因式分解与分式化简求值复习题
初中数学分式的化简求值专项训练题8(附答案详解)
x x
2 2
1
4 x2
4
,其中
x
2 2.
8. 先化简( m2 4m -m-2)÷m2 2m 1 ,然后从-2<m≤2 中选一个合适的整数作
m2
m2
为 m 的值代入求值.
9.先化简,再求代数式的值:
1
1 m
2
m2 2m 1 m2 4
,其中
m=1.
10.先化简,再求值:(
x2 x
x 1
x﹣1)
x3 x2 x2 2x 1
,其中
x
是不等式组
x 1<0
3 x 1
x
7
的整数解.
11.阅读下列材料,解决问题: 在处理分数和分式问题时,有时由于分子比分母大,或者为了分子的次数告诉于分母的
次数,在实际运算时往往难度比较大,这时我们可以将假分数(分式)拆分成一个整数
(或整式)与一个真分数的和(或差)的形式,通过对简单式的分析来解决问题,我们
m1 01
【点睛】 本题考查了分式的化简求值,解答本题的关键是明确分式化简求值的方法.
9. m 2 ,﹣ 1 m1 2
【解析】 【分析】 先根据分式混合运算的法则把原式进行化简,再把 m 的值代入进行计算即可. 【详解】
解:原式=
m m
1 2
.
(m
2)(m (m 1)2
2)
= m2 , m 1
;
x3
(3)已知一个六位整数 20xy17 能被 33 整除,求满足条件的 x,y 的值.
b a 2ab b2
12.先化简,再求值
a
a
a
,其中 a 3 1,b=1.
13.先化简,再求值:
专题训练(一) 分式化简求值常见题型归纳
专题训练(一) 分式化简求值常见题型归纳► 类型一 代入求值型一、直接代入型1.先化简,再求值:⎝ ⎛⎭⎪⎫a 2a -1+11-a ·1a,其中a =-12. 二、选择代入型2.先化简:x 2+x x 2-2x +1÷⎝ ⎛⎭⎪⎫2x -1-1x ,再从-2<x <3的范围内选取一个你喜欢的x 值代入求值.3.若a 满足-3≤a≤3,请你选取一个合适的数a 使得代数式a 2-1a ÷⎝ ⎛⎭⎪⎫1-1a 的值是一个奇数.三、整体代入型4.已知x ,y 满足x =5y ,求分式x 2-2xy +3y 24x 2+5xy -6y 2的值. 5.已知a +b b =52,求a -b b的值. 6.若1a -1b =12,求a -b ab -ab a -b的值. 7.已知1x +1y =5,求2x -3xy +2y x +2xy +y的值. 8.已知a 满足a 2+2a -15=0,求1a +1-a +2a 2-1÷(a +1)(a +2)a 2-2a +1的值. 9.已知t +1t =3,求t 2+⎝ ⎛⎭⎪⎫1t 2的值. 10.已知x +1x =4,求x 2x 4+x 2+1的值. ► 类型二 设比例系数或用消元法求值11.已知2a -3b +c =0,3a -2b -6c =0,abc ≠0,则a 3-2b 3+c 3a 2b -2b 2c +3ac 2=________. 12.已知x 2=y 3=z 4≠0,求xy +yz +zx x 2+y 2+z 2的值.► 类型三 利用非负数的性质挖掘条件求值13.已知x 2-4x +4与|y -1|互为相反数,则式子⎝ ⎛⎭⎪⎫x y -y x ÷(x +y)的值为________. 14.已知⎪⎪⎪⎪⎪⎪x -12x -3+⎝ ⎛⎭⎪⎫3y +1y +42=0,求32x +1-23y -1的值. ► 类型四 值恒不变形15.已知y =x 2+6x +9x 2-9÷x +3x 2-3x-x +3,试说明不论x 为任何使原式有意义的值,y 的值均不变. 详解详析1.解:原式=⎝⎛⎭⎫a 2a -1-1a -1·1a =a 2-1a -1·1a =(a +1)(a -1)a -1·1a =a +1a . 当a =-12时,a +1a =-12+1-12=-1. 2.解:原式=x (x +1)(x -1)2÷2x -(x -1)x (x -1)=x (x +1)(x -1)2·x (x -1)x +1=x 2x -1. 由题意,可取x =2代入上式,得x 2x -1=222-1=4.(注意:x 不能为0和±1) 3.解:原式=a +1.由原代数式有意义,得a ≠0且a ≠1,又代数式的值是奇数,且-3≤a ≤3,所以a =±2.4.解:由已知可得y ≠0,将分式的分子、分母同除以y 2,得原式=⎝⎛⎭⎫x y 2-2·x y +34·⎝⎛⎭⎫x y 2+5·x y-6. 又已知x =5y ,变形得x y =5,将其代入原式,得⎝⎛⎭⎫x y 2-2·x y +34·⎝⎛⎭⎫x y 2+5·x y -6=52-2×5+34×52+5×5-6=18119. 5.[解析] 由a -b b =a +b -2b b =a +b b-2,再将已知条件代入该式即可求解. 解:a -b b =a +b -2b b =a +b b -2,又知a +b b =52,将其代入上式,得 a -b b =52-2=12. 6.解:由1a -1b =12, 得b -a ab =12, 所以a -b ab =-12,ab a -b=-2, 所以a -b ab -ab a -b=-12+2=32. 7.[解析] 由条件1x +1y =5,通分化简,得x +y =5xy ,代数式可化为2(x +y )-3xy x +2xy +y,从而整体代入求值.解:∵1x +1y =x +y xy=5, ∴x +y =5xy ,∴2x -3xy +2y x +2xy +y =2(x +y )-3xy x +2xy +y =10xy -3xy 5xy +2xy=1. 8.[解析] 对要求的式子进行计算,先进行因式分解,再把除法转化成乘法,然后进行约分,得到一个最简分式,最后把a 2+2a -15=0进行配方,得到a +1的值,再把它整体代入即可求出答案.解:1a +1-a +2a 2-1÷(a +1)(a +2)a 2-2a +1=1a +1-a +2(a +1)(a -1)·(a -1)2(a +1)(a +2)=1a +1-a -1(a +1)2=2(a +1)2. ∵a 2+2a -15=0,∴(a +1)2=16,∴原式=216=18.9.[解析] 利用t 2+⎝⎛⎭⎫1t 2=⎝⎛⎭⎫t +1t 2-2的形式,将已知条件整体代入求解. 解:因为t 2+⎝⎛⎭⎫1t 2=⎝⎛⎭⎫t +1t 2-2, 又t +1t=3,将其代入上式,得原式=32-2=7. 10.解:因为x +1x=4,所以⎝⎛⎭⎫x +1x 2=42, 即x 2+2+1x 2=16,所以x 2+1x 2=14. 因为x 4+x 2+1x 2=x 2+1+1x 2=x 2+1x 2+1=14+1=15, 所以x 2x 4+x 2+1=115. 11.1142[解析] 由已知条件不能求出a ,b ,c 的具体值,但是我们可以把已知等式组成方程组,用其中一个字母(如c)来表示另两个字母,把分式转化为只含一个字母的分式,再约分.由已知,得⎩⎨⎧2a -3b =-c ,3a -2b =6c , 解这个方程组得 ⎩⎨⎧a =4c ,b =3c ,代入原式,得a 3-2b 3+c 3a 2b -2b 2c +3ac 2= (4c )3-2·(3c )3+c 3(4c )2·3c -2·(3c )2c +3×4c·c 2=11c 342c 3=1142. 12.解:设x 2=y 3=z 4=k ,则x =2k ,y =3k ,z =4k ,所以xy +yz +zx x 2+y 2+z 2=6k 2+12k 2+8k 24k 2+9k 2+16k 2=2629. 13.12[解析] 代数式x 2-4x +4=(x -2)2.因为x 2-4x +4与|y -1|互为相反数,所以由非负数的性质,得x -2=0,y -1=0,解得x =2,y =1,所以⎝⎛⎭⎫x y -y x ÷(x +y)=⎝⎛⎭⎫21-12÷(2+1)=12.14.解:由⎪⎪⎪⎪⎪⎪x -12x -3+⎝ ⎛⎭⎪⎫3y +1y +42=0,得x -12x -3=0,3y +1y +4=0,所以x =1,y =-13, 所以原式=32×1+1-23×⎝⎛⎭⎫-13-1=2. 15.[解析] 先化简分式,再通过分析化简结果得出结论.解:y =x 2+6x +9x 2-9÷x +3x 2-3x-x +3 =(x +3)2(x +3)(x -3)·x (x -3)x +3-x +3 =x -x +3=3.由化简结果,可知y 的值为常数3,与x 的取值无关,故不论x 为任何使原式有意义的值,y 的值均不变.。
(完整)因式分解、分式方程习题
课后练习 分式练习一.填空题:1、1、当x 时,分式422--x x 有意义。
当x 时,分式1872---x x x 的值为零.当x 时,分式x x 61212-+的值为负数。
2、约分:2246x y xy =________________,242x xy y-+=________________; 3、如果分式方程:13743x x x -+=--有增根,则增根是________。
使分式方程x x m x --=-3232产生增根的m 值为________。
4、用科学记数法表示:305000=___________________; 0。
000305=____________________5、分式方程1123x =-的解是__________________ 6、若方程23(1)a x =-的解是x=5,则a=____________ 7、若15a a +=,则221a a +=________________ 二、选择题: 8、下列有理式中①2x,②5x y +,③12a-,④11π-中分式有( )个 A 、1 B 、2 C 、3 D 、49、下列各式约分正确的是( )A 、632x x x =B 、c a a c b b +=+C 、1a b a b +=+D 、6221342y y x x ++=++ 10、已知两个分式4x 4A 2-=,x 212x 1B -++=,其中x ≠±2,则A 与B 的关系是( ) A 。
相等B. 互为倒数 C 。
互为相反数 D. A 大于B 12、方程1112x x x--=去分母后的结果正确的是( ) A 、21x=1 B 、21+x=1 C 、21+x=2x D 、21x=2x13、若关于x 的方程ax=3x 5的解是正数,则a 的取值范围是( )A 、a<3B 、a 〉3C 、a ≥3D 、a ≤314、已知43=b a ,=-b a b ( )。
最新因式分解及分式的计算练习题(题型全)
分式计算练习二周案序 总案序 审核签字一.填 空: 1.x 时,分式42-x x 有意义; 当x 时,分式1223+-x x 无意义; 2.当x= 时,分式2152x x --的值为零;当x 时,分式xx --112的值等于零.3.如果b a=2,则2222b a b ab a ++-=4.分式ab c 32、bc a 3、ac b25的最简公分母是 ; 5.若分式231-+x x 的值为负数,则x 的取值范围是 .6.已知2009=x 、2010=y ,则()⎪⎪⎭⎫⎝⎛-+⋅+4422y x y x y x = .二.选 择: 1.在31x+21y, xy 1 ,a +51 ,—4xy , 2xx , πx中,分式的个数有( )A 、1个B 、2个C 、3个D 、4个 2.如果把yx y322-中的x 和y 都扩大5倍,那么分式的值( )A 、扩大5倍B 、不变C 、缩小5倍D 、扩大4倍3.下列各式:()xx x x y x x x 2225,1,2 ,34 ,151+---π其中分式共有( )个。
A 、2 B 、3 C 、4 D 、54.下列判断中,正确的是( )A 、分式的分子中一定含有字母 B 、当B=0时,分式BA 无意义 C 、当A=0时,分式BA 的值为0(A 、B 为整式) D 、分数一定是分式5.下列各式正确的是( )A 、11++=++b a x b x a B 、22x y x y = C 、()0,≠=a ma na m n D 、a m a n m n --= 6.下列各分式中,最简分式是( )A 、()()y x y x +-8534B 、y x x y +-22C 、2222xy y x y x ++ D 、()222y x y x +- 7.下列约分正确的是( ) A 、313m m m +=+ B 、212y x y x -=-+ C 、123369+=+a ba b D 、()()y x a b y b a x =--8.下列约分正确的是( )A 、326x x x = B 、0=++y x y x C 、x xy x y x 12=++ D 、214222=y x xy 9.(更易错题)下列分式中,计算正确的是( )A 、32)(3)(2+=+++a c b a c bB 、b a b a b a +=++122C 、1)()(22-=+-b a b a D 、x y y x xy y x -=---1222 10.若把分式xyyx 2+中的x 和y 都扩大3倍,那么分式的值( )A 、扩大3倍B 、不变C 、缩小3倍D 、缩小6倍 11.下列各式中,从左到右的变形正确的是( )A 、y x y x y x y x ---=--+-B 、y x y x y x y x +-=--+-C 、yx y x y x y x -+=--+- D 、y x yx y x y x +--=--+-12.若0≠-=y x xy ,则分式=-xy 11 ( ) A 、xy 1B 、x y -C 、1D 、-113. 若x 满足1=xx,则x 应为( )A 、正数 B 、非正数 C 、负数 D 、非负数14.已知0≠x ,xx x 31211++等于( ) A 、x 21 B 、1 C 、x 65 D 、x 61115、(多转单约分求值)已知113x y -=,则55x xy yx xy y+---值为( )A 、72- B 、72 C 、27 D 、72-三.化简:1.m m -+-3291222. a+2-a -243. 22221106532xyx y y x ÷⋅4.ac ac bc c b ab b a -+-++ 5.262--x x ÷4432+--x x x6.224)2222(x x x x x x -⋅-+-+-7. 22224421y xy x y x y x y x ++-÷+-- 8.1111-÷⎪⎭⎫ ⎝⎛--x x x 9. mn nn m m m n n m -+-+--210.⎪⎪⎭⎫⎝⎛++÷--ab b a b a b a 22222 11.⎪⎭⎫ ⎝⎛--+÷--13112x x x x12.(22+--x x x x )24-÷x x 13. 1⎪⎭⎫⎝⎛⋅÷÷a b b a b a 32492314..()2211n m m n m n -⋅⎪⎭⎫ ⎝⎛-÷⎪⎭⎫ ⎝⎛+; 15.168422+--x x x x ,其中x =5.分式计算练习一1. 2234xy z ·(-28z y )等于( ) A .6xyz B .-23384xy z yz- C .-6xyz D .6x 2yz 2. 下列各式中,计算结果正确的有( )①;2)1(2223n m mn n m =-• ②8b a b a b a 32326)43(-=-÷; ③(;1)()b a ba b a b a +=+•-⋅+ ④(2232)()()b a b a b a b a =-÷-•-A.1个B.2个C.3个D.4个3. 下列公式中是最简分式的是( )A .21227b aB .22()a b b a --C .22x y x y ++D .22x y x y--4. (2008黄冈市)计算()ab a bb aa+-÷的结果为( ) A .a b b - B .a b b + C .a b a - D .a b a+5. 计算34x x y -+4x y y x +--74yx y-得( ) A .-264x y x y +- B .264x yx y+- C .-2 D .2二 计算:(1)2223x y mn ·2254m n xy ÷53xym n . (2)2216168m m m -++÷428m m -+·22m m -+(3)(-2b a )2÷(b a -)·(-34b a)3. (4)21x x --x-1.三、 先化简,再求值:1、232282x x x x x +-++÷(2x x -·41x x ++).2、22)11(yxy y x y y x -÷-++, 其中x=-45. 其中2-=x ,1=y .3、已知a=25,25-=+b ,4、已知3=a ,2-=b ,求2++ba ab 得值。
分式的化简求值经典练习题(带答案)
