2018年秋季八年级数学上册第十五章分式微专题5如何进行分式的化简与求值导学课件(新版)新人教版

合集下载

八年级数学上册第十五章分式基础知识点归纳总结(带答案)

八年级数学上册第十五章分式基础知识点归纳总结(带答案)

八年级数学上册第十五章分式基础知识点归纳总结单选题1、若数a使关于x的分式方程2x−1+a1−x=4的解为正数,则a的取值正确的是()A.a<6且a≠2B.a>6且a≠1C.a<6D.a>6答案:A分析:表示出分式方程的解,由解为正数确定出a的范围即可.解:分式方程整理得:2x−1−ax−1=4,去分母得:2−a=4x−4,解得:x=6−a4,由分式方程的解为正数,得到6−a4>0,且6−a4≠1,解得:a<6且a≠2.故选:A.小提示:此题考查了分式方程的解,始终注意分母不为0这个条件.2、若关于x的分式方程m+4x−3=3xx−3+2有增根,则m的值为()A.2B.3C.4D.5答案:D分析:根据分式方程有增根可求出x=3,方程去分母后将x=3代入求解即可.解:∵分式方程m+4x−3=3xx−3+2有增根,∴x=3,去分母,得m+4=3x+2(x−3),将x=3代入,得m+4=9,解得m=5.故选:D.小提示:本题考查了分式方程的无解问题,掌握分式方程中增根的定义及增根产生的原因是解题的关键.3、若把分式2x x+y 中的x 和y 同时扩大为原来的3倍,则分式的值( )A .扩大到原来的3倍B .扩大到原来的6倍C .缩小为原来的13D .不变 答案:D分析:根据分式的基本性质即可求出答案.解:∵2×3x 3x+3y =2×3x 3(x+y )=2xy x+y ,∴把分式2x x+y 中的x 和y 同时扩大为原来的3倍,则分式的值不变,故选:D .小提示:本题考查分式的基本性质,解题的关键是熟练运用分式的基本性质,本题属于基础题型.4、计算x x+1+1x+1的结果是( )A .x x+1B .1x+1C .1D .−1答案:C分析:根据同分母分式的加法法则,即可求解.解:原式=x+1x+1=1, 故选C .小提示:本题主要考查同分母分式的加法法则,掌握”同分母分式相加,分母不变,分子相加“是解题的关键.5、若a +b =5,则代数式(b 2a ﹣a )÷(a−b a )的值为( )A .5B .﹣5C .﹣15D .15 答案:B分析:原式括号中两项通分并利用同分母分式的减法法则计算,约分得到最简结果,把已知等式代入计算即可求出值.∵a +b =5,∴原式=b 2−a 2a ⋅a a−b =−(a+b )(a−b )a ⋅a a−b =−(a +b )=−5, 故选:B .小提示:考查分式的化简求值,掌握减法法则以及除法法师是解题的关键,注意整体代入法在解题中的应用.6、某工厂新引进一批电子产品,甲工人比乙工人每小时多搬运30件电子产品,已知甲工人搬运300件电子产品所用的时间与乙工人搬运200件电子产品所用的时间相同.若设乙工人每小时搬运x件电子产品,可列方程为()A.300x =200x+30B.300x−30=200xC.300x+30=200xD.300x=200x−30答案:C分析:乙工人每小时搬运x件电子产品,则甲工人每小时搬运(x+30)件电子产品,根据300÷甲的工效= 200÷乙的工效,列出方程即可.乙工人每小时搬运x件电子产品,则甲工人每小时搬运(x+30)件电子产品,依题意得:300x+30=200x,故选C.小提示:本题考查了分式方程的应用,弄清题意,根据关键描述语句找到合适的等量关系是解决问题的关键..7、若关于x的分式方程2x−a −3x=0的解为x=3,则常数a的值为()A.a=2B.a=−2C.a=−1D.a=1答案:D分析:根据题意将原分式方程的解x=3代入原方程求出a的值即可.解:∵关于x的分式方程2x−a −3x=0解为x=3,∴23−a−1=0,∴2=3−a,∴a=1,经检验,a=1是方程23−a−1=0的解,故选:D.小提示:本题主要考查了利用分式方程的解求参数,熟练掌握相关方法是解题关键.8、解方程2x−13=x+a2−1时,小刚在去分母的过程中,右边的“-1”漏乘了公分母6,因而求得方程的解为x=2,则方程正确的解是( )A .x =−3B .x =−2C .x =13D .x =−13答案:A分析:先按此方法去分母,再将x=-2代入方程,求得a 的值,然后把a 的值代入原方程并解方程.解:把x =2代入方程2(2x -1)=3(x +a )-1中得:6=6+3a -1,解得:a =13,正确去分母结果为2(2x -1)=3(x +13)-6, 去括号得:4x -2=3x +1-6,解得:x =-3.故选:A小提示:本题考查了一元一次方程的解的定义以及解一元一次方程.使一元一次方程左右两边相等的未知数的值叫做一元一次方程的解.把方程的解代入原方程,等式左右两边相等.9、下列运算正确的是( )A .2a +3b =5abB .(−ab)2=a 2bC .a 2⋅a 4=a 8D .2a 6a 3=2a 3答案:D分析:根据合并同类项法则,同底数幂的乘法、幂的乘方与积的乘方以及单项式除以单项式法则解答. 解:A 、2a 与3b 不是同类项,不能合并,故本选项错误;B 、原式=a 2b 2,故本选项错误;C 、原式=a 6,故本选项错误;D 、原式=2a 3,故本选项正确.故选D .小提示:本题考查了同底数幂的乘法的性质与同类项合并同类项法则,熟练掌握性质和法则是解题的关键.10、下列分式中是最简分式的是( )A .2x 2B .42xC .x−1x 2−1D .x−1(x−1)2答案:A分析:一个分式的分子分母无公因式或公因数叫最简分式,四个选项逐个分析排除,只有选项A是最简分式,选项B、C、D中分子分母分别有公因数2、公因式x−1、公因式x−1,都不是最简分式.选项A不能约分,是最简分式;选项B中分子分母有公因数2,可约分,不是最简分式;选项C中x−1x2−1=x−1(x+1)(x−1),分子分母有公因式x−1,可约分,不是最简分式;选项D中分子分母有公因式x−1,可约分,不是最简分式;故选:A.小提示:本题主要考查了最简分式的概念,最简分式指的是分子分母无无公因式或公因数的分式,有时需要将分子分母进行因式分解再判断.填空题11、计算2m−2−mm−2的结果是 ____.答案:−1分析:根据分式的减法法则即可得.解:原式=2−mm−2=−(m−2) m−2=−1,所以答案是:−1.小提示:本题考查了分式的减法,熟练掌握运算法则是解题关键.12、若实数m使得关于x的不等式组{2x>23x<m+1无解,则关于y的分式方程yy−1=4−m2y−2的最小整数解是_________.答案:2分析:先求出每个不等式的解集,然后根据不等式组无解求出m的取值范围,再解分式方程从而确定y的取值范围即可得到答案.解:解不等式2x>2得:x>1,解不等式3x <m +1得:x <m+13, ∵不等式组无解,∴m+13≤1,∴m ≤2;y y −1=4−m 2y −2去分母得2y =4−m ,解得y =4−m 2,∵m ≤2,∴4−m ≥2∴y =4−m 2≥1,又∵y −1≠0,∴y >1,∴y 的最小整数解为2,所以答案是:2小提示:本题主要考查了根据不等式组的解集情况求参数,解分式方程,熟知相关计算法则是解题的关键.13、方程22x−1+x 1−2x =1的解是________.答案:x =1分析:原方程去分母得到整式方程,求解整式方程,最后检验即可.解:22x−1+x 1−2x =1, 22x−1﹣x 2x−1=1, 方程两边都乘2x ﹣1,得2﹣x =2x ﹣1,解得:x =1,检验:当x =1时,2x ﹣1≠0,所以x =1是原方程的解,即原方程的解是x=1,所以答案是:x=1.小提示:本题考查了解分式方程,把分式方程转化为整式方程是解答本题的关键,注意解分式方程不一定要检验.14、若|a|=2,且(a−2)0=1,则2a的值为_______.##0.25答案:14分析:根据绝对值的意义得出a=±2,根据(a−2)0=1,得出a−2≠0,求出a的值,即可得出答案.解:∵|a|=2,∴a=±2,∵(a−2)0=1,∴a−2≠0,即a≠2,∴a=−2,∴2a=2−2=1.4所以答案是:1.4小提示:本题主要考查了绝对值的意义,零指数幂有意义的条件,根据题意求出a=−2,是解题的关键.15、用科学记数法将﹣0.03896保留两位有效数字为____.答案:﹣3.9×10﹣2分析:先根据科学记数法表示该数,再保留两个有效数字即可.解:﹣0.03896=﹣3.896×10﹣2≈﹣3.9×10﹣2,所以答案是:﹣3.9×10﹣2.小提示:此题考查了科学记数法的表示方法,有效数字的概念,正确理解各知识点是解题的关键.解答题16、为推动家乡学校篮球运动的发展,某公司计划出资12000元购买一批篮球赠送给家乡的学校.实际购买时,每个篮球的价格比原价降低了20元,结果该公司出资10000元就购买了和原计划一样多的篮球,每个篮球的原价是多少元?答案:每个篮球的原价是120元.分析:设每个篮球的原价是x 元,则每个篮球的实际价格是(x ﹣20)元,根据“该公司出资10000元就购买了和原计划一样多的篮球”列出方程并解答.解:设每个篮球的原价是x 元,则每个篮球的实际价格是(x ﹣20)元,根据题意,得12000x =10000x−20.解得x =120.经检验x =120是原方程的解.答:每个篮球的原价是120元.小提示:本题考查了分式方程的应用,根据题意列出方程是解题的关键.17、若a ,b 为实数,且(a−2)2+|b 2−16|b+4=0,求3a ﹣b 的值. 答案:2分析:根据题意可得{a −2=0b 2−16=0b +4≠0,解方程组可得a,b,再代入求值.解:∵(a−2)2+|b 2−16|b+4=0,∴{a −2=0b 2−16=0b +4≠0,解得{a =2b =4, ∴3a ﹣b=6﹣4=2.故3a ﹣b 的值是2.小提示:本题考核知识点:分式性质,非负数性质.解题关键点:理解分式性质和非负数性质.18、阅读材料:对于非零实数a ,b ,若关于x 的分式(x−a)(x−b)x 的值为零,则解得x 1=a ,x 2=b .又因为(x−a)(x−b)x =x 2−(a+b)x+ab x=x +ab x ﹣(a +b ),所以关于x 的方程x +ab x =a +b 的解为x 1=a ,x 2=b . (1)理解应用:方程x 2+2x =3+23的解为:x 1= ,x 2= ;(2)知识迁移:若关于x 的方程x +3x =5的解为x 1=a ,x 2=b ,求a 2+b 2的值;(3)拓展提升:若关于x 的方程4x−1=k ﹣x 的解为x 1=t +1,x 2=t 2+2,求k 2﹣4k +2t 3的值. 答案:(1)3,23;(2)19;(3)12. 分析:(1)根据题意可得x =3或x =23;(2)由题意可得a +b =5,ab =3,再由完全平方公式可得a 2+b 2=(a +b )2-2ab =19;(3)方程变形为x -1+4x−1=k -1,则方程的解为x -1=t 或x -1=t 2+1,则有t (t 2+1)=4,t +t 2+1=k -1,整理得k =t +t 2+2,t 3+t =4,再将所求代数式化为k 2-4k +2t 3=t (t 3+t )+4t 3-4=4(t 3+t )-4=12.(1)解:∵x +ab x =a +b 的解为x 1=a ,x 2=b ,∴x 2+2x =x +2x =3+23的解为x =3或x =23,所以答案是:3,23;(2)解:∵x +3x =5,∴a +b =5,ab =3,∴a 2+b 2=(a +b )2-2ab =25-6=19; (3)解:4x−1=k -x 可化为x -1+4x−1=k -1,∵方程4x−1=k -x 的解为x 1=t +1,x 2=t 2+2,则有x -1=t 或x -1=t 2+1,∴t (t 2+1)=4,t +t 2+1=k -1, ∴k =t +t 2+2,t 3+t =4, k 2-4k +2t 3=k (k -4)+2t 3=(t+t2+2)(t+t2-2)+2t3=t4+4t3+t2-4=t(t3+t)+4t3-4=4t+4t3-4=4(t3+t)-4=4×4-4=12.小提示:本题考查了分式方程的解,理解题意,灵活求分式方程的解,并结合完全平方公式对代数式求值是解题的关键.。

