分段函数

合集下载

分段函数的极限

分段函数的极限

分段函数的极限分段函数是指由多个函数按照不同的自变量范围组合而成的一个函数。

在数学中,分段函数的极限是一个非常重要的概念和计算方法。

本文将介绍什么是分段函数的极限,以及如何计算分段函数的极限。

一、分段函数的定义分段函数是由多个函数组合而成的一个函数。

具体地说,它是指在不同的自变量范围内对应的函数是不同的。

例如,在区间(-∞,-1)内,我们定义f(x)=-x;在区间[-1,1]内,我们定义f(x)=x²;在区间(1,∞)内,我们定义f(x)=x+1。

这三个函数组合在一起,就构成了一个分段函数f(x)。

二、分段函数的极限定义在讨论分段函数的极限之前,我们需要先了解什么是函数的极限。

简单地讲,当自变量x无限接近于某个值a时,函数f(x)的值无限接近于某个数L,我们就称函数f(x)在x趋近于a的过程中极限为L,记为lim(x→a)f(x)=L。

例如,当x趋近于1时,f(x)=x²的极限为1。

与一般函数不同,分段函数在每个自变量范围内都有不同的函数式,因此在计算分段函数的极限时,我们需要对每个自变量范围内的函数分别进行讨论。

具体来说,我们需要分别讨论当x趋近于各个自变量范围中的端点时,函数值的趋势,以决定函数是否存在极限。

三、分段函数的极限计算方法对于一个分段函数f(x),我们可以在每个自变量范围内对应的函数上分别计算极限。

然后,我们需要比较每个自变量范围内的函数极限,以确定整个分段函数的极限是否存在。

以下是具体的计算步骤:(1)先找出函数f(x)的定义域和值域。

(2)对于每个自变量范围内的函数,我们需要使用极限的定义来计算它的极限。

例如,当x趋近于-2时,f(x)=x²-2x的极限为6;当x趋近于0时,f(x)=x+3的极限为3。

(3)比较每个自变量范围内的函数极限。

如果存在某个自变量范围,其内部的函数极限不存在或者不唯一,那么我们就认为分段函数的极限不存在。

否则,我们可以得出整个分段函数的极限为各个自变量范围内的函数极限的"局部极限"中的极限值。

定积分的分段函数法

定积分的分段函数法

定积分的分段函数法定积分是高等数学的一个重要分支,其作用广泛,可以用于求曲线下面的面积、质心、转动惯量等问题。

本文主要介绍定积分中的分段函数法,着重讲解如何利用分段函数法求解复杂问题。

1. 分段函数的定义分段函数指的是在自变量的定义域内,函数值由不同的公式或分支组成的函数。

通常情况下,我们用一条垂直于x轴的直线把自变量的定义域分成若干段,每一段内采用不同的函数公式。

假设f(x)在[a,b]区间内是一个分段函数,可以表示为f(x) = {f1(x) (x∈[a,x1)){f2(x) (x∈[x1,x2))...{fn(x) (x∈[xn,b])其中,[a,x1),[x1,x2),...,[xn,b] 是定义区间,f1(x), f2(x),...,fn(x) 是在对应的定义区间上定义的函数公式。

2. 分段函数法求解定积分在计算定积分时,当被积函数为分段函数时,就可以采用分段函数法对其进行求解。

我们以一个简单的例子来说明如何使用分段函数法求解定积分。

例:计算 $\int_0^2 |x-1|dx$由于|x-1|在不同的定义区间上取值不同,在[0,1] 和 [1,2]两个区间内,可以分别采用不同的函数公式进行计算。

因为在[0,1] 区间上,$|x-1|=1-x$,在[1,2] 区间上$|x-1|=x-1$,因此可以得到$\int_0^2 |x-1|dx = \int_0^1 (1-x)dx +\int_1^2 (x-1)dx$化简得到$\int_0^2 |x-1|dx=\int_0^1 dx-\int_0^1 xdx+\int_1^2 xdx -\int_1^2 dx$简化后得到$\int_0^2 |x-1|dx= [\frac{1}{2}x^2-x]_0^1 +[\frac{1}{2}x^2-x]_1^2$计算得到$\int_0^2 |x-1|dx=1$3. 复杂问题的分段函数法解法在实际问题中,被积函数往往比较复杂,可能包含多个分支和多个定义区间。

分段函数的特性

分段函数的特性

分段函数的特性
分段函数的特性是指函数在一定的区间内有不同的特性。

分段函数具有以下特性:
1.连续性:在分段函数中,对于任意两个区间,该函数都是连续的。

2.可导性:在分段函数中,可以对每个单独的区间求导,以求出其斜率。

3.极大极小值:在分段函数中,可以找到函数的极大值和极小值,但其极值不一定在函数的每个区间中。

4.单调性:在分段函数中,每个单独的区间都是单调的,不同的区间的单调性可能不同。

5.多次导数:在分段函数中,可以计算函数的多次导数,以求出其形式。

6.泰勒级数:在分段函数中,可以对函数求取泰勒级数,以计算函数的值。

7.积分:在分段函数中,可以对函数求取积分,以计算函数的定积分或不定积分。

8.可微函数性:在分段函数中,可以将不同的函数进行可微函数处理,以计算整个函数的定性和定量特性。

9.函数表:在分段函数中,可以用函数表来表示函数的曲线,以便于直观表达和分析。

10.函数图形:在分段函数中,可以通过作图的方式表示函数的曲线,从而可视化地探究函数的特性。

分段函数

分段函数

(2)若f(a)=3,求a的值;
(3)求f(x)的定义域与值域.
(1) f ( 7 ) 7 2 1 4 4 4
7 1 1 1 f f ( ) f ( ) 2 4 4 4 2
7 1 f f f ( ) f ( ) 1 4 2 (2)∵f(a)=3,
y
x 2, x 2 y 2 x , x 2
o
1
2
x
x2
x2
定义: 有些函数在它的定义域中,对于自变量 x的不同取值范围,对应法则不同,这样的 函数通常称为分段函数.
注意: 1、分段函数是一个函数,而不是几个函数 . 2、分段函数的定义域是各段定义域的 并集,值域也是各段值域的并集
1 1 = 2× 2×(2+1)-(2-x)(2-x) 3 1 2 5 = - 2 x +2x- 4 ≤x≤2. 2
2×2 1 1 x2 8
×
1 3 ≤x< . 2 2
2
+(x-
1 )× 2 2
∴所求函数的关系式为 1 2 1 x 0x 2 2 1 1 1 3 y x x 2 8 2 2 3 1 x 2 2x 5 x2 2 4 2 ∴函数的定义域为[0,2],值域为[0, ] 【评析】分段函数的定义域是各部分x的取值范围的并集,值 域也是y在各部分值的取值范围的并集,因此,函数的解析式、 定义域、值域通常是逐段求解,最后综合求出.
求f{f[f(3)]}
【分析】求分段函数的函数值时,一般先确定自变量的取值 在定义域的哪个子区间,然后用与这个区间相对应的对应关 系来求函数值.
【解析】∵3∈[2,+∞),
∴f(3)=32-4×3=-3. ∵-3∈(-∞,-2],

分段函数

分段函数

分段函数专题分段函数是自变量在不同的取值范围内,其对应法则也不同的函数。

在表达形式上可表达如下:f (x )=⎪⎪⎩⎪⎪⎨⎧)()()(21x g x g x g n 其图象表现为若干段不一定连续的曲线。

新课程中有下列相关分段函数问题:3画出下列函数的图象,指出函数的单调区间,并求出函数的最大值或最小值。

(2)]1,1[,122-∈--=x x x y(4)⎪⎩⎪⎨⎧-∞∈-+-+∞∈-+=)0,(,12),0[,12)(22x x x x x x x f 。

6、已知函数,12)(2--=x x x f ,判断函数的奇偶性,并作出函数的图象。

(必修1 p55)例4、画出函数x x f 2log )(=的图象,并由图象写出它的单调区间。

(必修1 p69 ) 2、画出下列函数的图象:(1);21x x y ++=(2)x x y -=2。

6、画出函数⎪⎩⎪⎨⎧<=>-=0,00,20,43)(2x x x x x f 的图象,并求出),2(-f ),1(f )),2((f f 的值。

(必修1p94 )分段函数是一个函数,而不是几个函数,它是一类表达形式特殊的重要函数,跟普通函数一样存在下列一些常见问题:(1)作图象,(2)求解析式,(3)求自变量的取值或取值范围(4)求函数值的取值或取值范围(5)函数性质:最值性、奇偶性、单调性、反函数的存在性等讨论、求解与应用。

只是表达形式特殊,理解掌握有一定困难,加之在现实中有广泛应用,因而高考时有突变。

(一) 分段函数的图象及其应用: A 作图象1、 作函数y=x 2-2|x |+1的图象。

2、作y=⎪⎩⎪⎨⎧+∞∈+-∈+-∞∈),4(820]4,0[8)0,(8x x x x x 及x x x y +--=432的图象。

B 由图象确定函数最值、单调性等性质、确定方程解的个数等:3、已知函数22)(,12)(x x g x f x -=-=, 函数()F x 定义如下: 当|()|()f x g x ≥时,()|()|F x f x =; 当|()|()f x g x <时, ()()F x g x =-.那么F (x ) ( )A 、有最小值0,无最大值,B 、有最小值2-,无最大值,C 、有最大值1,无最小值,D 、无最小值,也无最大值。

分段函数

分段函数

分段函数分段函数:在函数定义域内,对于变量x 取值的不同区间,有着不同的对应关 系。

分段函数是一个函数,不是几个函数。

(分段函数的定义域是各 段定义域的并集,值域是各段值域的并集。

) 分段函数的求解:典型例题: 0,l o g 3>x x例1:已知函数=)(x f 0,2≥x x ,则))91((f f =1,3≤x x例2:已知函数=)(x f 1,>-x x ,若 =)(x f 2,则x=例3:书上P27的练习2,3题练习:1.设()1232,2()log 1,2x e x f x x x -⎧<⎪=⎨-≥⎪⎩,则((2))f f 的值为( )A.0B.1C.2D.32.设函数10221,0,()()1,0x x f x f x x x -⎧-≤⎪=>⎨⎪>⎩若,则0x 的取值范围是( ) A .)1,1(-B .),1-(+∞C .),0()2,(+∞--∞D .),1()1,(+∞--∞ 1, x>00, x=0 1,x 为有理数3.设=)(x f -1, x<0,=)(x g 0,x 为无理数,则))((∏g f 的值为0,2>x x4.设函数=)(x f 0,1≤+x x ,若0)1()(=+f a f ,则实数a 的值等于5.已知函数实数a ≠0 ,函数=)(x f 1,2<+x a x ,若)1()1(a f a f +=- , 则a= 1,2≥--x a x函数的单调性一、增函数的概念(1)一般地,设函数y=f(x)的定义域为A ,如果对于定义域A 内的某个区间D 内的任意两个自变量x 1,x 2,当x 1<x 2时,都有f(x 1)<f(x 2),那么就说f(x)在区间D 上是增函数.注意:1 函数的单调性是在定义域内的某个区间上的性质,是函数的局部性质;2 必须是对于区间D 内的任意两个自变量x 1,x 2;当x 1<x 2时,总有f(x 1)<f(x 2) .(2)函数的单调性定义如果函数y=f(x)在某个区间上是增函数或是减函数,那么就说函数y=f(x)在这一区间具有(严格的)单调性,区间D 叫做y=f(x)的单调区间。