分式的化简一、比例的性质:⑴ 比例的基本性质:a cad bc b d=⇔=,比例的两外项之积等于两内项之积. ⑵ 更比性(交换比例的内项或外项): ( ) ( ) ( )a bc d a c d cb d b a d bc a ⎧=⎪⎪⎪=⇒=⎨⎪⎪=⎪⎩交换内项 交换外项 同时交换内外项⑶ 反比性(把比例的前项、后项交换):a c b db d a c=⇒=⑷ 合比性:a c a b c d b d b d ±±=⇒=,推广:a c a kb c kdb d b d±±=⇒=(k 为任意实数) ⑸ 等比性:如果....a c m b d n ===,那么......a c m ab d n b+++=+++(...0b d n +++≠)二、基本运算分式的乘法:a c a cb d b d⋅⋅=⋅分式的除法:a c a d a db d bc b c ⋅÷=⨯=⋅乘方:()n nn n n a a aa a aa ab b bb b bb b⋅=⋅=⋅个个n 个=(n 为正整数) 整数指数幂运算性质:⑴m n m n a a a +⋅=(m 、n 为整数) ⑵()m n mn a a =(m 、n 为整数) ⑶()n n n ab a b =(n 为整数)⑷m n m n a a a -÷=(0a ≠,m 、n 为整数) 负整指数幂:一般地,当n 是正整数时,1n n a a-=(0a ≠),即n a -(0a ≠)是n a 的倒数 分式的加减法法则:知识点睛中考要求同分母分式相加减,分母不变,把分子相加减,a b a bc c c+±=异分母分式相加减,先通分,变为同分母的分式再加减,a c ad bc ad bcb d bd bd bd±±=±=分式的混合运算的运算顺序:先算乘方,再算乘除,后算加减,如有括号,括号内先算.结果以最简形式存在.一、分式的化简求值【例1】 先化简再求值:2111x x x---,其中2x = 【考点】分式的化简求值 【难度】2星 【题型】解答【关键词】2010年,湖南郴州【解析】原式()()111x x x x x =---()111x x x x-==-当2x =时,原式112x ==【答案】12【例2】 已知:2221()111a a a a a a a ---÷⋅-++,其中3a =【考点】分式的化简求值 【难度】2星 【题型】解答 【关键词】【解析】222221(1)()4111(1)a a a a a a a a a ---+÷⋅=-=--++-【答案】4-【例3】 先化简,再求值:22144(1)1a a a a a-+-÷--,其中1a =- 【考点】分式的化简求值 【难度】2星 【题型】解答【关键词】2010年,安徽省中考【解析】()()2221144211122a a a a a a a a a a a a --+-⎛⎫-÷=⋅= ⎪----⎝⎭- 当1a =-时,原式112123a a -===---【答案】1例题精讲【例4】 先化简,再求值:2291333x x x x x ⎛⎫-⋅ ⎪--+⎝⎭其中13x =. 【考点】分式的化简求值【难度】2星 【题型】解答【关键词】2010年,湖南省长沙市中考试题【解析】原式()()()33133x x x x x +-=⋅-+ 1x=当13x =时,原式3=【答案】3【例5】 先化简,再求值:211(1)(2)11x x x -÷+-+-,其中x =【考点】分式的化简求值 【难度】2星 【题型】解答【关键词】2010年,湖北省十堰市中考试题【解析】原式()()()111121x x x x x +-=⋅+-+-+ ()()12x x x =-+-22x =-当x 时,原式224=-=.【答案】4【例6】 先化简,后求值:22121(1)24x x x x -++÷--,其中5x =-. 【考点】分式的化简求值 【难度】2星 【题型】解答【关键词】2010年,广东省肇庆市中考试题【解析】22121(1)24x x x x -++÷--=221(1)2(2)(2)x x x x x -+-÷-+- =21(2)(2)2(1)x x x x x -+-⋅-- =21x x +- 当5-=x 时,原式21x x =+-521512+-=-=-. 【答案】12【例7】 先化简,再求值:532224x x x x -⎛⎫--÷⎪++⎝⎭,其中3x =. 【考点】分式的化简求值 【难度】2星 【题型】解答【关键词】2010年,湖北省武汉市中考试题【解析】原式2453(3)(3)2(2)22(2)22(3)3x x x x x x x x x x ---+-+=⨯=+++-=÷+,当3x =-时,原式=【答案】【例8】 先化简,再计算:231124a a a +⎛⎫+÷ ⎪--⎝⎭,其中3a =. 【考点】分式的化简求值 【难度】2星 【题型】解答【关键词】2010年,湖南省岳阳市中考试题【解析】原式()()2223221a a a a a a +--⎛⎫=+⨯ ⎪--+⎝⎭()()22121a a a a a +-+=⨯-+ 2a =+【答案】2a +【例9】 当12x =-时,求代数式22226124111x x x x x x x x ⎛⎫++-+-+÷ ⎪--+⎝⎭的值 【考点】分式的化简求值【难度】3星 【题型】解答 【关键词】【解析】原式2224(1)1(1)(1)2413x x x x x x x x x x -++=⨯==+--+- 【答案】13【例10】 先化简分式22222936931a a a a a a a a a ---÷-+-+-,然后在0,1,2,3中选一个你认为合适的a 值,代入求值.【考点】分式的化简求值 【难度】2星 【题型】解答【关键词】2010年,广东省深圳市中考试题【解析】原式()()()()223332313a a a a a a a a a a a a +-+-=⋅-=+=--+ 当0123a =,,,时,原式0246=,,, 【答案】0,2,4,6【例11】 先化简:22222a b ab b a a ab a ⎛⎫-+÷+ ⎪-⎝⎭,当1b =-时,再从22a -<<的范围内选取一个合适的整数a 代入求值.【考点】分式的化简求值 【难度】2星 【题型】解答【关键词】2010年,贵州省贵阳市中考试题【解析】原式()()()()22221a b a b a ab b a b a a a b a a a ba b +-+++=÷=⋅=-++在22a -<<中,a 可取的整数为101-,,,而当1b =-时, ①若1a =-,分式222a b a ab--无意义;②若0a =,分式22ab b a +无意义;③若1a =,分式1a b+无意义. 所以a 在规定的范围内取整数,原式均无意义(或所求值不存在)【答案】a 在规定的范围内取整数,原式均无意义(或所求值不存在)【例12】 已知212242xA B C x x x ===--+,,将它们组合成()A B C -÷或A B C -÷的形式,请你从中任选一种进行计算,先化简,再求值其中3=x .【考点】分式的化简求值 【难度】3星 【题型】解答【关键词】2010年,河南省中考试题【解析】选一:()()()21221242222x x x A B C x x x x x x x +⎛⎫-÷=-÷=⨯= ⎪--++--⎝⎭ 当3x =时,原式1132==- 选二:()21212124222x A B C x x x x x x x -÷=-÷=-=--+--,当3x =时,原式13=【答案】选一:当3x =时,原式1132==- 选二:当3x =时,原式13=【例13】 先化简,再求值:224125(2)2[2()](34)(2)a a a a a a a a +++÷--÷-+,其中4a = 【考点】分式的化简求值【难度】3星【题型】解答【关键词】【解析】原式2224(3)5(2)(2)[2](34)(2)a a aaa a a a+++=÷--÷-+4(3)(2)(2)5(34)(2)2a a aa a a+-+-=÷-++ 4(3)2(34)(2)(3)(3)a aa a a a++=⋅-+-+4(34)(3)a a=--当4a=时,原式441(34)(3)(344)(43)2a a=== --⨯--本题含分式乘方、加、减、乘、除混合运算;与分式四则混合运算类似,分式的四则混合运算的顺序是:先算乘方,再算乘除,后算加减,如有括号,括号内先算.【答案】1 2【例14】已知20102009x y==,,求代数式22xy y x yxx x⎛⎫---⎪⎝⎭÷的值.【考点】分式的化简求值【难度】2星【题型】解答【关键词】2010年,顺义一模试题【解析】22xy y x y xx x ⎛⎫---⎪⎝⎭÷222x xy y xx x y-+=-2()x y xx x y-=-x y=-当2010x=,2009y=时,原式=201020091x y-=-=.【答案】1【例15】已知22a b==a bb a-的值.【考点】分式的化简求值【难度】2星【题型】解答【关键词】2010年,湖北荆门市中考试题【解析】∵22a b=+=∴4a b+=,a b-=,1ab=而a bb a-22()()a b a b a bab ab-+-==∴a bb a-=()()a b a bab+-==【答案】【例16】 先化简,再求值:()()x yy x y x x y -++,其中11x y ==,. 【考点】分式的化简求值 【难度】2星 【题型】解答【关键词】2010年,湖南湘潭市中考试题【解析】原式()()22x y xy x y xy x y =-++ ()22x y xy x y -=+()()()x y x y xy x y -+=+x y xy-=当 11x y ==,时,11221x yxy--=== 【答案】2【例17】 化简,再求值:11-a b b a ⎛⎫+ ⎪+⎝⎭ab a b÷+.其中1a =, b =. 【考点】分式的化简求值 【难度】3星 【题型】解答【关键词】2010年,黄石市中考试题【解析】原式()()()()()2b a a b a b a b b a ab a b b++-+=⋅=-+-∵1a b ==,∴原式1b ==,∴=【例18】 先化简,再求值:22112b a b a b a ab b ⎛⎫-÷ ⎪-+-+⎝⎭,其中11a b ==-【考点】分式的化简求值 【难度】3星 【题型】解答【关键词】2010年,宣武一模试题【解析】原式()()()()()()22a b a b a b a b a b a b b a b+----=⋅=-++当11a b ==-==【答案】【例19】 先化简,再求值:22211x yx y x y x y⎛⎫+÷ ⎪-+-⎝⎭,其中11x y ==, 【考点】分式的化简求值 【难度】3星 【题型】解答【关键词】2010年,广西桂林中考试题 【解析】原式2222222x y x y x yx y x y x y ⎛⎫+-=+÷ ⎪---⎝⎭ 22222x y x y x y x y x y++--=⨯- 222x x y xy==当11x y ==,原式22131xy====-【答案】1【例20】 求代数式()()22222222222a b c a b c ab ac a a ab ab a b a b -----+⋅÷-++-的值,其中1a =,12b =-,23c =- 【考点】分式的化简求值 【难度】3星 【题型】解答 【关键词】【解析】()()22222222222a b ca b c ab ac a a ab ab a b a b -----+⋅÷-++- ()()()()()()()()()2a b c a a b c a b c a b a b a a b a b c a b c a b -+-+--+-=⋅⋅-+--++a b c a b --=+. ∴当1a =,12b =-,23c =-时,原式12123112++=-1313263=⨯=. 【答案】133二、条件等式化简求值1. 直接换元求值【例21】 已知:2244a b ab +=(0ab ≠),求22225369a b a b ba b a ab b a b--÷-++++的值. 【考点】分式的化简求值 【难度】3星 【题型】解答【关键词】2010年,石景山二模【解析】由2244a b ab+=得2b a=原式2 a ba b-=+当2b a=时,原式42a aa a-=+1=-【答案】1-【例22】已知x y z,,满足235x y z z x==-+,则52x yy z-+的值为()A.1B.13C.13- D.12【考点】分式的化简求值【难度】4星【题型】选择【关键词】2007年,全国初中数学联赛试题【解析】B;由235x y z z x==-+得332y x z x==,,∴5531 2333 x y x xy z x x--== ++【答案】1 3【例23】已知:34xy=,求2222222x y xy yx xy y x xy-+÷-+-的值【考点】分式的化简求值【难度】3星【题型】解答【关键词】【解析】2222222()()()3 2()()4 x y xy y x y x y y x y xx xy y x xy x y x x y y -++-+÷=÷== -+---【答案】3 4【例24】已知:220x-=,求代数式222(1)11x xx x-+-+的值.【考点】分式的化简求值【难度】2星【题型】解答【关键词】2010年,丰台一模【解析】原式=22 (1)1)(1)1 x x x x x-++-+(=2111 x x x x-+++=211x xx+-+.∵220x-=,∴22x=.∴原式=211111x x x x +-+==++.【答案】1【例25】 已知12=x y ,求2222222-⋅+-++-x x y y x xy y x y x y 的值. 【考点】分式的化简求值【难度】2星 【题型】解答【关键词】2010年,海淀一模【解析】y x y y x y x y xy x x-++-⋅+-2222222 22()()2()x x y x y yx y x y x y -+=⋅++-- 22()x y x y x y =+--2()()x y x y +=-.当21=y x 时,x y 2=. 原式2(2)6(2)x x x x +==--.【答案】6-【例26】 已知221547280x xy y -+=,求xy的值. 【考点】分式的化简求值 【难度】3星 【题型】解答 【关键词】【解析】221547280x xy y -+=,∴(37)(54)0x y x y ++=,∴370x y +=或540x y +=,由题意可知:0y ≠,73x y =-或45x y =-. 【答案】45-【例27】 已知22690x xy y -+=,求代数式2235(2)4x yx y x y +⋅+-的值.【考点】分式的化简求值 【难度】3星 【题型】解答【关键词】2010年,海淀二模【解析】22690x xy y -+=,2(3)0x y -=.∴ 3x y =. ∴原式35(2)(2)(2)x yx y x y x y +=⋅++-352x yx y +=-3(3)52(3)y yy y+=-145=. 【答案】145【例28】 已知x =,求351x x x++的值. 【考点】分式的化简求值 【难度】4星 【题型】解答【关键词】降次,整体置换【解析】21x -=21x x =+,0x ≠.则()233245555111x x x x x x x x x x x++++=====【例29】 已知20x y -=,求22()2x y xyy x x xy y -⋅-+的值.【考点】分式的化简求值 【难度】3星 【题型】解答【关键词】2010年,东城二模【解析】22()2x y xyy x x xy y -⋅-+=22222x y xyxy x xy y-⋅-+ =2()()()x y x y xyxy x y -+⋅- =x y x y+-. ∵20x y -=, ∴2x y =.∴x y x y +-=2332y y yy y y+==-. ∴原式3.=【答案】3【例30】 已知3a b =,23a c =,求代数式a b c a b c+++-的值. 【考点】分式的化简求值 【难度】3星 【题型】解答 【关键词】【解析】(法1)注意将未知数划归统一,2,33a a b c ==,123331233a a aa b c a b c a a a++++==+-+- (法2)3a b =,223233a c b b ==⨯=,32332a b c b b ba b c b b b ++++==+-+-【答案】3【例31】 已知123a b c a c ==++,求ca b+的值. 【考点】分式的化简求值【难度】4星 【题型】解答【关键词】第8届,华罗庚金杯复赛【解析】23b c a a c a +=⎧⎨+=⎩22b c a c a +=⎧⇒⎨=⎩02b c a =⎧⇒⎨=⎩,所以220c aa b a ==++.【答案】2【例32】 已知2232a b ab -=,0a >,0b >,求证:252a b a b +=- 【考点】分式的化简求值 【难度】4星 【题型】解答 【关键词】【解析】由已知可得22230a ab b --=,则(3)()0a b a b -+=,所以3a b =或a b =-∵0a >,0b >,∴3a b =,则23255322a hb b b a b b b b ++===--【答案】52【例33】 已知:2232a b ab -=,求2a ba b+-的值.【考点】分式的化简求值 【难度】3星【题型】解答【关键词】清华附中暑假作业【解析】变形可得:()(3)0a b a b +-=,所以a b =-或3a b =,所以212a b a b +=--或52. 【答案】12-或52【例34】 已知22(3)0x y a b -+-=,求32223322232332a x ab y b xya x ab y b xy++++的值.【考点】分式的化简求值 【难度】3星 【题型】解答【关键词】第9届,华罗庚金杯总决赛1试 【解析】由已知可得:2y x =,3a b =,故原式7297=. 【答案】7297【例35】 已知分式1x yxy+-的值是m ,如果用x ,y 的相反数代入这个分式,那么所得的值为n ,则m 、n 是什么关系?【考点】分式的化简求值 【难度】3星 【题型】解答 【关键词】【解析】由题可知:()()()1.1x ym xy x y n x y +⎧=⎪-⎪⎨-+-⎪=⎪---⎩,①②由②得:11x y x yn m xy xy--+==-=---.∴m n =-,∴0m n +=. 所以m n ,的关系为互为相反数.【答案】m n ,的关系为互为相反数【例36】 已知:233mx y +=,且()22201nx y x y -=≠≠-,.试用x y ,表示m n. 【考点】分式的化简求值 【难度】4星 【题型】解答 【关键词】【解析】∵0x ≠,∴由233mx y +=,得:()()231133y y y m x x+--==. 由222nx y -=,得:()222122y y n x x++==. ∵1y ≠-,∴0n ≠,∴231121y y y m n x x +-+=÷()231121y y x x y +-=⋅+312x y -=. 【答案】()312x y -【例37】 已知:230a b c -+=,3260a b c --=,且0abc ≠,求3332223273a b c ab bc a c-++-的值.【考点】分式的化简求值 【难度】4星 【题型】解答 【关键词】【解析】由题意可知:2303260a b c a b c -+=⎧⎨--=⎩,解得43a c b c =⎧⎨=⎩,333322233215173453a b c c ab bc a c c -+-==-+- 【答案】13-【例38】 已知方程组:230230x y z x y z -+=⎧⎨-+=⎩(0xyz ≠),求:::x y z【考点】分式的化简求值 【难度】3星 【题型】解答 【关键词】【解析】把z 看作已知数,解关于x 、y 的方程组,解得5y z =,7x z =,所以::7:5:1x y z =. 【答案】::7:5:1x y z =【例39】 若4360x y z --=,270x y z +-=(0xyz ≠),求222222522310x y z x y z +---的值.【考点】分式的化简求值 【难度】3星 【题型】解答【关键词】全国初数数学竞赛【解析】由43627x y z x y z -=⎧⎨+=⎩,得32x zy z =⎧⎨=⎩,代入得原式13=-.【答案】13-【例40】 设自然数x 、y 、m 、n 满足条件58x y m y m n ===,求的x y m n +++最小值. 【考点】分式的化简求值 【难度】5星 【题型】解答【关键词】黄冈市初中数学竞赛【解析】58x y =,58y m =,85m y =,864525n m y ==,从而y 是825200⨯=的倍数,当200y =586412520032051211578525x y m n y y y y +++=+++=+++=【例41】 设有理数a b c ,,都不为0,且0a b c ++=,则222222222111b c a c a b a b c+++-+-+-的值为___________。