分式的化简求值(导学案)

分式的化简求值(导学案)

分式的化简求值(导学案)
织金五中 贺光艳
学习目标:
1、会进行分式化简的每一个步骤:分解因式、分式加减乘除运算
2、会代值计算化简后分式的值
学习重点:
分式的化简过程
学习难点:
分式化简过程中分式的加减运算
学习过程:
(1)(3)
(4)把下列各式分解因式:
知识点1:因式分解
23
24xm -16xm x(a+b)+y(a+b)
m 2-812
29124)2(b ab a +-
知识点2:分式的乘除
知识点3
:分式的加减
知识点4:分式的化简求值
1、先化简,再求值21639a a ---,其中1a =.
2、先化简,再求值.165)121(2-+-÷--x x x x ,其中x 从0,1,2,3,四个数中适当选取.
3、先化简,再求值:(x ﹣1﹣)÷,其中x=+1.
4、先化简,再求值:(2221x x x x
-+- +2242x x x -+)÷1x ,且x 为满足﹣3<x <2的整数.
5、先化简)11
1(11222+-+-÷-+-x x x x x x ,然后从55<<-x 的范围内选取一个合适的整数作为x 的值代入求值.。

第15章 分式的计算与化简求值 人教版八年级上册数学讲义

第15章 分式的计算与化简求值  人教版八年级上册数学讲义

第15章分式的计算与化简求值 人教版八年级上册数学讲义一、内容复习1、最简分式的定义:一个分式的分子与分母没有公因式时,叫最简分式.2、通分的定义:把几个异分母的分式分别化为与原来的分式相等的同分母的分式,这样的分式变形叫做分式的通分.通分的关键是确定最简公分母.①最简公分母的系数取各分母系数的最小公倍数.②最简公分母的字母因式取各分母所有字母的最高次幂的积.通分:,.二、知识点一 分式的乘、除法法则【知识梳理】1. 分式的乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为积的分母,用式子表示为b a ·d c =bdac . 2. 分式的除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘.用式子表示为b a ÷d c =b a ·c d =bcad . 【提醒】1. 分式与分式相乘,若分子、分母是单项式,可先将分子、分母分别相乘,然后约去公因式,化为最简分式;若分子、分母是多项式,先把分子、分母分解因式,看能否约分,然后再相乘.2.当整式与分式相乘时,要把整式(看做是分母为1的式子)与分式的分子相乘作为积的分子,分式的分母不变.当整式是多项式时,同样要先分解因式,看能否约分,然后再相乘.3.分式的除法运算可以转化为分式的乘法运算,若除式(或被除式)是整式时,可以看做是分母是1的式子,然后按照分式除法法则计算.4.分式的乘除运算结果要通过约分化为最简分式(分式的分子、分母没有公因式)或整式的形式.5.分式的乘除混合运算,如果没有其他附加条件(如括号等),则应按照由左到右的顺序进行计算.【例题精讲】例1、计算2x 3÷的结果是( )A .2x 2B .2x 4C .2xD .4【分析】原式利用除法法则变形,计算即可得到结果.【解答】解:原式=2x 3•x=2x 4,故选:B .【强化练习】1、(1)x m 86·m x 32 (2)3ab 2÷ab 62、化简的结果是( )A .B .C .D .知识点二 分式的乘方法则【知识梳理】分式的乘方法则:分式乘方要把分子、分母分别乘方。