分段函数-PPT课件

分段函数-PPT课件
栏目 导引
第三章 函数的概念与性质
(函数定义域的并集; ②分段函数的值域是各段函数值域的并集. (2)绝对值函数的定义域、值域通常要转化为分段函数来解决.
栏目 导引
第三章 函数的概念与性质
已知函数 f(x)=x12,,x->11或≤xx<≤-11,,则函数的定 义域为________,值域为________. 解析:由已知得定义域为[-1,1]∪(1,+∞)∪(-∞,-1)= R,又 x∈[-1,1]时,x2∈[0,1],故函数的值域为[0,1]. 答案:R [0,1]
栏目 导引
第三章 函数的概念与性质
分段函数求值问题 已知函数 f(x)=xx+2+12,x,x≤--2<2x,<2,试求 f(-5),
2x-1,x≥2. f(- 3),ff-52的值. 【解】 由-5∈(-∞,-2],- 3∈(-2,2),-52∈(-∞, -2],知 f(-5)=-5+1=-4,

______________.
答案:(-∞,0)∪(0,+∞) {-2}∪(0,+∞)
栏目 导引
第三章 函数的概念与性质
分段函数的定义域、值域
(1)已知函数 f(x)=|xx|,则其定义域为( )
A.R
B.(0,+∞)
C.(-∞,0)
D.(-∞,0)∪(0,+∞)
-x2+1,0<x<1,
(2)函数 f(x)=0,x=0,
栏目 导引
第三章 函数的概念与性质
2.分段函数的图象 分段函数有几段,它的图象就由几条曲线组成.在同一直角坐 标系中,根据每段的定义区间和表达式依次画出图象,要注意 每段图象的端点是空心点还是实心点,组合到一起就得到整个 分段函数的图象. ■名师点拨 在画每一段函数图象时,可以先不管定义域的限制,用虚线作 出其图象,再用实线保留其在该段定义区间内的相应图象即可, 即“分段作图”.

分段函数

分段函数

函数 中 的取值 范 围时 ,要确 保做
赢 熹
的值 域是 ( )

后g -  ̄f ( 3 ) 的值代 入 函数l , ( ) 相应
的解析式中, 求 3 ) ) .分段 函数 y = t 与 函数y ) 的图象 自左 向右依 次 交 于 四个 不 同 点A, 曰, C , D .若 A B = B C . 则实数t 的值为— 思索 — 一
号 ≤ 6 觯
增 函数 .则 实 数 a 的取 值 范 围 是
性, 偶 函数 的 图 象 关 于Y 轴对称 , 抛 物线 的图 象关于对称轴 对称 , 从而 得 到点 B 的 坐标 . 求出 的值 .
围, 即可得厂 ( ) 的值域.
破解

由题 意 :
思索
分段 函数单 调递增 , 则
b = 2 , c 一1 .A, B两 点 关 于 = 一 1 对称 , 所 以 + B = 一 2; B, C两 点 关 于 Y 轴 对 称, AB = B C,所 以X B = — X _ A + = - X — cx s + x c =O,


+ 2 , ∈( 一 ∞, 一 1 ) u( 2 , + 。 。 ) ,

1 . 分段函数 的定义域和值域
分 段 函数 的 定 义 域 为 每一 段 函数定义域的并集 ,在表示每一段
到 定 义 域不 重 不漏 ,即交 集 为 空 集 ,并集 为整个定义域.值域应 是
其 定 义域 内不 同子 集上 各 关 系 式 的值域 的并集.
倒1 设函数g ( ) = z 一 2 ( ∈
是几个 函数 .只不过在定义域 的不
( 4 ) 画分 段 函数 图象 时一 定要

分段函数写法

分段函数写法

分段函数的写法
分段函数,也称为分段定义函数或多元函数,是由多个子函数定义的函数,每个子函数都在函数的整体域的不同区间或子域上定义。

分段函数可以这样写:
f(x) = { f1(x), 如果x属于区间A
f2(x), 如果x属于区间B
...
fn(x), 如果x属于区间n }
其中,每个fi(x)是在不同的区间Ai上定义的子函数。

这些区间Ai 必须互相排斥,这意味着任意两个区间的交集必须为空。

另外需要注意的是,属于同一区间的函数值必须相等,否则该函数不连续。

函数在任意两个或多个区间相接处必须是连续的,以使函数在这些点上的值相等。

总之,分段函数是由多个子函数定义的函数,每个子函数都在函数的整体域的不同区间上定义。

区间必须互相排斥,函数在任意两个或多个区间相接处必须是连续的。

专题05分段函数(解析版)

专题05分段函数(解析版)

专题05分段函数(解析版)分段函数是指自变量在两个或两个以上不同的范围内,有不同的对应法则的函数,它是一个函数,却又常常被学生误认为是几个函数;它的定义域是各段函数定义域的并集,其值域也是各段函数值域的并集.由于它在理解和掌握函数的定义,函数的性质等知识的程度的考察上有较好的作用.分段函数情形复杂,综合性强,即能有效考查复杂函数的图象和性质,又能体现分类讨论,数形结合的数学思想方法.因此,分段函数倍受高考命题人的青睐,是历年高考中的热点题型之一.分段函数易错点易错点1:定义域与相应的解析式分不清,用错解析式来解决问题;易错点2:忽略分段点的特殊性,要明确分段点的性质;易错点3:混淆分段函数单调性与其他函数单调性判断的不同点;易错点4:不能正确做出分段函数的图像;在分段函数性质的考查中,若能画出其大致图像,定义域,值域,最值,单调性,奇偶性等问题就会迎刃而解, 方程,不等式等可用数形结合思想,等价转化思想,分类讨论思想及函数思想来解,使问题得到大大简化,效果明显.题组一1.(2015新课标Ⅱ)设函数211log (2),1()2,1x x x f x x -+-<⎧=⎨⎩≥,则2(2)(log 12)f f -+= A .3 B .6 C .9 D .12【解析】由于2(2)1log 43f -=+=,22log 121log 62(log 12)226f -===, 所以2(2)(log 12)f f -+=9.2.设2,0.()log ,0.x e x g x x x ⎧≤=⎨>⎩则1(())2g g =__________. 【解析】1211()log 1,(1),22g g e -==--=所以11(())2g g e=题组二3.若函数 则不等式的解集为____________. 【解析】∵,∴等价于001111333x x x x ≥⎧<⎧⎪⎪⎨⎨⎛⎫≥≥ ⎪⎪⎪⎩⎝⎭⎩或 解得3001x x -≤<≤≤或,综上[]-31x 的取值范围为,4.(2014新课标)设函数()113,1,,1,x e x f x x x -⎧<⎪=⎨⎪≥⎩则使得()2f x ≤成立的x 的取值范围是______.【解析】当1x <时,由12x e-≤得1ln 2x +≤,∴1x <;当1x ≥时, 由132x ≤得8x ≤,∴18x ≤≤,综上8x ≤.5.(2017新课标Ⅱ)设函数1,0,()2,0x x x f x x +≤⎧=⎨>⎩ 则满足1()()12f x f x +->的x 的取值范围是________.【解析】当12x >时,不等式为12221x x -+>恒成立; 当102x <≤,不等式12112x x +-+>恒成立; 当0x ≤时,不等式为11112x x ++-+>,解得14x >-,即104x -<≤; 1,0()1(),03x x x f x x ⎧<⎪⎪=⎨⎪≥⎪⎩1|()|3f x ≥1,0()1(),03x x x f x x ⎧<⎪⎪=⎨⎪≥⎪⎩1|()|3f x ≥综上,x 的取值范围为1(,)4-+∞.题组三 ★6.已知函数224,0()4,0x x x f x x x x ⎧+≥=⎨-<⎩若则实数的取值范围是( ) A. B.C. D.【解析】由题意知()f x 在R 上为增函数,所以22,a a -> 21a -<<解得,故选C7.(2013新课标Ⅱ)已知函数=,若||≥,则的取值范围是( ) A . B . C .[-2,1] D .[-2,0]【解析】∵||=,∴由||≥得,且,由可得,则≥-2,排除A,B, 当=1时,易证对恒成立,故=1不适合,排除C,故选D .题组四8.(2010新课标)已知函数212log ,0()log (),0x x f x x x >⎧⎪=⎨-<⎪⎩ ,若a ,b ,c 均不相等,且()f a = ()f b =()f c ,则abc 的取值范围是2(2)(),f a f a ->a (,1)(2,)-∞-⋃+∞(1,2)-(2,1)-(,2)(1,)-∞-⋃+∞2(2)(),f a f a ->()f x 22,0ln(1),0x x x x x ⎧-+≤⎨+>⎩()f x ax a (,0]-∞(,1]-∞()f x 22,0ln(1),0x x x x x ⎧-≤⎨+>⎩()f x ax 202x x x ax ≤⎧⎨-≥⎩0ln(1)x x ax >⎧⎨+≥⎩202x x x ax≤⎧⎨-≥⎩2a x ≥-a a ln(1)x x +<0x >aA .(1,10)B .(5,6)C .(10,12)D .(20,24)【解析】画出函数的图象, 如图所示,不妨设a b c << ,因为()()()f a f b f c == ,所以1ab = ,c 的取值范围是(10,12) ,所以abc 的取值范围是(10,12).()()()2,,-3+2=0f x f x f x π⎧-≤≤⎪⎨⎪=-⎩2xcos 1x 12x 1x 19.已知函数的实根的个数是___.,则关于x 的方程>,【解析】()()()()2-3+2=0=1=2f x f x f x f x 方等价于程或()()[]()1,1,>110,,f x f x x f π⎧-≤≤⎪-≤≤⎨-⎪-⎩=∈>2xcos 1x 121x 1x 1x 1函,当,时>数,, ()2=1cos 111,022f x x x x x 时,或所以或π=-===± ()2=212,3f x x x 时,所以-==±()()2-3+2=0f x f x 的实根个数为5个综上知方程x yO 11012。