中考复习分式化简求值练习题
化简求值中考数学化简求值专项训练注意:此类题目的要求,如果没有化简,直接代入求值一分不得!!考点:①分式的加减乘除运算(注意去括号,添括号时要换号,分子相减时要看做整体) ②因式分解(十字相乘法,完全平方式,平方差,提公因式)③二次根式的简单计算(分母有理化,一定要是最简根式)类型一:化简之后直接带值,有两种基本形式:1.含根式,这类带值需要对分母进行有理化,一定要保证最后算出的值是最简根式2.常规形,不含根式,化简之后直接带值1. 化简,求值: 111(11222+---÷-+-m m m m m m ), 其中m =3.2. 化简,求值:13x -·32269122x x x x x x x-+----,其中x =-6.3. 化简,求值:222211y xy x x y x y x ++÷⎪⎪⎭⎫ ⎝⎛++-,其中1=x ,2-=y4. 化简,求值:2222(2)42x x x x x x -÷++-+,其中12x =.5. 化简,求值:)11(x-÷11222-+-x x x ,其中x =26. 化简,求值:2224441x x x x x x x --+÷-+-,其中32x =.7. 化简,求值:62296422+-÷++-a a a a a ,其中5-=a .8. 化简,求值:232()111x x x x x x --÷+--,其中x =类型二:带值的数需要计算,含有其它的知识点,相对第一种,这类型要稍微难点1.含有三角函数的计算。
需要注意三角函数特殊角所对应的值.需要识记,熟悉三角函数例题1. 化简,再求代数式2221111x x x x -+---的值,其中x=tan600-tan4502. 先化简222112()2442x x x x x x-÷--+-,其中2x =(tan45°-cos30°)2.带值为一个式子,注意全面性,切记不要带一半。
分式化简求值55道练习题
分式化简求值55道练习题1.先化简,再求值:$\frac{12}{2x-1}-\frac{x-1}{x-1}$,其中$x=-2$。
2.先化简,再求值:$\frac{a^2-b^2}{a-b}$,其中$a=-1$。
3.先化简,再求值:$\frac{x^2-2x+1}{x^2+x-2}$,其中$x=\frac{1+\sqrt{5}}{2}$。
4.先化简,再求值:$\frac{a-3b}{a+b}+\frac{a+b}{a-b}$,其中$a=1$。
5.先化简,再求值:$\frac{a-3b}{a+b}-\frac{a-b}{a+b}$,其中$b=2$。
6.化简:$\frac{(x+1)(x-1)}{x(x-1)}$。
7.先化简,再求值:$\frac{a^2-1}{a^2+1}$,其中$a=\frac{1}{2}$。
8.先化简:$\frac{x^2-1}{2x-1}$,其中$a=2$,代入求值。
9.先化简,再求值:$\frac{(x+1)}{(x-2)^2}$,其中$x=2$。
10.先化简,再求值:$\frac{3x+1}{x+3}$,其中$x=-3$。
11.先化简下列式子:$\frac{2}{x+2}-\frac{3}{x-1}$,再从2,-2,1,-1中选择一个合适的数进行计算。
12.先化简,再求值:$\frac{x}{x-1}$,其中$x=-2$。
13.先化简,再求值:$\begin{cases} -x-2\leq 3x \\ x\leq2x^2 \end{cases}$,其中$x=1$。
14.先化简,然后从不等式组$\begin{cases} x-5\leq -x \\x^2-2x-25\leq 2x+12 \end{cases}$的解集中,选取一个你认为符合题意的$x$的值代入求值。
15.先化简,再求值:$\frac{a^2-4a-2}{2a^2+6a+9}$,其中$a=-5$。
16.先化简,再求值:$\frac{3x-x^2}{x^2-2}$,其中$x=\frac{3}{\sqrt{2}}$。
分式的化简求值经典练习题(带答案)
精心整理精心整理分式的化简乘方:()n n n nn a a aa a aa ab b bb b bb b ⋅=⋅=⋅个个n 个=(n 为正整数)整数指数幂运算性质: ⑴m n m n a a a +⋅=(m 、n 为整数) ⑵()m n mn a a =(m 、n 为整数) ⑶()n n n ab a b =(n 为整数)⑷m n m n a a a -÷=(0a ≠,m 、n 为整数)中考要求精心整理精心整理负整指数幂:一般地,当n 是正整数时,1n na a -=(0a ≠),即n a -(0a ≠)是n a 的倒数分式的加减法法则:同分母分式相加减,分母不变,把分子相加减,a b a b ccc+±=异分母分式相加减,先通分,变为同分母的分式再加减,a c ad bc ad bc bdbdbdbd±±=±=分式的混合运算的运算顺序:先算乘方,再算乘除,后算加减,如有括号,括号内先算.【例1【例2【题型】解答 【关键词】【解析】222221(1)()4111(1)a a a a a a a a a ---+÷⋅=-=--++-【答案】4-【例3】 先化简,再求值:22144(1)1a a a a a-+-÷--,其中1a =-..【考点】分式的化简求值 【难度】2星 【题型】解答【关键词】2010年,安徽省中考【解析】()()2221144211122a a a a a a a a a a a a --+-⎛⎫-÷=⋅= ⎪----⎝⎭-当1a =-时,原式112123a a -===---【答案】13【例4】 先化简,再求值:2291333x x x x x⎛⎫-⋅ ⎪--+⎝⎭其中13x =.【考点】分式的化简求值 【难度】2星 【题型】解答【关键词】2010年,湖南省长沙市中考试题 【解析】原式()()()33133x x x x x +-=⋅-+ 当13x =时,原式3=【答案】3【例5】 先化简,再求值:211(1)(2)11x x x -÷+-+-,其中x =. 【考点】分式的化简求值 【难度】2星 【题型】解答【关键词】2010年,湖北省十堰市中考试题 【解析】原式()()()111121x x x x x +-=⋅+-+-+当x时,原式224=-=.【答案】4精心整理精心整理【例6】 先化简,后求值:22121(1)24x x x x -++÷--,其中5x =-. 【考点】分式的化简求值 【难度】2星 【题型】解答【关键词】2010年,广东省肇庆市中考试题【解析】22121(1)24x x x x -++÷--=221(1)2(2)(2)x x x x x -+-÷-+-【例7。
中考复习分式化简求值练习题
1. 先化简,再求值:12112---x x ,其中x =-2. 2、先化简,再求值:,其中a=﹣1. 3、先化简,再求值:,其中x=.4、先化简,再求值:,其中.5先化简,再求值,其中x 满足x 2﹣x ﹣1=0. 7、先化简,再求值:,其中a=.8、先化简211111x x x x -÷-+-(),再从﹣1、0、1三个数中,选择一个你认为合适的数作为x 的值代入求值.9、先化简,再求值:(+1)÷,其中x=2. 10、先化简,再求值:3x –3 – 18x 2 – 9 ,其中x = 错误!–311、先化简下列式子,再从2,﹣2,1,0,﹣1中选择一个合适的数进行计算..12、先化简,再求值:12-x x (xx 1--2),其中x =2. 13、先化简,再求值:,其中. 14、先化简22()5525x x x x x x -÷---,然后从不等组23212x x --≤⎧⎨<⎩的解集中,选取一个你认为符合题意的x 的值代入求值.15、先化简,再求值:62296422+-÷++-a a a a a ,其中5-=a .16、先化简,再求值:232()111x x x x x x --÷+--,其中x =.17先化简。
再求值: 2222121111a a a a a a a +-+⋅---+,其中12a =-。
18. 先化简,再求值:⎝ ⎛⎭⎪⎫1+1x -2÷x 2-2x +1x 2-4,其中x =-5. 19. 先化简再计算:22121x x x x x x --⎛⎫÷- ⎪+⎝⎭,其中x 是一元二次方程2220x x --=的正数根. 20 化简,求值: 111(11222+---÷-+-m m m m m m ) ,其中m =3. 22、先化简,再求值:,其中.23请你先化简分式2223691,x 1211x x x x x x x +++÷+--++再取恰的的值代入求值. 24、先化简再求值()121112222+--++÷-+a a a a a a 其中a=3+1 26.先化简,再求值:(x x -2-2)÷x 2-16x 2-2x,其中x =3-4. 27、 先化简,再求值:x 2+4x +4x 2-16÷x +22x -8-2x x +4,其中x =2.28、先化简,再求值:232()224x x x x x x -÷-+-,其中4x =.29.先化简,再求值:2()11a a a a a+÷--,其中 1.a =+30、先化简,再求值:2211()11a a a a ++÷--,其中a33先化简,再求值:()22111a a a ⎛⎫-+÷+ ⎪+⎝⎭,其中1a . 34化简:. 35.先化简,再求值:2121-1a a a ++-,其中21=a . 36、.先化简x 2+2x +1x 2-1-x x -1,再选一个合适的x 值代入求值.40先化简,再把 x 取一个你最喜欢的数代入求值:2)22444(22-÷+-++--x x x x x x x 41.先化简,再选择一个你喜欢的数代入求值。
专题1.2 因式分解、分式、二次根式(全国中考23个考点真题训练)(解析版)
2023年中考数学考前30天迅速提分复习方案(全国通用)专题1.2 因式分解、分式、二次根式(全国中考23个考点真题训练)一.因式分解的意义(共1小题)1.(2022•济宁)下面各式从左到右的变形,属于因式分解的是( )A .x 2﹣x 1﹣=x (x 1﹣)﹣1B .x 21﹣=(x 1﹣)2C .x 2﹣x 6﹣=(x 3﹣)(x +2)D .x (x 1﹣)=x 2﹣x【分析】根据因式分解的定义判断即可.【解答】解:A 选项不是因式分解,故不符合题意;B 选项计算错误,故不符合题意;C 选项是因式分解,故符合题意;D 选项不是因式分解,故不符合题意;故选:C .【点评】本题主要考查因式分解的知识,熟练掌握因式分解的定义是解题的关键.二.因式分解-提公因式法(共1小题)2.(2022•青海)下列运算正确的是( )A .3x 2+4x 3=7x 5B .(x +y )2=x 2+y 2C .(2+3x )(23﹣x )=9x 24﹣D .2xy +4xy 2=2xy (1+2y )【分析】利用合并同类项法则、完全平方公式、平方差公式、提公因式法分别计算各题,根据计算结果得结论.【解答】解:A .3x 2与4x 3不是同类项不能加减,故选项A 计算不正确;B .(x +y )2=x 2+2xy +y 2≠x 2+y 2,故选项B 计算不正确;C .(2+3x )(23﹣x )=49﹣x 2≠9x 24﹣,故选项C 计算不正确;D .2xy +4xy 2=2xy (1+2y ),故选项D 计算正确.故选:D .【点评】本题主要考查了整式的运算,掌握整式的运算法则和整式的提取公因式法是解决本题的关键.三.因式分解-运用公式法(共1小题)3.(2022•荆门)对于任意实数a ,b ,a 3+b 3=(a +b )(a 2﹣ab +b 2)恒成立,则下列关系式正确的是( )A .a 3﹣b 3=(a ﹣b )(a 2+ab +b 2)B.a3﹣b3=(a+b)(a2+ab+b2)C.a3﹣b3=(a﹣b)(a2﹣ab+b2)D.a3﹣b3=(a+b)(a2+ab﹣b2)【分析】把所给公式中的b换成﹣b,进行计算即可解答.【解答】解:∵a3+b3=(a+b)(a2﹣ab+b2),∴a3﹣b3=a3+(﹣b3)=a3+(﹣b)3=[a+(﹣b)][(a2﹣a•(﹣b)+(﹣b)2]=(a﹣b)(a2+ab+b2)故选:A.【点评】本题考查了因式分解﹣运用公式法,把所给公式中的b换成﹣b是解题的关键.四.提公因式法与公式法的综合运用(共1小题)﹣xy2= 3x(x+2y)(x24.(2022•绵阳)因式分解:3x312﹣y) .【分析】先提取公因式,再套用平方差公式.﹣y2)【解答】解:原式=3x(x24﹣y).=3x(x+2y)(x2故答案为:3x(x+2y)(x2﹣y).【点评】本题考查了整式的因式分解,掌握因式分解的提公因式法和公式法是解决本题的关键.五.因式分解-十字相乘法等(共1小题)﹣) .﹣= (a2+1)(a+2)(a2﹣a245.(2022•内江)分解因式:a43【分析】先利用十字相乘法因式分解,再利用平方差公式进行因式分解.【解答】解:a4﹣3a2﹣4=(a2+1)(a2﹣4)=(a2+1)(a+2)(a﹣2),﹣).故答案为:(a2+1)(a+2)(a2【点评】本题考查的是十字相乘法因式分解,掌握十字相乘法、平方差公式因式分解是解题的关键.六.因式分解的应用(共5小题)6.(2022•广安)已知a+b=1,则代数式a2﹣b2+2b+9的值为 10 .【分析】方法一:直接将a2﹣b2进行因式分解为(a+b)(a﹣b),再根据a+b=1,可得a 2﹣b2=a﹣b,由此可得原式=a+b+9=10.﹣b+1)+10,把前两部分利用平方差进行因式分方法二:将原式分为三部分,即a2﹣(b22﹣=0.从而得出原式的值.解,其中得到一因式a+b1【解答】方法一:解:∵a2﹣b2+2b+9=(a+b)(a﹣b)+2b+9又∵a+b=1,∴原式=a﹣b+2b+9=a+b+9=10.方法二:解:∵a2﹣b2+2b+9﹣b+1)+10=a2﹣(b22﹣)2+10=a2﹣(b1﹣)+10.=(a﹣b+1)(a+b1又∵a+b=1,∴原式=10.【点评】本题考查了因式分解应用,用到的知识为平方差公式:a2﹣b2=(a+b)(a﹣b).7.(2022•西宁)八年级课外兴趣小组活动时,老师提出了如下问题:﹣b因式分解.﹣ab4+6将2a3【观察】经过小组合作交流,小明得到了如下的解决方法:﹣b)解法一:原式=(2a3﹣ab)﹣(46﹣b)=a(23﹣b)﹣2(23﹣)﹣b)(a2=(23﹣b)﹣)﹣(3ab6解法二:原式=(2a4﹣)﹣)﹣3b(a2=2(a2﹣b)﹣)(23=(a2【感悟】对项数较多的多项式无法直接进行因式分解时,我们可以将多项式分为若干组,再利用提公因式法、公式法达到因式分解的目的,这就是因式分解的分组分解法.分组分解法在代数式的化简、求值及方程、函数等学习中起着重要的作用.(温馨提示:因式分解一定要分解到不能再分解为止)【类比】(1)请用分组分解法将x2﹣a2+x+a因式分解;【挑战】(2)请用分组分解法将ax +a 22﹣ab ﹣bx +b 2因式分解;【应用】(3)“赵爽弦图”是我国古代数学的骄傲,我们利用它验证了勾股定理.如图,“赵爽弦图”是由四个全等的直角三角形围成的一个大正方形,中间是一个小正方形.若直角三角形的两条直角边长分别是a 和b (a >b ),斜边长是3,小正方形的面积是1.根据以上信息,先将a 42﹣a 3b +2a 2b 22﹣ab 3+b 4因式分解,再求值.【分析】(1)用分组分解法将x 2﹣a 2+x +a 因式分解即可;(2)用分组分解法将ax +a 22﹣ab ﹣bx +b 2因式分解即可;(3)先将a 42﹣a 3b +2a 2b 22﹣ab 3+b 4因式分解,再求值即可.【解答】解:(1)原式=(x 2﹣a 2)+(x +a )=(x +a )(x ﹣a )+(x +a )=(x +a )(x ﹣a +1);(2)原式=(ax ﹣bx )+(a 22﹣ab +b 2)=x (a ﹣b )+(a ﹣b )2=(a ﹣b )(x +a ﹣b );(3)原式=(a 4+2a 2b 2+b 4)﹣(2ab 3+2a 3b )=(a 2+b 2)2﹣2ab (a 2+b 2)=(a 2+b 2)(a 2+b 2﹣2ab )=(a 2+b 2)(a ﹣b )2,∵直角三角形的两条直角边长分别是a 和b (a >b ),斜边长是3,小正方形的面积是1,∴a 2+b 2=32=9,(a ﹣b )2=1,∴原式=9.【点评】本题主要考查因式分解的知识,熟练掌握因式分解的应用是解题的关键.8.(2022•台湾)健康生技公司培养绿藻以制作「绿藻粉」,再经过后续的加工步骤,制成绿藻相关的保健食品.已知该公司制作每1公克的「绿藻粉」需要60亿个绿藻细胞.请根据上述信息回答下列问题,完整写出你的解题过程并详细解释:(1)假设在光照充沛的环境下,1个绿藻细胞每20小时可分裂成4个绿藻细胞,且分裂后的细胞亦可继续分裂.今从1个绿藻细胞开始培养,若培养期间绿藻细胞皆未死亡且培养环境的光照充沛,经过15天后,共分裂成4k 个绿藻细胞,则k 之值为何?(2)承(1),已知60亿介于232与233之间,请判断4k个绿藻细胞是否足够制作8公克的「绿藻粉」?【分析】(1)由1个绿藻细胞每20小时可分裂成4个绿藻细胞,可知经过15天,即360小时,分裂成418个绿藻细胞,故k之值为18;(2)根据每1公克的「绿藻粉」需要60亿个绿藻细胞,60亿介于232与233之间,可得制作8公克的「绿藻粉」需要60×8亿个绿藻细胞,且235<60×8亿<236,又418=(22)18=2 36,即得418个绿藻细胞足够制作8公克的「绿藻粉」.【解答】解:(1)15天=15×24小时=360小时,∵1个绿藻细胞每20小时可分裂成4个绿藻细胞,∴从1个绿藻细胞开始培养,经过20小时分裂成4个绿藻细胞,经过20×2=40(小时),分裂成42个绿藻细胞,经过20×3=60(小时),分裂成43个绿藻细胞,......经过20×18=360(小时),分裂成418个绿藻细胞,∴k之值为18;(2)∵每1公克的「绿藻粉」需要60亿个绿藻细胞,∴制作8公克的「绿藻粉」需要60×8亿个绿藻细胞,∵60亿介于232与233之间,∴232×8<60×8亿<233×8,即235<60×8亿<236,而418=(22)18=236,∴60×8亿<418,∴418个绿藻细胞足够制作8公克的「绿藻粉」.