链表的基本操作-数据结构实验报告

合集下载

单链表的基本操作实验报告

单链表的基本操作实验报告

单链表的基本操作实验报告单链表的基本操作实验报告引言:单链表是一种常见的数据结构,它由一系列节点组成,每个节点包含一个数据元素和一个指向下一个节点的指针。

在本次实验中,我们将学习和实践单链表的基本操作,包括创建链表、插入节点、删除节点以及遍历链表等。

一、实验目的本次实验的主要目的是掌握单链表的基本操作,包括链表的创建、插入节点、删除节点和遍历链表。

通过实践操作,加深对单链表的理解,并掌握如何应用单链表解决实际问题。

二、实验过程1. 创建链表首先,我们需要创建一个空链表。

链表可以通过一个头节点来表示,头节点不存储数据,只用于标识链表的起始位置。

我们可以定义一个指针变量head,将其指向头节点。

2. 插入节点在链表中插入节点是常见的操作。

我们可以选择在链表的头部、尾部或者指定位置插入节点。

插入节点的过程可以分为以下几个步骤:a. 创建一个新节点,并为其赋值;b. 找到要插入位置的前一个节点;c. 将新节点的指针指向前一个节点的下一个节点;d. 将前一个节点的指针指向新节点。

3. 删除节点删除节点是另一个常见的操作。

我们可以选择删除链表的头节点、尾节点或者指定位置的节点。

删除节点的过程可以分为以下几个步骤:a. 找到要删除节点的前一个节点;b. 将前一个节点的指针指向要删除节点的下一个节点;c. 释放要删除节点的内存空间。

4. 遍历链表遍历链表是为了查看链表中的元素。

我们可以从头节点开始,依次访问每个节点,并输出节点的值。

三、实验结果在本次实验中,我们成功完成了单链表的基本操作。

通过创建链表、插入节点、删除节点和遍历链表等操作,我们可以方便地对链表进行增删改查操作。

四、实验总结通过本次实验,我们对单链表的基本操作有了更深入的了解。

单链表是一种非常重要的数据结构,广泛应用于各个领域。

掌握了单链表的基本操作,我们可以更好地解决实际问题,并且为以后学习更复杂的数据结构打下坚实的基础。

在实验过程中,我们还发现了一些问题和不足之处。

北工大实验报告

北工大实验报告

一、实验名称数据结构实验二:链表的基本操作二、实验目的1. 理解链表的基本概念和结构。

2. 掌握链表的创建、插入、删除、查找等基本操作。

3. 提高编程能力,巩固数据结构知识。

三、实验环境1. 操作系统:Windows 102. 编程语言:C++3. 开发环境:Visual Studio 2019四、实验原理链表是一种常见的线性数据结构,它由一系列节点组成,每个节点包含数据和指向下一个节点的指针。

链表具有以下特点:1. 无固定长度,可以根据需要动态地添加或删除节点。

2. 链接方式灵活,便于实现各种操作。

3. 适合存储具有动态变化的数据。

本实验主要实现以下功能:1. 创建链表:根据用户输入的数据,创建一个单链表。

2. 插入节点:在链表的指定位置插入一个新节点。

3. 删除节点:删除链表中的指定节点。

4. 查找节点:在链表中查找一个指定的节点。

5. 打印链表:遍历链表并打印所有节点数据。

五、实验步骤1. 创建链表```cppstruct ListNode {int data;ListNode next;ListNode(int x) : data(x), next(nullptr) {}};ListNode createList() {ListNode head = nullptr, tail = nullptr;int data;cout << "请输入链表数据(输入-1结束):" << endl; while (cin >> data && data != -1) {ListNode node = new ListNode(data);if (head == nullptr) {head = node;tail = node;} else {tail->next = node;tail = node;}}return head;}```2. 插入节点```cppvoid insertNode(ListNode head, int data, int position) { ListNode node = new ListNode(data);if (position == 0) {node->next = head;head = node;} else {ListNode current = head;for (int i = 0; i < position - 1; ++i) {if (current == nullptr) {cout << "插入位置超出链表长度!" << endl; return;}current = current->next;}node->next = current->next;current->next = node;}}```3. 删除节点```cppvoid deleteNode(ListNode head, int position) {if (head == nullptr) {cout << "链表为空!" << endl;return;}if (position == 0) {ListNode temp = head;head = head->next;delete temp;} else {ListNode current = head;for (int i = 0; i < position - 1; ++i) {if (current == nullptr) {cout << "删除位置超出链表长度!" << endl; return;}current = current->next;}if (current->next == nullptr) {cout << "删除位置超出链表长度!" << endl;return;}ListNode temp = current->next;current->next = temp->next;delete temp;}}```4. 查找节点```cppListNode findNode(ListNode head, int data) { ListNode current = head;while (current != nullptr) {if (current->data == data) {return current;}current = current->next;}return nullptr;}```5. 打印链表```cppvoid printList(ListNode head) {ListNode current = head;while (current != nullptr) {cout << current->data << " ";current = current->next;}cout << endl;}```六、实验结果与分析通过以上步骤,成功实现了链表的基本操作。

数据结构实验报告

数据结构实验报告

数据结构实验报告
本次数据结构实验的任务主要包括两部分,分别是学习使用链表数据结构和掌握链表排序算法。

在此基础上,我们完成了一组关于链表基本操作和排序算法的实验。

实验一:链表基本操作
在这个实验中,我们学习了链表的插入、删除、查找等基本操作。

链表的插入和删除操作是通过一个链表节点来实现的。

链表节点包括一个数据域和一个指向下一个节点的指针域。

通过修改指针域,我们就可以实现节点的插入和删除操作。

具体来说,我们编写了一个基本的链表程序,其中包括链表头指针初始化、链表节点插入、链表节点删除、查找指定节点等操作。

通过对程序的调试和功能测试,我们验证了链表操作的正确性。

实验二:链表排序算法
在这个实验中,我们学习了链表排序算法,并编写了链表的快速排序和归并排序两种算法。

快速排序是一种分治思想的排序算法,通过选择一个基准元素,分别将小于和大于基准元素的元素分别放在它的左右两边,再递归地对左右两个子序列进行排序,最终得到有序序列。

归并排序是另一种经典的排序算法,它利用归并思想,将两个有序序列合并成一个更大的有序序列,这个过程不断重复,最终得到完整的有序序列。

通过实现这两种排序算法,并在大样本数据下进行测试,我们验证了算法的正确性和效率。

实验总结:
通过本次实验,我们深入学习了链表数据结构的相关基本操作和排序算法的实现原理。

同时,在实际编程实践中,我们也掌握了链表程序的调试、测试和优化技术。

这些都是我们今后从事软件开发工作需要掌握的重要技能,在这个方面的积累将会对我们有很大帮助。

数据结构实验报告2

数据结构实验报告2

数据结构实验报告2一、实验目的本次数据结构实验旨在通过实际操作和编程实践,深入理解和掌握常见的数据结构,如链表、栈、队列、树等,并能够运用所学知识解决实际问题,提高编程能力和算法设计能力。

二、实验环境本次实验使用的编程语言为C++,开发环境为Visual Studio 2019。

三、实验内容(一)链表的实现与操作1、单向链表的创建首先,定义了链表节点的结构体,包含数据域和指向下一个节点的指针域。

然后,通过函数实现了单向链表的创建,从用户输入获取节点的数据,依次创建新节点并连接起来。

2、链表的遍历编写函数实现对单向链表的遍历,依次输出每个节点的数据。

3、链表的插入与删除实现了在指定位置插入节点和删除指定节点的功能。

插入操作时,需要找到插入位置的前一个节点,修改指针完成插入。

删除操作时,同样找到要删除节点的前一个节点,修改指针并释放删除节点的内存。

(二)栈的实现与应用1、栈的基本操作使用数组实现了栈的数据结构,包括入栈、出栈、判断栈空和获取栈顶元素等操作。

2、表达式求值利用栈来实现表达式求值的功能。

将表达式中的数字和运算符分别入栈,按照运算规则进行计算。

(三)队列的实现与应用1、队列的基本操作使用循环数组实现了队列,包括入队、出队、判断队空和队满等操作。

2、模拟银行排队系统通过创建队列来模拟银行客户的排队情况,实现客户的入队和出队操作,统计平均等待时间等。

(四)二叉树的遍历1、二叉树的创建采用递归的方式创建二叉树,用户输入节点数据,构建二叉树的结构。

2、先序、中序和后序遍历分别实现了二叉树的先序遍历、中序遍历和后序遍历,并输出遍历结果。

四、实验结果与分析(一)链表实验结果成功创建、遍历、插入和删除单向链表。

通过对链表的操作,深入理解了链表的动态存储特性和指针的运用。

在插入和删除操作中,能够正确处理指针的修改和内存的释放,避免了内存泄漏和指针错误。

(二)栈实验结果栈的基本操作运行正常,能够正确实现入栈、出栈等功能。

数据结构单链表实验报告

数据结构单链表实验报告

数据结构单链表实验报告数据结构单链表实验报告一、实验目的本次实验的主要目的是通过实现单链表数据结构,加深对链表的理解,并通过实际操作掌握链表的基本操作。

二、实验环境1.操作系统:Windows 102.开发环境:C/C++语言3.开发工具:Visual Studio 2019三、实验内容本次实验的内容包括以下几个方面:1.单链表的定义与初始化1.1 单链表的结构定义1.2 创建一个空链表1.3 判断链表是否为空2.单链表的基本操作2.1 在链表头部插入节点2.3 在指定位置插入节点2.4 删除链表的指定节点2.5 查找链表中指定位置的节点2.6 修改链表中指定位置的节点2.7 输出链表中的所有节点3.单链表的应用示例3.1 操作链表实现栈3.2 操作链表实现队列3.3 链表逆置四、实验步骤与结果1.实验步骤1.1 定义一个节点结构体,包含数据域和指针域 1.2 创建一个空链表1.3 插入节点到链表的指定位置1.4 删除链表中的指定节点1.5 修改链表中的指定节点1.7 实现链表的应用示例2.实验结果经过以上步骤的操作,我们成功实现了单链表的各种基本操作,并实现了链表作为栈和队列的应用示例。

