在解题时要注意结果的符号是本题的关键.12.【答案】1x+1【解析】解:x+1x2+2x+1=x+1 (x+1)2=1x+1.故答案为:1x+1.直接将分母分解因式,进而化简得出答案.此题主要考查了约分,正确分解因式是解题关键.13.【答案】3【解析】解:过点O作OH⊥CD于H,连接OC,如图,则CH=DH=12CD=4,在Rt△OCH中,OH=√52−42=3,所以CD与AB之间的距离是3.故答案为3.过点O作OH⊥CD于H,连接OC,如图,根据垂径定理得到CH=DH=4,再利用勾股定理计算出OH=3,从而得到CD与AB之间的距离.本题考查了垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.14.【答案】49【解析】解:根据图表给可知,共有9种等可能的结果,两次摸出的球都是红球的有4种,则两次摸出的球都是红球的概率为49;故答案为:49.根据图表可知共有9种等可能的结果,再找出两次摸出的球都是红球的情况数,然后根据概率公式即可得出答案.此题考查的是列表法求概率.用到的知识点为:概率=所求情况数与总情况数之比.15.【答案】5√2【解析】解:∵在Rt△ABC中,AC=1,BC=2,∴AB=√5,AC:BC=1:2,∴与Rt△ABC相似的格点三角形的两直角边的比值为1:2,若该三角形最短边长为4,则另一直角边长为8,但在6×6网格图形中,最长线段为6√2,但此时画出的直角三角形为等腰直角三角形,从而画不出端点都在格点且长为8的线段,故最短直角边长应小于4,在图中尝试,可画出DE=√10,EF=2√10,DF=5√2的三角形,∵√101=2√102=√2√5=√10,∴△ABC∽△DEF,∴∠DEF=∠C=90°,∴此时△DEF的面积为:√10×2√10÷2=10,△DEF为面积最大的三角形,其斜边长为:5√2.故答案为:5√2.根据Rt△ABC的各边长得出与其相似的三角形的两直角边之比为1:2,在6×6的网格图形中可得出与Rt△ABC相似的三角形的短直角边长应小于4,在图中尝试可画出符合题意的最大三角形,从而其斜边长可得.本题考查了相似三角形的判定,明确相似三角形的判定定理并数形结合是解题的关键.16.【答案】83【解析】【分析】本题考查了反比例函数比例系数k的几何意义:在反比例函数y=kx图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.在反比例函数的图象上任意一点向坐标轴作垂线,这一点和垂足以及坐标原点所构成的三角形的面积是12|k|,且保持不变.也考查了相似三角形的判定与性质.作辅助线,构建直角三角形,利用反比例函数k的几何意义得到S△OCE=S△OBD=12k,根据OA的中点C,利用△OCE∽△OAB得到面积比为1:4,代入可得结论.【解答】解:连接OD,过C作CE//AB,交x轴于E,∵∠ABO=90°,反比例函数y=kx(x>0)的图象经过OA的中点C,∴S△COE=S△BOD=12k,S△ACD=S△OCD=2,∵CE//AB,∴△OCE∽△OAB,∴S△OCES△OAB =14,∴4S△OCE=S△OAB,∴4×12k=2+2+12k,∴k=83,故答案为:83.17.【答案】解:原式=2√2+√2−1=3√2−1.【解析】首先利用二次根式的性质化简二次根式,利用绝对值的性质计算绝对值,然后再算加减即可.此题主要考查了二次根式的加减,关键是掌握计算顺序,掌握二次根式相加减,先把各个二次根式化成最简二次根式,再把被开方数相同的二次根式进行合并,合并方法为系数相加减,根式不变.18.【答案】解:{3x−2<x ①13x<−2 ②,解①得x<1;解②得x<−6.故不等式组的解集为x<−6.【解析】先求出不等式组中每一个不等式的解集,再求出它们的公共部分即可求解.考查了解一元一次不等式组,解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.19.【答案】解:(1)过点B作BE⊥AC于E,∵OA=OC,∠AOC=120°,∴∠OAC=∠OCA=180°−120°2=30°,∴ℎ=BE=AB⋅sin30°=110×12=55;(2)过点B作BE⊥AC于E,∵OA=OC,∠AOC=74°,∴∠OAC=∠OCA=180°−74°2=53°,∴AB=BE÷sin53°=120÷0.8=150(cm),即该熨烫台支撑杆AB的长度约为150cm.【解析】(1)过点B 作BE ⊥AC 于E ,根据等腰三角形的性质得到∠OAC =∠OCA =180°−120°2=30°,根据三角函数的定义即可得到结论; (2)过点B 作BE ⊥AC 于E ,根据等腰三角形的性质和三角函数的定义即可得到结论. 本题考查了解直角三角形的应用,等腰三角形的性质,正确的识别图形是解题的关键. 20.【答案】解:(1)抽查的学生数:20÷40%=50(人),抽查人数中“基本满意”人数:50−20−15−1=14(人),补全的条形统计图如图所示:(2)360°×1550=108°,答:扇形统计图中表示“满意”的扇形的圆心角度数为108°;(3)1000×(2050+1550)=700(人),答:该校共有1000名学生中“非常满意”或“满意”的约有700人.【解析】(1)从两个统计图中可知,在抽查人数中,“非常满意”的人数为20人,占调查人数的40%,可求出调查人数,进而求出“基本满意”的人数,即可补全条形统计图;(2)样本中“满意”占调查人数的1550,即30%,因此相应的圆心角的度数为360°的30%;(3)样本中“非常满意”或“满意”的占调查人数的(2050+1550),进而估计总体中“非常满意”或“满意”的人数.考查扇形统计图、条形统计图的意义和制作方法,从统计图中获取数量和数量之间的关系,是解决问题的前提,样本估计总体是统计中常用的方法.21.【答案】解:(1)∵BC 平分∠ABD ,∴∠DBC =∠ABC ,∵∠CAD =∠DBC ,∴∠CAD =∠ABC ;(2)∵∠CAD =∠ABC ,∴CD⏜=AC ⏜, ∵AD 是⊙O 的直径,AD =6,∴CD ⏜的长=12×12×π×6=32π.【解析】(1)由角平分线的性质和圆周角定理可得∠DBC =∠ABC =∠CAD ;(2)由圆周角定理可得CD⏜=AC ⏜,由弧长公式可求解. 本题考查了三角形的外接圆和外心,圆周角定理,弧长公式等知识,灵活运用这些性质解决问题是本题的关键.22.【答案】解:(1)设甲车间有x 名工人参与生产,乙车间各有y 名工人参与生产,由题意得:{x +y =5020(25x +30y)=27000, 解得{x =30y =20.∴甲车间有30名工人参与生产,乙车间各有20名工人参与生产.(2)①设方案二中乙车间需临时招聘m名工人,由题意得:2700030×25×(1+20%)+20×30=2700030×25+(20+m)×30,解得m=5.经检验,m=5是原方程的解,且符合题意.∴乙车间需临时招聘5名工人.②企业完成生产任务所需的时间为:2700030×25×(1+20%)+20×30=18(天).∴选择方案一需增加的费用为900×18+1500=17700(元).选择方案二需增加的费用为5×18×200=18000(元).∵17700<18000,∴选择方案一能更节省开支.【解析】(1)设甲车间有x名工人参与生产,乙车间各有y名工人参与生产,由题意得关于x和y的方程组,求解即可.(2)①设方案二中乙车间需临时招聘m名工人,由题意,以企业完成生产任务的时间为等量关系,列出关于m的分式方程,求解并检验即可;②用生产任务数量27000除以方案一中甲和乙完成的生产任务之和可得企业完成生产任务的时间,然后分别按方案一和方案二计算费用并比较大小即可.本题考查了二元一次方程组和分式方程在实际问题中的应用,理清题中的数量关系是解题的关键.23.【答案】(1)证明:∵AC=BC,∠C=60°,∴△ABC是等边三角形,∴AC=AB,∠A=60°,由题意,得DB=DP,DA=DB,∴DA=DP,∴△ADP使得等边三角形,∴AP=AD=12AB=12AC.(2)解:∵AC=BC=6√2,∠C=90°,∴AB=√AC2+BC2=√(6√2)2+(6√2)2=12,∵DH⊥AC,∴DH//BC,∴△ADH∽△ABC,∴DHBC =ADAB,∵AD=7,∴6√2=712,∴DH=7√22,将∠B沿过点D的直线折叠,情形一:当点B落在线段CH上的点P1处时,如图2−1中,∵AB =12,∴DP 1=DB =AB −AD =5,∴HP 1=√DP 12−DH 2=√52−(7√22)2=√22, ∴A 1=AH +HP 1=4√2,情形二:当点B 落在线段AH 上的点P 2处时,如图2−2中,同法可证HP 2=√22, ∴AP 2=AH −HP 2=3√2,综上所述,满足条件的AP 的值为4√2或3√2.(3)如图3中,过点C 作CH ⊥AB 于H ,过点D 作DP ⊥AC 于P .∵CA =CB ,CH ⊥AB ,∴AH =HB =6,∴CH =√AC 2−AH 2=√102−62=8,当DB =DP 时,设BD =PD =x ,则AD =12−x ,∵tanA =CH AC =PD AD ,∴810=x 12−x ,∴x =163,∴AD =AB −BD =203,观察图形可知当6≤a <203时,存在两次不同的折叠,使点B 落在AC 边上两个不同的位置.【解析】(1)证明△ADP 是等边三角形即可解决问题.(2)分两种情形:情形一:当点B 落在线段CH 上的点P 1处时,如图2−1中.情形二:当点B 落在线段AH 上的点P 2处时,如图2−2中,分别求解即可.(3)如图3中,过点C 作CH ⊥AB 于H ,过点D 作DP ⊥AC 于P.求出DP =DB 时AD 的值,结合图形即可判断.本题考查几何变换综合题,考查了等边三角形的判定和性质,解直角三角形,相似三角形的判定和性质等知识,解题的关键是学会用分类讨论的思想思考问题,学会利用参数构建方程解决问题,属于中考压轴题.24.【答案】解:(1)①∵AC//x 轴,点A(−2,1),∴C(0,1),将点A(−2,1),C(0,1)代入抛物线解析式中,得{−4−2b +c =1c =1, ∴{b =−2c =1, ∴抛物线的解析式为y =−x 2−2x +1;②如图1,过点D 作DE ⊥x 轴于E ,交AB 于点F ,∵AC//x 轴,∴EF =OC =c ,∵点D 是抛物线的顶点坐标,∴D(b 2,c +b 24),∴DF =DE −EF =c +b 24−c =b 24,∵四边形AOBD 是平行四边形,∴AD =DO ,AD//OB ,∴∠DAF =∠OBC ,∵∠AFD =∠BCO =90°,∴△AFD≌△BCO(AAS),∴DF =OC ,∴b 24=c ,即b 2=4c ;(2)如图2,∵b =−2.∴抛物线的解析式为y =−x 2−2x +c ,∴顶点坐标D(−1,c +1),假设存在这样的点A 使四边形AOBD 是平行四边形,设点A(m,−m 2−2m +c)(m <0),过点D 作DE ⊥x 轴于点E ,交AB 于F ,∴∠AFD =∠EFC =∠BCO ,∵四边形AOBD 是平行四边形,∴AD =BO ,AD//OB ,∴∠DAF =∠OBC ,∴△AFD≌△BCO(AAS),∴AF =BC ,DF =OC ,过点A 作AM ⊥y 轴于M ,交DE 于N ,∴DE//CO ,∴△ANF∽△AMC ,∴AN AM =FN CM =AF AC =BC AC =35,∵AM =−m ,AN =AM −NM =−m −1,∴−m−1−m =35, ∴m =−52,∴点A 的纵坐标为−(−52)2−2×(−52)+c =c −54<c ,∵AM//x 轴,∴点M 的坐标为(0,c −54),N(−1,c −54),∴CM =c −(c −54)=54, ∵点D 的坐标为(−1,c +1),∴DN =(c +1)−(c −54)=94, ∵DF =OC =c ,∴FN =DN −DF =94−c ,∵FN CM =35,∴94−c 54=35,∴c =32, ∴c −54=14, ∴点A 纵坐标为14,∴A(−52,14), ∴存在这样的点A ,使四边形AOBD 是平行四边形.【解析】(1)①先确定出点C 的坐标,再用待定系数法即可得出结论;②先确定出抛物线的顶点坐标,进而得出DF =b 24,再判断出△AFD≌△BCO ,得出DF =OC ,即可得出结论;(2)先判断出抛物线的顶点坐标D(−1,c +1),设点A(m,−m 2−2m +c)(m <0), 判断出△AFD≌△BCO(AAS),得出AF =BC ,DF =OC ,再判断出△ANF∽△AMC ,得出AN AM =FN CM =AF AC =BC AC =35,进而求出m 的值,得出点A 的纵坐标为c −54<c ,进而判断出点M 的坐标为(0,c −54),N(−1,c −54),进而得出CM =54,DN =94,FN =94−c ,进而求出c =32,即可得出结论.此题是二次函数综合题,主要考查了待定系数法,平行线的性质,全等三角形的判定和性质,相似三角形的判定和性质,构造出△ANF∽△AMC 是解本题的关键.。

2020年浙江省湖州市中考数学试卷(解析版)

2020年浙江省湖州市中考数学试卷(解析版)

