《四边形》专题训练(1)——证明题(平行四边形,矩形,菱形,正方形)
平行四边形、矩形、菱形、正方形的性质和判定练习

平行四边形、矩形、菱形、正方形的性质和判定练习【范例点睛】例1 如图,小明用一根36m 长的绳子围成了一个平行四边形的场地,其中一条边AB 长为8m ,其他三条边各长多少?解:∵四边形ABCD 是平行四边形. ∴AB=CD ,AD=BC .∵ AB=8.∴CD=8(m ). 又AB+BC+CD+AD=36.∴ AD=BC=10(m ).例2 如图,在□ABCD 中,E ,F 是对角线AC 上的两点,且AE=CF . 求证:BE=DF .证明:∵ 四边形ABCD 是平行四边形.∴ AB ∥CD , AB =CD . ∴ ∠BAE =∠DCF .∵ AE =CF , ∴ △ABE ≌△CDF . ∴ BE =DF .你还有其他证明方法吗?例3 如图,在□ABCD 中,E 是AD 的中点,CE 交BA 的延长线于点F .(1) 你能证明CD=AF 吗?(2) 若BC =2CD,则∠F =∠BCF .思维点拨:(1)要证CD=AF,只需证△DCE ≌△A FE,只需证∠D =∠FAE,只需证CD ∥AB .(2)要证∠F =∠BCF,只需证BF=BC,只需证BF=2CD,只需证DC=AB=AF证明略【课外链接】平行四边形法则一个氢气球在无风的情况下以速度v 1(单位:m/s)垂直上升,在有风的时候,它还会垂直上升吗?如图1,如果风的方向是水平的,速度为v 2(单位:m/s),你能找到气球的实际上升方向并求出它的速度吗?实际生活中,这样的例子还很多,例如,对一个物体M 施加两个成某个角度的力F 1和F 2,这个物D CB A F EDC B A体的实际受力效果并不是F1和F2的简单叠加,它们的合力F的大小和方向由以F1和F2为边的平行四边形的对角线决定(图2).对既有大小又有方向的量求和时,一般都采用上面的方法,我们把这种方法叫做平行四边形法则.现在,你能找到气球实际上升的方向并求出它的速度了吗?下面,我们再利用这种方法来解决一个实际问题.如图3,一条小河缓缓地流着,河水的流速是2km/h,一艘船从A点出发以4 km/h的速度向垂直于对岸的方向行驶,它能到达对岸与A点正对的B点吗?为什么?如不能到达B点,小船将到达对岸的哪一点?如果要使小船到达B点,在A点怎样调整小船的方向?请你帮助设计一下,然后和同学们讨论你的设计.【随堂演练】一、选择题:1.平行四边形具有而一般四边形不具有的性质是…………………………( ) A.不稳定性B.对边平行且相等C.内角和为360°D.外角和为360°.2.如图,在□ABCD中,EF∥BC,GH∥AB,EF、GH的交点P在BD上,则图中面积相等的平行四边形有…()(A)0对(B)1对(C)2对(D)3对3.□ABCD中,如果∠B=100°,那么∠A、∠D的值分别是()A ∠A=80°,∠D=100° B ∠A=100°,∠D=80°C ∠B=80°,∠D=80°D ∠A=100°,∠D=100°4.□ABCD的内角∠BAD平分线交BC于E,且AE=BE,则∠BCD的度数为( )A.30°B.60°C.120°D.60°或120°二、解答题5.如图,剪两张对边平行的纸条,随意交叉叠放在一起,转动其中一张,重合的部分构成了一个四边形.线段AD和BC的长度有什么关系?6.如图,BD 平分∠ABC,DE//BC,EF//AC,试判断BE 与CF 是否相等?并简要说明.AB C D EF7.阳光透过矩形玻璃窗投射到地面上,地面上出现了一个明亮的四边形.小刚用量角器量出这个四边形的一个锐角恰好是30°,又用直尺量出一组邻边的长分别是40cm 和55cm .小刚说,用这三个数据,就能够计算出地上的四边形的面积和周长.你知道小刚是如何计算的吗?这样计算的根据是什么?8.如图, □ABCD 中,G 是CD 上一点,BG 交AD 延长线于E,AF=CG , 100=∠DGE .(1)试说明DF=BG; (2)试求AFD ∠的度数.9.用硬纸板剪一个平行四边形,做出它的对角线的交点O ,用大头针把一根平放在平行四边形上的直细木条固定在点O 处.拨动细木条,使它随意停留在任意的位置.观察几次拨动的结果,你发现了什么?你能证明自己的发现吗?10.如图,在□ABCD 中,AB=2BC ,E 为BA 的中点,D F ⊥BC ,垂足为F ,你能说明∠AED=∠EFB 吗?A B C D FE G FE D CB A。