五、实验总结通过本次实验,我们深入理解了单链表的原理和基本操作,掌握了链表的插入、删除、查找等操作方法。

同时,我们还学会了如何应用链表来实现栈和队列等数据结构。

通过实际操作,巩固了对数据结构的理解和应用能力。

附件:无法律名词及注释:1.数据结构:是计算机存储、组织数据的方式,是指一组数据的表达方式,以及定义在该组数据上的一组操作。

2.链表:链表是一种常见的数据结构,用于存储有序的元素集合。

每个节点包含一个元素和一个指向下一个节点的指针。

实验二 链表的基本操作

实验二 链表的基本操作

实验二链表的基本操作链表是一种常见的数据结构,它由一系列节点组成,每个节点包含数据和指向下一个节点的指针。

链表的基本操作包括插入、删除和查找节点,这些操作在实际编程中非常常见且重要。

我们来看链表的插入操作。

链表的插入操作可以将新节点插入到链表的任意位置,包括链表的头部、尾部或者中间位置。

插入操作的具体步骤如下:1. 创建一个新节点,并为新节点赋值。

2. 将新节点的指针指向原链表中要插入位置的前一个节点。

3. 将原链表中要插入位置的前一个节点的指针指向新节点。

4. 将新节点的指针指向原链表中要插入位置的后一个节点。

接下来是链表的删除操作。

链表的删除操作可以删除链表中的任意节点,包括链表的头部、尾部或者中间位置。

删除操作的具体步骤如下:1. 找到要删除的节点的前一个节点。

2. 将要删除的节点的前一个节点的指针指向要删除的节点的下一个节点。

3. 释放要删除的节点的内存空间。

最后是链表的查找操作。

链表的查找操作可以根据节点的值或者位置来查找节点。

查找操作的具体步骤如下:1. 遍历链表,依次比较节点的值或者位置,直到找到目标节点。

2. 返回目标节点的值或者位置。

除了基本的插入、删除和查找操作,链表还有一些其他的操作,如获取链表的长度、反转链表等。

获取链表的长度可以通过遍历链表并计数节点的数量来实现。

反转链表可以通过修改节点的指针的指向来实现,具体步骤如下:1. 遍历链表,依次修改每个节点的指针的指向,将指针指向上一个节点。

2. 最后将头节点的指针指向空。

链表的基本操作在实际编程中非常常见且重要。

它们可以用于实现各种功能和算法,如链表的排序、合并两个链表等。

在使用链表的过程中,我们需要注意链表为空或者操作位置无效的情况,以避免出现错误。

链表是一种常见的数据结构,具有灵活性和高效性。

了解链表的基本操作对于编程非常重要,它们可以帮助我们实现各种功能和算法。

通过学习和掌握链表的基本操作,我们可以更好地应用链表来解决实际问题。

链表实验报告总结

链表实验报告总结

篇一:链表实验报告数据结构实验报告姓名;方钢学号:20105567 专业:电子商务班级: 10-1班指导教师:实验时间:实验地点:新区实验楼4楼(实验题目)单链表实验1.实验内容和要求1.1实验要求①本次实验中的链表结构均为带头结点的单链表;②链表结构定义,算法实现放入库文件“linklist.h”;运算和变量命名直观易懂,并有相应的注释1.2实验内容&lt;1&gt;求链表中第i个结点的指针(函数),若不存在,则返回null。

&lt;2&gt;在第i 个结点前插入值为x的结点。

&lt;3&gt;删除链表中第i个元素结点。

&lt;4&gt;在一个递增有序的链表l中插入一个值为x的元素,并保持其递增有序特性。

&lt;5&gt;将单链表l中的奇数项和偶数项结点分解开(元素值为奇数、偶数),申请2个头结点,把分开的奇数项和偶数项分别链接到这2个头结点上,然后再将这两个新链表同时输出在屏幕上,并保留原链表的显示结果,以便对照求解结果。

&lt;6&gt;求两个递增有序链表l1和l2中的公共元素,并以同样方式连接成链表l3。

2.实验目的2.1 理解线性表的链式存储结构。

2.2熟练掌握单链表结构及有关算法的设计。

2.3根据具体问题的需要,设计出合理的表示数据的链表结构,并设计相关算法。

3.数据结构设计&lt;1&gt;求链表中第i个结点的指针(函数),若不存在,则返回null。

实验代码node *l,*p;int i; createnode(*&amp;l); //尾插法创建一个链表,cout&lt;&lt;链表包含:&lt;&lt;endl;p=l-&gt;next; while(p){cout&lt;&lt;p-&gt;data&lt;&lt;,;p=p-&gt;next; }cout&lt;&lt;endl;cout&lt;&lt;请输入待求元素序号:;cin&gt;&gt;i; locatenode (l, i, &amp;p );if(p!=null)cout&lt;&lt;序号&lt;&lt;i&lt;&lt;的元素值为:&lt;&lt;p-&gt;data&lt;&lt;endl;elsecout&lt;&lt;null&lt;&lt;endl;destroylist(l); //销毁链表,释放heap内存_crtdumpmemoryleaks(); //debug 模式下检测是否内存泄漏测试截图&lt;2&gt;在第i个结点前插入值为x的结点。

数据结构实验报告

数据结构实验报告

数据结构实验报告一、实验目的数据结构是计算机科学中重要的基础课程,通过本次实验,旨在深入理解和掌握常见数据结构的基本概念、操作方法以及在实际问题中的应用。

具体目的包括:1、熟练掌握线性表(如顺序表、链表)的基本操作,如插入、删除、查找等。

2、理解栈和队列的特性,并能够实现其基本操作。

3、掌握树(二叉树、二叉搜索树)的遍历算法和基本操作。

4、学会使用图的数据结构,并实现图的遍历和相关算法。

二、实验环境本次实验使用的编程环境为具体编程环境名称,编程语言为具体编程语言名称。

三、实验内容及步骤(一)线性表的实现与操作1、顺序表的实现定义顺序表的数据结构,包括数组和表的长度等。

实现顺序表的初始化、插入、删除和查找操作。

2、链表的实现定义链表的节点结构,包含数据域和指针域。

实现链表的创建、插入、删除和查找操作。

(二)栈和队列的实现1、栈的实现使用数组或链表实现栈的数据结构。

实现栈的入栈、出栈和栈顶元素获取操作。

2、队列的实现采用循环队列的方式实现队列的数据结构。

完成队列的入队、出队和队头队尾元素获取操作。

(三)树的实现与遍历1、二叉树的创建以递归或迭代的方式创建二叉树。

2、二叉树的遍历实现前序遍历、中序遍历和后序遍历算法。

3、二叉搜索树的操作实现二叉搜索树的插入、删除和查找操作。

(四)图的实现与遍历1、图的表示使用邻接矩阵或邻接表来表示图的数据结构。

2、图的遍历实现深度优先遍历和广度优先遍历算法。

四、实验结果与分析(一)线性表1、顺序表插入操作在表尾进行时效率较高,在表头或中间位置插入时需要移动大量元素,时间复杂度较高。

删除操作同理,在表尾删除效率高,在表头或中间删除需要移动元素。

2、链表插入和删除操作只需修改指针,时间复杂度较低,但查找操作需要遍历链表,效率相对较低。

(二)栈和队列1、栈栈的特点是先进后出,适用于函数调用、表达式求值等场景。

入栈和出栈操作的时间复杂度均为 O(1)。

2、队列队列的特点是先进先出,常用于排队、任务调度等场景。

链表的基本操作 数据结构实验报告

链表的基本操作 数据结构实验报告

大学数据结构实验报告课程名称数据结构实验第(四)次实验实验名称链表的基本操作学生姓名于歌专业班级学号实验成绩指导老师(签名)日期2018年10月01日一、实验目的1. 学会定义单链表的结点类型,实现对单链表的一些基本操作和具体的函数定义,了解并掌握单链表的类定义以及成员函数的定义与调用。

2. 掌握单链表基本操作及两个有序表归并、单链表逆置等操作的实现。

二、实验要求1.预习C语言中结构体的定义与基本操作方法。

2.对单链表的每个基本操作用单独的函数实现。

3.编写完整程序完成下面的实验内容并上机运行。

4.整理并上交实验报告。

三、实验内容:1.编写程序完成单链表的下列基本操作:(1)初始化单链表La(2)在La中插入一个新结点(3)删除La中的某一个结点(4)在La中查找某结点并返回其位置(5)打印输出La中的结点元素值(6)清空链表(7)销毁链表2 .构造两个带有表头结点的有序单链表La、Lb,编写程序实现将La、Lb合并成一个有序单链表Lc。

