粉体工程与设备共31页文档
粉体工程与设备POWDERENGINEERINGANDEQUIPMENTS
![粉体工程与设备POWDERENGINEERINGANDEQUIPMENTS](https://img.taocdn.com/s3/m/db617c641711cc7931b71691.png)
(8-3)
若以单位质量的流体介质中所含固体颗粒的质量表示,有
Cwˊ=固体颗粒的质量/流体介质的质量=
(8-4)
若已知两相流的密度ρm,则上述各式可直接用密度表示:
Cv p f
m f
(8-5)
m f C v p m
(8-6)
m f p p Cw Cv p m f m
在对气流的脉动速度均有相互影响;
(5)由于流场中压力和速度梯度的存在、颗粒形状不规则、颗 粒之间及颗粒与器壁间的相互碰撞等原因,会导致颗粒的旋转, 从而产生升力效应。
8.1 两相流的基本性质(Fundamental features of two phases flow)
7.1.1 两相流的浓度(Concentration)
式中,Cpf和Cvf分别为颗粒相和液体相的定容比热。
(3)两相流的比热比
Cw 1 C pm C ppCw C pf 1Cw 1Cw K Cvm C C C 1C Cw vp w vf w 1 K 1Cw
式中,K=Cpf/Cvf 和δ=Cpp/Cpf是相对比热,颗粒相的Cpp=Cpv=C。 K和δ是常数,而Cw不是常数。 由上式的第二种形式可见,γ总比K小,且与颗粒浓度无关。当 Cw>0.8时,γ迅速接近于 1,而 γ=1的流动是等温流动,因此, 质量浓度大的气固两相流动可看成是等温流动。 等温流动的性质: 因颗粒热容量大,混合物膨胀或压缩引起的气体温度变化
(8-10)
8.1.2 两相流的密度(Density)
单位体积的两相流中所含固体颗粒和流体介质的质量分别称为 颗粒相和介质相的密度,分别以 和 表示。
粉体工程与设备实验指导书
![粉体工程与设备实验指导书](https://img.taocdn.com/s3/m/0324ea472e3f5727a5e9621b.png)
宿迁学院粉体工程实验指导书实验一激光法测量粉体颗粒的粒度一、实验目的:掌握激光法测量粉体颗粒的粒度的基本原理了解利用激光粒度仪测量粉体颗粒的粒度的工作流程了解BT-9300-H激光粒度仪基本构造,利用激光粒度仪测量粉体的粒度二、激光法测量粉体颗粒的粒度基本原理与过程:颗粒的粒度与形状对其产品的性质与用途影响很大,因此,粒度与形状的测量非常重要。
例如,水泥的强度与其细度有关,磨料的粒度和粒度分布决定其质量等级,粉碎和分级也需要对其粒度进行测量。
随着纳米级材料的发展,人们对粒度测量提出了更高的要求。
表1列出了颗粒粒度测量的主要方法。
表1 粒度测量的方法筛分法:用于粒度分布的测量已有很长的历史了,制造筛网的技术也不断提高,国外可制造小到5μm的筛网。
筛分分析适用于粒径约100mm~20μm之间的粒度分布测量。
筛孔大小尺寸用“目”来表示,即1英寸长度的筛网上的筛孔数表示。
标准筛的规格见本书后的附录。
BET吸附法:流体通过法一般采用空气,使其通过粉体料层,由空气的流速、压力差等参数计算粉体的比表面积,然后计算出粉体的平均粒径。
比重计法:比重天平和沉降天平曾一度广泛地使用过。
但这些仪器测量时间太长,且不适合细颗粒的测量,将逐渐被淘汰。
沉降法:原理:当光束通过装有悬浮液的测量容器时,一部分光被反射或有吸收,一部分光到达光电传感器,将光强转变成电信号。
透过光强与悬浮液的浓度或颗粒的投影面积有关。
另一方面,颗粒在力场中沉降,可用斯托克斯定律计算其粒径大小,从而得到累积粒度分布。
(1)重力场光透过沉降法其测量范围在0.1~1000μm。
光源为:可见光、激光和X光。