2020年浙江省湖州市中考数学试卷参考答案与试题解析一、选择题(本题有10小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的.请选出各题中一个最符合题意的选项,并在答题卷上将相应题次中对应字母的方框涂黑,不选、多选、错选均不给分.1.(3分)数4的算术平方根是()A.2B.﹣2C.±2D.【分析】算术平方根的定义:一个非负数的正的平方根,即为这个数的算术平方根,由此即可求出结果.【解答】解:∵2的平方为4,∵4的算术平方根为2.故选:A.2.(3分)近几年来,我国经济规模不断扩大,综合国力显著增强.2019年我国国内生产总值约991000亿元,则数991000用科学记数法可表示为()A.991×103B.99.1×104C.9.91×105D.9.91×106【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.【解答】解:将991000用科学记数法表示为:9.91×105.故选:C.3.(3分)已知某几何体的三视图如图所示,则该几何体可能是()A.B.C.D.【分析】根据两个视图是长方形得出该几何体是锥体,再根据俯视图是圆,得出几何体是圆锥.【解答】解:∵主视图和左视图是三角形,∵几何体是锥体,∵俯视图的大致轮廓是圆,∵该几何体是圆锥.故选:A.4.(3分)如图,已知四边形ABCD内接于∵O,∵ABC=70°,则∵ADC的度数是()A.70°B.110°C.130°D.140°【分析】根据圆内接四边形的性质即可得到结论.【解答】解:∵四边形ABCD内接于∵O,∵ABC=70°,∵∵ADC=180°﹣∵ABC=180°﹣70°=110°,故选:B.5.(3分)数据﹣1,0,3,4,4的平均数是()A.4B.3C.2.5D.2【分析】根据题目中的数据,可以求得这组数据的平均数,本题得以解决.【解答】解:==2,故选:D.6.(3分)已知关于x的一元二次方程x2+bx﹣1=0,则下列关于该方程根的判断,正确的是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.实数根的个数与实数b的取值有关【分析】先计算出判别式的值,再根据非负数的性质判断∵>0,然后利用判别式的意义对各选项进行判断.【解答】解:∵∵=b2﹣4×(﹣1)=b2+4>0,∵方程有两个不相等的实数根.故选:A.7.(3分)四边形具有不稳定性,对于四条边长确定的四边形.当内角度数发生变化时,其形状也会随之改变.如图,改变正方形ABCD的内角,正方形ABCD变为菱形ABC′D′.若∵D′AB=30°,则菱形ABC′D′的面积与正方形ABCD的面积之比是()A.1B.C.D.【分析】根据30°角所对的直角边等于斜边的一半可知菱形ABC′D′的高等于AB的一半,再根据正方形的面积公式和平行四边形的面积公式即可得解.【解答】解:根据题意可知菱形ABC′D′的高等于AB的一半,∵菱形ABC′D′的面积为,正方形ABCD的面积为AB2.∵菱形ABC′D′的面积与正方形ABCD的面积之比是.故选:B.8.(3分)已知在平面直角坐标系xOy中,直线y=2x+2和直线y=x+2分别交x轴于点A 和点B.则下列直线中,与x轴的交点不在线段AB上的直线是()A.y=x+2B.y=x+2C.y=4x+2D.y=x+2【分析】求得A、B的坐标,然后分别求得各个直线与x的交点,进行比较即可得出结论.【解答】解:∵直线y=2x+2和直线y=x+2分别交x轴于点A和点B.∵A(﹣1,0),B(﹣3,0)A、y=x+2与x轴的交点为(﹣2,0);故直线y=x+2与x轴的交点在线段AB上;B、y=x+2与x轴的交点为(﹣,0);故直线y=x+2与x轴的交点在线段AB上;C、y=4x+2与x轴的交点为(﹣,0);故直线y=4x+2与x轴的交点不在线段AB上;D、y=x+2与x轴的交点为(﹣,0);故直线y=x+2与x轴的交点在线段AB上;故选:C.9.(3分)如图,已知OT是Rt∵ABO斜边AB上的高线,AO=BO.以O为圆心,OT为半径的圆交OA于点C,过点C作∵O的切线CD,交AB于点D.则下列结论中错误的是()A.DC=DT B.AD=DT C.BD=BO D.2OC=5AC 【分析】如图,连接OD.想办法证明选项A,B,C正确即可解决问题.【解答】解:如图,连接OD.∵OT是半径,OT∵AB,∵DT是∵O的切线,∵DC是∵O的切线,∵DC=DT,故选项A正确,∵OA=OB,∵AOB=90°,∵∵A=∵B=45°,∵DC是切线,∵CD∵OC,∵∵ACD=90°,∵∵A=∵ADC=45°,∵AC=CD=DT,∵AC=CD=DT,故选项B正确,∵OD=OD,OC=OT,DC=DT,∵∵DOC∵∵DOT(SSS),∵∵DOC=∵DOT,∵OA=OB,OT∵AB,∵AOB=90°,∵∵AOT=∵BOT=45°,∵∵DOT=∵DOC=22.5°,∵∵BOD=∵ODB=67.5°,∵BO=BD,故选项C正确,故选:D.10.(3分)七巧板是我国祖先的一项卓越创造,流行于世界各地.由边长为2的正方形可以制作一副中国七巧板或一副日本七巧板,如图1所示.分别用这两副七巧板试拼如图2中的平行四边形或矩形,则这两个图形中,中国七巧板和日本七巧板能拼成的个数分别是()A.1和1B.1和2C.2和1D.2和2【分析】根据要求拼平行四边形矩形即可.【解答】解:中国七巧板和日本七巧板能拼成的个数都是2,如图所示:故选:D.二、填空题(本题有6小题,每小题4分,共24分)11.(4分)计算:﹣2﹣1=﹣3.【分析】本题需先根据有理数的减法法则,判断出结果的符号,再把绝对值合并即可.【解答】解:﹣2﹣1=﹣3故答案为:﹣312.(4分)化简:=.【分析】直接将分母分解因式,进而化简得出答案.【解答】解:==.故答案为:. 13.(4分)如图,已知AB 是半圆O 的直径,弦CD ∵AB ,CD =8,AB =10,则CD 与AB 之间的距离是 3 .【分析】过点O 作OH ∵CD 于H ,连接OC ,如图,根据垂径定理得到CH =DH =4,再利用勾股定理计算出OH =3,从而得到CD 与AB 之间的距离.【解答】解:过点O 作OH ∵CD 于H ,连接OC ,如图,则CH =DH =CD =4, 在Rt∵OCH 中,OH ==3,所以CD 与AB 之间的距离是3.故答案为3.14.(4分)在一个布袋里放有1个白球和2个红球,它们除颜色外其余都相同,从布袋里摸出1个球,记下颜色后放回,搅匀,再摸出1个球.将2个红球分别记为红∵,红∵,两次摸球的所有可能的结果如表所示,第二次第一次白 红∵ 红∵ 白白,白 白,红∵ 白,红∵ 红∵红∵,白 红∵,红∵ 红∵,红∵ 红∵ 红∵,白 红∵,红∵红∵,红∵则两次摸出的球都是红球的概率是 . 【分析】根据图表可知共有9种等可能的结果,再找出两次摸出的球都是红球的情况数,然后根据概率公式即可得出答案.【解答】解:根据图表给可知,共有9种等可能的结果,两次摸出的球都是红球的有4种,则两次摸出的球都是红球的概率为;故答案为:.15.(4分)在每个小正方形的边长为1的网格图形中,每个小正方形的顶点称为格点,顶点都是格点的三角形称为格点三角形.如图,已知Rt∵ABC是6×6网格图形中的格点三角形,则该图中所有与Rt∵ABC相似的格点三角形中.面积最大的三角形的斜边长是5.【分析】根据Rt∵ABC的各边长得出与其相似的三角形的两直角边之比为1:2,在6×6的网格图形中可得出与Rt∵ABC相似的三角形的短直角边长应小于4,在图中尝试可画出符合题意的最大三角形,从而其斜边长可得.【解答】解:∵在Rt∵ABC中,AC=1,BC=2,∵AB=,AC:BC=1:2,∵与Rt∵ABC相似的格点三角形的两直角边的比值为1:2,若该三角形最短边长为4,则另一直角边长为8,但在6×6网格图形中,最长线段为6,但此时画出的直角三角形为等腰直角三角形,从而画不出端点都在格点且长为8的线段,故最短直角边长应小于4,在图中尝试,可画出DE=,EF=2,DF=5的三角形,∵===,∵∵ABC∵∵DEF,∵∵DEF=∵C=90°,∵此时∵DEF的面积为:×2÷2=10,∵DEF为面积最大的三角形,其斜边长为:5.故答案为:5.16.(4分)如图,已知在平面直角坐标系xOy中,Rt∵OAB的直角顶点B在x轴的正半轴上,点A在第一象限,反比例函数y=(x>0)的图象经过OA的中点C.交AB于点D,连结CD.若∵ACD的面积是2,则k的值是.【分析】作辅助线,构建直角三角形,利用反比例函数k的几何意义得到S∵OCE=S∵OBD=k,根据OA的中点C,利用∵OCE∵∵OAB得到面积比为1:4,代入可得结论.【解答】解:连接OD,过C作CE∵AB,交x轴于E,∵∵ABO=90°,反比例函数y=(x>0)的图象经过OA的中点C,∵S∵COE=S∵BOD=,S∵ACD=S∵OCD=2,∵CE∵AB,∵∵OCE∵∵OAB,∵,∵4S∵OCE=S∵OAB,∵4×k=2+2+k,∵k=,故答案为:.三、解答题(本题有8小题,共66分)17.(6分)计算:+|﹣1|.【分析】首先利用二次根式的性质化简二次根式,利用绝对值的性质计算绝对值,然后再算加减即可.【解答】解:原式=2+﹣1=3﹣1.18.(6分)解不等式组.【分析】先求出不等式组中每一个不等式的解集,再求出它们的公共部分即可求解.【解答】解:,解∵得x<1;解∵得x<﹣6.故不等式组的解集为x<﹣6.19.(6分)有一种升降熨烫台如图1所示,其原理是通过改变两根支撑杆夹角的度数来调整熨烫台的高度.图2是这种升降熨烫台的平面示意图.AB和CD是两根相同长度的活动支撑杆,点O是它们的连接点,OA=OC,h(cm)表示熨烫台的高度.(1)如图2﹣1.若AB=CD=110cm,∵AOC=120°,求h的值;(2)爱动脑筋的小明发现,当家里这种升降熨烫台的高度为120cm时,两根支撑杆的夹角∵AOC是74°(如图2﹣2).求该熨烫台支撑杆AB的长度(结果精确到1cm).(参考数据:sin37°≈0.6,cos37°≈0.8,sin53°≈0.8,cos53°≈0.6.)【分析】(1)过点B作BE∵AC于E,根据等腰三角形的性质得到∵OAC=∵OCA==30°,根据三角函数的定义即可得到结论;(2)过点B作BE∵AC于E,根据等腰三角形的性质和三角函数的定义即可得到结论.【解答】解:(1)过点B作BE∵AC于E,∵OA=OC,∵AOC=120°,∵∵OAC=∵OCA==30°,∵h=BE=AB•sin30°=110×=55;(2)过点B作BE∵AC于E,∵OA=OC,∵AOC=74°,∵∵OAC=∵OCA==53°,∵AB=BE÷sin53°=120÷0.8=150(cm),即该熨烫台支撑杆AB的长度约为150cm.20.(8分)为了解学生对网上在线学习效果的满意度,某校设置了:非常满意、满意、基本满意、不满意四个选项,随机抽查了部分学生,要求每名学生都只选其中的一项,并将抽查结果绘制成如图统计图(不完整).请根据图中信息解答下列问题:(1)求被抽查的学生人数,并补全条形统计图;(温馨提示:请画在答题卷相对应的图上)(2)求扇形统计图中表示“满意”的扇形的圆心角度数;(3)若该校共有1000名学生参与网上在线学习,根据抽查结果,试估计该校对学习效果的满意度是“非常满意”或“满意”的学生共有多少人?【分析】(1)从两个统计图中可知,在抽查人数中,“非常满意”的人数为20人,占调查人数的40%,可求出调查人数,进而求出“基本满意”的人数,即可补全条形统计图;(2)样本中“满意”占调查人数的,即30%,因此相应的圆心角的度数为360°的30%;(3)样本中“非常满意”或“满意”的占调查人数的(+),进而估计总体中“非常满意”或“满意”的人数.【解答】解:(1)抽查的学生数:20÷40%=50(人),抽查人数中“基本满意”人数:50﹣20﹣15﹣1=14(人),补全的条形统计图如图所示:(2)360°×=108°,答:扇形统计图中表示“满意”的扇形的圆心角度数为108°;(3)1000×(+)=700(人),答:该校共有1000名学生中“非常满意”或“满意”的约有700人.21.(8分)如图,已知∵ABC是∵O的内接三角形,AD是∵O的直径,连结BD,BC平分∵ABD.(1)求证:∵CAD=∵ABC;(2)若AD=6,求的长.【分析】(1)由角平分线的性质和圆周角定理可得∵DBC=∵ABC=∵CAD;(2)由圆周角定理可得,由弧长公式可求解.【解答】解:(1)∵BC平分∵ABD,∵∵DBC=∵ABC,∵∵CAD=∵DBC,∵∵CAD=∵ABC;(2)∵∵CAD=∵ABC,∵=,∵AD是∵O的直径,AD=6,∵的长=××π×6=π.22.(10分)某企业承接了27000件产品的生产任务,计划安排甲、乙两个车间的共50名工人,合作生产20天完成.已知甲、乙两个车间利用现有设备,工人的工作效率为:甲车间每人每天生产25件,乙车间每人每天生产30件.(1)求甲、乙两个车间各有多少名工人参与生产?(2)为了提前完成生产任务,该企业设计了两种方案:方案一甲车间租用先进生产设备,工人的工作效率可提高20%,乙车间维持不变.方案二乙车间再临时招聘若干名工人(工作效率与原工人相同),甲车间维持不变.设计的这两种方案,企业完成生产任务的时间相同.∵求乙车间需临时招聘的工人数;∵若甲车间租用设备的租金每天900元,租用期间另需一次性支付运输等费用1500元;乙车间需支付临时招聘的工人每人每天200元.问:从新增加的费用考虑,应选择哪种方案能更节省开支?请说明理由.【分析】(1)设甲车间有x名工人参与生产,乙车间各有y名工人参与生产,由题意得关于x和y的方程组,求解即可.(2)∵设方案二中乙车间需临时招聘m名工人,由题意,以企业完成生产任务的时间为等量关系,列出关于m的分式方程,求解并检验即可;∵用生产任务数量27000除以方案一中甲和乙完成的生产任务之和可得企业完成生产任务的时间,然后分别按方案一和方案二计算费用并比较大小即可.【解答】解:(1)设甲车间有x名工人参与生产,乙车间各有y名工人参与生产,由题意得:,解得.∵甲车间有30名工人参与生产,乙车间各有20名工人参与生产.(2)∵设方案二中乙车间需临时招聘m名工人,由题意得:=,解得m=5.经检验,m=5是原方程的解,且符合题意.∵乙车间需临时招聘5名工人.∵企业完成生产任务所需的时间为:=18(天).∵选择方案一需增加的费用为900×18+1500=17700(元).选择方案二需增加的费用为5×18×200=18000(元).∵17700<18000,∵选择方案一能更节省开支.23.(10分)已知在∵ABC中,AC=BC=m,D是AB边上的一点,将∵B沿着过点D的直线折叠,使点B落在AC边的点P处(不与点A,C重合),折痕交BC边于点E.(1)特例感知如图1,若∵C=60°,D是AB的中点,求证:AP=AC;(2)变式求异如图2,若∵C=90°,m=6,AD=7,过点D作DH∵AC于点H,求DH 和AP的长;(3)化归探究如图3,若m=10,AB=12,且当AD=a时,存在两次不同的折叠,使点B 落在AC边上两个不同的位置,请直接写出a的取值范围.【分析】(1)证明∵ADP是等边三角形即可解决问题.(2)分两种情形:情形一:当点B落在线段CH上的点P1处时,如图2﹣1中.情形二:当点B落在线段AH上的点P2处时,如图2﹣2中,分别求解即可.(3)如图3中,过点C作CH∵AB于H,过点D作DP∵AC于P.求出DP=DB时AD的值,结合图形即可判断.【解答】(1)证明:∵AC=BC,∵C=60°,∵∵ABC是等边三角形,∵AC=AB,∵A=60°,由题意,得DB=DP,DA=DB,∵DA=DP,∵∵ADP使得等边三角形,∵AP=AD=AB=AC.(2)解:∵AC=BC=6,∵C=90°,∵AB===12,∵DH∵AC,∵DH∵BC,∵∵ADH∵∵ABC,∵=,∵AD=7,∵=,∵DH=,将∵B沿过点D的直线折叠,情形一:当点B落在线段CH上的点P1处时,如图2﹣1中,∵AB=12,∵DP1=DB=AB﹣AD=5,∵HP1===,∵A1=AH+HP1=4,情形二:当点B落在线段AH上的点P2处时,如图2﹣2中,同法可证HP2=,∵AP2=AH﹣HP2=3,综上所述,满足条件的AP的值为4或3.(3)如图3中,过点C作CH∵AB于H,过点D作DP∵AC于P.∵CA=CB,CH∵AB,∵AH=HB=6,∵CH===8,当DB=DP时,设BD=PD=x,则AD=12﹣x,∵tan A==,∵=,∵x=,∵AD=AB﹣BD=,观察图形可知当6<a<时,存在两次不同的折叠,使点B落在AC边上两个不同的位置.24.(12分)如图,已知在平面直角坐标系xOy中,抛物线y=﹣x2+bx+c(c>0)的顶点为D,与y轴的交点为C.过点C的直线CA与抛物线交于另一点A(点A在对称轴左侧),点B在AC的延长线上,连结OA,OB,DA和DB.(1)如图1,当AC∵x轴时,∵已知点A的坐标是(﹣2,1),求抛物线的解析式;∵若四边形AOBD是平行四边形,求证:b2=4c.(2)如图2,若b=﹣2,=,是否存在这样的点A,使四边形AOBD是平行四边形?若存在,求出点A的坐标;若不存在,请说明理由.【分析】(1)∵先确定出点C的坐标,再用待定系数法即可得出结论;∵先确定出抛物线的顶点坐标,进而得出DF=,再判断出∵AFD∵∵BCO,得出DF=OC,即可得出结论;(2)先判断出抛物线的顶点坐标D(﹣1,c+1),设点A(m,﹣m2﹣2m+c)(m<0),判断出∵AFD∵∵BCO(AAS),得出AF=BC,DF=OC,再判断出∵ANF∵∵AMC,得出=,进而求出m的值,得出点A的纵坐标为c﹣<c,进而判断出点M的坐标为(0,c﹣),N(﹣1,c﹣),进而得出CM=,DN=,FN=﹣c,进而求出c=,即可得出结论.【解答】解:(1)∵∵AC∵x轴,点A(﹣2,1),∵C(0,1),将点A(﹣2,1),C(0,1)代入抛物线解析式中,得,∵,∵抛物线的解析式为y=﹣x2﹣2x+1;∵如图1,过点D作DE∵x轴于E,交AB于点F,∵AC∵x轴,∵EF=OC=c,∵点D是抛物线的顶点坐标,∵D(,c+),∵DF=DE﹣EF=c+﹣c=,∵四边形AOBD是平行四边形,∵AD=DO,AD∵OB,∵∵DAF=∵OBC,∵∵AFD=∵BCO=90°,∵∵AFD∵∵BCO(AAS),∵DF=OC,∵=c,即b2=4c;(2)如图2,∵b=﹣2.∵抛物线的解析式为y=﹣x2﹣2x+c,∵顶点坐标D(﹣1,c+1),假设存在这样的点A使四边形AOBD是平行四边形,设点A(m,﹣m2﹣2m+c)(m<0),过点D作DE∵x轴于点E,交AB于F,∵∵AFD=∵EFC=∵BCO,∵四边形AOBD是平行四边形,∵AD=BO,AD∵OB,∵∵DAF=∵OBC,∵∵AFD∵∵BCO(AAS),∵AF=BC,DF=OC,过点A作AM∵y轴于M,交DE于N,∵DE∵CO,∵∵ANF∵∵AMC,∵=,∵AM=﹣m,AN=AM﹣NM=﹣m﹣1,∵,∵,∵点A的纵坐标为﹣(﹣)2﹣2×(﹣)+c=c﹣<c,∵AM∵x轴,∵点M的坐标为(0,c﹣),N(﹣1,c﹣),∵CM=c﹣(c﹣)=,∵点D的坐标为(﹣1,c+1),∵DN=(c+1)﹣(c﹣)=,∵DF=OC=c,∵FN=DN﹣DF=﹣c,∵=,∵,∵c=,∵c﹣=,∵点A纵坐标为,∵A(﹣,),∵存在这样的点A,使四边形AOBD是平行四边形.。