高中数学的分段函数

高中数学的分段函数

高中数学的分段函数分段函数是数学中非常重要的一个概念,它在高中阶段的数学学习中经常出现,不仅涉及到函数的定义与求值,还涉及到图像的绘制与性质的分析。

下面我将从分段函数的基本概念、定义与性质、图像分析等几个方面进行详细阐述,希望能够帮助你对高中数学中的分段函数有更深入的理解。

首先,我们先来了解一下分段函数的基本概念。

所谓分段函数,就是由两个或多个函数在不同的区间上组合而成的函数。

它的定义域被划分成多个不同的区间,并且在每个区间上有不同的函数式。

每一个区间上的函数式称为分段函数的一个分段。

分段函数常常由符号函数来定义,符号函数是根据自变量的取值范围判断所需函数的类型。

例如,当x小于其中一特定值时,分段函数的定义可能由多项式函数、指数函数或三角函数等组成;当x大于或等于这个特定值时,分段函数的定义可能完全由不同的多项式函数、指数函数或三角函数等组成。

其次,我们来详细了解分段函数的定义与性质。

分段函数的定义在每个区间上不同,因此我们需要将函数式按照每个区间进行表示。

例如,对于一个分段函数f(x),其定义域可以分为多个区间[a,b]、(b,c)、(c,d]等。

对于每个区间,我们需要确定相应的函数式,即f(x)={f1(x),a≤x≤b;f2(x),b<x<c;f3(x),c≤x≤d}。

在每个区间上,分段函数的性质可能与其对应的函数式有关。

例如,在[a,b]区间上的函数式f1(x)的性质可能是可导函数,而在(b,c)区间上的函数式f2(x)的性质可能是不可导函数。

最后,我们可以通过对分段函数的图像进行进一步的分析。

我们可以从图像的形状、连续性、单调性等方面来推断函数的性质。

例如,如果分段函数在一些区间上是光滑的、单调增加的,那么该区间上的函数式可能是一个增函数。

通过观察图像的局部特点,我们还可以找到函数的最大值、最小值以及极值点等。

通过对图像的分析,我们不仅可以了解函数的特点,还可以对函数进行进一步的运算和研究。

考点04 分段函数(解析版)

考点04 分段函数(解析版)

考点4 分段函数以及应用一、 知识储备汇总与命题规律展望1.知识储备汇总:(1)分段函数概念:若函数在其定义域的不同子集上,因对应关系不同而分别用几个不同的式子来表示,这种函数称为分段函数.(2)分段函数定义域与值域:分段函数的定义域等于各段函数的定义域的并集,其值域等于各段函数的值域的并集,分段函数虽由几个部分组成,但它表示的是一个函数.(3)分段函数的图像:分段函数有几段它的图像就由几条曲线组成,作图的关键就是根据每段函数的定义区间和表达式在同一坐标系中作出其图像,作图时要注意每段曲线端点的虚实,而且横坐标相同之处不可有两个以上的点。