八年级数学上册第十五章分式15.3分式方程15.3.1分式方程备课资料教案

八年级数学上册第十五章分式15.3分式方程15.3.1分式方程备课资料教案

——————————新学期新成绩新目标新方向——————————第十五章 15.3.1分式方程知识点1:分式方程的概念分母中含有未知数的方程叫做分式方程.分式方程的重要特征:①含有分母;②分母中含有未知数.知识点2:分式方程的解法1. 解分式方程的基本思路是“转化”,即把分式方程转化为我们熟悉的整式方程,转化的途径是“去分母”,即方程两边都乘以最简公分母.2. 解方程必须检验,检验的方法是:将整式方程的解代入最简公分母(或每个分母),如果最简公分母的值不为0,则整式方程的解是原方程的解.否则,这个解不是原分式方程的解(有的书上称为原方程的增根).3. 解分式方程时什么情况下产生增根?在解一个方程时,如果出现了增根,往往是由于变形时扩大了未知数的取值范围造成的.(1)如果不遵从同解原理,即使是整式方程也可能出现增根.例如将方程x-2=0的两边都乘以x,变形成x(x-2)=0,新方程就比原方程添加了一个根x=0,这是因为在方程两边都乘了一个x,这相当于用0乘以原方程的两边(0适合于新方程),而这是违反同解原理的.(2)解分式方程时,去分母可能会出现增根.去分母后所得整式方程的根可能使原方程的公分母为0.判别增根,只要通过把所解方程的根代入最简公分母,看其值是否为0,如果等于0,那么这个根即为增根.关键提醒:(1)用分式方程中的最简公分母同时乘方程的两边,从而约去分母,但要注意用最简公分母乘方程两边的各项,切记不含分母的项不能漏乘.(2)解分式方程可能产生使分式方程无解的情况,那么检验就是解分式方程的必要步骤.考点1:分式方程的判定【例1】下列各式是分式方程吗?(1)2x-3y=0;(2) -3=;(3)=;(4)+3;(5)2+=.解:(1)因为方程里面没有分母,所以2x-3y=0不是分式方程;(2)虽然方程里含有分母,但是分母里没有未知数,所以不是分式方程;(3)方程=具备分式方程的三个特征;(4)+3没有等号,所以不是方程,它是一个代数式;(5)2+=具备分式方程的三个特征,所以是分式方程.点拨:逐个检查是否符合分式方程的三个特征:(1)是方程;(2)方程里含有分母;(3)分母里含有未知数.考点2:分式方程的解法【例2】解分式方程:+=.解:去分母,得3x+x+2=4,解得x=,经检验x=是原方程的解.点拨:在方程的两边同乘以最简公分母x(x+2),化去分母,进而求解,并检验.考点3:分式方程的增根【例3】分式方程-1=有增根,则m的值为( ).A. 0和3B. 1C. 1和-2D. 3点拨:分式方程中公分母为(x-1)(x+2),方程若存在增根,那么去掉分母以后所得整式方程的根,至少存在一个根一定可以使(x-1)(x+2)等于0.解:方程两边同乘以(x-1)(x+2),得x(x+2)-(x-1)(x+2)=m,即x=m-2.由(x-1)(x+2)=0,得x=1或x=-2.由题意,当x=1时,m-2=1,解得m=3.当得x=-2时,m-2=-2,解得m=0,此时原方程无实根,所以m=0,不成立,舍去.故选D.。

人教版初中数学八年级上册上册第十五章《分式》第一节《分式》教案

人教版初中数学八年级上册上册第十五章《分式》第一节《分式》教案
-分式的概念理解:学生容易混淆分式与整式的区别,需要通过实例和直观图形帮助学生理解。
-约分与通分的技巧:学生在约分和通分时,往往不能找到最简公分母,需要教授寻找公分母的技巧和方法。
-分式的混合运算:学生在面对分式的混合运算时,难以掌握运算顺序和法则,需要通过典型例题和练习逐步突破。
-分式在实际问题中的应用:学生可能不知道如何将实际问题转化为分式问题,需要通过案例分析,引导学生建立数学模型。
举例:难点在于分式的混合运算,教师应通过以下步骤帮助学生克服难点:
a.通过对比整式的运算顺序,引导学生理解分式混合运算的顺序。
b.通过具体例题,展示分式混合运算的步骤和技巧。
c.设计不同难度的练习题,让学生逐步适应并掌握分式混合运算。
d.在解题过程中,强调分式约分与通分的应用,使运算过程简化。
四、教学流程
五、教学反思
在本次教学活动中,我教授了人教版初中数学八年级上册第十五章《分式》的第一节《分式》。回顾整个教学过程,我认为有几个地方值得反思和改进。
首先,关于导入新课环节,我通过提出与分式相关的生活中的问题来激发学生的兴趣,这是一个较好的切入点。但在实际操作中,我发现部分学生可能并没有完全理解问题的实质,导致后续学习过程中对分式的理解不够深入。因此,在以后的教学中,我需要更加关注学生的反应,适时调整问题的难度,确保学生们能够更好地进入学习状态。
本节课的核心素养目标主要包括:
1.培养学生的数学抽象能力,通过引入分式的概念,让学生理解数学表达形式的简洁性与严谨性;
2.提高学生的逻辑推理能力,在学习分式的性质与运算法则中,使学生掌握逻辑推理方法,形成严密的数学思维;
3.培养学生的数学建模素养,让学生在实际问题中运用分式知识建立数学模型,提高解决实际问题的能力;

八年级数学上册第十五章《分式》15.3分式方程15.3.1分式方程及其解法教案新人教版(2021年

八年级数学上册第十五章《分式》15.3分式方程15.3.1分式方程及其解法教案新人教版(2021年

2018年秋八年级数学上册第十五章《分式》15.3 分式方程15.3.1 分式方程及其解法教案(新版)新人教版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018年秋八年级数学上册第十五章《分式》15.3 分式方程15.3.1 分式方程及其解法教案(新版)新人教版)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018年秋八年级数学上册第十五章《分式》15.3 分式方程15.3.1 分式方程及其解法教案(新版)新人教版的全部内容。

15。

3分式方程第1课时分式方程及其解法◇教学目标◇【知识与技能】1.理解分式方程的概念,能将实际问题中的等量关系用分式方程表示,体会分式方程的模型作用;2.知道分式方程的意义,会解可化为一元一次方程的分式方程。

【过程与方法】经历“实际问题—分式方程模型”的过程,发展学生分析问题、解决问题的能力,渗透数学的转化思想,培养学生的应用意识。

【情感、态度与价值观】在探索活动中培养学生乐于探究、合作学习的习惯,培养学生努力寻找解决问题的进取心,体会数学的应用价值.◇教学重难点◇【教学重点】探索如何将分式方程转化为整式方程并掌握解分式方程的一般步骤。

【教学难点】寻求实际问题中的等量关系,寻求不同的解决问题的方法。

◇教学过程◇一、情境导入甲、乙两人加工同一种服装,乙每天比甲多加工1件,已知乙加工24件服装所用时间与甲加工20件服装所用时间相同。

甲每天加工多少件服装?二、合作探究探究点1分式方程的定义典例1下列关于x的方程中,是分式方程的是()A。

3x=B.C。

=2D。

3x—2y=1[解析]根据分式方程的定义分母中含有未知数的方程,即可判断。

数学人教版八年级上册第15章第一节分式(教案)

数学人教版八年级上册第15章第一节分式(教案)
五、教学反思
在今天的教学中,我发现学生们对分式的概念和性质掌握得还算不错,但在具体的运算和应用上,部分学生还是显得有些吃力。我意识到,分式的运算规则和实际应用是本节课的难点,需要在今后的教学中进一步强化。
在导入新课环节,通过提问的方式激发学生的兴趣,这个方法效果不错,大家都能积极参与进来。但在新课讲授过程中,我发现理论介绍部分可能过于枯燥,有些学生的注意力开始分散。下次我可以尝试结合更多的实际案例,让理论知识更加生动有趣。
举例:通过实际例题,引导学生掌握求解分式方程的步骤和技巧。
2.教学难点
(1)分式的概念理解:学生可能难以理解分式中字母的含义和作用。
解决方法:通过具体实例和图形说明,帮助学生建立起分式的直观认识。
(2)分式的通分:在具体运算中,学生可能会在寻找最简公分母时遇到困难。
解决方法:提供寻找最简公分母的策略,如分解质因数、使用公共因子等,并进行大量练习。
此外,我还发现部分学生对分式方程的求解感到困惑,特别是对分母为零的情况处理不当。在今后的教学中,我要着重强调这一点,并通过更多的练习题来巩固学生的掌握情况。
最后,我也要肯定学生们的努力和进步。虽然分式的学习对大家来说是一个挑战,但我相信只要我们共同努力,一定能够克服困难,掌握好这一章的知识。教学相长,我也将在反思中不断成长,为学生们提供更好的教学。
3.重点难点解析:在讲授过程中,我会特别强调分式的定义和分式运算这两个重点解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与分式相关的实际问题,如如何分配物品、计算速度等。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,比如用分式来计算不同物体的平均速度。
(3)分式的运算:熟练进行分式的加减乘除运算,掌握运算规则。

人教版八年级数学上册第十五章分式分式方程及其解法ppt教学课件

人教版八年级数学上册第十五章分式分式方程及其解法ppt教学课件
人教版 八年级数学上册
第十五章 分 式
15.3 分式方程
分式方程及其解法
导入新课
问题引入
一艘轮船在静水中的最大航速为30千米/时,它沿
江以最大航速顺流航行90千米所用时间,与以最
大航速逆流航行60千米所用时间相等.设江水的流
速为x千米/时,根据题意可列方程
90 30+x
60 30
x.
这个程是我们以前学过的方程吗?它与一元一次 方程有什么区别?
2.
课堂小结
定 义 分母中含有未知数的方程叫做分式方程
分式 方程
步骤
(去分母法)
一化(分式方程转化为整式方程); 二解(整式方程); 三检验(代入最简公分母看是否为零)
注意
(1)去分母时,原方程的整式部分漏乘.
(2)约去分母后,分子是多项式时,没有 添括号.(因分数线有括号的作用)
(3)忘记检验
简记为:“一化二解三检验”.
典例精析
例1
解方程
2 3. x3 x
解: 方程两边乘x(x-3),得
2x=3x-9.
解得 x=9.
检验:当x=9时,x(x-3) ≠0.
所以,原分式方程的解为x=9.
例2
解方程
x
x 1
1
(x
3 1)( x
2)
.
解: 方程两边乘(x-1)(x+2),得
x(x+2)-(x-1)(x+2)=3.
3
x
x(6)2x 2
x 1 5
10
)x 1方分x 法式2总方结 程,:2判xx主断1要一是3个x看方1分程母是中否是为
否含有未知数(注意:π不是未 知数).