2020年浙江省湖州市数学中考试题及答案

2020年浙江省湖州市数学中考试题及答案

2020年浙江省湖州市数学中考试题一.选择题(共10小题)1.数4的算术平方根是()A.2B.﹣2C.±2D.2.近几年来,我国经济规模不断扩大,综合国力显著增强.2019年我国国内生产总值约991000亿元,则数991000用科学记数法可表示为()A.991×103B.99.1×104C.9.91×105D.9.91×1063.已知某几何体的三视图如图所示,则该几何体可能是()A.B.C.D.4.如图,已知四边形ABCD内接于⊙O,∠ABC=70°,则∠ADC的度数是()A.70°B.110°C.130°D.140°5.数据﹣1,0,3,4,4的平均数是()A.4B.3C.2.5D.26.已知关于x的一元二次方程x2+bx﹣1=0,则下列关于该方程根的判断,正确的是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.实数根的个数与实数b的取值有关7.四边形具有不稳定性,对于四条边长确定的四边形.当内角度数发生变化时,其形状也会随之改变.如图,改变正方形ABCD的内角,正方形ABCD变为菱形ABC′D′.若∠D′AB=30°,则菱形ABC′D′的面积与正方形ABCD的面积之比是()A.1B.C.D.8.已知在平面直角坐标系xOy中,直线y=2x+2和直线y=x+2分别交x轴于点A和点B.则下列直线中,与x轴的交点不在线段AB上的直线是()A.y=x+2B.y=x+2C.y=4x+2D.y=x+2 9.如图,已知OT是Rt△ABO斜边AB上的高线,AO=BO.以O为圆心,OT为半径的圆交OA于点C,过点C作⊙O的切线CD,交AB于点D.则下列结论中错误的是()A.DC=DT B.AD=DT C.BD=BO D.2OC=5AC 10.七巧板是我国祖先的一项卓越创造,流行于世界各地.由边长为2的正方形可以制作一副中国七巧板或一副日本七巧板,如图1所示.分别用这两副七巧板试拼如图2中的平行四边形或矩形,则这两个图形中,中国七巧板和日本七巧板能拼成的个数分别是()A.1和1B.1和2C.2和1D.2和2二.填空题(共6小题)11.计算:﹣2﹣1=.12.化简:=.13.如图,已知AB是半圆O的直径,弦CD∥AB,CD=8.AB=10,则CD与AB之间的距离是.14.在一个布袋里放有1个白球和2个红球,它们除颜色外其余都相同,从布袋里摸出1个球,记下颜色后放回,搅匀,再摸出1个球.将2个红球分别记为红Ⅰ,红Ⅱ.两次摸球的所有可能的结果如表所示,第二次第一次白红Ⅰ红Ⅱ白白,白白,红Ⅰ白,红Ⅱ红Ⅰ红Ⅰ,白红Ⅰ,红Ⅰ红Ⅰ,红Ⅱ红Ⅱ红Ⅱ,白红Ⅱ,红Ⅰ红Ⅱ,红Ⅱ则两次摸出的球都是红球的概率是.15.在每个小正方形的边长为1的网格图形中,每个小正方形的顶点称为格点,顶点都是格点的三角形称为格点三角形.如图,已知Rt△ABC是6×6网格图形中的格点三角形,则该图中所有与Rt△ABC相似的格点三角形中.面积最大的三角形的斜边长是.16.如图,已知在平面直角坐标系xOy中,Rt△OAB的直角顶点B在x轴的正半轴上,点A在第一象限,反比例函数y=(x>0)的图象经过OA的中点C.交AB于点D,连结CD.若△ACD的面积是2,则k的值是.三.解答题(共8小题)17.计算:+|﹣1|.18.解不等式组.19.有一种升降熨烫台如图1所示,其原理是通过改变两根支撑杆夹角的度数来调整熨烫台的高度.图2是这种升降熨烫台的平面示意图.AB和CD是两根相同长度的活动支撑杆,点O是它们的连接点,OA=OC,h(cm)表示熨烫台的高度.(1)如图2﹣1.若AB=CD=110cm,∠AOC=120°,求h的值;(2)爱动脑筋的小明发现,当家里这种升降熨烫台的高度为120cm时,两根支撑杆的夹角∠AOC是74°(如图2﹣2).求该熨烫台支撑杆AB的长度(结果精确到lcm).(参考数据:sin37°≈0.6,cos37°≈0.8,sin53°≈0.8,cos53°≈0.6.)20.为了解学生对网上在线学习效果的满意度,某校设置了:非常满意、满意、基本满意、不满意四个选项,随机抽查了部分学生,要求每名学生都只选其中的一项,并将抽查结果绘制成如图统计图(不完整).请根据图中信息解答下列问题:(1)求被抽查的学生人数,并补全条形统计图;(温馨提示:请画在答题卷相对应的图上)(2)求扇形统计图中表示“满意”的扇形的圆心角度数;(3)若该校共有1000名学生参与网上在线学习,根据抽查结果,试估计该校对学习效果的满意度是“非常满意”或“满意”的学生共有多少人?21.如图,已知△ABC是⊙O的内接三角形,AD是⊙O的直径,连结BD,BC平分∠ABD.(1)求证:∠CAD=∠ABC;(2)若AD=6,求的长.22.某企业承接了27000件产品的生产任务,计划安排甲、乙两个车间的共50名工人,合作生产20天完成.已知甲、乙两个车间利用现有设备,工人的工作效率为:甲车间每人每天生产25件,乙车间每人每天生产30件.(1)求甲、乙两个车间各有多少名工人参与生产?(2)为了提前完成生产任务,该企业设计了两种方案:方案一甲车间租用先进生产设备,工人的工作效率可提高20%,乙车间维持不变.方案二乙车间再临时招聘若干名工人(工作效率与原工人相同),甲车间维持不变.设计的这两种方案,企业完成生产任务的时间相同.①求乙车间需临时招聘的工人数;②若甲车间租用设备的租金每天900元,租用期间另需一次性支付运输等费用1500元;乙车间需支付临时招聘的工人每人每天200元.问:从新增加的费用考虑,应选择哪种方案能更节省开支?请说明理由.23.已知在△ABC中,AC=BC=m,D是AB边上的一点,将∠B沿着过点D的直线折叠,使点B落在AC边的点P处(不与点A,C重合),折痕交BC边于点E.(1)特例感知如图1,若∠C=60°,D是AB的中点,求证:AP=AC;(2)变式求异如图2,若∠C=90°,m=6,AD=7,过点D作DH⊥AC于点H,求DH和AP的长;(3)化归探究如图3,若m=10,AB=12,且当AD=a时,存在两次不同的折叠,使点B落在AC边上两个不同的位置,请直接写出a的取值范围.24.如图,已知在平面直角坐标系xOy中,抛物线y=﹣x2+bx+c(c>0)的顶点为D,与y 轴的交点为C.过点C的直线CA与抛物线交于另一点A(点A在对称轴左侧),点B在AC的延长线上,连结OA,OB,DA和DB.(1)如图1,当AC∥x轴时,①已知点A的坐标是(﹣2,1),求抛物线的解析式;②若四边形AOBD是平行四边形,求证:b2=4c.(2)如图2,若b=﹣2,=,是否存在这样的点A,使四边形AOBD是平行四边形?若存在,求出点A的坐标;若不存在,请说明理由.参考答案一.选择题(共10小题)1.A.2.C.3.A.4.B.5.D.6.A.7.B.8.C.9.D.10.D.二.填空题(共6小题)11.﹣312..13.3.14..15.5.16..三.解答题(共8小题)17.解:原式=2+﹣1=3﹣1.18.解:,解①得x<1;解②得x<﹣6.故不等式组的解集为x<﹣6.19解:(1)过点B作BE⊥AC于E,∵OA=OC,∠AOC=120°,∴∠OAC=∠OCA==30°,∴h=BE=AB•sin30°=110×=55;(2)过点B作BE⊥AC于E,∵OA=OC,∠AOC=74°,∴∠OAC=∠OCA==53°,∴AB=BE÷sin53°=120÷0.8=150(cm),即该熨烫台支撑杆AB的长度约为150cm.20.解:(1)抽查的学生数:20÷40%=50(人),抽查人数中“基本满意”人数:50﹣20﹣15﹣1=14(人),补全的条形统计图如图所示:(2)360°×=108°,答:扇形统计图中表示“满意”的扇形的圆心角度数为108°;(3)1000×(+)=700(人),答:该校共有1000名学生中“非常满意”或“满意”的约有700人.21.解:(1)∵BC平分∠ABD,∴∠DBC=∠ABC,∵∠CAD=∠DBC,∴∠CAD=∠ABC;(2)∵∠CAD=∠ABC,∴=,∵AD是⊙O的直径,AD=6,∴的长=××π×6=π.22.解:(1)设甲车间有x名工人参与生产,乙车间各有y名工人参与生产,由题意得:,解得.∴甲车间有30名工人参与生产,乙车间各有20名工人参与生产.(2)①设方案二中乙车间需临时招聘m名工人,由题意得:=,解得m=5.经检验,m=5是原方程的解,且符合题意.∴乙车间需临时招聘5名工人.②企业完成生产任务所需的时间为:=18(天).∴选择方案一需增加的费用为900×18+1500=17700(元).选择方案二需增加的费用为5×18×200=18000(元).∵17700<18000,∴选择方案一能更节省开支.23.(1)证明:∵AC=BC,∠C=60°,∴△ABC是等边三角形,∴AC=AB,∠A=60°,由题意,得DB=DP,DA=DB,∴DA=DP,∴△ADP使得等边三角形,∴AP=AD=AB=AC.(2)解:∵AC=BC=6,∠C=90°,∴AB===12,∵DH⊥AC,∴DH∥BC,∴△ADH∽△ABC,∴=,∵AD=7,∴=,∴DH=,将∠B沿过点D的直线折叠,情形一:当点B落在线段CH上的点P1处时,如图2﹣1中,∵AB=12,∴DP1=DB=AB﹣AD=5,∴HP1===,∴A1=AH+HP1=4,情形二:当点B落在线段AH上的点P2处时,如图2﹣2中,同法可证HP2=,∴AP2=AH﹣HP2=3,综上所述,满足条件的AP的值为4或3.(3)如图3中,过点C作CH⊥AB于H,过点D作DP⊥AC于P.∵CA=CB,CH⊥AB,∴AH=HB=6,∴CH===8,当DB=DP时,设BD=PD=x,则AD=12﹣x,∵tan A==,∴=,∴x=,∴AD=AB﹣BD=,观察图形可知当6≤a<时,存在两次不同的折叠,使点B落在AC边上两个不同的位置.24.解:(1)①∵AC∥x轴,点A(﹣2,1),∴C(0,1),将点A(﹣2,1),C(0,1)代入抛物线解析式中,得,∴,∴抛物线的解析式为y=﹣x2﹣2x+1;②如图1,过点D作DE⊥x轴于E,交AB于点F,∵AC∥x轴,∴EF=OC=c,∵点D是抛物线的顶点坐标,∴D(,c+),∴DF=DE﹣EF=c+﹣c=,∵四边形AOBD是平行四边形,∴AD=DO,AD∥OB,∴∠DAF=∠OBC,∵∠AFD=∠BCO=90°,∴△AFD≌△BCO(AAS),∴DF=OC,∴=c,即b2=4c;(2)如图2,∵b=﹣2.∴抛物线的解析式为y=﹣x2﹣2x+c,∴顶点坐标D(﹣1,c+1),假设存在这样的点A使四边形AOBD是平行四边形,设点A(m,﹣m2﹣2m+c)(m<0),过点D作DE⊥x轴于点E,交AB于F,∴∠AFD=∠EFC=∠BCO,∵四边形AOBD是平行四边形,∴AD=BO,AD∥OB,∴∠DAF=∠OBC,∴△AFD≌△BCO(AAS),∴AF=BC,DF=OC,过点A作AM⊥y轴于M,交DE于N,∴DE∥CO,∴△ANF∽△AMC,∴=,∵AM=﹣m,AN=AM﹣NM=﹣m﹣1,∴,∴,∴点A的纵坐标为﹣(﹣)2﹣2×(﹣)+c=c﹣<c,∵AM∥x轴,∴点M的坐标为(0,c﹣),N(﹣1,c﹣),∴CM=c﹣(c﹣)=,∵点D的坐标为(﹣1,c+1),∴DN=(c+1)﹣(c﹣)=,∵DF=OC=c,∴FN=DN﹣DF=﹣c,∵=,∴,∴c=,∴c﹣=,∴点A纵坐标为,∴A(﹣,),∴存在这样的点A,使四边形AOBD是平行四边形.。