中考总复习平行四边形矩形菱形正方形专项练习(含解析)

第110讲四边形微课平行四边形的性质题一:如图所示,四边形ABCD的对角线AC和BD相交于点O,下列判断正确的是() A.若AO=OC,则四边形ABCD是平行四边形B.若AC=BD,则四边形ABCD是平行四边形C.若AO=BO,CO=DO,则四边形ABCD是平行四边形D.若AO=OC,BO=OD,则四边形ABCD是平行四边形A DOB题二:四边形ABCD中,对角线AC、BD相交于点O,给出下列四个条件:①AD∥BC;②AD=BC;③OA=OC;④OB=OD.从中任选两个条件,能使四边形ABCD为平行四边形的选法有()A.3种B.4种C.5种D.6种题三:在平行四边形ABCD中,对角线AC、BD垂直于点O,且它们的长度分别为6cm和8cm,过点O的直线分别交AD、BC于点E、F,则阴影部分面积的和为_____.教育选轻轻·家长更放心页1教育选轻轻·家长更放心页 2题四:如图,平行四边形ABCD 中,对角线AC 、BD 交于点O ,BC =6,BC 边上的高为4,其中EF 、MN 、GH 交于点O ,则阴影部分的面积为_____.题五:如图,平行四边形ABCD 中,O 是对角线交点,AB =13cm ,BC =5cm ,那么△AOB 周长比△BOC 的周长多_____cm .题六:如图,在平行四边形ABCD 中,EF 经过对角线的交点O ,交AB 于点E ,交CD 于点F .若AB =5,AD =4,OF =1.8,那么四边形BCFE 的周长为_____.教育选轻轻·家长更放心页 3题七:如图,平行四边形ABCD 中,P 是CD 上的一点,且AP 和BP 分别平分∠DAB 和∠C BA ,过点P 作PQ ∥AD ,交AB 于点Q .下列结论不一定成立的是( )A .AP ⊥BPB .AD =PDC .△PBC 是等边三角形D .点Q 是AB 的中点题八:如图,已知四边形ABCD 是平行四边形.(1)若AF ,BE 分别是∠DAB 、∠CBA 的平分线,求证:DE =FC ;(2)已知AD =3,AB =5,求EF 的长.教育选轻轻·家长更放心页 4第111讲 四边形微课 平行四边形的判定题一:如图所示,在四边形ABCD 中,AD ∥BC ,要使四边形ABCD 成为平行四边形还需要条件( )A.AB =DC B .∠1=∠2C .AB =AD D .∠D =∠B题二:如图,在平行四边形ABCD 中,对角线BD 、AC 相交于点O ,E 、F 是BO 上的两点,请你添一个条件_______使四边形AECF 是平行四边形,并说出你的理由.题三:如图,AD ∥BC ,ED ∥BF ,且AE =CF ,求证:四边形ABCD 是平行四边形.教育选轻轻·家长更放心页 5题四:如图,四边形ABCD 中,AD ∥BC ,AE ⊥AD 交BD 于点E ,CF ⊥BC 交BD 于点F ,且AE =CF .求证:四边形ABCD 是平行四边形.题五:如图,平行四边形ABCD 中,对角线AC ,BD 相交于点O ,点E ,F 分别是OB ,OD 的中点,试说明四边形AECF 是平行四边形.题六:如图,在平行四边形ABCD 中,点E 是AD 边的中点,BE 的延长线与CD 的延长线相交于点F ,求证:四边形ABDF 是平行四边形.第112讲四边形微课矩形题一:矩形具有而平行四边形不具有的性质是()A.内角和为360°B.对角线相等C.对角相等D.相邻两角互补题二:矩形具有而平行四边形不具有的性质是()A.对角线互相平分B.对角线相等C.内角和为360°D.对边平行且相等题三:下列关于矩形的说法中正确的是()A.矩形的对角线互相垂直且平分B.矩形的对角线相等且互相平分C.对角线相等的四边形是矩形D.对角线互相平分的四边形是矩形题四:下列说法正确的有()①两条对角线相等的四边形是矩形;②有一组对边相等,一组对角是直角的四边形是矩形;③一个角为直角,两条对角线相等的四边形是矩形;④四个角都相等的四边形是矩形;⑤对角线相等且垂直的四边形是矩形;⑥有一个角是直角的平行四边形是矩形.A.1个B.2个C.3个D.4个教育选轻轻·家长更放心页6教育选轻轻·家长更放心页 7题五:如图,在矩形ABCD 中,AE ⊥BD ,垂足为E ,∠DAE :∠BAE =1:2,试求∠CAE 的度数.