初中数学 人教版八年级上册分式的化简 求值 与证明讲义

初中数学 人教版八年级上册分式的化简 求值 与证明讲义

分式的化简 求值 与证明考点•方法•破译1. 分式的化简、求值先化简,后代入求值是代数式化简求值问题的基本策略,有条件的化简求值题,条件可直接使用,变形使用,或综合使用,要与目标紧紧结合起来;无条件的化简求值题,要注意挖掘隐含条件,或通过分式巧妙变形,使得分子为0或分子与分母构成倍分关系特殊情况,课直接求出结果.2. 分式的证明证明恒等式,没有统一的方法,具体问题还要具体分析,一般分式的恒等式证明分为两类:一类是有附加条件的,另一类是没有附加条件的,对于前者,更要善于利用条件,使证明简化.经典•考题•赏析【例1】先化简代数式(11x x -++221x x -)÷211x -,然后选取一个使原式有意义的x 的值代入求值.【解法指导】本题化简并不难,关键是x 所取的值的选择,因为原式的分母为:x +1,x 2-1,要是原式有意义,则x +1≠0且x 2-1≠0故x ≠1,因而x 可取的值很多,但不能取x ≠1解:(11x x -++221x x -)÷211x - =[2(1)(1)(1)x x x -+-+2(1)(1)x x x +-]·(x +1)(x -1)=(x -1)2+2x =x 2+1 当x =0时,原式=1. 【变式题组】01.先化简,再求值222366510252106a a a a a a a a--+÷•++++,其中a =.02.已知x =2,y =22211x y x y x y x y xy ⎛⎫⎛⎫+--•- ⎪ ⎪-+⎝⎭⎝⎭的值03.先化简:222a b a ab --÷(a +22ab b a+),当b =-1时,请你为a 任选一个适当的数代入求值.04.先将代数式(x -1x x +)÷(1+211x -)化简,再从-3<x <3的范围内选取一个合适的整数x 代入求值.【例2】已知1x+1y =5,求2322x xy y x xy y -+++的值.【解法指导】解法1:由已知条件115x y+=,知xy ≠0.将所求分式分子、分母同除以xy ,用整体代入法求解.解法2:由已知条件1x+1y =5,求得x +y =5xy ,代入求值. 解:方法1:∵1x+1y =5,,∴x ≠0,y ≠0,xy ≠0将待求分式的分子、分母同除以xy . 原式=(232)(2)x xy y xy x xy y xy -+÷++÷=112()311()2x y x y+-++=2552⨯+=1.方法2:由1x+1y =5知x ≠0,y ≠0,两边同乘以xy ,得x +y =5xy 故2322x xy y x xy y -+++=2()()2x y x y xy +++=25352xy xy xy xy ⨯-⨯+=77xy xy=1.【变式题组】 01.(天津)已知1a -1b =4,则2227a ab ba b ab---+的值等于( ) A .6 B .-6 C . 215 D . 27-02.若x +y =12,xy =9,求的22232x xy yx y xy+++值.03.若4x -3y -6z =0,x +2y -7z =0,求22222223657x y z x y z ++++的值.【例3】(广东竞赛)已知231xx x -+=1,求24291x x x -+的值. 【解法指导】利用倒数有时会收到意外的效果.解:∵2131x x x =-+∴231x x x -+=1∴x -3+1x =1∴x +1x =4. 又∵42291x x x -+=x 2-9+21x =(x -1x )2-11=16-11=5. ∴24291x x x -+=15. 【变式题目】01.若x +1x=4,求2421x x x ++的值.02.若a 2+4a +1=0,且4232133a ma a ma a++++=5求m .【例4】已知ab a b +=13,bc b c +=14,ac a c +=15,求abcab ac bc++的值. 【解法指导】将已知条件取倒数可得a b ab +=3,b c bc +=4,a cac+=5,进而可求111a b c++的值,将所求代数式也取倒数即可求值. 解:由已知可知ac 、bc 、ab 均不为零,将已知条件分别取倒数,得345a babb c bca cac+⎧=⎪⎪+⎪=⎨⎪+⎪=⎪⎩,即113114115a b c b a c ⎧+=⎪⎪⎪+=⎨⎪⎪+=⎪⎩ 三式相加可得1a +1b +1c =6,将所求代数式取倒数得ab ac bc abc ++=1a +1b +1c =6,∴abc ab ac bc ++=16.【变式题组】 01.实数a 、b 、c 满足:ab a b +=13,bc b c +=14,ac a c +=15,则ab +bc +ac = . 02.已知xy x y +=2,xzx z+=3,yz y z +=4,求7x +5y -2z 的值.【例5】若a b c +=c b a +=a c b +,求()()()a b c b a c abc+++的值. 【解法指导】观察题目易于发现,条件式和所求代数式中都有a +b ,c +b ,a +c 这些比较复杂的式子,若设a b c +=c b a +=a cb+=k ,用含k 的式子表示a +b ,c +b ,a +c 可使计算简化. 解:设a b c +=c b a +=a c b+=k ,则a +b =ck ,c +b =ak ,a +c =bk ,三式相加,得2(a+b +c )=(a +c +b )k .当a +b +c ≠0时,k =2;当a +b +c =0时,a +b =-c ,1a bc+=-,∴k =-1.∴当k =2时,()()()a b c b a c abc +++=k 3=8;当k =-1时,()()()a b c b a c abc+++=k3=-1.【变式题组】01.已知x 、y 、z 满足2x=3y z -=5z x +,则52x y y z -+的值为( ) A .1 B . 13 C . 13- D . 1202.已知a 、b 、c 为非零实数,且a +b +c ≠0,若a b c c +-=a b c b -+=a b ca-++,求()()()a b b c c a abc+++的值.【例6】已知abc =1,求证:1a ab a +++1b bc b +++1cac c ++=1【解法指导】反复整体利用,选取其中一个的分母不变,将另外两个的分母化为与它的分母相同再相加.证明:∵1a ab a ++=a ab a abc ++=11b bc ++1c ac c ++=c ac c abc ++=11a ab ++=abc a abc ab ++=1cbbc b++∵1a ab a +++1b bc b +++1c ac c ++=11bc b +++1b bc b +++1bc bc b ++=1 【变式题组】01.已知1a b +=1b c +=1c a+,a ≠b ≠c 则a 2+b 2+c 2=( ) A .5 B . 72 C .1 D . 1202.已知不等于零的三个数a b c 、、满足1111a b c a b c++=++.求证:a 、b 、c 中至少有两个数互为相反数.03.若:a 、b 、c 都不为0,且a +b +c =0,求222222222111b c a c a b a b c+++-+-+-的值.演练巩固 反馈提高01.已知x -1x=3,那么多项式x 3-x 2-7x +5的值是( ) A .11 B .9 C .7 D . 5 02.若M =a +b ,N =a -b ,则式子M N M N +--M NM N-+的值是( )A . 22a b ab -B . 222a b ab -C . 22a b ab+ D . 003.已知5x 2-3x -5=0,则5x 2-2x -21525x x --= . 04.设a >b >0,a 2+b 2-6ab =0,则a b b a+-= .05.已知a =1+2n ,b =1+12n ,则用含a 的式子表示b 是 .06. a +b =2,ab =-5,则b aa b+= .07.若a =534-⎛⎫- ⎪⎝⎭,b =-534⎛⎫ ⎪⎝⎭,c =534-⎛⎫⎪⎝⎭,试把a 、b 、c 用“<”连接起来为 .08.已知1n m -⎛⎫⎪⎝⎭=53,求的222m m n m n m n m n +-+--值为 . 09.若2x =132,13y⎛⎫⎪⎝⎭=81,则x y 的值为 .10.化简24322242c b c b a b a ca -⎛⎫⎛⎫⎛⎫•-÷- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭为 .11.先化简,再求值:221122x y x y x x y x +⎛⎫--+ ⎪+⎝⎭,其中x,y =3.12.求代数式的值:222222144x x x x x x -++÷--,其中x =2.13.先化简,再求值:22121124x x x x ++⎛⎫-÷⎪+-⎝⎭,其中x =-3.14.已知:2352331x A Bx x x x -=+---+,求常数A 、B 的值. 15.若a +1a =3,求2a 3-5a 2-3+231a +的值.培优升级 奥赛检测01.若a b =20,b c =10,则a b b c++的值为( ) A . 1121 B . 2111C . 11021D . 2101102.已知x +y =x -1+y -1≠0,则xy 的值为( )A . -1B . 0C . 1D . 203.已知x +1x =7(0<x <1)的值为( ) A . -7 B .-5 C . 7 D . 5 04.已知正实数a 、b 满足ab =a +b ,则b aab a b+-=( ) A . -2 B .12 C . 12- D . 2 05.已知1a -a =1,则1a+a 的值为( )A .B .C .D .1 06.已知abc ≠0,并且a +b +c =0,则a (1b +1c )+b (1a +1c )+c (1b +1a)的值为( ) A . 0 B . 1 C . -1 D .-3 07.设x 、y 、z 均为正实数,且满足z x y x y y z z x<<+++,则x 、y 、z 三个数的大小关系是( )A . z <x <yB . y <z <xC . x <y <zD . z <y <x08.如果a 是方程x 2-3x +1=0的根,那么分式543226213a a a a a-+--的值是 .09.甲乙两个机器人同时按匀速进行100米速度测试,自动记录表表明:当甲距离终点差1米,乙距离终点2米;当甲到达终点时,乙距离终点1.01米,经过计算,这条跑道长度不标准,则这条跑道比100米多 . 10.若a +1b =1,b +1a =1,求c +1a的值.11.已知a 、b 、c 、x 、y 均为实数,且满足ab +a b =341-x y ,+bc b c =31x ,+cac a=341+x y ,++abc ab bc ca =112(y )(其中)求x 的值.12.当x 分别取值12009,12008,12007, (1)2,1,2,……2007,2008,2009时,分别计算代数式221-1+x x的值,将所得的结果相加,其和是多少?13.在一列数x 1,x 2,x 3…中,已知x 1=1,且当k ≥2时,x k =x k -1+1-4([14k --24k -])(取整符号[a ]表示不超过实a 数的最大整数,例如[2.6]=2,[0.2]=0)求x 2010的值.14. 已知对于任意正整数n ,都有a 1+a 2+…+a n =n 3,求211a -+311a -+…+10011a -的值.。