【点评】本题考查有理数的乘方,解题的关键是读懂题意,根据已知找到规律求出k的值.9.(2022•重庆)对于一个各数位上的数字均不为0的三位自然数N,若N能被它的各数位上的数字之和m整除,则称N是m的“和倍数”.例如:∵247÷(2+4+7)=247÷13=19,∴247是13的“和倍数”.又如:∵214÷(2+1+4)=214÷7=30……4,∴214不是“和倍数”.(1)判断357,441是否是“和倍数”?说明理由;(2)三位数A是12的“和倍数”,a,b,c分别是数A其中一个数位上的数字,且a>b>c.在a,b,c中任选两个组成两位数,其中最大的两位数记为F(A),最小的两位数记为G(A),若为整数,求出满足条件的所有数A.【分析】(1)根据“和倍数”的定义依次判断即可;(2)根据“和倍数”的定义表示F(A)和G(A),代入中,根据为整数可解答.【解答】解:(1)∵357÷(3+5+7)=357÷15=23……12,∴357不是“和倍数”;∵441÷(4+4+1)=441÷9=49,∴441是9的“和倍数”;(2)由题意得:a+b+c=12,a>b>c,由题意得:F(A)=,G(A)=,∴===,∵a+c=12﹣b,为整数,∴====7+(1﹣b),∵1<b<9,∴b=3,5,7,∴a+c=9,7,5,①当b=3,a+c=9时,(舍),,则A=732或372;②当b=5,a+c=7时,,则A=516或156;③当b=7,a+c=5时,此种情况没有符合的值;综上,满足条件的所有数A为:732或372或516或156.【点评】本题考查了新定义问题,根据新定义问题进行计算是解题关键.﹣)会徽的主题图案有着丰富的数学10.(2022•常州)第十四届国际数学教育大会(ICME14元素,展现了我国古代数学的文化魅力,其右下方的“卦”是用我国古代的计数符号写出的八进制数3745.八进制是以8作为进位基数的数字系统,有0~7共8个基本数字.八进﹣的举办年份.制数3745换算成十进制数是3×83+7×82+4×81+5×80=2021,表示ICME14(1)八进制数3746换算成十进制数是 2022 ;(2)小华设计了一个n进制数143,换算成十进制数是120,求n的值.【分析】(1)根据已知,从个位数字起,将八进制的每一位数分别乘以80,81,82,83,再把所得结果相加即可得解;(2)根据n进制数和十进制数的计算方法得到关于n的方程,解方程即可求解.【解答】解:(1)3746=3×83+7×82+4×81+6×80=1536+448+32+6=2022.故八进制数字3746换算成十进制是2022.故答案为:2022;(2)依题意有:n2+4×n1+3×n0=120,解得n1=9,n2=﹣13(舍去故n的值是9.【点评】本题主要考查因式分解的应用,有理数的混合运算,解题的关键是弄清各个进制数转化为十进制数的计算方法.七.分式的定义(共1小题)11.(2022•怀化)代数式x,,,x2﹣,,中,属于分式的有( )A.2个B.3个C.4个D.5个【分析】根据分式的定义:一般地,如果A,B表示两个整式,并且B中含有字母,那么式叫做分式判断即可.【解答】解:分式有:,,,整式有:x,,x2﹣,分式有3个,故选:B.【点评】本题考查了分式的定义,掌握一般地,如果A,B表示两个整式,并且B中含有字母,那么式子叫做分式是解题的关键,注意π是数字.八.分式有意义的条件(共1小题)12.(2022•无锡)分式中x的取值范围是( )﹣D.x≤2 A.x≠2B.x≠2﹣C.x≤2【分析】由分母不等于0列式计算即可.【解答】解:∵分式有意义,∴2﹣x≠0,解得x≠2,故选:A.【点评】本题考查分式有意义的条件,解题的关键是掌握分式有意义时,分母不等于0.九.分式的值为零的条件(共1小题)13.(2022•广西)当x= 0 时,分式的值为零.【分析】根据分式值为0的条件:分子为0,分母不为0,可得2x=0且x+2≠0,然后进行计算即可解答.【解答】解:由题意得:2x=0且x+2≠0,﹣,∴x=0且x≠2∴当x=0时,分式的值为零,故答案为:0.【点评】本题考查了分式值为0的条件,熟练掌握分式值为0的条件是解题的关键.一十.分式的值(共1小题)14.(2022•湖州)当a=1时,分式的值是 2 .【分析】把a=1代入分式计算即可求出值.【解答】解:当a=1时,原式==2.故答案为:2.【点评】此题考查了分式的值,熟练掌握运算法则是解本题的关键.一十一.分式的乘除法(共1小题)15.(2022•德阳)下列计算正确的是( )A.(a﹣b)2=a2﹣b2B.=1C.a÷a•=a D.(﹣ab2)3=﹣a3b6【分析】根据分式的乘除法,算术平方根,幂的乘方与积的乘方,完全平方公式,进行计算即可进行判断.【解答】解:A.(a﹣b)2=a22ab+b2,故A选项错误,不符合题意;B.==1,故B选项正确,符合题意;C.a÷a•=1×=,故C选项错误,不符合题意;D.(﹣ab2)3=﹣a3b6,故D选项错误,不符合题意.故选:B.【点评】本题考查了分式的乘除法,算术平方根,幂的乘方与积的乘方,完全平方公式,解决本题的关键是掌握以上知识熟练进行计算.一十二.分式的加减法(共2小题)16.(2022•天津)计算+的结果是( )A.1B.C.a+2D.【分析】按同分母分式的加减法法则计算即可.【解答】解:原式===1.故选:A.【点评】本题考查了分式的加减,掌握同分母分式的加减法法则是解决本题的关键.17.(2022•襄阳)化简分式:+= m .【分析】根据分式的加减运算法则即可求出答案.【解答】解:原式===m,故答案为:m.【点评】本题考查分式的加减运算,解题的关键是熟练运用分式的加减运算,本题属于基础题型.一十三.分式的混合运算(共218.(2022•威海)试卷上一个正确的式子(+)÷★=被小颖同学不小心滴上墨汁.被墨汁遮住部分的代数式为( )A.B.C.D.【分析】根据已知分式得出被墨汁遮住部分的代数式是(+)÷,再根据分式的运算法则进行计算即可;【解答】解:(+)÷★=,∴被墨汁遮住部分的代数式是(+)÷=•=•=;故选:A.【点评】本题考查了分式的化简,能正确根据分式的运算法则进行化简是解此题的关键,注意运算顺序.19.(2022•自贡)化简:•+ .【分析】先将原分式的分子、分母分解因式,然后约分,再计算加法即可.【解答】解:•+=+=+=,故答案为:.【点评】本题考查分式的混合运算,解答本题的关键是明确因式分解的方法和分式加法的运算法则.一十四.分式的化简求值(共7小题)20.(2022•玉林)若x是非负整数,则表示﹣的值的对应点落在如图数轴上的范围是( )A.①B.②C.③D.①或②【分析】原式第二项约分后,利用同分母分式的减法法则计算得到最简结果,即可作出判断.【解答】解:原式=﹣=﹣====1,则表示﹣的值的对应点落在如图数轴上的范围是②.故选:B .【点评】此题考查了分式的化简求值,以及数轴,熟练掌握运算法则是解本题的关键.21.(2022•菏泽)若a 22﹣a 15﹣=0,则代数式(a ﹣)•的值是 15 .【分析】利用分式的相应的法则对分式进行化简,再把相应的值代入运算即可.【解答】解:(a ﹣)•===a 22﹣a ,∵a 22﹣a 15﹣=0,∴a 22﹣a =15,∴原式=15.故答案为:15.【点评】本题主要考查分式的化简求值,解答的关键是对相应的运算法则的掌握.22.(2022•内蒙古)先化简,再求值:(﹣x 1﹣)÷,其中x =3.【分析】先通分算括号内的,把除化为乘,化简后将x=3代入计算即可.【解答】解:原式=•=﹣•=﹣,当x=3时,原式=﹣=﹣5.【点评】本题考查分式化简求值,解题的关键是掌握分式的性质,将所求式子化简.23.(2022•阜新)先化简,再求值:÷(1﹣),其中a=4.【分析】根据分式的混合运算法则把原式化简,把a的值代入计算即可.【解答】解:原式=÷(﹣)=÷=•=,当a=4时,原式==.【点评】本题考查的是分式的化简求值,掌握分式的混合运算法则是解题的关键.24.(2022•资阳)先化简,再求值.,其中a=﹣3.【分析】根据分式的加减运算以及乘除运算法则进行化简,然后将a的值代入原式即可求出答案.【解答】解:原式===,当a=﹣3时,原式=.【点评】本题考查分式的化简求值,解题的关键是熟练运用分式的加减运算以及乘除运算法则,本题属于基础题型.25.(2022•黑龙江)先化简,再求值:(﹣1)÷,其中a=2cos30°+1.【分析】利用分式的减法法则和除法法则对分式进行计算化简,把特殊角的三角函数值代入计算求出a的值,代入化简后的分式进行计算,即可得出答案.【解答】解:(﹣1)÷=÷=×=,当a=2cos30°+1=2×+1=时,原式==﹣.【点评】本题考查了分式的化简求值,特殊角的三角函数值,掌握分式的混合计算及特殊角的三角函数值是解决问题的关键.26.(2022•黑龙江)先化简,再求值:()÷,在﹣2,0,1,2四个数中选一个合适的代入求值.【分析】先算括号内的减法,同时把除法变成乘法,再算乘法,最后代入求出即可.【解答】解:原式=•=2x+8,分母不能为0,则x≠±2,除数不能为0,则x≠0,当x=1时,原式=2+8=10.【点评】本题考查了分式的混合运算和求值,能正确根据分式的运算法则进行化简是解此题的关键.一十五.零指数幂(共2小题)27.(2022•娄底)若10x=N,则称x是以10为底N的对数.记作:x=lgN.例如:102=100,则2=lg100;100=1,则0=lg1.对数运算满足:当M>0,N>0时,lgM+lgN=lg(MN).例如:lg3+lg5=lg15,则(lg5)2+lg5×lg2+lg2的值为( )A.5B.2C.1D.0【分析】首先根据定义运算提取公因式,然后利用定义运算计算即可求解.【解答】解:原式=lg5(lg5+lg2)+lg2=lg5×lg(5×2)+lg2=lg5lg10+lg2=lg5+lg2=lg10=1.故选:C.【点评】本题主要考查了定义运算,实际上是对数的运算,读懂题目意思是关键.28.(2022•百色)计算:32+(﹣2)017﹣.【分析】首先计算乘方、零指数幂,然后从左向右依次计算,求出算式的值即可.﹣【解答】解:32+(﹣2)017﹣=9+117=﹣7.【点评】此题主要考查了有理数的乘方的运算方法,以及零指数幂的运算,解答此题的关键是要明确:a0=1(a≠0).一十六.负整数指数幂(共2小题)29.(2022•南充)比较大小:22﹣30.(选填>,=,<)【分析】先分别计算22﹣和30的值,再进行比较大小,即可得出答案.【解答】解:∵22﹣=,30=1,∴22﹣<30,故答案为:<.【点评】本题考查了负整数指数幂,零指数幂,掌握负整数指数幂的意义,零指数幂的意义是解决问题的关键.﹣()﹣1﹣()2+20350.30.(2022•长沙)计算:|4|+【分析】先化简各式,然后再进行计算即可解答.﹣()﹣1﹣()2+20350【解答】解:|4|+﹣=4+32+1=6.【点评】本题考查了零指数幂,负整数指数幂,绝对值,实数的运算,准确熟练地化简各式是解题的关键.一十七.二次根式有意义的条件(共2小题)31.(2022•湘西州)要使二次根式有意义,则x的取值范围是( )A.x>2B.x<2C.x≤2D.x≥2【分析】根据二次根式有意义的条件:被开方数是非负数即可得出答案.﹣,【解答】解:∵3x6≥0∴x≥2,故选:D.【点评】本题考查了二次根式有意义的条件,掌握二次根式有意义的条件:被开方数是非负数是解题的关键.32.(2022•菏泽)若在实数范围内有意义,则实数x的取值范围是 x>3 .【分析】根据二次根式的被开方数是非负数、分母不为0列出不等式,解不等式得到答案.﹣>0,【解答】解:由题意得,x3解得x>3.故答案为:x>3.【点评】本题考查的是代数式有意义的条件,掌握二次根式的被开方数是非负数、分母不为0是解题的关键.一十八.二次根式的性质与化简(共2小题)33.(2022•聊城)射击时,子弹射出枪口时的速度可用公式v=进行计算,其中a为子弹的加速度,s为枪筒的长.如果a=5×105m/s2,s=0.64m,那么子弹射出枪口时的速度(用科学记数法表示)为( )A.0.4×103m/s B.0.8×103m/s C.4×102m/s D.8×102m/s【分析】把a=5×105m/s2,s=0.64m代入公式v=,再根据二次根式的性质化简即可.【解答】解:v===8×102(m/s),故选:D.【点评】此题主要考查了二次根式的性质与化简以及科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.34.(2022•桂林)化简的结果是( )A.2B.3C.2D.2【分析】将被开方数12写成平方数4与3的乘积,再将4开出来为2,易知化简结果为2.【解答】解:=2,故选:A.【点评】本题考查了二次根式的化简,关键在于被开方数要写成平方数乘积的形式再进行化简.一十九.最简二次根式(共1小题)35.(2022•杭州)计算:= 2 ;(﹣2)2= 4 .【分析】根据二次根式的性质、有理数的乘方法则计算即可.【解答】解:=2,(﹣2)2=4,故答案为:2,4.【点评】本题考查的是二次根式的化简、有理数的乘方,掌握二次根式的性质是解题的关键.二十.二次根式的乘除法(共2小题)36.(2022•随州)已知m为正整数,若是整数,则根据==3可知m有最小值3×7=21.设n为正整数,若是大于1的整数,则n的最小值为 3 ,最大值为 75 .【分析】先将化简为10,可得n最小为3,由是大于1的整数可得越小,越小,则n越大,当=2时,即可求解.【解答】解:∵==10,且为整数,∴n最小为3,∵是大于1的整数,∴越小,越小,则n越大,当=2时,=4,∴n=75,故答案为:3;75.【点评】本题考查二次根式的乘除法,二次根式的性质与化简,解题的关键是读懂题意,根据关键词37.(2022•山西)计算:×的结果为 3 .【分析】按照二次根式的乘法法则计算即可.【解答】解:原式==3.故答案为:3.【点评】本题主要考查了二次根式的乘法运算.二次根式的运算法则:乘法法则=(a≥0,b≥0).二十一.二次根式的加减法(共1小题)38.(2022•哈尔滨)计算+3的结果是 2 .【分析】先化简各二次根式,再根据混合运算的顺序依次计算可得答案.【解答】解:原式=+3×==2.故答案为:2.【点评】此题考查的是二次根式的运算,掌握其运算法则是解决此题的关键.二十二.二次根式的混合运算(共3小题)39.(2022•安顺)估计(+)×的值应在( )A.4和5之间B.5和6之间C.6和7之间D.7和8之间【分析】直接利用二次根式的性质结合估算无理数的大小方法得出答案.【解答】解:原式=2+,∵3<<4,∴5<2+<6,故选:B.【点评】此题主要考查了二次根式的混合运算,估算无理数的大小,正确估算无理数是解题关键.40.(2022•天津)计算(+1)(﹣1)的结果等于 18 .【分析】根据平方差公式即可求出答案.【解答】解:原式=()212﹣=191=18,故答案为:18.【点评】本题考查平方差公式与二次根式的混合运算,解题的关键是熟练运用平方差公式,本题属于基础题型.41.(2022•襄阳)先化简,再求值:(a+2b)2+(a+2b)(a2﹣b)+2a(b﹣a),其中a=﹣,b=+.【分析】直接利用完全平方公式、平方差公式化简,进而合并同类项,再把已知数据代入得出答案.【解答】解:原式=a2+4b2+4ab+a2﹣4b2+2ab﹣2a2=6ab,∵a=﹣,b=+,∴原式=6ab=6×(﹣)(+)=6.【点评】此题主要考查了二次根式的混合运算与整式的混合运算——化简求值,正确掌握整式的混合运算法则是解题关键.二十三.二次根式的化简求值(共1小题)42.(2022•内蒙古)已知x,y是实数,且满足y=++,则.【分析】根据负数没有平方根求出x的值,进而求出y的值,代入计算即可求出值.【解答】解:∵y=++,﹣,2﹣x≥0,∴x2≥0∴x=2,y=,则原式=×==,故答案为:【点评】此题考查了二次根式的化简求值,熟练掌握运算法则是解本题的关键.。
因式分解与分式
因式分解练习题例1、下列各式的变形中,是否是因式分解,为什么?(5个式子均不是) (1)()()1122+-+=+-y x y x y x ; (2)()()2122--=+-x x x x ; (3)232236xy xy y x ⋅=;(4)()()()()221a y x a x y y x --=-+-;(5) .96962⎪⎭⎫ ⎝⎛++=++x x xy y xy y x1. 提公因式法——形如ma mb mc m a b c ++=++()2. 运用公式法——平方差公式:a b a b a b 22-=+-()(),完全平方公式:a ab b a b 2222±+=±()()2222222a b c ab bc ca a b c +++++=++3. 十字相乘法 x p q x pq x p x q 2+++=++()()()()()()22a p q ab p qb a pb a qb +++⋅=++4. 分组分解法 (适用于四次或四项以上,①分组后能直接提公因式 ②分组后能直接运用公式)。
例2、因式分解(本题只给出最后答案) (1) ;823x x -2(2)(2)x x x =+-(2) .9622224y y x y x +-222(3)y x =-(3) ;6363223abc c a b a a --+3()(2)a a c a b =-+(4) ().4222222a c b c b -+-()()()()b c a b c a b c a b c a =-+++--+--(5) 121164+--n n a b a =14(2)(2)n a b a b a -+- (6) ;361222422y xy y y x +--2(6)(6)y x y x y =-+--(7) .2939622++-+-y x y xy x(31)(32)x y x y =----例3、因式分解(本题只给出答案)1、()();742--+x x =(3)(5)x x +-2、()();563412422++---x x x x22(44)(45)x x x x =----3、()()()()566321+--+-x x x x22(44)(45)x x x x =----4、().566)67(22+--+-x x x x22(44)(45)x x x x =----小结: 1、 因式分解的意义左边 = 右边 ↓ ↓多项式 整式×整式(单项式或多项式)2、 因式分解的一般步骤3、多项式有因式乘积项 → 展开 → 重新整理 → 分解因式因式分解1、;25942n m -2、;4482--a a3、()();44y x y x --+4、;12222c b a ab +--5、()();2222b a cd d c ab +++6、;4215322222y a xy a x a --7、;186323b ab b a b a -+-8、.41422a b a -+-9、()().20158122-++-a a a(1)如果(-1-b )·M =b 2-1,则M =_______.(2)若x 2+ax +b 可以分解成(x +1)(x -2),则a =_______,b =_______. (3)若9x 2+2(m -4)x +16是一个完全平方式,则m 的值为_______. (4)分解因式a 2(b -c )-b +c =_______. (5)分解因式xy -2y -2+x =_______. (6)在实数范围内分解因式x 3-4x =_______.分式和分式方程知识点总结1.(2014•温州,第4题4分)要使分式有意义,则x 的取值应满足( )2.(2014•毕节地区,第10题3分)若分式的值为零,则x 的值为( )3. ( 2014•福建泉州,第10题4分)计算:+= .4. (2014•泰州,第14题,3分)已知a 2+3ab +b 2=0(a ≠0,b ≠0),则代数式+的值等于 . 5.(2014年山东泰安,第21题4分)化简(1+)÷的结果为 .6.先化简,再求值:(a 2b +ab )÷,其中a =+1,b =﹣1.7解方程: 730100-=x x. 8 解分式方程:+=1.二、填空题1. (2013浙江省舟山,11,4分)当x 时,分式x-31有意义. 2. (2013福建福州,14,4分)化简1(1)(1)1m m -++的结果是 . 3. (2013山东泰安,22 ,3分)化简:(2x x+2-x x-2)÷xx 2-4的结果为 。
