数字信号处理_第二章

合集下载

数字信号处理第2章

数字信号处理第2章

Z变换与拉氏变换的关系:
这一关系实际上是通过 到了Z平面。
若将Z平面用极坐标表示
标表示
,代入
将S平面的函数映射
,S平面用直角坐 ,得:
上述关系表明: z 的模 r 仅与 s 的实部 相对应, z 的幅角 则仅与 s 的虚部 对应。
映射关系:
Z变换与拉氏变换的关系
0 0,2 (S平面实轴映射到Z平面的正实轴)
解:
,求它的傅立叶变换。
其幅度谱和相位谱分别为:
典型例题
❖ 例2 已知序列的傅立叶变换如下,求它的反变换。
解:
显然序列 h(n)不是绝对可和的,而是平方可和 的 ,但其依然存在傅立叶变换。 Parseval定理
典型例题
❖ 例3 证明复指数序列 x(n) e j0n 的傅立叶变换为:
证:根据序列的傅立叶反变换定义,利用冲击函 数 的性质,有:
即序列绝对可和
某的有 立些序些叶既列序变不,列换满若虽依足引然然绝入不存对频满在可 域足。和的以见的冲上后条击条例件函件。也数,不但满满,足足其平平傅方方立可可叶和和变条,换件其傅
也存在。如
、某些周期序列,见后例。
序列傅立叶变换的定义
5.常用序列的傅立叶变换
序列
(n)
傅立叶变换
1
1
典型例题
❖ 例1 已知
A形k(式k=求0,X取1(…:z),N)B,(此z) A( z )

为了方bi 便z i通常利用
i0
N
1 ai z i
X(z)/z的
i 1
若序列为因果序列,且N≥M,当X(z)的N个极点都是单
极点时,可以展开成以下的部分分式的形式:
则其逆Z变换为:

数字信号处理第三版第2章.ppt

数字信号处理第三版第2章.ppt

| z | 2
试利用部分分式展开法求其Z反变换。
解:
X (z)

A1 1 2z 1

1

A2 0.5
z
1
4 1 1 1 3 1 2z1 3 1 0.5z1
x(n)


4 3

2n

1 3
(0.5)n
u(n)
第2章 时域离散信号和系统的频域分析
例: 设
X (z)
7)终值定理:设x(n)为因果序列,且X(z)=Z[x(n)]的全部
极点,除有一个一阶极点可以在z=1 处外,其余都在单位
圆内,则 : lim x(n) lim[(z 1)X (z)]
n
z1
第2章 时域离散信号和系统的频域分析
8)序列卷积(卷积定理)
若: y(n) x(n) h(n) x(m)h(n m) m
3z (z 3)2

z2
3z , 6z 9
试利用长除法求其Z反变换。
解:
| z | 3
第2章 时域离散信号和系统的频域分析
2.5.4 Z 变换的性质和定理
1)线性性质
Z[ax(n)+by(n)]=aX(z)+bY(z)
2)序列的移位 Z[x(n m)] zm X (z) Rx | z | Rx
2 j c
c (Rx , Rx )
直接利用围线积分的方法计算逆Z变换比较麻烦。 下面介绍几种常用的逆Z变换计算方法: 1)用留数定理求逆Z变换(了解) 2)部分分式展开法(掌握) 3)幂级数展开法(长除法)
第2章 时域离散信号和系统的频域分析
例: 设
1

数字信号处理 第二章习题

数字信号处理 第二章习题

1 为因果序列,故收敛域为: z 2
8
(2) (n n0 ) n0 0
解:
X ( z)
n


x(n) z n
n
(n n0 ) z n
X ( z) z
n0

1 n n0 (n n0 ) 0 other
1 n0 z
z 0.5 左边序列 0.5 z 2 双边序列 右边序列 z 2
16
采用围线积分法求解:
3 2 X ( z) 1 1 0.5 z 1 2 z 1 3(1 2 z 1 ) 2(1 0.5 z 1 ) 5 7 z 1 1 1 (1 0.5 z )(1 2 z ) (1 0.5 z 1 )(1 2 z 1 )
z1 1, z2 2
X(z)的收敛域为
左边序列 z 1 1 z 2 双边序列 z 2 右边序列
24
F ( z) X ( z) z
n 1
z ( z 3) ( z 3) n 1 z zn ( z 1)( z 2) ( z 1)( z 2)
z 2
21
当收敛域为: z 2 0.5
1 n n 1 x(n) 3( ) u (n) 2 u (n 1) 2
22
收敛域为: z 2
右边序列
n 0 ,围线c内有2个1阶极点
x(n) Re s[( z 0.5) F ( z), 0.5] Re s[( z 2) F ( z), 2] ( z 0.5) 5z 7 zn ( z 0.5)( z 2) ( z 2)
双边序列
n 0 ,围线c内有1个1阶极点

