实数的完备性
实数的完备性、列紧性与紧性
构造区间套 I n an , bn ,其中 a1 xN1 1 2, b1 xN1 1 2 ;对于正整数 k>1,
ak max xNk 1 2k , xNk1 1 2k 1 , bk min xNk 1 2k , xNk1 1 2k 1 。
易知 an an 1 bn 1 bn 。又易知 bn an 1 2n1 , lim bn an 0 。所以由区间
xn xN 1 1 2 , 即 xn xN 1 1 2, xN 1 1 2 ; 对于正整数 k>1, 存在正整数 N k N k 1 ,
k k k 使得当 n N k 时, xn xNk 1 2 ,即 xn xNk 1 2 , xNk 1 2 。
数 n 有 a n A 。那么由阿基米德原理知 A 无上界,与 A 上有界的条件矛盾。 2 因此对于任意正数 δ,存在 a A、x X ,使得 x-a 。 构造柯西序列 cn 。取 c1 A,c2 X 且满足 c2 c2 1 。对正整数 k>1 ,取
c2 k 1 A,c2 k X 且满足 c2 k 1 c2 k 3 , c2 k c2 k 2 , c2 k c2 k 1
1 。 k
对此处选区方法做一个详细解释。 设集合 A k a | a A, a c2 k 3 。 由于 A 没 有最大值,Ak 非空且 A k A 。显然 Ak 上有界且其上界集也是 X。那么存在
c2 k 1 A k A , d k X ,使得 dk c2 k 1
1 。这里由于 c2 k 1 A k , c2 k 1 c2 k 3 ;由 k
于 A k A , c2 k 1 A 。 若 d k c2 k 2 , 令 c2 k d k ; 否 则 令 c2 k c2 k 2 。 这 样
实数的完备性
第七章 实数的完备性§1.关于实数集完备性的基本定理1. 验证数集⎭⎬⎫⎩⎨⎧+-n n 1)1(有且只有两个聚点11-=ε和12=ε。
解: 当n 取奇数12-=k n 时,S 中的互异子列 ) ( , 1 1 2 1 1 ∞ → -→ ⎭ ⎬ ⎫ ⎩ ⎨ ⎧ - + - k k ,所以11-=ξ是S 的聚点;当n 取偶数k n 2=时,S 中的互异子列)(,1211∞→→⎭⎬⎫⎩⎨⎧+k k ,所以12=ξ是S 的聚点2.证明:任何有限数集都没有聚点。
证明: 设有限数集S 。
由聚点ξ的定义,在ξ的任何邻域内都含有S 中无穷多个点,而S 只有有限个点,所以S 没有聚点。
3.设{})(,n n b a 是一个严格开区间套,既满足,1221b b b a a a n n <<<<<<< 且0)(lim =-∞→n n n a b .证明:存在唯一的一点ε,使得.,2,1, =<<n b a n n ε证明:证法一:}{n a 严格递增,有上界A a n n =∴∞→lim ,且 3,2,1,=<n A a n(否则,假定存在N ,有时,,则N n A a N >≥A a a a n N n ≥>>+1,因而Aa a N n n >≥+∞→1lim 与A a n n =∞→lim 相矛盾)同理B b n n =∞→lim 存在, 3,2,1,=>n B b n由条件0)(lim =-∞→n n n a b 可知A=B ,令B A ==ε,则 3,2,1,=<<n b a n n ε证法二:作闭区间列]2,2[],[11++++=n n n n n n b b a a y x 其满足: 1°),(],[),(11n n n n n n b a y x b a ⊂⊂++][][,1,1n n n n y x y x ⊂∴++2°0)(lim =-∞→n n n a b0)(lim =-∴∞→n n n x y由区间套定理,存在唯一一点),(],[n n n n b a y x ⊂∈ε使得.,2,1, =<<n b a n n ε4.试举例说明:在有理数集内,确界原理、单调有界定理、聚点定理和柯西收敛准则一般都不成立。
数学分析讲义 - CH07(实数的完备性)
第七章 实数的完备性§1关于实数集完备性的基本定理前面我们学习了:戴德金切割原理、确界原理、单调有界定理、致密性定理、柯西收敛准则,这些命题都是从不同方式反映实数集的一种特性,通常称为实数的完备性或实数的连续性公理。
本节再学习见个实数的完备性公理,即区间套定理、聚点定理、有限覆盖定理。
最后我们要证明这些命题都是等价的。
一、区间套定理]}定义1 设闭区间列具有如下性质: [{n n b a ,(i) []n n b a ,[]11,++⊃n n b a , ,2,1=n ; (ii) 0)(lim =-∞→n n n a b ,则称为闭区间套,或简称区间套。
[{n n b a ,]} 这里性质(¡)表明,构成区间套的闭区间列是前一个套着后一个,即各闭区间的端点满足如下不等式:.1221b b b a a a n n ≤≤≤≤≤≤≤≤ (1) 左端点{}n a 是单调递增的点列,右端点{}n b 是单调递减的点列。
定理1 (区间套定理) 若是一个区间套,则在实数系中存在唯一的一点[{n n b a ,]}ξ,使得ξ∈[]n n b a ,,,即,2,1=n ξ≤n a n b ≤, .,2,1 =n (2) 证 (由柯西收敛准则证明)设是一区间套.下面证明[{n n b a ,]}{}n a 是基本点列。
设,由区间套的条件(i)得m n >()()()()m n m n m m n n m m a a b a b a b a b a -=---≤---再由区间套的条件(ii ),易知{}n a 是基本点列。
按Cauchy 收敛准则,{}n a 有极限,记为ξ。
于是()lim lim ()lim n n n n n n n n b b a a a ξ→∞→∞→∞=-+==由{}n a 单调递增,{}n b 单调递减,易知ξ≤n a n b ≤,.,2,1 =n下面再证明满足(2)的ξ是唯一的。
实数的完备性
不存在 S,
使 1 . n
例:②设
I (0,1),S ( { 1 ,1)n 1,2,3 }. n1
则开区间集S覆盖区间I,
x (0,1), 只要自然数m充分大,有
1 x m 1
即x ( 1 ,1) m1
定理7.3 (海涅—博雷尔(Heine-Borel)有限覆盖定理) 闭区间[a, b]的任一开覆盖H,必可从H中选 出有限个开区间覆盖[a, b]。
它是区间(a, b)的一个无限开覆盖。
又如:(0,2),(1,3), ,(n 1, n 1),
3
24
n n2
是区间(0, 1)的一个无限开覆盖。
例:①设
I (0,1),S ( { 1 ,1)n 1,2,3 }. n1 n
则开区间集S没有覆盖区间I,
1 (0,1), n
取 n min{ 1/ n,| xn1 |},则xn U ( ; n ) S,
且xn与x1,x2, xn1互异,
无限地重复以上步骤,得到S中各项互异的数列 { xn },
且满足:|
xn
|
n
1, n
从而
lim
n
xn
.
证毕。
定理7.2 (魏尔斯特拉斯(weierstrass)聚点定理)
n 即数列的单调有界定理在有理数域不成立。
3. {(1 1 )n }也是满足Cauchy条件的有理数列, n
但其极限是无理数e.
即柯西收敛准则在有理数域不成立。
本节介绍刻画实数完备性的另外三个定理:区间套定 理、聚点定理和有限覆盖定理,
还将证明这六个基本定理的等价性。
一、 区间套定理与柯西收敛准则
数学分析第七章 实数的完备性
设 S 为数轴上的点集, H 为开区间的集合,(即 H 的每一个 元素都是形如 (, )的开区间).若 S 中任何一点都含在至少一个 开区间内,则称 H为 S的一个开覆盖,或简称H 覆盖 S .
若 H 中开区间的个数是无限(有限)的, 则称 H 为 S 的一个
无限(有限)开覆盖.
例 开区间集
H = {(x - b - x , x + b - x) | x (a,b)}
五 作业
P168: 1, 3, 5, 6.
第七章 实数的完备性
§2 闭区间上连续函数性质的证明
一 有界性定理
若函数 f 在闭区间 [a,b]上连续,则 f 在 [a,b] 上有界.
证明: (应用有限覆盖定理证明)
由连续函数的局部有界性, x' [a,b],U(x';x' ),Mx' 0使得
f (x) M x' x U (x'; x' ) [a,b]. 考虑开区间集 H = {U (x'; x' ) x' [a,b]}, 显然H是[a,b]的一个无限开覆 但不能覆盖[a, b].
•2 定理7.3 (Heine-Borele 有限覆盖定理)
设H 为闭区间 [a,b] 的一个(无限)开覆盖,则从 H 中可 选出有限个开区间来覆盖 [a,b] .
•定理的证明
用反证法 假设定理的结论不成立, 即不能用H中有限个
开区间来覆盖 [a,b]. 将[a,b]等分为两个子区间 , 则其中至少有一个子区 间不能用H
说明:区间套中要求各个区间都是闭区间,才能保证定理结论的成立.
如{(0, 1 )},虽然其中各个开区间也是前一个包含后一个, n
且 lim ( 1 - 0) = 0,但不存在属于所有开区间的公共点. n n
《数学分析》第7章 实数的完备性ppt课件
在第一章与第二章中, 我们已经证明了实 数集中的确界定理、单调有界定理并给出了 柯西收敛准则. 这三个定理反映了实数的一种 特性,这种特性称之为完备性. 而有理数集是 不具备这种性质的. 在本章中, 将着重介绍与 上述三个定理的等价性定理及其应用.这些定 理是数学分析理论的基石.
一、区间套定理与柯西收敛定理 二、聚点定理与有限覆盖定理 三、实数完备性基本定理的等价性
一、区间套定理与柯西收敛定理
定义1 设闭区间列 {[an, bn]} 满足如下条件 : 1. [an , bn ] [an1, bn1] , n 1, 2, , 2. lnim(bn an ) 0 , 则称 {[an, bn]} 为闭区间套, 简称区间套. 定义1 中的条件1 实际上等价于条件
b1] [a2 ,
b2 ],
b2 a2
, 2
并且当 n N2 时, an [a2 ,b2 ].
......
令
1 2k
,
存在
Nk (
N k1 ), 当
n
Nk
时,
an
a
N
k
1 2k
,
aNk
1 2k
.
取 [ak , bk ] [ak1, bk1]
aNk
1 2k
,
aNk
1 2k
.
......
n
N1
时,an
(aN1
1, 2
aN1
1 ), 2
取 [a1,
b1] [
aN1
1, 2
aN1
1 2
]. 令
1 22
,
存在
N2( N1 ), n N2 时,
用有限覆盖定理证明实数完备性的几个定理
用有限覆盖定理证明实数完备性的几个定理实数完备性是指实数集在实数轴上没有空隙,并且实数集没有空缺。
有限覆盖定理是证明实数完备性的一个重要工具。
下面我将用有限覆盖定理证明实数完备性的几个定理。
1.实数的确界性:任意非空有上界的实数集合A必有上确界。
证明过程如下:假设A是一个非空有上界的实数集合,我们要证明A存在上确界b。
由于集合A非空,因此存在一个实数x1,使得x1∈A。
由于A有上界,因此存在一个实数M,使得对于任意的a∈A,有a≤M。
我们可以构造一个实数集合B={M-δ,δ>0},即B中的每个元素都是M减去一个正数。
根据有限覆盖定理,实数集合B必存在上确界c。
根据实数的稠密性,存在一个实数x2,使得x2∈A,并且x2>c-δ,其中δ>0。
从而得出M>x2>M-δ=c,即x2是集合A的一个上界。
综上所述,集合A的上界x2是集合A的上确界,即A存在上确界。
2.单调有界定理:单调有界数列必有极限。
证明过程如下:假设{an}是一个单调递增的有上界的数列,要证明数列{an}收敛。
由于数列{an}有上界,根据有限覆盖定理,存在一个实数b,使得b为数列{an}的上确界。
根据实数的稠密性,存在一个实数x,使得b>x>x-1,即x在实数轴上有一个邻域(x-1,x)。
由于数列{an}是递增的,因此存在一个正整数N,使得对于任意的n > N,都有an > x。
那么对于n > N,我们有:x - 1 < x < an ≤ b,即an在实数轴的邻域(x-1,x)中。
根据极值定理,我们得知数列{an}的确存在极限。
3.至少有一个无理数存在于任意两个有理数之间:证明过程如下:假设存在两个有理数p和q,且p<q。
我们要证明在p和q之间至少存在一个无理数。
根据有限覆盖定理,我们可以构造一个区间[p,q],即区间的端点为p和q。
根据实数的稠密性,存在一个实数x,使得p<x<q。
第七章 实数完备性
第七章实数的完备性§1 关于实数完备性的基本定理一、问题提出定理1.1(确界原理)非空有上(下)界的数集必有上(下)确界.确界存在定理(定理 1.1)揭示了实数的连续性和实数的完备性. 与之等价的还有五大命题,这就是以下的定理1.2至定理1.6.定理1.2 (单调有界定理)任何单调有界数列必定收敛.定理1.3 (区间套定理)设为一区间套:.则存在唯一一点定理1.4 (有限覆盖定理)设是闭区间的一个无限开覆盖,即中每一点都含于中至少一个开区间内.则在中必存在有限个开区间,它们构成的一个有限开覆盖.定理1.5 (聚点定理)直线上的任一有界无限点集至少有一个聚点,即在的任意小邻域内都含有中无限多个点(本身可以属于,也可以不属于).定理1.6 (柯西准则)数列收敛的充要条件是:,只要恒有.(后者又称为柯西(Cauchy)条件,满足柯西条件的数列又称为柯西列,或基本列.)这些定理构成极限理论的基础.我们不仅要正确理解这六大定理的含义,更重要的还要学会怎样用它们去证明别的命题.下面通过证明它们之间的等价性,使大家熟悉使用这些理论工具.下图中有三种不同的箭头,其含义如下::(1)~(3) 基本要求类:(4)~(7) 阅读参考类:(8)~(10) 习题作业类二、回顾确界原理的证明我们曾引入有界数集的确界概念,今证明它的存在性(记号a 、b 、c 表示实数) Dedekind 定理设A/B 是R 的一个切割,则比存在实数R ε∈使得(,]A ε=-∞,(,)B ε=+∞或(,)A ε=-∞,[,)B ε=+∞无其它可能.1 非空有上界的数集E 必存在上确界.证明 设}{x E =非空,有上界b : E x ∈∀,b x ≤. (1) 若E 中有最大数0x ,则0x 即为上确界;(2) 若E 中无最大数,用下述方法产生实数的一个分划;取E 的一切上界归入上类B ,其余的实数归入下类A ,则)|(B A 是实数的一个分划.ο1 A 、B 不空.首先B b ∈.其次E x ∈∀,由于x 不是E 的最大数,所以它不是E 的上界,即A x ∈.这说明E 中任一元素都属于下类A ;ο2 A 、B 不漏性由A 、B 定义即可看出;ο3 A 、B 不乱.设A a ∈,B b ∈.因a 不是E 的上界,E x ∈∃,使得x a <,而E 内每一元素属于A ,所以b x a <<.ο4 由ο3的证明可见A 无最大数.所以)|(B A 是实数的一个分划.由戴德金定理,知上类B 必有最小数,记作c .E x ∈∀,由ο1知A x ∈,即得c x <.这表明c 是E 的一个上界.若b 是E 的一个上界,则B b ∈,由此得b c ≤,所以c 是上界中最小的,由上确界定义,c 为集合E 的上确界,记作 E c sup =.推论 非空的有下界的集合必有下确界.事实上,设集合}{x E =有下界b ,则非空集合}|{'E x x E ∈-=有上界b -,利用集合'E 上确界的存在性,即可得出集合E 的下确界存在.定理1解决了非空有上界集合的上确界存在性问题,我们可以利用上确界的存在性,得出我们所研究的某一类量(如弧长)的存在性.若全序集中任一非空有上界的集合必有上确界,我们称该全序集是完备的.定理1刻划了实数集是完备的.例1 证明实数空间满足阿基米德原理.证明 0>>∀a b ,要证存在自然数n 使b na >.假设结论不成立,即b na ≤, ),,Λ21(=n ,则数集}{na E =有上界b ,因此有上确界c ,使c na ≤),,Λ21(=n ,也就有c a n ≤+)1(),,Λ21(=n ,或 a c na -≤ ),,Λ21(=n .这表明a c -是集合E 的上界,与c 是上确界矛盾.所以总存在自然数n ,使b na >. 三、等价命题证明下面来完成(1)~(7)的证明. (一) 用确界定理证明单调有界定理设}{n x 单调上升,即ΛΛ≤≤≤≤≤n x x x x 321,有上界,即M ∃,使得M x n ≤.考虑集合}|{N n x E n ∈=,它非空,有界,定理2推出它有上确界,记为nN n x a ∈=sup .我们验证 nn x a ∞→=lim .0>∀ε,由上确界的性质,N ∃,使得N x a <-ε,当N n >时,由序列单调上升得n N x x a ≤<-ε,再由上确界定义,ε+<≤a a x n ,有 εε+<<-a x a n ,即ε<-a x n ,也就是说 nN n n n x a x ∈∞→==sup lim . 同理可证若}{n x 单调下降,有下界,也存在极限,且nN n n n x x ∈∞→=inf lim .若集合E 无上界,记作+∞=E sup ;若集合E 无下界,记作+∞=E inf ,这样一来,定理2证明了的单调上升(下降)有上界(下界)的序列}{n x ,必有极限)inf (sup n N x n N x x x ∈∈的定理现在有了严格的理论基础了.