四、思考与提高:1.如果上面实验内容2中合并的表内不允许有重复的数据该如何操作?2.如何将一个带头结点的单链表La分解成两个同样结构的单链表Lb,Lc,使得Lb中只含La表中奇数结点,Lc中含有La表的偶数结点?五、实验设计1.编写程序完成单链表的下列基本操作:(1)初始化单链表LaLinkList InitList(){int i,value,n;LinkList H=(LinkList)malloc(sizeof(LNode));LinkList P=H;P->next=NULL;do{printf("请输入链表的长度:");scanf("%d",&n);if(n<=0)printf("输入有误请重新输入!\n");}while(n<=0);printf("请输入各个元素:\n");for(i=0; i<n; i++){scanf("%d",&value);LinkList NEW = (LinkList)malloc(sizeof(LNode)); NEW->data=value;P->next=NEW;NEW->next=NULL;P=NEW;}printf("链表建立成功!\n");return H->next;}(2)在La中插入一个新结点LinkList InsertList(LinkList L,int i,ElemType value) {LinkList h,q,t=NewLNode(t,value);int x=0;h=q=L;if(i==1)t->next=h, h=t;else{while(x++<i-2)q=q->next;t->next=q->next;q->next=t;}printf("插入成功!\n");return h;}(3)删除La中的某一个结点LinkList DeleteList(LinkList L,int i){LinkList h,q,de;int x=0;h=q=L;int t;if(i==1)h=h->next;else{while(x++<i-2)q=q->next;de=q->next;if(de->next==NULL)q->next=NULL;elseq->next=de->next;}printf("删除成功!\n");return h;}(4)在La中查找某结点并返回其位置Status LocateList(LinkList L,ElemType value){LinkList q=L;int i=0,t;while(q!=NULL){i++;if(q->data==value){printf("该结点在链表中的位置为第%d个\n",i); return OK;}q=q->next;}printf("该链表中没有该结点!\n");return ERROR;}(5)打印输出La中的结点元素值Status Print(LinkList L){LinkList q=L;printf("该链表的每个元素为:\n");while(q!=NULL){printf("%8d",q->data);q=q->next;}printf("\n");return OK;}(6)清空链表LinkList EmptyList(LinkList L){free(L->data);L->next=NULL;printf("清空成功!\n");return L;}(7)销毁链表LinkList FreeList(LinkList L){printf("释放成功!\n");free(L);}(8)主函数int main(){LinkList L=InitList();int n,i,j;Pr();scanf("%d",&n);while(n>0&&n<7){switch(n){case 1:printf("请输入要插入的结点的值和插入的位置:"); scanf("%d %d",&i,&j);InsertList(L,j,i);break;case 2:printf("请输入要删除的结点的位置:");scanf("%d",&i);DeleteList(L,i);break;case 3:printf("请输入要查找的结点的值:");scanf("%d",&i);LocateList(L,i);break;case 4:Print(L);break;case 5:EmptyList(L);break;case 6:FreeList(L);break;}Pr();scanf("%d",&n);}if(n==7)printf("退出成功!");return 0;}2.构造两个带有表头结点的有序单链表La、Lb,编写程序实现将La、Lb合并成一个有序单链表LcLinkList ConnectList(LinkList La,LinkList Lb){LinkList Lc,a,b,c;a=La;b=Lb;if(La->data<Lb->data)Lc=La,a=a->next;elseLc=Lb,b=b->next;c=Lc;while(a!=NULL||b!=NULL){if(a==NULL)c->next=b,break;if(b==NULL)c->next=a;break;if(a->data<b->data)c->next=a,a=a->next,c=c->next;elsec->next=b,b=b->next,c=c->next;return Lc;}3.如果上面实验内容2中合并的表内不允许有重复的数据该如何操作LinkList ConnectList(LinkList La,LinkList Lb){int i=1;LinkList Lc,a,b,c,q,p;a=La;b=Lb;if(La->data<Lb->data)Lc=La;a=a->next;elseLc=Lb;b=b->next;c=Lc;while(a!=NULL||b!=NULL){if(a==NULL)c->next=b,break;if(b==NULL)c->next=a,break;if(a->data<b->data)c->next=a,a=a->next,c=c->next;elsec->next=b,b=b->next,c=c->next;}c=Lc;q=c->next;while(q!=NULL){if(c->data==q->data){c->next=q->next;}c=c->next;q=c->next;}return Lc;}4.如何将一个带头结点的单链表La分解成两个同样结构的单链表Lb,Lc,使得Lb中只含La表中奇数结点,Lc中含有La表的偶数结点?Status PartList(LinkList Lc){int n1=0,n2=0;LinkList La,Lb,L;LinkList a,b;L=Lc;while(L!=NULL){if(L->data%2==0){if(n1==0){a=La=L;L=L->next;}else{a->next=L;L=L->next;}}else{if(n2==0){b=Lb=L;L=L->next;}else{b->next=L;L=L->next;}}}a->next=NULL;b->next=NULL;return OK;}六、实验测试1.编写程序完成单链表的下列基本操作:七、总结附录1:源代码#include<stdio.h>#include<stdlib.h>#define OK 1#define ERROR 0#define OVERFLOW -2typedef int ElemType;typedef int Status;typedef struct LNode{ElemType data;struct LNode *next;} LNode,*LinkList;LinkList NewLNode(LNode *P,ElemType data){P = (LNode *)malloc(sizeof(LNode));P->data = data;P->next = NULL;return P;}LinkList InitList(){int i,value,n;LinkList H=(LinkList)malloc(sizeof(LNode));LinkList P=H;P->next=NULL;do{printf("请输入链表的长度:");scanf("%d",&n);if(n<=0)printf("输入有误请重新输入!\n");}while(n<=0);printf("请输入各个元素:\n");for(i=0; i<n; i++){scanf("%d",&value);LinkList NEW = (LinkList)malloc(sizeof(LNode)); NEW->data=value;P->next=NEW;NEW->next=NULL;P=NEW;}printf("链表建立成功!\n");return H->next;}LinkList InsertList(LinkList L,int i,ElemType value) {LinkList h,q,t=NewLNode(t,value);int x=0;h=q=L;if(i==1){t->next=h;h=t;}else{while(x++<i-2)q=q->next;t->next=q->next;q->next=t;}printf("插入成功!\n");return h;}LinkList DeleteList(LinkList L,int i){LinkList h,q,de;int x=0;h=q=L;int t;if(i==1)h=h->next;else{while(x++<i-2)q=q->next;de=q->next;if(de->next==NULL)q->next=NULL;elseq->next=de->next;}printf("删除成功!\n");return h;}Status LocateList(LinkList L,ElemType value){LinkList q=L;int i=0,t;while(q!=NULL){i++;if(q->data==value){printf("该结点在链表中的位置为第%d个\n",i); return OK;}q=q->next;}printf("该链表中没有该结点!\n");return ERROR;}Status Print(LinkList L){LinkList q=L;printf("该链表的每个元素为:\n");while(q!=NULL){printf("%8d",q->data);q=q->next;}printf("\n");return OK;}LinkList EmptyList(LinkList L){free(L->data);L->next=NULL;printf("清空成功!\n");return L;}LinkList FreeList(LinkList L){printf("释放成功!\n");free(L);}void Pr(){printf("\n1.插入新结点\n");printf("2.删除链表中的结点\n");printf("3.查找结点\n");printf("4.输出链表\n");printf("5.清空链表\n");printf("6.销毁链表\n");printf("7.退出\n");printf("请输入要使用的功能:");}int main(){LinkList L=InitList();int n,i,j;Pr();scanf("%d",&n);while(n>0&&n<7){switch(n){case 1:printf("请输入要插入的结点的值和插入的位置:"); scanf("%d %d",&i,&j);InsertList(L,j,i);break;case 2:printf("请输入要删除的结点的位置:");scanf("%d",&i);DeleteList(L,i);break;case 3:printf("请输入要查找的结点的值:");scanf("%d",&i);LocateList(L,i);break;case 4:Print(L);break;case 5:EmptyList(L);break;case 6:FreeList(L);break;}Pr();scanf("%d",&n);}if(n==7)printf("退出成功!"); return 0;}。

链表实验报告1

链表实验报告1

1、熟练掌握线性表的基本操作在两种存储结构上的实现。

2、会用线性链表解决简单的实际问题。

该程序的功能是实现单链表的定义和操作。

该程序包括单链表结构类型以及对单链表操作的具体的函数定义和主函数。

其中,程序中的单链表(带头结点)结点为结构类型,结点值为整型。

单链表操作的选择以菜单形式浮现,如下所示:please input the operation:1.初始化2.清空3.求链表长度4.检查链表是否为空5.检查链表是否为满 6.遍历链表(设为输出元素) 7.从链表中查找元素 8.从链表中查找与给定元素值相同的元素在表中的位置9.向链表中插入元素 10. 从链表中删除元素其他键退出。

设编号为 1,2,3,……, n 的 n(n>0)个人按顺时针方向围坐一圈,每一个人持有一个正整数密码。

开始时任选一个正整数做为报数上限 m,从第一个人开始顺时针方向自 1 起顺序报数,报到 m 时住手报数,报 m 的人出列,将他的密码作为新的m 值,从他的下一个人开始重新从 1 报数。