(4)分段函数的求值:先确定要求值的自变量属于哪一段区间,然后按该段的表达式去求值,直到求出值为止.(5)分段函数的奇偶性:先看定义域是否关于原点对称,不对称就不是奇(偶)函数,再由x >0,x -<0 ,分别代入各段函数式计算)(x f 与)(x f -的值,若有)(x f =)(x f --,当x =0有定义时0)0(=f ,则)(x f 是奇函数;若有f(x)=)(x f -,则)(x f 是偶函数.(6)分段函数的单调性:分别判断出各段函数在其定义区间的单调性结合图象处理分段函数的问题.(7)分段函数的周期性:对分段函数的周期性问题,利用周期函数定义、性质或图像进行判定或解决.(8)分段函数求值:先确定要求值的自变量属于哪一段区间,然后按该段的表达式去求值,直到求出值为止.(9)分段函数的最值:先求出每段函数的最值,再求这几个最值的最值,或利用图像求最值.(10)求分段函数某条件下自变量的范围:先假设所求的解在分段函数定义域的各段上,然后相应求出在各段定义域上的范围,再求它们并集即可.(11)分段函数的不等式问题:利用分类整合思想,化为若干个不等式组问题,解出各个不等式组的解集,其并集就是所求不等式的解集.(12)分段函数的解析式:利用待定系数法,求出各段对应函数的解析式,写成分段函数形式,每个解析式后边标上对应的范围.2.命题规律展望:分段函数是高考考查的重点和热点,主要考查分段函数求值、分段函数值域与最值、分段函数的图像与性质、分段函数方程、分段函数不等式等,考查分类整合、转化与化归、函数与方程、数形结合等数学思想与方法,考题多为选择填空题,难度为容易或中档题.将本考点近五年内的命题规律从题型、考题类型、难度、分值等方面作以总结,对今后考题规律作以展望.二、题型与相关高考题解读 1.分段函数求值1.1考题展示与解读例1.(2017山东文9)设()()121,1x f x x x <<=-≥⎪⎩,若()()1f a f a =+,则1f a ⎛⎫= ⎪⎝⎭( ) A. 2 B. 4 C. 6 D. 8【命题意图探究】本题考查了分段函数求值及分类整合思想是中档试题. 【答案】C【解析】由1x ≥时()()21f x x =-是增函数可知,若1a ≥,则()()1f a f a ≠+,所以01a <<,由()(+1)f a f a =2(11)a =+-,解得14a =,则1(4)2(41)6f f a ⎛⎫==-= ⎪⎝⎭,故选C. 【解题能力要求】分析问题能力、分类整合思想【方法技巧归纳】求分段函数的函数值,首先要确定自变量的范围,然后选定相应关系式代入求解;当给出函数值或函数值的取值范围求自变量的值或自变量的取值范围时,应根据每一段解析式分别求解,但要注意检验所求自变量的值或取值范围是否符合相应段的自变量的值或取值范围. 1.2【典型考题变式】1.【变式1:改编条件】已知函数)(x f =⎩⎨⎧≥+-<<+2,8220,2x x x x x ,若)2()(+=a f a f ,则)1(a f =( )A.165 B. 2 C.6 D.217【答案】B【解析】由2x ≥时()28f x x =-+是减函数可知,若2a ≥,则()()2f a f a ≠+,所以02a <<,由()(+2)f a f a =得22(2)8a a a +=-++,解得1a =,则21(1)112f f a ⎛⎫==+= ⎪⎝⎭,故选B.2. 【变式2:改编结论】设()()121,1x f x x x <<=-≥⎪⎩,若()12f a =,则a = ( )B.41 B. 45 C. 41或45D. 2【答案】C【解析】由题意知,⎪⎩⎪⎨⎧=<<2110a a 或⎪⎩⎪⎨⎧=-≥21)1(21a a ,解得14a =或45=a ,故选C【变式3:改编问法】已知f (x )是R 上的奇函数,且f (x )=,则f (﹣)=( )A .B .C .1D .﹣1【答案】C .【解析】∵f (x )是R 上的奇函数,且f (x )=,则f (﹣)=﹣f ()=﹣f ()=﹣log 2=1,故选C .【变式4:函数迭代】已知a ∈R ,函数()24,2,3, 2.x x f x x a x ⎧->⎪=⎨-+≤⎪⎩若3f f ⎡⎤=⎣⎦,则a = . 【答案】2【分析】由题意结合函数的解析式得到关于a 的方程,解方程可得a 的值.【解析】()()642233f ff f a ⎡⎤=-==-+=⎣⎦,故2a =,故答案为:2. 2.分段函数的最值与值域2.1考题展示与解读例2【2016年高考北京理数】设函数33,()2,x x x a f x x x a⎧-≤=⎨->⎩.①若0a =,则()f x 的最大值为______________; ②若()f x 无最大值,则实数a 的取值范围是________.【命题意图探究】本题主要考查分段函数的最值及分类整合思想、数形结合思想. 【答案】2,(,1)-∞-.【解析】如图作出函数3()3g x x x =-与直线2y x =-的图象,它们的交点是(1,2)A -,(0,0)O ,(1,2)B -,由2'()33g x x =-,知1x =-是函数()g x 的极大值点,①当0a =时,33,0()2,0x x x f x x x ⎧-≤=⎨->⎩,因此()f x 的最大值是(1)2f -=;②由图象知当1a ≥-时,()f x 有最大值是(1)2f -=;只有当1a <-时,由332a a a -<-,因此()f x 无最大值,∴所求a 的范围是(,1)-∞-,故填:2,(,1)-∞-.【解题能力要求】分类整合思想、数形结合思想、运算求解能力.【方法技巧归纳】先根据各段函数的图象与性质求出各段函数在相应区段上的值域,这些值域的并集就是函数的值域. 2.2【典型考题变式】 【变式1:改编条件】设函数的最小值是1,则实数a 的取值范围是( )A .(﹣∞,4]B .[4,+∞)C .(﹣∞,5]D .[5,+∞) 【答案】B【解析】由题知,当x <1时,f (x )=x 2﹣4x+a=(x ﹣2)2+a ﹣4,且为减函数,可得f (x )>f (1)=a ﹣3,由x≥1时,f (x )递增,可得f (x )的最小值为f (1)=1,由题意可得a ﹣3≥1,即a≥4,故选B .【变式2:改编结论】设函数33,()2,x x x a f x x x a⎧-≤=⎨->⎩,讨论)(x f 的值域.【答案】当1-<a 时,函数)(x f 的值域为)2,(a --∞; 当21≤≤-a 时,所以函数)(x f 的值域为]2,(-∞; 当2>a 时,所以函数)(x f 的值域为]3,(3a a --∞.【解析】如图作出函数3()3h x x x =-与直线2y x =-的图象,它们的交点是(1,2)A -,(0,0)O ,(1,2)B -,由2'()33h x x =-,知1x =-是函数()h x 的极大值点,1=x 是函数()h x 的极小值点,当1-<a 时,函数x x y 33-=在],(a -∞上的值域为]3,(3a a --∞,函数x y 2-=在),(∞a 上的值域为)2,(a --∞,因为)2(33a a a --- =0)1)(1(<-+a a a ,所以a a a 233-<-,所以函数)(x f 的值域为)2,(a --∞;当21≤≤-a 时,函数x x y 33-=在],(a -∞上的值域为]2,(-∞,函数x y 2-=在),(∞a 上的值域为)2,(a --∞,因为22≤-a ,所以函数)(x f 的值域为]2,(-∞;当2>a 时,函数x x y 33-=在],(a -∞上的值域为]3,(3a a --∞,函数x y 2-=在),(∞a 上的值域为)2,(a --∞,因为a a a 323-<-,所以函数)(x f 的值域为]3,(3a a --∞;综上所述,当1-<a 时,函数)(x f 的值域为)2,(a --∞; 当21≤≤-a 时,所以函数)(x f 的值域为]2,(-∞; 当2>a 时,所以函数)(x f 的值域为]3,(3a a --∞.【变式3:改编问法】已知函数f (x )=,函数g (x )=asin (x )﹣2a+2(a >0),若存在x 1,x 2∈[0,1],使得f (x 1)=g (x 2)成立,则实数a 的取值范围是( ) A .[﹣,1] B .[,] C .[,] D .[,2] 【答案】B【解析】当x ∈[0,]时,y=﹣x ,值域是[0,];x ∈(,1]时,y=,y′=>0恒成立,故为增函数,值域为(,1].则x ∈[0,1]时,f (x )的值域为[0,1],当x ∈[0,1]时,g (x )=asin (x )﹣2a+2(a >0),为增函数,值域是[2﹣2a ,2﹣],∵存在x 1、x 2∈[0,1]使得f (x 1)=g (x 2)成立,∴[0,1]∩[2﹣2a ,2﹣]≠∅,若[0,1]∩[2﹣2a ,2﹣]=∅,则2﹣2a >1或2﹣<0,即a <,或a >.∴a 的取值范围是[,],故选B .3.分段函数的解析式3.1考题展示与解读例3.(2021年高考天津卷9)设a ∈R ,函数()()()22cos 22,,215,x a x a f x x a x a x aπ-π<⎧⎪=⎨-+++≥⎪⎩,若函数()f x 在区间()0,+∞内恰有6个零点,则a 的取值范围是 ( )A .95112,,424⎛⎤⎛⎤ ⎥⎥⎝⎦⎝⎦ B .7511,2,424⎛⎤⎛⎤ ⎥⎥⎝⎦⎝⎦ C .9112,,344⎛⎤⎡⎫ ⎪⎥⎢⎝⎦⎣⎭ D .711,2,344⎛⎫⎡⎫⎪⎪⎢⎝⎭⎣⎭【解题能力要求】本题主要考查分段函数、函数零点、数形结合思想、转化与化归思想,是难题. 【答案】A【分析】由()222150x a x a -+++=最多有2个根,可得()cos 220x a π-π=至少有4个根,分别讨论当x a <和x a ≥时两个函数零点个数情况,再结合考虑即可得出. 【解析】()222150x a x a -+++=最多有2个根,()cos 220x a ∴π-π=至少有4个根,由22,2x a k k ππ-π=+π∈Z 可得1,24k x a k =++∈Z ,由1024k a a <++<可得11222a k --<<-. (1)x a <时,当15242a -≤--<-时,()f x 有4个零点,即7944a <≤;当16252a -≤--<-,()f x 有5个零点,即91144a <≤;当17262a -≤--<-,()f x 有6个零点,即111344a <≤.(2)当x a ≥时,()()22215f x x a x a =-+++,()()()22Δ414582a a a =+-+=-,当2a <时,∆<0,()f x 无零点;当2a =时,0∆=,()f x 有1个零点; 当2a >时,令()()22215250f a a a a a a =-+++=-+≥,则522a <≤,此时()f x 有2个零点;∴若52a >时,()f x 有1个零点.综上,要使()f x 在区间()0,+∞内恰有6个零点,则应满足7944522a a ⎧<≤⎪⎪⎨⎪<≤⎪⎩或91144522a a a ⎧<≤⎪⎪⎨⎪=>⎪⎩或或1113442a a ⎧<≤⎪⎨⎪<⎩,则可解得a 的取值范围是95112,,424⎛⎤⎛⎤ ⎥⎥⎝⎦⎝⎦.【点睛】关键点睛:解决本题的关键是分x a <和x a ≥两种情况分别讨论两个函数的零点个数情况. 【方法技巧归纳】较复杂的函数零点个数问题,常转化为对应方程解得个数问题,再通过移项、局部分离等方法转化为两边都是熟悉函数的方程解得个数问题,再转化为这两个函数的交点个数问题,画出对应函数的函数的图象,利用数形结合思想求解. 3.2【典型考题变式】【变式1:改变条件】已知函数()()22,2,2,2,x x f x x x ⎧-≤⎪=⎨->⎪⎩ 函数()()2g x b f x =-- ,其中b R ∈,若函数()()y f x g x =- 恰有4个零点,则b 的取值范围是( ) (A )7,4⎛⎫+∞⎪⎝⎭ (B )7,4⎛⎫-∞ ⎪⎝⎭ (C )70,4⎛⎫ ⎪⎝⎭ (D )7,24⎛⎫⎪⎝⎭【答案】D【解析】由()()22,2,2,2,x x f x x x -≤⎧⎪=⎨->⎪⎩得222,0(2),0x x f x x x --≥⎧⎪-=⎨<⎪⎩, 所以222,0()(2)42,0222(2),2x x x y f x f x x x x x x x ⎧-+<⎪=+-=---≤≤⎨⎪--+->⎩, 即222,0()(2)2,0258,2x x x y f x f x x x x x ⎧-+<⎪=+-=≤≤⎨⎪-+>⎩()()()(2)y f x g x f x f x b =-=+--,所以()()y f x g x =-恰有4个零点等价于方程()(2)0f x f x b +--=有4个不同的解,即函数y b =与函数()(2)y f x f x =+-的图象的4个公共点,由图象可知724b <<.【变式2:改编条件】已知函数f(x)=,函数g(x)=f(1﹣x)﹣kx+k恰有三个不同的零点,则k的取值范围是()A.(﹣2]∪{}B.