人教版八年级数学上册第十五章 分式知识点总结和题型归纳

人教版八年级数学上册第十五章 分式知识点总结和题型归纳

人教版八年级数学上册第十五章分式知识点总结和题型归纳分式知识点总结和题型归纳第一部分分式的运算一)分式的定义及有关题型考查分式的定义:一般地,如果A,B表示两个整数,并且B中含有字母,那么式子A/B为分式。

例1:下列代数式中是分式的有:(x- y)/(2x+ y),π/(2x- y),(x+ y)/(a+ b)。

考查分式有意义的条件:分式有意义:分母不为0 (B≠0)分式无意义:分母为0 (B=0)例1:当x有何值时,下列分式有意义:1) (x-4)/(13x2-6x)2) 2/x3) 2/(x-4)4) (x+4|x|-3x+2)/(x-1)5) x/(x2-2x-3)考查分式的值为的条件:分式值为:分子为A且分母不为0 (A/B) 例1:当x取何值时,下列分式的值为0.1) (x-1)/(x+3)2) |x|-23) (x2-2x-3)/(x-5)(x+6)例2:当x为何值时,下列分式的值为零:1) 5-|x-1|/(x+4)2) (25-x2)/(x-6)(x+5)考查分式的值为正、负的条件:分式值为正或大于0:分子分母同号 (A/B>0) 分式值为负或小于0:分子分母异号 (A/B<0) 例1:(1) 当x为何值时,分式4/(8-x)为正;2) 当x为何值时,分式5-x/(5+x)为负;3) 当x为何值时,分式(x-2)/(x+3)为非负数.例2:解不等式|x|-2≤(x+1)/(x+5)考查分式的值为1,-1的条件:分式值为1:分子分母值相等 (A/B=1)分式值为-1:分子分母值互为相反数 (A+B=0)例1:若分式|x-2|/(x+2)的值为1,-1,则x的取值分别为3和-1.思维拓展练题:1、若a>b>0,a2+b2-6ab=0,则(a+b)/(a-b)=9/5.2、一组按规律排列的分式:-b/2.5/b。

-8/b。

11/b。

则第n 个分式为(3n-1)/b。

人教版八年级上册数学第十五章《分式》备课攻略

人教版八年级上册数学第十五章《分式》备课攻略

人教版八年级上册数学第十五章《分式》备课攻略【课程标准解读】新课程标准对分式这一章的要求不是太多,也不是太难,只是了解分式的概念,会利用分式的基本性质进行约分和通分,会进行简单的分式加、减、 乘、除运算,整数指数幂的概念及运算性质,分式方程的概念及可化为一元一次方程的分式方程的解法。

但是对于分式的学习不能仅仅停留在这几个点上就行,分式是不同于整式的另一类有理式,是代数式中重要的基本概念;相应地,分式方程是一类有理方程,解分式方程的过程比解整式方程更复杂些。

然而,分式或分式方程更适合作为某些类型的问题的数学模型,它们具有整式或整式方程不可替代的特殊作用。

教学中我们借助对分数的认识学习分式的内容,是一种类比的认识方法,这在本章学习中经常使用。

解分式方程时,化归思想很有用,分式方程一般要先化为整式方程再求解,并且要注意检验是必不可少的步骤。

这部分主要的的教学目标可以参考一以下几个方面: 1.以描述实际问题中的数量关系为背景,抽象出分式的概念,体会分式是刻画现实世界中数量关系的一类代数式。

2.类比分数的基本性质,了解分式的基本性质,掌握分式的约分和通分法则。

3.类比分数的四则运算法则,探究分式的四则运算,掌握这些法则。

4.结合分式的运算,将指数的讨论范围从正整数扩大到全体整数,构建和发展相互联系的知识体系。

5.结合分析和解决实际问题,讨论可以化为一元一次方程的分式方程,掌握这种方程的解法,体会解方程中的化归思想。

【知识要点解析】1.分式的定义:如果A 、B 表示两个整式,并且B 中含有字母,那么式子BA 叫做分式。

一般地,如果A ,B 表示两个整式,并且B 中含有字母,那么式子A B 叫做分式,其中,A 叫做分子,B 叫做分母.拓展 理解分式的概念,关键是看分母中是否含有字母,而与分子中是否含有字母无关,同时还应注意以下几点:(1)分式实际上是一个商式,它的分子是被除式,分母是除式,分数线相当于除号,同时也有括号的作用.(2)分式的形式和分数类似,但与分数有区别,根本区别在于分式的分母中含有字母.分母中含有字母是分式的一个重要标志.(3)判断一个式子AB是分式的条件:①A,B是整式;②B中含有字母,且B≠0.(4)判断一个代数式是不是分式,不能将原代数式进行变形后再判断,而必须按照原来的形式进行判断.分式有意义的条件:因为两式相除的除式不能等于0,即分式的分母不能为0,所以分式有意义的条件是:分母B不等于0,即当B≠0时,分式AB才有意义.分式值为零的条件:分式值为0的条件是分子等于0,分母不等于0,二者缺一不可.即当A=0而B≠0时,分子AB的值为0.【典型例题】(2014•上海,第8题4分)函数y=的定义域是x≠1.【解析】函数自变量的取值范围.根据分母不等于0列式计算即可得解.【解答】解:由题意得,x﹣1≠0,解得x≠1.故答案为:x≠1.【点评】本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.【变式训练】若代数式6265 x2-+-x x的值等于0 ,则x=_________.【解析】分式的值为零的条件.. 根据分式的值为零的条件可以求出x的值.【解答】解:由分式的值为零的条件得x2﹣5x+6=0,2x﹣6≠0,由x2﹣5x+6=0,得x=2或x=3,由2x﹣6≠0,得x≠3,∴x=2,故答案为2.【点评】本题考查了分式值为0的条件,若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.【变式训练】(2015•随州)若代数式+有意义,则实数x的取值范围是()A.x≠1 B.x≥0 C.x≠0 D.x≥0且x≠1【解析】二次根式有意义的条件;分式有意义的条件.先根据分式及二次根式有意义的条件列出关于x 的不等式组,求出x 的取值范围即可。