如此下去,直到所有人全部出列为止。

令n 最大值取 30。

要求设计一个程序摹拟此过程,求出出列编号序列。

struct node //结点结构{int number; /* 人的序号*/int cipher; /* 密码*/struct node *next; /* 指向下一个节点的指针*/};/* 定义 DataType 为 int 类型 */typedef int DataType;/* 单链表的结点类型 */typedef struct LNode{ DataType data;struct LNode *next;}LNode,*LinkedList;LinkedList LinkedListInit(){ //函数功能:对链表进行初始化参数:链表(linklist L) 成功初始化返回 1, 否则返回 0 }void LinkedListClear(LinkedList &L){//函数功能:把链表清空参数:链表(linklist L) 成功清空链表返回 1 }int LinkedListEmpty(LinkedList L){ //函数功能:判断链表是否为空参数:链表(linklist L) 链表为空时返回 0, 不为空返回 1 }void LinkedListTraverse(LinkedList L){ //函数功能:遍历链表,输出每一个节点的 elem 值参数:链表(linklist L) 通过循环逐个输出节点的 elem 值 }int LinkedListLength(LinkedList L){ //函数功能:返回链表的长度参数:链表(linklistL) 函数返回链表的长度 }LinkedList LinkedListGet(LinkedList L,int i){ //函数功能: 从链表中查找有无给定元素参数;链表(linklist L),给定元素 (int i) 如果链表中有给定元素(i)则返回 1,否则返回 0 }LinkedList LinkedListLocate(LinkedList L, DataType x){//函数功能: 从链表中查找给定元素的位置参数;链表(linklist L),给定元素(int i) 如果链表中有给定元素 i 则返回元素的位置, 没有则返回 0 }void LinkedListInsert(LinkedList &L,int i,DataType x)}void LinkedListDel(LinkedList &L,DataType x)i 个结点 }(二)、zhujiemian();cin>>a;do{switch(a){case 1:if(init(L)==1)cout<<"成功初始化! "<<endl;elsecout<<"初始化失败! "<<endl;break;case 2:if(makeempty(L)==1)cout<<"链表已清空! "<<endl;elsecout<<"链表清空失败! "<<endl;break;case 3:b=getlength(L);cout<<"链表的长度为: "<<b<<endl;break;case 4:if(isempty(L)==1)cout<<"链表不为空! "<<endl;elsecout<<"链表为空! "<<endl;break;case 5:if(isfull(L)==1)cout<<"链表不满! "<<endl;elsecout<<"链表已满! "<<endl;break;case 6:show(L);break;case 7:cout<<"输入您要查找的元素: ";cin>>b;if(find(L,b)==1)cout<<"链表中有该元素"<<b<<endl;elsecout<<"链表中没有您要查找的元素"<<b<<endl;break;case 8:cout<<"您要查找的元素为: "<<endl;cin>>b;if(location(L,b)==0)cout<<"没有您要查找的元素"<<b<<endl;elsecout<<"您查找的元素 "<<b<<"在第"<<location(L,b)<<"个位置。

数据结构实验报告单链表

数据结构实验报告单链表

数据结构实验报告_单链表数据结构实验报告——单链表一、实验目的1.掌握单链表的基本概念和原理。

2.了解单链表在计算机科学中的应用。

3.掌握单链表的基本操作,如插入、删除、遍历等。

4.通过实验,加深对理论知识的理解,提高编程能力。

二、实验内容1.实验原理:单链表是一种线性数据结构,由一系列节点组成,每个节点包含数据域和指针域。

其中,指针域指向下一个节点,最后一个节点的指针域指向空。

单链表的主要操作包括插入、删除、遍历等。

2.实验步骤:(1)创建一个单链表。

(2)实现插入操作,即在链表的末尾插入一个新节点。

(3)实现删除操作,即删除链表中的一个指定节点。

(4)实现遍历操作,即输出链表中所有节点的数据。

3.实验代码:下面是使用Python语言实现的单链表及其基本操作的示例代码。

class Node:def __init__(self, data):self.data = dataself.next = Noneclass LinkedList:def __init__(self):self.head = Nonedef insert(self, data):new_node = Node(data)if self.head is None:self.head = new_nodeelse:current = self.headwhile current.next is not None:current = current.nextcurrent.next = new_nodedef delete(self, data):if self.head is None:returnif self.head.data == data:self.head = self.head.nextreturncurrent = self.headwhile current.next is not None and current.next.data != data:current = current.nextif current.next is None:returncurrent.next = current.next.nextdef traverse(self):current = self.headwhile current is not None:print(current.data)current = current.next4.实验结果:通过运行上述代码,我们可以看到单链表的基本操作得到了实现。

链表的基本操作实验报告

链表的基本操作实验报告

链表的基本操作实验报告链表的基本操作实验报告引言:链表是一种常见的数据结构,它由一系列节点组成,每个节点包含数据和指向下一个节点的指针。

链表相较于数组拥有更灵活的操作,能够动态地增删节点。

本实验旨在通过实际操作链表,加深对链表基本操作的理解和掌握。

实验目的:1. 理解链表的基本概念和结构;2. 学会链表的插入、删除和遍历操作;3. 掌握链表的相关算法。

实验过程:1. 创建链表首先,我们需要创建一个链表。

链表可以是单链表、双链表或循环链表,本次实验我们选择创建一个单链表。

创建链表的过程如下:(1)定义一个链表的节点结构,包含数据和指向下一个节点的指针;(2)创建头节点,并将头节点的指针指向NULL,表示链表为空。

2. 插入节点链表的插入操作可以在链表的任意位置插入节点。

我们可以选择在链表的头部、尾部或指定位置插入节点。

下面以在链表头部插入节点为例,介绍插入节点的过程:(1)创建一个新节点,设置新节点的数据;(2)将新节点的指针指向原头节点;(3)将头节点的指针指向新节点,完成插入操作。