且对单调上升(下降)序列}{n x ,总有)inf (sup lim n Nx n Nx n n x x x ∈∈+∞→=.(二) 用单调有界定理证明区间套定理由假设(1)知,序列}{n a 单调上升,有上界1b ;序列}{n b 单调下降,有下界1a .因而有1lim c a n n =+∞→,2lim c b n n =+∞→. n n b c c a ≤≤≤21.再由假设(2)知0)(lim 12=-=-+∞→c c a b n n n ,记c c c ==21. 从而有nn n n b c a +∞→+∞→==lim lim .若还有*c 满足n n b c a ≤≤*,令+∞→n ,得c c =*.故c 是一切],[n n b a 的唯一公共点.证毕.这个定理称为区间套定理.关于定理的条件我们作两点说明:(1) 要求],[n n b a 是有界闭区间的这个条件是重要的.若区间是开的,则定理不一定成立.如)1,0(),(n b a n n =.显然有 )1,0()11,0(n n ⊂+, 但 φ=+∞=)1,0(1n n I .如果开区间套是严格包含: n n n n b b a a <<<++11,这时定理的结论还是成立的.(2)若],[],[11n n n n b a b a ⊂++),,Λ21(=n ,但0)(lim ≠-+∞→n n n a b ,此时仍有1lim c a n n =+∞→,2lim c b n n =+∞→,但21c c <,于是对任意的c ,21c c c ≤≤,都有],[1n n n b a c +∞=∈I . 全序集中任一区间长趋于零的区间套有非空交集,则称该全序集是完备的,定理3刻划实数集是完备的(这里完备定义与上段完备定义是等价的).定理3也给出通过逐步缩小搜索范围,找出所求点的一种方法.推论 设为一区间套,.则当时,恒有.用区间套定理证明其他命题时,最后常会用到这个推论.例2 序列}{n x 由下列各式a x =1,b x =2,221--+=n n n x x x ),,Λ43(=n所确定(见下图).证明极限n n x+∞→lim 存在,并求此极限.1x 3x 5x 4x 2x x证明 当b a =时,a x n =,故ax n n =+∞→lim .当b a ≠时,若取),min(1n n n x x a +=,),m ax (1n n n x x b +=,),,Λ21(=n .则由条件,显然可得一串区间套:],[],[11n n n n b a b a ⊂++ ),,Λ21(=n .由已知条件)(212111--+--=-+=-n n n n n n n x x x x x x x ,于是,)(0||21||21||21||21||112121211+∞→→-=-==-=-=-=------+n a b x x x x x x x x a b n n n n n n n n n n Λ由区间套定理,存在c 满足: n n n n b c a +∞→+∞→==lim lim .注意到],[n n n b a x ∈,所以 c x n n =+∞→lim . 下面来求c .由)(2111-+--=-n n n n x x x x ,令132-=k n ,,,Λ得一串等式: )(211223x x x x --=-; )(212334x x x x --=-;ΛΛΛΛΛΛ)(21211-----=-k k k k x x x x .将它们相加,得 )(21112x x x x k k --=--,令+∞→k ,得)(2112x c x c --=-所以)2(31323121b a x x c +=+=.(三) 用区间套定理证明确界原理证明思想:构造一个区间套,使其公共点即为数集的上确界.设, 有上界.取;,再令如此无限进行下去,得一区间套.可证:因恒为的上界,且,故,必有,这说明是的上界;又因,故,而都不是的上界,因此更不是的上界.所以成立.[证毕]*(四) 用区间套定理证明有限覆盖定理设为闭区间的一个无限开覆盖.反证法假设:“不能用中有限个开区间来覆盖”.对采用逐次二等分法构造区间套,的选择法则:取“不能用中有限个开区间来覆盖”的那一半.由区间套定理,.导出矛盾:使记由[推论],当足够大时,这表示用中一个开区间就能覆盖,与其选择法则相违背.所以必能用中有限个开区间来覆盖.说明当改为时,或者不是开覆盖时,有限覆盖定理的结论不一定成立.例如:1) .是开区间的一个无限开覆盖,但不能由此产生的有限覆盖.2) .是的一个无限覆盖,但不是开覆盖,由此也无法产生的有限覆盖.* (五) 用有限覆盖定理证明聚点定理设为实轴上的有界无限点集,并设.由反证法假设来构造的一个无限开覆盖:若有聚点,则.现反设中任一点都不是的聚点,即在内至多只有.这样,就是的一个无限开覆盖.用有限覆盖定理导出矛盾:据定理9,存在为的一个有限开覆盖(同时也覆盖了).由假设,内至多只有所属个邻域内至多只有属于(即只覆盖了中有限个点).这与覆盖了全部中无限多个点相矛盾.所以,有界无限点集必定至少有一个聚点.[证毕]推论(致密性定理)有界数列必有收敛子列.即若为有界数列,则使有.子列的极限称为原数列的一个极限点,或称聚点注数列的聚点与一般点集的聚点,含义稍有不同.数列的聚点定义为:“,在内含有中无限多个项,则为的一个聚点.”在此意义下,对于数列它有两个收敛子列:和,.它们的极限和就是的两个聚点.证}{n a 有界,则存在数11,y x 使得11y a x n ≤≤对n ∀成立.将],[11y x 二等分为]2,[111y x x +、],2[111y y x +,则其中必有一个含有数列}{n a 的无穷多项,记为],[22y x ;再将],[22y x 二等分为]2,[222y x x +、],2[222y y x +,同样其中至少有一个含有数列}{n a 的无穷多项,把它记为],[33y x ,……一直进行这样的步骤,得到一闭区间套]},{[n n y x ,其中每一个],[n n y x 中都含有数列}{n a 的无穷多项,且满足:⑴ ],[11y x ⊃],[22y x ⊃⊃Λ],[n n y x ⊃…⑵111lim()lim02n n n n n y x y x -→∞→∞--==则由闭区间套定理,ξ∃使得 =∞→n n a lim =∞→n n b lim ξ 下证}{n a 中必有一子列收敛于实数ξ先在],[11y x 中选取}{n a 的某一项,记为1n a ,因],[22y x 中含有}{n a 中的无穷多项,可选取位于1n a 后的某一项,记为2n a ,12n n >.继续上述步骤,选取k n a ],[k k y x ∈后,因为],[11++k k y x 中含有无穷多项,可选取位于kn a 后的某一项,记为1k n a +且kk n n >+1,这样我们就得到}{n a 的一个子列}{k n a 满足k n k y a x k ≤≤,Λ,2,1=k由两边夹定理即得 =∞→k n n a lim ξ.证明 设b x a n ≤≤,用中点21ba c +=将[]b a ,一分为二,则两个子区间[]1,c a 和[]b c ,1中至少有一个含有}{n x 中无穷多项,选出来记为[]11,b a ,在其中选一项1n x .用中点2112b a c +=将[]11,b a 一分为二,则两个子区间[]21,c a 和[]12,b c 中至少有一个含有}{n x 中无穷多项,选出来记为[]22,b a ,在其中选一项2n x ,使得Λ,12n n >.最后得一区间套[]k k b a ,,满足[][]k k k k b a b a ,,11⊂++,k k k a b a b 2-=-,[]kk k k n n n b a x k >∈+1,,.由区间套定理,c b a k k k k ==∞→∞→lim lim ,又由于kn k b x a k ≤≤,有c x k n k =∞→lim .*(六) 用聚点定理证明柯西准则必要性: 已知收敛,设.由定义,,当时,有.从而有.充分性: 已知条件: 当时.欲证收敛..首先证有界.对于当时,有令,则有..由致密性定理,存在收敛子列,设..最后证,由条件,当时,有.于是当(同时有)时,就有.证 “⇒” }{n a 收敛,则存在极限,设a a n n =∞→lim ,则0>∀ε,N ∃,当N n >时有2/||ε<-a a n ⇒当N m n >,时有ε<-+-≤-||||||a a a a a a n m m n“⇐”先证有界性,取1=ε,则N ∃,N m n >,⇒1||<-m n a a特别地,N n >时 1||1<-+N n a a ⇒1||||1+<+N n a a设}1|||,|,|,||,m ax {|121+=+N N a a a a M Λ,则n ∀,Ma n ≤||再由致密性定理知,}{n a 有收敛子列}{k n a ,设aa k n k =∞→lim0>∀ε,1N ∃,1,N m n >⇒||/2n m a a ε-<K ∃,K k >⇒2/||ε<-a a k n取),m ax (1N K N =,当N n >时有11N n N N +≥+>⇒ εεε=+<-+-≤-++2/2/||||||11a a a a a a N N n n n n故aa n k =∞→lim .Cauchy 列、基本列(满足Cauchy 收敛准则的数列)*(七) 用柯西准则证明单调有界原理 设为一递增且有上界M 的数列.用反证法( 借助柯西准则 )可以证明:倘若无极限,则可找到一个子列以为广义极限,从而与有上界相矛盾.现在来构造这样的.对于单调数列,柯西条件可改述为:“ 当 时,满足”.这是因为它同时保证了对一切,恒有 .倘若不收敛,由上述柯西条件的否定陈述:,对一切,,使.依次取把它们相加,得到.故当时,可使,矛盾.所以单调有界数列必定有极限. [ 证毕 ] 例1 用单调有界定理证明区间套定理.即已知:1 )单调有界定理成立;2 )设[]{}nnba,为一区间套.欲证:[],,2,1,,Λ=∈ξ∃nbann且惟一.证证明思想:构造一个单调有界数列,使其极限即为所求的ξ.为此,可就近取数列{}na(或{}n b).由于,1221bbbaaann≤≤≤≤≤≤≤≤ΛΛΛ因此{}na为递增数列,且有上界(例如1b).由单调有界定理,存在ξ=∞→nnalim,且Λ,2,1,=ξ≤nan.又因nnnnaabb+-=)(,而0)(lim=-∞→nnnab,故ξ=ξ+=+-=∞→∞→∞→lim)(limlimnnnnnnnaabb;且因{}nb递减,必使ξ≥nb.这就证得[]Λ,2,1,,=∈ξnbann.最后,用反证法证明如此的ξ惟一.事实上,倘若另有一个[]Λ,2,1,,=∈ξ'nbann,则由)()(∞→→-≤ξ'-ξnabnn,导致与>ξ'-ξ相矛盾.例 2 (10)用区间套定理证明单调有界定理.即已知:1 )区间套定理成立.2 )设{}n x为一递增且有上界M的数列.欲证:{}n x存在极限nnx∞→=ξlim.证证明思想:设法构造一个区间套[]{}nnba,,使其公共点ξ即为{}n x的极限.为此令[][]Mxba,,111=.记2111bac+=,并取[][]{}[]{}⎩⎨⎧=.,,;,,,11111122的上界为不若的上界为若nnxcbcxccaba再记222 2ba c +=, 同理取[][]{}[]{}⎩⎨⎧=.,,;,,,22222233的上界不为若的上界为若n n x c b c x c c a b a如此无限进行下去,得一区间套[]{}n n b a ,.根据区间套定理,[]∞→∞→=ξ==∈ξ∃n n n n n n b a n b a )lim lim (,2,1,,Λ.下面用数列极限定义证明ξ=∞→n n x lim :0>ε∀,一方面,由于)(N ∈k b k 恒为{}n x 的上界,因此ε+ξ<ξ=≤⇒≤∈∀∞→k k n k n b x b x ,k n lim ,N ;另一方面,由ε-ξ>⇒ε<-ξ=ξ-≥∈∃⇔ξ=∞→K k k k k a a a K k ,K a ,lim 时当N ;而由区间套的构造,任何k a 不是{}n x 的上界,故ε-ξ>>∃K N a x ;再由{}n x 为递增数列,当N n >时,必有ε-ξ>≥N n x x .这样,当 N n > 时,就有ε+ξ<<ε-ξn x , 即 ξ=∞→n n x lim .例 3 (9) 用确界定理证明区间套定理.即已知: 1 ) 确界定理成立(非空有上界的数集必有上确界);2 ) 设{}],[n n b a 为一区间套.欲证:存在惟一的点[]Λ,2,1,,=∈ξn b a n n .证 证明思想:给出某一数集S ,有上界,使得S 的上确界即为所求的ξ. 为此,取{}n a S =,其上界存在(例如 1b ).由确界定理,存在 {}n a sup =ξ.首先,由ξ为{}n a 的一个上界,故Λ,2,1,=ξ≤n a n .再由ξ是{}n a 的最小上界,倘有某个ξ<m b ,则m b 不会是{}n a 的上界,即m k b a >∃,这与[]{}nn b a ,为区间套相矛盾(ji b a <).所以任何ξ≥n b .这就证得Λ,2,1,=≤ξ≤n b a n n .关于ξ的惟一性,与例1中的证明相同.注 本例在这里所作的证明比习题解答中的证明更加清楚.在以上六个等价命题中,最便于推广至中点集的,当属聚点定理与有限覆盖定理.为加深对聚点概念的认识,下例所讨论的问题是很有意义的.例证明“是点集的聚点”的以下三个定义互相等价:(i) 内含有中无限多个点(原始定义);(ii) 在内含有中至少一个点;(iii) ,时,使.证 (i)(ii) 显然成立.(ii)(iii) 由(ii),取,;再取;……一般取;……由的取法,保证,,.(iii)(i)时,必有,且因各项互不相同,故内含有中无限多个点.[证毕]四、实数系的完备性实数所组成的基本数列{}nx比存在实数极限――实数系完备性;有理数域不具有完备性,如1(1)nn⎧⎫+⎨⎬⎩⎭:1lim(1)nnen→∞+=(无理数).五、压缩映射原理(不动点原理)1、函数f(x)的不动点指什么?设y=f(x)是定义在[a,b]上的一个函数,方程x=f(x)的解称为f(x)的不动点.2、在什么样的条件下不动点一定存在呢?存在时唯一吗?如何求出不动点?压缩映射:如果存在常数k,满足0≤k<1,使得对一切,[,]x y a b∈成立不等式()()||f x f y k x y -≤-,则称f 是[a,b]上的一个压缩映射. 压缩映射必连续.压缩映射原理(不动点原理) 设()x ϕ是[a,b]上压缩映射,且([,])[,]a b a b ϕ⊂,则()x ϕ在[a,b]上存在唯一的不动点.例3 证明Kapler 方程sin x x b ε=+在||1ε<时,存在唯一实数.§7.2 闭区间上连续函数性质的证明教学目标:证明闭区间上的连续函数性质.教学内容:闭区间上的连续函数有界性的证明;闭区间上的连续函数的最大(小)值定理的证明;闭区间上的连续函数介值定理的证明;闭区间上的连续函数一致连续性的证明.基本要求:掌握用有限覆盖定理或用致密性定理证明闭区间上连续函数的有界性;用确界原理证明闭区间上的连续函数的最大(小)值定理;用区间套定理证明闭区间上的连续函数介值定理.较高要求:掌握用有限覆盖定理证明闭区间上的连续函数的有界性和一致连续性. 教学建议:(1) 本节的重点是证明闭区间上的连续函数的性质.(2) 本节的难点是掌握用有限覆盖定理证明闭区间上的连续函数的一致连续性以及实数完备性的六大定理的等价性证明,对较好学生可布置这方面的习题. 教学过程:在本节中,将利用关于实数完备性的基本定理来证明第四章2中给出的闭区间上连续函数的基本性质.一、有界性定理 若函数f 在闭区间[]b a ,上连续,则f 在[]b a ,上有界证法 一 ( 用区间套定理 ). 反证法. 参阅[3]P106—107.证法 二 ( 用致密性定理). 反证法.证明 如若不然,)(x f 在],[b a 上无界,∈∀n N ,],[b a x n ∈∃,使得n x f n >|)(|,对于序列}{n x ,它有上下界b x a n ≤≤,致密性定理告诉我们k n x∃使得],[0b a x x k n ∈→,由)(x f 在0x 连续,及kn n x f k >|)(|有+∞==∞→|)(|lim |)(|0k n k x f x f ,矛盾.证法 三 ( 用有限复盖定理 ). 参阅[1]P168—169证明 (应用有限覆盖定理) 由连续函数的局部有界性(th4.2)对每一点[]b a x ,'∈都存在邻域()x x '',δο⋃及正数'x M使()()[]b a x x M x f x x ,,'''⋂⋃∈≤δ 考虑开区间集()(){}b a x x H x ,,'''∈⋃=δ虽然H 是[]b a ,的一个无限开覆盖,由有限开覆盖定理,存在H 的一个有限点集()[]{}k i b a x x H i i i ,,2,1,,Λ=∈⋃=*δ覆盖了[]b a ,,且存在正整数,,,21k M M M Λ使对一切()[]b a x x i i ,,⋂⋃∈δ有()k i M x f i ,,2,1,Λ=≤,令ki iM M ≤≤=1m ax则对[]b a x ,∈∀,x 必属于某()()M M x f x i i i ≤≤⇒δ,Y ,即证f 在[]b a ,上有上界. 二、最值性:命题2 ] , [)(b a C x f ∈, ⇒ )(x f 在] , [b a 上取得最大值和最小值. ( 只证取得最大值 )证 ( 用确界原理 ) 令)}({sup x f M bx a ≤≤=,+∞<M , 如果)(x f 达不到M ,则恒有M x f <)(.