八年级数学上册《分式的化简求值》教案、教学设计

八年级数学上册《分式的化简求值》教案、教学设计
1.对分式性质的灵活运用不够熟练,容易在化简过程中出错。
2.分式运算中,特别是乘除法和加减法的混合运算,学生容易混淆,导致计算错误。
3.在解分式方程时,对等式性质的掌握不够牢固,可能难以找到解题的关键步骤。
针对以上情况,教学中应注重以下几点:
1.注重启发式教学,引导学生发现分式性质和运算法则,提高他们的观察力和思维能力。
八年级数学上册《分式的化简求值》教案、教学设计
一、教学目标
(一)知识与技能
1.理解分式的概念,掌握分式的基本性质,如约分、通分等,并能够灵活运用这些性质对分式进行化简。
2.掌握分式的乘除法、加减法法则,能够正确进行分式的四则运算,解决实际问题。
3.学会解分式方程,理解分式方程的解的意义,并能将其应用于解决实际问题。
2.教学过程:
-采用任务驱动法,设计一系列具有梯度的问题和练习,引导学生逐步掌握分式化简的方法和技巧。
-结合具体例题,讲解分式乘除法和加减法的运算规则,强调运算顺序和运算法则的重要性。
-通过小组合作和讨论,让学生在解决分式方程的过程中,学会转化问题和找到解题关键步骤。
-设计课堂互动环节,鼓励学生提问和分享解题心得,培养他们的表达能力和团队合作精神。
4.能够运用所学的分式知识,解决数学问题,提高解决问题的能力和逻辑思维能力。
(二)过程与方法
在教学过程中,采用以下方法:
1.通过实际问题的引入,激发学生的学习兴趣,引导学生主动探究分式的化简求值方法。
2.采用讲解、示范、讨论、练习等多种教学手段,帮助学生掌握分式的性质、运算法则和解方程的方法。
3.设计具有梯度、层次的练习题,让学生在解决问题的过程中,逐步提高分析问题、解决问题的能力。
3.分式的乘除法与加减法:介绍分式乘除法和加减法的运算规则,结合具体例题进行讲解。

八年级数学上册第十五章分式专题课堂八分式的化简求值课件

八年级数学上册第十五章分式专题课堂八分式的化简求值课件
6.有这样一道题:“计算x2-x2-2x+1 1 ÷xx2-+1x -x 的值,其中 x=2020”甲 同学把“x=2020”错抄成“x=2002”,但他的计算结果也正确,你说这是 怎么回事?于是甲同学认为无论 x 取何值,代数式的值都不变,他说得对 吗? 解:对.∵原式=xx-+11 ·x(xx-+11) -x =x-x=0,∴把 x=2020 错 抄成 x=2002,他的计算结果也正确
第十五章 分 式
专题课堂(八) 分式的化简求值
类型一 化简后直接代入 1.(河南中考)先化简,再求值:(x+1 1 -1)÷x2-x 1 ,其中 x= 2 +1.
解:当 x= 2 +1 时,原式=x-+x1 ·(x+1)x(x-1) =1-x=- 2
2.(2019·黄冈)先化简,再求值.
5a+3b ( a2-b2
解:原式=(2xx--23 -xx--22 )÷(xx--12)2 =xx--12 ·(xx--12)2 =x-1 1 , 当 x=0 时,原式=-1
5.(2019·安顺)先化简(1+x-2 3 )÷x2-x2-6x+1 9 ,再从不等式组
-2x<4, 3x<2x+4
的整数解中选一个合适的 x 的值代入求值.
解:原式=x-x-3+3 2 ×(x+(1x)-(3)x-2 1) =xx-+31 ,解不等式组
-2x<4①, 3x<2x+4② 得-2<x<4,∴其整数解为-1,0,1,2,3,∵要使 原分式有意义,∴x 可取 0,2.∴当 x=0 时,原式=-3(或当 x=2 时,
原式=-13 )
类型四 分式化简说理
解:原式=[(a+(2a)-(2)a-2 2) +a-1 2 ]·a(a-2 2) =(aa+-22 +
1 a-2