题六:如图,已知矩形ABCD 中,AC 与BD 相交于O ,DE 平分∠ADC 交BC 于E ,∠BDE =15°,试求∠COE 的度数.教育选轻轻·家长更放心页 8题七:如图,△ABC 中,AB =AC ,D 是BC 中点,F 是AC 中点,AN 是△ABC 的外角∠MAC 的角平分线,延长DF 交AN 于点E.(1)判断四边形ABDE 的形状,并说明理由;(2)问:线段CE 与线段AD 有什么关系?请说明你的理由.题八:已知:如图,在平行四边形ABCD 中,E 、F 分别为边AB 、CD 的中点,BD 是对角线,AG ∥DB 交CB 的延长线于G .(1)求证:△ADE ≌△CBF ;(2)若四边形BEDF 是菱形,则四边形AGBD 是什么特殊四边形?并证明你的结论.第113讲四边形微课菱形题一:如图,AC是菱形ABCD的对角线,E、F分别是AB、AC的中点,如果EF=3,那么菱形ABCD的周长是_____.题二:如图,菱形花坛ABCD的边长为6m,∠A=120°,其中由两个正六边形组成的图形部分种花,则种花部分图形的周长为()A.12m B.20mC.22m D.24m题三:能判定一个四边形是菱形的条件是()A.对角线互相平分且相等B.对角线互相垂直且相等C.对角线互相垂直且对角相等D.对角线互相垂直,且一条对角线平分一组对角题四:下列给出的条件中,能识别一个四边形是菱形的是()A.有一组对边平行且相等,有一个角是直角B.两组对边分别相等,且有一组邻角相等C.有一组对边平行,另一组对边相等,且对角线互相垂直D.有一组对边平行且相等,且有一条对角线平分一个内角教育选轻轻·家长更放心页9题五:红丝带是关注艾滋病防治问题的国际性标志.将宽为1cm的红丝带交叉成60°角重叠在一起(如图),判断重叠四边形是什么特殊四边形?证明你的结论.题六:将平行四边形纸片ABCD按如图方式折叠,使点C与A重合,点D落到D′处,折痕为EF,连接CF,判断四边形AECF是什么特殊四边形?证明你的结论.教育选轻轻·家长更放心页10题七:如图所示,在Rt△ABC中,∠ABC= 90°.将Rt△ABC绕点C顺时针方向旋转60°得到△DEC,点E在AC上,再将Rt△ABC沿着AB所在直线翻转180°得到△ABF,连接AD.求证:四边形AFCD是菱形.题八:Rt△ABC中,∠ACB=90°,过点C的直线m∥AB,D为AB边上一点,过点D作DE⊥BC,交直线m于E,垂足为F,连接CD、BE.(1)求证:CE=AD;(2)当D在AB中点时,四边形BECD是什么特殊四边形?说明你的理由.教育选轻轻·家长更放心页11教育选轻轻·家长更放心页 12第114讲 四边形微课 正方形题一:下列判断中正确的是( )A .四边相等的四边形是正方形B .四角相等的四边形是正方形C .对角线互相垂直的平行四边形是正方形D .对角线互相垂直平分且相等的四边形是正方形 题二:正方形四边中点的连线围成的四边形(最准确的说法)一定是( )A .矩形B .菱形C .正方形D .平行四边形题三:如图,正方形ABCD 中,点E 、F 、H 分别是AB 、BC 、CD 的中点,CE 、DF 交于G ,连接AG 、HG .下列结论:①CE ⊥DF ;②AG =AD ;③∠CHG =∠DAG ;④HG =12AD .其中正确的有( )A .①②B .①②④C .①③④D .①②③④题四:如图,正方形ABCD 的对角线相交于O 点,BE 平分∠ABO 交AO 于E 点,CF ⊥BE 于F 点,交BO 于G 点,连接EG 、OF .下列四个结论:①CE =CB ;②AE 2;③OF =12CG .其中正确的结论只有( )A .①②B .②③教育选轻轻·家长更放心页 13C .①③D .①②③题五:如图,已知点E 为正方形ABCD的边BC 上一点,连接AE ,过点D 作DG ⊥AE ,垂足为G ,延长DG 交AB 于点F .求证:BF =CE .题六:如图,四边形ABCD 是正方形,G 是BC 上任意一点(点G 与B 、C 不重合),AE ⊥DG 于E ,CF ∥AE 交DG 于F .求证:AE =FC +EF .第110讲四边形微课平行四边形的性质题一:D.详解:∵AO=OC,BO=OD,∴四边形的对角线互相平分所以D能判定四边形ABCD是平行四边形.故选D.题二:B.