3. 删除节点链表的删除操作可以删除链表中的任意节点。

同样,我们可以选择删除链表的头部、尾部或指定位置的节点。

以下是删除链表头部节点的步骤:(1)将头节点的指针指向下一个节点,跳过原头节点;(2)释放原头节点的内存空间。

4. 遍历链表链表的遍历操作用于访问链表中的每个节点。

通过遍历链表,我们可以获取链表中的所有数据或执行特定的操作。

链表的遍历操作如下:(1)从链表的头节点开始,依次访问每个节点;(2)对每个节点执行相应的操作,如打印节点的数据。

实验结果:通过以上实验过程,我们成功地创建了一个链表,并实现了链表的插入、删除和遍历操作。

链表的基本操作能够灵活地处理数据,适用于各种场景。

链表的插入和删除操作可以在O(1)时间内完成,相较于数组的插入和删除操作具有更高的效率。

实验总结:链表作为一种常见的数据结构,具有灵活性和高效性的特点。

实验二 链表的基本操作

实验二 链表的基本操作

实验二链表的基本操作链表是一种常用的数据结构,它由一系列节点组成,每个节点包含两部分:数据和指向下一个节点的指针。

链表的基本操作包括插入、删除和查找等。

本文将围绕链表的基本操作展开讲解,并以此为标题展开内容。

一、链表的插入操作链表的插入操作是指在链表中插入一个新的节点。

插入操作可以分为头插法和尾插法。

1. 头插法:将新节点插入链表的头部,即将新节点的指针指向原链表的头节点,再将链表的头指针指向新节点。

这样可以在常数时间内完成插入操作。

2. 尾插法:将新节点插入链表的尾部,即将原链表的尾节点指针指向新节点,再将新节点的指针指向空。

这样也可以在常数时间内完成插入操作。

二、链表的删除操作链表的删除操作是指删除链表中的一个节点。

删除操作可以分为删除指定节点和删除指定数值的节点两种情况。

1. 删除指定节点:找到待删除节点的前一个节点,将其指针指向待删除节点的下一个节点,再释放待删除节点的内存空间。

2. 删除指定数值的节点:遍历链表,找到数值匹配的节点并删除,具体操作与删除指定节点类似。

三、链表的查找操作链表的查找操作是指在链表中寻找某个节点或数值。

链表的查找操作与数组的查找操作不同,需要从头节点开始遍历整个链表。

1. 查找指定节点:遍历链表,逐个比较节点的值,直到找到目标节点或遍历到链表末尾。

2. 查找指定数值的节点:同样遍历链表,逐个比较节点的值,直到找到目标数值或遍历到链表末尾。

四、链表的其他操作除了插入、删除和查找操作外,链表还可以进行其他操作,如获取链表长度、反转链表和合并链表等。

1. 获取链表长度:遍历链表,计数节点的个数,即为链表的长度。

2. 反转链表:遍历链表,将每个节点的指针指向前一个节点,最后将链表的头指针指向原链表的尾节点。

3. 合并链表:将两个有序链表合并成一个新的有序链表。

遍历两个链表,逐个比较节点的值,将较小值的节点插入新链表中,直到其中一个链表遍历完毕,然后将另一个链表的剩余部分直接插入新链表的尾部。

数据结构实验报告-实验一顺序表、单链表基本操作的实现

数据结构实验报告-实验一顺序表、单链表基本操作的实现

数据结构实验报告-实验⼀顺序表、单链表基本操作的实现实验⼀顺序表、单链表基本操作的实现l 实验⽬的1、顺序表(1)掌握线性表的基本运算。

(2)掌握顺序存储的概念,学会对顺序存储数据结构进⾏操作。

(3)加深对顺序存储数据结构的理解,逐步培养解决实际问题的编程能⼒。

l 实验内容1、顺序表1、编写线性表基本操作函数:(1)InitList(LIST *L,int ms)初始化线性表;(2)InsertList(LIST *L,int item,int rc)向线性表的指定位置插⼊元素;(3)DeleteList1(LIST *L,int item)删除指定元素值的线性表记录;(4)DeleteList2(LIST *L,int rc)删除指定位置的线性表记录;(5)FindList(LIST *L,int item)查找线性表的元素;(6)OutputList(LIST *L)输出线性表元素;2、调⽤上述函数实现下列操作:(1)初始化线性表;(2)调⽤插⼊函数建⽴⼀个线性表;(3)在线性表中寻找指定的元素;(4)在线性表中删除指定值的元素;(5)在线性表中删除指定位置的元素;(6)遍历并输出线性表;l 实验结果1、顺序表(1)流程图(2)程序运⾏主要结果截图(3)程序源代码#include<stdio.h>#include<stdlib.h>#include<malloc.h>struct LinearList/*定义线性表结构*/{int *list; /*存线性表元素*/int size; /*存线性表长度*/int Maxsize; /*存list数组元素的个数*/};typedef struct LinearList LIST;void InitList(LIST *L,int ms)/*初始化线性表*/{if((L->list=(int*)malloc(ms*sizeof(int)))==NULL){printf("内存申请错误");exit(1);}L->size=0;L->Maxsize=ms;}int InsertList(LIST *L,int item,int rc)/*item记录值;rc插⼊位置*/ {int i;if(L->size==L->Maxsize)/*线性表已满*/return -1;if(rc<0)rc=0;if(rc>L->size)rc=L->size;for(i=L->size-1;i>=rc;i--)/*将线性表元素后移*/L->list[i+=1]=L->list[i];L->list[rc]=item;L->size++;return0;}void OutputList(LIST *L)/*输出线性表元素*/{int i;printf("%d",L->list[i]);printf("\n");}int FindList(LIST *L,int item)/*查找线性元素,返回值>=0为元素的位置,返回-1为没找到*/ {int i;for(i=0;i<L->size;i++)if(item==L->list[i])return i;return -1;}int DeleteList1(LIST *L,int item)/*删除指定元素值得线性表记录,返回值为>=0为删除成功*/ {int i,n;for(i=0;i<L->size;i++)if(item==L->list[i])break;if(i<L->size){for(n=i;n<L->size-1;n++)L->list[n]=L->list[n+1];L->size--;return i;}return -1;}int DeleteList2(LIST *L,int rc)/*删除指定位置的线性表记录*/{int i,n;if(rc<0||rc>=L->size)return -1;for(n=rc;n<L->size-1;n++)L->list[n]=L->list[n+1];L->size--;return0;}int main(){LIST LL;int i,r;printf("list addr=%p\tsize=%d\tMaxsize=%d\n",LL.list,LL.size,LL.Maxsize);printf("list addr=%p\tsize=%d\tMaxsize=%d\n",LL.list,LL.list,LL.Maxsize);while(1){printf("请输⼊元素值,输⼊0结束插⼊操作:");fflush(stdin);/*清空标准输⼊缓冲区*/scanf("%d",&i);if(i==0)break;printf("请输⼊插⼊位置:");scanf("%d",&r);InsertList(&LL,i,r-1);printf("线性表为:");OutputList(&LL);}while(1){printf("请输⼊查找元素值,输⼊0结束查找操作:");fflush(stdin);/*清空标准输⼊缓冲区*/scanf("%d ",&i);if(i==0)break;r=FindList(&LL,i);if(r<0)printf("没有找到\n");elseprintf("有符合条件的元素,位置为:%d\n",r+1);}while(1){printf("请输⼊删除元素值,输⼊0结束查找操作:");fflush(stdin);/*清楚标准缓存区*/scanf("%d",&i);if(i==0)break;r=DeleteList1(&LL,i);if(i<0)printf("没有找到\n");else{printf("有符合条件的元素,位置为:%d\n线性表为:",r+1);OutputList(&LL);}while(1){printf("请输⼊删除元素位置,输⼊0结束查找操作:");fflush(stdin);/*清楚标准输⼊缓冲区*/scanf("%d",&r);if(r==0)break;i=DeleteList2(&LL,r-1);if(i<0)printf("位置越界\n");else{printf("线性表为:");OutputList(&LL);}}}链表基本操作l 实验⽬的2、链表(1)掌握链表的概念,学会对链表进⾏操作。

数据结构实验报告之链表顺序表的操作

数据结构实验报告之链表顺序表的操作

数据结构实验报告之链表顺序表的操作1、编写程序实现顺序表的各种基本运算:初始化、插⼊、删除、取表元素、求表长、输出表、销毁、判断是否为空表、查找元素。

在此基础上设计⼀个主程序完成如下功能:(1)初始化顺序表L;(2)依次在表尾插⼊a,b,c,d,e五个元素;(3)输出顺序表L;(4)输出顺序表L的长度;(5)判断顺序表L是否为空;(6)输出顺序表L的第4个元素;(7)输出元素c的位置;(8)在第3个位置上插⼊元素f,之后输出顺序表L;(9)删除L的第2个元素,之后输出顺序表L;(10)销毁顺序表L。

2、编写程序实现单链表的各种基本运算:初始化、插⼊、删除、取表元素、求表长、输出表、销毁、判断是否为空表、查找元素。

在此基础上设计⼀个主程序完成如下功能:(1)初始化单链表L;(2)依次在表尾插⼊a,b,c,d,e五个元素;(3)输出单链表L;(4)输出单链表L的长度;(5)判断单链表L是否为空;(6)输出单链表L的第4个元素;(7)输出元素c的位置;(8)在第3个位置上插⼊元素f,之后输出单链表L;(9)删除L的第2个元素,之后输出单链表L;(10)销毁单链表L。