(﹣2+,0]∪{}C.(﹣2]∪{}D.(﹣2+,0]∪{}【答案】D【解答】函数f(x)=,可得f(1﹣x)=,函数g(x)=f(1﹣x)﹣kx+k恰有三个不同的零点,即为f(1﹣x)=kx﹣k+有三个不同的实根,作出y=f(1﹣x)和y=kx﹣k+的图象,当直线y=kx﹣k+与曲线y=(x≤1)相切于原点时,即k=时,两图象恰有三个交点;当直线y=kx﹣k+与曲线y=(x﹣2)2(1<x<2)相切,设切点为(m,n),可得切线的斜率为k=2(m﹣2),且km﹣k+=(m﹣2)2,解得m=1+,k=﹣2,即﹣2<k≤0时,两图象恰有三个交点;综上可得,k的范围是(﹣2,0]∪{},故选D.【变式3:改编结论】已知函数()()22,2,2,2,x x f x x x ⎧-≤⎪=⎨->⎪⎩ 函数()()2g x b f x =-- ,其中b R ∈,若方程()()=0f x g x - 恰有2个不同的解,则b 的取值范围是( ) (A )()72,{}4+∞⋃ (B )()2,+∞ (C )70,4⎛⎫ ⎪⎝⎭ (D )7,24⎛⎫ ⎪⎝⎭【答案】A【解析】由()()22,2,2,2,x x f x x x -≤⎧⎪=⎨->⎪⎩得222,0(2),0x x f x x x --≥⎧⎪-=⎨<⎪⎩, 所以222,0()(2)42,0222(2),2x x x y f x f x x x x x x x ⎧-+<⎪=+-=---≤≤⎨⎪--+->⎩, 即222,0()(2)2,0258,2x x x y f x f x x x x x ⎧-+<⎪=+-=≤≤⎨⎪-+>⎩()(2)0f x f x b +--=有2个不同的解,即函数y b =与函数()(2)y f x f x =+-的图象的4个公共点,由图象可知2b >或47=b ,故选.A.【变式4:改编问法】已知)(x f 是定义在R 上的奇函数,当0≥x 时,)(x f =x x 42-,则方程2)(-=x x f 解的个数为 . 【答案】3【解析】当0<x 时,0>-x ,所以x x x f 4)()(2+-=-,因为)(x f 是定义在R 上的奇函数,所以)()(x f x f -=-=x x 42+,所以x x x f 4)(2--=,所以⎪⎩⎪⎨⎧≥-<--=0,404)(22x x x x x x x f ,,所以2)()(+-=x x f x g =⎪⎩⎪⎨⎧≥+-<+--0,250,2522x x x x x x ,由)(x g y =的图象知,)(x g y =有3个零点,所以方程2)(-=x x f 解的个数为3.4.分段函数图像4.1考题展示与解读例4.(2021高考上海卷14)已知参数方程[]334,1,12x t t t y ⎧=-⎪∈-⎨=⎪⎩,下列选项的图中,符合该方程的是 ( )【答案】B【解析】当0,0,0,t x y ===∴过原点,排除A ;当1t =时1,0x y =-=,排除C 和D ;当31230,340,0,,22x t t t t t =-===-=时,1230,,22y y y ==-=,故选B . 4.2【典型考题变式】【变式1:改编条件】已知函数f (x )=,g (x )=f (x )+x +a .若g (x )存在2个零点,则a的取值范围是( ) A .[﹣1,0)B .[0,+∞)C .[﹣1,+∞)D .[1,+∞)【命题意图探究】本题主要考查利用分段函数图像解含参数函数零点问题,是难题. 【答案】C【解析】由g (x )=0得f (x )=﹣x ﹣a ,作出函数f (x )和y =﹣x ﹣a 的图象如图,当直线y =﹣x ﹣a 的截距﹣a ≤1,即a ≥﹣1时,两个函数的图象都有2个交点,即函数g (x )存在2个零点,故实数a 的取值范围是[﹣1,+∞),故选C .【解题能力要求】数形结合思想、转化思想、分类整合思想、运算求解能力【方法技巧归纳】一般不等式恒成立求参数1.可以选择参变分离的方法,转化为求函数最值的问题;2.也可以画出两边的函数图象,根据临界值求参数取值范围;3.也可转化为()0F x >的问题,转化讨论求函数的最值求参数的取值范围.【变式2:改编条件】已知函数()22,0,{ ,0x x f x x x ≤=>,若函数()()()1g x f x k x =--恰有两个零点,则实数k 的取值范围是A. ()(),14,-∞-⋃+∞B. ][(),14,-∞-⋃+∞ C. [)()1,04,-⋃+∞ D. [)[)1,04,-⋃+∞【答案】C【解析】()()()1g x f x k x =--恰有两个零点,等价于()y f x =与()1y k x =-有两个交点,同一坐标系,画出()y f x =与()1y k x =-的图象,直线过()0,1时, 1k =-,直线与()20y xx =≥,相切时4k =,由图知, [)()1,04,k ∈-⋃+∞时,两图象有两交点,即k 的取值范围是[)()1,04,-⋃+∞,故选C.【变式3:改编结论】已知函数||2,1,()2, 1.x x f x x x x +<⎧⎪=⎨+≥⎪⎩,则函数||)(x x f y -=零点个数为 ( ) (A )0 (B )1 (C )2 (D )3 【答案】A【解析】函数||)(x x f y -=零点个数,即为方程||)(x x f =解得个数,即为函数)(x f y =与函数||x y =交点个数,画出函数()f x 的图象与函数||x y =,由图像知,函数)(x f y =与函数||x y =交点个数0, 所以函数||)(x x f y -=零点个数为0,故选A.【变式4:改编问法】已知函数,则函数f (x )的图象是( )A .B .C .D .【答案】D 【解析】函数,当x <0时,函数是二次函数,开口向下,对称轴为x=﹣1,排除选项B ,C ;当x≥0时,是指数函数向下平移1单位,排除选项A ,故选D .5.分段函数性质5.1考题展示与解读例5【2016高考天津理数】已知函数f (x )=2(4,0,log (1)13,03)a x a x a x x x ⎧+<⎨++≥-+⎩(a >0,且a ≠1)在R 上单调递减,且关于x 的方程|()|2f x x =-恰好有两个不相等的实数解,则a 的取值范围是( )(A )(0,23] (B )[23,34] (C )[13,23]{34}(D )[13,23){34}【命题意图探究】本题主要考查分段函数的性质及函数方程解的个数问题,考查数形结合思想、运算求解能力,是中档题. 【答案】C【解析】由()f x 在R 上递减可知43020131a a a -⎧-≥⎪⎪<<⎨⎪≥⎪⎩,解得1334a ≤≤,由方程|()|2f x x =-恰好有两个不相等的实数解,可知132,12a a ≤-≤,1233a ≤≤,又∵34a =时,抛物线2(43)3y x a x a =+-+与直线2y x =-相切,也符合题意,∴实数a 的去范围是123[,]{}334,故选C.【解题能力要求】数形结合思想、分类整合思想、运算求解能力. 【方法技巧归纳】已知函数有零点求参数取值范围常用的方法和思路(1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围; (2)分离参数法:先将参数分离,转化成求函数值域问题加以解决;(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解. 5.2【典型考题变式】【变式1:改编条件】已知函数f (x )=在定义域(﹣∞,+∞)上是单调增函数,则实数a 的取值范围是( ) A .(﹣∞,] B .[,+∞)C .[,]D .(,)【答案】C【解析】由于函数f (x )=在定义域(﹣∞,+∞)上是单调增函数,2a≥e ﹣a ,解得a≥.排除A ,D ,当a=2时,x=1可得e x ﹣2x 2=e ﹣2;2a+lnx=4>e ﹣2,显然不成立,排除B ,故选C .【变式2:改编结论】已知()2243,0,23,0,x x x f x x x x ⎧-+≤=⎨--+>⎩不等式()()2f x a f a x +>-在上恒成立,则实数的取值范围是( ) A. B.C.D.【答案】A【解析】二次函数243x x -+的对称轴是2x =,所以该函数在(],0-∞上单调递减; 2433x x ∴-+≥,同样可知函数223x x --+, 2233x x ∴--+<,在()0,+∞上单调递减, ()f x ∴在R 上单调递减,;,所以由()()2f x a f a x +>-得到2x a a x +<-,即2x a < , 2x a ∴<在[],1a a +上恒成立,()21;2a a a ∴+<∴<-,所以实数a 的取值范围是(),2-∞-,故选A.【变式3:改编问法】已知函数则下列结论错误的是( )A .f (x )不是周期函数B .f (x )在上是增函数C .f (x )的值域为[﹣1,+∞)D .f (x )的图象上存在不同的两点关于原点对称 【答案】D 【解析】函数的图象如图所示,则f (x )不为周期函数,A 正确;f (x )在[﹣,+∞)递增,B 正确;f (x )的最小值为﹣1,无最大值,则C 正确;由于x <0时,f (x )=sinx ,与原点对称的函数为y=sinx (x >0),而sinx=x 在x >0无交点,则D 不正确,故选D .6.分段函数的综合应用6.1考题展示与解读例2【2018全国卷Ⅰ】设函数2,0()1,0-⎧=⎨>⎩≤x x f x x ,则满足(1)(2)+<f x f x 的x 的取值范围是( )A .(,1]-∞-B .(0,)+∞C .(1,0)-D .(,0)-∞【命题意图探究】本题主要考查分段函数不等式及分类整合思想,是中档题. 【答案】D【解析】当0x ≤时,函数()2xf x -=是减函数,则()(0)1f x f =≥,作出()f x 的大致图象如图所示,结合图象可知,要使(1)(2)+<f x f x ,则需102021x x x x +<⎧⎪<⎨⎪<+⎩或1020x x +⎧⎨<⎩≥,所以0x <,故选D .【解题能力要求】分类整合思想、运算求解能力.【方法技巧归纳】分段函数的不等式问题:利用分类整合思想,化为若干个不等式组问题,解出各个不等式组的解集,其并集就是所求不等式的解集.6.2【典型考题变式】【变式1:改编条件】已知函数f (x )=,则不等式f (x+2)<f (x 2+2x )的解集是( )A .(﹣2,1)B .(0,1)C .(﹣∞,﹣2)∪(1,+∞)D .(1,+∞)【答案】C【解析】函数f (x )=,可得x≥0,f (x )递增;x <0时,f (x )递增;且x=0时函数连续,则f (x )在R 上递增,不等式f (x+2)<f (x 2+2x ),可化为x+2<x 2+2x ,即x 2+x ﹣2>0,解得x >1或x <﹣2,则原不等式的解集为(﹣∞,﹣2)∪(1,+∞),故选C .【变式2:改编结论】.已知函数(),0{2,lnx x e f x lnx x e<≤=->,若正实数,,a b c 互不相等,且()()()f a f b f c ==,则abc 的取值范围为( )A. ()2,e eB. ()21,e C. 1,e e ⎛⎫ ⎪⎝⎭ D. 21,e e⎛⎫ ⎪⎝⎭【答案】A【解析】作出)(x f 的图像,不妨设c b a <<,由图知,201a b e c e <<<<<<,由题知,|ln ||ln |b a =,即b a ln ln =-,所以0)ln(ln ln ==+ab b a ,所以ab =1,则c abc =),(2e e ∈,故选A.【变式3:改编问法】已知函数f (x )=,函数y=f (x )﹣a 有四个不同的零点,从小到大依次为x 1,x 2,x 3,x 4,则x 1x 2+x 3x 4的取值范围为( ) A .[4,5) B .(4,5] C .[4,+∞) D .(﹣∞,4]【答案】A【解析】当x >0时,f (x )=x+﹣3≥2﹣3=1,可得f (x )在x >2递增,在0<x <2处递减,由f(x )=e,x≤0,当x <﹣1时,f (x )递减;﹣1<x <0时,f (x )递增,可得x=﹣1处取得极小值1,作出f (x )的图象,以及直线y=a ,可得e=e=x 3+﹣3=x 4+﹣3,即有x 1+1+x 2+1=0,可得x 1=﹣2﹣x 2,﹣1<x 2≤0,x 3﹣x 4=﹣=,可得x 3x 4=4,x 1x 2+x 3x 4=4﹣2x 2﹣x 22=﹣(x 2+1)2+5,在﹣1<x 2≤0递减,可得所求范围为[4,5),故选A .三、课本试题探源必修1 P39页习题1.3 A 第6题:已知函数)(x f 是定义域在R 上的奇函数,当0≥x 时,)(x f =)1(x x +.画出函数)(x f 的图象,并求出函数的解析式.【解析】当0<x 时,0>-x ,所以)1()(x x x f --=-, 因为函数)(x f 是定义域在R 上的奇函数, 所以)1()()(x x x f x f --=-=-, 所以)1()(x x x f -=, 所以函数的解析式⎩⎨⎧≥+<-=0),1(0),1()(x x x x x x x f ,函数图象如下图所示:四.