数字信号处理第2章 Z变换综述

数字信号处理第2章 Z变换综述

例4:求序列 x(n) a u (n)的Z变换及收敛域。
n
解: X ( z )
n
n n n n 1 n a u ( n ) z a z ( az ) n 0 n 0



1 az 1 (az 1 ) 2 (az 1 ) n
1 — 64
Z -
-2
-3 1 —— Z 256
1 -3 —— Z 256
...
极点分为:实极点、复极点 若为复极点必然是共轭极点,必然是成对出现
例:
z 1 z z X ( z) 2 1 2 1 z z z z 1 ( z 1 )2 ( 3 j)2 2 2
因为D(z)的系数是实数,所以复极点必然成对出现
§2.3
z变换性质1
一、线性: Z[a x (n)+a x (n)]=a Z[x (n)]+a Z[x (n)]
1 1 2 2 1 1 2 2
二、时移: Z[x(n)]=X(z)
Z[x(n-m)]=z-m· X(z)
意义:z-1:单位延迟器
z变换性质2
三、时域卷积:
x(n) h(n) y(n)
|a|<|z|<1/|a|
双边序列的收敛域是左边序列和右边序列z变换的 公共收敛区间。
课本P27表2.1
z nu(n) ~ ( z 1) 2
作业2.1(2)(6)
z 2 sin z sin(0 ) sin(n0 )u (n) ~ z 2 2 z cos0 1 sin z 1 sin(0 ) 1 2 z 1 cos0 z 2
z z 1 z z X ( z) 2 z 4 z 3 ( z 1)(z 3) 2 z 1 z 3

数字信号处理____第二章 离散时间傅里叶变换(DTFT)

数字信号处理____第二章  离散时间傅里叶变换(DTFT)


x a (t )e
st
e
jk
2 T
t
dt
用傅里叶级数表示
即:Z变换可看成是x(n)乘以指数序列r-n后的傅里叶变换。 2、单位圆上的Z变换就是序列的傅里叶变换
X a ( s jk s )
k
周期延拓

z re
j
r 1 z e
j
X (z)
ze
sT
X (e
M N
y (n)

m 0
bm x (n m )

k 1
ak y (n k )
23
24
4
§2.3 离散线性移不变(LSI)系统的频域特征
2、变换域中的表述 用系统函数H(z)来表征(指明收敛域)

§2.3 离散线性移不变(LSI)系统的频域特征

用频率响应来H(ejω)表征
H (e
x ( n )e
j ( n )
]

X (e
*
j
)
满足共轭反对称性
X o (e
j
) X o (e
)
19
20
§2.2 离散时间傅里叶变换(DTFT)
4、信号的实部和虚部的傅里叶变换
x ( n ) Re[ x ( n )] j Im[ x ( n )]
§2.2 离散时间傅里叶变换(DTFT)

j
)] X e ( e
j
)
Im[ X ( e
j
)] Im[ X ( e
j
奇函数
j Im[ x ( n )]
1 2
[ x ( n ) x ( n )] 1 2

数字信号处理,第二章 Z变换讲解

数字信号处理,第二章 Z变换讲解

二、右边序列
例3:求序列 x(n) u(n)的Z变换及收敛域。
Z[x(n)] u(n)zn zn
n
n0
1 1 1 z z2
1 1 z 1
z z 1
Z[u(n)]的极点为1,零点为0 收敛域为|z|>1
零极相消
例:
Z[u(n) u(n 1)]
Z[u(n)] Z[u(n 1)]
s1in2zz1
1 sin(0 cos0
z 2
)
§2.3 z变换性质1
一、线性:
Z[a1x1(n)+a2x2(n)]=a1Z[x1(n)]+a2Z[x2(n)]
二、时移:
Z[x(n)]=X(z) Z[x(n-m)]=z-m·X(z)
意义:z-1:单位延迟器
z变换性质2
三、时域卷积:
即: x(n)z n M n
一、有限长序列
例1:求序列 x(n) RN (n) 的Z变换及收敛域。
Z[RN (n)]
RN (n)zn
n
N 1
z n
n0
1 zN 1 z1
收敛域为: 0 z ,
例2:求序列 x(n) (n)的Z变换及收敛域。
解:
Z[ (n)] (n)zn z0 1
z z1 z z 1 1
z 1
z 1 z 1
零、极点均为z=1,称为零极点相消。收敛域为整个z平面。
另:
u(n) u(n 1) (n), Z[ (n)] 1
例4:求序列 x(n) anu(n)的Z变换及收敛域。
解: X (z) anu(n)z n a n z n (az 1 )n
例2-4-2:
X
(
z)