2020年浙江省湖州市中考数学试卷

2020年浙江省湖州市中考数学试卷

2020年浙江省湖州市中考数学试卷一、选择题(本题有10小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的.请选出各题中一个最符合题意的选项,并在答题卷上将相应题次中对应字母的方框涂黑,不选、多选、错选均不给分.1. 4的算术平方根是( )A.2B.−2C.±2D.√2【答案】A【考点】算术平方根【解析】算术平方根的定义:一个非负数的正的平方根,即为这个数的算术平方根,由此即可求出结果.【解答】解:∵±2的平方为4,算数平方根是非负数,∴4的算术平方根为2.故选A.2. 近几年来,我国经济规模不断扩大,综合国力显著增强.2019年我国国内生产总值约991000亿元,则数991000用科学记数法可表示为()A.991×103B.99.1×104C.9.91×105D.9.91×106【答案】C【考点】科学记数法--表示较大的数【解析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.【解答】将991000用科学记数法表示为:9.91×105.3. 已知某几何体的三视图如图所示,则该几何体可能是()A. B. C. D.【答案】A【考点】由三视图判断几何体【解析】根据两个视图是长方形得出该几何体是锥体,再根据俯视图是圆,得出几何体是圆锥.【解答】∵主视图和左视图是三角形,∴几何体是锥体,∵俯视图的大致轮廓是圆,∴该几何体是圆锥.4. 如图,已知四边形ABCD内接于⊙O,∠ABC=70∘,则∠ADC的度数是()A.70∘B.110∘C.130∘D.140∘【答案】B【考点】圆内接四边形的性质圆周角定理【解析】根据圆内接四边形的性质即可得到结论.【解答】∵四边形ABCD内接于⊙O,∠ABC=70∘,∴∠ADC=180∘−∠ABC=180∘−70∘=110∘,5. 数据−1,0,3,4,4的平均数是()A.4B.3C.2.5D.2【答案】D【考点】算术平均数【解析】根据题目中的数据,可以求得这组数据的平均数,本题得以解决.【解答】x¯=−1+0+3+4+4=2,56. 已知关于x的一元二次方程x2+bx−1=0,则下列关于该方程根的判断,正确的是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.实数根的个数与实数b的取值有关【答案】A【考点】根的判别式【解析】先计算出判别式的值,再根据非负数的性质判断△>0,然后利用判别式的意义对各选项进行判断.【解答】∵△=b2−4×(−1)=b2+4>0,∴方程有两个不相等的实数根.7. 四边形具有不稳定性,对于四条边长确定的四边形.当内角度数发生变化时,其形状也会随之改变.如图,改变正方形ABCD的内角,正方形ABCD变为菱形ABC′D′.若∠D′AB=30∘,则菱形ABC′D′的面积与正方形ABCD的面积之比是()A.1B.12C.√22D.√32【答案】B【考点】多边形三角形的稳定性【解析】根据30∘角所对的直角边等于斜边的一半可知菱形ABC′D′的高等于AB的一半,再根据正方形的面积公式和平行四边形的面积公式即可得解.【解答】根据题意可知菱形ABC′D′的高等于AB的一半,∴菱形ABC′D′的面积为12AB2,正方形ABCD的面积为AB2.∴菱形ABC′D′的面积与正方形ABCD的面积之比是12.8. 已知在平面直角坐标系xOy中,直线y=2x+2和直线y=23x+2分别交x轴于点A和点B.则下列直线中,与x轴的交点不在线段AB上的直线是()A.y=x+2B.y=√2x+2C.y=4x+2D.y=2√33x+2【答案】C【考点】一次函数图象上点的坐标特点【解析】求得A、B的坐标,然后分别求得各个直线与x的交点,进行比较即可得出结论.【解答】∵直线y=2x+2和直线y=23x+2分别交x轴于点A和点B.∴A(−1, 0),B(−3, 0)A、y=x+2与x轴的交点为(−2, 0);故直线y=x+2与x轴的交点在线段AB上;B、y=√2x+2与x轴的交点为(−√2, 0);故直线y=√2x+2与x轴的交点在线段AB 上;C、y=4x+2与x轴的交点为(−12, 0);故直线y=4x+2与x轴的交点不在线段AB上;D、y=2√33x+2与x轴的交点为(−√3, 0);故直线y=2√33x+2与x轴的交点在线段AB上;9. 如图,已知OT是Rt△ABO斜边AB上的高线,AO=BO.以O为圆心,OT为半径的圆交OA于点C,过点C作⊙O的切线CD,交AB于点D.则下列结论中错误的是()A.DC=DTB.AD=√2DTC.BD=BOD.2OC=5AC【答案】D【考点】等腰直角三角形切线的性质全等三角形的性质与判定【解析】如图,连接OD.想办法证明选项A,B,C正确即可解决问题.【解答】如图,连接OD.∵OT是半径,OT⊥AB,∴DT是⊙O的切线,∵DC是⊙O的切线,∴DC=DT,故选项A正确,∵OA=OB,∠AOB=90∘,∴∠A=∠B=45∘,∵DC是切线,∴CD⊥OC,∴∠ACD=90∘,∴∠A=∠ADC=45∘,∴AC=CD=DT,∴AC=√2CD=√2DT,故选项B正确,∵OD=OD,OC=OT,DC=DT,∴△DOC≅△DOT(SSS),∴∠DOC=∠DOT,∵OA=OB,OT⊥AB,∠AOB=90∘,∴∠AOT=∠BOT=45∘,∴∠DOT=∠DOC=22.5∘,∴∠BOD=∠ODB=67.5∘,∴BO=BD,故选项C正确,故选:D.10. 七巧板是我国祖先的一项卓越创造,流行于世界各地.由边长为2的正方形可以制作一副中国七巧板或一副日本七巧板,如图1所示.分别用这两副七巧板试拼如图2中的平行四边形或矩形,则这两个图形中,中国七巧板和日本七巧板能拼成的个数分别是()A.1和1B.1和2C.2和1D.2和2【答案】【考点】矩形的性质平行四边形的性质正方形的性质七巧板【解析】根据要求拼平行四边形矩形即可.【解答】中国七巧板和日本七巧板能拼成的个数都是2,如图所示:故选:D.二、填空题(本题有6小题,每小题4分,共24分)计算:−2−1=________.【答案】−3【考点】有理数的减法【解析】本题需先根据有理数的减法法则,判断出结果的符号,再把绝对值合并即可.【解答】−2−1=−3=________.化简:x+1x2+2x+1【答案】1x+1【考点】约分【解析】直接将分母分解因式,进而化简得出答案.【解答】x+1x2+2x+1=x+1 (x+1)2=1x+1.如图,已知AB是半圆O的直径,弦CD // AB,CD=8,AB=10,则CD与AB之间的距离是________.【答案】3【考点】勾股定理垂径定理平行线之间的距离【解析】过点O作OH⊥CD于H,连接OC,如图,根据垂径定理得到CH=DH=4,再利用勾股定理计算出OH=3,从而得到CD与AB之间的距离.【解答】过点O作OH⊥CD于H,连接OC,如图,则CH=DH=12CD=4,在Rt△OCH中,OH=√52−42=3,所以CD与AB之间的距离是3.在一个布袋里放有1个白球和2个红球,它们除颜色外其余都相同,从布袋里摸出1个球,记下颜色后放回,搅匀,再摸出1个球.将2个红球分别记为红Ⅰ,红Ⅱ,两次摸球的所有可能的结果如表所示,则两次摸出的球都是红球的概率是________.【答案】49【考点】列表法与树状图法【解析】根据图表可知共有9种等可能的结果,再找出两次摸出的球都是红球的情况数,然后根据概率公式即可得出答案.【解答】根据图表给可知,共有9种等可能的结果,两次摸出的球都是红球的有4种,则两次摸出的球都是红球的概率为49;在每个小正方形的边长为1的网格图形中,每个小正方形的顶点称为格点,顶点都是格点的三角形称为格点三角形.如图,已知Rt△ABC是6×6网格图形中的格点三角形,则该图中所有与Rt△ABC相似的格点三角形中.面积最大的三角形的斜边长是________.【答案】5√2【考点】三角形的面积相似三角形的判定【解析】根据Rt△ABC的各边长得出与其相似的三角形的两直角边之比为1:2,在6×6的网格图形中可得出与Rt△ABC相似的三角形的短直角边长应小于4,在图中尝试可画出符合题意的最大三角形,从而其斜边长可得.【解答】∵在Rt△ABC中,AC=1,BC=2,∴AB=√5,AC:BC=1:2,∴与Rt△ABC相似的格点三角形的两直角边的比值为1:2,若该三角形最短边长为4,则另一直角边长为8,但在6×6网格图形中,最长线段为6√2,但此时画出的直角三角形为等腰直角三角形,从而画不出端点都在格点且长为8的线段,故最短直角边长应小于4,在图中尝试,可画出DE=√10,EF=2√10,DF=5√2的三角形,∵√101=2√102=5√2√5=√10,∴△ABC∽△DEF,∴∠DEF=∠C=90∘,∴此时△DEF的面积为:√10×2√10÷2=10,△DEF为面积最大的三角形,其斜边长为:5√2.如图,已知在平面直角坐标系xOy中,Rt△OAB的直角顶点B在x轴的正半轴上,点A 在第一象限,反比例函数y=kx(x>0)的图象经过OA的中点C.交AB于点D,连结CD.若△ACD的面积是2,则k的值是________83.【答案】83【考点】反比例函数图象上点的坐标特征反比例函数系数k的几何意义【解析】作辅助线,构建直角三角形,利用反比例函数k的几何意义得到S△OCE=S△OBD=12k,根据OA的中点C,利用△OCE∽△OAB得到面积比为1:4,代入可得结论.【解答】连接OD,过C作CE // AB,交x轴于E,∵∠ABO=90∘,反比例函数y=kx(x>0)的图象经过OA的中点C,∴S△COE=S△BOD=12k,S△ACD=S△OCD=2,∵CE // AB,∴△OCE∽△OAB,∴S△OCES△OAB =14,∴4S△OCE=S△OAB,∴4×12k=2+2+12k,∴k=83,三、解答题(本题有8小题,共66分)计算:√8+|√2−1|.【答案】原式=2√2+√2−1=3√2−1.【考点】实数的性质二次根式的加减混合运算【解析】首先利用二次根式的性质化简二次根式,利用绝对值的性质计算绝对值,然后再算加减即可.【解答】原式=2√2+√2−1=3√2−1.解不等式组{3x−2<x,13x<−2,.【答案】{3x−2<x13x<−2,解①得x<1;解②得x<−6.故不等式组的解集为x<−6.【考点】解一元一次不等式组【解析】先求出不等式组中每一个不等式的解集,再求出它们的公共部分即可求解.【解答】{3x−2<x13x<−2,解①得x<1;解②得x<−6.故不等式组的解集为x<−6.有一种升降熨烫台如图1所示,其原理是通过改变两根支撑杆夹角的度数来调整熨烫台的高度.图2是这种升降熨烫台的平面示意图.AB和CD是两根相同长度的活动支撑杆,点O是它们的连接点,OA=OC,ℎ(cm)表示熨烫台的高度.(1)如图2−1.若AB=CD=110cm,∠AOC=120∘,求ℎ的值;(2)爱动脑筋的小明发现,当家里这种升降熨烫台的高度为120cm时,两根支撑杆的夹角∠AOC是74∘(如图2−2).求该熨烫台支撑杆AB的长度(结果精确到1cm).(参考数据:sin37∘≈0.6,cos37∘≈0.8,sin53∘≈0.8,cos53∘≈0.6.)【答案】过点B作BE⊥AC于E,∵OA=OC,∠AOC=120∘,∴∠OAC=∠OCA=180−120=30∘,2∴ℎ=BE=AB⋅sin30∘=110×1=55;2过点B作BE⊥AC于E,∵OA=OC,∠AOC=74∘,∴∠OAC=∠OCA=180−74=53∘,2∴AB=BE÷sin53∘=120÷0.8=150(cm),即该熨烫台支撑杆AB的长度约为150cm.【考点】解直角三角形的应用-其他问题【解析】=(1)过点B作BE⊥AC于E,根据等腰三角形的性质得到∠OAC=∠OCA=180−120230∘,根据三角函数的定义即可得到结论;(2)过点B作BE⊥AC于E,根据等腰三角形的性质和三角函数的定义即可得到结论.【解答】过点B作BE⊥AC于E,∵OA=OC,∠AOC=120∘,∴∠OAC=∠OCA=180−120=30∘,2∴ℎ=BE=AB⋅sin30∘=110×1=55;2过点B作BE⊥AC于E,∵OA=OC,∠AOC=74∘,∴∠OAC=∠OCA=180−74=53∘,2∴AB=BE÷sin53∘=120÷0.8=150(cm),即该熨烫台支撑杆AB的长度约为150cm.为了解学生对网上在线学习效果的满意度,某校设置了:非常满意、满意、基本满意、不满意四个选项,随机抽查了部分学生,要求每名学生都只选其中的一项,并将抽查结果绘制成如图统计图(不完整).请根据图中信息解答下列问题:(1)求被抽查的学生人数,并补全条形统计图;(温馨提示:请画在答题卷相对应的图上)(2)求扇形统计图中表示“满意”的扇形的圆心角度数;(3)若该校共有1000名学生参与网上在线学习,根据抽查结果,试估计该校对学习效果的满意度是“非常满意”或“满意”的学生共有多少人?【答案】抽查的学生数:20÷40%=50(人),抽查人数中“基本满意”人数:50−20−15−1=14(人),补全的条形统计图如图所示:360∘×15=108∘,50答:扇形统计图中表示“满意”的扇形的圆心角度数为108∘;1000×(2050+1550)=700(人),答:该校共有1000名学生中“非常满意”或“满意”的约有700人.【考点】条形统计图用样本估计总体扇形统计图【解析】(1)从两个统计图中可知,在抽查人数中,“非常满意”的人数为20人,占调查人数的40%,可求出调查人数,进而求出“基本满意”的人数,即可补全条形统计图;(2)样本中“满意”占调查人数的1550,即30%,因此相应的圆心角的度数为360∘的30%;(3)样本中“非常满意”或“满意”的占调查人数的(2050+1550),进而估计总体中“非常满意”或“满意”的人数.【解答】抽查的学生数:20÷40%=50(人),抽查人数中“基本满意”人数:50−20−15−1=14(人),补全的条形统计图如图所示:360∘×1550=108∘,答:扇形统计图中表示“满意”的扇形的圆心角度数为108∘;1000×(2050+1550)=700(人),答:该校共有1000名学生中“非常满意”或“满意”的约有700人.如图,已知△ABC是⊙O的内接三角形,AD是⊙O的直径,连结BD,BC平分∠ABD.(1)求证:∠CAD=∠ABC;(2)若AD=6,求CD̂的长.【答案】∵BC平分∠ABD,∴∠DBC=∠ABC,∵∠CAD=∠DBC,∴∠CAD=∠ABC;∵∠CAD=∠ABC,∴CD̂=AĈ,∵AD是⊙O的直径,AD=6,∴CD̂的长=12×12×π×6=32π.【考点】弧长的计算三角形的外接圆与外心圆周角定理【解析】(1)由角平分线的性质和圆周角定理可得∠DBC=∠ABC=∠CAD;(2)由圆周角定理可得CD̂=AĈ,由弧长公式可求解.【解答】∵BC平分∠ABD,∴∠DBC=∠ABC,∵ ∠CAD =∠DBC , ∴ ∠CAD =∠ABC ; ∵ ∠CAD =∠ABC ,∴ CD̂=AC ̂, ∵ AD 是⊙O 的直径,AD =6, ∴ CD ̂的长=12×12×π×6=32π.某企业承接了27000件产品的生产任务,计划安排甲、乙两个车间的共50名工人,合作生产20天完成.已知甲、乙两个车间利用现有设备,工人的工作效率为:甲车间每人每天生产25件,乙车间每人每天生产30件. (1)求甲、乙两个车间各有多少名工人参与生产?(2)为了提前完成生产任务,该企业设计了两种方案:方案一 甲车间租用先进生产设备,工人的工作效率可提高20%,乙车间维持不变. 方案二 乙车间再临时招聘若干名工人(工作效率与原工人相同),甲车间维持不变. 设计的这两种方案,企业完成生产任务的时间相同. ①求乙车间需临时招聘的工人数;②若甲车间租用设备的租金每天900元,租用期间另需一次性支付运输等费用1500元;乙车间需支付临时招聘的工人每人每天200元.问:从新增加的费用考虑,应选择哪种方案能更节省开支?请说明理由.【答案】设甲车间有x 名工人参与生产,乙车间各有y 名工人参与生产,由题意得: {x +y =5020(25x +30y)=27000 , 解得{x =30y =20.∴ 甲车间有30名工人参与生产,乙车间各有20名工人参与生产. ①设方案二中乙车间需临时招聘m 名工人,由题意得: 2700030×25×(1+20%)+20×30=2700030×25+(20+m)×30, 解得m =5.经检验,m =5是原方程的解,且符合题意. ∴ 乙车间需临时招聘5名工人.②企业完成生产任务所需的时间为:2700030×25×(1+20%)+20×30=18(天).∴ 选择方案一需增加的费用为900×18+1500=17700(元).选择方案二需增加的费用为5×18×200=18000(元). ∵ 17700<18000,∴ 选择方案一能更节省开支. 【考点】二元一次方程的应用 分式方程的应用二元一次方程组的应用——行程问题【解析】(1)设甲车间有x 名工人参与生产,乙车间各有y 名工人参与生产,由题意得关于x 和y 的方程组,求解即可.(2)①设方案二中乙车间需临时招聘m 名工人,由题意,以企业完成生产任务的时间为等量关系,列出关于m 的分式方程,求解并检验即可;②用生产任务数量27000除以方案一中甲和乙完成的生产任务之和可得企业完成生产任务的时间,然后分别按方案一和方案二计算费用并比较大小即可. 【解答】设甲车间有x 名工人参与生产,乙车间各有y 名工人参与生产,由题意得: {x +y =5020(25x +30y)=27000 , 解得{x =30y =20.∴ 甲车间有30名工人参与生产,乙车间各有20名工人参与生产. ①设方案二中乙车间需临时招聘m 名工人,由题意得:2700030×25×(1+20%)+20×30=2700030×25+(20+m)×30,解得m =5.经检验,m =5是原方程的解,且符合题意. ∴ 乙车间需临时招聘5名工人.②企业完成生产任务所需的时间为:2700030×25×(1+20%)+20×30=18(天).∴ 选择方案一需增加的费用为900×18+1500=17700(元).选择方案二需增加的费用为5×18×200=18000(元). ∵ 17700<18000,∴ 选择方案一能更节省开支.已知在△ABC 中,AC =BC =m ,D 是AB 边上的一点,将∠B 沿着过点D 的直线折叠,使点B 落在AC 边的点P 处(不与点A ,C 重合),折痕交BC 边于点E .(1)特例感知 如图1,若∠C =60∘,D 是AB 的中点,求证:AP =12AC ;(2)变式求异 如图2,若∠C =90∘,m =6√2,AD =7,过点D 作DH ⊥AC 于点H ,求DH 和AP 的长;(3)化归探究 如图3,若m =10,AB =12,且当AD =a 时,存在两次不同的折叠,使点B 落在AC 边上两个不同的位置,请直接写出a 的取值范围. 【答案】证明:∵ AC =BC ,∠C =60∘, ∴ △ABC 是等边三角形, ∴ AC =AB ,∠A =60∘,由题意,得DB =DP ,DA =DB , ∴ DA =DP ,∴ △ADP 使得等边三角形, ∴ AP =AD =12AB =12AC . ∵ AC =BC =6√2,∠C =90∘,∴ AB =√AC 2+BC 2=√(6√2)2+(6√2)2=12, ∵ DH ⊥AC , ∴ DH // BC ,∴ △ADH ∽△ABC , ∴ DHBC =ADAB , ∵ AD =7, ∴ 6√2=712, ∴ DH =7√22, 将∠B 沿过点D 的直线折叠,情形一:当点B 落在线段CH 上的点P 1处时,如图2−1中,∵ AB =12,∴ DP 1=DB =AB −AD =5, ∴ HP 1=√DP 12−DH 2=(7√22)=√22, ∴ A 1=AH +HP 1=4√2,情形二:当点B 落在线段AH 上的点P 2处时,如图2−2中,同法可证HP 2=√22,∴AP2=AH−HP2=3√2,综上所述,满足条件的AP的值为4√2或3√2.如图3中,过点C作CH⊥AB于H,过点D作DP⊥AC于P.∵CA=CB,CH⊥AB,∴AH=HB=6,∴CH=√AC2−AH2=√102−62=8,当DB=DP时,设BD=PD=x,则AD=12−x,∵tan A=CHAC =PDAD,∴810=x12−x,∴x=163,∴AD=AB−BD=203,观察图形可知当6<a<203时,存在两次不同的折叠,使点B落在AC边上两个不同的位置.【考点】几何变换综合题【解析】(1)证明△ADP是等边三角形即可解决问题.(2)分两种情形:情形一:当点B落在线段CH上的点P1处时,如图2−1中.情形二:当点B落在线段AH上的点P2处时,如图2−2中,分别求解即可.(3)如图3中,过点C作CH⊥AB于H,过点D作DP⊥AC于P.求出DP=DB时AD的值,结合图形即可判断.【解答】证明:∵AC=BC,∠C=60∘,∴△ABC是等边三角形,∴AC=AB,∠A=60∘,由题意,得DB=DP,DA=DB,∴DA=DP,∴△ADP使得等边三角形,∴AP=AD=12AB=12AC.∵AC=BC=6√2,∠C=90∘,∴AB=√AC2+BC2=√(6√2)2+(6√2)2=12,∵ DH ⊥AC , ∴ DH // BC ,∴ △ADH ∽△ABC , ∴ DHBC =ADAB , ∵ AD =7, ∴ 6√2=712, ∴ DH =7√22, 将∠B 沿过点D 的直线折叠,情形一:当点B 落在线段CH 上的点P 1处时,如图2−1中,∵ AB =12,∴ DP 1=DB =AB −AD =5, ∴ HP 1=√DP 12−DH 2=(7√22)=√22, ∴ A 1=AH +HP 1=4√2,情形二:当点B 落在线段AH 上的点P 2处时,如图2−2中,同法可证HP 2=√22, ∴ AP 2=AH −HP 2=3√2,综上所述,满足条件的AP 的值为4√2或3√2.如图3中,过点C 作CH ⊥AB 于H ,过点D 作DP ⊥AC 于P .∵ CA =CB ,CH ⊥AB , ∴ AH =HB =6,∴ CH =√AC 2−AH 2=√102−62=8,当DB =DP 时,设BD =PD =x ,则AD =12−x , ∵ tan A =CH AC=PD AD,∴ 810=x 12−x , ∴ x =163,∴ AD =AB −BD =203,观察图形可知当6<a <203时,存在两次不同的折叠,使点B 落在AC 边上两个不同的位置.如图,已知在平面直角坐标系xOy 中,抛物线y =−x 2+bx +c(c >0)的顶点为D ,与y 轴的交点为C .过点C 的直线CA 与抛物线交于另一点A (点A 在对称轴左侧),点B 在AC 的延长线上,连结OA ,OB ,DA 和DB .(1)如图1,当AC // x 轴时,①已知点A 的坐标是(−2, 1),求抛物线的解析式; ②若四边形AOBD 是平行四边形,求证:b 2=4c .(2)如图2,若b =−2,BC AC=35,是否存在这样的点A ,使四边形AOBD 是平行四边形?若存在,求出点A 的坐标;若不存在,请说明理由. 【答案】①∵ AC // x 轴,点A(−2, 1), ∴ C(0, 1),将点A(−2, 1),C(0, 1)代入抛物线解析式中,得{−4−2b +c =1c =1 ,∴ {b =−2c =1,∴ 抛物线的解析式为y =−x 2−2x +1;②如图1,过点D 作DE ⊥x 轴于E ,交AB 于点F , ∵ AC // x 轴, ∴ EF =OC =c ,∵ 点D 是抛物线的顶点坐标,∴ D(b 2, c +b 24),∴ DF =DE −EF =c +b 24−c =b 24,∵ 四边形AOBD 是平行四边形,∴ AD =DO ,AD // OB ,∴ ∠DAF =∠OBC ,∵ ∠AFD =∠BCO =90∘,∴ △AFD ≅△BCO(AAS),∴ DF =OC ,∴ b 24=c ,即b 2=4c ;如图2,∵ b =−2.∴ 抛物线的解析式为y =−x 2−2x +c ,∴ 顶点坐标D(−1, c +1),假设存在这样的点A 使四边形AOBD 是平行四边形,设点A(m, −m 2−2m +c)(m <0),过点D 作DE ⊥x 轴于点E ,交AB 于F ,∴ ∠AFD =∠EFC =∠BCO ,∵ 四边形AOBD 是平行四边形,∴ AD =BO ,AD // OB ,∴ ∠DAF =∠OBC ,∴ △AFD ≅△BCO(AAS),∴ AF =BC ,DF =OC ,过点A 作AM ⊥y 轴于M ,交DE 于N ,∴ DE // CO ,∴ △ANF ∽△AMC ,∴ AN AM =FN CM =AF AC =BC AC =35,∵ AM =−m ,AN =AM −NM =−m −1,∴ −m−1−m =35, ∴ m =−52,∴ 点A 的纵坐标为−(−52)2−2×(−52)+c =c −54<c ,∵ AM // x 轴,∴ 点M 的坐标为(0, c −54),N(−1, c −54),∴ CM =c −(c −54)=54,∵ 点D 的坐标为(−1, c +1),∴ DN =(c +1)−(c −54)=94,∵ DF =OC =c ,∴ FN =DN −DF =94−c ,∵ FN CM =35, ∴ 94−c 54=35, ∴ c =32,∴ c −54=14,∴ 点A 纵坐标为14,∴ A(−52, 14),∴ 存在这样的点A ,使四边形AOBD 是平行四边形.【考点】二次函数综合题【解析】(1)①先确定出点C 的坐标,再用待定系数法即可得出结论;②先确定出抛物线的顶点坐标,进而得出DF =b 24,再判断出△AFD ≅△BCO ,得出DF =OC ,即可得出结论;(2)先判断出抛物线的顶点坐标D(−1, c +1),设点A(m, −m 2−2m +c)(m <0), 判断出△AFD ≅△BCO(AAS),得出AF =BC ,DF =OC ,再判断出△ANF ∽△AMC ,得出AN AM =FN CM =AF AC =BC AC =35,进而求出m 的值,得出点A 的纵坐标为c −54<c ,进而判断出点M 的坐标为(0, c −54),N(−1, c −54),进而得出CM =54,DN =94,FN =94−c ,进而求出c =32,即可得出结论.【解答】①∵ AC // x 轴,点A(−2, 1),∴ C(0, 1),将点A(−2, 1),C(0, 1)代入抛物线解析式中,得{−4−2b +c =1c =1, ∴ {b =−2c =1, ∴ 抛物线的解析式为y =−x 2−2x +1;②如图1,过点D 作DE ⊥x 轴于E ,交AB 于点F , ∵ AC // x 轴,∴ EF =OC =c ,∵ 点D 是抛物线的顶点坐标,∴ D(b 2, c +b 24),∴ DF =DE −EF =c +b 24−c =b 24,∵ 四边形AOBD 是平行四边形,∴ AD =DO ,AD // OB ,∴ ∠DAF =∠OBC ,∵ ∠AFD =∠BCO =90∘,∴ △AFD ≅△BCO(AAS),∴ DF =OC ,∴ b 24=c ,即b 2=4c ;如图2,∵ b =−2.∴ 抛物线的解析式为y =−x 2−2x +c , ∴ 顶点坐标D(−1, c +1),假设存在这样的点A 使四边形AOBD 是平行四边形, 设点A(m, −m 2−2m +c)(m <0),过点D 作DE ⊥x 轴于点E ,交AB 于F ,∴ ∠AFD =∠EFC =∠BCO ,∵ 四边形AOBD 是平行四边形,∴ AD =BO ,AD // OB ,∴ ∠DAF =∠OBC ,∴ △AFD ≅△BCO(AAS),∴ AF =BC ,DF =OC ,过点A 作AM ⊥y 轴于M ,交DE 于N ,∴ DE // CO ,∴ △ANF ∽△AMC ,∴ AN AM =FN CM =AF AC =BC AC =35,∵ AM =−m ,AN =AM −NM =−m −1, ∴ −m−1−m =35,∴ m =−52,∴ 点A 的纵坐标为−(−52)2−2×(−52)+c =c −54<c , ∵ AM // x 轴,∴ 点M 的坐标为(0, c −54),N(−1, c −54), ∴ CM =c −(c −54)=54,∵ 点D 的坐标为(−1, c +1),∴ DN =(c +1)−(c −54)=94, ∵ DF =OC =c ,∴ FN =DN −DF =94−c ,∵FN CM =35, ∴ 94−c 54=35, ∴ c =32,∴ c −54=14, ∴ 点A 纵坐标为14,∴ A(−52, 14),∴ 存在这样的点A ,使四边形AOBD 是平行四边形.。