2023年中考数学---分式的运算与化简求值知识回顾与专项练习题(含答案解析)
2023年中考数学---分式的运算与化简求值知识回顾与专项练习题(含答案解析)知识回顾1. 因式分解的方法:①提公因式法:()c b a m cm bm am ++=++;②公式法:平方差公式:()()b a b a b a −+=−22;完全平方公式:()2222b a b ab a ±=+±。
③十字相乘法:在c bx x ++2中,若()均为整数,且n m b n m mn c =+=,则:()()n x m x c bx x ++=++2。
2. 分式的性质:分式的分子与分母同时乘上或除以同一个不为0的数或式子,分式的值不变。
()0≠÷÷==C CB C A BC AC B A 3. 约分与通分:①约分:将分式中能进行分解因式的分子分母分解因式,约掉公因式。
公因式等于系数的最大公约数乘上相同字母或式子的最低次幂。
②通分:将几个异分母的分式化成同分母的分式的过程。
公分母等于系数的最小公倍数乘上所有式子的最高次幂。
4. 分式的乘除运算:①乘法运算步骤:I :对分子分母因式分解;II :约掉公因式;III :分子乘以分子得到积的分子,分母乘以分母得到积的分母。
②除法运算法则:除以一个分式等于乘上这个分式的倒数式。
5. 分式的加减运算:具体步骤:I :对能分解的分母进行因式分解,并求出公分母;II :将分式通分成同分母;III :分母不变,分子相加减。
6. 分式的化简求值:将分式按照加减乘除的运算法则化简至最简分式,然后带入已知数据求值即可。
专项练习题(含答案解析)1、(2022•西藏)计算:224222−−−⋅+a a a a a a . 【分析】分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序;先乘方,再乘除,然后加减,有括号的先算括号里面的.【解答】解:原式=•﹣ =﹣ =1.2、(2022•兰州)计算:()x x x +÷⎪⎭⎫ ⎝⎛+211. 【分析】根据分式的加减运算以及乘除运算法则即可求出答案.【解答】解:原式===. 3、(2022•大连)计算:xx x x x x x 1422444222−−+÷+−−. 【分析】先算除法,后算减法,即可解答.【解答】解:÷﹣=•﹣=﹣=.4、(2022•十堰)计算:⎪⎪⎭⎫ ⎝⎛−+÷−a ab b a a b a 2222. 【分析】根据分式的运算法则计算即可.【解答】解:÷(a +)=÷(+)=÷=•=.5、(2022•常德)化简:212312+−÷⎪⎭⎫ ⎝⎛+++−a a a a a . 【分析】根据分式混合运算的法则计算即可.【解答】解:(a ﹣1+)÷ =[+]•=•=. 6、(2022•内蒙古)先化简,再求值:1441132−+−÷⎪⎭⎫ ⎝⎛−−−x x x x x ,其中x =3.【分析】先通分算括号内的,把除化为乘,化简后将x =3代入计算即可.【解答】解:原式=•=﹣•=﹣,当x =3时,原式=﹣=﹣5. 7、(2022•阜新)先化简,再求值:⎪⎭⎫ ⎝⎛−−÷−+−21129622a a a a a ,其中a =4. 【分析】根据分式的混合运算法则把原式化简,把a 的值代入计算即可.【解答】解:原式=÷(﹣)=÷=•=, 当a =4时,原式==.8、(2022•资阳)先化简,再求值.111122−÷⎪⎭⎫ ⎝⎛+−a a a ,其中a =﹣3. 【分析】根据分式的加减运算以及乘除运算法则进行化简,然后将a 的值代入原式即可求出答案.【解答】解:原式==当a =﹣3时,原式=.9、(2022•黄石)先化简,再求值:1961212+++÷⎪⎭⎫ ⎝⎛++a a a a ,从﹣3,﹣1,2中选择合适的a 的值代入求值.【分析】根据分式的加减运算以及乘除运算法则进行化简,然后将a 的值代入原式即可求出答案.【解答】解:原式=÷=•=,由分式有意义的条件可知:a 不能取﹣1,﹣3,故a =2,原式==. 10、(2022•朝阳)先化简,再求值:323444222++−+÷+−−x x x x x x x x ,其中x =(21)﹣2. 【分析】把除化为乘,再算同分母的分式相加,化简后求出x 的值,代入即可.【解答】解:原式=•+=+==x , ∵x =()﹣2=4,∴原式=4.11、(2022•锦州)先化简,再求值:212112−−÷⎪⎭⎫ ⎝⎛−++x x x x ,其中13−=x . 【分析】先对分式进行化简,然后再代入求解即可.【解答】解:原式====, 当时, 原式=. 12、(2022•盘锦)先化简,再求值:⎪⎭⎫ ⎝⎛+−−++−÷−−1111231322x x x x x x ,其中12+−=x . 【分析】根据分式的运算法则“除以一个数等于乘以它的倒数”把除法改写成乘法;利用平方差公式和完全平方公式将分式的分子分母分别因式分解;约分化简后,求x 的值;去掉绝对值符号时注意正负,正数的绝对值是它本身,负数的绝对值是它的相反数,最后将x 的值代入原式.【解答】解:原式====,∵=, ∴原式===13、(2022•郴州)先化简,再求值:⎪⎭⎫ ⎝⎛−++÷−2221b a b b a b a ab ,其中a =5+1,b =5﹣1. 【分析】先算括号里,再算括号外,然后把a ,b 的值代入化简后的式子进行计算即可解答.【解答】解:÷(+)=÷ =•=ab ,当a =+1,b =﹣1时,原式=(+1)(﹣1)=5﹣1=4. 14、(2022•营口)先化简,再求值:14412512+++÷⎪⎭⎫ ⎝⎛++−+a a a a a a ,其中a =9+|﹣2|﹣(21)﹣1. 【分析】先把括号内通分,再把除法运算化为乘法运算,接着把分子分母因式分解,则约分得到原式=,然后根据算术平方根的定义、绝对值和负整数指数幂的意义计算出a 的值,最后把a 的值代入计算即可.【解答】解:原式=•=•=•=•=, ∵a =+|﹣2|﹣()﹣1=3+2﹣2=3,∴原式==. 14、(2022•绵阳)(1)计算:2tan60°+|3﹣2|+(20221)﹣1﹣212; (2)先化简,再求值:y x y x y x y x xy x −+÷⎪⎪⎭⎫ ⎝⎛−−−−3,其中x =1,y =100. 【分析】(1)先算负整数指数幂、化简二次根式,再化简绝对值代入特殊角的函数值,最后算加减.(2)按分式的运算法则先化简分式,再代入求值.【解答】解:(1)原式=2×+2﹣+2022﹣=2+2﹣+2022﹣ =2024;(2)原式=[﹣]÷=× =× =× =. 当x =1,y =100时.原式=100。
分式化简求值专题练习
分式化简求值专题1.先化简,再求值:211(1)22x x x --÷++,其中1x =.2.先化简,再求值:22121244x x x x x x +-⎛⎫-÷ ⎪--+⎝⎭,其中x3.先化简,再求2241()2442x x x x x x -+⋅--++的值,其中x=3.4.先化简,再求值:221121m m m m m m---÷++,其中m 满足:210m m --=.5.先化简,再求值:2221221(2)1144a a a a a a a a ⎛⎫+-+-⋅⋅+ ⎪+-++⎝⎭,其中2a =.6.先化简,再求值:2112224a a a a +⎛⎫+÷⎪+--⎝⎭,其中a =7.先化简,再求值:21111a a a ⎛⎫-÷ ⎪+-⎝⎭,其中1a =8.先化简,再求值:2112111x x x x +⎛⎫-÷⎪-+-⎝⎭,然后从1-,0,1中选择适当的数代入求值.9.先化简:2124244x x x x x x x -+-⎛⎫-÷⎪--+⎝⎭,然后选择一个合适的x 值代入求值.10.先化简,(22444x x x ++-﹣x ﹣2)÷22x x +-,然后从﹣2≤x ≤2范围内选取一个合适的 整数作为x 的值代入求值.11.先化简,再从﹣1、2、3、4中选一个合适的数作为x 的值代入求值.2222444424x x x x x x x ⎛⎫---÷ ⎪-+--⎝⎭.12.先化简,再求值:(11a +﹣1)21a a ÷-,其中a =(π0+(12)﹣1.13.先化简,再求值:2442m m m m m ++⎛⎫+÷ ⎪⎝⎭,其中2m =.14.先化简2211a a a a⎛⎫-÷⎪--⎝⎭,然后从22a -≤<中选出一个合适的整数作为a 的值代入求值.15.先化简,再求值:223144()11a a a a a a a+++-÷---,其中a =3.16.先化简,再求值:22332121x x x x x --+-+,其中12x =.17.先化简,再求值:2361693x x x x -⎛⎫÷- ⎪+++⎝⎭,其中3x =.18.先化简,再求值:112()333x x x -÷+--;其中,3x =.19.先化简,再求值:22132·(1)2111x x x x x ++÷++--,其中1.20.先化简,再求值:699()()33a a a a a a ++÷+--,其中a 3.21.化简:.22.化简并求值:22112x y x y x y x y ⎛⎫-+÷⎪-+-⎝⎭,其中x 、y 满足()2x 22x y 3=0-+--23.先化简,再求值:2x 11x x 1x 2x ⎛⎫++÷-- ⎪⎝⎭,其中x 1=.24.先化简22144(1)11x x x x -+-÷--,然后从-2≤x ≤2的范围内选取一个合适的整数作为x 的值代入求值.25.化简求值:(),其中a=2+.26.先化简,再求值:22421244a a a a a a a a -+-⎛⎫÷- ⎪--+⎝⎭,其中a =.27.先化简,再求值: ,其中的值从不等式组的整数解中选取.27.先化简再求值:232)121x x x x x x --÷+++(,其中x 满足220x x +-=28.先化简,再求值:22693111x x x x x x x -+-+÷--+,其中2sin 301x =-.29.先化简,再求值:2224(1)444a a a a a -÷-++-),其中a 2=.30.先化简,再求值:2a 2a 1a a 2a a --⎛⎫-÷ ⎪-⎝⎭,其中11a tan452-⎛⎫=-︒ ⎪⎝⎭.31.先化简,再求值:2x 1x 1x 1x 1x 2x 1+⎛⎫+÷⎪---+⎝⎭,其中x=﹣2.32.化简求值:221211221++--÷++-x x xx x x,其中.33.先化简,再求值:,其中a2﹣4=0.34.先化简,再求值:224114422a aa a a a⎛⎫-+-÷⎪-+-+⎝⎭,其中3a=-.35.先化简,再求值:2221121m mm m m m-⎛⎫+÷⎪--+⎝⎭,其中m从﹣1、0、1、2这四个数中选取.36.先化简,再求值:222211211x x x x x x x x x x -+⎛⎫-÷- ⎪---++⎝⎭,其中x 是不等式组371215x x +>⎧⎨-<⎩的整数解.37.先化简,再求值:22312244a a a a a +-⎛⎫-÷ ⎪+++⎝⎭,其中1a =.38.先化简,再求值:(2221244y y y y y y +----+)÷4y y -,其中整数y 满足0≤y ≤4.40.先化简,再求值:231x x --÷2321x x x -++﹣(11x -+1),其中x =﹣2|+2cos45°.分式式化简求值专题1.先化简,再求值:211(1)22x x x --÷++,其中1x =.【答案】11x -;2. 【分析】先将括号内的项进行通分化简,再分式的除法法则,结合平方差公式因式分解,化简,最后代入数值解题即可.【详解】 解:原式=2122(1)(1)x x x x x +-+⋅++- 1(1)(1)x x x +=+- 11x =-,当1x =时,= 【分析】本题考查分式的混合运算、分式的化简求值等知识,是重要考点,难度较易,掌握相关知识是解题关键.2.先化简,再求值:22121244x x x x x x +-⎛⎫-÷ ⎪--+⎝⎭,其中x =【答案】3x 【分析】先根据分式的混合运算顺序和运算法则化简原式,再将x 的值代入计算可得.【详解】 解:原式212(2)22(2)x x x x x x x +--⎛⎫=-÷ ⎪---⎝⎭ 322x x x-=⋅-3x=,当x ===. 【点睛】 本题主要考查分式的化简求值,解题的关键是熟练掌握分式的混合运算顺序和运算法则.3.先化简,再求2241()2442x x x x x x -+⋅--++的值,其中x=3. 【答案】12x -,1. 【解析】试题分析:原式括号中两项通分并利用同分母分式的加法法则计算,约分得到最简结果,把x 的值代入计算即可求出值.试题解析:原式=2(2)241(2)2x x x x x -+-⋅-+=2(2)(2)1(2)2x x x x +-⋅-+=12x - 当x=3时,原式=1.考点:分式的化简求值.4.先化简,再求值:221121m m m m m m---÷++,其中m 满足:210m m --=. 【答案】2m m+1,1. 【分析】将分式运用完全平方公式及平方差公式进行化简,并根据m 所满足的条件得出2m =m+1,将其代入化简后的公式,即可求得答案.【详解】 解:原式为22m -1m-1m-m +2m+1m÷ =2(m+1)(m-1)m m-(m+1)m-1⨯ =m m-m+1=2m m m -m+1m+1+=2m m+1, 又∵m 满足2m -m-1=0,即2m =m+1,将2m 代入上式化简的结果,∴原式=2m m+1==1m+1m+1. 【点睛】本题主要考察了分式的化简求值、分式的混合运算、完全平方公式及平方差公式的应用,该题属于基础题,计算上的错误应避免.5.先化简,再求值:2221221(2)1144a a a a a a a a ⎛⎫+-+-⋅⋅+ ⎪+-++⎝⎭,其中2a =. 【答案】31a +,1 【分析】先根据分式的混合运算步骤进行化简,然后代入求值即可.【详解】 解:2221221(2)1144a a a a a a a a ⎛⎫+-+-⋅⋅+ ⎪+-++⎝⎭ 2212(1)(2)1(1)(1)(2)a a a a a a a ⎡⎤+-=-⋅⋅+⎢⎥++-+⎣⎦11(2)1(1)(2)a a a a a ⎡⎤-=-⋅+⎢⎥+++⎣⎦2111a a a a +-=-++ 31a =+ 当2a =时,原式3121==+ 【点睛】此题主要考查分式的化简求值,熟练掌握分式混合运算法则是解题关键.6.先化简,再求值:2112224a a a a +⎛⎫+÷ ⎪+--⎝⎭,其中a = 【答案】22a ,1.原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,代入计算即可求出值.【详解】 原式22(1)(2)2442a a a a a +-++-=⋅- 2222a a a --++= 22a =当a =212==. 【点睛】本题考查了分式的化简求值,解题的关键是选择正确的计算方法,对通分、分解因式、约分等知识点熟练掌握.7.先化简,再求值:21111a a a ⎛⎫-÷ ⎪+-⎝⎭,其中1a =【答案】1a -【分析】先根据分式的混合运算顺序和运算法则化简原式,再将a 值代入计算即可.【详解】原式=(1)(1)1a a a a a +-+=1a -,当1a =时,原式11-=【点睛】本题考查的是分式的化简求值,解答的关键是熟练掌握分式的混合运算顺序和运算法则,注意运算结果要化成最简分式或整式.8.先化简,再求值:2112111x x x x +⎛⎫-÷ ⎪-+-⎝⎭,然后从1-,0,1中选择适当的数代入求值.【答案】22x ,1.根据分式的运算法则进行运算求解,最后代入0x =求值即可.【详解】 原式112(1)(1)(1)(1)(1)(1)x x x x x x x x x ⎡⎤+-+=-÷⎢⎥-+-+-+⎣⎦ 11(1)(1)(1)(1)2⎡⎤+-+-+=⨯⎢⎥-++⎣⎦x x x x x x x 2(1)(1)(1)(1)2⎡⎤-+=⨯⎢⎥-++⎣⎦x x x x x 22x =+. ∵x+1≠0且x-1≠0且x+2≠0,∴x≠-1且x≠1且x≠-2,当0x =时,分母不为0,代入: 原式2=102=+. 【点睛】本题考查分式的加减乘除混合运算,注意运算顺序为:先算乘除,再算加减,有括号先算括号内的;另外本题选择合适的数时要注意选择的数不能使分母为0.9.先化简:2124244x x x x x x x -+-⎛⎫-÷ ⎪--+⎝⎭,然后选择一个合适的x 值代入求值. 【答案】化简结果是:2x x -,选择x =1时代入求值为-1. 【分析】先根据分式混合运算的法则把原式进行化简,再选出合适的x 的值代入进行计算即可【详解】 解:原式2124244x x x x x x x -+-⎛⎫⎛⎫=-÷ ⎪ ⎪--+⎝⎭⎝⎭ 2(1)(2)(2)4(2)(2)(2)x x x x x x x x x x ⎡⎤-+--=-÷⎢⎥---⎣⎦ 2224(2)(2)4x x x x x x x--+-=⋅-- 24(2)(2)4x x x x x--=⋅--2x x-=. 当x=1时代入,原式=1211-==-. 故答案为:化简结果是2x x -,选择x =1时代入求值为-1. 