颗粒的沉降速度与颗粒与悬浮液的密度有关,当密度差大时沉降速度快,反之沉降速度慢。
为了提高测量速度,节省测量时间,中国科学院化工冶金所马兴华等人发明了图像沉降法,装置简图如图1所示。
该装置采用一线性图像传感器,将沉降过程可视化,可明显节省测量时间。
例如对平均粒度为5μm的SiC样品测量的结果表明,本仪器仅需5min即可测量完毕,而国外同类仪器则需28min。
《粉体工程》word版
![《粉体工程》word版](https://img.taocdn.com/s3/m/dc25b1cad1f34693dbef3e2e.png)
粉碎固体物料在外力作用下克服其内聚力使之破碎的过程。
粉碎比物料粉碎前的平均粒径与粉碎后的平均粒径之比称为平均粉碎比。
粉碎级数串联粉碎机台数粉碎流程(1)开路流程从粉(磨)碎机中卸出的物料即为产品,不带检查筛分或选粉设备的粉碎流程。
简单、效率低、产品合格率低(2)闭路流程带检查筛分或选粉设备的粉碎流程。
效率高循环负荷率不合格粗粒作为循环物料重新回至粉碎机中再进行粉碎,粗颗粒回料质量与该级粉碎产品质量之比。
选粉效率检查筛分或选粉设备分选出的合格物料质量与进该设备的合格物料总质量之比。
强度:指对外力的抵抗能力,通常以材料破坏时单位面积所受的力来表示(N/m2)理论强度不含任何缺陷的完全均质材料的强度(相当于原子、离子或分子间的结合力)实际强度一般为理论强度的1/100~1/1000硬度材料抵抗其他物体刻划或压入其表面的能力,也可理解为在固体表面产生局部变形所需的能量易碎(磨)性一定粉碎条件下,将物料从一定粒度粉碎至某一指定粒度所需的比功耗。
----比功耗单位质量物料从一定粒度粉碎至某一指定粒度所需的能量。
脆性脆性材料受力破坏时直到断裂前只出现极小的弹性变形而不出现塑性变形,抗冲击能力较弱。
采用冲击粉碎方法可粉碎。
材料的韧性指在外力作用下,塑性变形过程中吸收能量的能力。
断裂材料的断裂和破坏实质上是在应力作用下达到其极限应变的结果。
脆性材料在应力达到其弹性极限时,材料即发生破坏,无塑性变形出现。
韧性材料在应力略高于弹性极限并达到屈服极限时,尽管应力不断增大,但此时材料并未破坏,自屈服点以后的变形为塑性变形。
粉碎方式(a)挤压粉碎(b)冲击粉碎(c)摩擦-剪切粉碎(d)劈裂-裁断粉碎挤压粉碎:粉碎设备的工作部件对物体施加挤压作用,物料在压力作用下发生粉碎(挤压磨及鄂氏破碎机)挤压-剪切粉碎:挤压和剪切两种粉碎方法相结合的方式(雷蒙磨,立式磨)。
冲击粉碎:包括高速运动的粉碎体对被粉碎物料的冲击和高速运动的物料向固定壁或靶的冲击。
粉体工程与设备
![粉体工程与设备](https://img.taocdn.com/s3/m/9f82f2ed4afe04a1b071deca.png)
北方民族大学课程设计报告院(部、中心)材料科学与工程学院姓名王芳学号专业材料科学与工程班级 082 同组人员王选、高稳成、闫晓展、代新、马海龙课程名称粉体工程与设备项目名称年产3000吨碳化硅微粉的生产线的可行性研究报告起止时间2010-11-21至2009-12-3成绩指导教师王正粟祁利民北方民族大学教务处制目录一、项目的目的和意义··············································二、工艺参数的计算··············································三、设备的选择依据··············································四、成本核算··············································五、效益分析··············································六、环境保护及措施··············································七、小节··············································八、参考文献··············································一、目的及意义碳化硅(SiC)是用石英砂、石油焦(或煤焦)、木屑为原料通过电阻炉高温冶炼而成。