2020年浙江省湖州市中考数学试卷乙卷附解析

2020年浙江省湖州市中考数学试卷乙卷附解析

2020年浙江省湖州市中考数学试卷乙卷 学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.如图,沿 AC 方向开山修路,为了加快施工进度,要在小山的另一边同时施工,从 AC 上的一点B ,取ABD= 145°,BD= 500 米,D= 55°. 要使A 、C 、E 成一直线,那么开挖点 E 离点D 的距离是( )A .0500sin55米B .500cos55o 米C .500tan55o 米D .500cot55o 米2.已知,在等腰梯形 ABCD 中,AD ∥BC ,AD= 4 cm ,BC= 10 cm ,AB = 5 cm ,以点A 为圆心,AD 为半径作⊙A ,则⊙A 与 BC 的位置关系是( )A .相离B . 相切C . 相交D .不能确定 3.如图,AB 是⊙O 的直径,CD 是弦,CD ⊥AB 于点E ,则下列结论中不一定...正确的是( )A .∠COE=∠DOEB .CE=DEC .⌒AC =⌒AD D .OE=BE4.关于x 的一元二次方程(m -1)x 2+x +m 2-1=0有一根为0,则m 的值为( )A .1B .-1C .1或-1D .215.下列不能判定一个四边形是平行四边形的条件是( )A .两组对边分别平行B .两组对边分别相等C .一组对边平行且相等D .一组对边平行,另一组对边相等6.假设命题“b a <”不成立,那么a 与b 的大小关系只能是( )A .b a ≠B .b a >C .b a =D .b a ≥7.如图,已知在△ABC 中,AB=BC ,BD 是角平分线,DE ⊥AB 于点E ,DF ⊥BC 于点F ,则下列四个结论中正确的个数有 ( )①BD 上任意一点到点A 和点C 的距离相等;②BD 上任一点到AB 和BC 的距离相等;③AD=CD ,BD ⊥AC ;④∠ADE=∠CDF .A .1个B .2个C .3个D .4个 8.用直接开平方法解方程2(3)8x -=,得方程的根为( ) A .322x =+ B .322x =-C .1323x =+,2323x =-D .1322x =+,2322x =-9.等腰三角形一边长等于4,一边长等于9,它的周长是( ) A .17B .22C .17或22D .13 10.231()2a b -的结果正确的是( )A .4214a b B .6318a b C .6318a b - D .5318a b - 11.如图所示的图形由四个相同的正方形组成,通过旋转不可能得到的图形是( •)12.如图所示,在直角三角形ABC 中,AC ≠AB ,AD 是斜边BC 上的高,DE ⊥AC ,DF ⊥AB ,垂足分别是E ,F ,则 图中与∠C (除°C 外)相等的角的个数是( )A .2个B .3个C .4个D .5个13.若(3)(2)0x x -+=,则x 的值是( )A . 3B . -2C .-3或2D .3或-2 14.若两个有理数的和与积都是负数,则这两个有理数( )A .都是负数B .都是正数C .一正一负,且正数的绝对值较小D .无法确定 二、填空题15.船A在灯塔C 的东北方向(即北偏东 45°方向)上,船B在灯塔C 的南偏东 60°的方向上,则∠ACB= .16.若一个多边形内角和为900°,那么这多边形是_______边形.17.某校八年级(1)班共有55位同学,2月份出生的人数的频率是0.2,则该班2•月份生日的同学有________人.18.已知三角形的两边分别是1和2,第三边的数值是方程2x2-5x+3=0的根,则这个三角形的周长为_______.19.实数a在数轴上的位置如图所示,化简2a= .20.如图所示,在△ABC中,AD是角平分线,已知∠B=66°,∠C=38°,那么∠ADB= ,∠ADC= .21.大、小两个正方形放在桌上,它们共遮住了32 cm2的面积,如果两正方形重叠部分面积为4 cm2,小正方形面积为7 cm2,则大正方形面积为 cm2.三、解答题22.画出如图实物的三视图.23.一个口袋中有10个红球和若干个白球,请通过以下实验估计口袋中白球的个数:从口袋中随机摸出一球,记下其颜色,再把它放回口袋中,不断重复上述过程.实验中总共摸了200次,其中有50次摸到红球.24.已如图,在△ABC 中,AB=AC, ∠ABC=2∠A, BM平分∠ABC 交外接圆于点M,ME∥BC 交AB于点 E. 试判断四边形EBCM的形状,并加以证明.25.如图所示,等腰梯形ABCD中,AD∥BC,AE∥DC,DF∥AB,求证:AE=DF.26.口袋中有15个球,其中白球x个,绿球有2x个,其余为黑球;小红从中任意摸出一个球,若为绿色,则小红获胜;小红摸出的球放回袋中,小文从中摸出一个球,若为黑色,则小文获胜.问x为何值时,小红和小文两人获胜的可能性一样大?27.为加快西都大开发,某自治区决定新修一条公路,甲、乙两工程队承包此项工程. 如果甲工程队单独施工,则刚好如期完成;如果乙工程队单独施工就要超过 6 个月才能完成. 现在甲、乙两队先共同施工 4个月,剩下的由乙队单独施工,则刚好如期完成. 问原来规定修好这条公路需多长时间?28.已知方程4316+=.a b(1)用关于a 的代数式表示b;(2)写出方程的三个解;(3)求方程的非负整数解.29.2006年某市全年完成生产总值264亿元,比2005年增长23%,问:(1)2005年该市全年生产总值是多少亿元?(精确到1亿元)(2)预计该市2008年生产总值可达到386.5224亿元,则2006 ~2008年该市生产总值的年平均1.21= 1.22=)30.计算下列各题:(1)()2523-⨯- (2) 4211(10.5)[2(3)]3---⨯⨯-- (3)—4÷0.52+(—1.5)3×(32)2【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.B2.B3.D4.B5.D6.D7.D8.D9.B10.C11.C12.B13.D14.C二、填空题15.75°16.717.1118. 41219.-a20.76°,l04°21.29三、解答题22.略23.解法一:设口袋中有x 个白球, 由题意,得200501010=+x , 解得x =30. 答:口袋中约有30个白球.解法二:∵P (50次摸到红球)=4120050=,∴10÷41=40 .∴ 40-10=30 . 答:口袋中大约有30个白球. 24.四边形 EBCM 是菱形.∵∠ABM=∠MBC=12∠ABC,∠ABC= 2∠A , ∴∠A=∠ABM,∵∠A=∠BMC, ∴∠ABM=∠BMC,∴BE ∥CM ,∵ME ∥BC ,∴四边形 EBCM 是平行四边形.∵∠A= ∠MBC, ∴⌒BC =⌒MC , ∴BC=MC,∴□EBCM 是菱形. 25.证明AE=CD ,DF=AB26.327.12 个月28. (1)41633b a =-+;(2)40x y =⎧⎨=⎩,543x y =⎧⎪⎨=-⎪⎩,683x y =⎧⎪⎨=-⎪⎩,…,(3)14x y =⎧⎨=⎩,40x y =⎧⎨=⎩ 29.(1)2005年该市生产总值为264(123%)215÷+≈(亿元);(2)该市2006~2008年生产总值平均年增长率为 1.2110.2121%=-== 30.(1)-47;(2)16;(3)-17.5。