详解:①②组合可根据一组对边平行且相等的四边形是平行四边形判定出四边形ABCD为平行四边形;③④组合可根据对角线互相平分的四边形是平行四边形判定出四边形ABCD为平行四边形;①③可证明△ADO≌△CBO,进而得到AD=CB,可利用一组对边平行且相等的四边形是平行四边形判定出四边形ABCD为平行四边形;①④可证明△ADO≌△CBO,进而得到AD=CB,可利用一组对边平行且相等的四边形是平行四边形判定出四边形ABCD为平行四边形;故选:B.题三:12cm2.详解:∵AC、BD是平行四边形ABCD的对角线,∴OA=OC,∵AD∥BC,∴∠OAE=∠OCF,在△AOE和△COF中,∠OAE=∠OCF,OA=OC,∠AOE=∠COF,∴△AOE≌△COF(ASA),∴△AOE的面积=△COF的面积,教育选轻轻·家长更放心页14∴阴影部分的面积=12平行四边形ABCD的面积,∵对角线AC、BD的长度分别为6cm和8cm,且AC⊥BD,∴平行四边形ABCD的面积=12×6×8=24cm2,∴阴影部分面积的和=12×24=12cm2.题四:12.详解:∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,AD∥BC,AB∥CD,∴∠OAN=∠OCM,在△AON和△COM中,∠OAN=∠OCM,∠AON=∠COM,OA=OC,∴△AO N≌△COM(AAS),同理:△AOE≌△COF,△BOE≌△DOF,△BOG≌△DOH,∴OG=OH,OM=ON,在△GOM和△HON中,OG=OH,∠GPM=∠HON,OM=ON,∴△GOM≌△HON(SAS),∴S阴影=12S平行四边形ABCD=12×6×4=12.题五:8.详解:∵四边形ABCD为平行四边形,∴OA=OC,OB=OD△AOB的周长为OA+OB+AB;教育选轻轻·家长更放心页15△BOC的周长为OB+OC+BC∴两周长之差为OA+OB+AB-(OB+OC+BC)=AB-BC=13-5=8cm.题六:12.6.详解:∵四边形ABCD是平行四边形,∴BC=AD=4,OA=OC,AB∥CD,∴∠OAE=∠OCF,在△OAE和△OCF中,∠AOE=∠COF,OA=OC,∠OAE=∠OCF,∴△AOE≌△COF(ASA),∴CF=AE,OE=OF=1.8,∴EF=OE+OF=3.6,∴四边形BCFE的周长为:EF+BE+BC+CF=EF+BC+BE+AE=EF+BC+AB=3.6+4+5=12.6.题七:C.详解:A.∵四边形ABCD是平行四边形,∴AD∥BC,∴∠DAB+∠CBA=180°,∵AP和BP分别平分∠DAB和∠CBA,∴∠PAB+∠PBA=12(∠DAB+∠CBA)=90°,∴∠APB=90°,即AP⊥BP;故A正确;B.∵AB∥CD,∴∠DPA=∠PAQ,∵∠DAP=∠PAQ,∴∠DAP=∠DPA,∴AD=PD,故B正确;C.同理:PC=BC,但不能证得△PBC是等边三角形.故C错误;D.∵PQ∥AD,∴∠APQ=∠DAP,教育选轻轻·家长更放心页16∵∠DAP=∠PAQ,∴∠PAQ=∠APQ,∴AQ=PQ,同理:PQ=BQ,∴AQ=BQ,即Q是AB的中点,故D正确.故选C.题八:见详解.详解:(1)证明:∵AB∥CD,∴∠DFA=∠FAB,∵AF、BE分别是∠DAB,∠CBA的平分线,∴∠DAF=∠FAB,∴∠DAF=∠DFA,∴DA=DF,同理得出CE=CB,∴DF=EC,∴DF-EF=CE-EF,∴DE=CF;(2)由(1)得:AD=DF,∵AD=3,∴DF=3,同理:CE=3,∵AB=DC=5,∴EF=DF+EC-DC=2BC-DC=3+3-5=1.第111讲四边形微课平行四边形的判定题一:D.详解:A.符合条件AD∥BC,AB=DC,可能是等腰梯形,故本选项错误;B.根据∠1=∠2,推出AD∥BC,不能推出平行四边形,故本选项错误;C.根据AB=AD和AD∥BC不能推出平行四边形,故本选项错误;D.∵AD∥BC,∴∠1=∠2,∵∠B=∠D,∴∠BAC=∠DCA,∴AB∥CD,∴四边形ABCD是平行四边形,故本选项正确.故选D.题二:OE=OF.教育选轻轻·家长更放心页17详解:OE=OF(答案多样,以此为例).理由:∵四边形ABCD为平行四边形,∴OA=OC,∵OE=OF,∴四边形AECF为平行四边形.故答案为:OE=OF.题三:见详解.详解:∵AD∥BC,∴∠EAD=∠FCB,又∵ED∥BF,∴∠FED=∠EFB,∠AED=180°-∠FED,∠CFB=180°-∠EFB,∴∠AED=∠CFB,又已知AE=CF,∴△AED≌△CFB,∴AD=BC,∴四边形ABCD是平行四边形.