人教版数学八年级上册第十五章《分式》复习教案

人教版数学八年级上册第十五章《分式》复习教案

第15章分式单元要点分析教材内容本单元教学的主要内容:本单元主要内容是分式的概念、根本性质、分式运算以及分式方程的应用.本单元知识构造图.本单元教材分析:本单元是继整式之后对代数式的进一步研究,主要从三个方面展开讨论:1.密切分式与现实生活的联系,突出分式、分式方程的模型作用,•分式也是表示具体问题情境中数量关系的工具;分式方程那么是将具体问题“数学化〞的重要模型.本单元首先通过从分数到分式,以适移的手法引入分式概念,在分式的运算中安排了丰富的实际问题,让学生在这些实际问题中,学习法那么、应用法那么,感受分式运算的意义,理解算理.在学习分式方程时,教材设置了现实中的速度问题、工程问题等,让学生经历“建立分式方程模型〞这一数学化的过程,体会分式方程的意义与使用,培养抽象、概括能力.在分式方程应用方面,力求使应用问题贴近学生生活实际,增强学生解决问题的能力,激发学生的学习兴趣.2.注意数学思想方法的应用,突出培养学生的合情推理能力.•教材十分重视观察、类比、归纳、猜测等思维方法的应用.在分式根本性质的探索过程中,采用观察、类比的方法,让学生在讨论、交流中获得结论,在分式加减乘除运算法那么的探索中,与分数进展类比,得到有关结论;分式方程的概念也是通过抽象、概括获得的.这样,既渗透了常用的数学思维方法,又培养了学生的合情推理能力.3.适当降低分式运算的难度,注重对算理的理解、分式的化简、求值、•运算,是代数运算的根底,但它与分数非常类似.因此,适当控制难度、注意对算理的理解是本单元的特点.在分式运算方面,教材的例、习题难度都不大,运算步骤不多,注意一题多解,对分式方程,注重对解的合理性的讨论.三维目标1.知识与技能〔1〕熟练掌握分式的根本性质,会进展分式的约分、•通分和加减乘除混合运算,会解可化为一元一次方程的分式方程〔方程中分式不超过两个〕,会检验分式方程的根.〔2〕能解决一些与分式、分式方程有关的实际问题,具有一定的分析问题、•解决问题的能力和应用意识.2.过程与方法〔1〕经历用字母表示现实情境数量关系〔分式、分式方程〕的过程,•了解分式、分式方程的概念,体会分式、分式方程的模型思想,进一步开展符号感.〔2〕经历通过观察、归纳、类比、猜测,获得分式的根本性质、•分式乘除运算法那么、分式加减运算法那么的过程;开展学生的合情推理能力与代数恒等变形能力.3.情感、态度与价值观通过学习,获取代数知识的常用方法,感受代数学习的实际应用价值.重难点、关键1.重点:分式的混合运算以及分式方程的应用.2.难点:异分母的分式的通分,特别是分母是多项式的分式的通分,另一个是分式方程的“建模〞问题.3.关键:把握分式的根本性质,在通分中的充分应用.抓住最简公分母的寻找方法是解决通分这一难点的关键.复习与交流教学内容本节课主要内容是对本单元进展回忆.教学目标1.知识与技能会进展分式的根本运算〔加、减、乘、除、乘方〕,熟练掌握分式方程的解法,能应用“建模〞思想解决实际问题.2.过程与方法经历回忆分式概念、计算、应用的过程,提高观察、类比归纳、猜测等能力,.领会其算理.3.情感、态度与价值观培养学生的自主、合作、交流的意识,和严谨的学习态度,让学生体会知识的内在价值.重难点、关键1.重点:通过理解分式的根本性质,掌握分式的运算、应用.2.难点:分式的通分以及分式方程的“建模〞.3.关键:把握分式的根本性质,领会算理.教学准备教师准备:投影仪,制作与本节课有关的投影片,图片等.学生准备:做一份本单元知识小结.学法解析1.认知起点:在学习了不等式根本性质、约分、通分、混合运算,•以及分式方程、应用内容后进展反思.2.知识线索:3.学习方式:采用知识体系梳理,•合作交流的学习方式到达稳固提高本单元知识的目的.教学过程一、回忆交流,稳固反应【组织交流】教师活动:翻开投影机,先将学生分成四人小组,交流各自准备的单元小结,然后开展小组汇报.学生活动:小组合作交流,交流内容是〔1〕单元知识构造图;〔2〕课本P41“回忆与思考〞的5个问题;〔3〕自己的单元小结.活动形式:先小组合作交流,再小组汇报,师生互动.媒体使用:学生汇报中,可借用投影仪,辅助讲解.教师归纳:本章主要内容是分式的概念;分式的根本性质;分式混合运算和可化为一元一次方程的分式方程及其应用,这些内容在今后进一步学习方程、函数等知识时占有重要地位和作用.〔投影显示本单元知识体系,见课本P157〕1.分式的根本性质是分式恒等变形的依据,•正确理解和熟练掌握这一性质是学好分式的关键,因此学习中要注意以下三点:〔1〕根本性质中的字母表示整数,〔,A A M A A M B B M B B M⨯÷==⨯÷,M≠0〕 〔2〕要特别强调M≠0,且是一个整式,由于字母的取值可以是任意的,所以M•就有等于零的可能性,因此,应用根本性质时,重点要考察M 的值是否为零.2.约分,约分的目的是化简,关键是找分子和分母的最高公因式,•即系数的最大公约数、一样因式的最低次幂.3.通分,通分关键是确定n 个分式的公分母,•通常取各分母所有因式的最高次幂的积作公分母,这样的公分母叫最简公分母.4.分式的乘除法本质就是〔1〕因式分解,〔2〕约分.5.分式的加减法本质就是〔1〕通分,〔2〕分解因式,〔3〕约分.6.解分式方程的本质就是将分式方程化成整式方程,但要注意验根.【设计意图】让学生掌握课堂的主动权,以自主、合作、交流的手法调动学生的主观能动性.二、寓思与练,讨论交流【显示投影片1】演练题1:当x 取什么数时,以下分式有意义?〔1〕22461;(2);(3)512x x x x m-++. 思路点拨:〔1〕令5x+1=0,相应求出x 的值,然后x 不取这个值时分式必有意义.〔 x≠-15〕;〔2〕由于无论x 取何值x 2+2的值均大于零,因此,x 取任何实数,此分式都有意义;〔3〕因为任何数的平方均为非负数,那么m 2≥0,所以m≠0即可.演练题2:当x 取什么数,以下分式的值为零?〔1〕23||2;(2)47(2)(5)x x x x x +-++-. 思路点拨:令分子等于零,由此求出x 的值,此时应考虑分母是否等于零,•假设等于零,那么分式无意义,应舍去.〔1〕x=-32;〔2〕x=2. 【活动方略】教师活动:操作投影仪,引导学生训练,并请学生上台板演.学生活动:独立完成演练题1,2,以练促思.三、随堂练习,稳固深化1.x 为何值时,2||5x x-的值为零;〔x±5〕 2.x 为何值时,259x x +-没有意义;〔x=9〕 3.x 为何值时,6721a a -+的值等于1.〔a=2〕 4.课本P158复习题15第6题.四、范例学习,提高认知例1 计算.2244222815(1);(2)()(66).583()[:(1),(2)]6x y a b xy x y x y ab xy x y ax xy x y b -÷-++答案 思路点拨:按法那么进展分式乘除法运算,应注意,如果运算结果不是最简分式,一定要约分,对于分式的乘除混合运算,按乘除的顺序依次进展;当分子、分母是多项式时,一般先分解因式,并在运算过程中约分,使运算简化. 例2 计算.222222222(1);11112(2)()().4444224xy y x x y y x x y b a ab b a ab b a b a b a b -+--+-÷+-+++-+- 思路点拨:〔1〕•分式的加减运算就是把异分母的加减化成同分母的分式的加减,因此,在通分过程中找出最简公分母是关键.〔2〕对于分式的混合运算,•应注意运算顺序.【活动方略】教师活动:通过分析例1、例2的算理,增强学生的运算能力,提高运算的准确性.学生活动:参与例1、例2的分析,同教师一道领会算理,掌握正确的学习方法.五、随堂练习,稳固深化1.计算.22225(1)221(2)1111(3)1();()121x xx x x x a a a a a a a a +----+-+--÷-+--+ 2.先化简,再求值:()(2)(1)x y x y y y x y x x -÷+-÷+,其中x=115,.[]253y = 六、联系实际,实践应用【显示投影片2】例3 解分式方程:1-6351x x x+=-+ [x=2] 思路点拨:解分式方程根本思路是方程两边都乘以各分母的最简公分母,使方程化为整式方程,但解后必须验根.例4 某水泵厂在一定天数内生产4 000台水泵,工人为了支援祖国现代化建立,每天比原方案增加25%,可提前10天完成任务,问原方案每天生产多少台?〔80台〕思路点拨:工程问题常用的关系式是时间=总工作量日产量,设原方案每天生产x台,•列式4000400014x x x-+=10.【活动方略】教师活动:操作投影仪,启发引导学生弄清题意,正确解答.学生活动:利用例3、例4,复习分式方程解法,以及应用题“建模〞方法,并归纳小结.七、继续演练,反复认识【显示投影片3】1.解方程:8177xx x----=8〔无解〕2.一列火车从车站开出,预计行程450千米,当它开出3小时后,因出现特殊情况多停一些,耽误30分钟,后来把速度提高了倍,结果准时到达目的地,•求这列火车原来的速度.[提示:设火车原速为x千米/小时,列车450314531.22xx x-+=,x=75]3.课本P159“复习题15〞第9,10题.八、布置作业,专题突破1.课本P158“复习题15〞第1,2〔3〕〔4〕〔6〕,3〔2〕〔4〕〔6〕〔8〕,4,5,8题.2.选用课时作业设计.九、课后反思。

八年级数学上册第15章分式专题强化七分式的化简求值技巧课件新版新人教版20180823263

八年级数学上册第15章分式专题强化七分式的化简求值技巧课件新版新人教版20180823263

15、如果没有人为你遮风挡雨,那就学会自己披荆斩棘,面对一切,用倔强的骄傲,活出无人能及的精彩。 16、成功的秘诀在于永不改变既定的目标。若不给自己设限,则人生中就没有限制你发挥的藩篱。幸福不会遗漏任何人,迟早有一天它会找到你。 17、一个人只要强烈地坚持不懈地追求,他就能达到目的。你在希望中享受到的乐趣,比将来实际享受的乐趣要大得多。 18、无论是对事还是对人,我们只需要做好自己的本分,不与过多人建立亲密的关系,也不要因为关系亲密便掏心掏肺,切莫交浅言深,应适可而止。 19、大家常说一句话,认真你就输了,可是不认真的话,这辈子你就废了,自己的人生都不认真面对的话,那谁要认真对待你。 20、没有收拾残局的能力,就别放纵善变的情绪。 15、所有的辉煌和伟大,一定伴随着挫折和跌倒;所有的风光背后,一定都是一串串揉和着泪水和汗水的脚印。 16、成功的反义词不是失败,而是从未行动。有一天你总会明白,遗憾比失败更让你难以面对。 17、没有一件事情可以一下子把你打垮,也不会有一件事情可以让你一步登天,慢慢走,慢慢看,生命是一个慢慢累积的过程。 18、努力也许不等于成功,可是那段追逐梦想的努力,会让你找到一个更好的自己,一个沉默努力充实安静的自己。 19、你相信梦想,梦想才会相信你。有一种落差是,你配不上自己的野心,也辜负了所受的苦难。 20、生活不会按你想要的方式进行,它会给你一段时间,让你孤独、迷茫又沉默忧郁。但如果靠这段时间跟自己独处,多看一本书,去做可以做的事,放下过去的人,等你度过低潮,那些独处的时光必定能照亮你的路,也是这些不堪陪你成熟。所以,现在没那么糟,看似生活对你的亏欠,其实都是祝愿。 5、心情就像衣服,脏了就拿去洗洗,晒晒,阳光自然就会蔓延开来。阳光那么好,何必自寻烦恼,过好每一个当下,一万个美丽的未来抵不过一个温暖的现在。 6、无论你正遭遇着什么,你都要从落魄中站起来重振旗鼓,要继续保持热忱,要继续保持微笑,就像从未受伤过一样。 7、生命的美丽,永远展现在她的进取之中 ;就像大树的美丽,是展现在它负势向上高耸入云的蓬勃生机中;像雄鹰的美丽,是展现在它搏风击雨如苍天之魂的翱翔中;像江河的美丽,是展现在它波涛汹涌一泻千里的奔流中。 8、有些事,不可避免地发生,阴晴圆缺皆有规律,我们只能坦然地接受;有些事,只要你愿意努力,矢志不渝地付出,就能慢慢改变它的轨迹。 9、与其埋怨世界,不如改变自己。管好自己的心,做好自己的事,比什么都强。人生无完美,曲折亦风景。别把失去看得过重,放弃是另一种拥有 ;不要经常艳羡他人,人做到了,心悟到了,相信属于你的风景就在下一个拐弯处。 10、有些事想开了,你就会明白,在世上,你就是你,你痛痛你自己,你累累你自己,就算有人同情你,那又怎样,最后收拾残局的还是要靠你自己。 11、人生的某些障碍,你是逃不掉的。与其费尽周折绕过去,不如勇敢地攀登,或许这会铸就你人生的高点。 12、有些压力总是得自己扛过去,说出来就成了充满负能量的抱怨。寻求安慰也无济于事,还徒增了别人的烦恼。 13、认识到我们的所见所闻都是假象,认识到此生都是虚幻,我们才能真正认识到佛法的真相。钱多了会压死你,你承受得了吗?带,带不走,放,放不下。时时刻刻发悲心,饶益众生为他人。 14、梦想总是跑在我的前面。努力追寻它们,为了那一瞬间的同步,这就是动人的生命奇迹。 15、懒惰不会让你一下子跌倒,但会在不知不觉中减少你的收获 ;勤奋也不会让你一夜成功,但会在不知不觉中积累你的成果。人生需要挑战,更需要坚持和勤奋!