2020年浙江省湖州中考数学试卷-答案

2020年浙江省湖州中考数学试卷-答案

2020年浙江省湖州市初中学业水平考试数学答案解析卷Ⅰ一、1.【答案】A【解析】2∵的平方为4,4∴的算术平方根为2.故选:A .2.【答案】C【解析】解:将991 000用科学记数法表示为:59.9110⨯.故选:C .3.【答案】A【解析】解:∵主视图和左视图是三角形,∴几何体是锥体,∵俯视图的大致轮廓是圆,∴该几何体是圆锥.故选:A .4.【答案】B【解析】解:∵四边形ABCD 内接于O ,70ABC ∠=︒,180********ADC ABC ∠=︒-∠=︒-︒=︒∴,故选:B .5.【答案】D 【解析】解:1034425x -++++==, 故选:D .6.【答案】A【解析】解:224(1)40b b =-⨯-=+∵>, ∴方程有两个不相等的实数根.故选:A .7.【答案】B【解析】解:根据题意可知菱形ABC D ''的高等于AB 的一半,∴菱形ABC D ''的面积为212AB ,正方形ABCD 的面积为2AB . ∴菱形ABC D ''的面积与正方形ABCD 的面积之比是12. 故选:B .8.【答案】C【解析】解:∵直线22y x =+和直线223y x =+分别交x 轴于点A 和点B . (1,0)A -∴,(3,0)B -A 、2y x =+与x 轴的交点为(2,0)-;故直线2y x =+与x 轴的交点在线段AB 上;B 、2y +与x 轴的交点为();故直线2y =+与x 轴的交点在线段AB 上; C 、42y x =+与x 轴的交点为1,02⎛⎫- ⎪⎝⎭;故直线42y x =+与x 轴的交点不在线段AB 上;D 、2y +与x 轴的交点为(;故直线2y =+与x 轴的交点在线段AB 上; 故选:C .9.【答案】D【解析】解:如图,连接OD .OT ∵是半径,OT AB ⊥,DT ∴是O 的切线,DC ∵是O 的切线,DC DT =∴,故选项A 正确,OA OB =∵,90AOB ∠=︒,45A B ∠=∠=︒∴,DC ∵是切线,CD OC ⊥∴,90ACD ∠=︒∴,45A ADC ∠=∠=︒∴,AC CD DT ==∴,AC ==∴,故选项B 正确,OD OD =∵,OC OT =,DC DT =,()DOC DOT SSS ∴△≌△,DOC DOT ∠=∠∴,OA OB =∵,OT AB ⊥,90AOB ∠=︒,45AOT BOT ∠=∠=︒∴,22.5DOT DOC ∠=∠=︒∴,67.5BOD ODB ∠=∠=︒∴,BO BD =∴,故选项C 正确,故选:D .10.【答案】D【解析】解:中国七巧板和日本七巧板能拼成的个数都是2,如图所示:故选:D .卷Ⅱ二、11.【答案】3-【解析】解:21--3=-故答案为:3-.12.【答案】11x + 【解析】解:2121x x x +++ 21(1)x x +=+ 11x =+. 故答案为:11x +. 13.【答案】3 【解析】解:过点O 作OH CD ⊥于H ,连接OC ,如图,则142CH DH CD ===,在Rt OCH △中,3OH =,所以CD 与AB 之间的距离是3.故答案为3.14.【答案】49【解析】解:根据图表给可知,共有9种等可能的结果,两次摸出的球都是红球的有4种, 则两次摸出的球都是红球的概率为49; 故答案为:49.15.【答案】【解析】解:∵在Rt ABC ∆中,1AC =,2BC =,AB =∴:1:2AC BC =,∴与Rt ABC ∆相似的格点三角形的两直角边的比值为1:2,若该三角形最短边长为4,则另一直角边长为8,但在66⨯网格图形中,最长线段为但此时画出的直角三角形为等腰直角三角形,从而画不出端点都在格点且长为8的线段,故最短直角边长应小于4,在图中尝试,可画出DE=EF=DF=的三角形,===,ABC DEF∴△∽△,90DEF C∠=∠=︒∴,∴此时DEF∆210=,DEF△为面积最大的三角形,其斜边长为:故答案为:16.【答案】83【解析】解:连接OD,过C作CE AB∥,交x轴于E,90ABO∠=︒∵,反比例函数(0)ky xx=>的图象经过OA的中点C,12COE BODS S k==△△∴,2ACD OCDS S==△△,CE AB∵∥,OCE OAB∴△∽△,14OCEOABSS=△△∴,4OCE OABS S=△△∴,1142222k k⨯=++∴,83k=∴,故答案为:83.三、17.【答案】解:原式)111===.18.【答案】解:解不等式①,得1x <.解不等式②,得6x -<.所以原不等式组的解是6x -<.19.【答案】解:(1)过点B 作BE AC ⊥于点E ,如图2-1OA OC =∵,120AOC ∠=︒,2180120302012OAC OCA n ︒-︒∠=∠==︒∴. 1sin30110552h BE AB ==⋅︒=⨯=∴. (2)过点B 作BE AC ⊥于点E ,如图2-2OA OC =∵,74AOC ∠=︒,18074532OAC OCA -︒︒∠=∠==︒∴. ()sin531200.8150 cm AB BE =÷︒≈÷=∴.即该熨烫台支撑杆AB 的长度约为150 cm .图2-1 图2-220.【答案】解:(1)被抽查的学生人数是2040%50÷=(人).502015114---=∵(人).∴补全的条形统计图如图所示.(2)扇形统计图中表示满意的扇形的圆心角度数是1536010850⨯=︒︒. (3)20151 0007005050⎛⎫⨯+= ⎪⎝⎭∵(人).∴估计该校对学习效果的满意度是非常满意或满意的学生共有700人.21.【答案】(1)证明:BC ∵平分ABD ∠,DBC ABC ∠=∠∴.CAD DBC ∠=∠∵,CAD ABC ∠=∠∴.(2)解:CAD ABC ∠=∠∵,12CD AC ACD ==∴. AD ∵是O 的直径,6AD =,1113π6π2222CD ACD ==⨯⨯⨯=∴. 【解析】具体解题过参照答案.22.【答案】解:(1)设甲车间有x 名工人参与生产,乙车间有y 名工人参与生产.由题意,得()5020253027 000x y x y +=⎧⎨+=⎩解得3020x y =⎧⎨=⎩答:甲车间有30名工人参与生产,乙车间有20名工人参与生产.(2)①设方案二中乙车间需临时招聘m 名工人.由题意,得()()27 00027 0003025120%203030252030m =⨯⨯++⨯⨯++⨯ 解得5m =,经检验,5m =是原方程的解,且符合题意.答:乙车间需临时招聘的工人数为5人.②企业完成生产任务所需的时间为()27 000183025120%2030=⨯⨯++⨯(天). ∴选择方案一需增加的费用为90018150017 700⨯+=(元).选择方案二需增加的费用为51820018 000⨯⨯=(元).17 70018 000<∵,∴选择方案一能更节省开支.23.【答案】(1)证明:AC BC =∵,60C ∠=︒,ABC ∴△是等边三角形,AC AB =∴,60A ∠=︒,由题意,得DB DP =,DA DB =,DA DP =∴,ADP ∴△是等边三角形.1122AP AD AB AC ===∴.(2)解:AC BC ==∵90C ∠=︒,12AB ==∴.DH AC ⊥∵,DH BC ∴∥,ADH ABC ∴△∽△,DH AD BC AB=∴,7AD =∵,712=,解得2DH =.在Rt ADH △中,AH DH ==将B ∠沿着过点D 的直线折叠,情况一:当点B 落在线段CH 上的点1P 处时,如图2-1 12AB =∵,15DP DB AB AD ==-=∴,1HP =∴,11AP AH HP =+=∴情况二:当点B 落在线段AH 上的点2P 处时,如图2-2同理可得2HP =,22AP AH HP =-=∴综上所述,AP 的长为.(3)2063a <<.图2-1 图2-2 24.【答案】(1)①解:AC x ∵∥轴,点A 的坐标是()2,1-, ∴点C 的坐标是()0,1.()0,1C把点()2,1A -,的坐标分别代入2y x bx c =-++,得1421b c c =--+⎧⎨=⎩,解得21b c =-⎧⎨=⎩ ∴抛物线的解析式为221y x x =--+.②证明:过点D 作DE x ⊥轴于点E ,交AB 于点F ,如图1AC x ∵∥轴,EF OC c ==∴,又∵点D 的坐标是2,24b b c ⎛⎫+ ⎪⎝⎭,2244b b DF DE EF c c ⎛⎫=-=+-= ⎪⎝⎭∴. ∵四边形AOBD 是平行四边形,AD BO =∴,AD OB ∥,DAF OBC ∠=∠∴.又∵90AFD BCO ∠=∠=︒,()AFD BCO AAS ∴△≌△,DF OC =∴.24b c =∴,即24b c =. (2)解:由题意,得抛物线的解析式为22y x x c =--+, ∴顶点D 的坐标是()1,1c -+,假设存在这样的点A ,使四边形AOBD 是平行四边形,如图2设点A 的坐标是()2,2m m m c --+,0m <. 过点D 作DE x ⊥轴于点E ,交AB 于点F , 则AFD EFC BCO =∠=∠∠. ∵四边形AOBD 是平行四边形,AD BO =∴,AD OB ∥,DAF OBC ∠=∠∴. ()AFD BCO AAS ∴△≌△,AF BC =∴,DF OC =. 过点A 作AM y ⊥轴于点M ,交DE 于点N , 则DE CO ∥,ANF AMC ∴△∽△,35AN FN AF BC AM CM AC AC ====∴. AM m =-∵,1AN AM NM m =-=--,135m m --=-∴,解得52m =-. ∴点A 的纵坐标是25552224c c c ⎛⎫⎛⎫---⨯-+=- ⎪ ⎪⎝⎭⎝⎭<∵. AM x ∵∥轴,∴点M 的坐标是50,4c ⎛⎫- ⎪⎝⎭,点N 的坐标是51,4c ⎛⎫-- ⎪⎝⎭. 5544CM c c ⎛⎫=--= ⎪⎝⎭∴. 点D 的坐标()1,1c -+是,59(1)44DN c c ⎛⎫=+--= ⎪⎝⎭∴. DF OC c ==∵,94FN DN DF c =-=-∴. 由35FN CM =,得934554c -=, 解得32c =,5144c -=∴. ∴点A 的纵坐标是14. ∴点A 的坐标是51,24⎛⎫- ⎪⎝⎭. ∴存在这样的点A ,使四边形AOBD 是平行四边形.。