考虑函数)(1)(x f M x -=ϕ,则],[)(b a C x ∈ϕ,因而有界,即)0()(>≤μμϕx , 从而MM x f <-≤μ1)(,这与M 是上确界矛盾,因此],[b a x ∈∃,使得M x f =)(.类似地可以证明达到下确界.三、介值性: 证明与其等价的“零点定理 ”.命题3 (零点存在定理或根的存在性定理)设函数)(x f 在闭区间],[b a 上连续即]),([)(b a C x f ∈且)(a f 与)(b f 异号()(a f 0)(<b f ),则在),(b a 内存在一点0x 使得 0)(0=x f .即方程0)(=x f 在),(b a 内至少存在一个实根.证法 一 ( 用区间套定理 ) .设0)(<a f ,0)(>b f .将],[b a 二等分为],[c a 、],[b c ,若0)(=c f 则c x =0即为所求;若0)(≠c f ,当0)(>c f 时取],[c a 否则取],[b c 为],[11b a ,有0)(1<a f ,0)(1>b f .如此继续,如某一次中点i c 有0)(=i c f 终止(i c 即为所求);否则得]},{[n n b a 满足:⑴ΛΛ⊃⊃⊃⊃],[],[],[11n n b a b a b a ;⑵ 02lim)(lim =-=-∞→∞→nn n n n ab a b ;⑶)(,0)(><n n b f a f由闭区间套定理知,∃唯一的],[10n n n b a x ∞=∈I ,且=∞→n n a lim 0lim x b n n =∞→由)(x f 在0x处的连续性及极限的保号性得)()(lim 0≤=∞→x f a f n n 、0lim ()()0n n f b f x →∞=≥0)(0=⇒x f #证二( 用确界原理 ) 不妨假设0)(<a f (从图1看,0x是使得0)(>x f 的x 的下确界),令]},[,0)(|{b a x x f x E ∈>=,要证E x inf 0=(E inf 存在否?).因为Φ≠⇒∈E E b ,],[b a E ⊂E ⇒有界,故E inf 存在.令 Ex inf 0=,下面证0)(0=x f如若不然,)(0≠x f 则)(0>x f (或)(0<x f )(从图形上可清楚看出,此时必存在1x x <使0)(1>x f ).首先ax ≠0,即],(0b a x ∈;f 在0x连续,由连续函数的局部保号性],[),(0b a x U ⊂∃⇒δ使得),(0δx U x ∈∀有0)(>x f ,特别应有0)2(0>-δx f 即 E x ∈-20δ,这与E x inf 0=矛盾,故必有0)(0=x f .证法 二 ( 用确界原理 ) 不妨设,0)(>a f 0)(<b f .令} ] , [ , 0)( | {b a x x f x E ∈>=, 则E 非空有界, ⇒ E 有上确界. 设E sup =ξ, 有∈ξ] , [b a . 现证 0)(=ξf , ( 为此证明)(ξf 0≥且)(ξf 0≤ ). 取n x >ξ 且n x ) ( ,∞→→n ξ. 由)(x f 在点ξ连续和0)(≤n x f , ⇒ 0)(lim )(≤=∞→n n x f f ξ,⇒ ξE ∉. 于是) ( , ∞→→∍∈∃n t E t n n ξ. 由)(x f 在点ξ连续和0)(>n t f ,⇒ 0)(lim )(≥=∞→n n t f f ξ. 因此只能有0)(=ξf .证法 三 ( 用有限复盖定理 ).介值性定理 设f 在闭区间[]b a ,上连续,且()()()()b f a f b f a f 与为介于若μ≠之间的任何实数()()b f a f <<μ或()()b f a f >>μ,则存在()b a x ,∈ο使()μ=οx f .证明 (应用确界定理) 不妨设()()()()μμ-=<<x f x g b f a f 令 则g 也是[]b a ,上连续函数,()()0,0>>b g a g ,于是定理的结论转为:()()0,,=∈∃οοx g b a x 使这个简化的情形称为根的存在性定理(th4.7的推论)记()[]{}b a x x g x E ,,0∈>=显然E 为非空有界数集[]()E b b a E ∈⊂且,故有确界定理, E 有下确界,记()()0,0inf ><=b g a g E x 因ο有连续函数的局部保号性, 0>∃δ,使在),[δ+a a 内0)(<x g ,在),(δ-b b 内0)(>x g .由此易见a x ≠ο,b x ≠ο,即()b a x ,∈ο.下证()0=οx g .倘若()0≠οx g ,不妨设()0>οx g ,则又由局部保号性,存在()()()b a x ,,⊂ηοY 使在其内)0(>x g ,特别有Ex x g ∈-⇒>⎪⎭⎫ ⎝⎛-202ηηοο=0,但此与E x inf =ο矛盾,则必有0)(0=x g .几何解释 直线c y =与曲线)(x f y =相交.把x 轴平移到c y =,则问题成为零点存在问题.这启发我们想办法作一个辅助函数,把待证问题转化为零点存在问题.辅助函数如何作?① 从几何上,c y y x x -='=',启示我们作c x f x F -=)()(; ② 从结果cx f =)(0着手.利用零点定理证:令c x f x F -=)()(,则]),([)(b a C x F ∈,往下即转化为零点存在问题. # 这种先证特殊、再作辅助函数化一般为特殊,最后证明一般的方法是处理数学问题的常用方法,以后会经常用到.推论 如f 为区间I 上的连续函数,则值域)(I f J =也是一个区间(可以退化为一点). 证 f 为常量函数,则)(I f J =退化为一点.f 非常量函数,则J 当然不是单点集.在J 中任取两点21y y <(只要证J y y ⊂],[21),则在I 中必有两点1x ,2x 使得11)(y x f =,22)(y x f =.于是对21y y y <<∀,必存在x ,x 介于1x 与2x 之间,使y x f =)(,即J y ∈因而J y y ⊂],[21⇒J 是一个区间.二、一致连续性:命题4 ( Cantor 定理 ) ],[)(b a C x f ∈, 则)(x f 在],[b a 上一致连续.证法 一 ( 用有限复盖定理 ) 参阅[1]P171[ 证法一 ]证明 (用有限覆盖定理) 由f 在闭区间[]b a ,上连续性,0>∀ε,对每一点[]b a x ,∈,都存在0>x δ,使当()x x x δ,'Y ∈时,有()()2'ε<-x f x f考虑开区间集合[]⎭⎬⎫⎩⎨⎧∈⎪⎭⎫ ⎝⎛=b a x x H x ,2,δY 显然H 是[]b a ,的一个开覆盖,由有限覆盖定理H ∃的一个有限子集[]02min ,,,2,12,>⎭⎬⎫⎩⎨⎧=⎭⎬⎫⎩⎨⎧=⎪⎭⎫ ⎝⎛=*i i i b a k i x H δδδ记覆盖了ΛY对[]δ<-∈∀"'"',,x x b a x x ,x '必属于*H 中某开区间,设⎪⎭⎫ ⎝⎛∈2,'i i x x δY ,即2'ii x x δ<-,此时有iiiii i x x x x x x δδδδδ=+≤+<-+-≤-222''""故有(2)式同时有 ()()()()22"'εε<-<-i i x f x f x f x f 和由此得()()[]上一致连续在b a f x f x f i ,'∴<-ε.证法 二 ( 用致密性定理). 参阅[1]P171—172 [ 证法二 ]证明 如果不然,)(x f 在],[b a 上不一致连续,00>∃ε,0>∀δ,],[,b a x x ∈'''∃,δ<''-'||x x ,而0|)()(|ε≥''-'x f x f .取n 1=δ,],[,b a x x n n∈'''∃,n x x n n 1||<''-',而0|)()(|ε≥''-'n n x f x f ,由致密性定理,存在子序列],[0b a x x k n∈→',而由k n nn x x k k 1||<''-',也有0x x k n→''. 再由)(x f 在0x 连续,在0|)()(|ε≥''-'k k n n x f x f 中令∞→k ,得000|)()(|lim |)()(|0ε≥''-'=-=∞→k k n nk x f x f x f x f ,矛盾.所以)(x f 在],[b a 上一致连续.推广 ),()(b a C x f ∈,()f a +,()f b -∃⇒)(x f 在),(b a 上一致连续. 作业 [1]P172 1,2 3,4, 5*;P176 1,2,4.§7.3 上极限和下极限一、上(下)极限的定义对于数列,我们最关心的是其收敛性;如果不收敛,我们希望它有收敛的子列,这个愿望往往可以实现.例如:{}(1)n -.一般地,数列{}n x ,若{}k n x :k n x a →(k →∞),则称a 是数列{}n x 的一个极限点.如点例{}(1)n -有2个极限点.数列{}n x 的最大(最小)极限点如果存在,则称为该数列的上(下)极限,并记为lim n n x →∞(lim n n x →∞).如lim(1)1n n →∞-=,lim(1)1n n →∞-=-.例1 求数列sin 3n π⎧⎫⎨⎬⎩⎭的上、下极限.例2 [1(1)]n n x n =+-,求上、下极限. 二、上(下)极限的存在性下面定理指出,对任何数列{}n x ,它的上(下)极限必定存在. 定理1 每个数列{}n x 的上极限和下极限必定唯一,且lim n n x →∞=1sup{,,}limsup n n k n k nx x x +→∞≥=L ,lim n n x →∞=1inf{,,}liminf n n k n k nx x x +→∞≥=L .三、上下极限和极限的关系lim n n x →∞≥lim n n x →∞.定理2 {}n x 存在极限则{}n x 的上极限和下极限相等,即lim n n x →∞=lim n n x →∞=lim n n x →∞.四、上(下)极限的运算普通的极限运算公式对上(下)极限不再成立.例如:11lim[(1)(1)]0lim(1)lim(1)2n n n n n n n ++→∞→∞→∞-+-=<-+-=u u u r . 一般地有:lim()lim lim n n n n n n n x y x y →∞→∞→∞+≤+,当{}n x 收敛时,等号成立.实数完备性的等价命题一、问题提出确界存在定理(定理1.1)揭示了实数的连续性和实数的完备性. 与之等价的还有五大命题,这就是以下的定理1.2至定理1.6.定理1.2(单调有界定理)任何单调有界数列必定收敛.定理1.3(区间套定理)设为一区间套:.则存在唯一一点定理1.4(有限覆盖定理)设是闭区间的一个无限开覆盖,即中每一点都含于中至少一个开区间内.则在中必存在有限个开区间,它们构成的一个有限开覆盖.定理1.5 (聚点定理)直线上的任一有界无限点集至少有一个聚点,即在的任意小邻域内都含有中无限多个点(本身可以属于,也可以不属于).定理1.6 (柯西准则)数列收敛的充要条件是:,只要恒有.(后者又称为柯西(Cauchy)条件,满足柯西条件的数列又称为柯西列,或基本列.)这些定理构成极限理论的基础.我们不仅要正确理解这六大定理的含义,更重要的还要学会怎样用它们去证明别的命题.下面通过证明它们之间的等价性,使大家熟悉使用这些理论工具.下图中有三种不同的箭头,其含义如下::(1)~(3) 基本要求类:(4)~(7) 阅读参考类:(8)~(10) 习题作业类下面来完成(1)~(7)的证明.二、等价命题证明(一) 用确界定理证明单调有界定理.(二) 用单调有界定理证明区间套定理设区间套.若另有使,则因.推论设为一区间套,.则当时,恒有.用区间套定理证明其他命题时,最后常会用到这个推论.(三) 用区间套定理证明确界原理证明思想构造一个区间套,使其公共点即为数集的上确界.设, 有上界.取;,再令如此无限进行下去,得一区间套.可证:因恒为的上界,且,故,必有,这说明是的上界;又因,故,而都不是的上界,因此更不是的上界.所以成立.*(四) 用区间套定理证明有限覆盖定理设为闭区间的一个无限开覆盖.反证法假设:“不能用中有限个开区间来覆盖”.对采用逐次二等分法构造区间套,的选择法则:取“不能用中有限个开区间来覆盖”的那一半.由区间套定理,.导出矛盾:使.记由[推论],当足够大时,这表示用中一个开区间就能覆盖,与其选择法则相违背.所以必能用中有限个开区间来覆盖.说明当改为时,或者不是开覆盖时,有限覆盖定理的结论不一定成立.例如:1) .是开区间的一个无限开覆盖,但不能由此产生的有限覆盖.2) .是的一个无限覆盖,但不是开覆盖,由此也无法产生的有限覆盖.*(五) 用有限覆盖定理证明聚点定理设为实轴上的有界无限点集,并设.由反证法假设来构造的一个无限开覆盖:若有聚点,则.现反设中任一点都不是的聚点,即在内至多只有.这样,就是的一个无限开覆盖.用有限覆盖定理导出矛盾:据定理9,存在为的一个有限开覆盖(同时也覆盖了).由假设,内至多只有所属个邻域内至多只有属于(即只覆盖了中有限个点).这与覆盖了全部中无限多个点相矛盾.所以,有界无限点集必定至少有一个聚点.[推论(致密性定理)有界数列必有收敛子列.即若为有界数列,则使有.子列的极限称为原数列的一个极限点,或称聚点.数列的聚点与一般点集的聚点,含义稍有不同.数列的聚点定义为:“,在内含有中无限多个项,则为的一个聚点.”在此意义下,对于数列它有两个收敛子列:和,.它们的极限和就是的两个聚点.*(六) 用聚点定理证明柯西准则柯西准则的必要性容易由数列收敛的定义直接证得.(已知收敛,设.由定义,,当时,有.从而有.)这里只证其充分性.已知条件:当时.欲证收敛..首先证有界.对于当时,有令,则有..由致密性定理,存在收敛子列,设..最后证,由条件,当时,有.于是当(同时有)时,就有.*(七) 用柯西准则证明单调有界原理设为一递增且有上界M的数列.用反证法(借助柯西准则)可以证明:倘若无极限,则可找到一个子列以为广义极限,从而与有上界相矛盾.现在来构造这样的.对于单调数列,柯西条件可改述为:“当时,满足”.这是因为它同时保证了对一切,恒有.倘若不收敛,由上述柯西条件的否定陈述:,对一切,,使.依次取把它们相加,得到.故当时,可使,矛盾.所以单调有界数列必定有极限. [ 证毕 ] 在以上六个等价命题中,最便于推广至中点集的,当属聚点定理与有限覆盖定理.为加深对聚点概念的认识,下例所讨论的问题是很有意义的.例证明“是点集的聚点”的以下三个定义互相等价:(i) 内含有中无限多个点(原始定义);(ii) 在内含有中至少一个点;(iii) ,时,使.证 (i)(ii) 显然成立.(ii)(iii) 由(ii),取,;。
实数的完备性
第七章 实数的完备性§1 实数完备性的基本定理1. 验证 数集},2,11)1{(L =+−n n n有且只有两个聚点11−=ξ和12=ξ 解 因{1+}21n 是{(-1)n+n 1}的所有偶数项组成的子列,且,1)211(lim =+∞→nn 故12=ξ是数集},2,11)1{(L =+−n n n的一个聚点.由于}1211{−+−n 是原数集的所有奇数项组成的子列,且,1)1211(lim −=−+−∞→n n 因而11−=ξ也是原数集的聚点.下证该数集再无其它聚点. 时,有则当取001}21,21min{,1εϕϕεϕ>−+=±≠∀n⎪⎪⎩⎪⎪⎨⎧−+−−≥⎪⎪⎩⎪⎪⎨⎧−+−−=−−−为奇数为偶数为奇数,为偶数)(n n n n n n n n n n ,11.1111,1111ϕϕϕϕϕ.1200εε>−≥n故ϕ不是该数集的聚点.这就证明原数集只有两个聚点,即1+与1−. 2.证明:任何有限数集都没有聚点.证 设S 是有限数集,则对任一S R a 因,1,0=∃∈ε是有限数集,故领域),(0εa U 内至多 有S 中的有限个点,故a 不是S 的聚点,由a 的任意性知,S 无聚点.3.设)},{(n n b a 是一严格开区间套,即1221b b b a a a n n <<<<<<<<L L L , 且.0)(lim =−∞→n n n a b 证明存在唯一一点ξ,有L ,2,1,=<<n b a n n ξ证 作闭区间列]},{[n n y x , 其中L ,2,1,2,211=+=+=++n b b y a a x n n n n n n ,由于),(,11N n b y b a x a n n n n n n ∈∀<<<<++ 故有(1) ))(,(],[),(11N n b a y x b a n n n n n n ∈∀⊂⊂++,从而L ,2,1],,[],[11=⊂++n y x y x n n n n(2) )(0N n a b x y n n n n ∈∀−<−<从而由]},{[.0)(lim ,0)(lim n n n n n n n n y x x y a b 所以得=−=−∞→∞→为闭区间套.由区间套定理知,存在一点).,2,1()1().,2,1](,[L L =<<=∈n b a n y x n n n n ξξ有由满足条件),2,1(L =<<n b a n n ξ的点ξ的唯一性的证明与区间套定理的证明相同.4.试举例说明:在有理数集内,确界原理、单调有界定理、聚点定理和柯西收敛准则一般都不能成立。
实数的完备性 (2)
于是按定义 2,存在 {xn} 的一个收敛子列 以 ξ 为其极限.