【点睛】本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键,最后在选择合适的x 求值时要保证选取的x 不能使得分母为0.10.先化简,(22444x x x ++-﹣x ﹣2)÷22x x +-,然后从﹣2≤x ≤2范围内选取一个合适的整数作为x 的值代入求值.【答案】﹣x +3,2【分析】先根据分式的混合运算顺序和运算法则化简原式,再选取使分式有意义的x 的值代入计算可得.【详解】解:原式=()()()()2222-2x x x x ⎡⎤+-+⎢⎥+⎢⎥⎣⎦×22x x -+ =2242222x x x x x x ⎛⎫+---⨯ ⎪--+⎝⎭=26222x x x x x -++-⨯-+ =()()23222x x x x x +---⨯-+ =﹣(x -3)=﹣x+3∵x ≠ ±2,∴可取x =1,则原式=﹣1+3=2.【点睛】本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则及分式有意义的条件.11.先化简,再从﹣1、2、3、4中选一个合适的数作为x 的值代入求值.2222444424x x x x x x x ⎛⎫---÷ ⎪-+--⎝⎭. 【答案】x+2;当1x =-时,原式=1.【分析】先化简分式,然后将x 的值代入计算即可.【详解】解:原式()()22244242x x x x x x ⎡⎤--=-÷⎢⎥---⎢⎥⎣⎦ 244224x x x x x -⎡⎤=-÷⎢⎥---⎣⎦ ()()22424x x x x x -+-=⋅-- 2x =+∵20x -≠,40x -≠,∴2x ≠且4x ≠,∴当1x =-时,原式121=-+=.【点睛】本题考查了分式的化简求值,熟练掌握分式混合运算法则是解题的关键. 12.先化简,再求值:(11a +﹣1)21a a ÷-,其中a =(π)0+(12)﹣1. 【答案】﹣a +1,原式=﹣2.【分析】根据分式的减法和除法可以化简题目中的式子,然后将a 的值代入化简后的式子即可解答本题.【详解】21(1)11a a a -÷+- 11(1)(1)1a a a a a--+-=+ (1)(1)1a a a a a -+-=+ (1)a =--1a =-+,当011(()1232a π-=+=+=时,原式312=-+=-. 【点睛】此题考查分式的化简求值,解题关键在于掌握运算法则.13.先化简,再求值:2442m m m m m ++⎛⎫+÷ ⎪⎝⎭,其中2m =.【答案】m 2+2m ,.【分析】括号内先通分进行分式的加减运算,然后再进行分式的乘除运算,化简后把m 的值代入进行计算即可.【详解】 原式2244•2m m m m m ++=+ =22(2)•2m m m m ++ =22m m +,当2m =时,原式22(2)2)2m m m m =+=+==-.【点睛】本题考查了分式的化简求值,涉及了分式的混合运算,二次根式的混合运算,熟练掌握各运算的运算法则是解题的关键.14.先化简2211a a a a ⎛⎫-÷⎪--⎝⎭,然后从22a -≤<中选出一个合适的整数作为a 的值代入求值.【答案】-1【解析】【分析】先化简,再选出一个合适的整数代入即可,要注意a 的取值范围.【详解】 解:2211a a a a ⎛⎫-÷ ⎪--⎝⎭ (1)(1)12a a a a a ---=•-1(1)12a a a a a -+-=•- 2a =, 当2a =-时,原式212-==-. 【点睛】 本题考查的是代数式的求值,熟练掌握代数式的化简是解题的关键.15.先化简,再求值:223144()11a a a a a a a+++-÷---,其中a =3. 【答案】2a a +,35【解析】【分析】先根据分式混合运算的法则把原式进行化简,再将a 的值代入进行计算即可.【详解】 .原式()()212=122a a a a a a a -+⨯=-++ 3a =,∴原式3=5【点睛】本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键. 16.先化简,再求值:22332121x x x x x --+-+,其中12x =. 【答案】31x -,-6 【解析】【分析】 根据分式的运算法则即可化简求值.【详解】22332121x x x x x --+-+ ()()2311x x -=- 31x =-,当12x =时,原式36112==--. 【点睛】此题主要考查分式的运算,解题的关键是熟知分式的运算法则. 17.先化简,再求值:2361693x x x x -⎛⎫÷- ⎪+++⎝⎭,其中3x =. 【答案】13x +,. 【分析】 先利用分式的运算规则将分式进行化简,然后将x 值带入即可【详解】解:原式()233633x x x x -+-=÷++()23333x x x x --=÷++ ()23333x x x x -+=⋅-+13x =+代入3x原式=【点睛】本题考查分式的基础运算,掌握运算规则且细心是本题关键 18.先化简,再求值:112()333x x x -÷+--;其中,3x =. 【答案】【解析】【分析】先将原式化简再将x3代入求值即可.【详解】原式()()11323··3323323x x x x x x x x x --⎛⎫=+== ⎪+-+-+⎝⎭当3x =-时,原式1==【点睛】本题主要考查分式的化简求值,熟练掌握分式的化简方法求出正确的值是解题的关键.19.先化简,再求值:22132·(1)2111x x x x x ++÷++--,其中1.【解析】分析:直接分解因式,再利用分式的混合运算法则计算得出答案. 详解:22132·12111x x x x x +⎛⎫+÷⎪++--⎝⎭ =()()()21112••121x x x x x x +-+-++ =11x +,把代入得,原式点睛:此题主要考查了分式的化简求值,正确进行分式的混合运算是解题关键.20.先化简,再求值:699()()33a a a a a a ++÷+--,其中a 3.【答案】3aa +,1 【解析】试题分析:先将原分式化简,再代入a 的值,即可求出结论.试题解析:解:原式=223639933a a a a a a a a -+-++÷--=2233369a a a a a a +-⋅-++=2(3)33(3)a a a a a +-⋅-+=3aa +.当a 3时,原式=3a a +1-21.化简:.【答案】.【解析】试题分析:根据分式的减法和除法可以解答本题. 试题解析:原式=====.考点:分式的混合运算. 22.化简并求值:22112x y x y x y x y ⎛⎫-+÷ ⎪-+-⎝⎭,其中x 、y 满足()2x 22x y 3=0-+-- 【答案】43【分析】先将括号里面的通分后,将除法转换成乘法,约分化简;根据绝对值和偶次幂的非负数性质求得x 2=,2x y 3-=,整体代入求值. 【详解】 解:原式=()()()()()()()()x y x y x y x y 2x y 2x2x ==x y x y x y x y x y x y 2x y 2x y +-++--÷⋅+-+-+---.∵x 、y 满足()2x 22x y 3=0-+--,∴x 202x y 30-=--=,,即x 22x y 3,=-= ∴原式=224=33⨯.23.先化简,再求值:2x 11x x 1x 2x ⎛⎫++÷-- ⎪⎝⎭,其中x 1=.1 【详解】 解:原式=()()222x 12x 1x x 12x x 12x 23x1111x 2x x x 1x x 1x 1x 1x 1+--++-÷-=⋅-=⋅-=-=-+---.当x 1=时,原式212====.将括号内的部分通分后相减,再将除法转化为后解答.24.先化简22144(1)11x x x x -+-÷--,然后从-2≤x ≤2的范围内选取一个合适的整数作为x 的值代入求值. 【答案】12x x +-,当x =0时,原式=12-(或:当x =-2时,原式=14).【分析】先根据分式混合运算的法则把原式进行化简,再选取合适的x 的值代入进行计算即可. 【详解】 解:原式=21x x --×()()2x 1x 1(2)x +--=12x x +-. x 满足﹣2≤x ≤2且为整数,若使分式有意义,x 只能取0,﹣2. 当x =0时,原式=﹣12(或:当x =﹣2时,原式=14). 【点睛】本题考查分式的化简求值,化简的过程中要注意运算顺序和分式的化简.化简的最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式. 25.化简求值:(),其中a=2+.【答案】+1【解析】试题分析:原式第一项括号中两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分后两项化简得到最简结果,把a 的值代入计算即可求出值 试题解析:原式=[+]•+=•+==,当a=2+时,原式=+1.考点:实数的运算26.先化简,再求值:22421244a a a a a a a a -+-⎛⎫÷- ⎪--+⎝⎭,其中a =.【答案】(a ﹣2)2,【分析】先把括号内通分化简后把乘除化为乘法,再进行约分,化为最简分式后代入计算即可. 【详解】原式=()()22224422a a a a aa a a a ⎛⎫--- ⎪÷- ⎪--⎝⎭=()2442a a a a a --÷- =()2244a a a a a --⨯- =(a ﹣2)2, ∵,∴原式=2)2=6﹣【点睛】本题考查分式的化简求值. 27.先化简,再求值:,其中的值从不等式组的整数解中选取.【答案】原式=,当x=2,原式=-2.【解析】试题分析:先把分式化简,在解不等式组,确定x 的取值,再代入求值即可. 试题解析:原式=,解得,所以不等式组的整数解为-1,0,1,2,要使分式有意义,x 只能取2,∴原式=.考点:分式的化简求值;不等式组的解法.28.先化简再求值:232)121x x x x x x --÷+++(,其中x 满足220x x +-= 【答案】2x x +;2. 【分析】先把括号里的式子通分,然后把能分解因式的分解因式,除法转换成乘法计算即可,注意计算结果要化简成最简分式或整式.然后根据给出的方程求值即可. 【详解】 原式=2(1)32121x x x x x x x +--÷+++ =2222112x x x x x x -++⨯+- =2(2)(1)12x x x x x -+⨯+- =(1)x x +=2x x +.由220x x +-=,移项得到:22x x +=, 即原式=2x x +=2.29.先化简,再求值:22693111x x x x x x x -+-+÷--+,其中2sin 301x =-. 【答案】31x-,0. 【解析】试题分析:先进行分式的混合运算把原式进行化简,再求出x 的值代入进行计算即可.试题解析:原式=2(3)11(1)(1)3x x x x x x x -++⋅-+--=311x x x x -+--=31x x x -+--=31x -,当2sin 301x =-=1212⨯-=0时,原式=3.考点:1.分式的化简求值;2.特殊角的三角函数值.30.先化简,再求值:2224(1)444a a a a a -÷-++-),其中a 2.【答案】12a +,3. 【解析】试题分析:先通分,然后进行四则运算,最后将a 的值代入计算即可.试题解析:原式=22424(2)(2)(2)a a a a a a --+÷++-=2(2)(2)(2)(2)a a a a a a +-⋅+-=12a +,当2a =时,原式=12a +考点:分式的化简求值.31.先化简,再求值:2a 2a 1a a 2a a --⎛⎫-÷ ⎪-⎝⎭,其中11a tan452-⎛⎫=-︒ ⎪⎝⎭. 【答案】2 【分析】原式括号中第二项约分后,两项通分并利用同分母分式的减法法则计算,同时利用除以一个数等于乘以这个数的倒数将除法运算化为乘法运算,约分得到最简结果,利用负指数幂及特殊角的三角函数值求出a 的值,代入计算即可求出值. 【详解】 解:原式=()()()2a 1a 1a 2a 1a a 1a a a a a 1a a 2a 1a a 1a a 1a a 1⎡⎤+---⎛⎫-⋅=-⋅=⋅=⋅=+⎢⎥ ⎪-----⎝⎭⎢⎥⎣⎦. ∵11a tan452112-⎛⎫=-︒=-= ⎪⎝⎭, ∴当a 1=时,原式=112+=.32.先化简,再求值:2x 1x 1x 1x 1x 2x 1+⎛⎫+÷ ⎪---+⎝⎭,其中x=﹣2. 【答案】x 1-,-3 【分析】先算括号里面的,再把除式的分母分解因式,并把除法转化为乘法,然后进行约分,最后把x 的值代入进行计算即可得解. 【详解】解:原式=()()22x 1x 1x 1x 1x 1x 1x 1x 1x 1-+++÷=⋅=---+-. 当x=﹣2时,原式=﹣2﹣1=﹣3.33.化简求值:221211221++--÷++-x x x x x x ,其中.【答案】2xx -+1. 【分析】首先把除法运算转化成乘法运算,分式的分子、分母能分解因式的先分解因式进行约分,然后进行减法运算,最后代值运算.【详解】原式=21(1)122(1)(1)x xx x x x+--⋅+++-=1122xx x+-++=2xx-+.当x2时,原式=1.34.先化简,再求值:,其中a2﹣4=0.【答案】:解:原式=()•==a﹣1,解方程得:a2﹣4=0,(a﹣2)(a+2)=0,a=2或a=﹣2,当a=﹣2时,a2+2a=0,∴a=﹣2(舍去)当a=2时,原式=a﹣1=2﹣1=1.点评:本题主要考查分式的化简、分式的四则运算、解整式方程,解题的关键在于正确确定a的值.【解析】:首先把分式化简为最简分式,然后通过解整式方程求a的值,把a的值代入即可,注意a的值不可使分式的分母为零.35.先化简,再求值:224114422a aa a a a⎛⎫-+-÷⎪-+-+⎝⎭,其中3a=-.【答案】22aa+-,15.【分析】先计算括号内的异分母分式减法,再计算乘法,最后将a=-3代入计算即可.【详解】解:原式=2(2)(2)11(2)22a a a a a a ⎡⎤-++-÷⎢⎥--+⎣⎦=1221a a a a ++⋅-+ =22a a +-, 当3a =-时,原式3232-+=-- 15=. 【点睛】此题考查分式的化简求值,正确掌握分式的混合运算是解题的关键.36.先化简,再求值:2221121m m m m m m -⎛⎫+÷ ⎪--+⎝⎭,其中m 从﹣1、0、1、2这四个数中选取. 【答案】2,13m m + 【分析】原式括号中两项通分并利用同分母分式加法法则计算,同时利用除法法则变形,约分得到最简结果,把m 的值代入计算即可求出值. 【详解】解:2221121m m m m m m -⎛⎫+÷ ⎪--+⎝⎭ 22(1)(1)(1)(1)m m m m m m m m -+-=⋅-+-22(1)(1)(1)(1)m m m m m m -=⋅-+- 1mm =+, 当1m =-,0,1时,原式没有意义; 当2m =时,原式23=. 【点睛】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.37.先化简,再求值:222211211xx x x x x x x x x -+⎛⎫-÷- ⎪---++⎝⎭,其中x 是不等式组371215x x +>⎧⎨-<⎩的整数解. 【答案】21x -+;23-【分析】原式第一项括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分后利用同分母分式的减法法则计算得到最简结果,求出不等式组的解集,找出解集中的整数解得到x 的值,代入计算即可求出值. 【详解】 解:原式2(1)(1)2(1)(1)(1)1x x x x x x x x x x +--+=÷-+--+22(1)2(1)(1)(1)1-+=⋅-+--+x x x x x x x x 21x x x --=+21x =-+, 不等式组371215x x +>⎧⎨-<⎩,解得:23x -<<,即整数解为:1-,0,1,2, ∵0x ≠,1x ≠±, 当2x =时,原式22213=-=-+. 【点睛】本题考查了分式加减乘除的混合运算,分式的化简求值,分式有意义的条件,解一元一次不等式组,解题的关键是熟练掌握运算法则,正确的进行化简.38.先化简,再求值:22312244a a a a a +-⎛⎫-÷ ⎪+++⎝⎭,其中1a =.【答案】21a a +-;1 【分析】由分式加减乘除的混合运算进行化简,再把1a =代入计算,即可得到答案.【详解】解:原式()()()224232211a a a a a a a +++⎛⎫=-⨯ ⎪+++-⎝⎭ ()()()221211a aa a a ++=⨯++- 21a a +=-;当1a =时,原式1===【点睛】本题考查了分式加减乘除的混合运算,分式的化简求值,二次根式的加减运算,解题的关键是熟练掌握运算法则,正确的进行化简. 39.先化简,再求值:(2221244y y y y y y +----+)÷4y y-,其中整数y 满足0≤y ≤4.【答案】21(2)-y ,1【分析】根据分式的混合运算法则把原式化简,根据分式有意义的条件确定y 的值,代入计算即可. 【详解】解:原式=()()221422y y y y y y y ⎡⎤+---÷⎢⎥--⎢⎥⎣⎦()()()()222142y y y y y y y y +----=÷- ()2442y yy y y -=⨯-- =21(2)-y ,由题意得,y ≠0、2、4, ∵0≤y ≤4,y 是整数,试卷第31页,总31页 ∴y =1或3,当y =3时,原式=1,当y =1时,原式=1.【点睛】本题考查分式的化简求值,解题的关键是熟练掌握分式的混合运算法则、分式有意义的条件.40.先化简,再求值:231x x --÷2321x x x -++﹣(11x -+1),其中x =﹣2|+2cos45°. 【答案】11x -,1 【分析】先进行因式分解,把分式的除法转化为乘法,约分,在计算加减法化简为最简分式,然后将将三角函数值代入求出x 的值代入最简分式求值即可.【详解】 解:2233111211x x x x x x --⎛⎫÷-+ ⎪-++-⎝⎭ 23(1)11(1)(1)31x x x x x x -+=⋅--+--- 11111x x x +=---- 111x x x x -=--- 11x =- x =2|+2cos45°+2=2 将2x =代入原式得 原式1121==-. 【点睛】本题主要考查分式的化简求值,绝对值化简与特殊角锐角三角函数,解题的关键是熟知其运算法则和熟记特殊三角函数值.。
初中数学分式的化简求值专项训练题10(附答案详解)
1.计算:
(1)
(2) , ,求 的值.