题四:见详解.详解:∵AE⊥AD,CF⊥BC,∴∠EAD=∠FCB=90°,∵AD∥BC,∴∠ADE=∠CBF,在Rt△AED和Rt△CFB中,∠ADE=∠CBF,∠EAD=∠FCB=90°,AE=CF,∴Rt△AED≌Rt△CFB(AAS),∴AD=BC,∵AD∥BC,∴四边形ABCD是平行四边形.题五:见详解.详解:∵四边形ABCD是平行四边形,∴OA=OC,OB=OD.∵点E、F分别是OB、OD的中点,∴OE=OF.∴四边形AECF是平行四边形.教育选轻轻·家长更放心页18题六:见详解.详解:∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∴∠ABE=∠BFD,∵点E是AD的中点,∴AE=DE.在△ABE与△DFE中,∠ABE=∠EFD,AE=DE,∠AEB=∠DEF,∴△ABE≌△DFE(ASA),∴AB=DF,∵AB∥DF,∴四边形ABDF为平行四边形.第112讲四边形微课矩形题一:B.详解:A.内角和为360°矩形与平行四边形都具有,故此选项错误;B.对角线相等只有矩形具有,而平行四边形不具有,故此选项正确;C.对角相等矩形与平行四边形都具有,故此选项错误;D.相邻两角互补矩形与平行四边形都具有,故此选项错误.故选B.题二:B.详解:A、矩形、平行四边形的对角线都互相平分,故本选项错误;B、矩形的对角线相等,平行四边形的对角线不相等,故本选项正确;C、矩形、平行四边形的内角和都是360°,故本选项错误;D、矩形、平行四边形的对边都平行且相等,故本选项错误.教育选轻轻·家长更放心页19故选B.题三:B.详解:A.矩形的对角线互相平分,且相等,但不一定互相垂直,本选项错误;B.矩形的对角线相等且互相平分,本选项正确;C.对角线相等的四边形不一定为矩形,例如等腰梯形对角线相等,但不是矩形,本选项错误;D.对角线互相平分的四边形为平行四边形,不一定为矩形,本选项错误.故选B.题四:C.详解:两条对角线相等且相互平分的四边形为矩形,故①③⑤错;有一个角为直角的平行四边形为矩形,故②④⑥正确.故选C.题五:30°.详解:∵∠DAE:∠BAE=1:2,∠DAB=90°,∴∠DAE=30°,∠BAE=60°,∴∠DBA=90°-∠BAE=90°-60°=30°,∵OA=OB,∴∠OAB=∠OBA=30°,∴∠CAE=∠BAE-∠OAB=60°-30°=30°.题六:75°.详解:∵四边形ABCD是矩形,DE平分∠ADC,∴∠CDE=∠CED=45°,∴EC=DC,又∵∠BDE=15°,∴∠CDO=60°,又∵矩形的对角线互相平分且相等,∴OD=OC,∴△OCD是等边三角形,教育选轻轻·家长更放心页20∴∠DCO=60°,∠OCB=90° ∠DCO=30°,∵DE平分∠ADC,∠ECD=90°,∠CDE=∠CED=45°,∴CD=CE=CO,∴∠COE=∠CEO;∴∠COE=(180°-30°)÷2=75°.题七:见详解.详解:(1)四边形ABDE是平行四边形,理由:∵AB=AC,D是BC中点,F是AC中点,∴DF∥AB,∵AB=AC,D是BC中点,∴∠BAD=∠CAD,AD⊥DC,∵AN是△ABC的外角∠MAC的角平分线,∴∠MAE=∠CAE,∴∠NAD=90°,∴AE∥BD,∴四边形ABDE是平行四边形;(2)CE∥AD,CE=AD;理由:∵AN是△ABC外角∠CAM的平分线,∴∠MAE=12∠MAC,∵∠MAC=∠B+∠ACB,∵AB=AC,∴∠B=∠ACB,∴∠MAE=∠B,∴AN∥BC,∵AB=AC,点D为BC中点,∴AD⊥BC,∵CE⊥AN,∴AD∥CE,∴四边形ADCE为平行四边形,∵CE⊥AN,∴∠AEC=90°,∴四边形ADCE为矩形,∴CE∥AD,CE=AD.教育选轻轻·家长更放心页21教育选轻轻·家长更放心页 22题八:见详解.详解:(1)∵四边形ABCD 是平行四边形,∴∠4=∠C ,AD =CB ,AB =CD ,∵点E 、F 分别是AB 、CD 的中点,∴AE =12AB ,CF =12CD .