典例高考试题演练一、单选题1.(2021·四川成都零模(文))已知函数2log (2),1()e ,1xx x f x x -<⎧=⎨≥⎩则(2)(ln 4)f f -+=( ) A .2 B .4C .6D .8【答案】C 【分析】分别求出()2f -和()ln 4f 的值再求它们的和,从而可得正确的选项. 【详解】()22log 42f -==,()ln4ln 44f e ==,故(2)(ln 4)6f f -+=,故选:C. 【点睛】易错点睛:本题考查分段函数的函数值的计算,注意根据自变量的大小选择合适的解析式来计算,本题属于基础题.2.(2021·四川射洪模拟(理))定义函数()[[]]f x x x =,其中[]x 表示不超过x 的最大整数,例如:[1.3]1=,[ 1.5]2-=-,[2]2=.当*[))0,(x n n N ∈∈时,()f x 的值域为n A .记集合n A 中元素的个数为n a ,则2020211i i a =-∑的值为( ) A .40402021B .20192021C .20192020D .20191010【答案】D【分析】先根据条件分析出当[)0,x n ∈时,集合n A 中的元素个数为222n n n a -+=,进而可得111211n a n n ⎛⎫=- ⎪--⎝⎭,再结合裂项相消法进行求和可得结果. 【详解】因为[][)[)[)[)0,0,11,1,22,2,3......1,1,x x x x n x n n ⎧∈⎪∈⎪⎪=∈⎨⎪⎪-∈-⎪⎩,所以[][)[)[)()[)0,0,1,1,22,2,3......1,1,x x x x x x x n x x n n ⎧∈⎪∈⎪⎪=∈⎨⎪⎪-∈-⎪⎩,所以[]x x 在各个区间中的元素个数分别为:1,1,2,3,4,......,1n -,所以当[)*0,,x n n N ∈∈时,()f x 的值域为n A ,集合n A 中元素个数为:()()2121123 (1122)n n n n n a n --+=+++++-=+=,所以()1112211n n a n n ⎛⎫=-≥ ⎪--⎝⎭, 所以2020211111112019212...22112232019202020201010i ia =⎛⎫⎛⎫⎛⎫⎛⎫=-+-++-=-= ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭⎝⎭∑,故选:D. 3.(2021·山东高三其他模拟)已知函数1,(1)()(2)3,(1)x a x f x a x a x -⎧<=⎨-+≥⎩,满足对任意12x x ≠,都有1212()()0f x f x x x -<-成立,则a 的取值范围是( )A .()0,1a ∈B .3,14a ⎡⎫∈⎪⎢⎣⎭C .30,4a ⎛⎤∈ ⎥⎝⎦D .3,24a ⎡⎫∈⎪⎢⎣⎭【答案】C 【分析】 将条件()()12120f x f x x x -<-等价于函数函数()f x 为定义域上的单调减函数,由分段函数的单调性要求,结合指数函数、一次函数的单调性得到关于a 的不等式组,求解即得. 【详解】由题意,函数()f x 对任意的12x x ≠都有()()12120f x f x x x -<-成立,即函数1,(1)()(2)3,(1)x a x f x a x a x -⎧<=⎨-+≥⎩为R 上的减函数,可得0120,123a a a a<<⎧⎪-<⎨⎪≥-+⎩解得304a <≤,故选:C.4.(2021·江苏南京模拟(理))我们知道,任何一个正实数N 都可以表示成10110,()n N a a n Z =⨯≤<∈.定义:(),00,0N n W N N n ≥⎧⎨<⎩的整数部分的位数=的非有效数字的个数,如()()()2211.2103,(1.2310)2,3102, 3.001101W W W W --⨯=⨯=⨯=⨯=,则下列说法错误的是( )A .当1,1M N >>时,()()()W M N W M W N ⋅=+B .当0n <时,()W N n =-C .当0,()1n W N n >=+D .若1002,lg 20.301N ≈=,则()31W N = 【答案】A【分析】A .理解()W N 的含义,举例分析即可;B .根据0n <分析所表示数的特点,由此可得()W N 的结果;C .根据0n >分析所表示数的特点,由此可得()W N 的结果;D .先将N 化为10110,()n N a a n Z =⨯≤<∈的形式,然后计算出()W N 的值.【详解】当[)0,100N ∈时,N 的整数部分位数为2,当[)100,1000N ∈,N 的整数部分位数为3,一般地,)()110,100,1,2,3,4,......n n N n +⎡∈=⎣时,N 的整数部分位数为1n +; 当[)0.1,1N ∈时,N 的非有效数字0的个数为1,当[)0.01,0.1N ∈时,N 的非有效数字0的个数为2,一般地,)()110,101,2,3,4,5,......n n N n +⎡∈=-----⎣时,N 的非有效数字0的个数为n -,A .取210,10M N ==,所以()()()()33,2,104W M W N W M N W ==⋅==,()()325W M W N +=+=,所以()()()W M N W M W N ⋅≠+,故错误;B .当0n <时,)11010,10n n n N a +⎡=⨯∈⎣,N 的非有效数字0的个数为n -,所以()W N n =-,故正确;C .当0n >时,)11010,10n n n N a +⎡=⨯∈⎣,N 整数部分位数为1n +,所以()1W N n =+,故正确; D .因为1002N =,所以lg =100lg230.1N ≈,所以30.110N ≈,所以)303110,10N ⎡∈⎣,所以()30131W N =+=,故正确,故选:A.【点睛】关键点点睛:解答本题的关键在于理解()W N 的含义以及计算的方法, 通过对10n N a =⨯的分析,首先判断n 与0的关系,然后决定采用哪一种计算方法(类似分段函数).5.(2021·安徽皖江名校联考)已知函数()()21log ,112,1a x x f x x a x ⎧+≤-⎪=⎨++>-⎪⎩,方程()10f x -=有两解,则a 的取值范围是( ) A .1(,1)2B .1(0,)2C .(0,1)D .()1,+∞【答案】B【分析】根据已知条件对a 进行分类讨论:01a <<、1a >,然后分别考虑每段函数的单调性以及取值范围,确定出方程()10f x -=有两解时a 所满足的不等式,由此求解出a 的取值范围. 【详解】因为()()21log ,112,1a x x f x x a x ⎧+≤-⎪=⎨++>-⎪⎩,所以0a >且1a ≠, 当01a <<时,()f x 在(,1]x ∈-∞-时单调递增,所以()()max 11f x f =-=; 又()f x 在()1,x ∈-+∞时单调递增,且()()12f x f a >-=, 因为方程()10f x -=有两解,所以21a <,所以102a <<; 当1a >时,()f x 在(,1]x ∈-∞-时单调递减,()()min 11f x f =-=; 又()f x 在()1,x ∈-+∞时单调递增,()()12f x f a >-=, 因为方程()10f x -=要有两解,所以21a <,此时不成立. 综上可得10,2a ⎛⎫∈ ⎪⎝⎭,故选:B.【点睛】方法点睛:根据方程解的个数求解参数范围的常见方法:方法(1):将方程解的个数问题转化为函数的图象的交点个数问题,通过图象直观解答问题;方法(2):若方程中有指、对数式且底数为未知数,则需要对底数进行分类讨论,然后分析()f x 的单调性并求解出其值域,由此列出关于参数的不等式,求解出参数范围.6.(2021·山东济南模拟)若函数()()()2,232ln 1,2ax x f x a x x -≤⎧=⎨-->⎩在R 上单调递增,则实数a 的取值范围是( ) A .(]0,1 B .(]0,2C .30,2⎛⎫ ⎪⎝⎭D .31,2⎡⎫⎪⎢⎣⎭【答案】A 【分析】由分段函数单调递增的特性结合单调增函数的图象特征列出不等式组求解即得. 【详解】因函数()()()2,232ln 1,2ax x f x a x x -≤⎧=⎨-->⎩在R 上单调递增,则有2y ax =-在(,2]-∞上递增,()()32ln 1y a x =--在(2,)+∞上也递增, 根据增函数图象特征知,点(2,22)a -不能在点(2,0)上方,于是得0320220a a a >⎧⎪->⎨⎪-≤⎩ ,解得01a <≤,所以实数a 的取值范围是(]0,1. 故选:A7.(2021·山西名校联考)已知函数()cos ()ln f x x g x x ==,用max{,}a b 表示a ,b 中的最大值,则函数{}()max (),()(0)h x f x g x x =>的零点个数为( ) A .0 B .1C .2D .3【答案】C 【分析】分1x >,1x =,01x <<三种情况讨论可得结果. 【详解】 分三种情况讨论:① 当1x >时,()ln 0g x x =>,所以()()0h x g x ≥>,故()h x 无零点;② 当1x =时,(1)cos110f =-<,(1)0g =,所以(1)0h =,故1x =是()h x 的零点;③ 当01x <<时,()ln 0g x x =<,所以()f x 的零点就是()h x 的零点.显然,()cos f x x =(0,1)上单调递减,且(0)10=>f ,(1)cos110f =-<, 故()f x 在(0,1)内有唯一零点,即()g x 在(0,1)内有唯一零点. 综上可知,函数()h x 在0x >时有2个零点. 故选:C. 【点睛】关键点点睛:本题的关键点是:分1x >,1x =,01x <<三种情况讨论.8.(2021·北京市十一学校高三其他模拟)已知函数()22,0313,0x x f x x x ⎧≤⎪=⎨--+>⎪⎩,若存在唯一的整数x ,使得()10f x x a->-成立,则满足条件的整数a 的个数为( ) A .2 B .3C .4D .无数【答案】C 【分析】作出f (x )的函数图象,利用直线的斜率,根据不等式只有1整数解得出a 的范围. 【详解】作出f (x )的函数图象如图所示:()1f x x a--表示点(,())x f x 和点(,1)a 所在直线的斜率,即曲线上只有一个点(,())x f x 且x 是整数和点(,1)a 所在直线的斜率大于零.如图所示,动点(,1)a 在直线1y =上运动.因为(0)0,(1)3,(2)0f f f ===,当[1,0]a ∈-时,只有点(1,3)这个点满足()10f x x a ->-,当[1,2]a ∈时,只有点(0,0)这个点满足()10f x x a->-. 所以a ∈][1,01,2⎡⎤-⋃⎣⎦.所以满足条件的整数a 有4个.故选:C.【点睛】关键点睛:本题主要考查函数的图像,考查直线的斜率,关键在于考查学生对这些知识的掌握水平和数形结合分析推理能力. 二、多选题9.(2021·重庆高三三模)()f x 是定义在R 上周期为4的函数,且()(](]1,112,1,3x f x x x ⎧∈-⎪=⎨--∈⎪⎩,则下列说法中正确的是( ) A .f ()x 的值域为[]0,2B .当(]3,5x ∈时,()f x =C .()f x 图象的对称轴为直线4,x k k Z =∈D .方程3f x x 恰有5个实数解【答案】ABD 【分析】画出()f x 的部分图象结合图形分析每一个选项即可. 【详解】根据周期性,画出()f x 的部分图象如下图所示,由图可知,选项A ,D 正确,C 不正确;根据周期为4,当(3,5]x ∈时,()(4)f x f x =-==B 正确.故选:ABD.10.(2021·辽宁铁岭二模)设函数()21,0,cos ,0.x x f x x x ⎧+≥=⎨<⎩则( )A .()f x 是偶函数B .()f x 值域为[)1,-+∞C .存在00x <,使得()()00f x f =D .()f x 与()f x -具有相同的单调区间【答案】BC【分析】根据函数奇偶性的定义判断A ,由分段函数求值域确定B ,由余弦函数性质确定C ,由二次函数及余弦函数的单调性确定D.【详解】因为()21,0,cos ,0.x x f x x x ⎧+≤-=⎨>⎩.所以()()f x f x -≠,()f x 不是偶函数,故选项A 错误. 当0x ≥时,211x +≥,当0x <时,cos [1,1]x ∈-,所以()f x 值域为[)1,-+∞,故B 正确; 因为()01f =,()21f π-=,选项C 正确.因为()f x 具有单调性的区间与()f x -具有单调性的区间不同,是数轴上关于原点对称的,选项D 错误(由()f x -表达式也可以看出).故选:BC 。