《粉体工程与设备》课程教学大纲
![《粉体工程与设备》课程教学大纲](https://img.taocdn.com/s3/m/83e77d1543323968011c9233.png)
一、基本信息
课程编号:01A32203 课程名称:粉体工程与设备
英文名称: Powder Engineering and Equipments 课程类型: □通识必修课 □通识核心课 □通识选修课 □学科基础课
■专业基础课 □专业必修课 □专业选修课 □实践环节
总学时:72
讲课学时:72
实验学时:0
学 分:4
适用对象:材料科学与工程专业本科生
先修课程:材料力学、机械设计基础、热工基础、流体力学、无机非金属材料科学基础、无机非金属
材料工艺学等理论课程和技术课程
课程负责人:姜奉华
二、课程的性质与作用
《粉体工程与设备》是材料科学与工程专业的一门专业基础课,其任务是粉体基本性质和粉体制备和 处理单元操作的基本理论及相关机械设备的构造、工作原理、设备选型计算方法。使学生对粉体材料生产 中的机械设备类型、构造、工作原理、工作参数及性能、用途有全面、系统和深入的理解,熟悉和掌握粉 体制备和处理的基本理论、各单元操作的特点及关键,熟悉相关机械设备的构造、工作原理及性能,能正 确进行设备选型,并为开发粉体工程新设备奠定基础。
难点:液桥作用力的分析
[授 课 方 法] 以课堂教学为主,课外学生自学为辅
[授 课 内 容]
第一节 粉体层的液体
第二节 粉体表面的湿润性
第三节 液体架桥
第四节 液体在粉体层毛细管中的上升高度
第五节 粉体润湿的应用
第五章 粉体的流变学
建议学时:6
[教学目的与要求] 掌握用直剪试验方法求粉体的内摩擦角及库仑粉体破坏包络线方程的意义;熟悉
二、不同尺寸球形颗粒的填充
三、实际颗粒的堆积
四、不同尺寸颗粒的最紧密堆积
《粉体工程与设备》课程指南
![《粉体工程与设备》课程指南](https://img.taocdn.com/s3/m/6d2fba46ad02de80d4d8407e.png)
《粉体工程与设备》课程指南粉体工程与设备课程编码:01422010英文名称:Powder Engineering and Equipment课程类别:专业必修课先修课程:机械零件设计、流体力学与设备开课学期:6开课单位:材料科学与工程学院计划学时:70学 分:4授课教师:陶珍东、姜奉华、王介强、张学旭、孙杰景、徐红燕等 课程简介:粉体的制备与处理在现代材料科学与工程中占有极其重要的地位,在各种新材料的研究和开发过程中,高性能粉体的制备甚至成为关键环节。
随着现代科学的飞速发展,粉体工程的跨学科性及学科边缘性和综合性特点日益突出。
本课程是针对材料科学与工程专业科生开设的课程。
本课程的主要任务:系统介绍粉体的几何、填充、流变、力学等基本性质、破碎与粉磨、分级与分离、混合、输送与计量等粉体制备和处理中各种单元操作的基本理论以及相关机械设备的构造、工作原理、设备工艺选型计算方法等,并及时介绍粉体工程领域中技术和机械设备研究开发的最新理论成果及发展动态。
同时配合粉体工程综合实验,使学生了解并学会粉体工程科学研究的思路和方法。
本课程的目的:通过课程学习,使学生从粉体的基本性质出发,熟悉和掌握粉体制备和处理的基本理论、各单元操作的特点及关键,熟悉各单元操作的各种机械设备的构造、工作原理及性能,能正确进行工艺设备选型,并为开发新的粉体工程设备奠定基础。