2.先化简,再求值:(x+2- )• ,其中x=3+ .
3.(1)先化简,再求值 ÷( -m+2),其中m是方程x2+3x-1=0的根;
(2)解方程: =1.
4.先化简,再求值:( + )÷ ,其中-2≤x≤2,且x为整数,请你选一个合适的x值代入求值.
=
= ,
当a=1+ ,b=1﹣ 时,
原式= = .
【点睛】
本题考查了分式的化简求值,熟练掌握分式混合运算的运算顺序以及运算法则是解题的关键.
8. ,﹣1.
【解析】
【分析】
用分式混合运算法则把原式进行化简,再把a的值代入进行计算即可.
【详解】
解:原式= = ,
当 时,原式=﹣3+2=﹣1.
考点:分式的化简求值.
【分析】
(1)本题按照先算乘方,再算多项式乘法,最后再算加减法的顺序即可完成;
(2)本小题是关于分式的化简求值,先计算除法,注意分式的分子分母能因式分解的先因式分解,以便进行约分,然后进行分式的加减,在化成最简分式后,将 代入即可求得.
【详解】
解:(1)原式=
(2)原式
当x=2时,
【点睛】
(1)本小题主要考查的是整式的混合运算,掌握非零的数的零次幂、负整数指数幂的计算等解题的关键,去括号时符号的变化是解题中的易错点;
(2)本小题主要考查的是分式的运算,掌握分式混合运算的顺序是解题的关键.
21. , .
【解析】
【分析】
原式括号中先进行分式的减法运算,再把除法转化为乘法,然后进行约分即可得到最简结果,根据题意可得a²-a=2019,再整体代入化简后的式子即得答案.
初中数学分式的化简求值专项训练题9(附答案详解)
原式
∵
∴ ,即只能取x=0
当x=0时,原式=﹣1.
【点睛】
本题考查了分式的化简运算,掌握分式的性质以及运算法则、完全平方公式是解题的关键.
6. , .
【解析】
试题分析:先将原分式化简,再代入a的值,即可求出结论.
试题解析:解:原式= = = = .
当a= 时,原式= = = = .
7. ,
【解析】
先根据分式的混合运算法则化简,然后代入计算即可.
【详解】
原式=
=
= .
当 时,原式= .
【点睛】
本题考查了分式的混合运算,掌握分式的混合运算法则是解答本题的关键.
16. ,-2
【解析】
【分析】
先化简分式,解不等式组,然后选使分母不等于零的数代入即可.
【详解】
解:因为
=
=
=
=
解 得 ,
所以整数解是-1,0,1,2
【分析】
先根据分式的混合运算顺序和运算法则化简原式,再选取使分式有意义的x的值代入计算可得.
【详解】
解:原式= • + -2
=- + -2
= + -
= ,
∵x≠2且x≠-3,x≠0,
∴x=-2,
则原式= = .
【点睛】
本题主要考查分式的化简求值,解题的关键是掌握分式混合运算顺序和运算法则及分式有意义的条件.
17.(1)计算:1﹣ ÷
(2)先化简,再求值:( +x﹣3)÷( ),其中x=﹣2.
18.先化简,再求值: ,其中 .
19.先化简,再求值: ,其中 .
20.先化简,再求值: ,其中 .
21.先化简,再求值: .
分式的化简求值精选题44道
分式的化简求值精选题44道一.选择题(共20小题)1.若分式,则分式的值等于()A.﹣B.C.﹣D.2.如果a2+2a﹣1=0,那么代数式(a﹣)•的值是()A.﹣3B.﹣1C.1D.33.已知m2+n2=n﹣m﹣2,则﹣的值等于()A.1B.0C.﹣1D.﹣4.如果a、b、c是非零实数,且a+b+c=0,那么的所有可能的值为()A.0B.1或﹣1C.2或﹣2D.0或﹣25.如果a﹣b=2,那么代数式(﹣b)•的值为()A.B.2C.3D.46.已知x2+3x+1=0,则x4+=()A.81B.64C.47D.307.已知abc=1,a+b+c=2,a2+b2+c2=3,则的值为()A.﹣1B.C.2D.8.如果a2﹣ab﹣1=0,那么代数式的值是()A.﹣1B.1C.﹣3D.39.如果a2+3a﹣2=0,那么代数式()的值为()A.1B.C.D.10.已知x=﹣1,y=+1,那么代数式的值是()A.2B.C.4D.211.如果m2+2m﹣2=0,那么代数式(m+)•的值是()A.﹣2B.﹣1C.2D.312.如果a2+3a+1=0,那么代数式()•的值为()A.1B.﹣1C.2D.﹣213.如果a+b=﹣,那么代数式(﹣a)•的值为()A.﹣B.C.3D.214.当|a|=3时,代数式(1﹣)÷的值为()A.5B.﹣1C.5或﹣1D.015.若m+n﹣p=0.则m(﹣)+n(﹣)﹣p(+)的值是()A.﹣3B.﹣1C.1D.316.若=≠0,则代数式(+1)÷的值为()A.2B.1C.﹣1D.﹣2 17.若,则的值为()A.B.3C.5D.718.如果x2+x﹣3=0,那么代数式(﹣1)÷的值为()A.﹣B.0C.D.319.若,则等于()A.﹣1B.1C.2D.320.已知abc≠0且a+b+c=0,则a()+b()+c()的值为()A.0B.1C.﹣1D.﹣3二.填空题(共17小题)21.已知=,则代数式的值是.22.若a2+5ab﹣b2=0,则的值为.23.已知+=3,则代数式的值为.24.若x2+3x=﹣1,则x﹣=.25.数学活动课上,小云和小王在讨论张老师出示的一道代数式求值问题:已知实数a,b同时满足a2+2a=b+2,b2+2b=a+2,求代数式的值.结合他们的对话,请解答下列问题:(1)当a=b时,a的值是.(2)当a≠b时,代数式的值是.26.当m=2015时,计算:﹣=.27.已知=,则的值为.28.已知a是满足不等式组的整数解,求代数式:(1+)÷的值.29.若x、y、z满足3x+7y+z=1和4x+10y+z=2001,则分式的值为.30.如果a2﹣a﹣1=0,那么代数式(1﹣)÷的值是.31.如果代数式a2﹣a﹣1=0,那么代数式(a﹣)的值为.32.如果m=n+4,那么代数式的值是.33.已知m﹣n=2,则•(﹣)的值为.34.已知:a2﹣7a+1=0,则a2+=.35.已知a2+=5,则a+的值是.36.若x2﹣3x=﹣5,则x+=.37.如果a﹣3b=0,那么代数式的值是.三.解答题(共7小题)38.先化简,再求值:(x﹣2+)÷,其中x=﹣.39.先化简:(﹣a+1)÷,并从0,﹣1,2中选一个合适的数作为a的值代入求值.40.先化简,再求值:÷(2+),其中x=﹣1.41.先化简:(﹣)÷,再从﹣3、﹣2、﹣1、0、1中选一个合适的数作为a的值代入求值.42.先化简,再求值:(﹣)÷,其中x满足x2﹣2x﹣2=0.43.先化简,再求值:(﹣)÷,请在2,﹣2,0,3当中选一个合适的数代入求值.44.先化简,再求值:(1﹣)÷,从﹣1,2,3中选择一个适当的数作为x值代入.分式的化简求值精选题44道参考答案与试题解析一.选择题(共20小题)1.若分式,则分式的值等于()A.﹣B.C.﹣D.【分析】根据已知条件,将分式整理为y﹣x=2xy,再代入则分式中求值即可.【解答】解:整理已知条件得y﹣x=2xy;∴x﹣y=﹣2xy将x﹣y=﹣2xy整体代入分式得====.故选:B.【点评】由题干条件找出x﹣y之间的关系,然后将其整体代入求出答案即可.2.如果a2+2a﹣1=0,那么代数式(a﹣)•的值是()A.﹣3B.﹣1C.1D.3【分析】根据分式的减法和乘法可以化简题目中的式子,然后对a2+2a﹣1=0变形即可解答本题.【解答】解:(a﹣)•===a(a+2)=a2+2a,∵a2+2a﹣1=0,∴a2+2a=1,∴原式=1,故选:C.【点评】本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.3.已知m2+n2=n﹣m﹣2,则﹣的值等于()A.1B.0C.﹣1D.﹣【分析】把所给等式整理为2个完全平方式的和为0的形式,得到m,n的值,代入求值即可.【解答】解:由m2+n2=n﹣m﹣2,得(m+2)2+(n﹣2)2=0,则m=﹣2,n=2,∴﹣=﹣﹣=﹣1.故选:C.【点评】考查分式的化简求值,把所给等式整理为2个完全平方式的和为0的形式是解决本题的突破点;用到的知识点为:2个完全平方式的和为0,这2个完全平方式的底数为0.4.如果a、b、c是非零实数,且a+b+c=0,那么的所有可能的值为()A.0B.1或﹣1C.2或﹣2D.0或﹣2【分析】根据a、b、c是非零实数,且a+b+c=0可知a,b,c为两正一负或两负一正,按两种情况分别讨论代数式的可能的取值,再求所有可能的值即可.【解答】解:由已知可得:a,b,c为两正一负或两负一正.①当a,b,c为两正一负时:;②当a,b,c为两负一正时:.由①②知所有可能的值为0.应选A.【点评】本题考查了分式的化简求值,涉及到绝对值、非零实数的性质等知识点,注意分情况讨论未知数的取值,不要漏解.5.如果a﹣b=2,那么代数式(﹣b)•的值为()A.B.2C.3D.4【分析】先将括号内通分,再计算括号内的减法、同时将分子因式分解,最后计算乘法,继而代入计算可得.【解答】解:原式=(﹣)•=•=,当a﹣b=2时,原式==,故选:A.【点评】本题主要考查分式的化简求值,解题的关键是熟练掌握分式的混合运算顺序和运算法则.6.已知x2+3x+1=0,则x4+=()A.81B.64C.47D.30【分析】根据x2+3x+1=0,可以得到x+的值,然后平方变形,再平方,再变形,即可求得所求式子的值.【解答】解:∵x2+3x+1=0,∴x+3+=0,∴x+=﹣3,∴(x+)2=9,∴x2+2+=9,∴x2+=7,∴(x2+)2=49,∴x4+2+=49,∴x4+=47,故选:C.【点评】本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.7.已知abc=1,a+b+c=2,a2+b2+c2=3,则的值为()A.﹣1B.C.2D.【分析】由a+b+c=2,a2+b2+c2=3,利用两个等式之间的平方关系得出ab+bc+ac=;再根据已知条件将各分母因式分解,通分,代入已知条件即可.【解答】解:由a+b+c=2,两边平方,得a2+b2+c2+2ab+2bc+2ac=4,将已知代入,得ab+bc+ac=;由a+b+c=2得:c﹣1=1﹣a﹣b,∴ab+c﹣1=ab+1﹣a﹣b=(a﹣1)(b﹣1),同理,得bc+a﹣1=(b﹣1)(c﹣1),ca+b﹣1=(c﹣1)(a﹣1),∴原式=++=====﹣.故选:D.【点评】本题考查了分式的化简其中计算,解题时,充分运用已知条件变形,使分式能化简通分,得出结果.8.如果a2﹣ab﹣1=0,那么代数式的值是()A.﹣1B.1C.﹣3D.3【分析】根据分式的加法和乘法可以化简题目中的式子,然后根据a2﹣ab﹣1=0,即可求得所求式子的值.【解答】解:===a(a﹣b)=a2﹣ab,∵a2﹣ab﹣1=0,∴a2﹣ab=1,∴原式=1,故选:B.【点评】本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.9.如果a2+3a﹣2=0,那么代数式()的值为()A.1B.C.D.【分析】原式括号中两项通分并利用同分母分式的加法法则计算,约分得到最简结果,把已知等式代入计算即可求出值.【解答】解:原式=•=,由a2+3a﹣2=0,得到a2+3a=2,则原式=,故选:B.【点评】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.10.已知x=﹣1,y=+1,那么代数式的值是()A.2B.C.4D.2【分析】先将分式化简,再代入值求解即可.【解答】解:原式==x+y当x=﹣1,y=+1,原式=﹣1++1=2.故选:D.【点评】本题考查了分式的化简求值,解决本题的关键是掌握分式的化简.11.如果m2+2m﹣2=0,那么代数式(m+)•的值是()A.﹣2B.﹣1C.2D.3【分析】先把括号内通分,再把分子分解后约分得到原式=m2+2m,然后利用m2+2m﹣2=0进行整体代入计算.【解答】解:原式=•=•=m(m+2)=m2+2m,∵m2+2m﹣2=0,∴m2+2m=2,∴原式=2.故选:C.【点评】本题考查了分式的化简求值:先把分式化简后,再把分式中未知数对应的值代入求出分式的值.在化简的过程中要注意运算顺序和分式的化简.化简的最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式.12.如果a2+3a+1=0,那么代数式()•的值为()A.1B.﹣1C.2D.﹣2【分析】根据分式的加法和乘法可以化简题目中的式子,然后根据a2+3a+1=0,即可求得所求式子的值.【解答】解:()•===2a(a+3)=2(a2+3a),∵a2+3a+1=0,∴a2+3a=﹣1,∴原式=2×(﹣1)=﹣2,故选:D.【点评】本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.13.如果a+b=﹣,那么代数式(﹣a)•的值为()A.﹣B.C.3D.2【分析】先根据分式的混合运算顺序和运算法则化简原式,再将a+b的值代入即可.【解答】解:原式=(﹣)•=•=•=﹣(a+b),当a+b=﹣时,原式=.故选:B.【点评】本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则.14.当|a|=3时,代数式(1﹣)÷的值为()A.5B.﹣1C.5或﹣1D.0【分析】先根据分式的混合运算顺序和运算法则化简原式,再由分式有意义的条件和绝对值性质得出a=﹣3,最后代入计算可得.【解答】解:原式=•=a+2,∵|a|=3,且a﹣3≠0,∴a≠3,当a=﹣3时,原式=﹣3+2=﹣1,故选:B.【点评】本题主要考查分式的化简求值,解题的关键是熟练掌握分式的混合运算顺序和运算法则.15.若m+n﹣p=0.则m(﹣)+n(﹣)﹣p(+)的值是()A.﹣3B.﹣1C.1D.3【分析】先由m+n﹣p=0,得出m﹣p=﹣n,m+n=p,n﹣p=﹣m,再根据m(﹣)+n(﹣)﹣p(+)=+﹣代入化简即可.【解答】解:∵m+n﹣p=0,∴m﹣p=﹣n,m+n=p,n﹣p=﹣m,∴m(﹣)+n(﹣)﹣p(+)=﹣+﹣﹣﹣=+﹣=+﹣=﹣1﹣1﹣1=﹣3;故选:A.【点评】此题考查了分式的化简求值,用到的知识点是约分、分式的加减,关键是把原式变形为+﹣.16.若=≠0,则代数式(+1)÷的值为()A.2B.1C.﹣1D.﹣2【分析】根据分式的加法和除法可以化简题目中的式子,然后根据=≠0,即可解答本题【解答】解:(+1)÷===,∵=≠0,∴2b=3a,∴原式===2,故选:A.【点评】本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.17.若,则的值为()A.B.3C.5D.7【分析】法1:已知等式整理得到关系式5=(+)(a+b),计算即可求出值;法2:已知等式左边通分并利用同分母分式的加法法则运算,整理后得到a2+b2=3ab,原式变形后代入计算即可求出值.【解答】解:法1:∵+=,∴5=(+)(a+b)=2++,则+=5﹣2=3;法2:已知等式变形得:=,即(a+b)2=5ab,整理得:a2+2ab+b2=5ab,即a2+b2=3ab,则+===3.故选:B.【点评】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.18.如果x2+x﹣3=0,那么代数式(﹣1)÷的值为()A.﹣B.0C.D.3【分析】先把分式化简后,再把分式中未知数对应的值代入求出分式的值.在化简的过程中要注意运算顺序和分式的化简.化简的最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式.【解答】解:原式=()÷=•=∵x2+x﹣3=0,∴x2+x=3,∴原式=,故选:C.【点评】本题考查了分式的化简求值,熟练掌握分式混合运算法则是解题的关键.19.若,则等于()A.﹣1B.1C.2D.3【分析】根据分式的通分和完全平方公式可以将所求式子化简,然后根据,可以得到xy和(x+y)2的关系,然后代入化简后的式子即可解答本题.【解答】解:==,∵,∴,∴xy=(x+y)2,当xy=(x+y)2时,原式===﹣1,故选:A.【点评】本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.20.已知abc≠0且a+b+c=0,则a()+b()+c()的值为()A.0B.1C.﹣1D.﹣3【分析】先利用乘法的分配律得到原式=+++++,再把同分母相加,然后根据abc≠0且a+b+c=0得到a+c=﹣b,b+c=﹣a,a+b=﹣c,把它们代入即可得到原式的值.【解答】解:原式=+++++=++∵abc≠0且a+b+c=0,∴a+c=﹣b,b+c=﹣a,a+b=﹣c,∴原式=﹣1﹣1﹣1=﹣3.故选:D.【点评】本题考查了分式的化简求值:先把分式根据已知条件进行变形,然后利用整体代入的方法进行化简、求值.二.填空题(共17小题)21.已知=,则代数式的值是9.【分析】由已知条件变形得到a﹣b=3ab,再把原式变形得到原式=,接着把a﹣b=3ab代入,然后把分子分母合并后,最后约分即可.【解答】解:∵=,∴a﹣b=3ab,∴原式===9.故答案为9.【点评】本题考查了分式的化简求值:先把分式化简后,再把分式中未知数对应的值代入求出分式的值.