∴AE =CF , 在△AED 与△CBF 中,AD =CB ,∠4=∠C ,AE =CF ,∴△ADE ≌△CBF (SAS),(2)当四边形BEDF 是菱形时,四边形AGBD 是矩形;证明:∵四边形ABCD 是平行四边形,∴AD ∥BC ,∵AG ∥BD ,∴四边形AGBD 是平行四边形,∵四边形BEDF 是菱形,∴DE =BE ,∵AE =BE ,∴AE =BE =DE ,∴∠1=∠2,∠3=∠4,∵∠1+∠2+∠3+∠4=180°,∴2∠2+2∠3=180°,∴∠2+∠3=90°,即∠ADB =90°,∴四边形AGBD 是矩形.第113讲 四边形微课 菱形题一:24.教育选轻轻·家长更放心页 23详解:∵AC 是菱形ABCD 的对角线,E 、F 分别是AB 、AC 的中点,∴EF 是△ABC 的中位线,∴EF =12BC =3, ∴BC =6,∴菱形ABCD 的周长是4×6=24.题二:B .详解:连接AC ,已知∠A =120°,ABCD 为菱形,则∠B =60°,从而得出△ABC 为正三角形,以△ABC 的顶点所组成的小三角形也是正三角形,所以正六边形的边长是△ABC 边长的13,则种花部分图形共有10条边,所以它的周长为13×6×10=20m ,故选B .题三:C .详解:∵对角线互相垂直平分的四边形是菱形,∴A 、B 、D 都不正确;∵对角相等的四边形是平行四边形,而对角线互相垂直的四边形是菱形,∴C 正确.故选C .题四:D .详解:A .错误,可判定为矩形,而不一定是菱形;B .错误,可判定为矩形,而不一定是菱形;C .错误,可判定为等腰梯形,而不是菱形;D .正确,有一组对边平行且相等可判定为平行四边形,有一条对角线平分一个内角,则可判定有一组邻边相等,而一组邻边相等的平行四边形是菱形.故选D .题五:菱形.详解:如图,过点A作AE⊥BC于E,AF⊥CD于F,因为红丝带宽度相同,∴AB∥CD,AD∥BC,AE=AF,∴四边形ABCD是平行四边形.∵S□ABCD=BC •AE=CD •AF,又AE=AF,∴BC=CD,∴四边形ABCD是菱形.题六:菱形.详解:四边形AECF是菱形.证明:由折叠可知:AE=EC,∠AEF=∠CEF,∵四边形ABCD是平行四边形,∴AD∥BC,∴∠CEF =∠AFE,∴∠AEF =∠AFE,∴AF=AE,∵AE=EC,∴AF=EC,又∵AF∥EC,∴四边形AECF是平行四边形,∵AF=AE,∴平行四边形AECF是菱形.题七:见详解.详解:Rt△DEC是由Rt△ABC绕C点旋转60°得到,∴AC=DC,∠ACB=∠ACD=60°,∴△ACD是等边三角形,∴AD=DC=AC,又∵Rt△ABF是由Rt△ABC沿AB所在直线翻转180°得到,∴AC=AF,∠ABF=∠ABC=90°,教育选轻轻·家长更放心页24∵∠ACB=∠ACD=60°,∴△AFC是等边三角形,∴AF=FC=AC,∴AD=DC=FC=AF,∴四边形AFCD是菱形.题八:见详解.详解:(1)证明:∵直线m∥AB,∴∠ECD=∠ADC,又∵∠ACB=90°,DE⊥BC,∴DE∥AC,∴∠EDC=∠ACD,CD为公共边,∴△EDC≌△ACD,∴CE=AD;(2)当D在AB中点时,四边形BECD是菱形.证明:D是AB中点,由(1)知DE∥AC,∴F为BC中点,即BF=CF,∵直线m∥AB,∴∠ECF=∠DBF,∠BFD=∠CFE,∴△BFD≌△CFE,∴DF=EF,已知DE⊥BC,∴BC和DE垂直且互相平分,故四边形BECD是菱形.第114讲四边形微课正方形题一:D.详解:A错误,四边相等的四边形是菱形;B错误,四角相等的四边形是矩形;C错误,对角线互相垂直的平行四边形是菱形;D正确,对角线互相垂直平分且相等的四边形是正方形;故选D.教育选轻轻·家长更放心页25教育选轻轻·家长更放心页 26题二:C .详解:如图,连接AC 、BD ,交于O ,∵正方形ABCD ,∴AC =BD ,AC ⊥BD ,∵E 是AD 的中点,H 是CD 的中点,F 是AB 的中点,G 是BC 的中点,∴EH ∥AC ,FG ∥AC ,EF ∥BD ,GH ∥BD ,EF =12BD ,EH =12AC , ∴EF =EH ,EF ⊥EH ,四边形EFGH 是平行四边形,∴平行四边形EFGH 是正方形.故选C .题三:D .