证毕。
注: 聚点定理和致密性定理在有理数域不一定成立。
1 n 1 n 如:S {(1 ) }, { xn } {(1 ) }, n n
S是有界的无限有理点集,在实数域内的唯一聚
点为e,因而在有理数域没有聚点。 数列{xn}是有理数域内的有界数列,但其极限
0,N 0, n N , 有 [ n , n ] U ( , ). 由推论得 :
因此在 U ( ; ) 内含有 {an }中除有限项外的所有项,
即 lim an .
n
柯西收敛原理的意义不仅在于它提供了判断数列收敛 的一个充分必要条件,而且,他还是刻画实数完备性的最
在什么情况下应用闭区间套定理呢? 一般来说, 证明问
题需要找到具有某种性质 P 的一个数,常常应用闭区间套定理 将这个数“套”出来。 怎样应用闭区间套定理呢? ① 首先构造一个具有性质P的闭区间. 性质要根据性质P来定。 ② 其次,通常采用二等分法, 将此闭区间二等分 ,至少有
一个闭区间具有性质P。
是区间(0, 1)的一个无限开覆盖。
在具体问题中,一个点集的开覆盖往往是由该问题的 某些具体条件所确定。 函数f 在 (a, b) 内连续, 0, x (a , b), x 0, 使
n
定义2 定义2 定义2 显然,
三个定义等价性的证明:
2
1
只需证: 定义2 定义2
取 1 1, 则x1 U ( ; 1 ) S, 显然 x2 x1,
(
(
x 2 x1
)
)
0, x U ( , ) S , 设 为S(按定义2 )的聚点,
第四讲__实数的完备性典型例题
第四讲 实数的完备性一、内容提要 1.上确界设E 为一实数集,β为一实数,如果 (1)E x ∈∀,有β≤x ;(2)0>∀ε,E x ∈∃0,使得εβ->0x . 则称β为集合E 的上确界,记为E sup =β. 2.下确界设E 为一实数集,α为一实数,如果 (1)E x ∈∀,有α≥x ;(2)0>∀ε,E x ∈∃0,使得εα+<0x .则称α为集合E 的下确界,记为E inf =α. 3.确界存在定理有上界的非空数集必有上确界,有下界的非空数集必有下确界. 4.闭区间套定理若闭区间列]},{[n n b a 具有如下性质: (1)嵌套性:⊂++],[11n n b a ],[n n b a ; (2)紧缩性:()0lim =-∞→n n n a b .则存在唯一的实数ξ,使得n n b a ≤≤ξ( ,2,1=n ). 5.Cauchy 收敛准则 数列{}n x 收敛N m n N >∀N ∈∃>∀⇔,,,0ε,有ε<-m n x x .6.聚点和聚点定理若S 是一实数集,则下列条件之间是两两等价: (1)ξ是S 的聚点;(2)若点ξ的任何ε邻域内都含有S 中异于ξ的点; (3)存在各项互异的收敛数列{}S x n ⊂,使ξ=∞→n n x lim .聚点定理:实轴上任一有界无限点列至少有一个聚点. 7.致密性定理有界数列必有收敛子列. 8.有限覆盖定理设H 是闭区间],[b a 上的(无限)开覆盖,则从H 中可选出有限个开区间来覆盖],[b a .9.实数完备性基本定理的等价性 (1)确界定理;(2)单调有界定理;(3)闭区间套定理;(4)有限覆盖定理;(5)聚点定理;(6)Cauchy 收敛准则,这六个基本定理是相互等价的,其中任何一个都可以作为实数完备性的定义.注1 在描述实数连续性的几个定理中,有限覆盖定理的形式很特殊,它着眼点是闭区间的整体,而其他几个等价定理着眼点是一点的局部,凡是证明的结论涉及闭区间的问题,可考虑使用有限覆盖定理,凡是证明的结论涉及一点的问题,可考虑使用其他的几个等价定理. 注2 有限覆盖定理将无限转化为有限,从而把函数)(x f 在闭区间],[b a 上的局部性拓广到闭区间],[b a 上的整体性. 二、典型例题。
关于实数完备性的研究
关于实数完备性的研究一、实数完备性理论的介绍什么是实数完备性?实数完备性就是是数学分析的基础,它是指六大定理的等价。
下面我们介绍一下六大定理。
1.1 确界原理1.1.1确界原理的定义x∈,都有定义1设S为R中的一个数集.若存在数M(L),使得对一切Sx≤M(x≥L),则称S为有上界(下界)的数集,数M(L)称为S的一个上界(下界).若数集S既有上界又有下界,则称S为有界集.若S不是有界集,则称S为无界集.定义2设S是R中的一个数集.若数η满足:(i)对一切Sx∈,有ηx,即η是S的上界;≤(ii)对任何ηα<存在S>x即η又是S的最小上界x o∈,使得αoη则称数η为数集S的上确界,记作S=sup定义3 设S是R中的一个数集.若数ξ满足:(i)对一切Sx∈,有ξ≥x,即ξ是S的下界(ii)对任何ξβ>,存在Sx即ξ又是S的最大下界,则称x o∈,使得,β<o数ξ为数集S的下确界,记作Sξ=i n f上确界与下确界统称为确界.1.1.2确界原理及其证明确界原理设S为非空数集.若S有上界,则S必有上确界;若S有下界,则S必有下确界.12 证 我们只证明关于上确界的结论,后一结论可类似地证明.为叙述的方便起见,不妨设S 含有非负数.由于S 有上界,故可找到非负整 数n ,使得)1对于任何S x ∈有1+<n x ; )2存在S a ∈0,使n a ≥0.对半开区间[)1,+n n 作10等分,分点为9.,,2.,1.n n n ,则存在,2,1,09, 中的 一个数1n ,使得)1对于任何S x ∈有101.1+<n n x ; )2存在S a ∈1,使11.n n a ≥. 再对半开区间)101.,.[11+n n n n 作10等分,则存在9,2,1,0 中的一个数2n 使得 )1对于任何S x ∈有<x 221101.+n n n)2存在S a ∈2,使..212n n n a ≥继续不断地10等分在前一步骤中所得到的半开区间,可知对任何存在9,2,1,0 中的—个数k n ,使得)1对于任何S x ∈有kk n n n n x 101.21+< )2存在S a k ∈,使 ..21k k n n n n a ≥将上述步骤无限地进行下去,得到实数..21 k n n n n =η.以下证明=ηS sup .为此只需证明:(i ) 对一切S x ∈有η≤x ;(ii )对任何ηα<,存在S ∈'α使'a <α.倘若结论(i )不成立,即存在S x ∈使η>x ,则可找到x 的k 位不足近似k x , 使=>k k x η+k n n n n 21.k101, 从而得kk n n n n x 101.21+> ,3但这与不等式)1(相矛盾.于是(i )得证.现设ηα<,则存在k 使η的k 位不足近似k k αη>,即k k n n n n α> 21.,根据数η的构造,存在S a ∈'使k a η≥',从而有 k a η≥'αα≥>k , 即得到'a <α,.这说明(ii )成立.1.2单调有界原理1.2.1 极限以及数列定义定义4 若函数f 的定义域为全体正整数集合+N ,则称R f →N +: 或 ()+N ∈n n f , 为数列定义5 设{}n a 为数列,a 为定数.若对任给的正数ε(不论它多么小), 总存在正整数N ,使得当N n >时有 ε<-a a n ,则称数列{}n a 收敛于a ,定 数a 称为数列{}n a 的极限,并记作 a a n =lim 或 ()∞→→n a a n . 定义6 若数列{}n a 的各项满足关系式()11++≥≤n n n n a a a a ,则称{}n a 为 递增(递减)数列. 递增数列和递减数列通称为单调数列.1.2.2 单调有界定理及其证明单调有界定理 在实数系中,有界的单调数列必有极限. ]2[证 不妨设{}n a 为有上界的递增数列. 由确界原理,数列{}n a 有上确界,记为{}n a a sup =. 下面证明a 就是{}n a 的极限.. 事实上,任给0>ε,按上确界的定义,存在数列{}n a 中的某一项N a 使得N a a <-ε.又由{}n a 的递增性,当N n ≥时有 n N a a a ≤<-ε.另一方面,由于a 是数列{}n a 的一个上界,故对一切n a 都有ε+<≤a a a n . 所以当N n ≥时 εε+<<-a a a n ,这就证得a a n n =∞→lim .4 同理可证有下界的递减数列必有极限,且其极限即为它的下确界.1.3 区间套定理1.3.1区间套定义定义7 设闭区间列[]{}n n b a ,具有如下性质:(i )[][],...2,1,,,11=⊃++n b a b a n n n n ; (ii )()0lim =-∞→n n n a b ,则称[]{}n n b a ,为闭区间套,或简称区间套.1. 3. 2区间套定理及其证明区间套定理 若[]{}n n b a ,是一个区间套,则在实数系中存在唯一的一点ξ,使得[],...2,1,,=∈n b a n n ξ, 即,...2,1,=≤≤n b a n n ξ.]2[证 由定义7 的条件(i )可知, 数列{}n a 为递增有界数列, 依单调有界定 理,{}n a 有极限ξ,且有 ,...2,1,=≤n a n ξ.同理,递减有界数列{}n b 也有极限,并按区间套的条件(ii )有ξ==∞→∞→n n n n a b lim lim ,且,...2,1,=≥n b n ξ.综上,可得 ,...2,1,=≤≤n b a n n ξ.下面证明满足 ,...2,1,=≤≤n b a n n ξ 的ξ是唯一的. 设数'ξ也满足 ,...2,1,'=≤≤n b a n n ξ,则由 ,...2,1,=≤≤n b a n n ξ有 (),...2,1,'=-≤-n a b n n ξξ.由区间套的条件(ii )得 ()0lim '=-≤-∞→n n n a b ξξ,故有 ξξ='.注 区间套定理中的闭区间若改为开区间, 那么结论不一定成立. 例如对于开区间列 ⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛n 1,0 , 显然ξ是不存在的.推论 若[](),...2,1,=∈n b a n n ξ是一个区间套[]{}n n b a ,所确定的点,则对任给的0>ε,存在0>N ,使得当N n >时有[]()εξ;,U b a n n ⊂. 证 由区间套定理的证明可得:ξ==∞→∞→n n n n a b lim lim .5由极限的保号性, 对于任意正数 ε , 存在 正整数N , 当N n ≥时, 有 n a <-εξ ,εξ+<n b ,即 εξεξ+<≤<-n n b a , 这就是说 []()εξ;,U b a n n ⊂.1.4.1聚点定理1.4.1聚点定义定义8 设S 为数轴上的非空点集, ξ为直线上的一个定点(当然可以属于S , 也可以不属S ). 若对于任意正数ε ,在()εξ;U 中含有S 的无限个点, 则 称ξ为的S 一个聚点.定义8' 设S 为实数集R 上的非空点集, R ∈ξ.若对于任意正数ε,()φεξο≠S U ; ,则称ξ为的S 一个聚点.定义8″ 若存在各项互异的收敛数列{}S x n ⊂,则其极限ξ=∞→n n x lim 称为S的一个聚点.下面简单叙述一下这三个定义的等价性. 定义8 → 定义8' 由定义直接得到定义8' → 定义8″ 对任给的0>ε,由()φεξο≠S U ;, 那么取11=ε,()S U x 1;1ξο∈∃;取⎭⎬⎫⎩⎨⎧-=ξε12,21min x ,()S U x 22;εξο∈∃;..........取⎭⎬⎫⎩⎨⎧-=-ξε1,1min n n x n ,()S U x n n εξο;∈∃;..........这样就得到一列{}S x n ⊂.由n ε的取法,{}n x 两两互异,并且 nx n n 10≤<-<εξ 由此 ξ=∞→n n x lim6 定义8″ → 定义8 由极限的定义可知这是显然的.1. 4. 2聚点定理及其证明聚点定理 实数轴上的任意有界无限点集必有聚点. ]2[证 因为S 为有界点集, 所以存在正数M , 使[]M M S ,-⊂ , 且记[][]M M b a ,,11-= .现将 []11,b a 等分为两个子区间. 因S 为无限点集,故两个子区间中至少有一个含有S 中无穷多个点,记此子区间为[]22,b a ,则[][]2211,,b a b a ⊃且 M a b a b =-=-)(211122. 再将[]22,b a 等分为两个子区间,则其中至少有一个含有S 中无穷多个点,取 出这样一个子区间,记为[]33,b a ,则[][]3322,,b a b a ⊃, 且 2)(212233Ma b a b =-=- . 将此等分子区间的手续无限地进行下去,得到一个区间列[]{}n n b a ,,它满足[][],...2,1,,,11=⊃++n b a b a n n n n , )(021∞→→=--n Ma b n n n , 即[]{}n n b a ,是区间套,且其中每一个闭区间都含有S 中无穷多个点.由区间套定理,存在唯一的一点[],...2,1,,=∈n b a n n ξ. 由区间套定理的推论,对任给的0>ε,存在0>N ,当N n >时[]()εξ;,U b a a n n n ⊂∈.