在化简的过程中要注意运算顺序和分式的化简.化简的最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式.22.若a2+5ab﹣b2=0,则的值为5.【分析】先根据题意得出b2﹣a2=5ab,再由分式的减法法则把原式进行化简,进而可得出结论.【解答】解:∵a2+5ab﹣b2=0,∴b2﹣a2=5ab,∴﹣===5.故答案为:5.【点评】本题考查的是分式的化简求值,分式求值题中比较多的题型主要有三种:转化已知条件后整体代入求值;转化所求问题后将条件整体代入求值;既要转化条件,也要转化问题,然后再代入求值.23.已知+=3,则代数式的值为﹣.【分析】已知等式左边通分并利用同分母分式的加法法则计算,整理得到a+2b=6ab,原式变形后代入计算即可求出值.【解答】解:∵+=3,∴=3,即a+2b=6ab,则原式===﹣.故答案为:﹣【点评】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.24.若x2+3x=﹣1,则x﹣=﹣2.【分析】根据分式的减法可以将所求式子化简,然后根据x2+3x=﹣1,可以得到x2=﹣1﹣3x,代入化简后的式子即可解答本题.【解答】解:x﹣==,∵x2+3x=﹣1,∴x2=﹣1﹣3x,∴原式====﹣2,故答案为:﹣2.【点评】本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.25.数学活动课上,小云和小王在讨论张老师出示的一道代数式求值问题:已知实数a,b同时满足a2+2a=b+2,b2+2b=a+2,求代数式的值.结合他们的对话,请解答下列问题:(1)当a=b时,a的值是﹣2或1.(2)当a≠b时,代数式的值是7.【分析】(1)将a=b代入方程,然后解一元二次方程求解;(2)联立方程组,运用加减消元法并结合完全平方公式,求得a2+b2和ab的值,然后将原式通分化简,代入求解.【解答】解:(1)当a=b时,a2+2a=a+2,a2+a﹣2=0,(a+2)(a﹣1)=0,解得:a=﹣2或1,故答案为:﹣2或1;(2)联立方程组,将①+②,得:a2+b2+2a+2b=b+a+4,整理,得:a2+b2+a+b=4③,将①﹣②,得:a2﹣b2+2a﹣2b=b﹣a,整理,得:a2﹣b2+3a﹣3b=0,(a+b)(a﹣b)+3(a﹣b)=0,(a﹣b)(a+b+3)=0,又∵a≠b,∴a+b+3=0,即a+b=﹣3④,将④代入③,得a2+b2﹣3=4,即a2+b2=7,又∵(a+b)2=a2+2ab+b2=9∴ab=1,∴,故答案为:7.【点评】本题考查分式的化简求值及完全平方公式的运用,掌握完全平方公式的公式结构和分式的化简计算法则准确计算是解题关键.26.当m=2015时,计算:﹣=2013.【分析】原式利用同分母分式的减法法则计算,约分得到最简结果,把m的值代入计算即可求出值.【解答】解:原式===m﹣2,当m=2015时,原式=2015﹣2=2013.故答案为:2013.【点评】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.27.已知=,则的值为.【分析】根据分式的除法可以化简题目中的式子,然后将=代入化简后的式子即可解答本题.【解答】解:=﹣1,当=,原式=﹣1=,故答案为:.【点评】本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.28.已知a是满足不等式组的整数解,求代数式:(1+)÷的值.【分析】根据分式的加法和除法可以化简题目中的式子,然后根据a是满足不等式组的整数解,可以得到a的值,然后选取一个使得原分式有意义的整数代入化简后的式子即可解答本题.【解答】解:(1+)÷===,由不等式组,得0<a≤2,∵a是满足不等式组的整数解,(a+1)(a﹣1)≠0,∴a=2,当a=2时,==,故答案为:.【点评】本题考查分式的化简求值、一元一次不等式组的整数解,解答本题的关键是明确分式化简求值的方法.29.若x、y、z满足3x+7y+z=1和4x+10y+z=2001,则分式的值为﹣3999.【分析】分式=,视x+3y与x+y+z为两个整体,对方程组进行整体改造后即可得出答案.【解答】解:由x、y、z满足3x+7y+z=1和4x+10y+z=2001,得出:,解得:,∴=,==﹣3999.故答案为:﹣3999.【点评】本题考查了分式的化简求值与三元一次方程组的应用,难度较大,关键是视x+3y 与x+y+z为两个整体,对方程组进行整体改造.30.如果a2﹣a﹣1=0,那么代数式(1﹣)÷的值是1.【分析】首先计算括号里面的加法,然后再算括号外的除法,化简后可得答案.【解答】解:原式=(﹣)•=•=a(a﹣1)=a2﹣a,∵a2﹣a﹣1=0,∴a2﹣a=1,∴原式=1,故答案为:1.【点评】此题主要考查了分式的化简求值,关键是正确把分式进行化简.31.如果代数式a2﹣a﹣1=0,那么代数式(a﹣)的值为3.【分析】根据题意得到a2﹣a=1,根据分式的混合运算法则把原式化简,代入计算即可.【解答】解:∵a2﹣a﹣1=0,∴a2﹣a=1,(a﹣)===3a2﹣3a=3(a2﹣a)=3,故答案为:3.【点评】本题考查的是分式的化简求值,掌握分式的混合运算法则是解题的关键.32.如果m=n+4,那么代数式的值是8.【分析】先化简分式,然后将m﹣n的值代入计算即可.【解答】解:原式===2(m﹣n),∵m=n+4,∴m﹣n=4,∴原式=2×4=8,故答案为8.【点评】本题考查了分式的化简求值,熟练掌握分式混合运算法则是解题的关键.33.已知m﹣n=2,则•(﹣)的值为﹣.【分析】根据分式的混合运算法则把原式化简,整体代入计算即可.【解答】解:原式=•=•=,当m﹣n=2,即n﹣m=﹣2时,原式=﹣,故答案为:﹣.【点评】本题考查的是分式的化简求值,掌握分式的混合运算法则是解题的关键.34.已知:a2﹣7a+1=0,则a2+=47.【分析】先根据已知方程得出a+=7,再两边平方即可得出答案.【解答】解:∵a2﹣7a+1=0,∴a﹣7+=0,则a+=7,∴(a+)2=49,∴a2+2+=49,则a2+=47,故答案为:47.【点评】本题主要考查分式的化简求值,解题的关键是掌握分式的基本性质和完全平方公式.35.已知a2+=5,则a+的值是.【分析】先根据完全平方公式得出(a+)2=a2++2•a•,代入后求出(a+)2=7,再开平方即可.【解答】解:∵a2+=5,∴(a+)2=a2++2•a•=5+2=7,∴a+=±=,故答案为:±.【点评】本题考查了完全平方公式和分式的化简与求值,能正确根据完全平方公式进行变形是解此题的关键.36.若x2﹣3x=﹣5,则x+=2.【分析】求出x2﹣x=﹣5+2x,通分得出原式=,再求出答案即可.【解答】解:∵x2﹣3x=﹣5,∴x2﹣x=﹣5+2x,∴x+======2,故答案为:2.【点评】本题考查了分式的混合运算和求值,能选择适当的方法求解是解此题的关键.37.如果a﹣3b=0,那么代数式的值是.【分析】根据分式的运算法则得到最简结果,把已知等式变形后代入计算即可求出值.【解答】解:当a﹣3b=0时,即a=3b,∴原式=•=•===.故答案为:.【点评】本题考查分式的运算法则,解题的关键是熟练运用分式的运算法则,本题属于基础题型.三.解答题(共7小题)38.先化简,再求值:(x﹣2+)÷,其中x=﹣.【分析】先根据分式的混合运算顺序和运算法则化简原式,再将x的值代入计算可得.【解答】解:原式=(+)•=•=2(x+2)=2x+4,当x=﹣时,原式=2×(﹣)+4=﹣1+4=3.【点评】本题主要考查分式的化简求值,在化简的过程中要注意运算顺序和分式的化简.化简的最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式.39.先化简:(﹣a+1)÷,并从0,﹣1,2中选一个合适的数作为a的值代入求值.【分析】根据分式的加法和除法可以化简题目中的式子,然后在0,﹣1,2中选一个使得原分式有意义的值代入即可解答本题.【解答】解:(﹣a+1)÷===,当a=0时,原式=.【点评】本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.40.先化简,再求值:÷(2+),其中x=﹣1.【分析】先把括号内通分,再把除法运算化为乘法运算,然后把分子分母因式分解,约分后得到原式=,再把x的值代入计算.【解答】解:原式=÷=÷=•=,当x=﹣1时,原式==.【点评】本题考查了分式的化简求值:先把分式的分子或分母因式分解,再进行通分或约分,得到最简分式或整式,然后把满足条件的字母的值代入计算得到对应的分式的值.也考查了二次根式.41.先化简:(﹣)÷,再从﹣3、﹣2、﹣1、0、1中选一个合适的数作为a的值代入求值.【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把a的值代入计算即可求出值.【解答】解:原式=•===,当a=﹣3,﹣1,0,1时,原式没有意义,舍去,当a=﹣2时,原式=﹣.【点评】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.42.先化简,再求值:(﹣)÷,其中x满足x2﹣2x﹣2=0.【分析】先根据分式的混合运算顺序和运算法则化简原式,再由x2﹣2x﹣2=0得x2=2x+2=2(x+1),整体代入计算可得.【解答】解:原式=[﹣]÷=•=,∵x2﹣2x﹣2=0,∴x2=2x+2=2(x+1),则原式==.【点评】本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则.43.先化简,再求值:(﹣)÷,请在2,﹣2,0,3当中选一个合适的数代入求值.【分析】先化简分式,然后根据分式有意义的条件即可求出m的值,从而可求出原式的值.【解答】解:原式=(﹣)×=×﹣×=﹣=,∵m≠±2,0,∴当m=3时,原式=3【点评】本题考查分式的化简求值,解题的关键是熟练运用分式的运算法则,本题属于基础题型.44.先化简,再求值:(1﹣)÷,从﹣1,2,3中选择一个适当的数作为x值代入.【分析】先根据分式混合运算的法则把原式进行化简,再选取合适的x的值代入进行计算即可.【解答】解:原式=•=,当x=3时,原式==3.【点评】本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.。
因式分解与分式试卷(含答案)
因式分解及分式与分式方程测试题⒈下列约分正确的是( )A 、326x xx = B 、0=++y x y x C 、x xy x y x 12=++ D 、214222=y x xy2、下列各式中,不是分式方程的是( )111..(1)1111.1.[(1)1]110232x A B x x x xxx x C D x x x-=-+=-+=--=+-3.若对于3±=x 以外的一切数98332-=--+x xx n x m 均成立,则mn 的值是( ) (A )8 (B )8- (C )16 (D )16-A. 3B. 3C. 2 D .-25 (2012山东威海3分)化简22x 1+x 93x--的结果是( ) A. 1x 3- B. 1x+3 C. 13x - D. 23x+3x 9-6(2013年深圳市)小朱要到距家1500米的学校上学,一天,小朱出发10分钟后,小朱的爸爸立即去追小朱,且在距离学校60米的地方追上了他。
已知爸爸比小朱的速度快100米/分,求小朱的速度。
若设小朱速度是x 米/分,则根据题意所列方程正确的是( )A.1014401001440=--x x B. 1010014401440++=x xC. 1010014401440+-=x xD. 1014401001440=-+xx7 (2012广西钦州3分)如果把5xx+y的x 与y 都扩大10倍,那么这个代数式的值( ) A .不变 B .扩大50倍 C .扩大10倍 D .缩小到原来的1108、已知0634=--z y x ,072=-+z y x (0≠xyz ),则22222275632zy x z y x ++++的值为( ) A 、0 B 、1 C 、2 D 、不能确定4.9、已知x 是整数,且918232322-++-++x x x x 为整数,则所有符合条件的x 的值的和为( )A 、12B 、15C 、18D 、2010 (2012湖北武汉3分)一列数a 1,a 2,a 3,…,其中a 1= 1 2,a n = 11+a n -1(n 为不小于2的整数),则a 4=( )A . 5 8B . 8 5C . 13 8D . 813选择题11、分式:1x-1 、1x-2的最简公分母为:____________________;12、若04322=--b ab a ,则ba的值是 。
初中数学分式的化简求值专项训练题6(附答案详解)
17.先化简,再求值: ,其中 - 1.
18.解答下列各题:
(1)解方程:
(2)先化简,再求值: ,其中 满足Leabharlann 19.先化简,后求值: ,其中 .
20.(1)解不等式组 .
(2)分解因式: .
(3)先化简,再求值: ,其中 .
(4)解分式方程: .
6.先化简,再求值: ÷(a﹣1﹣ ),其中a为不等式组 的正整数解.
7.先化简 ,再从-2、-1、0、1、2中选一个你认为合适的数作为 的值代入求值.
8.先化简,再求代数式(1+ ) 的值,其中m=2sin60°+1.
9.先化简,再求值: ,请你从﹣1≤x<3的范围内选取一个适当的整数作为x的值.
解:
解不等式组
解得
∴ ,
∴不等式组的整数解是 ,
∴当 时,原式 .
【点睛】
本题考查分式的化简,一元一次不等式组的解法;熟练掌握分式的化简技巧,准确解一元一次不等式组是解题的关键.
14.
【解析】
【分析】
根据分式的性质化简,再由 可得 的值,代入使分式有意义的x的值计算即可.
【详解】
解:
由 可得 或 ,
把 , 代入上式
= .
【点睛】
考查分式的混合运算,掌握运算顺序是解题的关键.
6. ,1
【解析】
【分析】
直接将括号里面通分运算,进而利用分式的混合运算法则化简,进而解不等式组计算得出答案
【详解】
解:原式 ,
∵
解①得: ,
解②得: ,
解得:1≤x≤2,
∴不等式组的正整数解为1,2,
∵ 时,分式无意义,因此, ,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
因式分解与分式化简求值复习题
一、填空题:
1. 若16)3(22+-+x m x 是完全平方式,则m 的值等于_____。
2. 22)(n x m x x -=++则m =____ n =____
3. 若442-+x x 的值为0,则51232-+x x 的值是________。
4. 若6,422=+=+y x y x 则=xy ___ 。
二.选择题
1.在下列等式中,属于因式分解的是-------------------------------( )
A .a(x -y)+b(m +n)=ax +bm -ay +bn
B .a 2-2ab +b 2+1=(a -b)2+1
C .-4a 2+9b 2=(-2a +3b)(2a +3b)
D .x 2-7x -8=x(x -7)-8
2.下列各式中,能用平方差公式分解因式的是-----------------------( )
A .a 2+b 2
B .-a 2+b 2
C .-a 2-b 2
D .-(-a 2)+b 2
3.若9x 2+mxy +16y 2是一个完全平方式,那么m 的值是----------------( )
A .-12
B .±24
C .12
D .±12
4.已知x 2+y 2+2x -6y +10=0,那么x ,y 的值分别为------------------( )
A .x=1,y=3
B .x=1,y=-3
C .x=-1,y=3
D .x=1,y=-3
三、分解因式
1.3x 2y -6xy+3y 2. m(n -2)-m 2(2-n) 3.(m 2+3m)4-8(m 2+3m)2+16
4.x 2-7x -60 5.3x 2-2xy -8y 2 6.a 2+8ab -33b 2
7.x 4-3x 2+2 8. x 2-ax -bx +ab 9.9-x 2+12xy -36y 2
四、分式化简求值
1.先化简,再求值:
12112---x x ,其中x =-2.
2.先化简211111x x x x -÷-+-(
),再从﹣1、0、1三个数中,选择一个你认为合适的数作为x 的值代入求值.
3.先化简,再求值:
12-x x (x
x 1--2),其中x =2.
4.先化简,再求值:6
2296422+-÷++-a a a a a ,其中5-=a .
5. (1)化简:
. (2)2111x x x -⎛⎫+÷ ⎪⎝⎭
(3)a a a a 1)1(-÷-
(4)a b a b a b b a +⋅++-)(2。
(5)计算221()a b a b a b b a
-÷-+-
6.先化简,再求值:()
22111a a a ⎛⎫-+÷+ ⎪+⎝⎭,其中1a =.。