(完整word版)数字信号处理答案第二章

(完整word版)数字信号处理答案第二章

第二章2.1 判断下列序列是否是周期序列。

若是,请确定它的最小周期.(1)x (n )=Acos(685ππ+n ) (2)x (n)=)8(π-ne j(3)x (n)=Asin(343ππ+n ) 解 (1)对照正弦型序列的一般公式x (n )=Acos (ϕω+n ),得出=ω85π。

因此5162=ωπ是有理数,所以是周期序列。

最小周期等于N=)5(16516取k k =。

(2)对照复指数序列的一般公式x (n )=exp[ωσj +]n,得出81=ω。

因此πωπ162=是无理数,所以不是周期序列。

(3)对照正弦型序列的一般公式x (n)=Acos(ϕω+n ),又x (n)=Asin (343ππ+n )=Acos (-2π343ππ-n )=Acos(6143-n π),得出=ω43π.因此382=ωπ是有理数,所以是周期序列。

最小周期等于N=)3(838取k k =2.2在图2.2中,x (n )和h(n)分别是线性非移变系统的输入和单位取样响应。

计算并列的x (n )和h (n)的线性卷积以得到系统的输出y(n ),并画出y(n)的图形。

(a)1111(b)(c)111110 0-1-1-1-1-1-1-1-1222222 33333444………nnn nnnx(n)x(n)x(n)h(n)h(n)h(n)21u(n)u(n)u(n)a n ===22解 利用线性卷积公式y(n )=∑∞-∞=-k k n h k x )()(按照折叠、移位、相乘、相加、的作图方法,计算y(n)的每一个取样值。

(a ) y (0)=x (O)h (0)=1y (l )=x (O )h(1)+x (1)h (O)=3y (n)=x(O)h (n )+x (1)h(n-1)+x(2)h (n —2)=4,n ≥2 (b) x(n )=2δ(n )-δ(n-1)h(n)=-δ(n)+2δ(n —1)+ δ(n —2)y(n )=-2δ(n)+5δ(n —1)= δ(n-3) (c ) y (n )=∑∞-∞=--k kn k n u k u a)()(=∑∞-∞=-k kn a=aa n --+111u (n )2。

第二章 时域离散信号和系统(数字信号处理)

第二章  时域离散信号和系统(数字信号处理)

第二章 时域离散信号和系统
6. 复指数序列
x(n)=e(σ+jω0)n 式中ω0为数字域频率,设σ=0,用极坐标和实部虚 部表示如下式: x(n)=e jω0n
x(n)=cos(ω0n)+jsin(ω0n)
由于n取整数,下面等式成立: e j(ω0+2πM)n= e jω0n, M=0,±1,±2…
第二章 时域离散信号和系统
图1.2.5 正弦序列
第二章 时域离散信号和系统
则要求N=(2π/ω0)k,式中k与N均取整数,且k的取
值要保证N是最小的正整数,满足这些条件,正弦序列 才是以N为周期的周期序列。
正弦序列有以下三种情况:
(1)当2π/ ω0为整数时,k=1,正弦序列是以2π/ ω0 为周期的周期序列。例如sin(π/8)n, ω0 =π/8,2π/ ω0 =16,该正弦序列周期为16。
例 设x(n)=R4(n),h(n)=R4(n),求y(n)=x(n)*h(n)。
解 按照公式,
y (n )
m
R ( m) R ( n m)
4 4

上式中矩形序列长度为4,求解上式主要是根据矩
形序列的非零值区间确定求和的上、下限,R4(m)的非

令n-k=m,代入上式得到
u( n )
n
( m)
n
第二章 时域离散信号和系统
u(n) 1 „ n 0 1 2 3
单位阶跃序列
第二章 时域离散信号和系统
3. 矩形序列RN(n) 1, RN(n)= 0, 0≤n≤N-1 其它n
上式中N称为矩形序列的长度。当N=4时,R4(n)的
第二章 时域离散信号和系统
第2章 时域离散信号和系统

(完整word版)数字信号处理第二章习题解答

(完整word版)数字信号处理第二章习题解答

数字信号处理第2章习题解答2.1 今对三个正弦信号1()cos(2)a x t t π=,2()cos(6)a x t t π=-,3()cos(10)a x t t π=进行理想采样,采样频率为8s πΩ=,求这三个序列输出序列,比较其结果。

画出1()a x t 、2()a x t 、3()a x t 的波形及采样点位置并解释频谱混淆现象。

解:采样周期为2184T ππ== 三个正弦信号采样得到的离散信号分别表示如下:1()cos(2)cos()42a n x n n ππ=⋅=2()cos(6)cos()42a n x n n ππ=-⋅=-3()cos(10)cos()42a n x n n ππ=⋅=输出序列只有一个角频率2π,其中1()a x n 和3()a x n 采样序列完全相同,2()a x n 和1()a x n 、3()a x n 采样序列正好反相。