从而()εξ;U 内含有S 中无穷多个点,按定义8ξ为S 的一个聚点.推论(致密性定理) 有界数列必有收敛子列. ]2[证 设{}n x 为有界数列.若{}n x 中有无限多个相等的项,则由这些项组成的 子列是一个常数列,而常数列总是收敛的 .若数列{}n x 不含有无限多个相等的项,则{}n x 在数轴上对应的点集必为有界 无限点集,故由聚点定理,点集{}n x 至少有一个聚点,记为ξ. 于是按定义8″,存在{}n x 的一个收敛子列(以ξ为其极限).71.5 开覆盖定理1.5.1开覆盖定义定义9 设S 为数轴上的点集,H 为开区间的集合(即H 的每一个元素都是形如),(βα的开区间).若S 中任何一点都含在中至少一个开区间内,则称H 为S 的一个开覆盖,或称H 覆盖S .若H 中开区间的个数无限(有限)的,则称H 为S 的一个无限开覆盖(有限开覆盖).1.5.2有限覆盖定理及其证明有限覆盖定理 设H 为闭区间[]b a ,的一个(无限)开覆盖,则从H 中可选出有限个开区间来覆盖[]b a ,.]2[证 (论反证)假设定理的结不成立,则不能用H 中有限个开区间来覆盖[]b a ,.现将 []b a , 等分为两个子区间,则两个子区间中至少有一个子区间不能用H 中有限个开区间来覆盖. 记此子区间为[]11,b a ,则[][]b a b a ,,11⊂ 且 )(2111a b a b -=-. 再将[]11,b a 等分为两个子区间,同样,其中至少有一个子区间不能用H 中有 限个开区间来覆盖. 取出这样一个子区间,记为[]22,b a ,则[][]1122,,b a b a ⊂, 且 )(21222a b a b -=- . 将此等分子区间的手续无限地进行下去,得到一个区间列[]{}n n b a ,,它满足[][],...2,1,,,11=⊃++n b a b a n n n n , )(0)(21∞→→-=-n a b a b nn n , 即[]{}n n b a ,是区间套,且其中每一个闭区间都不能用H 中有限个开区间来覆盖. 由区间套定理,存在唯一的一点[],...2,1,,=∈n b a n n ξ.由于H 是[]b a ,的一个开覆盖,故存在开区间H ∈),(βα,使),(βαξ∈. 于是,由区间套定理的推论,当n 充分大时有 []),(,βα⊂n n b a .8 这表明[]n n b a ,只须用H 中的一个开区间),(βα就能覆盖,与挑选[]n n b a ,时的假设“不能用H 中有限个开区间来覆盖”相矛盾.从而证得必存在属于H 的有限个开区间能覆盖[]b a ,注 定理的的结论只对闭区间[]b a ,成立,而对开区间则不一定成立.1.6柯西收敛准则及其证明1.6.1柯西收敛准则及其证明柯西收敛准则 数列{}n a 收敛的充要条件是:对任给的0>ε,存在正整数N 使得当N m n >,时有 ε<-m n a a .]2[证 (必要性)设 A a n n =∞→lim ,由数列极限的定义,对任给的0>ε,存在正整 数N ,使得当N m n >,时有 2ε<-A a n , 2ε<-A a m因而有 ε<-+-<-A a A a a a m n m n .(充分性)由题设,对任给的0>ε,存在正整数N ,当N n ≥时,ε<-N n a a . 即当N n ≥时,有 ()εε+-∈N N n a a a ,.令21=ε,存在正整数1N ,当1N n ≥时,⎥⎦⎤⎢⎣⎡+-∈21,2111N N n a a a ,取 []⎥⎦⎤⎢⎣⎡+-=21,21,1111N N a a βα.令221=ε,存在正整数12N N ≥,当2N n ≥时,⎥⎦⎤⎢⎣⎡+-∈2221,2122N N n a a a ,取 [][]⎥⎦⎤⎢⎣⎡+-=22112221,21,,22N N a a βαβα.显然有 [][]2211,,βαβα⊃ ,2122≤-αβ,并且当2N n ≥时,[]22,βα∈n a .........令k 21=ε,存在1-≥k k N N ,当k N n ≥时,⎥⎦⎤⎢⎣⎡+-∈k N k N n k k a a a 21,21, 取[][]⎥⎦⎤⎢⎣⎡+-=--221121,21,,k k N N k k k k a a βαβα.........Na ε-N a ε+N a x9这样就得到一列闭区间[]{}k k b a ,,满足 (i )[][],...2,1,,,11=⊃++k b a b a k k k k ; (ii )∞→→≤--k a b k k k ,0211;(iii )对+N ∈∀k ,当k N n ≥时,[]k k n a βα,∈. 由区间套定理,存在惟一的 []k k βαξ,∈.由区间套定理的推论,对任给的0>ε,存在0>N ,当N n >时[]()εξ;,U b a a n n n ⊂∈,所以εξ<-n a .这就证明了 ξ=∞→n n a lim . 故数列{}n a 收敛.二、引出问题----六大定理如何等价有限覆盖定理→聚点定理→柯西收敛准则→确界原理→单调有界定理→区间套定理→有限覆盖定理2.1用有限覆盖定理证明聚点定理证 设S 为直线上的有界无限点集. 于是存在b a ,使[]b a S ,⊂. 假定[]b a ,在任何点都不是S 的聚点,则对每一点[]b a x ,∈都存在相应的0>x δ,使得()x x U δ;内至多包含S 的有限多个点.令()()b a x x U H x ,;∈=δ,则H 是[]b a ,的一个开覆盖.,据有限覆盖定理,H 中存在有限个邻域()1;1x x U δ,....,()n x n x U δ;,使得覆盖了H ,从而也覆盖了S .由于每个邻域中至多含有S 的有限个点,故这n 个邻域的并集也至多只含有S 的有限个点,于是S 为有限点集,这与题设S 为无限点集矛盾. 因此,在[]b a ,中至少有一点是S 的聚点.2.2 用聚点定理证明柯西收敛准则证 设数列{}n a 为有界数列.若{}n a 中有无限多个相等的项,则由这些10 项组成的子列是一个常数列,而常数列总是收敛的 .若数列{}n a 不含有无限多个相等的项,则{}n a 在数轴上对应的点集必为有界 无限点集,故由聚点定理,点集{}n a 至少有一个聚点,记为ξ.于是按定义8″,存在{}n a 的一个收敛子列(以ξ为其极限).设数列{}n a 满足柯西条件. 先证明{}n a 是有界的.为此,取1=ε,则存在正 整数N ,当1+=N m 及N n >时,有 11<-+N n a a .由此得 111111+<+-≤+-=+++++N N N n N N n n a a a a a a a a . 令}1,,...,,max {121+=+N N a a a a M ,则对一切正整数n 均有M a n ≤. 于是,由致密性定理,有界数列{}n a 必有收敛子列{}k n a ,设A a k n k =∞→lim .对认给的0>ε,存在0>K ,当K k m n >,,时,同时有2ε<-m n a a (柯西条件) 2ε<-A a K n (A a k n k =∞→lim )因此当取()K k n m k >≥=时,得到εεε=+<-+-≤-22A a a a A a k k n n n n这就证明了A a n n =∞→lim .2. 3 用柯西收敛准则证明确界原理证 设S 为非空有上界数集.由实数的阿基米德性,对任何正数α,存在整数αk ,使得αλααk =为S 的上界,而ααλαα)1(-=-k 不是S 的上界,即存在S ∈'α,使得ααα)1(->'k分别取n 1=α,,....2,1=n ,则对每一个正整数n ,存在相应的n λ,使得n λ为 S 的上界,而nn 1-λ不是S 的上界,故存在S ∈'α,使得nn 1->'λα . (6)又对正整数m ,m λ是S 的上界,故有αλ'≥m . 结合(6)式得nm n 1<-λλ ;同理有 mn m 1<-λλ . 从而得 ⎪⎭⎫⎝⎛<-n m n m 1,1m a x λλ .于是,对任给的0>ε,存在0>N ,使得当N m n >,时有ελλ<-n m .由柯西收敛准则,数列{}n λ收敛. 记λλ=∞→n n lim . (7)现在证明λ就是S 的上确界. 首先,对任何S a ∈和正整数n 有n a λ≤,由(7)式得λ≤a ,即λ是S 的一个上界.其次,对任何0>δ,由)(01∞→→n n 及(7)式,对充分大的n 同时有21δ<n , 2δλλ->n . 又因nn 1-λ不是S 的上界,故存在S ∈'α,使得n n 1->'λα .结合上式得δλδδλα-=-->'22 .这说明λ为S 的上确界.同理可证:若S 为非空有下界数集,则必存在下确界 .2 .4 用确界原理证明单调有界定理证 不妨设{}n a 为有上界的递增数列. 由确界原理,数列{}n a 有上确界, 记为{}n a a sup =. 下面证明a 就是{}n a 的极限.. 事实上,任给0>ε,按上确界的定义,存在数列{}n a 中的某一项N a 使得N a a <-ε.又由{}n a 的递增性,当N n ≥时有 n N a a a ≤<-ε.另一方面,由于a 是数列{}n a 的一个上界,故对一切n a 都有ε+<≤a a a n . 所以当N n ≥时 εε+<<-a a a n ,这就证得a a n n =∞→lim .同理可证有下界的递减数列必有极限,且其极限即为它的下确界.2 .5用单调有界定理证明区间套定理证 由定义7 的条件(i )可知, 数列{}n a 为递增有界数列, 依单调有界定 理,{}n a 有极限ξ,且有 ,...2,1,=≤n a n ξ.同理,递减有界数列{}n b 也有极限,并按区间套的条件(ii )有ξ==∞→∞→n n n n a b lim lim ,且,...2,1,=≥n b n ξ.综上,可得 ,...2,1,=≤≤n b a n n ξ.下面证明满足 ,...2,1,=≤≤n b a n n ξ 的ξ是唯一的. 设数'ξ也满足 ,...2,1,'=≤≤n b a n n ξ,则由 ,...2,1,=≤≤n b a n n ξ有 (),...2,1,'=-≤-n a b n n ξξ.由区间套的条件(ii )得 ()0lim '=-≤-∞→n n n a b ξξ,故有 ξξ='.2. 6用区间套定理证明有限覆盖定理证 假设定理的结不成立,则不能用H 中有限个开区间来覆盖[]b a ,.现将 []b a , 等分为两个子区间,则两个子区间中至少有一个子区间不能用H中有限个开区间来覆盖. 记此子区间为[]11,b a ,则[][]b a b a ,,11⊂ 且 )(2111a b a b -=-. 再将[]11,b a 等分为两个子区间,同样,其中至少有一个子区间不能用H 中有 限个开区间来覆盖. 取出这样一个子区间,记为[]22,b a ,则[][]1122,,b a b a ⊂, 且 )(21222a b a b -=- . 将此等分子区间的手续无限地进行下去,得到一个区间列[]{}n n b a ,,它满足[][],...2,1,,,11=⊃++n b a b a n n n n )(0)(21∞→→-=-n a b a b n n n , 即[]{}n n b a ,是区间套,且其中每一个闭区间都不能用H 中有限个开区间来覆盖. 由区间套定理,存在唯一的一点[],...2,1,,=∈n b a n n ξ.由于H 是[]b a ,的一个开覆盖,故存在开区间H ∈),(βα,使),(βαξ∈.于是,由区间套定理的推论,当n 充分大时有 []),(,βα⊂n n b a .这表明[]n n b a ,只须用H 中的一个开区间),(βα就能覆盖,与挑选[]n n b a ,时的假设“不能用H 中有限个开区间来覆盖”相矛盾.从而证得必存在属于H 的有限个开区间能覆盖[]b a ,.三 、实数完备性的理论基础实数完备性理论是在实数的基本性质的基础上衍生出来的,如不足近似、过剩近似,四则运算的封闭性,绝对值与不等式等等。
第5节实数的完备性:Cauchy收敛定理64197
nk N1, ank a 2
由an是基本列,N N *,m,n N时,
am an 2
nk,n maxN1, N,
an a an ank ank a
lim
n
an
a.
an ank ank a 2 2 .
例1
例1. q 1时, {qn }是基本列.
证:因为当q 1时, {qn }为无穷小, 所以对 0, N N* , 当n N时, q n .
2
因此当n N时, p N * qn qn p q n 1 q p
(1 q p )q n
2q n .
例2.
证
an
1
1 22
1 n2
bk ak
ba 2k
0,
k
取 xnk [ak , bk ];
[ak ,bk ], k 1, 2, 构成套, 且xnk [ak ,bk ], k 1, 2,
由闭区间套定理,
c, s.t
lim
k
ak
lim
k
bk
c.
由于ak xnk bk ,
由夹逼定理知
lim
k
xnk
c.