教材资料:(一)教材陶珍东,郑少华,《粉体工程与设备》,化学工业出版社,2010年。
(二) 主要参考资料1、盖国胜等,《超细粉碎分级技术》,中国轻工业出版社,2000年。
2、郑水林,《超细粉碎原理、工艺设备及应用》,中国建材工业出版社,1993年。
3、卢寿慈,《粉体加工技术》,中国轻工业出版社1999年。
4、李凤生等,《超细粉体加工技术》,国防工业出版社,2000年。
教师简介:陶珍东,男,博士,教授,硕士生导师。
研究领域:粉体科学与工程、材料加工工程。
姜奉华,男,博士,副教授;研究领域:姜奉华,男,工学博士,济南大学副教授;研究领域:主要从事硅酸盐材料、固体废弃物综合利用、纳米材料等。
粉体工程及设备(2)
![粉体工程及设备(2)](https://img.taocdn.com/s3/m/6c32ba1a650e52ea55189873.png)
教学内容 (1)干压成型设备 (2)等静压压制成型 (3)半干压成型设备 重点和难点 重点:陶瓷成型方法、机械设备和原理 难点:成型方法与应力分布的关系
三、几点说明
1、制定本大纲的依据 依据材料科学与工程专业的 2010 培养方案的要求而编写的。 2、本课程与前后课程的联系 本课程的教学在学生修完机械设计基础、材料工程基础、物理化学、材 料科学基础、认识实习等课程以后进行。本课程的后继课程:设计概论和毕 业论文(设计) 3、考核方式 考核方式:笔试,闭卷;A、B、C卷或试卷库,考试时数2h。 成绩评定:平时 30%、期末 70%。 4、教材及主要参考书目 [1]张长森主编,粉体技术及设备,上海:华东理工大学出版社,2007。 [2]谢洪勇编著,粉体力学与工程,北京:化学工业出版社,2003。 [3]卢寿慈主编,粉体技术手册,北京:化学工业出版社,2004。 [4]陶珍东、郑少华主编,粉体工程与设备,北京:化学工业出版社,2003。 [5]郑水林,粉体表面改性,北京:中国建筑工业出版,2003。
概述、构造、工作原理及应用,选型计算 (2)斗式提升机 构造、工作原理及应用,选型计算 (3)气力输送机 构造、工作原理及应用 重点和难点 重点:构造,选型计算 难点:选型计算 6 加料机械 教学目的 学生通过本章的学习,掌握加料机械的工作原理、结构、性能及应用 教学内容 (1)加料机的构造, (2)电磁加料机的工作原理、构造及应用 (3)螺旋加料机的构造、性能及应用 (4)电磁振动加料机,回转加料机,其它加料机 重点和难点 重点:常见加料机的工作原理、构造及应用 7 收尘设备 教学目的 学生通过本章的学习,掌握收尘效率的计算和收尘设备的评价指标,掌 握常用收尘设备的工作原理、构造、性能与应用,能够进行选型和设计计算 教学内容 (1)概述 收尘的意义,收尘效率,收尘器分类,收尘设备的评价指标 (2)旋风收尘器 基本旋风收尘器的种类结构,旋风收尘器的流场与收尘过程,旋风收尘 器的捕集分离原理,旋风收尘器的压力损失,几种常用的旋风收尘器,影响 旋风收尘器工作性能的因素,选型计算。 (3)袋式收尘器 袋式收尘器的工作原理、构造与类型,主要参数确定,电收尘器性能与 应用,) (4)其它种类的收尘器 水收尘器,超声波收尘器,收尘器的组合 (5)收尘系统及设计计算 收尘系统选择,吸尘罩及风管设计 重点和难点 重点:收尘效率、收尘设备的评价指标、收尘的选型计算,
粉体工程与设备第二章讲课文档
![粉体工程与设备第二章讲课文档](https://img.taocdn.com/s3/m/d7ebe86d6bec0975f565e2a7.png)
球数
1 2 8 8 极多
第二十一页,共47页。
空隙率 0.260 0.207 0.190 0.158 0.149 0.039