三个正弦信号波形及采样点位置图示如下:tx a 1(t )tx a 2(t )tx a 3(t )三个正弦信号的频率分别为1Hz 、3Hz 和5Hz ,而采样频率为4Hz ,采样频率大于第一个正弦信号频率的两倍,但是小于后两个正弦信号频率的两倍,因而由第一个信号的采样能够正确恢复模拟信号,而后两个信号的采样不能准确原始的模拟信号,产生频谱混叠现象。

2.3 给定一连续带限信号()a x t 其频谱当f B >时,()a X f 。

求以下信号的最低采样频率。

(1)2()a x t (2)(2)a x t (3)()cos(7)a x t Bt π解:设()a x t 的傅里叶变换为()a X j Ω(1)2()a x t 的傅里叶变换为22()[()]Ba a BX j X j d ππωωω-⋅Ω-⎰因为22,22B B B B πωππωπ-≤≤-≤Ω-≤ 所以44B B ππ-≤Ω≤即2()a x t 带限于2B ,最低采样频率为4B 。

数字信号处理 第二章 DFT

数字信号处理 第二章 DFT

~ N=16:x (4) x((4))16 x((12 16))16 x(12)
例2:
x (n ) x (n ) 0
~ 1 X (k ) k 0 N ~ X (r )
e
j

15
周期序列的傅里叶级数表示:
正变换:
2 N 1 N 1 j nk ~ ~(n) ~(n)e N ~(n)W nk X (k ) DFS x x x N n 0 n 0
反变换:
~ ~(n) IDFS X (k ) 1 x N
j
2 kN N
k mN , m为整数 其他k
W
n 0
N 1
( m k ) n N
1W 1W
( k m ) N N ( k m ) N

1 e
j
1 e
N m k rN 0 mk
此外,复指数序列还有如下性质:
0 WN 1, W N 2 N r 1 1, WN WN r
ek (n)
ek (n) 是以N为周期的周期序列,所以基序
列 {e }(k=0,…,N-1) 只有N个是独立 的,可以用这N个基序列将 ~ ( n) 展开。 x
j 2 nk N
12
复指数序列 ek (n) e
周期性:
j
2 nk N
W
nk N
的性质:
无论对k还是n,复指数序列都具备周期性。
时间函数 连续和非周期 连续和周期(T0) 离散(Ts)和非周期 离散(Ts)和周期(T0) 非周期和连续 非周期和离散(Ω 0=2π /T0) 周期(Ω s=2π /Ts)和连续 周期(Ω s=2π /Ts)和离散(Ω 0=2π /T0) 频率函数

数字信号处理(第三版)第2章习题答案

数字信号处理(第三版)第2章习题答案

第2章 时域离散信号和系统的频域分析
2.3
求信号与系统的频域特性要用傅里叶变换。 但分析频 率特性使用Z变换却更方便。 我们已经知道系统函数的极、 零点分布完全决定了系统的频率特性, 因此可以用分析极、 零点分布的方法分析系统的频率特性, 包括定性地画幅频 特性, 估计峰值频率或者谷值频率, 判定滤波器是高通、 低通等滤波特性, 以及设计简单的滤波器(内容在教材第5 章)等。
X e (e j ) FT[xr (n)]
Hale Waihona Puke 1 1 ej2 1 e j2 1 (1 cos 2)
24
4
2
因为 所以
Xe
(e j
)
1 2
[X
(e j
)
X
(e j
)]
X(ejω)=0π≤ω≤2π
X(e-jω)=X(ej(2π-ω))=0 0≤ω≤π
第2章 时域离散信号和系统的频域分析
当0≤ω≤π时,
用留数定理求其逆变换, 或者将z=ejω代入X(ejω)中, 得到X(z)函数, 再用求逆Z变换的方法求原序列。 注意收 敛域要取能包含单位圆的收敛域, 或者说封闭曲线c可取 单位圆。
第2章 时域离散信号和系统的频域分析
例如, 已知序列x(n)的傅里叶变换为
X
(e
j
)
1
1 ae
j
a 1
1 求其反变换x(n)。 将z=ejω代入X(ejω)中, 得到 X (z) 1 az 1
三种变换互有联系, 但又不同。 表征一个信号和系统 的频域特性是用傅里叶变换。 Z变换是傅里叶变换的一种推 广, 单位圆上的Z变换就是傅里叶变换。
第2章 时域离散信号和系统的频域分析