2020年浙江省湖州市中考数学优质试题附解析

2020年浙江省湖州市中考数学优质试题附解析

2020年浙江省湖州市中考数学优质试题 学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.如图,等腰梯形ABCD 中,AD ∥BC ,以A 为圆心,AD 为半径的圆与BC 切于点M ,与AB 交于点E ,若AD =2,BC =6,则⌒DE的长为( ) A .23π B .43π C .83π D .π3 2.如图,在正方形ABCD 中,点E 在AB 边上,且AE ∶EB =2∶1,AF ⊥DE 于G 交BC 于F ,则△AEG 的面积与四边形BEGF 的面积之比为( )A .1∶2B .1∶4C .4∶9D .2∶3 3.若73a b a b +=-,则a b的值是( ) A .73 B .52 C .25 D .25- 4.为了了解本校初三年级学生的体能情况,随机抽查了其中30名学生,测试1分钟仰卧起坐的次数,并将其绘制成如图所示的频数分布直方图.那么仰卧起坐次数在25~30次的频率是( )A.0.4 B.0.3 C.0.2 D.0.15.某同学用计算器计算30个数据的平均数数时.错将其中的一个数据l05输入成了l5,那么由此求的的平均数与实际平均数的差是( )A .3.5B .3C .-3D .0.56.如图所示的图形是由几个小立方块所搭几何体的俯视图,小正方形中的数字表示在该位置的小立方块的个数,那么这个几何体的左视图是( )7. 如图,一只小狗在方砖上走来走去,则最终停在阴影方砖上的概率是( )A . 415B .13C . 15D .2158.如图,D 在AB 上,E 在AC 上,且∠B=∠C ,则下列条件中,无法判定△ABE ≌△ACD 的是( )A .AD=AEB .AB=AC C .BE=CD D .∠AEB=∠ADC 9.化简1(1)(1)n n a a +-+-(n 为正整数)的结果为( ) A .0B . -2C . 2D .2 或-2 10.下列叙述正确的是( )A .5 不是代数式B .一个字母不是代数式C .x 的 5 倍与 y 的14的差可表示为 5x-14yD .2s R π=是代数式 二、填空题如图,小明的身高是1.7m ,他的影长是2m ,同一时刻学校旗杆的影长是10m ,则旗杆的高是_____m .12.一只口袋内装有3个红球,3 个白球,5个黄球,这些球除颜色外没有其它区别,从中任意取一球,则取得红球的概率为 .13. 反比例函数y =k x(k>0)在第一象限内的图象如图,点M 是图象上一点,MP 垂直x 轴于点P ,如果△MOP 的面积为1,那么k 的值是 .214.如图,△ABC 是等边三角形,P 是三角形内任一点,PD ∥AB ,PE ∥BC ,PF ∥AC ,若△ABC 周长为12,PD+PE+PF= .15.一元二次方程(x -1)(x -2)=0的两个根为x 1,x 2,且x 1>x 2,则x 1-2x 2=_______.16.如果2x -+是二次根式,那么x 的取值范围是 .17.等腰三角形的周长为 16,则腰长y 关于底边x 的函数解析式是: .18.如图,EF ⊥AB 于点F ,CD ⊥AB 于点D ,∠l=∠2,则图中互相平行的直线是 .19.有一个两位数,数字之和为 11,把这个两位数的个位数字与十位数字对调,所得的新数比原数大63,则原两位数为 .20. 甲水池有水 42吨,乙水池有水18 吨,若甲水池的水每小时流入乙水池 2吨,则 小时后,甲水池的水与乙水池的水一样多.21.用四舍五入法取l29543的近似值,保留3个有效数字,并用科学记数法表示是 .三、解答题22.一个人在公路上从东向西行走,在公路一旁顺次有两座建筑物A 、B ,请画出:(1)人在位置C 时,所能看到的建筑物B 的那部分;(2)行走的人最早看不见建筑物B 的位置E .23.如图,这两个四边形相似吗?请说明理由.24.剪一块面积为150cm 2的长方形铁片,使它的长比宽多5 cm ,这块铁片应怎样剪?25.如图,一块三角形模具的阴影部分已破损.(1)只要从残留的模具片中度量出哪些边、角,就可以不带残留的模具片到店铺加工一块与原来的模具ABC 的形状和大小完全相同的模具A B C '''?请简要说明理由.(2)作出模具A B C '''△的图形.(要求:尺规作图,保留作图痕迹,不写作法和证明)26.某山区有23名中、小学生因贫困失学需要捐款.捐助一名中学生的学习需要x 元,一名 BA小学生的学习需要y元.我校学生积极捐款,各年级学生的捐款数额、恰好资助的贫困学生人数的部分情况如下表:捐款数额(元)资助贫困中学生人数资助贫困小学生人数初一年级400024初二年级420033初三年级4(1)求x、y的值;(2)已知初三年级学生的捐款解决了剩余贫困中、小学生的学习费用,请将初三年级资助的贫困小学生人数和初三年级的捐款数额直接填入表中(不需写出计算过程).27.如图,方格中有一条美丽可爱的小金鱼.(1)若方格的边长为1,则小鱼的面积为.(2)画出小鱼向左平移3格后的图形(不要求写作图步骤和过程).28.如图,将面积为2a的小正方形和面积为2b的大正方形拼在一起(0>>).b a(1)试用含a、b的代数式表示△ABC的面积;(2)当3a=,5b=时,计算△ABC的面积.29.一班36个学生的期末考试与取得各等成绩的人数如条形统计图所示,请据此画出相应的扇形统计图,并在扇形统计图上标明各等学生在全班学生中所占的百分比.30.观代营养学家用身体质量指数判断人体健康状况,这个指数等于人体质量(kg)与人体身高(m)平方的商,一个健康人的身体质量指数在20~25之间,身体质量指数高于30,属于不健康的胖.(1)设一个人的质量为W(kg),身高为h(m),求他的身体质量指数;(2)张老师的身高是1.75 m,他的质量是60kg,求他的身体质量指数,并判断张老师是否健康.【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.A2.C3.B4.A5.C6.D7.B8.D9.A10.C二、填空题11.8.512.31113.14.415.16.2x ≥17.182y x =-+(08)x <<18.EF ∥CD ,DE ∥BC19.2920.621.1.30×105三、解答题22.(1)实线范围;(2)虚线所示.23. 不相似,因为对应边不成比例.24.长 15 cm ,宽 10 cm25. (1)只要度量残留的三角形模具片的B C ∠∠,的度数和边BC 的长, 因为两角及其夹边对应相等的两个三角形全等;(2)略26. E(1)由题意得⎩⎨⎧=+=+420033400042y x y x ,解得⎩⎨⎧==600800y x ;(2)7400,7. 27.(1)16;(2)图略28. (1)2221111()()2222ABC s a b a b b a b a b ∆=+⨯+--+⨯= (2)把3a =,5b =代入212ABC s b ∆=得215252ABC S ∆=⨯= 29. 略30.(1)身体质量指数为2h ω (2)张老师的身体质量指数为26019.6(1.75)≈,张老师偏瘦,但基本健康.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2015年浙江省湖州市中考数学试卷一、选择题(共10小题,每小题3分,满分30分)1.(3分)(2015•湖州)﹣5的绝对值为()D.A.﹣5 B.5C.﹣2.(3分)(2015•湖州)当x=1时,代数式4﹣3x的值是()A.1B.2C.3D.43.(3分)(2015•湖州)4的算术平方根是()A.±2 B.2C.﹣2 D.4.(3分)(2015•湖州)若一个圆锥的侧面展开图是半径为18cm,圆心角为240°的扇形,则这个圆锥的底面半径长是()A.6cm B.9cm C.12cm D.18cm5.(3分)(2015•湖州)已知一组数据的方差是3,则这组数据的标准差是()A.9B.3C.D.6.(3分)(2015•湖州)如图,已知在△ABC中,CD是AB边上的高线,BE平分∠ABC,交CD于点E,BC=5,DE=2,则△BCE的面积等于()A.10 B.7C.5D.47.(3分)(2015•湖州)一个布袋内只装有1个黑球和2个白球,这些球除颜色外其余都相同,随机摸出一个球后放回并搅匀,再随机摸出一个球,则两次摸出的球都是黑球的概率是()A.B.C.D.8.(3分)(2015•湖州)如图,以点O为圆心的两个圆中,大圆的弦AB切小圆于点C,OA 交小圆于点D,若OD=2,tan∠OAB=,则AB的长是()A.4B.2C.8D.49.(3分)(2015•湖州)如图,AC是矩形ABCD的对角线,⊙O是△ABC的内切圆,现将矩形ABCD按如图所示的方式折叠,使点D与点O重合,折痕为FG.点F,G分别在边AD,BC上,连结OG,DG.若OG⊥DG,且⊙O的半径长为1,则下列结论不成立的是()A.C D+DF=4 B.C D﹣DF=2﹣3 C.B C+AB=2+4 D.B C﹣AB=2 10.(3分)(2015•湖州)如图,已知在平面直角坐标系xOy中,O是坐标原点,点A是函数y=(x<0)图象上一点,AO的延长线交函数y=(x>0,k是不等于0的常数)的图象于点C,点A关于y轴的对称点为A′,点C关于x轴的对称点为C′,交于x轴于点B,连结AB,AA′,A′C′.若△ABC的面积等于6,则由线段AC,CC′,C′A′,A′A所围成的图形的面积等于()A.8B.10 C.3D.4二、填空题(共6小题,每小题4分,满分24分)11.(4分)(2015•湖州)计算:23×()2=.12.(4分)(2015•湖州)放学后,小明骑车回家,他经过的路程s(千米)与所用时间t(分钟)的函数关系如图所示,则小明的骑车速度是千米/分钟.13.(4分)(2015•湖州)在“争创美丽校园,争做文明学生”示范校评比活动中,10位评委给某校的评分情况下表所示:评分(分)80 85 90 95评委人数 1 2 5 2则这10位评委评分的平均数是分.14.(4分)(2015•湖州)如图,已知C,D是以AB为直径的半圆周上的两点,O是圆心,半径OA=2,∠COD=120°,则图中阴影部分的面积等于.15.(4分)(2015•湖州)如图,已知抛物线C1:y=a1x2+b1x+c1和C2:y=a2x2+b2x+c2都经过原点,顶点分别为A,B,与x轴的另一交点分别为M,N,如果点A与点B,点M与点N都关于原点O成中心对称,则称抛物线C1和C2为姐妹抛物线,请你写出一对姐妹抛物线C1和C2,使四边形ANBM恰好是矩形,你所写的一对抛物线解析式是和.16.(4分)(2015•湖州)已知正方形ABC1D1的边长为1,延长C1D1到A1,以A1C1为边向右作正方形A1C1C2D2,延长C2D2到A2,以A2C2为边向右作正方形A2C2C3D3(如图所示),以此类推….若A1C1=2,且点A,D2,D3,…,D10都在同一直线上,则正方形A9C9C10D10的边长是.三、解答题(本题有8个小题,共66分)17.(6分)(2015•湖州)计算:.18.(6分)(2015•湖州)解不等式组.19.(6分)(2015•湖州)已知y是x的一次函数,当x=3时,y=1;当x=﹣2时,y=﹣4,求这个一次函数的解析式.20.(8分)(2015•湖州)如图,已知BC是⊙O的直径,AC切⊙O于点C,AB交⊙O于点D,E为AC的中点,连结DE.(1)若AD=DB,OC=5,求切线AC的长;(2)求证:ED是⊙O的切线.21.(8分)(2015•湖州)为了深化课程改革,某校积极开展校本课程建设,计划成立“文学鉴赏”、“科学实验”、“音乐舞蹈”和“手工编织”等多个社团,要求每位学生都自主选择其中一个社团.为此,随机调查了本校各年级部分学生选择社团的意向,并将调查结果绘制成如下统计图表(不完整):选择意向所占百分比文学鉴赏 a科学实验35%音乐舞蹈 b手工编织10%其他 c根据统计图表中的信息,解答下列问题:(1)求本次调查的学生总人数及a,b,c的值;(2)将条形统计图补充完整;(3)若该校共有1200名学生,试估计全校选择“科学实验”社团的学生人数.22.(10分)(2015•湖州)某工厂计划在规定时间内生产24000个零件.若每天比原计划多生产30个零件,则在规定时间内可以多生产300个零件.(1)求原计划每天生产的零件个数和规定的天数;(2)为了提前完成生产任务,工厂在安排原有工人按原计划正常生产的同时,引进5组机器人生产流水线共同参与零件生产,已知每组机器人生产流水线每天生产零件的个数比20个工人原计划每天生产的零件总数还多20%.按此测算,恰好提前两天完成24000个零件的生产任务,求原计划安排的工人人数.23.(10分)(2015•湖州)问题背景已知在△ABC中,AB边上的动点D由A向B运动(与A,B不重合),点E与点D同时出发,由点C沿BC的延长线方向运动(E不与C重合),边结DE交AC于点F,点H是线段AF上一点.(1)初步尝试如图1,若△ABC是等边三角形,DH⊥AC,且点D,E的运动速度相等.求证:HF=AH+CF.小五同学发现可以由以下两种思路解决此问题:思路一:过点D作DG∥BC,交AC于点G,先证DH=AH,再证GF=CF,从而证得结论成立;思路二:过点E作EM⊥AC,交AC的延长线于点M,先证CM=AH,再证HF=MF,从而证得结论成立.请你任选一种思路,完整地书写本小题的证明过程(如用两种方法作答,则以第一种方法评分);(2)类比探究如图2,若在△ABC中,AB=AC,∠ADH=∠BAC=36°,且D,E的运动速度之比是:1,求的值;(3)延伸拓展如图3,若在△ABC中,AB=AC,∠ADH=∠BAC=36°,记=m,且点D,E运动速度相等,试用含m的代数式表示(直接写出结果,不必写解答过程).24.(12分)(2015•湖州)已知在平面直角坐标系xOy中,O为坐标原点,线段AB的两个端点A(0,2),B(1,0)分别在y轴和x轴的正半轴上,点C为线段AB的中点,现将线段BA绕点B按顺时针方向旋转90°得到线段BD,抛物线y=ax2+bx+c(a≠0)经过点D.(1)如图1,若该抛物线经过原点O,且a=﹣.①求点D的坐标及该抛物线的解析式;②连结CD,问:在抛物线上是否存在点P,使得∠POB与∠BCD互余?若存在,请求出所有满足条件的点P的坐标,若不存在,请说明理由;(2)如图2,若该抛物线y=ax2+bx+c(a≠0)经过点E(1,1),点Q在抛物线上,且满足∠QOB与∠BCD互余.若符合条件的Q点的个数是4个,请直接写出a的取值范围.2015年浙江省湖州市中考数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.(3分)(2015•湖州)﹣5的绝对值为()D.A.﹣5 B.5C.﹣考点:绝对值.分析:根据绝对值的概念:数轴上某个数与原点的距离叫做这个数的绝对值可直接得到答案.解答:解:﹣5的绝对值为5,故选:B.点评:此题主要考查了绝对值,关键是掌握绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.(3分)(2015•湖州)当x=1时,代数式4﹣3x的值是()A.1B.2C.3D.4考点:代数式求值.专题:计算题.分析:把x的值代入原式计算即可得到结果.解答:解:当x=1时,原式=4﹣3=1,故选A.点评:此题考查了代数式求值,熟练掌握运算法则是解本题的关键.3.(3分)(2015•湖州)4的算术平方根是()A.±2 B.2C.﹣2 D.考点:算术平方根.分析:根据开方运算,可得一个数的算术平方根.解答:解:4的算术平方根是2,故选:B.点评:本题考查了算术平方根,注意一个正数只有一个算术平方根.4.(3分)(2015•湖州)若一个圆锥的侧面展开图是半径为18cm,圆心角为240°的扇形,则这个圆锥的底面半径长是()A.6cm B.9cm C.12cm D.18cm考点:圆锥的计算.分析:利用弧长公式可得圆锥的侧面展开图的弧长,除以2π即为圆锥的底面半径.解答:解:圆锥的弧长为:=24π,∴圆锥的底面半径为24π÷2π=12,故选C.点评:考查了圆锥的计算,用到的知识点为:圆锥的侧面展开图的弧长等于圆锥的底面周长;5.(3分)(2015•湖州)已知一组数据的方差是3,则这组数据的标准差是()A.9B.3C.D.考点:标准差;方差.分析:根据标准差是方差的算术平方根,即可得出答案.解答:解:∵数据的方差是S2=3,∴这组数据的标准差是;故选D.点评:本题考查了标准差,关键是掌握标准差和方差的关系,标准差即方差的算术平方根;注意标准差和方差一样都是非负数.6.(3分)(2015•湖州)如图,已知在△ABC中,CD是AB边上的高线,BE平分∠ABC,交CD于点E,BC=5,DE=2,则△BCE的面积等于()A.10 B.7C.5D.4考点:角平分线的性质.分析:作EF⊥BC于F,根据角平分线的性质求得EF=DE=2,然后根据三角形面积公式求得即可.解答:解:作EF⊥BC于F,∵BE平分∠ABC,ED⊥AB,EF⊥BC,∴EF=DE=2,∴S△BCE=BC•EF=×5×2=5,故选C.点评:本题考查了角的平分线的性质以及三角形的面积,作出辅助线求得三角形的高是解题的关键.7.(3分)(2015•湖州)一个布袋内只装有1个黑球和2个白球,这些球除颜色外其余都相同,随机摸出一个球后放回并搅匀,再随机摸出一个球,则两次摸出的球都是黑球的概率是()A.B.C.D.考点:列表法与树状图法.分析:列表将所有等可能的结果列举出来,利用概率公式求解即可.解答:解:列表得:黑白白黑(黑,黑)(黑,白)(黑,白)白(黑,白)(白,白)(白,白)白(黑,白)(白,白)(白,白)∵共9种等可能的结果,两次都是黑色的情况有1种,∴两次摸出的球都是黑球的概率为,故选D.点评:本题考查了列表法与树状图法的知识,解决本题时采用了两个独立事件同时发生的概率等于两个独立事件单独发生的概率的积,难度不大.8.(3分)(2015•湖州)如图,以点O为圆心的两个圆中,大圆的弦AB切小圆于点C,OA 交小圆于点D,若OD=2,tan∠OAB=,则AB的长是()A.4B.2C.8D.4考点:切线的性质.分析:连接OC,利用切线的性质知OC⊥AB,由垂径定理得AB=2AC,因为tan∠OAB=,易得=,代入得结果.解答:解:连接OC,∵大圆的弦AB切小圆于点C,∴OC⊥AB,∴AB=2AC,∵OD=2,∴OC=2,∵tan∠OAB=,∴AC=4,∴AB=8,故选C.点评:本题主要考查了切线的性质和垂径定理,连接过切点的半径是解答此题的关键.9.(3分)(2015•湖州)如图,AC是矩形ABCD的对角线,⊙O是△ABC的内切圆,现将矩形ABCD按如图所示的方式折叠,使点D与点O重合,折痕为FG.点F,G分别在边AD,BC上,连结OG,DG.若OG⊥DG,且⊙O的半径长为1,则下列结论不成立的是()A.C D+DF=4 B.C D﹣DF=2﹣3 C.B C+AB=2+4 D.B C﹣AB=2考点:三角形的内切圆与内心;翻折变换(折叠问题).分析:设⊙O与BC的切点为M,连接MO并延长MO交AD于点N,证明△OMG≌△GCD,得到OM=GC=1,CD=GM=BC﹣BM﹣GC=BC﹣2.设AB=a,BC=b,AC=c,⊙O的半径为r,⊙O是Rt△ABC的内切圆可得r=(a+b﹣c),所以c=a+b﹣2.在Rt△ABC 中,利用勾股定理求得(舍去),从而求出a,b的值,所以BC+AB=2+4.