2. Hudson堆积
定义:当一种以上的等尺寸球被填充到最紧 密六方排列的空隙中时,空隙率随较小球与 最初大球的的尺寸比值变化,空隙率随着四 方空隙中较小球的数目增加而减小。但实际 上,因为在三角孔隙中,球的数目不连续, 当三角空隙中球的尺寸比为0.1716时,最小 空隙率为0.113,这样的排列叫做Hudson堆 积。
第二十七页,共47页。
在同一固体物料所组成的多组元n级颗粒 填充体系中,填充后单位体积粉体的总松 体积为:
填充颗粒的体1积
Vm
填充率 1n
第二十八页,共47页。
4 实际颗粒堆积影响因素
(1) 壁效应# 定义:当颗粒填充容器时,在容器壁附近形成
特殊的排列结构,即形成局部有序。
第二十九页,共47页。
对于粗颗粒,较高的填充速度导致松装密 度较小;
对于细颗粒,减慢供料速度可得松散堆积。
第三十六页,共47页。
堆积理论的应用:
1. 指导流程和设备选择。水煤浆制备的关 键技术之一是如何使煤粉具有紧密堆积, 达到代油的目的。而磨料工艺与设备的选 择对粒度分布特性有直接关系。
2. 指导研究和生产。
第二十二页,共47页。
第二十三页,共47页。
堆积特性:
二次球与一次球比值,当r2/r1<0.414时, 二次球可填充四角孔;
当r2/r1<0.225时,二次球可填充三角孔; 当r2/r1=0.1716时,三角孔基准填充最为
紧密;
第二十四页,共47页。
3 二组元颗粒体系的最紧密堆积
在二组元的颗粒体系中,大颗粒间的空隙 由小颗粒填充,混合物中的单位体积内大 小颗粒重量分别为:
粉体工程与设备-第二章
![粉体工程与设备-第二章](https://img.taocdn.com/s3/m/93cd2348a76e58fafab0038e.png)
随机倾倒填充:相当于卸料或装袋,平 均空隙率0.375~0.391;
随机疏填充:缓慢填充,平均空隙率 0.4~0.41;
随机极疏填充:极缓慢填充,类似于流 化床物料缓慢速度降为0,平均空隙率 0.46~0.47;
2.1.3 非均一球形颗粒的填充
球序 球体半径
1次球E 2次球J 3次球K 4次球L 5次球M 最后填充
球
R1 0.414 R1 0.225 R1 0.177 R1 0.116 R1
极小
球数
1 2 8 8 极多
空隙率 0.260 0.207 0.190 0.158 0.149 0.039
2. Hudson堆积
定义:当一种以上的等尺寸球被填充到最 紧密六方排列的空隙中时,空隙率随较小 球与最初大球的的尺寸比值变化,空隙率 随着四方空隙中较小球的数目增加而减小。 但实际上,因为在三角孔隙中,球的数目 不连续,当三角空隙中球的尺寸比为0.1716 时,最小空隙率为0.113,这样的排列叫做 Hudson堆积。
粉体工程学
第二章:粉体的聚集特性
2.1 颗粒层的填充性能
粉体填充指标
– 密度、填充率、空隙率、孔隙率和配位数等。
理想粉体颗粒填充与堆积规则
– 均一球体颗粒的规则填充 – 均一球体颗粒的实际填充 – 非均一球体颗粒的填充
实际颗粒堆积影响因素 不同尺寸颗粒的最紧密堆积
2.1.1 粉体填充指标
x为六方最密填充的比例数。
上述两种单元体的体积比为1比1/ 2 ,每 单位体积的粒子数比为1比 2 ,配位数分 别为6和12,则平均配位数为
k(n)
12
2 x 6(1 x) 2 x (1 x)
粉体工程与设备
![粉体工程与设备](https://img.taocdn.com/s3/m/ef5a124481c758f5f71f6738.png)