《数字信号处理》第二章 离散信号和抽样定理

《数字信号处理》第二章 离散信号和抽样定理
性延拓,因而采样信号xs(t)就包含了的原信号x(t)全部
信息。
重要结论
第三节 抽样定理
*带限信号抽样定理:
要想连续信号抽样后能够不失真的还原 出原信号,则抽样频率必须大于或等于两 倍原信号频谱的最高频率(2fm≤ fs),这就是 奈奎斯特抽样定理。
第三节 抽样定理
二、如何从抽样信号恢复出带限信号x(t)
n
其中
1 g (t)
0
t
2
t


2
Ts
第二节 连续信号的离散化
xa (t)
抽样器
(电子开关) P(t)
T
xa (t)
xˆs (t)
fs

1 T
xˆs (t)
第二节 连续信号的离散化
理想抽样:当τ 趋于零的极限情况时,抽样脉冲
方波p(t)变成了冲激函数序列δT(t),这些冲击函数 的强度准确地为采样瞬间的xa(t)幅值,这样的抽 样称为理想抽样。
余弦与正弦序列示意图如下:
第一节 离散时间信号
5、 用单位脉冲序列表示任意序列
任意序列x(n)都可用单位脉冲序列δ(n)表示成 加权和的形式,即

x(n) x(m) (n m) m
如:
a n x(n)
可表示为 0
10 n 10 其他
10
x(n) am (n m)
样品集合可以是本来就存在的,也可以是由模拟 信号通过采样得来的或者是用计算机产生的。
第一节 离散时间信号
离散时间信号的时域表示 1) 表示离散时间信号可采用枚举的方式。例如
{x(n)}={…,-1.5,-8.7,2.53,0.0,6,7.2, …}

数字信号处理-时域离散随机信号处理(丁玉美)第2章

数字信号处理-时域离散随机信号处理(丁玉美)第2章

rxx (0) rxx (0) Rxx r ( M 1) xx
第二章 维纳滤波和卡尔曼滤波 (2.2.22)式可以写成矩阵的形式, 即
Rxd Rxxh
对上式求逆,得到
h Rxx1Rxd
(2.2.23)
(2.2.24)
第二章 维纳滤波和卡尔曼滤波 上式表明已知期望信号与观测数据的互相关函数及观测 数据的自相关函数时,可以通过矩阵求逆运算, 得到维纳滤
E[| e(n) |2 ] E[| e(n) |2 ] j 0 a j b j

j=0, 1, 2, … (2.2.6)
j j a j b j
j=0, 1, 2, …
(2.2.7)
第二章 维纳滤波和卡尔曼滤波 则(2.2.6)式可以写为
j E[| e(n) |2 ] 0
j 0

(2.2.16)
假定滤波器工作于最佳状态,滤波器的输出yopt(n)与期望信号d(n) 的误差为eopt(n),把(2.2.15)式代入上式,得到
* E[ yopt (n)eopt (n)] 0
(2.2.17)
第二章 维纳滤波和卡尔曼滤波
d(n) eo pt(n)
yo pt(n)
图 2.2.1 期望信号、 估计值与误差信号的几何关系
方法求解,简单易行,具有一定的工程实用价值,并且物理概
念清楚,但不能实时处理;维纳滤波的最大缺点是仅适用于一 维平稳随机信号。这是由于采用频域设计法所造成的, 因此人 们逐渐转向在时域内直接设计最佳滤波器的方法。
第二章 维纳滤波和卡尔曼滤波
2.2 维纳滤波器的离散形式——时域解
2.2.1 维纳滤波器时域求解的方法 根据线性系统的基本理论,并考虑到系统的因果性,可以 得到滤波器的输出y(n),

《信号、系统与数字信号处理》第二章 连续时间信号与系统的频域分析

《信号、系统与数字信号处理》第二章 连续时间信号与系统的频域分析

0 21
/4
/2
(b)相位图
图2.1-2例2.1-2的频谱图
二、指数形式的傅里叶级数
利用欧拉公式将三角形式的傅里叶级数,表示为 复指数形式的傅氏级数
其中
f t F n1 e jn1t
n
F n1
1 T
t0 T t0
f t e jn1tdt
F n1 是复常数,通常简写为 Fn 。
21t
5
4
2
sin
1t
1 2
sin
31t
解:将 f t 整理为标准形式
f
(t)
1
2cos 1t来自4cos 21t
5
4
1 2
cos
31t
2
1
2
cos
1t
4
cos
21t
4
1 2
cos
31t
2
振幅谱与相位谱如图2-1所示。
cn
2
1
1
1/2
0 1 21 31
(a) 振幅图
n
/4
31
第二章 连续时间信号与系统的频域分析 ——Fourier变换
2. 1 周期信号的傅里叶级数分析 2. 2 非周期信号的频谱--傅里叶变换 2. 3 傅里叶变换的性质及定理 2. 4 系统的频域分析方法 2. 5 无失真传输系统与滤波
LTI系统分析的一个基本任务,是求解系统对任意 激励信号的响应,基本方法是将信号分解为多个基本信 号元。
一、三角形式傅里叶级数
周期信号: f t f t nT
其中
T
是信号的最小重复时间间隔,f1
1 是信号的基波频率。 T
若 f t 满足狄里赫利条件,则 f t 可以展开为三角形