八年级数学上册第15章分式专题强化七分式的化简求值技巧课件新版新人教版20180823263

八年级数学上册第15章分式专题强化七分式的化简求值技巧课件新版新人教版20180823263

强化角度 7 巧用分配律 x 2 7.( - )· (x2-4)-x2. x-2 x+2 x 2 解:原式= · (x2-4)- · (x2-4)-x2=x2+2x-2x+4-x2=4. x-2 x+2
强化角度 8 巧用乘法公式 1 1 1 8.计算(x+x)(x2+ 2)(x4+ 4)(x2-1)(x≠1 且 x≠0). x x 1 1 1 1 1 解:∵x≠0 且 x≠1,∴原式=[(x-x)(x+x)(x2+ 2)(x4+ 4)· (x2-1)÷ (x-x)] x x
强化角度 10 设参数求值 3x+2y-3z x y z 10.已知 = = (xyz≠0),求 的值. 2 3 4 2x+y+5z
3· 2k+2· 3k-3· 4k x y z 解:设 = = =k,则 x=2k,y=3k,z=4k,∴原式= = 2 3 4 2· 2k+3k+5· 4k 0. 强化角度 11 巧取倒数求值
a+1 a-1 2 4 2 2 解 : 原 式= - - - = - - a-1a+1 a+1a-1 a2+1 a4+1 a2-1 a2+1 2a2+1 2a2-1 4 4 4 4 = 2 - - = - = 4 4 4 4 a +1 a +1 a -1 a +1 a -1a2+1 a2-1a2+1 4a4+1 4a4-1 8 - = . a4-1a4+1 a4-1a4+1 a8-1
y+3yy-3 y+3 y+32 y y2 解:原式= - = y - = - = y+3 yy+3 yy+3 yy+3 y+3y-3 y2+6y+9-y2 6y+9 = 2 . y +3y yy+3
强化角度 3 逐步通分 3.计算: 1 1 2 4 - - 2 - 4 . a-1 a+1 a +1 a +1
数学 八年级 上册•R
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

类型一:分式的混合运算 分式的化类型二:先化简,再求值 简及求值类型三:特殊法巧妙化简分式
类型四:条件分式求值
类型 1 分式的混合运算 1. 下列计算正确的是( D ) A.a+2-2-4 a=2-a2 a B.a-b+a2+b2b=aa2- +bb2 C.m2-1 m+2mm-2-52=2m(mm--2 1) D.x2-4 4+x+1 2=x-1 2
类型 5 巧用运算律化简分式 10. (黄冈模拟)对于正数 x,规定 f(x)=1+1 x,例如: f(4)=1+1 4=15,则 f(2018)+f(2017)+…+f(2)+f(1)+f(12) +…+f(20117)+f(20118)= 2017.5 (提示:分组相加法, f(2018)+f(20118)=1+12018+1+120118=1).
先化简后求值是解代数式化简求值问题的基本策 略,分式的化简与求值通常分有条件和无条件两类:
给出一定的条件并在此条件下求分式的值的问题称 为有条件的分式化简与求值,解这类问题,既要瞄准目 标,又要抓住条件,既要依据条件达到目标,又要根据 目标变换条件,不但要经常用到整式化简求值的知识和 方法,而且还常常根据条件的特点灵活运用以下技巧: 直接代入法;整体代入法;引入参数法;拆分变形,取 倒数或利用倒数关系的方法等.
7. (a-a b-a2-2aa2b+b2)÷(a-a b+b2-a2 a2),其中 a,b
满足 a2-2a+b2-4b+5=0. 解:∵a2-2a+b2-4b+5=0,
∴a2-2a+1+b2-4b+4=0,
∴(a-1)2+(b-2)2=0.
∴a-1=0,b-2=0,∴a=1,b=2.
(
a a-b
3 A.2
B.-32
C.12
D.-12
5. 先化简,再求值:(x-2 1+x+1 1)·(x2-1),其中 x= 3-1 3.
解:原式=3x+1,当 x= 33-1时,原式= 3.
类型 3 分式的条件求值 6. 已知 a2+3ab+b2=0(a≠0,b≠0),则代数式ab+ab的 值等于 -3 .
类型 7 巧取倒数法化简分式 14. 已知x2-xx+1=7,求x4+xx22+1的值(提示:巧取
倒数法). 解:由已知得 x≠0,所以x2-xx+1=17,即 x+1x=87,
所以x4+xx22+1=x2+x12+1=(x+1x)2-1=(87)2-1=1459,故 x4+xx22+1=4195.
11. 计算:x-1 2-x-2 1+x+2 1-x+1 2.
解:原式=(x-1 2-x+1 2)+(x+2 1-x-2 1)(加法结合律)

(x+2)-(x-2) (x-2)(x+2)
+2((x-x+1) 1)-(2( x-x1+)1)
(分
母利用平方差公式)
=x2-4 4-x2-4 1=4((x2x-2-1) 4)-(4( x2-x2- 1)4)
+…+(x+8)1(x+9)= x2+9x (提示:裂项相消
法).
13. 计算:xx+ +21-xx+ +32+xx--45-xx- -43. 解:原式=x+x+1+1 1-x+x+2+2 1+x-x-4-4 1-x-x-3-3 1= (1+x+1 1)-(1+x+1 2)+(1-x-1 4)-(1-x-1 3)(裂项化简) =x+1 1-x+1 2+x-1 3-x-1 4=(x+1 1+x-1 3)-(x-1 2 +x-1 4)(分母大与小结合) =(x+x-13)+(x+x-13)-(x+x-24)+(x+x-24)

a2 a2-2ab+b2
)÷(
a a-b

a2 b2-a2
)

a(a-b)-a2 a(a+b)-a2 (a-b)2 ÷ a2-b2
=(a--abb)2·(a+b)a(b a-b)=-aa+ -bb, 当 a=1,b=2 时,原式=-11+ -22=3.
类型 4 分式的赋值求值 8. 先化简xx22- -49÷1-x-1 3,再从不等式 2x-3<7 的 正整数解中选一个使原式有意义的数代入求值.
பைடு நூலகம்
15. 已知 a,b,c 为实数,且aa+bb=31,bb+cc=41,aa+cc =15,求ab+abbcc+ac的值.
解:由题意知:abc≠0,将已知取倒数得:a+ abb=3, b+ bcc=4,a+ acc=5,
即:a1+1b=3,b1+1c=4,a1+1c=5. ∴1a+1b+1c=12×(3+4+5)=6,
=(x2-4)12(x2-1)=x4-152x2+4.
类型 6 巧用裂项法化简分式
12. 由1×12=21=1-21,2×13=16=12-13,3×14=112=13-
1 4…
你能总结出n(n1+1)= 1n-n+1 1 (n 为整数),并试着
化简x(x+1 1)+(x+1)1(x+2)+(x+2)1(x+3) 9
2. 已知 a,b 为实数,且 ab=1,设 P=a+a 1+b+b 1, Q=a+1 1+b+1 1,则 P = Q(填“>”“<”或“=”).
3. 计算:(1-a2+a2+ 4a8+4)÷a42a+-24a. 解:原式=a+a 2.
类型 2 分式的化简求值
4. 当 a=2 时,a2-a22a+1÷1a-1的结果是( D )
解:原式=( (xx+ +23) )( (xx- -24) ), 解不等式得:x<5,其正整数解为 1,2,3,4, 当 x=1 时,原式=14.
9. 已知(x-1)0,(y-2)-2 在实数范围内均有意义,化 简:xx22+ -yy22-xx+-yy÷(x+y)2x2(y x-y),
并选择一组你喜欢的 x,y 的值代入求值. 解:依题意:x≠1,y≠2,且 xy≠0,且 x≠±y, 原式=x+y,例如可取 x=3,y=4, 原式=7.
=(x+12)x-(2x-3)-(x+22)x-(2x-4)
=(2x-2)(x+1)1(x-3)-(x+2)1(x-4) =(2x-2)(x(+x12- )( 2x-x-8) 3)-((x+x2-2)2x(-x3-)4) =(2x-2)(x+1)(x-3)-(5 x+2)(x-4) =(x+1)(x+-21)0x(+x1-0 3)(x-4).
相关文档
最新文档