北方民族大学课程设计报告院(部、中心)材料科学与工程学院姓名王芳学号专业材料科学与工程班级 082 同组人员王选、高稳成、闫晓展、代新、马海龙课程名称粉体工程与设备项目名称年产3000吨碳化硅微粉的生产线的可行性研究报告起止时间2010-11-21至2009-12-3成绩指导教师王正粟祁利民北方民族大学教务处制目录一、项目的目的和意义··············································二、工艺参数的计算··············································三、设备的选择依据··············································四、成本核算··············································五、效益分析··············································六、环境保护及措施··············································七、小节··············································八、参考文献··············································一、目的及意义碳化硅(SiC)是用石英砂、石油焦(或煤焦)、木屑为原料通过电阻炉高温冶炼而成。
粉体工程及设备(1)
![粉体工程及设备(1)](https://img.taocdn.com/s3/m/b5b3442c915f804d2b16c170.png)
种特征参数的计算方法,了解常用的几种均化措施及设备。 教学内容 11.1 概述 混合机理、混合的随机性 11.2 影响混合的因素 固体粒子性质、混合工艺和混合机性能和混合方式对混合的影
二、课程教学内容及基本要求
绪论 本课程的范围、性质及学科的发展,主要学习内容、要求、学习方法和教学手段。 1 颗粒物性 教学目的和要求:使学生了解粒径、粒度、粒度分布、颗粒形状等基本概念。理解颗 粒形状、粒度分布的表示方法和表达形式,掌握 RRB 粒度分布函数。使学生理解粉体的表 面现象、表面能和颗粒的凝聚, 教学内容: 1.1 颗粒粒径和粒度分布 单一颗粒的粒径、颗粒群平均粒径及平均粒径的计算;粒度 分布的表示方式、粒度分布的表达形式、常用粒度分布方程。 1.2 颗粒形状 颗粒形状、形状指数和形状系数。 1.3 颗粒的表面现象 表面能 表面现象、表面能与表面活性 1.4 颗粒间的作用力 颗粒间的范德华力、颗粒间的静电力、颗粒间的毛细力。 1.5 颗粒的团聚与分散 颗粒的团聚状态、颗粒在空气中的团聚与分散、颗粒在液体中 的团聚与分散。 重点:①粒度分布规律和 RRB 粒度分布函数,②颗粒间的作用力,③平均粒径的计算, ④颗粒在空气中的团聚与分散,⑤颗粒表面活性。 难点:①RRB 粒度分布函数,②平均粒径的计算方法,③颗粒间的毛细力。 2 粉体物性 教学目的和要求:使学生了解颗粒的堆积和填充情况,粉体堆积的宏观结构参数,掌 握粉体的摩擦特性、摩擦角、休止角等概念及流动特性。 教学内容
2.1 粉体堆积参数 容积密度、空隙率、填充率和配位数。 2.2 球形颗粒的堆积 等径球形颗粒群的规则堆积和实际堆积、不同粒径球形颗粒群的 密实堆积、实际颗粒的堆积;影响颗粒堆积的因素。 2.3 粉体的磨擦性 休止角、库仑定律、内磨擦角与有效内磨擦角、壁磨擦角和滑动磨 擦角。 2.4 粉体流动性 开放屈服强度、Jenike 流动函数 重点:①等径球形颗粒的排列,②非球形颗粒的随机填充,③库仑定律、内磨擦角与 有效内磨擦角。 难点:①库仑定律、内磨擦角;②不同粒径球形颗粒群的密实堆积 3 颗粒流体力学 教学目的和要求:了解颗粒在流体中的运动规律,掌握颗粒在静止流体内的沉降,理 解颗粒在运动流体中的运动。 