数字信号处理——第2章 离散时间傅里叶变换与Z变换

数字信号处理——第2章 离散时间傅里叶变换与Z变换

• 总结:
①序列ZT的收敛域以极点为边界(包含0 和 ②收敛域内不含任何极点,可以包含0 ③相同的零极点可能对应不同的收敛域,即: 不同的序列可能有相同的ZT ④收敛域汇总:右外、左内、双环、有限长z平面


常见典型序列z变换
序列 Z变换 收敛域
z a
z b
注意:只有z变换和它的收敛域两者在一起才和序列相对应。 其它序列见P54: 表2-1 几种序列的z变换
2.3
z反变换

Z反变换: 从X(z)中还原出原序列x(n)
X ( z ) ZT [ x ( n)]
n

x (n) z n
实质:求X(z)幂级数展开式
Z反变换的求解方法: 留数定理法
部分分式法
长除法
1. 留数定理法
根据复变函数理论,可以推导出
x ( n)
1 2 j
X ( z ) z n 1dz
1 1 3z 1
n
z 2
2 n u ( n)
z 3
3
n
n
u (n 1)
x n 2 u n 3 u n 1
3. 幂级数法(长除法)
如果序列的ZT能表示成幂级数的形式,则序列x(n) 是幂 级数 说明: ①这种方法只对某些特殊的ZT有效。 ②如果ZT为有理函数,可用长除法将X(z)展开成幂级 数。 若为右边序列(特例:因果序列),将X(z)展开成负幂 级数; 若为左边序列(特例:反因果序列),将X(z)展开成正 幂级数; 中
z z 1 1 X z 1 z 2 z 3 1 2z 1 3 z 1
1 ZT [a u (n)] z a 1 1 az 1 n ZT [a u (n 1)] z a 1 1 az

数字信号处理 刘顺兰第二章完整版习题解答

数字信号处理 刘顺兰第二章完整版习题解答
2 k)N N 2 k) N
即 0 不在采样点上时,
X (k )
1 e
1 e
b 当 ○
j ( 0

1 e 1 e
j 0 N 2 k) N
j ( 0

sin[(
0
2


N
k)N ] e ) N
j(
0
2 N
k )( N 1)
sin(
0
2
k
0
X (1) 2 2 j
nk N
x(n)W
n 0
N 1
k 2k 3k 1 jW N WN jW N ,
可求得 X (0) 0,
N 1 n 0
X (1) 4, X (2) 0 , N ( k ) c 1 N 1 c c 1 k cW N
(3) x( n) c , 0 n N 1
n
解: (1) X ( k )
x(n)W
n 0
3
nk 4
1 W4k W42 k W43k , k 0,1,2,3 X (2) 0, X (3) 2 2 j N 4
可求得 X (0) 0, (2) X ( k )
1 N 1 j ( k ' k ) n N 1 j N ( k k ') n X ( k ) [ e N e ] 2 n 0 n 0 N , 2 0 ,
(3) X ( k )
N 1 N 1 n 0
2
2
k k ' 及k N k ' 其它
k N
1 k N 1

N ( N 1) , 2 X (k ) N k , W N 1

数字信号处理(程佩青)_第二章_Z变换

数字信号处理(程佩青)_第二章_Z变换
17
2. z变换的收敛域
一种最重要的右边序列:因果序列——是指在 n≥0时x(n)有值,n<0时x(n)=0的序列。其收敛
序列为:
在|z|=∞处z变换收敛是因果序列的特征。
18
2. z变换的收敛域
因果序列及其收敛域(包括z=∞ )
19
2. z变换的收敛域
(3)左边序列
在 时 有值,在 时 的序列 。其z变换为:
有一个
一阶极点。所以
31
1.围线积分法(留数法)
(2)当n≤-2时:函数 有一个 4 一阶极点。所以 在围线C外只
综合可得:
32
2.部分分式展开法
当X(z)为有理函数时,可以表示成
X(z) 可以展成下面的部分分式形式:
其中zi是X(z)的一个r阶极点 ,zk是X(z)的单极点(k=1,2……N-r),Bn是 整式部分的系数(M≥N时存在,M=N时,只有B0 项;M<N时Bn =0)。
59
任一序列总能表示成一个共轭对称序列与 一个共轭反对称序列之和。
要证明这一点,需要找到xe(n) 和xo(n) ,这 只要令xe(n) 和xo(n)满足下式即可 :
60
同样,一个序列x(n)的傅里叶变换也可以分 解成共轭对称分量与共轭反对称分量之和:
其中 ,是共轭对称的, 轭反对称的。
是共
61
(5)
若已知 X(z) = Z[x(n)] Rx_<|z|<Rx+
则有: Z [ x * (n)] X * ( z * )
(6)
若已知 则有: X(z) = Z[x(n)] Rx_<|z|<Rx+
1 Z [ x(n)] X ( ) z
48
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