1顺序表2 #include<stdio.h>3 #include<malloc.h>4 #include<stdlib.h>56#define TRUE 17#define FALSE 08#define OK 19#define ERROR 010#define INFEASIBLE -111#define OVERFLOW -212 typedef int Status;13 typedef char ElemType;1415#define LIST_INIT_SIZE 100 //线性表存储空间的初始分配量16#define LISTINCREMENT 10 //线性表存储空间的分配增量17 typedef struct {18 ElemType *elem; //存储空间基地址19int length; //当前长度20int listsize; //当前分配的存储容量21 } SqList;2223 Status InitList_Sq(SqList &L) { //算法2.324 L.elem = (ElemType *)malloc(LIST_INIT_SIZE * sizeof(ElemType));25if (!L.elem) exit(OVERFLOW); //存储分配失败26 L.length = 0; //空表长度为027 L.listsize = LIST_INIT_SIZE; //初始存储容量28return OK;29 }//InitList_Sq3031 Status ListInsert_Sq(SqList &L, int i, ElemType e) { //算法2.432 ElemType *newbase, *p, *q;33if (i<1 || i>L.length + 1) return ERROR; //i值不合法34if (L.length >= L.listsize)35 { //当前存储空间已满,增加分配36 newbase = (ElemType*)realloc(L.elem, (L.listsize + LISTINCREMENT) * sizeof(ElemType));37if (!newbase) exit(OVERFLOW); //存储分配失败38 L.elem = newbase; //新基址39 L.listsize += LISTINCREMENT; //增加存储容量40 }41 q = &(L.elem[i - 1]); //q为插⼊位置42for (p = &(L.elem[L.length - 1]); p >= q; --p) *(p + 1) = *p; //元素右移43 *q = e; //插⼊e44 ++L.length; //表长增145return OK;46 }4748void DispSqList(SqList L)49 {50int i;51for (i = 0; i < L.length; i++)52 printf("%c ", L.elem[i]);53 }5455 Status ListDelete(SqList &L, int i, ElemType &e)56 {57 ElemType *p,*q;58if ((i < 1) || (i > L.length)) return ERROR;59 p = &(L.elem[i - 1]);60 e = *p;61 q = L.elem + L.length - 1;62for (++p; p <= q; ++p)63 *(p - 1) = *p;64 --L.length;65return OK;66 } //ListDelete_Sq6768 Status GetElem(SqList L, int i, ElemType &e)69 {70if (L.length == 0 || i<1 || i>L.length)71return ERROR;72 e = L.elem[i - 1];73return OK;74 }7576int ListLength(SqList L)77 {78return(L.length);79 }8081 Status DestroyList(SqList &L)82 {83 free(L.elem);84 L.length = 0;85return OK;86 }8788 Status ListEmpty(SqList L)89 {90return(L.length == 0);91 }9293int LocateElem(SqList L, ElemType e)94 {95int i = 0;96while (i < L.length && L.elem[i] != e) i++;97if (i >= L.length) return0;98else return i + 1;99 }100101void main()102 {103 SqList h;104 ElemType e;105 InitList_Sq(h);106 ListInsert_Sq(h, h.length + 1, 'a');107 ListInsert_Sq(h, h.length + 1, 'b');108 ListInsert_Sq(h, h.length + 1, 'c');109 ListInsert_Sq(h, h.length + 1, 'd');110 ListInsert_Sq(h, h.length + 1, 'e');111 DispSqList(h);112 printf("%d\n\n",ListLength(h));113 ListEmpty(h);114if (ListEmpty(h))116 printf("Empty\n\n");117 }118else119 {120 printf("Not empty\n\n");121 }122 GetElem(h, 4, e);123 printf("%c\n", e);124 printf("%d\n",LocateElem(h, 'c'));125 ListInsert_Sq(h,3,' f');126 DispSqList(h);127 ListDelete(h, 2, e);128 DispSqList(h);129 DestroyList(h);130 }131132133134135136单链表137138139140 #include<stdio.h>141 #include<malloc.h>142 #include<stdlib.h>143144#define TRUE 1145#define FALSE 0146#define OK 1147#define ERROR 0148#define INFEASIBLE -1149#define OVERFLOW -2150 typedef int Status;151152 typedef char ElemType;153154155 typedef struct LNode {156 ElemType data;157int length;158struct LNode *next;159 }LNode, *LinkList;160161162 Status InitList_L(LinkList &L) {163 L = (LinkList)malloc(sizeof(LNode));164 L->next = NULL;165return OK;166 }167168 Status ListInsert_L(LinkList L, int i, ElemType e) { 169 LinkList p = L,s;170int j = 0;171while (p && j < i - 1)172 {173 p = p->next;174 ++j;175 }176if (!p || j > i - 1)177 {178return ERROR;179 }180else181 {182 s = (LinkList)malloc(sizeof(LNode));183 s->data = e;184 s->next = p->next;185 p->next = s;186return OK;187 }188 }189190void DispList_L(LinkList L)191 {192 LinkList p = L->next;193while (p != NULL)194 {195 printf("%c\n", p->data);196 p = p->next;197 }198200201void DestoryList(LinkList &L)202 {203 LinkList p = L, q = p->next;204while (q != NULL)205 {206 free(p);207 p = q;208 q = p->next;209 }210 free(p);211 }212213 Status ListLength_L(LinkList L) {214 LinkList p = L; int n = 0;215while (p->next != NULL)216 {217 n++;218 p = p->next;219 }220return (n);221 }222223 Status ListDelete(LinkList L, int i, ElemType &e){ 224int j;225 LinkList p, q;226 p = L;227 j = 1;228while (p->next && j < i)229 {230 p = p->next;231 ++j;232 }233if (!(p->next) || j > i)234 {235return ERROR;236 }237 q = p->next;238 p->next = q->next;239 e = q->data;240 free(q);241return OK;242 }243244 Status ListEmpty_L(LinkList L)245 {246return(L->length == 0);247 }248249 Status GetElem(LinkList L, int i, ElemType &e) 250 {251int j;252 LinkList p;253 p = L->next;254 j = 1;255while (p&&j<i)256 {257 p = p->next;258 ++j;259 }260if (!p || j > i)261 {262return ERROR;263 }264 e = p->data;265return OK;266 }267268 Status LocateElem(LinkList L, int e)269 {270 LinkList p = L;271int n=0;272//p->length = 0;273while (p != NULL)274 {275if(p->data != e)276 {277 p = p->next;278 n++;279 }280else281 {282break;283 }284 }285if(p != NULL)286 {287return n;288 }289else290 {291return ERROR;292 }293 }294295void main()296 {297 LinkList h;298 ElemType e;299 InitList_L(h);300 ListInsert_L(h, 1, 'a');301 ListInsert_L(h, 2, 'b');302 ListInsert_L(h, 3, 'c');303 ListInsert_L(h, 4, 'd');304 ListInsert_L(h, 5, 'e');305 DispList_L(h);306 printf("%d\n", ListLength_L(h)); 307if (ListEmpty_L(h))308 {309 printf("Empty\n\n");310 }311else312 {313 printf("Not empty\n\n");314 }315 GetElem(h, 4, e);316 printf("%c\n", e);317 printf("%d\n", LocateElem(h, 'c')); 318 ListInsert_L(h, 3, 'f');319 DispList_L(h);320 ListDelete(h, 2, e);321 DispList_L(h);322 DestoryList(h);323 }。

数据结构实验报告

数据结构实验报告

数据结构实验报告一、实验目的数据结构是计算机科学中的重要基础课程,通过实验可以更深入地理解和掌握数据结构的概念、原理和应用。

本次实验的主要目的包括:1、熟悉常见的数据结构,如链表、栈、队列、树和图等。

2、掌握数据结构的基本操作,如创建、插入、删除、遍历等。

3、提高编程能力和解决实际问题的能力,能够运用合适的数据结构解决具体的问题。

二、实验环境本次实验使用的编程语言为C++,开发环境为Visual Studio 2019。

三、实验内容1、链表的实现与操作单向链表的创建、插入和删除节点。

双向链表的实现和基本操作。

循环链表的特点和应用。

2、栈和队列的实现栈的后进先出特性,实现入栈和出栈操作。

队列的先进先出原则,完成入队和出队功能。

3、树的操作二叉树的创建、遍历(前序、中序、后序)。

二叉搜索树的插入、查找和删除操作。

4、图的表示与遍历邻接矩阵和邻接表表示图。

深度优先搜索和广度优先搜索算法的实现。

四、实验步骤及结果1、链表的实现与操作单向链表:首先,定义了链表节点的结构体,包含数据域和指向下一个节点的指针域。

通过创建链表头节点,并使用循环依次插入新节点,实现了链表的创建。

插入节点时,根据指定位置找到插入点的前一个节点,然后修改指针完成插入操作。

删除节点时,同样找到要删除节点的前一个节点,修改指针完成删除。

实验结果:成功创建、插入和删除了单向链表的节点,并正确输出了链表的内容。

双向链表:双向链表节点结构体增加了指向前一个节点的指针。

创建、插入和删除操作需要同时维护前后两个方向的指针。

实验结果:双向链表的各项操作均正常,能够双向遍历链表。

循环链表:使链表的尾节点指向头节点,形成循环。

在操作时需要特别注意循环的边界条件。

实验结果:成功实现了循环链表的创建和遍历。

2、栈和队列的实现栈:使用数组或链表来实现栈。

入栈操作将元素添加到栈顶,出栈操作取出栈顶元素。

实验结果:能够正确进行入栈和出栈操作,验证了栈的后进先出特性。

数据结构 实验二:单链表的基本操作

数据结构 实验二:单链表的基本操作

数据结构实验二:单链表的基本操作数据结构实验二:单链表的基本操作实验二:单链表的基本操作一、【实验目的】1、理解和掌握单链表的类型定义方法和结点生成方法。

2、掌握建立单链表和显示单链表元素的算法。

3、掌握单链表的查找、插入和删除算法二、【实验内容】1、建立一个整形数的单链表,手动输入10个数,并从屏幕显示单链表元素列表。

2、从键盘输入一个数,查找在以上创建的单链表中是否存在该数;如果存在,显示它的位置;如果不存在,给出相应提示。

3、删除上述单链表中指定位置的元素。

以下就是程序部分代码,恳请调试并补足并使之恰当运转:1.linlist.htypedefstructnode{datatypedata;structnode*next;}slnode;voidlistinitiate(slnode**head)/*初始化*/{/*如果有内存空间,申请头结点空间并使头指针head指向头结点*/if((*head=(slnode*)malloc(sizeof(slnode)))==null)exit(1);(*head)->next=null;/*置链尾标记null*/}intlistlength(slnode*head){slnode*p=head;/*p指向首元结点*/intsize=0;/*size初始为0*/while(p->next!=null)/*循环计数*/{p=p->next;size++;}returnsize;}intlistinsert(slnode*head,inti,datatypex)/*在带头结点的单链表head的数据元素ai(0≤i≤size)结点前*//*填入一个存放数据元素x的结点*/{slnode*p,*q;intj;p=head;/*p指向首元结点*/j=-1;/*j起始为-1*/while(p->next!=null&&j<i-1)/*最终让指针p指向数据元素ai-1结点*/{p=p->next;j++;}if(j!=i-1){printf(\填入边线参数弄错!\return0;}/*生成新结点由指针q指示*/if((q=(slnode*)malloc(sizeof(slnode)))==null)exit(1);q->data=x;q->next=p->next;/*给指针q->next赋值*/p->next=q;/*给指针p->next重新赋值*/return1;}intlistdelete(slnode*head,inti,datatype*x)/*删除带头结点的单链表head的数据元素ai(0≤i≤size-1)结点*//*删除结点的数据元素域值由x带回。

数据结构单链表实验报告

数据结构单链表实验报告

数据结构单链表实验报告一、实验目的本次实验的主要目的是深入理解和掌握数据结构中单链表的基本概念、操作方法以及其在实际编程中的应用。

通过实际编写代码实现单链表的创建、插入、删除、查找等基本操作,提高对数据结构的理解和编程能力。

二、实验环境本次实验使用的编程环境为Visual Studio 2019,编程语言为C++。

三、实验原理单链表是一种常见的数据结构,它由一系列节点组成,每个节点包含数据域和指针域。

指针域指向链表中的下一个节点,通过这种方式将各个节点连接起来形成链表。

在单链表中,头节点通常用于标识链表的开始,尾节点的指针域指向空,表示链表的结束。

四、实验内容(一)单链表的创建创建单链表的基本思路是逐个节点地进行插入。

首先创建一个头节点,然后根据输入的数据依次创建新节点,并将其插入到链表的末尾。

以下是创建单链表的代码实现:```cppinclude <iostream>using namespace std;//定义链表节点结构体struct ListNode {int data;ListNode next;ListNode(int x) : data(x), next(NULL) {}};//创建单链表ListNode createList(){ListNode head = new ListNode(0);ListNode curr = head;int data;cout <<"请输入链表节点的值(输入-1 结束):";cin >> data;while (data!=-1) {curr>next = newNode;curr = newNode;cin >> data;}return head>next;}```(二)单链表的插入操作单链表的插入操作可以分为在表头插入、在表尾插入和在指定位置插入。