详解:∵四边形ABCD 是正方形,∴AB =BC =CD =AD ,∠B =∠BCD =90°,∵点E 、F 、H 分别是AB 、BC 、CD 的中点,∴△BCE ≌△CDF ,∴∠ECB =∠CDF ,∵∠BCE +∠ECD =90°,∴∠ECD +∠CDF =90°,∴∠CGD =90°,∴CE ⊥DF ,故①正确; 在Rt △CGD 中,H 是CD 边的中点,∴HG =12CD =12AD ,故④正确; 连接AH ,同理可得:AH ⊥DF ,∵HG =HD =12CD ,∴DK =GK , ∴AH 垂直平分DG ,∴AG =AD ,故②正确;∴∠DAG =2∠DAH ,同理:△ADH ≌△DCF ,教育选轻轻·家长更放心页 27∴∠DAH =∠CDF ,∵GH =DH ,∴∠HDG =∠HGD ,∴∠GHC =∠HDG +∠HGD =2∠CDF ,∴∠CHG =∠DAG ,故③正确;故正确的结论有①②③④.故选D .题四:D .详解:∵四边形ABCD 是正方形,∴∠ABO =∠ACO =∠CBO = 45°,AB =BC ,OA =OB =OC ,BD ⊥AC ,∵BE 平分∠ABO ,∴∠OBE =12∠ABO =22.5°, ∴∠CBE =∠CBO +∠EBO =67.5°,在△BCE 中,∠CEB =180°-∠BCO -∠CBE =180°- 45°-67.5°=67.5°,∴∠CEB =∠CBE ,∴CE =CB ;故①正确;∵OA =OB ,AE =BG ,∴OE =OG ,∵∠AOB =90°,∴△OEG 是等腰直角三角形,∴EG 2,∵∠ECG =∠BCG ,EC =BC ,CG =CG ,∴△ECG ≌△BCG ,∴BG =EG ,∴AE =EG 2;故②正确;∵∠AOB =90°,EF =BF ,∵BE =CG ,∴OF=12BE=12CG.故③正确;故正确的结论有①②③.故选D.题五:见详解.详解:在正方形ABCD中,∠DAF=∠ABE=90°,DA=AB=BC,∵DG⊥AE,∴∠FDA+∠DAG=90°.又∵∠EAB+∠DAG=90°,∴∠FDA=∠EAB.在Rt△DAF与Rt△ABE中,DA=AB,∠FDA=∠EAB,∴Rt△DAF≌Rt△ABE.∴AF=BE.∵AB=BC,∴BF=CE.题六:见详解.详解:∵四边形ABCD是正方形,∴AD=DC,∠ADC=90°,又∵AE⊥DG,CF∥AE,∴∠AED=∠DFC=90°,∴∠EAD+∠ADE=∠FDC+∠ADE=90°,∴∠EAD=∠FDC,∴△AED≌△DFC(AAS),∴AE=DF,ED=FC,∵DF=DE+EF,∴AE=FC+EF.教育选轻轻·家长更放心页28。
初中考数学专题总复习《四边形》矩形、菱形、正方形

∵BE=DF,
∴OE=OF.(2分)
在△AOE和△COF中,
OA=OC
∠AOE=∠COF
OE=OF ∴△AOE≌△COF(SAS), ∴AE=CF;(4分)
第2题图
(2)若AB=6,∠COD=60°,求矩形ABCD的面积.
(2)解:∵OA=OC,OB=OD,AC=BD, ∴OA=OB. ∵∠AOB=∠COD=60°, ∴△AOB是等边三角形, ∴OA=AB=6, ∴AC=2OA=12,(6分) 在Rt△ABC中,由勾股定理得BC= AC 2 AB2 =6 3 , ∴S矩形ABCD=AB·BC=6×6 3 =36 3 .(8分)
第5题图
(1)证明:∵对角线AC的中点为O, ∴AO=CO. ∵AG=CH, ∴AO-AG=CO-CH.即GO=HO. ∵四边形ABCD是矩形, ∴AB∥CD. ∴∠OAE=∠OCF. 又∵∠AOE=∠COF, ∴△OAE≌△OCF(ASA).
第5题图
∴OE=OF. ∴GH与EF互相平分, ∴四边形EHFG是平行四边形;
证明:∵DE∥AC,CE∥BD,
∴四边形OCED是平行四边形,
∵四边形ABCD是矩形,
第1题图
∴AC=BD,OA=OC,OB=OD. ∴OC=OD,∴四边形OCED是菱形.
母题变式 改变条件、增加设问→在矩形基础上构造菱形,增加设问及解题难度. 2. (2020德阳)如图,四边形ABCD为矩形,G是对角线BD的中点,连接GC并延长 至F,使CF=GC,以DC,CF为邻边作菱形DCFE.连接CE. (1)判断四边形CEDG的形状,并证明你的结论;
第6题图
(2)若∠ABE=∠CBE,求证:四边形AFBE为矩形.
(2)∵点D、E分别为AB、AC的中点, ∴DE∥BC,∴∠DEB=∠CBE, ∵∠ABE=∠CBE, ∴∠DEB=∠ABE,∴BD=DE, ∵AD=BD,DF=DE, ∴AD+BD=DE+DF,即AB=EF, ∴四边形AFBE是矩形.