再设DF=x,在Rt△ONF中,FN=,OF=x,ON=,由勾股定理可得,解得x=4,从而得到CD﹣DF=,CD+DF=.即可解答.解答:解:如图,设⊙O与BC的切点为M,连接MO并延长MO交AD于点N,∵将矩形ABCD按如图所示的方式折叠,使点D与点O重合,折痕为FG,∴OG=DG,∵OG⊥DG,∴∠MGO+∠DGC=90°,∵∠MOG+∠MGO=90°,∴∠MOG=∠DGC,在△OMG和△GCD中,∴△OMG≌△GCD,∴OM=GC=1,CD=GM=BC﹣BM﹣GC=BC﹣2.∵AB=CD,∴BC﹣AB=2.设AB=a,BC=b,AC=c,⊙O的半径为r,⊙O是Rt△ABC的内切圆可得r=(a+b﹣c),∴c=a+b﹣2.在Rt△ABC中,由勾股定理可得a2+b2=(a+b﹣2)2,整理得2ab﹣4a﹣4b+4=0,又∵BC﹣AB=2即b=2+a,代入可得2a(2+a)﹣4a﹣4(2+a)+4=0,解得(舍去),∴,∴BC+AB=2+4.再设DF=x,在Rt△ONF中,FN=,OF=x,ON=,由勾股定理可得,解得x=4,∴CD﹣DF=,CD+DF=.综上只有选项A错误,故选A.点评:本题考查了三角形的内切圆和内心,切线的性质,勾股定理,矩形的性质等知识点的综合应用,解决本题的关键是三角形内切圆的性质.10.(3分)(2015•湖州)如图,已知在平面直角坐标系xOy中,O是坐标原点,点A是函数y=(x<0)图象上一点,AO的延长线交函数y=(x>0,k是不等于0的常数)的图象于点C,点A关于y轴的对称点为A′,点C关于x轴的对称点为C′,交于x轴于点B,连结AB,AA′,A′C′.若△ABC的面积等于6,则由线段AC,CC′,C′A′,A′A所围成的图形的面积等于()A.8B.10 C.3D.4考点:反比例函数综合题.分析:过A作AD⊥x轴于D,连接OA′,设A(a,),C(b,),由△OAD∽△BCO,得到==,根据反比例函数的系数k的几何意义得到S△ADO=,S△BOC=,求出k2=,得到k=﹣,根据S△ABC=S△AOB+S△BOC=(﹣)•b+=6,列出关于k的方程k2+k﹣12=0,求得k=3,由于点A关于y轴的对称点为A′,点C关于x轴的对称点为C′,得到OA′,OC′在同一条直线上,于是得到由线段AC,CC′,C′A′,A′A所围成的图形的面积=S△OBC+S△OBC′+S△OAA′=10.解答:解:过A作AD⊥x轴于D,连接OA′,∵点A是函数y=(x<0)图象上一点,∴设A(a,),∵点C在函数y=(x>0,k是不等于0的常数)的图象上,∴设C(b,),∵AD⊥BD,BC⊥BD,∴△OAD∽△BCO,∴==,∵S△ADO=,S△BOC=,∴k2=,∴k=﹣,∵S△ABC=S△AOB+S△BOC=(﹣)•b+=6,∴k2﹣=12,∴k2+k﹣12=0,解得:k=3,k=﹣4(不合题意舍去),∵点A关于y轴的对称点为A′,点C关于x轴的对称点为C′,∴∠1=∠2,∠3=∠4,∴∠1+∠4=∠2+∠3=90°,∴OA′,OC′在同一条直线上,∴S△OBC′=S△OBC==,∵S△OAA′=2S△OAD=1,∴由线段AC,CC′,C′A′,A′A所围成的图形的面积=S△OBC+S△OBC′+S△OAA′=10.故选B.点评:本题考查了反比例函数的图象的性质,系数k的几何意义,相似三角形的判定和性质,轴对称的性质,正确的理解轴对称图形的性质是解题的关键.二、填空题(共6小题,每小题4分,满分24分)11.(4分)(2015•湖州)计算:23×()2=2.考点:有理数的乘方;有理数的乘法.分析:根据有理数的乘方,即可解答.解答:解:23×()2=8×=2,故答案为:2.点评:本题考查了有理数的乘方,解决本题的关键是熟记有理数乘方的定义.12.(4分)(2015•湖州)放学后,小明骑车回家,他经过的路程s(千米)与所用时间t(分钟)的函数关系如图所示,则小明的骑车速度是0.2千米/分钟.考点:函数的图象.分析:根据函数图象的纵坐标,可得路程,根据函数图象的横坐标,可得时间,根据路程与时间的关系,可得答案.解答:解:由纵坐标看出路程是2千米,由横坐标看出时间是10分钟,小明的骑车速度是2÷10=0.2(千米/分钟),故答案为:0.2.点评:本题考查了函数图象,观察函数图象的纵坐标得出路程,观察函数图象的横坐标得出时间,利用了路程与时间的关系.13.(4分)(2015•湖州)在“争创美丽校园,争做文明学生”示范校评比活动中,10位评委给某校的评分情况下表所示:评分(分)80 85 90 95评委人数 1 2 5 2则这10位评委评分的平均数是89分.考点:加权平均数.分析:平均数的计算方法是求出所有数据的和,然后除以数据的总个数.解答:解:这10位评委评分的平均数是:(80+85×2+90×5+95×2)÷10=89(分).故答案为89.点评:本题考查的是加权平均数的求法.本题易出现的错误是求80,85,90,95这四个数的平均数,对平均数的理解不正确.14.(4分)(2015•湖州)如图,已知C,D是以AB为直径的半圆周上的两点,O是圆心,半径OA=2,∠COD=120°,则图中阴影部分的面积等于π.考点:扇形面积的计算.分析:图中阴影部分的面积=半圆的面积﹣圆心角是120°的扇形的面积,根据扇形面积的计算公式计算即可求解.解答:解:图中阴影部分的面积=π×22﹣=2π﹣π=π.答:图中阴影部分的面积等于π.故答案为:π.点评:考查了扇形面积的计算,求阴影面积的主要思路是将不规则图形面积转化为规则图形的面积.15.(4分)(2015•湖州)如图,已知抛物线C1:y=a1x2+b1x+c1和C2:y=a2x2+b2x+c2都经过原点,顶点分别为A,B,与x轴的另一交点分别为M,N,如果点A与点B,点M与点N都关于原点O成中心对称,则称抛物线C1和C2为姐妹抛物线,请你写出一对姐妹抛物线C1和C2,使四边形ANBM恰好是矩形,你所写的一对抛物线解析式是y=﹣x2+2x 和y=x2+2x.考点:二次函数图象与几何变换.专题:新定义.分析:连接AB,根据姐妹抛物线的二次项的系数互为相反数,一次项系数相等且不等于零,常数项都是零,设抛物线C1的解析式为y=ax2+bx,根据四边形ANBM恰好是矩形可得△AOM是等边三角形,设OM=2,则点A的坐标是(1,),求出抛物线C1的解析式,从而求出抛物线C2的解析式.解答:解:连接AB,根据姐妹抛物线的定义,可得姐妹抛物线的二次项的系数互为相反数,一次项系数相等且不等于零,常数项都是零,设抛物线C1的解析式为y=ax2+bx,根据四边形ANBM恰好是矩形可得:OA=OM,∵OA=MA,∴△AOM是等边三角形,设OM=2,则点A的坐标是(1,),则,解得:则抛物线C1的解析式为y=﹣x2+2x,抛物线C2的解析式为y=x2+2x,故答案为:y=﹣x2+2x,y=x2+2x.点评:此题考查了二次函数的图象与几何变换,用到的知识点是姐妹抛物线的定义、二次函数的图象与性质、矩形的判定,关键是根据姐妹抛物线的定义得出姐妹抛物线的二次项的系数、一次项系数、常数项之间的关系.16.(4分)(2015•湖州)已知正方形ABC1D1的边长为1,延长C1D1到A1,以A1C1为边向右作正方形A1C1C2D2,延长C2D2到A2,以A2C2为边向右作正方形A2C2C3D3(如图所示),以此类推….若A1C1=2,且点A,D2,D3,…,D10都在同一直线上,则正方形A9C9C10D10的边长是.考点:相似三角形的判定与性质;正方形的性质.专题:规律型.分析:延长D4A和C1B交于O,根据正方形的性质和三角形相似的性质即可求得各个正方形的边长,从而得出规律,即可求得正方形A9C9C10D10的边长.解答:解:延长D4A和C1B交于O,∵AB∥A2C1,∴△AOB∽△D2OC2,∴=,∵AB=BC 1=1,D C2=C1C2=2,∴==∴OC2=2OB,∴OB=BC2=3,∴OC2=6,设正方形A2C2C3D3的边长为x1,同理证得:△D2OC2∽△D3OC3,∴=,解得,x1=3,∴正方形A2C2C3D3的边长为3,设正方形A3C3C4D4的边长为x2,同理证得:△D3OC3∽△D4OC4,∴=,解得x2=,∴正方形A3C3C4D4的边长为;设正方形A4C4C5D5的边长为x3,同理证得:△D4OC4∽△D5OC5,∴=,解得x=,∴正方形A4C4C5D5的边长为;以此类推….正方形A n﹣1C n﹣1C n D n的边长为;∴正方形A9C9C10D10的边长为.故答案为.点评:本题考查了正方形的性质,相似三角形的判定和性质,求得前五个正方形的边长得出规律是解题的关键.三、解答题(本题有8个小题,共66分)17.(6分)(2015•湖州)计算:.考点:分式的加减法.专题:计算题.分析:原式利用同分母分式的减法法则计算,约分即可得到结果.解答:解:原式===a+b.点评:此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.18.(6分)(2015•湖州)解不等式组.考点:解一元一次不等式组.分析:先求出每个不等式的解集,再根据找不等式组解集的规律找出不等式组的解集即可.解答:解:∵解不等式①得:x<6,解不等式②得:x>1,∴不等式组的解集为1<x<6.点评:本题考查了解一元一次不等式组的应用,解此题的关键是能根据不等式的解集求出不等式组的解集,难度适中.19.(6分)(2015•湖州)已知y是x的一次函数,当x=3时,y=1;当x=﹣2时,y=﹣4,求这个一次函数的解析式.考点:待定系数法求一次函数解析式.分析:一次函数解析式为y=kx+b,将x与y的两对值代入求出k与b的值,即可确定出一次函数解析式.解答:解:设一次函数解析式为y=kx+b,将x=3,y=1;x=﹣2,y=﹣4代入得:,解得:k=1,b=﹣2.则一次函数解析式为y=x﹣2.点评:此题考查了待定系数法求一次函数解析式,熟练掌握待定系数法是解本题的关键.20.(8分)(2015•湖州)如图,已知BC是⊙O的直径,AC切⊙O于点C,AB交⊙O于点D,E为AC的中点,连结DE.(1)若AD=DB,OC=5,求切线AC的长;(2)求证:ED是⊙O的切线.考点:切线的判定与性质.分析:(1)连接CD,由直径所对的圆周角为直角可得:∠BDC=90°,即可得:CD⊥AB,然后根据AD=DB,进而可得CD是AB的垂直平分线,进而可得AC=BC=2OC=10;(2)连接OD,先由直角三角形中线的性质可得DE=EC,然后根据等边对等角可得∠1=∠2,由OD=OC,根据等边对等角可得∠3=∠4,然后根据切线的性质可得∠2+∠4=90°,进而可得:∠1+∠3=90°,进而可得:DE⊥OD,从而可得:ED是⊙O 的切线.解答:(1)解:连接CD,∵BC是⊙O的直径,∴∠BDC=90°,即CD⊥AB,∵AD=DB,OC=5,∴CD是AB的垂直平分线,∴AC=BC=2OC=10;(2)证明:连接OD,如图所示,∵∠ADC=90°,E为AC的中点,∴DE=EC=AC,∴∠1=∠2,∵OD=OC,∴∠3=∠4,∵AC切⊙O于点C,∴AC⊥OC,∴∠1+∠3=∠2+∠4=90°,即DE⊥OD,∴ED是⊙O的切线.点评:此题考查了切线的判定与性质,解题的关键是:熟记切线的判定定理与性质定理,经过半径的外端,并且垂直于这条半径的直线是圆的切线;圆的切线垂直于过切点的直径.21.(8分)(2015•湖州)为了深化课程改革,某校积极开展校本课程建设,计划成立“文学鉴赏”、“科学实验”、“音乐舞蹈”和“手工编织”等多个社团,要求每位学生都自主选择其中一个社团.为此,随机调查了本校各年级部分学生选择社团的意向,并将调查结果绘制成如下统计图表(不完整):选择意向所占百分比文学鉴赏 a科学实验35%音乐舞蹈 b手工编织10%其他 c根据统计图表中的信息,解答下列问题:(1)求本次调查的学生总人数及a,b,c的值;(2)将条形统计图补充完整;(3)若该校共有1200名学生,试估计全校选择“科学实验”社团的学生人数.考点:条形统计图;用样本估计总体;统计表.分析:(1)先计算出本次调查的学生总人数,再分别计算出百分比,即可解答;(2)根据百分比,计算出文学鉴赏和手工编织的人数,即可补全条形统计图;(3)用总人数乘以“科学实验”社团的百分比,即可解答.解答:解:(1)本次调查的学生总人数是:70÷35%=200(人),b=40÷200=20%,c=10÷200=5%,a=1﹣(35%+20%+10%+5%)=30%.(2)文学鉴赏的人数:30%×200=60(人),手工编织的人数:10%×200=20(人),如图所示,(3)全校选择“科学实验”社团的学生人数:1200×35%=420(人).点评:本题考查条形统计图,解决本题的关键是读懂图形,获取相关信息.22.(10分)(2015•湖州)某工厂计划在规定时间内生产24000个零件.若每天比原计划多生产30个零件,则在规定时间内可以多生产300个零件.(1)求原计划每天生产的零件个数和规定的天数;(2)为了提前完成生产任务,工厂在安排原有工人按原计划正常生产的同时,引进5组机器人生产流水线共同参与零件生产,已知每组机器人生产流水线每天生产零件的个数比20个工人原计划每天生产的零件总数还多20%.按此测算,恰好提前两天完成24000个零件的生产任务,求原计划安排的工人人数.考点:分式方程的应用;一元一次方程的应用.分析:(1)可设原计划每天生产的零件x个,根据时间是一定的,列出方程求得原计划每天生产的零件个数,再根据工作时间=工作总量÷工作效率,即可求得规定的天数;(2)可设原计划安排的工人人数为y人,根据等量关系:恰好提前两天完成24000个零件的生产任务,列出方程求解即可.解答:解:(1)设原计划每天生产的零件x个,依题意有=,解得x=2400,经检验,x=2400是原方程的根,且符合题意.∴规定的天数为24000÷2400=10(天).答:原计划每天生产的零件2400个,规定的天数是10天;(2)设原计划安排的工人人数为y人,依题意有[5×20×(1+20%)×+2400]×(10﹣2)=24000,解得y=480,经检验,y=480是原方程的根,且符合题意.答:原计划安排的工人人数为480人.点评:考查了分式方程的应用,一元一次方程的应用,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.此题等量关系比较多,主要用到公式:工作总量=工作效率×工作时间.23.(10分)(2015•湖州)问题背景已知在△ABC中,AB边上的动点D由A向B运动(与A,B不重合),点E与点D同时出发,由点C沿BC的延长线方向运动(E不与C重合),边结DE交AC于点F,点H是线段AF上一点.(1)初步尝试如图1,若△ABC是等边三角形,DH⊥AC,且点D,E的运动速度相等.求证:HF=AH+CF.小五同学发现可以由以下两种思路解决此问题:思路一:过点D作DG∥BC,交AC于点G,先证DH=AH,再证GF=CF,从而证得结论成立;思路二:过点E作EM⊥AC,交AC的延长线于点M,先证CM=AH,再证HF=MF,从而证得结论成立.请你任选一种思路,完整地书写本小题的证明过程(如用两种方法作答,则以第一种方法评分);(2)类比探究如图2,若在△ABC中,AB=AC,∠ADH=∠BAC=36°,且D,E的运动速度之比是:1,求的值;(3)延伸拓展如图3,若在△ABC中,AB=AC,∠ADH=∠BAC=36°,记=m,且点D,E运动速度相等,试用含m的代数式表示(直接写出结果,不必写解答过程).考点:相似形综合题.分析:(1)过点D作DG∥BC,交AC于点G,先证明△ADG是等边三角形,得出GD=AD=CE,再证明GH=AH,由ASA证明△GDF≌△CEF,得出GF=CF,即可得出结论;(2)过点D作DG∥BC,交AC于点G,先证出AH=GH=GD,AD=GD,由题意AD=CE,得出GD=CE,再证明△GDF≌△CEF,得出GF=CF,即可得出结论;(3)过点D作DG∥BC,交AC于点G,先证出DG=DH=AH,再证明△ADG∽△ABC,△ADG∽△DGH,△DGH∽△ABC,得出=m,=m,△DGH∽△ABC,得出=m,=m,证明△DFG∽△EFC,得出=m,=m,=,即可得出结果.解答:(1)证明(选择思路一):过点D作DG∥BC,交AC于点G,如图1所示:则∠ADG=∠B,∠AGD=∠ACB,∵△ABC是等边三角形,∴∠A=∠B=∠ACB=60°,∴∠ADG=∠AGD=∠A,∴△ADG是等边三角形,∴GD=AD=CE,∵DH⊥AC,∴GH=AH,∵DG∥BC,∴∠GDF=∠CEF,∠DGF=∠ECF,在△GDF和△CEF中,,∴△GDF≌△CEF(ASA),∴GF=CF,∴GH+GF=AH+CF,即HF=AH+CF;(2)解:过点D作DG∥BC,交AC于点G,如图2所示:则∠ADG=∠B=90°,∵∠BAC=∠ADH=30°,∴∠HGD=∠HDG=60°,∴AH=GH=GD,AD=GD,根据题意得:AD=CE,∴GD=CE,∵DG∥BC,∴∠GDF=∠CEF,∠DGF=∠ECF,在△GDF和△CEF中,,∴△GDF≌△CEF(ASA),∴GF=CF,∴GH+GF=AH+CF,即HF=AH+CF,∴=2;(3)解:,理由如下:过点D作DG∥BC,交AC于点G,如图3所示:则∠ADG=∠B,∠AGD=∠ACB,∵AB=AC,∠BAC=36°,∴∠ACB=∠B=∠ADG=∠AGD=72°,∵∠ADH=∠BAC=36°,∴AH=DH,∠DHG=72°=∠AGD,∴DG=DH=AH,△ADG∽△ABC,△ADG∽△DGH,∴=m,=m,∴△DGH∽△ABC,∴=m,∴=m,∵DG∥BC,∴△DFG∽△EFC,∴=m,∴=m,即=m,∴=,∴===.点评:本题是相似形综合题目,考查了等边三角形的判定与性质、相似三角形的判定与性质、全等三角形的判定与性质、等腰三角形的判定与性质等知识;本题难度较大,综合性强,特别是(2)(3)中,需要通过作辅助线证明三角形全等或三角形相似才能得出结果.24.(12分)(2015•湖州)已知在平面直角坐标系xOy中,O为坐标原点,线段AB的两个端点A(0,2),B(1,0)分别在y轴和x轴的正半轴上,点C为线段AB的中点,现将线段BA绕点B按顺时针方向旋转90°得到线段BD,抛物线y=ax2+bx+c(a≠0)经过点D.(1)如图1,若该抛物线经过原点O,且a=﹣.①求点D的坐标及该抛物线的解析式;②连结CD,问:在抛物线上是否存在点P,使得∠POB与∠BCD互余?若存在,请求出所有满足条件的点P的坐标,若不存在,请说明理由;(2)如图2,若该抛物线y=ax2+bx+c(a≠0)经过点E(1,1),点Q在抛物线上,且满足∠QOB与∠BCD互余.若符合条件的Q点的个数是4个,请直接写出a的取值范围.考点:二次函数综合题.分析:(1)①过点D作DF⊥x轴于点F,先通过三角形全等求得D的坐标,把D的坐标和a=﹣,c=0代入y=ax2+bx+c即可求得抛物线的解析式;②先证得CD∥x轴,进而求得要使得∠POB与∠BCD互余,则必须∠POB=∠BAO,设P的坐标为(x,﹣x2+x),分两种情况讨论即可求得;(2)若符合条件的Q点的个数是4个,则当a<0时,抛物线交于y轴的负半轴,当a>0时,最小值得<﹣1,解不等式即可求得.解答:解:(1)①过点D作DF⊥x轴于点F,如图1,∵∠DBF+∠ABO=90°,∠BAO+∠ABO=90°,∴∠DBF=∠BAO,又∵∠AOB=∠BFD=90°,AB=BD,在△AOB和△BFD中,,∴△AOB≌△BFD(AAS)∴DF=BO=1,BF=AO=2,∴D的坐标是(3,1),。

相关文档
最新文档