1、在表头插入在表头插入新节点时,只需要将新节点的指针指向原表头节点,然后更新头节点即可。

链表-实验报告

链表-实验报告

实验2 链表实验概述:一、实验目的本次实习的主要目的是为了使学生熟练掌握链表的基本操作以及在链式存储结构上的实现,包括创建、插入、删除、查找、以及合并等操作。

二、实验要求掌握链表存储方式,熟悉链式存储结构。

三、实验步骤用链表结构实现对多项式初始化、创建、插入、删除等运算。

步骤:输入第一个多项式:7x+2x3输入第二个多项式:8x+9x5输出第一个多项式输出第二个多项式输出两个多项式相加的结果:15x+2x3+9x5实验结果如图:四、实验环境(使用的软件和设备)(1)实习器材:多媒体计算机。

(2)实习地点:校内多媒体机房。

(3)实习软件: Win-TC实验内容:【实验过程】(实验步骤、记录、数据、分析)实验过程(提示)输入第一个多项式:7x+2x3输入第二个多项式:8x+9x5输出第一个多项式输出第二个多项式输出两个多项式相加的结果:15x+2x3+9x5【结果实验记录】(图形或图像)1.说明掌握情况#include<stdio.h>#include<stdlib.h>typedef struct{int sat1,sat2,sat3,sat4;}ElemType;typedef struct LNode{ElemType data;struct LNode *next;}LNode,*LinkList;LinkList InitList(){ LinkList L;L=(LinkList)malloc(sizeof(LNode)); L->next=NULL;return(L);}void InsLNode(LinkList L,ElemType x){ LinkList s,p;s=(LinkList)malloc(sizeof(LNode));s->data=x;p=L;while(p->next)p=p->next;s->next=NULL;p->next=s;}void AddPolyn(LinkList La,LinkList Lb){int sum;int a,b;LinkList pa,pb;pa=La->next;pb=Lb->next;a=pa->data.sat1;b=pb->data.sat1;sum=a+b;printf(" %dx%d exp",sum,pa->data.sat2);printf("+");printf(" %dx%d exp+",pa->data.sat3,pa->data.sat4); printf(" %dx%d exp\n",pb->data.sat3,pb->data.sat4);}void Print(LinkList L){ LinkList p;p=L->next;printf(" %dx%d exp",p->data.sat1,p->data.sat2); printf("+");printf(" %dx%d exp",p->data.sat3,p->data.sat4);}main() {LinkList La,Lb;ElemType c,b;int a,i;La=InitList();Lb= InitList();printf("Please input polynomial La:\n");scanf("%d %d",&c.sat1,&c.sat2);scanf("%d %d",&c.sat3,&c.sat4);InsLNode(La,c);printf("Please input polynomial Lb:\n");scanf("%d %d",&b.sat1,&b.sat2);scanf("%d %d",&b.sat3,&b.sat4);InsLNode(Lb,b);printf("polynomial La:");printf("\n");Print(La);printf("\n");printf("polynomial Lb:");printf("\n");Print(Lb);printf("\n");printf("La+Lb:");printf("\n");AddPolyn(La,Lb);printf("\n");getch();}2.裁图说明实验结果【心得体会、问题和建议】成绩:指导教师签名批阅日期:。

链表的基本操作实验报告

链表的基本操作实验报告

《数据结构》实验报告学号1445203105 姓名王胜博班级软件5班成绩实验名称实验三链表的基本操作是否原创是一、实验要求编程实现链表下教材第二章定义的线性表的基本操作,最好用菜单形式对应各个操作,使其编程一个完整的小软件。

二、实验目的通过该实验,深入理解链表的逻辑结构、物理结构等概念,掌握链表基本操作的编程实现,熟练掌握C语言中指针的操作。

和实验2对比,掌握线性结构两种不同存储方式的区别。

三、设计思想用函数执行各个功能,随机插入元素四、主要源代码#include<stdio.h>#include<stdlib.h>#include<time.h>typedef int ElemType;typedef struct Node{ElemType data;struct Node *next;}Node, *LinkList;void InitList(LinkList *L){*L=(LinkList)malloc(sizeof(Node));if(!(*L))printf("存储分配失败\n");(*L)->next=NULL;}void DestroyList(LinkList L){LinkList p;while(L){p=L->next;free(L);L=p;}}int ListLength(LinkList L){LinkList p;int i=0;p=L->next;while(p){i++;p=p->next;}return i;}int GetElem(LinkList L,int i,ElemType &e){ LinkList p;p=L->next;int j=1;while(p&&j<i){p=p->next;++j;}e=p->data;return e;}int GetElemLo(LinkList L,int i,ElemType &e){ LinkList p;p=L->next;int j=1;while(p->data!=i&&j<=ListLength(L)){p=p->next;++j;}e=j;return e;}void FindPre(LinkList L,int x){LinkList p;p=L;if(p->next->data==x){printf("第一个元素没有前驱\n");}else{while(p->next){if(p->next->data==x){printf("%d的前驱结点是:%d\n",x,p->data);break;}else{p=p->next;}}}}void FindNext(LinkList L,int x){LinkList p;p=L->next;while(p){if(p->data==x){printf("%d的后继结点是:%d\n",x,p->next->data);break;}else{p=p->next;}if(p->next==NULL){printf("最后一个元素没有后继\n");break;}}}void LinkInset_L(LinkList &L,int i,ElemType e){ LinkList p;p=L;int j=0;while(p&&j<i-1){p=p->next;++j;}if(!p||j>i-1)printf("i小于1或者i大于表长加1\n");LinkList s;s=(LinkList)malloc(sizeof (Node));s->data=e;s->next=p->next;p->next=s;}void ListDelete_L(LinkList &L,int i,ElemType &e){ LinkList p,q;p=L;int j=0;while(p->next && j<i-1){p=p->next;++j;}if(!p->next ||j>i-1)printf("删除位置不合理\n");q=p->next;p->next=q->next;e=q->data;free(q);printf("已删除的元素是:%d\n",e);}void visit(ElemType e){printf("%d,",e);}void ListTraverse(LinkList L){LinkList p=L->next;while(p){visit(p->data);p=p->next;}printf("\n");}void CreatListTail(LinkList *L,int n){LinkList p,r;int i;srand(time(0));*L=(LinkList)malloc(sizeof(Node));r=*L;for(i=0;i<n;i++){p=(Node *)malloc(sizeof(Node));p->data=rand()%100+1;r->next=p;r=p;}r->next=NULL;}int main(){LinkList L;int opp;printf("可执行的操作有:\n");printf("1.初始化或重置链表\n");printf("2.随机插入元素\n");printf("3.显示链表中数据元素个数\n");printf("4.输出所输入的链表元素\n");printf("5.所指位序的元素值\n");printf("6.链表已存在元素的位序\n");printf("7.请输入元素,求直接前驱\n");printf("8.请输入元素,求直接后继\n");printf("9.在第i个位置插入元素\n");printf("10.删除第i个元素\n");printf("11.销毁链表\n");printf("12.退出\n");printf("\n");printf("请输入你的选择:\n");do{scanf("%d",&opp);switch(opp){case 1:{InitList(&L);printf("链表已初始化\n");printf("下一步操作:");break;}case 2:{int n;printf("输入插入元素个数:");scanf("%d",&n);CreatListTail(&L,n);printf("下一步操作:");break;}case 3:{printf("链表中元素的个数是:%d\n",ListLength(L));printf("下一步操作:");break;}case 4:{ListTraverse(L);printf("下一步操作:");break;}case 5:{int m,e;printf("输入要取元素的位置:");scanf("%d",&m);if(m>ListLength(L)){printf("输入有误\n");}else{GetElem(L,m,e);printf("该元素是:%d\n",e);}printf("下一步操作:");break;}case 6:{int i,e;printf("输入要取的元素:");scanf("%d",&i);GetElemLo(L,i,e);printf("该元素的位置是:%d\n",e);printf("下一步操作:");break;}case 7:{int x;printf("要求哪个元素的前驱?");scanf("%d",&x);FindPre(L,x);printf("下一步操作:");break;}case 8:{int x;printf("要求哪个元素的后继?");scanf("%d",&x);FindNext(L,x);printf("下一步操作:");break;}case 9:{int i,e;printf("在哪个位置插入元素?");scanf("%d",&i);if(i>ListLength(L))printf("输入有误\n");else{printf("插入的新元素是:");scanf("%d",&e);LinkInset_L(L,i,e);printf("新链表:");ListTraverse(L);}printf("下一步操作:");break;}case 10:{int i,e;printf("要删除哪个位置的元素?");scanf("%d",&i);if(i>ListLength(L))printf("输入有误\n");else{ListDelete_L(L,i,e);printf("新链表:");ListTraverse(L);}printf("下一步操作:");break;}case 11:{DestroyList(L);printf("链表已销毁!\n");printf("下一步操作:");break;}case 12:{printf("谢谢使用\n");break;}default:{printf("输入错误,请重新输入\n");break;}}}while(opp!=12);return 0;}五、调试与测试数据六、实验总结。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