即 { xnk } 收敛.
sin(n 1)x
sin(n 2)x
sin(n p)x
(n 1)[n 1 sin(n 1)x] (n 2)[n 2 sin(n 2)x]
(n p)[n p sin(n p)x]
1
1
1
1
(n 1)(n 11) (n 2)(n 2 1)
(n p 1)(n p 11) (n p)(n p 1)
1 1 1 1 1 1 1 1
实数的完备性
第七章实数的完备性§7.1 实数完备性的基本定理一、问题提出定理1.1(确界原理)非空有上(下)界的数集必有上(下)确界.确界存在定理(定理 1.1)揭示了实数的连续性和实数的完备性. 与之等价的还有五大命题,这就是以下的定理1.2至定理1.6.定理1.2 (单调有界定理)任何单调有界数列必定收敛.定理1.3 (区间套定理)设为一区间套:.则存在唯一一点定理1.4 (有限覆盖定理)设是闭区间的一个无限开覆盖,即中每一点都含于中至少一个开区间内.则在中必存在有限个开区间,它们构成的一个有限开覆盖.定理1.5 (聚点定理)直线上的任一有界无限点集至少有一个聚点,即在的任意小邻域内都含有中无限多个点(本身可以属于,也可以不属于).定理1.6 (柯西准则)数列收敛的充要条件是:,只要恒有.(后者又称为柯西(Cauchy)条件,满足柯西条件的数列又称为柯西列,或基本列.)这些定理构成极限理论的基础.我们不仅要正确理解这六大定理的含义,更重要的还要学会怎样用它们去证明别的命题.下面通过证明它们之间的等价性,使大家熟悉使用这些理论工具.下图中有三种不同的箭头,其含义如下::(1)~(3) 基本要求类:(4)~(7) 阅读参考类:(8)~(10) 习题作业类二、回顾确界原理的证明我们曾引入有界数集的确界概念,今证明它的存在性(记号a 、b 、c 表示实数) Dedekind 定理设A/B 是R 的一个切割,则比存在实数R ε∈使得(,]A ε=-∞,(,)B ε=+∞或(,)A ε=-∞,[,)B ε=+∞无其它可能.1 非空有上界的数集E 必存在上确界.证明 设}{x E =非空,有上界b : E x ∈∀,b x ≤. (1) 若E 中有最大数0x ,则0x 即为上确界;(2) 若E 中无最大数,用下述方法产生实数的一个分划;取E 的一切上界归入上类B ,其余的实数归入下类A ,则)|(B A 是实数的一个分划.1 A 、B 不空.首先B b ∈.其次E x ∈∀,由于x 不是E 的最大数,所以它不是E 的上界,即A x ∈.这说明E 中任一元素都属于下类A ;2 A 、B 不漏性由A 、B 定义即可看出;3 A 、B 不乱.设A a ∈,B b ∈.因a 不是E 的上界,E x ∈∃,使得x a <,而E 内每一元素属于A ,所以b x a <<.4 由3的证明可见A 无最大数.所以)|(B A 是实数的一个分划.由戴德金定理,知上类B 必有最小数,记作c .E x ∈∀,由 1知A x ∈,即得c x <.这表明c 是E 的一个上界.若b 是E 的一个上界,则B b ∈,由此得b c ≤,所以c 是上界中最小的,由上确界定义,c 为集合E 的上确界,记作 E c s u p=. 推论 非空的有下界的集合必有下确界.事实上,设集合}{x E =有下界b ,则非空集合}|{'E x x E ∈-=有上界b -,利用集合'E 上确界的存在性,即可得出集合E 的下确界存在.定理1解决了非空有上界集合的上确界存在性问题,我们可以利用上确界的存在性,得出我们所研究的某一类量(如弧长)的存在性.若全序集中任一非空有上界的集合必有上确界,我们称该全序集是完备的.定理1刻划了实数集是完备的.例1 证明实数空间满足阿基米德原理.证明 0>>∀a b ,要证存在自然数n 使b na >.假设结论不成立,即b na ≤, ),, 21(=n ,则数集}{na E =有上界b ,因此有上确界c ,使c na ≤),,21(=n ,也就有c a n ≤+)1(),, 21(=n ,或 a c na -≤ ),, 21(=n .这表明a c -是集合E 的上界,与c 是上确界矛盾.所以总存在自然数n ,使b na >. 三、等价命题证明下面来完成(1)~(7)的证明. (一) 用确界定理证明单调有界定理设}{n x 单调上升,即 ≤≤≤≤≤n x x x x 321,有上界,即M ∃,使得M x n ≤.考虑集合}|{N n x E n ∈=,它非空,有界,定理2推出它有上确界,记为nNn x a ∈=sup .我们验证nn x a ∞→=lim .0>∀ε,由上确界的性质,N ∃,使得N x a <-ε,当N n >时,由序列单调上升得n N x x a ≤<-ε,再由上确界定义,ε+<≤a a x n ,有 εε+<<-a x a n ,即ε<-a x n ,也就是说 nN n n n x a x ∈∞→==sup lim . 同理可证若}{n x 单调下降,有下界,也存在极限,且n N n n n xx ∈∞→=inf lim .若集合E 无上界,记作+∞=E sup ;若集合E 无下界,记作+∞=E inf ,这样一来,定理2证明了的单调上升(下降)有上界(下界)的序列}{n x ,必有极限)inf (sup n N x n N x x x ∈∈的定理现在有了严格的理论基础了.且对单调上升(下降)序列}{n x ,总有)i n f (s u p l i m n Nx n Nx n n x x x ∈∈+∞→=.(二) 用单调有界定理证明区间套定理由假设(1)知,序列}{n a 单调上升,有上界1b ;序列}{n b 单调下降,有下界1a .因而有1lim c a n n =+∞→,2lim c b n n =+∞→. n n b c c a ≤≤≤21.再由假设(2)知)(lim 12=-=-+∞→c c a b n n n ,记c c c ==21. 从而有nn n n b c a +∞→+∞→==lim lim .若还有*c 满足n n b c a ≤≤*,令+∞→n ,得c c =*.故c 是一切],[n n b a 的唯一公共点.证毕. 这个定理称为区间套定理.关于定理的条件我们作两点说明:(1) 要求],[n n b a 是有界闭区间的这个条件是重要的.若区间是开的,则定理不一定成立.如)1,0(),(n b a n n =.显然有 )1,0()11,0(n n ⊂+, 但 φ=+∞=)1,0(1n n .如果开区间套是严格包含: n n n n b b a a <<<++11,这时定理的结论还是成立的.(2)若],[],[11n n n n b a b a ⊂++),, 21(=n ,但0)(lim ≠-+∞→n n n a b ,此时仍有1lim c a n n =+∞→,2lim c b n n =+∞→,但21c c <,于是对任意的c ,21c c c ≤≤,都有],[1n n n b a c +∞=∈ .全序集中任一区间长趋于零的区间套有非空交集,则称该全序集是完备的,定理3刻划实数集是完备的(这里完备定义与上段完备定义是等价的).定理3也给出通过逐步缩小搜索范围,找出所求点的一种方法.推论 设为一区间套,.则当时,恒有.用区间套定理证明其他命题时,最后常会用到这个推论.例2 序列}{n x 由下列各式 a x =1, b x =2,221--+=n n n x x x ),, 43(=n所确定(见下图).证明极限nn x +∞→lim 存在,并求此极限.1x 3x 5x 4x 2x x证明 当b a =时,a x n =,故a x n n =+∞→lim .当b a ≠时,若取),min(1n n n x x a +=,),max(1n n n x x b +=,),, 21(=n .则由条件,显然可得一串区间套:],[],[11n n n n b a b a ⊂++ ),, 21(=n .由已知条件)(212111--+--=-+=-n n n n n n n x x x x x x x ,于是,)(0||21||21||21||21||112121211+∞→→-=-==-=-=-=------+n a b x x x x x x x x a b n n n n n n n n n n由区间套定理,存在c 满足: n n n n b c a +∞→+∞→==lim lim .注意到],[n n n b a x ∈,所以 cx n n =+∞→lim .下面来求c .由)(2111-+--=-n n n n x x x x ,令132-=k n ,,, 得一串等式: )(211223x x x x --=-; )(212334x x x x --=-;)(21211-----=-k k k k x x x x .将它们相加,得 )(21112x x x x k k --=--,令+∞→k ,得)(2112x c x c --=-所以)2(31323121b a x x c +=+=.(三) 用区间套定理证明确界原理证明思想:构造一个区间套,使其公共点即为数集的上确界.设, 有上界.取;,再令如此无限进行下去,得一区间套.可证:因恒为的上界,且,故,必有,这说明是的上界;又因,故,而都不是的上界,因此更不是的上界.所以成立.[证毕]*(四) 用区间套定理证明有限覆盖定理设为闭区间的一个无限开覆盖.反证法假设:“不能用中有限个开区间来覆盖”.对采用逐次二等分法构造区间套,的选择法则:取“不能用中有限个开区间来覆盖”的那一半.由区间套定理,.导出矛盾:使记由[推论],当足够大时,这表示用中一个开区间就能覆盖,与其选择法则相违背.所以必能用中有限个开区间来覆盖.说明当改为时,或者不是开覆盖时,有限覆盖定理的结论不一定成立.例如:1) .是开区间的一个无限开覆盖,但不能由此产生的有限覆盖.2) .是的一个无限覆盖,但不是开覆盖,由此也无法产生的有限覆盖.* (五) 用有限覆盖定理证明聚点定理设为实轴上的有界无限点集,并设.由反证法假设来构造的一个无限开覆盖:若有聚点,则.现反设中任一点都不是的聚点,即在内至多只有.这样,就是的一个无限开覆盖.用有限覆盖定理导出矛盾:据定理9,存在为的一个有限开覆盖(同时也覆盖了).由假设,内至多只有所属个邻域内至多只有属于(即只覆盖了中有限个点).这与覆盖了全部中无限多个点相矛盾.所以,有界无限点集必定至少有一个聚点.[证毕] 推论(致密性定理) 有界数列必有收敛子列.即若为有界数列,则使有.子列的极限称为原数列的一个极限点,或称聚点注 数列的聚点与一般点集的聚点,含义稍有不同.数列的聚点定义为:“,在内含有中无限多个项,则为的一个聚点.”在此意义下,对于数列它有两个收敛子列:和,.它们的极限和就是的两个聚点.证 }{n a 有界,则存在数11,y x 使得 11y a x n ≤≤对n ∀成立.将],[11y x 二等分为]2,[111y x x +、],2[111y y x +,则其中必有一个含有数列}{n a 的无穷多项,记为],[22y x ;再将],[22y x 二等分为]2,[222y x x +、],2[222y y x +,同样其中至少有一个含有数列}{n a 的无穷多项,把它记为],[33y x ,……一直进行这样的步骤,得到一闭区间套]},{[n n y x ,其中每一个],[n n y x 中都含有数列}{n a 的无穷多项,且满足:⑴ ],[11y x ⊃],[22y x ⊃⊃ ],[n n y x ⊃…⑵111lim()lim02n n n n n y x y x -→∞→∞--==则由闭区间套定理,ξ∃使得 =∞→n n a lim =∞→n n b lim ξ下证}{n a 中必有一子列收敛于实数ξ先在],[11y x 中选取}{n a 的某一项,记为1n a ,因],[22y x 中含有}{n a 中的无穷多项,可选取位于1n a 后的某一项,记为2n a ,12n n >.继续上述步骤,选取k n a ],[k k y x ∈后,因为],[11++k k y x 中含有无穷多项,可选取位于k n a 后的某一项,记为1k n a +且k k n n >+1,这样我们就得到}{n a 的一个子列}{kn a 满足k n k y a x k ≤≤,,2,1=k由两边夹定理即得 =∞→k n n a lim ξ.证明 设b x a n ≤≤,用中点21ba c +=将[]b a ,一分为二,则两个子区间[]1,c a 和[]b c ,1中至少有一个含有}{n x 中无穷多项,选出来记为[]11,b a ,在其中选一项1n x .用中点2112b a c +=将[]11,b a 一分为二,则两个子区间[]21,c a 和[]12,b c 中至少有一个含有}{n x 中无穷多项,选出来记为[]22,b a ,在其中选一项2n x ,使得 ,12n n >.最后得一区间套[]k k b a ,,满足[][]k k k k b a b a ,,11⊂++,k k k a b a b 2-=-,[]k k k k n n n b a x k >∈+1,,.由区间套定理,cb a k k k k ==∞→∞→lim lim ,又由于k n k b x a k ≤≤,有c x k n k =∞→lim .*(六) 用聚点定理证明柯西准则必要性: 已知收敛,设.由定义,,当时,有.从而有.充分性: 已知条件: 当时.欲证收敛..首先证有界.对于当时,有令,则有..由致密性定理,存在收敛子列,设..最后证,由条件,当时,有.于是当(同时有)时,就有.证 “⇒” }{n a 收敛,则存在极限,设aa n n =∞→lim ,则0>∀ε,N ∃,当N n >时有2/||ε<-a a n ⇒当N m n >,时有 ε<-+-≤-||||||a a a a a a n m m n “⇐”先证有界性,取1=ε,则N ∃,N m n >,⇒1||<-m n a a 特别地,N n >时 1||1<-+N n a a ⇒1||||1+<+N n a a 设 }1|||,|,|,||,max{|121+=+N N a a a a M ,则n ∀,M a n ≤||再由致密性定理知,}{n a 有收敛子列}{k n a ,设a a k n k =∞→lim0>∀ε,1N ∃,1,N m n >⇒||/2n m a a ε-<K ∃,K k >⇒2/||ε<-a a k n取),max(1N K N =,当N n >时有11N n N N +≥+>⇒ εεε=+<-+-≤-++2/2/||||||11a a a a a a N N n nn n故a a n k =∞→lim .Cauchy 列、基本列(满足Cauchy 收敛准则的数列)*(七) 用柯西准则证明单调有界原理设为一递增且有上界M 的数列.用反证法( 借助柯西准则 )可以证明:倘若无极限,则可找到一个子列以为广义极限,从而与有上界相矛盾.现在来构造这样的.对于单调数列,柯西条件可改述为:“ 当 时,满足”.这是因为它同时保证了对一切,恒有.倘若不收敛,由上述柯西条件的否定陈述:,对一切,,使.依次取把它们相加,得到.故当时,可使,矛盾.所以单调有界数列必定有极限. [ 证毕 ]例1 用单调有界定理证明区间套定理. 即已知: 1 ) 单调有界定理成立;2 )设[]{}n n b a ,为一区间套.欲证:[],,2,1,, =∈ξ∃n b a n n 且惟一.证 证明思想:构造一个单调有界数列,使其极限即为所求的ξ. 为此,可就近取数列{}n a (或{}n b ).由于,1221b b b a a a n n ≤≤≤≤≤≤≤≤因此{}n a 为递增数列,且有上界(例如1b ).由单调有界定理,存在ξ=∞→n n a lim ,且 ,2,1,=ξ≤n a n .又因 n n n n a a b b +-=)(,而0)(lim =-∞→n n n a b ,故ξ=ξ+=+-=∞→∞→∞→0lim )(lim lim n n n n n n n a a b b ;且因{}n b 递减,必使ξ≥n b .这就证得[] ,2,1,,=∈ξn b a n n .最后,用反证法证明如此的ξ惟一.事实上,倘若另有一个[] ,2,1,,=∈ξ'n b a n n ,则由)(0)(∞→→-≤ξ'-ξn a b n n ,导致与0>ξ'-ξ相矛盾.例 2 (10) 用区间套定理证明单调有界定理. 即已知: 1 ) 区间套定理成立.2 ) 设{}n x 为一递增且有上界M 的数列.欲证:{}n x 存在极限 n n x ∞→=ξlim .证 证明思想:设法构造一个区间套[]{}n n b a ,,使其公共点ξ即为{}n x 的极限. 为此令[][]M x b a ,,111=.