教学内容 3.1 颗粒在流体内相对运动时的阻力 阻力系数 3.2 颗粒在静止流体内的沉降 干扰沉降、干扰沉降和等降颗粒 3.3 颗粒在流动着的流体内运动 颗粒在垂直流动着的流体、水平流动着的流体和旋转 流动着的流体中的运动。 重点:①颗粒在在静止流体内的沉降;②颗粒在垂直、水平和旋转三种不同流动状态 的流体中的运动。 难点:颗粒在流体流动状态下的运动。 4 粉体的机械力化学效应 教学目的和要求:了解机械力化学概念、机械力化学原理,理解机械力化学效应。 教学内容 4.1 概述 机械力化学的概念、物质受机械力作用 4.2 机械力化学原理 晶粒细化、局部高温、高压引起化学反应 4.3 机械力化学效应与结晶构造的变化和机械力化学反应 4.4 机械力化学效应与其它物理化学性质的变化 颗粒粒径和比表面积的变化、密度变 化、表面自由能等。 4.5 机械力化学效应在材料科学中的应用 重点:①机械力化学的概念,②机械力化学效应。 难点:机械力化学效应。 5 粉尘爆炸 教学目的和要求:了解粉体爆炸的机理,掌握粉尘爆炸的必要条件。 教学内容 5.1 燃烧和爆炸 燃点和相对可燃性、粉尘爆炸的特点。 5.2 粉尘爆炸要素分析 粉尘爆炸的必要条件、粉尘爆炸的特性。 5.3 粉尘爆炸的预防和防护。 重点:①粉尘爆炸的必要条件、粉尘爆炸的特性,②粉尘爆炸的预防和处理。 难点:粉尘爆炸的特性。 6 粉体的机械制备 教学目的和要求:学生通过本章的学习掌握经典的粉碎理论及有关概念,理解常用破 碎机械和粉磨机械的工作原理、构造、性能及应用。 教学内容 6.1 基本概念 粉碎与粉碎比、粉碎级数和粉碎流程、强度、硬度和易碎性,粉碎极限。
粉体工程与设备-第三章
![粉体工程与设备-第三章](https://img.taocdn.com/s3/m/e151d72c58fb770bf78a5522.png)
p
θ m
2θ q n σ——σ3的作 用方向
莫尔园图解法
已知最大主应力和 最小主应力,最小 主应力面和σ 轴的 夹角为υ 时,可由 作图求得任意方向 面A-B上所作用的应 力。
由已知的σ3,即C点,作 与σ轴成υ角的直线和莫 尔圆相交,交点处为 P(极点)。由P点作A-B 的平行线和莫尔圆相交 于Q,Q点的坐标即为 作用于A-B的应力σ,τ。 在上述求极点P时,如通过D点作最大主应力 面的平行线亦可得到相同的结果。
粉体工程学
第三章:粉体力学
3.1 粉体摩擦性
粉体的摩擦角定义:颗粒群从运动状态变为 静止状态,由于颗粒间的摩擦力和内聚力而 形成的角统称为摩擦角。 内摩擦角* 根据运动状态分类: 安息角* 壁摩擦角 运动摩擦角
3.1.1内摩擦角
定义:粉体在外力作用下达到规定的密 实状态,在此状态下受强制剪切时所形 成的角。 表征:在极限应力状态下剪应力与垂直 应力的关系。
2
1 3
2
cos 2
1 3
2
sin 2
对应莫尔园: 半径:r 1 3 2 圆心坐标: (
1 3
2
), 0
当cos2θ=1,θ=0时的σ为最大值σ1;当cos2θ=1,θ=90°时σ为最小值σ3;而此时sin2θ=0, τ=0为最小值。 当 θ=45°,sin2 θ=1, τ =( σ1 - σ3 )/2为最 大值。
莫尔圆的画法
以最大主应力σ 1和最小主应力σ 3的方向 为坐标 y轴和x轴, 以om=( σ 1 + σ 3 )/2为圆心、 km= ( σ 1 - σ 3 )/2为半径作圆即成。 取on= σ 1 ,ok= σ 3
《粉体工程》实验指导书
![《粉体工程》实验指导书](https://img.taocdn.com/s3/m/6cb5c210a216147917112888.png)
《粉体工程》实验指导书武汉工程大学二00六年九月实验— 粒度分析实验一、实验目的学会筛分分析技术,掌握粒度分析曲线的绘制方法。