大学数据结构实验报告课程名称数据结构实验第(四)次实验实验名称链表的基本操作学生姓名于歌专业班级学号实验成绩指导老师(签名)日期2018年10月01日一、实验目的1. 学会定义单链表的结点类型,实现对单链表的一些基本操作和具体的函数定义,了解并掌握单链表的类定义以及成员函数的定义与调用。

2. 掌握单链表基本操作及两个有序表归并、单链表逆置等操作的实现。

二、实验要求1.预习C语言中结构体的定义与基本操作方法。

2.对单链表的每个基本操作用单独的函数实现。

3.编写完整程序完成下面的实验内容并上机运行。

4.整理并上交实验报告。

三、实验内容:1.编写程序完成单链表的下列基本操作:(1)初始化单链表La(2)在La中插入一个新结点(3)删除La中的某一个结点(4)在La中查找某结点并返回其位置(5)打印输出La中的结点元素值(6)清空链表(7)销毁链表2 .构造两个带有表头结点的有序单链表La、Lb,编写程序实现将La、Lb合并成一个有序单链表Lc。

四、思考与提高:1.如果上面实验内容2中合并的表内不允许有重复的数据该如何操作?2.如何将一个带头结点的单链表La分解成两个同样结构的单链表Lb,Lc,使得Lb中只含La表中奇数结点,Lc中含有La表的偶数结点?五、实验设计1.编写程序完成单链表的下列基本操作:(1)初始化单链表LaLinkList InitList(){int i,value,n;LinkList H=(LinkList)malloc(sizeof(LNode));LinkList P=H;P->next=NULL;do{printf("请输入链表的长度:");scanf("%d",&n);if(n<=0)printf("输入有误请重新输入!\n");}while(n<=0);printf("请输入各个元素:\n");for(i=0; i<n; i++){scanf("%d",&value);LinkList NEW = (LinkList)malloc(sizeof(LNode)); NEW->data=value;P->next=NEW;NEW->next=NULL;P=NEW;}printf("链表建立成功!\n");return H->next;}(2)在La中插入一个新结点LinkList InsertList(LinkList L,int i,ElemType value) {LinkList h,q,t=NewLNode(t,value);int x=0;h=q=L;if(i==1)t->next=h, h=t;else{while(x++<i-2)q=q->next;t->next=q->next;q->next=t;}printf("插入成功!\n");return h;}(3)删除La中的某一个结点LinkList DeleteList(LinkList L,int i){LinkList h,q,de;int x=0;h=q=L;int t;if(i==1)h=h->next;else{while(x++<i-2)q=q->next;de=q->next;if(de->next==NULL)q->next=NULL;elseq->next=de->next;}printf("删除成功!\n");return h;}(4)在La中查找某结点并返回其位置Status LocateList(LinkList L,ElemType value){LinkList q=L;int i=0,t;while(q!=NULL){i++;if(q->data==value){printf("该结点在链表中的位置为第%d个\n",i); return OK;}q=q->next;}printf("该链表中没有该结点!\n");return ERROR;}(5)打印输出La中的结点元素值Status Print(LinkList L){LinkList q=L;printf("该链表的每个元素为:\n");while(q!=NULL){printf("%8d",q->data);q=q->next;}printf("\n");return OK;}(6)清空链表LinkList EmptyList(LinkList L){free(L->data);L->next=NULL;printf("清空成功!\n");return L;}(7)销毁链表LinkList FreeList(LinkList L){printf("释放成功!\n");free(L);}(8)主函数int main(){LinkList L=InitList();int n,i,j;Pr();scanf("%d",&n);while(n>0&&n<7){switch(n){case 1:printf("请输入要插入的结点的值和插入的位置:"); scanf("%d %d",&i,&j);InsertList(L,j,i);break;case 2:printf("请输入要删除的结点的位置:");scanf("%d",&i);DeleteList(L,i);break;case 3:printf("请输入要查找的结点的值:");scanf("%d",&i);LocateList(L,i);break;case 4:Print(L);break;case 5:EmptyList(L);break;case 6:FreeList(L);break;}Pr();scanf("%d",&n);}if(n==7)printf("退出成功!");return 0;}2.构造两个带有表头结点的有序单链表La、Lb,编写程序实现将La、Lb合并成一个有序单链表LcLinkList ConnectList(LinkList La,LinkList Lb){LinkList Lc,a,b,c;a=La;b=Lb;if(La->data<Lb->data)Lc=La,a=a->next;elseLc=Lb,b=b->next;c=Lc;while(a!=NULL||b!=NULL){if(a==NULL)c->next=b,break;if(b==NULL)c->next=a;break;if(a->data<b->data)c->next=a,a=a->next,c=c->next;elsec->next=b,b=b->next,c=c->next;return Lc;}3.如果上面实验内容2中合并的表内不允许有重复的数据该如何操作LinkList ConnectList(LinkList La,LinkList Lb){int i=1;LinkList Lc,a,b,c,q,p;a=La;b=Lb;if(La->data<Lb->data)Lc=La;a=a->next;elseLc=Lb;b=b->next;c=Lc;while(a!=NULL||b!=NULL){if(a==NULL)c->next=b,break;if(b==NULL)c->next=a,break;if(a->data<b->data)c->next=a,a=a->next,c=c->next;elsec->next=b,b=b->next,c=c->next;}c=Lc;q=c->next;while(q!=NULL){if(c->data==q->data){c->next=q->next;}c=c->next;q=c->next;}return Lc;}4.如何将一个带头结点的单链表La分解成两个同样结构的单链表Lb,Lc,使得Lb中只含La表中奇数结点,Lc中含有La表的偶数结点?Status PartList(LinkList Lc){int n1=0,n2=0;LinkList La,Lb,L;LinkList a,b;L=Lc;while(L!=NULL){if(L->data%2==0){if(n1==0){a=La=L;L=L->next;}else{a->next=L;L=L->next;}}else{if(n2==0){b=Lb=L;L=L->next;}else{b->next=L;L=L->next;}}}a->next=NULL;b->next=NULL;return OK;}六、实验测试1.编写程序完成单链表的下列基本操作:七、总结附录1:源代码#include<stdio.h>#include<stdlib.h>#define OK 1#define ERROR 0#define OVERFLOW -2typedef int ElemType;typedef int Status;typedef struct LNode{ElemType data;struct LNode *next;} LNode,*LinkList;LinkList NewLNode(LNode *P,ElemType data){P = (LNode *)malloc(sizeof(LNode));P->data = data;P->next = NULL;return P;}LinkList InitList(){int i,value,n;LinkList H=(LinkList)malloc(sizeof(LNode));LinkList P=H;P->next=NULL;do{printf("请输入链表的长度:");scanf("%d",&n);if(n<=0)printf("输入有误请重新输入!\n");}while(n<=0);printf("请输入各个元素:\n");for(i=0; i<n; i++){scanf("%d",&value);LinkList NEW = (LinkList)malloc(sizeof(LNode)); NEW->data=value;P->next=NEW;NEW->next=NULL;P=NEW;}printf("链表建立成功!\n");return H->next;}LinkList InsertList(LinkList L,int i,ElemType value) {LinkList h,q,t=NewLNode(t,value);int x=0;h=q=L;if(i==1){t->next=h;h=t;}else{while(x++<i-2)q=q->next;t->next=q->next;q->next=t;}printf("插入成功!\n");return h;}LinkList DeleteList(LinkList L,int i){LinkList h,q,de;int x=0;h=q=L;int t;if(i==1)h=h->next;else{while(x++<i-2)q=q->next;de=q->next;if(de->next==NULL)q->next=NULL;elseq->next=de->next;}printf("删除成功!\n");return h;}Status LocateList(LinkList L,ElemType value){LinkList q=L;int i=0,t;while(q!=NULL){i++;if(q->data==value){printf("该结点在链表中的位置为第%d个\n",i); return OK;}q=q->next;}printf("该链表中没有该结点!\n");return ERROR;}Status Print(LinkList L){LinkList q=L;printf("该链表的每个元素为:\n");while(q!=NULL){printf("%8d",q->data);q=q->next;}printf("\n");return OK;}LinkList EmptyList(LinkList L){free(L->data);L->next=NULL;printf("清空成功!\n");return L;}LinkList FreeList(LinkList L){printf("释放成功!\n");free(L);}void Pr(){printf("\n1.插入新结点\n");printf("2.删除链表中的结点\n");printf("3.查找结点\n");printf("4.输出链表\n");printf("5.清空链表\n");printf("6.销毁链表\n");printf("7.退出\n");printf("请输入要使用的功能:");}int main(){LinkList L=InitList();int n,i,j;Pr();scanf("%d",&n);while(n>0&&n<7){switch(n){case 1:printf("请输入要插入的结点的值和插入的位置:"); scanf("%d %d",&i,&j);InsertList(L,j,i);break;case 2:printf("请输入要删除的结点的位置:");scanf("%d",&i);DeleteList(L,i);break;case 3:printf("请输入要查找的结点的值:");scanf("%d",&i);LocateList(L,i);break;case 4:Print(L);break;case 5:EmptyList(L);break;case 6:FreeList(L);break;}Pr();scanf("%d",&n);}if(n==7)printf("退出成功!"); return 0;}。

相关文档
最新文档