试画出其级联型网络结构。
解: 将H(z)分子、分母进行因式分解,然后两两组合, 得到:
(2 0.379 z 1 )(4 1.24 z 1 5.264 z 2 ) H ( z) (1 0.25z 1 )(1 z 1 0.5z 2 )
5.3
IIR系统的基本网络结构
5.3

IIR系统的基本网络结构
系数ai 、bi对滤波器性能的控制关系不直接,调 整不方便。 响应对系统变化过于灵敏,也就是对有限精度 (有限字长)运算过于灵敏,容易出现不稳定 或产生较大误差。
直接型结构的缺点:
极点对系数的变化过于灵敏,从而使系统频率
5.3
IIR系统的基本网络结构
二、级联型 把H(z) 分解(因式分解)成几个一阶或二阶 数字网络的级联形式:
H ( z) A H1 ( z) H 2 ( z) ... H K ( z)
式中 H j ( z) 表示一个一阶或二阶的数字网络的 系统函数,每个 H j ( z) 的网络结构均采用前面 介绍的直接型网络结构。
5.3
IIR系统的基本网络结构
实现步骤: (1)先将系统函数按零、极点进行因式分解
第五章 时域离散系统的基本网络结构
5.1 引言
1、滤波器的差分方程
y (n) ai y(n i) bi x(n i)
i 1 i 0 N M
所以,一个滤波系统的输出是其过去 N 点输出 的线性组合加上当前输入序列与过去 M 点输入序列 的线性组合。输出 y (n) 除了与当前的输入 x(n) 有 关,同时还与过去的输入和过去的输出有关,系统 是带有记忆的。
z 1
y(n 2)
5.3
IIR系统的基本网络结构
IIR(Infinite impluse response)无限长单位冲激响应
IIR滤波器的特点:
1、单位冲激响应h(n)是无限长的。 2、系统函数H(z)在有限z平面( 0 z ) 上有极点存在,系统可能不稳定。 3、结构上是递归型的,即存在着输出到输入的 反馈。
5.3
IIR系统的基本网络结构
一、直接型 1、直接I型 (1)差分方程(N阶)
y (n) ai y(n i) bi x(n i)
i 1 i 0 N M
(2)系统函数
Y ( z) H ( z) X ( z)
i b z i M
1 ai z i
i 1
i 0 N
5.3
IIR系统的基本网络结构
线性移不变系统的性质,交换内部子系 统的位置,其系统函数不变,即总的输入输出 关系不变, 但系统内部的状态会改变。 为此,可以交换直接I型中2个网络的位置。
2、直接II型(典范型 )
5.3
IIR系统的基本网络结构
交换直接I型中2个网络的位置如下:
x ( n) b 0
H ( z)
bk z
k 0 N k 1
M
k
1 ak z k
A
1 ( 1 p z ) ( 1 q z )( 1 q z ) k k k 1 1

M1
M2
1 1 1 ( 1 c z ) ( 1 d z )( 1 d z ) k k k k 1 k 1
M1
1
M2
k 1
(1ck z 1 ) (11k z 1 2 k z 2 )
N1 k 1 k 1
k 1 N2
(3)将分子、分母均为实系数的二阶多项式放在 一起,形成一个二阶网络: 0 j 1 j z 1 2 j z 2 H j ( z) 1 1 j z 1 2 j z 2
y (n) bi y(n i) ai x(n i)
i 1 i 0
N
M
5.2 用信号流图表示网络结构
1、信号流图的表示方法 为了表示简单,通常用信号流图来表示其 运算结构。 延迟:
相乘: 相加:
(a)方框图表示法
(b)信号流图表示法
5.2 用信号流图表示网络结构
2、基本信号流图满足的条件:
5.2 用信号流图表示网络结构