记2111b a c +=,并取[][]{}[]{}⎩⎨⎧=.,,;,,,11111122的上界为不若的上界为若n n x c b c x c c a b a再记2222b a c +=, 同理取[][]{}[]{}⎩⎨⎧=.,,;,,,22222233的上界不为若的上界为若n n x c b c x c c a b a如此无限进行下去,得一区间套[]{}n n b a ,.根据区间套定理,[]∞→∞→=ξ==∈ξ∃n n n n n n b a n b a )lim lim (,2,1,, .下面用数列极限定义证明ξ=∞→n n x lim :0>ε∀,一方面,由于)(N ∈k b k 恒为{}n x 的上界,因此ε+ξ<ξ=≤⇒≤∈∀∞→k k n k n b x b x ,k n lim ,N ;另一方面,由ε-ξ>⇒ε<-ξ=ξ-≥∈∃⇔ξ=∞→K k k k k a a a K k ,K a ,lim 时当N ;而由区间套的构造,任何k a 不是{}n x 的上界,故ε-ξ>>∃K N a x ;再由{}n x 为递增数列,当N n >时,必有ε-ξ>≥N n x x .这样,当 N n > 时,就有ε+ξ<<ε-ξn x , 即 ξ=∞→n n x l i m .例 3 (9) 用确界定理证明区间套定理.即已知: 1 ) 确界定理成立(非空有上界的数集必有上确界);2 ) 设{}],[n n b a 为一区间套.欲证:存在惟一的点[] ,2,1,,=∈ξn b a n n .证 证明思想:给出某一数集S ,有上界,使得S 的上确界即为所求的ξ. 为此,取{}n a S =,其上界存在(例如 1b ).由确界定理,存在 {}n a sup =ξ.首先,由ξ为{}n a 的一个上界,故 ,2,1,=ξ≤n a n .再由ξ是{}n a 的最小上界,倘有某个ξ<m b ,则m b 不会是{}n a 的上界,即m k b a >∃,这与[]{}nn b a ,为区间套相矛盾(j i b a <).所以任何ξ≥n b .这就证得,2,1,=≤ξ≤n b a n n .关于ξ的惟一性,与例1中的证明相同.注 本例在这里所作的证明比习题解答中的证明更加清楚. 在以上六个等价命题中,最便于推广至中点集的,当属聚点定理与有限覆盖定理.为加深对聚点概念的认识,下例所讨论的问题是很有意义的.例 证明“是点集的聚点”的以下三个定义互相等价:(i) 内含有中无限多个点(原始定义); (ii) 在内含有中至少一个点;(iii) ,时,使.证 (i)(ii) 显然成立.(ii)(iii) 由(ii ),取,;再取;……一般取;…… 由的取法,保证,,. (iii)(i)时,必有,且因各项互不相同,故内含有中无限多个点.[证毕]四、实数系的完备性实数所组成的基本数列{}n x 比存在实数极限――实数系完备性;有理数域不具有完备性,如1(1)n n ⎧⎫+⎨⎬⎩⎭:1lim(1)n n e n →∞+=(无理数).五、压缩映射原理(不动点原理)1、函数f(x)的不动点指什么?设y =f(x)是定义在[a,b]上的一个函数,方程x =f(x)的解称为f(x)的不动点. 2、在什么样的条件下不动点一定存在呢?存在时唯一吗?如何求出不动点? 压缩映射:如果存在常数k,满足0≤k<1,使得对一切,[,]x y a b ∈成立不等式()()||f x f y k x y -≤-,则称f 是[a,b]上的一个压缩映射. 压缩映射必连续.压缩映射原理(不动点原理) 设()x ϕ是[a,b]上压缩映射,且([,])[,]a b a b ϕ⊂,则()x ϕ在[a,b]上存在唯一的不动点.例4 证明Kapler 方程sin x x b ε=+在||1ε<时,存在唯一实数.§7.2 闭区间上连续函数性质的证明教学目标:证明闭区间上的连续函数性质.教学内容:闭区间上的连续函数有界性的证明;闭区间上的连续函数的最大(小)值定理的证明;闭区间上的连续函数介值定理的证明;闭区间上的连续函数一致连续性的证明.基本要求:掌握用有限覆盖定理或用致密性定理证明闭区间上连续函数的有界性;用确界原理证明闭区间上的连续函数的最大(小)值定理;用区间套定理证明闭区间上的连续函数介值定理.较高要求:掌握用有限覆盖定理证明闭区间上的连续函数的有界性和一致连续性. 教学建议:(1) 本节的重点是证明闭区间上的连续函数的性质.(2) 本节的难点是掌握用有限覆盖定理证明闭区间上的连续函数的一致连续性以及实数完备性的六大定理的等价性证明,对较好学生可布置这方面的习题. 教学过程:在本节中,将利用关于实数完备性的基本定理来证明第四章2中给出的闭区间上连续函数的基本性质. 一、有界性定理 若函数f 在闭区间[]b a ,上连续,则f 在[]b a ,上有界证法 一 ( 用区间套定理 ). 反证法. 参阅[3]P106—107. 证法 二 ( 用致密性定理). 反证法.证明 如若不然,)(x f 在],[b a 上无界,∈∀n N ,],[b a x n ∈∃,使得n x f n >|)(|,对于序列}{n x ,它有上下界b x a n ≤≤,致密性定理告诉我们k n x ∃使得],[0b a x x k n ∈→,由)(x f 在0x 连续,及k n n x f k >|)(|有 +∞==∞→|)(|lim |)(|0k n k x f x f ,矛盾.证法 三 ( 用有限复盖定理 ). 参阅[1]P168—169证明 (应用有限覆盖定理) 由连续函数的局部有界性(th4.2)对每一点[]b a x ,'∈都存在邻域()x x '',δ ⋃及正数'x M使()()[]b a x x M x f x x ,,'''⋂⋃∈≤δ 考虑开区间集()(){}b a x x H x ,,'''∈⋃=δ虽然H 是[]b a ,的一个无限开覆盖,由有限开覆盖定理,存在H 的一个有限点集()[]{}k i b a x x H i i i ,,2,1,, =∈⋃=*δ覆盖了[]b a ,,且存在正整数,,,21k M M M 使对一切()[]b a x x i i ,,⋂⋃∈δ有()ki M x f i ,,2,1, =≤,令ki iM M ≤≤=1max则对[]b a x ,∈∀,x 必属于某()()M M x f x i i i ≤≤⇒δ, ,即证f 在[]b a ,上有上界.二、最值性:命题2 ] , [)(b a C x f ∈, ⇒ )(x f 在] , [b a 上取得最大值和最小值. ( 只证取得最大值 )证 ( 用确界原理 ) 令)}({sup x f M bx a ≤≤=,+∞<M , 如果)(x f 达不到M ,则恒有M x f <)(.考虑函数)(1)(x f M x -=ϕ,则],[)(b a C x ∈ϕ,因而有界,即)0()(>≤μμϕx , 从而MM x f <-≤μ1)(,这与M 是上确界矛盾,因此],[b a x ∈∃,使得M x f =)(.类似地可以证明达到下确界.三、介值性: 证明与其等价的“零点定理 ”.命题3 (零点存在定理或根的存在性定理)设函数)(x f 在闭区间],[b a 上连续即]),([)(b a C x f ∈且)(a f 与)(b f 异号()(a f 0)(<b f ),则在),(b a 内存在一点0x 使得0)(0=x f .即方程0)(=x f 在),(b a 内至少存在一个实根.证法 一 ( 用区间套定理 ) .设0)(<a f ,0)(>b f .将],[b a 二等分为],[c a 、],[b c ,若0)(=c f 则c x =0即为所求;若0)(≠c f ,当0)(>c f 时取],[c a 否则取],[b c 为],[11b a ,有0)(1<a f ,0)(1>b f .如此继续,如某一次中点i c 有0)(=i c f 终止(i c 即为所求);否则得]},{[n n b a 满足:⑴⊃⊃⊃⊃],[],[],[11n n b a b a b a ;⑵ 02lim)(lim =-=-∞→∞→nn n n n ab a b ;⑶0)(,0)(><n n b f a f由闭区间套定理知,∃唯一的],[10n n n b a x ∞=∈ ,且=∞→n n a lim 0lim x b n n =∞→由)(x f 在0x 处的连续性及极限的保号性得)()(lim 0≤=∞→x f a f n n 、0lim ()()0n n f b f x →∞=≥0)(0=⇒x f #证二( 用确界原理 ) 不妨假设0)(<a f (从图1看,0x 是使得0)(>x f 的x 的下确界),令]},[,0)(|{b a x x f x E ∈>=,要证E x inf 0=(E inf 存在否?).因为Φ≠⇒∈E E b ,],[b a E ⊂E ⇒有界,故E inf 存在.令 E x inf 0=,下面证0)(0=x f如若不然,0)(0≠x f 则0)(0>x f (或0)(0<x f )(从图形上可清楚看出,此时必存在01x x <使0)(1>x f ).首先a x ≠0,即],(0b a x ∈;f 在0x 连续,由连续函数的局部保号性],[),(0b a x U ⊂∃⇒δ使得),(0δx U x ∈∀有0)(>x f ,特别应有0)2(0>-δx f 即Ex ∈-20δ,这与E x i n f 0=矛盾,故必有0)(0=x f .证法 二 ( 用确界原理 ) 不妨设,0)(>a f 0)(<b f .令} ] , [ , 0)( | {b a x x f x E ∈>=, 则E 非空有界, ⇒ E 有上确界. 设E sup =ξ, 有∈ξ] , [b a . 现证 0)(=ξf , ( 为此证明)(ξf 0≥且)(ξf 0≤ ). 取n x >ξ 且n x ) ( ,∞→→n ξ. 由)(x f 在点ξ连续和0)(≤n x f , ⇒ 0)(l i m )(≤=∞→n n x f f ξ,⇒ ξE ∉. 于是) ( , ∞→→∍∈∃n t E t n n ξ. 由)(x f 在点ξ连续和0)(>n t f ,⇒ 0)(lim )(≥=∞→n n t f f ξ. 因此只能有0)(=ξf . 证法 三 ( 用有限复盖定理 ).介值性定理 设f 在闭区间[]b a ,上连续,且()()()()b f a f b f a f 与为介于若μ≠之间的任何实数()()b f a f <<μ或()()b f a f >>μ,则存在()b a x ,∈ 使()μ= x f .证明 (应用确界定理) 不妨设()()()()μμ-=<<x f x g b f a f 令 则g 也是[]b a ,上连续函数,()()0,0>>b g a g ,于是定理的结论转为:()()0,,=∈∃ x g b a x 使这个简化的情形称为根的存在性定理(th4.7的推论) 记()[]{}b a x x g x E ,,0∈>=显然E 为非空有界数集[]()E b b a E ∈⊂且,故有确界定理, E 有下确界,记()()0,0inf ><=b g a g E x 因 有连续函数的局部保号性, 0>∃δ,使在),[δ+a a 内0)(<x g ,在),(δ-b b 内0)(>x g .由此易见a x ≠ ,b x ≠ ,即()b a x ,∈ .下证()0= x g .倘若()0≠ x g ,不妨设()0> x g ,则又由局部保号性,存在()()()b a x ,,⊂η 使在其内)0(>x g ,特别有Ex x g ∈-⇒>⎪⎭⎫ ⎝⎛-202ηη =0,但此与E x inf = 矛盾,则必有0)(0=x g .几何解释 直线c y =与曲线)(x f y =相交.把x 轴平移到c y =,则问题成为零点存在问题.这启发我们想办法作一个辅助函数,把待证问题转化为零点存在问题.辅助函数如何作?① 从几何上,c y y x x -='=',启示我们作c x f x F -=)()(;② 从结果c x f =)(0着手.利用零点定理证:令c x f x F -=)()(,则]),([)(b a C x F ∈,往下即转化为零点存在问题. #这种先证特殊、再作辅助函数化一般为特殊,最后证明一般的方法是处理数学问题的常用方法,以后会经常用到.推论 如f 为区间I 上的连续函数,则值域)(I f J =也是一个区间(可以退化为一点).证 f 为常量函数,则)(I f J =退化为一点.f 非常量函数,则J 当然不是单点集.在J 中任取两点21y y <(只要证J y y ⊂],[21),则在I 中必有两点1x ,2x 使得11)(y x f =,22)(y x f =.于是对21y y y <<∀,必存在x ,x 介于1x 与2x 之间,使y x f =)(,即J y ∈因而J y y ⊂],[21⇒J 是一个区间.二、一致连续性:命题4 ( Cantor 定理 ) ],[)(b a C x f ∈, 则)(x f 在],[b a 上一致连续.证法 一 ( 用有限复盖定理 ) 参阅[1]P171[ 证法一 ]证明 (用有限覆盖定理) 由f 在闭区间[]b a ,上连续性,0>∀ε,对每一点[]b a x ,∈,都存在0>x δ,使当()x x x δ,'∈时,有()()2'ε<-x f x f考虑开区间集合[]⎭⎬⎫⎩⎨⎧∈⎪⎭⎫ ⎝⎛=b a x x H x ,2,δ 显然H 是[]b a ,的一个开覆盖,由有限覆盖定理H ∃的一个有限子集[]02min ,,,2,12,>⎭⎬⎫⎩⎨⎧=⎭⎬⎫⎩⎨⎧=⎪⎭⎫ ⎝⎛=*i i i b a k i x H δδδ记覆盖了对[]δ<-∈∀"'"',,x x b a x x ,x '必属于*H 中某开区间,设⎪⎭⎫ ⎝⎛∈2,'i i x x δ ,即2'i i x x δ<-,此时有iiiii i x x x x x x δδδδδ=+≤+<-+-≤-222''""故有(2)式同时有 ()()()()22"'εε<-<-i i x f x f x f x f 和由此得()()[]上一致连续在b a f x f x f i ,'∴<-ε.证法 二 ( 用致密性定理). 参阅[1]P171—172 [ 证法二 ]证明 如果不然,)(x f 在],[b a 上不一致连续,00>∃ε,0>∀δ,],[,b a x x ∈'''∃,δ<''-'||x x ,而0|)()(|ε≥''-'x f x f .取n 1=δ,],[,b a x x n n∈'''∃,n x x n n 1||<''-',而0|)()(|ε≥''-'n n x f x f ,由致密性定理,存在子序列],[0b a x x k n∈→',而由k n nn x x k k 1||<''-',也有0x x k n→''. 再由)(x f 在0x 连续,在0|)()(|ε≥''-'k k n n x f x f 中令∞→k ,得000|)()(|lim |)()(|0ε≥''-'=-=∞→k k n nk x f x f x f x f ,矛盾.所以)(x f 在],[b a 上一致连续.推广 ),()(b a C x f ∈,()f a +,()f b -∃⇒)(x f 在),(b a 上一致连续. 作业 [1]P172 1,2 3,4, 5*;P176 1,2,4.§7.3 上极限和下极限一、上(下)极限的定义对于数列,我们最关心的是其收敛性;如果不收敛,我们希望它有收敛的子列,这个愿望往往可以实现.例如:{}(1)n-.一般地,数列{}nx ,若{}kn x:k n x a →(k →∞),则称a 是数列{}n x 的一个极限点.如点例{}(1)n-有2个极限点.数列{}n x 的最大(最小)极限点如果存在,则称为该数列的上(下)极限,并记为lim n n x →∞(lim n n x →∞).如lim(1)1nn →∞-=,lim(1)1nn →∞-=-. 例1 求数列sin3n π⎧⎫⎨⎬⎩⎭的上、下极限. 例2 [1(1)]n n x n =+-,求上、下极限. 二、上(下)极限的存在性下面定理指出,对任何数列{}n x ,它的上(下)极限必定存在. 定理1 每个数列{}n x 的上极限和下极限必定唯一,且lim n n x →∞=1sup{,,}limsup n n k n k nx x x +→∞≥=,lim n n x →∞=1inf{,,}lim inf n n k n k nx x x +→∞≥=.三、上下极限和极限的关系lim n n x →∞≥lim n n x →∞.定理2 {}n x 存在极限则{}n x 的上极限和下极限相等,即lim n n x →∞=lim n n x →∞=lim n n x →∞.四、上(下)极限的运算普通的极限运算公式对上(下)极限不再成立.例如:11lim[(1)(1)]0lim(1)lim(1)2n n n n n n n ++→∞→∞→∞-+-=<-+-=.一般地有:lim()lim lim n n n n n n n x y x y →∞→∞→∞+≤+,当{}n x 收敛时,等号成立.。
实数完备性理论