二、实验要求1、正确取出筛分分析试样;2、正确使用标准套筛;3、认真记录实验数据,并作有关计算;4、用算术坐标法和双对数坐标法绘制粒度分析曲线。
三、实验设备与用具1、标准套筛;2、振筛机;3、托盘天平;4、搪瓷盘;5、秒表。
四、实验步骤1、检查振筛机能否正常工作,将标准筛按规定次序叠好,并套上底盘。
2、称取一定量具有代表性的试样(粒度小于0.418mm )。
3、将称量好的试样倒入最上层筛面上,并套好上盖。
4、将叠好的标准套筛放在振筛机上,筛分大约20分钟。
到达筛分时间后,将筛子从上而下依次取出,将最下层筛子在塑料布上继续用手筛数分钟,检查是否己到达筛分终点。
5、到达筛分终点后,将每一个粒级的物料称重,并记录在筛分分析表中。
6、检查各粒级物料重量之和是否与原物料重量相近,若相对误差超过2%,则应重做。
五、实验数据处理 1、筛分分析表2、在算术坐标纸上绘制“粒度——产率”、“粒度——正累积产率”曲线;在双对数坐标纸上绘制“粒度——负累积产率” 曲线。
3、确定Rosin 方程 中的参数b 和n ,并用粒度特性方程表征物料粒度。
nbx e R -=100实验二 筛分效率测定实验一、实验目的掌握筛分效率的测定和计算方法。
二、实验要求1、仔细观察振动筛的构造,掌握其工作原理;2、测定并计算振动筛的筛分效率;3、分析生产率与筛分效率的关系,验证筛分动力学的应用公式: 三、实验设备与工具1、振动筛;2、检查筛;3、台称;4、料盆;5、秒表。
四、实验步骤1、观察振动筛的构造,检查振动筛是否能正常运转。
注意不要靠近振动筛的转动部件。
2、称取5kg 试样作振动筛的给料。
3、将称好的给料轻倒在振动筛筛面一半的位置,启动振动筛进行筛分;将筛上物料T 和筛下物料C 分别称重,其重量之和应与原物料重量相近,相对误差不超过2%;注意在启动振动筛的同时开始测定试样在筛面上的停留时间t 。
粉体工程与设备
![粉体工程与设备](https://img.taocdn.com/s3/m/cffc76da6394dd88d0d233d4b14e852458fb3930.png)
2、几种固体物料的混合,也必须在细粉 状态下才能得到均匀的效果。
3、固体物科经粉碎后,为烘干、混合、 运输和储存等操作难备好有利条件。
3
粉碎过程的对象:
数量很大的固体原料、燃料和半成品等 需要经过各种不同程度的粉碎,使其块度达 到各工序所要求的大小,以便操作加工。
49
50
第6章 冲击式粉碎机
冲击式粉碎机是工业中广泛使用的粉碎机城。这 类机械的特征是机内都有旋转的工作部件——转 子。通过工作机构对料块的冲击或使料块彼此冲 击而进行粉碎。由于主要是利用高速冲击能量的 作用,使物料在自由状态下沿其脆弱面破碎,因 而特别适于粉碎石灰石等脆性物料,粉碎效率高 ,产品粒度多呈方块状。
52
53
54
55
56
57
性能及应用
优点:生产能力高,粉碎度大,电耗低, 机械结构简单,紧凑轻便,投资费用少, 管理方便。
缺点:粉碎坚硬物料时,锤子和蓖条磨损 大,小号较多的金属和检修时间,需要均 勺喂料,粉碎粘湿物料时会减产,甚至由 于堵塞而停机。为了避免堵塞,被破碎物 料的含水率不应超过10~15%(特殊用途的 锤式破碎例外)。
80
但是不设下蓖条的反击式破碎机不能控 制产品粒度,同时难于生产单一粒度的产品 ,产品中有少量大块。用作粗碎或单级破碎 时,须严格控制最大进料粒度以免损坯转于 。另外,防堵性能较差,不适宜破碎塑性和 粘性物料,在破碎硕质物料时,板锤和反击 板磨损较大,运转时噪音较大,产生粉尘也 大。
由于反击式破碎机具有许多优点,在硅 酸盐工业中已获得日益广泛应用,用来粉碎 石灰石、砂岩、水泥熟料、烧粘土、石膏及 煤等。
铣削破碎:经上述两种破碎作用未破碎的大出料口 尺寸的物料,在出料口处被高速旋转的锤头铣削而 破碎。