根据信号流图可以求出网络的系统函数,方 法是列出各个节点变量方程,形成联立方程 组,并进行求解,求出输出与输入之间的z域 关系。
W1 ( z ) W2 ( z ) z 1 W2 ( z ) W2( z ) z 1 W2( z ) X ( z ) a1W2 ( z ) a2W1 ( z ) Y ( z ) b W ( z ) b W ( z ) b W ' ( z ) 2 1 1 2 0 2
5.3
IIR系统的基本网络结构
0k 1k z 1 2 k z 2 H ( z ) A A H k ( z ) 1 2 1 1k z 2k z k k
用公式表示为:
A H1 ( z) H 2 ( z) ... H K ( z)
分解后的 H k ( z) 可用二阶或一阶的直接型结构实现。
i 0 M
就表示FIR滤波器。
5.1 引言
2、数字滤波器的实现方法: 数字滤波器的功能就是把输入序列x(n)通 过一定的运算变换成输出序列y(n)。 (a)直接利用通用的计算机和通用软件编程 实现; (b)利用专用数字硬件、专用的DSP芯片实 现。 3、数字滤波的基本操作: ①加法,②乘法,③延迟。
画出该滤波器的直接型结构。 解:由H(z)写出差分方程如下:
5 3 1 y (n) y (n 1) y (n 2) y (n 3) 8 x(n ) 4 x(n 1) 4 4 8 11x(n 2) 2 x(n 3)
5.3Leabharlann IIR系统的基本网络结构该滤波器的直接型结构如下:
5.2 用信号流图表示网络结构
根据信号流图写出输入与输出之间的关系。
y(n) a1 y(n 1) a2 y(n 2) b0 x(n)
x ( n)
6
b0
5
1
2
y ( n)
7
a1y(n 1) a2 y(n 2)
a1
a1 y(n 1)
z 1
3 4
y(n 1)
a2
a 2 y(n 2)
改变级联次序后,将中间的两条完全相同的延时链合并。这样 延时单元可以节省一倍,即N阶滤波器只需要N级延时单元。
5.3
IIR系统的基本网络结构
8 4 z 1 11z 2 2 z 3 H ( z) 5 1 3 2 1 3 1 z z z 4 4 8
[例] IIR数字滤波器的系统函数H(z)为
所以,该级联型网络结构为
x(n) z- 1 0.25 - 0.379 - 0.5 2 4 z- 1 - 1.24 z- 1 5.264 y(n)
(请输入有关参数)
1 1 2 (2 0.379 z )(4 1.24 z 5.264 z ) 附:H ( z ) (1 0.25z 1 )(1 z 1 0.5z 2 )
5.2 用信号流图表示网络结构
经过联立求解得到:
Y ( z ) b0 b1 z 1 b2 z 2 H ( z) X ( z ) 1 a1 z 1 a2 z 2
当结构复杂时,上面利用节点变量方程联
立求解的方法较麻烦,可用梅森(Masson)公
式直接写H(z)表示式方便。
5.3
IIR系统的基本网络结构
级联型结构的特点:
每一个基本节只关系到滤波器的某一对极点和
一对零点,通过调整系数便于准确实现滤波器
的零点、极点,也便于性能调整。
后面的网络输出不会再流到前面,因而运算的
累积误差较小。
5.3
IIR系统的基本网络结构
三、并联型 把H(z) 分解(部分分式展开)成几个一阶 或二阶数字网络的并联形式:
5.3
IIR系统的基本网络结构
图: 一阶和二阶直接型网络结构 (a)直接型一阶网络结构;(b)直接型二阶网络结构
5.3
IIR系统的基本网络结构
8 4 z 1 11z 2 2 z 3 H ( z) 1 1.25z 1 0.75z 2 0.125z 3
[例] IIR数字滤波器的系统函数H(z)为
5.3
IIR系统的基本网络结构
y (n) ai y(n i) bi x(n i)
N M
(3)结构流图(按差分方程可以写出)
x ( n)
x(n 1) x(n 2)
b0
i 1
i 0
y ( n)
z
z
z
1
b1
a1 a2
1
b2
bM 1
z z
1 1
y(n 1) y(n 2)
H ( z) H1 ( z) H 2 ( z) ... H K ( z)
式中, Hk(z) 通常为一阶网络和二阶网络,网络 系统均为实数。二阶网络的系统函数一般为
0k 1k z 1 H k ( z) 1 1k z 1 2k z 2
注:若为一阶网络, 则1k 0, 2 k 0;
5.1 引言
数字滤波是数字信号处理的一个基本应用。 一个数字滤波器的系统函数一般表示为有理函 M 数形式: i b z i Y ( z) H ( z) i 0N X ( z) 1 ai z i
i 1
当ai中至少有一个 0时,这个H ( z)就表示IIR滤波器。
当ai 0, i 1,2,..., N时,即H ( z ) bi z i
1
x(n M )
bM
a N 1
aN
相关文档
最新文档