分段函数定义

分段函数定义

分段函数定义
分段函数是一种表示方式,通常具有多个分段,用来表示某一特定范围内的值的函数。

它们由若干个子函数构成,每个子函数服从不同的函数规律。

每一子函数的定义域可以是实数上的一个子集,也可以是一个有限域、无穷域、半空间或其他集合。

分段函数可以为一个指定的计算课题分解出不同的函数,从而降低计算量,帮助更快更准确地解决问题。

比如,可以将函数拆分成定义域上的几个小段,分别进行独立求解。

此外,它们还可以用于模拟复杂的函数问题,可以模拟复杂的物理行为或数学模型等。

分段函数的应用非常广泛,比如在数学课程中,用分段函数可以描述抛物线、双曲线、圆等曲线,用来分析几何变化;在物理课中,可以用分段函数来描述弹性运动的路径变化,用来研究物理实验等。

还可以用于统计和数据处理中,可以用分段函数来表示不同类别的定义域,为数据建模和特征提取提供了一种有效的描述方法。

高中数学讲义:分段函数的性质与应用

高中数学讲义:分段函数的性质与应用

分段函数的性质与应⽤分段函数是函数中比较复杂的一种函数,其要点在于自变量取不同范围的值时所使用的解析式不同,所以在解决分段函数的问题时要时刻盯着自变量的范围是否在发生变化。

即“分段函数——分段看”一、基础知识:1、分段函数的定义域与值域——各段的并集2、分段函数单调性的判断:先判断每段的单调性,如果单调性相同,则需判断函数是连续的还是断开的,如果函数连续,则单调区间可以合在一起,如果函数不连续,则要根据函数在两段分界点出的函数值(和临界值)的大小确定能否将单调区间并在一起。

3、分段函数对称性的判断:如果能够将每段的图像作出,则优先采用图像法,通过观察图像判断分段函数奇偶性。

如果不便作出,则只能通过代数方法比较()(),f x f x -的关系,要注意,x x -的范围以代入到正确的解析式。

4、分段函数分析要注意的几个问题(1)分段函数在图像上分为两类,连续型与断开型,判断的方法为将边界值代入每一段函数(其中一段是函数值,另外一段是临界值),若两个值相等,那么分段函数是连续的。

否则是断开的。

例如:()221,34,3x x f x x x -£ì=í->î,将3x =代入两段解析式,计算结果相同,那么此分段函数图像即为一条连续的曲线,其性质便于分析。

再比如()221,31,3x x f x x x -£ì=í->î中,两段解析式结果不同,进而分段函数的图像是断开的两段。

(2)每一个含绝对值的函数,都可以通过绝对值内部的符号讨论,将其转化为分段函数。

例如:()13f x x =-+,可转化为:()13,113,1x x f x x x -+³ì=í-+<î5、遇到分段函数要时刻盯住变量的范围,并根据变量的范围选择合适的解析式代入,若变量的范围并不完全在某一段中,要注意进行分类讨论6、如果分段函数每一段的解析式便于作图,则在解题时建议将分段函数的图像作出,以便必要时进行数形结合。

分段函数的知识点总结

分段函数的知识点总结

分段函数的知识点总结一、分段函数的定义1.1 分段函数的基本形式分段函数的基本形式可以表示为:\[ f(x)=\begin{cases}f_{1}(x), & x\in D_{1}\\f_{2}(x), & x\in D_{2}\\… \\f_{n}(x), & x\in D_{n}\\\end{cases} \]其中,\( D_{1}, D_{2},..., D_{n} \)表示函数的定义域的不相交区间,\( f_{1}(x), f_{2}(x),...,f_{n}(x) \)分别表示在不同区间内的函数表达式。

1.2 分段函数的定义域和值域分段函数的定义域由各个子函数的定义域合并而成,而值域则由各个子函数的值域的并集组成。

1.3 分段函数的解析性质对于分段函数,通常要考虑其在各个定义域内的解析表达式。

在定义分段函数时,要考虑到各个分段的连续性、一致性等性质,以确保分段函数在各个区间内的函数表达式具有良好的连续性和可导性。

1.4 分段函数的特殊形式分段函数的特殊形式包括绝对值函数、符号函数、取整函数、阶梯函数等。

这些特殊形式的分段函数在实际问题中具有广泛的应用,例如在信号处理、控制系统等领域中均有重要的作用。

二、分段函数的性质2.1 分段函数的奇偶性对于分段函数,其奇偶性通常由各个子函数的奇偶性来确定。

如果各个子函数均为偶函数,则分段函数也为偶函数;若各个子函数均为奇函数,则分段函数也为奇函数;若各个子函数均为非奇非偶函数,则分段函数既不是奇函数也不是偶函数。

2.2 分段函数的周期性对于分段函数,其周期性通常由各个子函数的周期性来确定。

如果各个子函数均具有相同的周期,则分段函数也具有这一周期;若各个子函数的周期不同,则分段函数通常不具有周期性。

2.3 分段函数的单调性对于分段函数,其单调性通常由各个子函数的单调性来确定。

如果各个子函数均为单调递增或单调递减函数,则分段函数也为单调递增或单调递减函数;若各个子函数既不是单调递增也不是单调递减函数,则分段函数通常不具有单调性。

分段函数的分类

分段函数的分类

分段函数的分类分段函数是数学中重要的概念之一。

它在应用数学、物理学、经济学、计算机科学等多个领域中均有广泛应用。

这篇文章将围绕分段函数的分类展开,介绍其性质和应用。

一、常值函数常值函数是一种特殊的分段函数,对于任何输入,输出都是一个固定的数值。

常值函数通常用一个常数来表示,例如$f(x)=c$,其中$c$为常数。

常值函数可以看作是只有一个区间的分段函数。

二、线性函数线性函数也是一种常见的分段函数,其图像通常为一条直线。

线性函数可以用$f(x)=kx+b$的形式表示,其中$k$和$b$为常数。

在数学中,线性函数也经常被称为一次函数。

三、阶梯函数阶梯函数是一种在小区间内常数不变的分段函数。

其通常形式为:$$f(x)=\begin{cases}c_1, & x<a\\c_2, & a\leq x<b\\ \dots & \dots\\c_n, & x\geq b \end{cases}$$其中$a,b$为实数,$c_1,c_2,\dots,c_n$为常数。

阶梯函数的图像呈现出一条条分段的梯形。

四、分段函数分段函数是一种将定义域分成若干段,而在每段都用不同的函数表达式描述的函数。

分段函数通常的形式为:$$f(x)=\begin{cases}f_1(x), & x<a\\f_2(x), & a\leq x<b\\ \dots &\dots \\f_n(x), & x\geq b \end{cases}$$其中$a,b$为实数,$f_1,f_2,\dots,f_n$为不同的函数。

分段函数可以用来描述实际问题中的条件约束,例如经济学中的税收问题,物理学中的运动问题等。

五、周期函数周期函数是一种满足$f(x+T)=f(x)$的函数,其中$T$为正实数。

周期函数的图像在水平方向上呈现出周期性波动,例如正弦函数和余弦函数等。

六、分式函数分式函数是一种将多项式函数作为分子函数、多项式函数或幂函数作为分母函数的函数。

分段函数

分段函数
问题引入
某市“招手即停”公共汽车的票价按下列规则制定: (1)5公里以内(含5公里),票价2元; (2)5公里以上,每增加5公里,票价增加1元(不足 5公里的按5公里计算) 如果某条线路的总里程为20公里,请根据题意,写出 票价与里程之间的函数解析式。
设票价为y元,里程为x公里,则来自2,0 x 5 3,5 x 10 y 4,10 x 15 5,15 x 20
得出定义
在函数的定义域内,对于自变量x的 不同取值范围,有着不同的对应法则, 这样的函数叫做分段函数。
注意: 分段函数定义域各段定义域的并集, 各段之间不能有重复。
例题解析
例1、已知函数 f (x) = (1)求 f (0)
x 2 4 x, x 2 x , x 2 2
f (2) f (3)
f (2)
(2)若 f ( x0 ) = 3 ,求 x 0 的值。

变式练习:已知函数
f (1)
f (3)
x 2 , x 0 f ( x) 1, x 0 0, x 0
,求
f [ f (3)]
f { f [ f (3)]}
例题解析:

【例1】画出函数y=∣x∣的图象
y
o
x
方法巩固
x 2 , ( x 0) 例3、画出函数f(x)= 的图像。 2 x , ( x 0)
y
o
x
你学会了吗?
1、分段函数的定义 2、分段函数求值 3、画分段函数的图像

初中数学专题01分段函数的理解

初中数学专题01分段函数的理解

分段函数的理解分段函数是指自变量在不同的取值范围内,其关系式(或图象)也不同的函数。

1、它是一个函数,不是几个不同函数的组合,是同一函数在自变量X的不同取值范围内的不同表达式。

2、最简单的分段函数是一次函数的分段函数。

分段函数也可能在自变量某范围内不是一次函数而是其他形式的函数,在这里我们不予讨论。

谈谈中考中的分段函数在现实生活中存在着很多需分段计费的实际问题,分段函数是近几年中考数学中一种重要的题型。

分段函数的应用题多设计成两种(段)情况以上,解答时需分段讨论。

它是考查分类思想,读取、搜集、处理图像信息等综合能力的综合题。

这些分段函数都是直线型,通常是由正比例函数的图像和一次函数的图像构成。

下面我们归纳分析如下,供学习时参考。

一、两段型分段函数1.1正比例函数与一次函数构成的分段函数解答这类分段函数问题的关键,就是分别确定好正比例函数的解析式和一次函数的解析式。

例1、某移动公司采用分段计费的方法来计算话费,月通话时间x(分钟)与相应话费y(元)之间的函数图象如图1所示:(1)月通话为100分钟时,应交话费______元;(2)分别写出当0≤x≤100 , x≥100时,x与y之间的函数关系式;(3)月通话为280分钟时,应交话费多少元?分析:本题是一道和话费有关的分段函数问题,通过图象可观察到,在0到100分钟之间月话费y(元)是月通话时间x(分钟)的正比例函数,当x≥100时, 月话费y(元)是月通话时间x(分钟)的一次函数.解:(1)观察图象可知月通话为100分钟时,应交话费40元;(2)当0≤x≤100时,设y与x之间的函数关系式为y=kx,x=100时,y=40 所以y=2/5xx≥100时, 设y与x之间的函数关系式为y=kx+b由图知:x=100时,y=40;x=200时,y=60则有 ,解之得 k=1/5,b=20所求函数关系式为y=1/5x+20(3)把x=280代入y=1/5x+20,得y=1/5x280+20=76,即月通话为280分钟时,应交话费76元.【巩固练习】1、水费中的分段函数某自来水公司为了鼓励居民节约用水,采取了按月用水量分段收费办法,某户居民应交水费y(元)与用水量x(吨)的函数关系如图(1)分别写出当0≤x≤15和x≥15时, y与x的函数关系式;(2)若某户该月用水21吨, 则应交水费多少元?2、电费中分段函数今年以来,广东大部分地区的电力紧缺,电力公司为鼓励市民节约用电,采取按月用电量分段收费办法,若某户居民每月应交电费y(元)与用电量x(度)的函数图象是一条折线(如图3所示),根据图象解下列问题:(1)分别写出当0≤x≤100和x≥100时, y与x的函数关系式;(2)利用函数关系式,说明电力公司采取的收费标准;(3)若该用户某月用电62度,则应缴费多少元?若该用户某月缴费105元时,则该用户该月用了多少度电?1.2一次函数与一次函数构成的分段函数1、为了鼓励小强做家务,小强每月的费用都是根据上月他的家务劳动时间所得奖励加上基本生活费从父母那里获取的.若设小强每月的家务劳动时间为x小时,该月可得(即下月他可获得)的总费用为y元,则y(元)和x(小时)之间的函数图像如图5所示.(1)根据图像,请你写出小强每月的基本生活费;父母是如何奖励小强家务劳动的?(2)分别写出当0≤x≤20和x≥20时, y与x的函数关系式;(3)若小强5月份希望有250元费用,则小强4月份需做家务多少时间?1.3常数函数与一次函数构成的分段函数例1、有甲、乙公司,甲公司每月通话的收费标准如图6所示;乙公司每月通话收费标准如表1所示.(1)观察图6,甲公司用户月通话时间不超过100分钟时应付话费金额是元;甲公司用户通话100分钟以后,每分钟的通话费为元;(2)分别写出当0≤x≤100和x≥100时, y与x的函数关系式(3)李女士买了一部手机,如果她的月通话时间不超过100分钟,她选择哪家通迅公司更合算?如果她的月通话时间超过100分钟,又将如何选择?二、三段型分段函数如图7,矩形ABCD中,AB=1,AD=2,M是CD的中点,点P在矩形的边上沿A→B→C→M运动,则△APM 的面积y与点P经过的路程x之间的函数关系用图象表示大致是下图中的()三、四段型分段函数例7、星期天,小强骑自行车到郊外与同学一起游玩,从家出发2小时到达目的地,游玩3小时后按原路以原速返回,小强离家4小时40分钟后,妈妈驾车沿相同路线迎接小强,如图11,是他们离家的路程y(千米)与时间x(时)的函数图像。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

