追赶法(Thomas算法)
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二、解三对角线性方程组的追赶法 定理1:满足引理1条件的三对角方阵A有如下形式的 唯一的克劳特分解。
p1 a2 A= pn
p2 a3 pn 1 an
1 q1 1 q2 =PQ 1 qn 1 1
其中
p1 = b1 (i = 1,2,, n 1) qi = ci pi p = b a q (i = 2,3,, n ) i i i 1 i
A称为三对角线矩阵, 并且满足
(1) |b1 |> c1 |> 0 |
( 2 ) |bi | |ai |+|ci | , ai ci ≠ 0 ≥ ( 3) |bn |> an |> 0 |
A称为对角占优的三对角线矩阵. 显然, A非奇异,即det A ≠ 0
i = 2 , , n 1
因此A的任意k阶顺序主子式非零,即det Ak ≠ 0
(i = 2,3,, n )
( 2) 解 Qx = y
1 q1 1 q2 1 qn 1 1
x1 y1 x2 = y2 x y n n
得
xn = y n
xi = yi qi xi +1
i = n 1 , , 2 ,1
n
i = 1 , 2 , , n
则称A为弱对角占优矩阵.
有一类方程组, 形式为:
Ax = f
其中
b1 c1 a2 b2 c2 A= an 1 cn 1 bn
bn 1 an
x1 f1 x2 f = f 2 x= x f n n
作业: P50 习题11
§2-4
追赶法(Thomas算法 算法) 追赶法 算法
一、对角占优矩阵
若矩阵A = ( aij )n× n 满足
|aii |> ∑|aij |
j =1 j ≠i ≠i
Hale Waihona Puke Baidu
n
i = 1 , 2 , , n
则称A为严格对角占优矩阵.
若矩阵A = ( aij )n× n 满足
|aii | ∑|aij | ≥
j =1 j ≠i
解三对角线方程组Ax = f可化为求解两个三角形 方程组
Py = f
Qx = y
(1) 解 Py = f
p1 a2 ( P, f ) = p2 a3 pn 1 an f1 f2 f3 pn f n
得
{
y1 = f1 / p1
yi = ( f i ai yi 1 ) / pi