实数完备性理论,理论基础及英应用实数完备性是指六大定理的等价性。
它的六大定理如下:1、确界原理2、单调有界原理3、区间套定理4、有限覆盖定理5、聚点定理(紧性定理)6、Cauchy收敛准则。
其中任何一个命题都可推出其余的五个命题一、认识实数完备性1、确界原理(1)确界原理:设S为非空数集。
若S有上界,则S必有上确界;若S有下界,则S必有下确界。
(2)上确界定义:设S是R中的一个数集,若数η满足(i)对一切x∈S,有η≥x,即η是S的上界;(ii)对任何的a<η,存在x0∈S,使得x0>a,即η是S的最小上界,则称η为数集s的上确界;下确界定义:设S是R的一个数集,若数ξ满足:(i)对一切x∈S,有ξ≤x,即ξ是S的下界;(ii)对任何的β>ξ,存在x0∈S,使得x0<β,即ξ是S的最大下界,则称ξ为数集的S的下确界;2、单调有界原理定理:在实数系中,单调有界数列必有极限3、区间套定理(1)区间套定义:设闭区间列{ [a(n),b(n )]}具有如下性质:(i) [a(n+1),b(n+1)]包含于[a(n),b(n )],n=1,2,3,......;(ii) Lim( a(n)-b(n))=0,则称{[an ,bn ]}为闭区间套,或简称区间套。
(2)区间套定理:如果{[an ,bn]}形成一个闭区间套,则在实数系中存在唯一的实数ξ属于所有的闭区间[an ,bn],n=1,2,3,…;即an≤ξ≤bn , n=1,2,3,…。
且liman=lim bn=ξ。
4、开覆盖(1)开覆盖的定义:设S为数轴上的点集,H为开区间的集合,(即H中每一个元素都是形如(a,b)的开区间).若S中的任何一点都含在至少一个开区间内,则称H为S的一个开覆盖,或简称H覆盖S.(2)有限覆盖定理:设H为闭区间[a,b]的一个(无限)开覆盖,则从H中可选出有限个开区间来覆盖[a,b]5、聚点(1)聚点定义:设S为数轴上的点集,e为定点(它可以属于S,也可以不属于S),若e的任何ε邻域内都含有S中的无穷多个点,则称e为点集S的一个聚点。
实数完备性的证明及其应用
实数完备性的证明及其应用摘要一、实数完备性定理 1、闭区间套定理如果n n a b {[,]}形成一个闭区间套,即满足11n n n n a b a b n N ++⊃∈(i)[,][,],,n n a b →∞n (ii)lim(,)=0,则存在惟一的实数ξ属于所有的闭区间n n [a ,b ],且n n a b ξ→∞→∞=n n =lim lim 。
2、聚点定理(又称维尔斯特拉斯聚点定理) 如果S 为有界无限点集,则S 必有聚点。
3、柯西收敛准则数列{}n x 收敛的充分必要条件是:{}n x 是基本数列,即{}n x 满足:对于任意给定的0ε>,存在正整数N ,使得当,n m N >时成立n m x x ε-<。
4、单调有界定理单调递增(减)有上(下)界数列必有极限。
5、有限覆盖定理闭区间a b [,]的任意开覆盖H 都含有一个有限子覆盖,即H 中可找出有限个开集覆盖a b [,]。
6、确界存在定理非空有上界的数集必有上确界;非空有下届的数集必有下确界。
二、实数完备性基本定理的证明1、由闭区间套定理出发,推其余五个定理 1)闭区间套定理⇒聚点定理证 设数列{}n x 有界,于是存在实数11,a b ,成立11,1,2,3,n a x b n ≤≤= 将闭区间11[,]a b 等分为两个小区间111[,]2a b a +与111[,]2a bb +,则其中至少有一个含有数列{}n x 中的无穷多项,把它记为22[,]a b 。
再将闭区间22[,]a b 等分为两个小区间222[,]2a b a +与222[,]2a bb +,同样其中至少有一个含有数列{}n x 中的无穷多项,把它记为33[,]a b 这样的步骤可以一直做下,于是得到一个闭区间套{[,]}k k a b ,其中每一个区间套[,]k k a b 中都含有数列{}n x 中的无穷多项。
根据区间套定理,存在实数ξ,满足k k k k a b ξ→∞→∞==lim lim 。
实数的完备性
(II)注意到
{ } { } { } =E 2−n + (−1)n : n ∈ += 2−2n +1: n ∈ + 2−(2n−1) −1: n ∈ +
因为
{ } { } inf
2−2n +1: n ∈ +
= 1,
sup
2−2n +1: n ∈ +
= 5 4
{ } { } inf
2−(2n−1) −1: n ∈ +
= −1, sup
2−(2n−1) −1: n ∈ +
= − 1 2
于是,由定理 3.2,我们有 inf E = −1, sup E = 5 。
4
注记 3.3:一个集合的上下确界可以属于该集合,也可以不属于该集合。
上面问题的回答是正面的,我们有
定理 3.1(确界原理):在实数范围内,非空有上界的数集必有上确界,非空 有下界的数集必有下确界。
注记 3.2:(I)上述确界原理所描述的性质称为实数的完备性; (II)在有理数范围内上述问题的答案是负面的;
(III)设集合 E ⊆ 非空有界,则必有 inf E ≤ sup E 。 (IV)设集合 E ⊆ 非空有界,则 sup E = − inf (−E) , inf E = − sup (−E) ,这里 −E :={−x : x ∈ E} 。 (V)设 E ⊆ , F ⊆ 为两个有界非空集合。若 E ⊆ F ,则inf E ≥ inf F , sup E ≤ sup F 。
命题 3.1. 设 A ⊆ , B ⊆ 为两个有界非空集合,则inf (A B) = min{inf A,inf B},
实数完备性的六大基本定理的相互证明共个
实数完备性的六大基本定理的相互证明共个实数完备性的六大基本定理是实分析中的重要结果,其中包括单调有界原理、上确界原理、下确界原理、戴德金(Dedekind)分割原理、稳定原理和柯西(Cauchy)收敛准则。
这些定理互相独立,但可以相互推导和证明。
下面我将按照给定的字数要求,大致叙述这些定理之间的证明关系。
1.单调有界原理→上确界原理首先我们证明单调有界原理蕴含上确界原理。
假设存在一个非空有上界的实数集合A,我们可以定义一个从A到R (实数集)的单调递增序列。
考虑一个函数f:N→A,其中N是自然数集合。
我们可以通过以下方法生成这个序列:1.对于每个n∈N,令An={a∈A,a≤f(n)};2.由于A有上界,所以An也有上界;3.根据单调有界原理,An存在上确界。
令f(n)为An的上确界。
现在我们可以看出,这个序列f(n)是一个单调递增的序列,并且对于任意a∈A,存在一个自然数n使得a≤f(n)。
因此f(n)就是A的上确界。
2.上确界原理→下确界原理接下来我们证明上确界原理蕴含下确界原理。
假设存在一个非空有下界的实数集合B,我们可以定义一个从B到R (实数集)的单调递减序列。
考虑一个函数g:N→B,其中N是自然数集合。
我们可以通过以下方法生成这个序列:1.对于每个n∈N,令Bn={b∈B,g(n)≤b};2.由于B有下界,所以Bn也有下界;3.根据上确界原理,Bn存在下确界。
令g(n)为Bn的下确界。
现在我们可以看出,这个序列g(n)是一个单调递减的序列,并且对于任意b∈B,存在一个自然数n使得g(n)≤b。
因此g(n)就是B的下确界。
3.戴德金分割原理→单调有界原理接下来我们证明戴德金分割原理蕴含单调有界原理。
假设存在一个非空无上界的实数集合C,我们可以定义一个从C到R (实数集)的单调递增序列。
考虑一个函数h:N→C,其中N是自然数集合。
我们可以通过以下方法生成这个序列:1.对于每个n∈N,令Cn={c∈C,h(n)≤c};2.C没有上界,因此Cn也没有上界;3.根据戴德金分割原理,Cn的上确界不存在。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
n 1
10 . lg 0.9
(1) n 2 ( 1) n 3 ( 1) n p 1 a n | 2n 1 2n 3 2( n p ) 1
1 1 (1) p1 2n 1 2n 3 2(n p) 1
当 p 为偶数时 , 注意到上式绝对值符号内有偶数项和下式每个 括号均为正号 , 有 1 1 1 2n 1 2 n 3 2( n p ) 1 1 1 1 1 2 n 1 2n 3 2n 5 2 n 7 1 1 2(n p) 3 2(n p) 1 0 又 1 1 1 2 n 1 2n 3 2( n p ) 1 1 1 1 2 n 1 2n 3 2n 5
1. Cauchy 收敛原理: Th 4 数列 { an } 收敛 { an } 是 Cauchy 列.
( 要求学生复习函数极限、函数连续的 Cauchy 准则,并以 Cauchy 收 敛原理为依据,利用 Heine 归并原则给出证明 ) 五. 六. 1. 致密性定理:
Heine–Borel 有限复盖定理:
f ( x ) C[ a , b ] ,
在 [ a , b ] 上 f (x ) O ( 1 ) .
( 用区间套定理 ). 反证法. ( 用列紧性 ). 反证法. ( 用有限复盖定理 ).
最值性: f ( x ) C[ a , b ] , f (x ) 在 [ a , b ] 上取得最大值和
第七章 实数的完备性 数学分析
教学目标:
1 理解确界定理、区间套定理、 柯西收敛准则,有限覆盖定 理、聚点定理、致密性定理 、单调有界定理及其相互推 证、应用。 2 培养严密的逻辑推理能力
第七章
§1 一
实数的完备性
关于实数集完备性的基本定理
区间套定理与柯西收敛准则 区间套: 设 { [ a n , bn ] } 是一闭区间序列. 若满足条件
定理 7.2 ( 2. Th 6
Weierstrass ) 任一有界数列必有收敛子列.
聚点原理 : Weierstrass 聚点原理. 每一个有界无穷点集必有聚点.
1. 列紧性: 亦称为 Weierstrass 收敛子列定理. 四. Cauchy 收敛准则 —— 数列收敛的充要条件 : 1. 基本列 : 回顾基本列概念 . 基本列的直观意义 . 基本列
定义 1 ⅰ)
对 n , 有 [ an 1 , bn 1 ] [ an , bn ] , 即
a n a n 1 bn 1 bn , 亦即 后一个闭区间包含在前一个闭区间中; ⅱ) bn a n 0, ( n ) . 即当 n 时区间长度趋于零. 则称该闭区间序列为闭区间套,
下证 sup E .用反证法验证 的上界性和最小性. 二. “Ⅱ” 的证明:
1. 用“区间套定理”证明“致密性定理”: 定理 5 ( Weierstrass ) 任一有界数列必有收敛子列. 证 ( 突出子列抽取技巧 )
定理 6 每一个有界无穷点集必有聚点. 2.用“致密性定理” 证明“Cauchy 收敛准则” : 定理 数列 { an } 收敛 { an } 是 Cauchy 列. 证 ( 只证充分性 )证明思路 :Cauchy 列有界 有收敛子
复盖: 先介绍区间族 G { I , } .
定义( 复盖 )
设 E 是一个数集 , G 是区间族 . 若对
x E , , x I , 则称区间族 G 复盖了 E , 或称区间族 G 是数集 E 的一个复盖. 记为 E I , .
证明若干个命题等价的一般方法. 本节证明七个实数基本定理等价性的路线 : 线进行: 证明按以下三条路
Ⅰ: 确界原理 单调有界原理 区间套定理 Cauchy 收 敛准则 确界原理 ; Ⅱ: 区间套定理 致密性定理 Cauchy 收敛准则 ; Ⅲ: 区间套定理 Heine–Borel 有限复盖定理 区间套 定理 . 一. “Ⅰ” 的证明: (“确界原理 单调有界原理”已证明 过 ). 1. 用“确界原理”证明“单调有界原理”: 定理 单调有界数列必收敛 . 2. 用“单调有界原理”证明“区间套定理”:
定理
设 { [ a n , bn ] } 是一闭区间套. 则存在唯一的点 ,使对 n
有 [ an , bn ] . 推论 1 对 0 , 推论 2 则有 3. 若 [ an , bn ] 是区间套 { [ a n , bn ] } 确定的公共点, 则 N , 当 n N 时, 总有 [ an , bn ] ( , ) .
n p
0.9 |
0.9 n 1 0.9 n p 0.9 n 1 0.9 n p 0.9 n 1 10 0.9 n 1 ; 1 0.9 lg
对 0 ,为使 | x n p xn | ,易见只要 于是取 N . ⑵ | a n p
a1 不是 E 的上界,
[ a2 , b2 ] , 使 a 2 不是 E 的上界,
b2 为 E 的上界. 依此得闭区间列
{ [ a n , bn ] } . 验证 { bn } 为 Cauchy 列, 由 Cauchy 收敛准则,{ bn } 收敛; 同理 { an } 收敛. 易见 bn ↘. 设 bn ↘ .有 a n ↗ .
若每个 I 都是开区间, 记为
则称区间族 G 是开区间族. 开区间族常
M { ( , ) , , } . 定义( 开复盖 ) 复盖, 数集 E 的一个开区间族复盖称为 E 的一个开
简称为 E 的一个复盖.子复盖、有限复盖、有限子复盖.
x 3x , ), x ( 0 , 1 ) } 复盖了区间 ( 0 , 1 ) , 2 2 但不能
,
1 1 1 2( n p) 5 2(n p) 3 2( n p ) 1 1 . 2n 1
当 p 为奇数时, 1 1 1 2n 1 2n 3 2( n p ) 1 1 1 1 1 2( n p) 5 2(n p) 3 2 n 1 2n 3 1 0 2( n p ) 1 1 1 1 2n 1 2n 3 2( n p ) 1
列 验证收敛子列的极限即为 { an } 的极限.
“Ⅲ” 的证明: 1. 2. 用“区间套定理”证明“Heine–Borel 有限复盖定理”: 用“Heine–Borel 有限复盖定理” 证明“区间套定理”:
§3 一. 有界性: 命题 1 证法 一 证法 二 证法 三 二.
闭区间上连续函数性质的证明
( 1 ) n 2 { [1 , 1 ]} 、 n n {( 0, 1 ]} 和 n {[ 1 1 , 1 ] } 都不是. n n
一
区间套定理
定理 7.1(区间套定理) 设 { [ a n , bn ] } 是一闭区间套. 则在实数系 中存在唯一的点 , 使对 n 有 [ an , bn ] . 简言之, 区间套必有 唯一公共点. 二 聚点定理与有限覆盖定理 定义 设 E 是无穷点集. 若在点 (未必属于 E )的任何邻域内 有 E 的无穷多个点, 则称点 为 E 的一个聚点. 1 数集 E = { } 有唯一聚点 0 , 但 0 E ; n 开区间 ( 0 , 1 ) 的全体聚点之集是闭区间 [ 0 , 1 ] ;
命题 2
最小值.( 只证取得最大值 ) 证 ( 用确界原理 )
介值性: 证明与其等价的“零点定理 ”
§3 闭区间上连续函数性质的证明 一. 有界性: 命题 1 证法 一 证法 二 证法 三 f ( x ) C[ a , b ] , 在 [ a , b ] 上 f (x ) O( 1 ) .
若 [ an , bn ] 是区间套 { [ a n , bn ] } 确定的公共点, a n ↗ , bn ↘ , ( n ) .
用“区间套定理”证明“Cauchy 收敛准则”: 数列 { an } 收敛 { an } 是 Cauchy 列.
Th 4 引理
Cauchy 列是有界列.
亦称为 Cauchy 列. 例1 验证以下两数列为 Cauchy 列 : ⑴ ⑵ x n 0.9 sin 0.9 0.9 2 sin 0.9 0.9 n sin n 0.9 . 1 1 ( 1 ) n 1 an 1 . 3 5 2n 1
解
⑴
| x n p x n | | 0.9 n 1 sin n 1 0.9 0.9 n p sin
Cauchy 列的否定:
例1 证 1 x n . 验证数列 {x n } 不是 Cauchy 列. k 1 k 对 n , 取 p n , 有
n
| x n p xn | 因此, 取 0 1 ,„„ 2
1 1 1 n 1 . n 1 n 2 nn 2n 2
( 证 )
证明: ( 只证充分性 ) 直观. 4. Th 1 界 . 证 数集 .
现采用三等分的方法证明, 该证法比较
用“Cauchy 收敛准则” 证明“确界原理” : 非空有上界数集必有上确界 ;非空有下界数集必有下确
(只证“非空有上界数集必有上确界”)设 E 为非空有上界 当 E 为有限集时 , 显然有上确界 .下设 E 为无限集, b1 为 E 的上界. 对分区间 [ a1 , b1 ] , 取 取
1 1 1 1 1 2( n p ) 3 2( n p ) 1 2n 1 2n 3 2n 5 1 2n 1 综上 , 对任何自然数 p , 有