“分段函数”教学方案
平山县职业教育中心:郄东明
课题:分段函数(高等教育出版社《数学(基础模块)》上册第三章第3节)
第一部分:(教学导入环节设计与意图阐释)
一、场景描述
选择场景:繁华的步行街;DV拍摄切入视角:过往人群,两旁林立商场及商家门面上的广告.
导入语:生活,让我们学会了合理的分析与正确的选择.今天我们跟随镜头,去看看繁华的步行街.
播放提前录制的DV视频,画面展示过往人群及两旁林立的商场.
特定镜头1:李宁专卖店门前广告.
特定镜头2:联通公司神州行话费资费标准.
特写镜头3:出租车收费标准.
特定镜头1 特定镜头2 特定镜头3
设计意图:以步换景的方式,表述身边的真实生活场景,突出学生的切身体会,引起学生关注生活细节.有选择地挖掘场景中与数学相关联的问题,使学生对场景本身有一种新的认识,达到吸引学生的注意力,激活学生学习的动机与潜能.
二、角色模拟
在拍摄DV的过程中,选择了几处特写镜头,请说说有几处特写镜头?并简要说明特写镜头描述的内容.学生:(略)
教师:今天我们去体验一下生活,同学们如何对待这三件事情?
事件一:购买李宁牌服装一件,打9折;购买李宁牌服装二件或三件,打8.5折;购买李宁牌服装四件以上,打7.5折.现李宁牌服装全国统一价128元,在李宁专买店里,你看中了一件服装,刚巧遇到了四位顾客正在挑选李宁牌服装,也想购买.此时,你将做如何打算?说说你的合理性,并建立购买李宁牌服装的折扣价与购买数量之间的函数关系式.
学生1:通过主动招呼四位顾客,分析联合购买的优惠价.
学生
教师:用列表的方法,我们一看就可以得出购买李宁牌服装的折扣价与购买数量的关系.我们用函数解析式的方法如何给出?
学生3:设购买服装的数量x 件,服装的折扣价y 元,则
⎪⎩⎪⎨⎧∈≥===*,4,963,2,8.1081
,2.115N
x x x x y .(教师进行适时点拔与评价)
注:在分析过程中,突出不同自变量有不同的取值,为抽象出分段函数做铺垫.
教师:买了新衣服,心情非常愉悦,走进联通公司去充话费.神州行卡(免费接听)话费资费标准如下.
事件二:神州行卡(免费接听)市内通话费资费标准:每次通话3分钟以内,每分钟20.0元;超过3分钟,每分钟(不足1分钟按1分钟计算)收费10.0元.试建立一次通话应付费与通话时间之间的函数关系.
学生:设通话时间为x 分钟,一次通话应付费为y 元.
⎩⎨⎧>-⨯+⨯≤<=3),3(1.032.03
0,2.0x x x x y .(教师评价)
教师:我们来仔细分析刚才同学建立起来的函数关系能不能正确表述问题3.
学生:不能.因为x 取5.3需要按4计算.
教师:锐利的目光,洞察了表达式的关键错误.(追问:怎么去解决呢?)
学生:加一个限制条件,当x 不是整数时,取1][+x ,][x 表示x 的整数部分.(教师:鼓励语)
教师:也可以采用分更小的段表示:如⎪⎪⎪⎪⎩⎪⎪⎪
⎪⎨⎧≤<≤<≤<≤<≤<=
54,8.04
3,7.032,6.021,4.01
0,2.0x x x x x y .
教师:充了话费,时间也不早了,逛街也累了,走出步行街,就打的回家吧.
事件三:出租车的收费标准:当行程不超过2km 时,收费6元;行程超过2km ,但不超过10km 时,在收费6元的基础上,超过2km 部分每公里收费0.2元;超过10km 时,超过部分除每公里收费0.2之外,再加收%50的回程空驶费.试建立一个出租车收费y (元)与行程x (公里)之间的函数解析式.从步行街到你家,花费了你14元,那步行街到你家的距离在什么范围内?
学生:⎪⎩
⎪⎨⎧>⨯-+≤<⨯-+≤<=10,3)10(22102,2)2(62
0,6x x x x x y .(教师评价)
设计意图:问题的设置以递进式的方法,层层深入,并对每一个问题只是一种模型,可以对具体情况做适当的修改.如事件三出租车收费问题,可以按照当地情况作变化.对于这四个问题呈现,充分把学生置身于场景中,进行了角色模拟,把学习活动看成自我体验,自我教育的过程,达成三维的教学目标,并充分激发学生学习的主观能动
性.
三、回归任务
教师:我们分析了三项任务,建立了各自的函数关系式,试说说他们的共同特点?
学生1:在自变量的不同取值范围内,对应的函数值不同.(教师补充:有不同的对应法则.)
学生2:不同的对应法则,用不同的解析式表示.
教师:我们今天新认识了一个函数:叫分段函数.
回归概念:在自变量不同的取值范围内,有不同的对应法则,需要用不同的解析式来表示的函数叫做分段函数.
设计意图:任务的分解与概念的回归,体现了数学的原生态发展的必然结果.运用场景激活学生的思维,让学生在教师的引导下通过具体问题去感受、体会,从而逐渐形成一般的认识.从设置问题开始,始终强化主线的提炼,揭示函数的本性,延拓了生活的命题.从步步深入的过程中,体会数学与生活的关系.
第二部分:(教学导入设计的总体构思)
一、数学教学的设计思想
场景式教学的设计紧扣教育即生活的思想,展现教学的生动活泼与灵活多样.场景式数学教学的核心理念是:回归数学的原生态.场景式数学教学以生活(或某工程、活动)场景为核心,倡导“以用为本,学以致用”的教学方法.以学生已有认识水平为行动指向,辅以生活(或某工程、活动)提炼成的问题,运用角色模拟,深入浅出地展开数学教学过程.选择课题分段函数进行场景式教学,突出了函数应用的广泛性与实用性,生活场景表现了数学的本源性,充分揭示了数学的抽象概括过程,挖掘了数学的文化思想.导入设计贯穿在学生生活的主线上,尤其凸现了以生为本的原则,引领学生关注身边的每一个故事.
二、分段函数导入设计的总体构思
教学目标
(1)通过丰富的实例,进一步体会函数是描述变量之间依赖关系的重要数学模型;
(2)在初步掌握了函数的列表法、图象法、解析法三种主要表示方法基础上,进一步学习分段函数的表示方法;
(3)经历三个场景问题(李宁专卖店的广告、联通神州行收费单及出租车收费标准)抽象为数学问题(分段函数)的过程,认识到数学与实际生活的密切联系;
(4)从三个场景抽象到三个问题,提高学生对数学的高度抽象性、概括性的认识及数学素质的培养;
(5)体验每一个场景活动的探索过程,锻炼合理分析的意识,逐渐认识数学的意义;发展条理、清晰地阐述自我观点的能力,从而获得成功的体验,激起学习数学的兴趣,建立学好数学的自信心.
教学重难点
依据课程标准要求与教学目标,分段函数的重点是根据相关条件建立简单分段函数的表达式.通过反复呈现、螺旋上升方法呈现教学重点内容,强调学生的参与、自主探索及自我反思.分段函数的难点是分段函数的本质理解.对于学习者来说,能够增进理解力的知识,就是对于学习者的生活具有解释力和作用力的知识.因而,从导入开始进行了层层铺设,把问题设置成具有现实性、简易性及连贯性,让学生对分段函数概念的理解层层深入,数学思维能力不断提升.
教学生成过程
从分段函数概念形成的过程中,展示了数学思维的连续性、完整性、思想性和本质性,这对学生学习具有重要的引领作用.场景式数学教学的生成过程是以场景为核心内容,通过问题生成、角色模拟、回归任务及实践提升的四个环节,达成学生的数学三基(基本知识、基本技能、基本能力)、学生能力、自主能力、合作精神及文化思想的教学目标.教学生成过程如下图.
在分段函数这一课时的教学中,选择了步行街的场景,融入了三个细节场景,提出了三个主题,生成了三个问题,让学生去模拟实践角色,达成任务之后,提炼出新的概念与规律,从而达成了提出的目标与要求.
三、分段函数导入设计的反思
对于分段函数的导入设计充分考虑了以下几个疑问:
1.如何运用教学设计技巧,把课堂内容设置成能够增进学生的理解力、解释力及作用力?综观分段函数的导入设计,在每一个问题的设置中,渗透了学生参与的理解力,挖掘了问题的解释力及作用力.以鲜活的实例,激发学生的对问题表达的欲望与探索的持久兴趣.
2.学习怎样的知识才能实现真正的理解?对于约定性知识,通过回归数学的原生态,让学生体会数学的发生、发展的过程,从而获得抽象概括的体验,达到了新的思想文化理解.3.每个人独特方法的形成,在于每个人所关注的问题、价值追求、所拥有的资源,以及所经历的经验教训和成功等.因此,要深入理解方法的形成,就必须深入到形成方法的个人主体生活当中去,而主体的生活既有独特的个人性,又有当时当地的时代性和本土性.运用场景式数学教学,正符合了学生的现实需求.。

相关文档
最新文档