平行四边形矩形菱形经典例题(8套)

经典例题(附带详细答案)1.如图,E F 、是平行四边形ABCD 对角线AC 上两点,BE DF ∥,求证:AF CE =.【答案】证明:平行四边形ABCD 中,AD BC ∥,AD BC =,ACB CAD ∴∠=∠.又BE DF ∥,BEC DFA ∴∠=∠,BEC DFA ∴△≌△,∴CE AF =2.如图6,四边形ABCD 中,AB ∥CD ,∠B=∠D ,,求四边形ABCD 的周长.【【答案】20、解法一: ∵∴又∵∴∴∥即得是平行四边形∴∴四边形的周长解法二:连接3 ,6==AB BC AB CD ∥︒=∠+∠180C B B D ∠=∠︒=∠+∠180D C AD BC ABCD 36AB CD BC AD ====,ABCD 183262=⨯+⨯=AC A DCBA DC BD C AB EF∵∴又∵∴≌∴∴四边形的周长解法三:连接∵∴又∵∴∴∥即是平行四边形∴∴四边形的周长3.(在四边形ABCD 中,∠D =60°,∠B 比∠A 大20°,∠C 是∠A 的2倍,求∠A ,∠B ,∠C 的大小.【关键词】多边形的内角和【答案】设x A =∠(度),则20+=∠x B ,x C 2=∠.根据四边形内角和定理得,360602)20(=++++x x x .解得,70=x .∴︒=∠70A ,︒=∠90B ,︒=∠140C .4.(如图,E F ,是四边形ABCD 的对角线AC 上两点,AF CE DF BE DF BE ==,,∥. 求证:(1)AFD CEB △≌△.(2)四边形ABCD 是平行四边形.【关键词】平行四边形的性质,判定【答案】证明:(1)DF BE ∥,DFE BEF ∴∠=∠.180AFD DFE ∠+∠=°,180CEB BEF ∠+∠=°,AFD CEB ∴∠=∠.又A F C E D F ==,,AFD CEB ∴△≌△(SAS).AB CD ∥DCA BAC ∠=∠B D AC CA ∠=∠=,ABC △CDA △36AB CD BC AD ====,ABCD 183262=⨯+⨯=BD AB CD ∥CDB ABD ∠=∠ABC CDA ∠=∠ADB CBD ∠=∠AD BC ABCD 36AB CD BC AD ====,ABCD 183262=⨯+⨯=A BDE F C A DCB(2)由(1)知AFD CEB △≌△,DAC BCA AD BC ∴∠=∠=,,AD BC ∴∥.∴四边形ABCD 是平行四边形(一组对边平行且相等的四边形是平行四边形)5.)25.如图13-1,在边长为5的正方形ABCD 中,点E 、F 分别是BC 、DC 边上的点,且AE EF ⊥,2BE =.(1)求EC ∶CF 的值;(2)延长EF 交正方形外角平分线CP P 于点(如图13-2),试判断AE EP 与的大小关系,并说明理由;(3)在图13-2的AB 边上是否存在一点M ,使得四边形DMEP 是平行四边形?若存在,请给予证明;若不存在,请说明理由.【关键词】平行四边形的判定【答案】解:(1)AE EF ⊥2390∴∠+∠=°四边形ABCD 为正方形90B C ∴∠=∠=°1390∴∠+∠=°12∠=∠90DAM ABE DA AB ∠=∠==°,DAM ABE ∴△≌△DM AE ∴=AE EP =DM PE ∴=∴四边形DMEP 是平行四边形.解法②:在AB 边上存在一点M ,使四边形DMEP 是平行四边形证明:在AB 边上取一点M ,使AM BE =,连接ME 、MD 、DP .90AD BA DAM ABE =∠=∠=,°Rt Rt DAM ABE ∴△≌△14DM AE ∴=∠=∠,1590∠+∠=°4590∴∠+∠=°AE DM ∴⊥AE EP ⊥ A D C B E B C E DA F P FDM EP ∴⊥∴四边形DMEP 为平行四边形6.(2009年广州市)如图9,在ΔABC 中,D 、E 、F 分别为边AB 、BC 、CA 的中点。
平行四边形、矩形、菱形、正方形知识点及习题

平行四边形、矩形、菱形、正方形知识点及习题一.正确理解定义(1)定义:两组对边分别平行的四边形是平行四边形.平行四边形的定义揭示了图形的最本质的属性,它既是平行四边形的一条性质,又是一个判定方法.(2)表示方法:用“”表示平行四边形,例如:平行四边形ABCD记作ABCD,读作“平行四边形ABCD”.2.熟练掌握性质平行四边形的有关性质和判定都是从边、角、对角线三个方面的特征进行简述的.(1)角:平行四边形的邻角互补,对角相等;(2)边:平行四边形两组对边分别平行且相等;(3)对角线:平行四边形的对角线互相平分;(4)面积:①S=底高ah;②平行四边形的对角线将四边形分成4=⨯个面积相等的三角形.3.平行四边形的判别方法①定义:两组对边分别平行的四边形是平行四边形②方法1:两组对角分别相等的四边形是平行四边形③方法2:两组对边分别相等的四边形是平行四边形④方法3:对角线互相平分的四边形是平行四边形⑤方法4:一组平行且相等的四边形是平行四边形二、.几种特殊四边形的有关概念(1)矩形:有一个角是直角的平行四边形是矩形,它是研究矩形的基础,它既可以看作是矩形的性质,也可以看作是矩形的判定方法,对于这个定义,要注意把握:①平行四边形;②一个角是直角,两者缺一不可.(2)菱形:有一组邻边相等的平行四边形是菱形,它是研究菱形的基础,它既可以看作是菱形的性质,也可以看作是菱形的判定方法,对于这个定义,要注意把握:①平行四边形;②一组邻边相等,两者缺一不可.(3)正方形:有一组邻边相等且有一个直角的平行四边形叫做正方形,它是最特殊的平行四边形,它既是平行四边形,还是菱形,也是矩形,它兼有这三者的特征,是一种非常完美的图形.2.几种特殊四边形的有关性质(1)矩形:①边:对边平行且相等;②角:对角相等、邻角互补;③对角线:对角线互相平分且相等;④对称性:轴对称图形(对边中点连线所在直线,2条).(2)菱形:①边:四条边都相等;②角:对角相等、邻角互补;③对角线:对角线互相垂直平分且每条对角线平分每组对角;④对称性:轴对称图形(对角线所在直线,2条).(3)正方形:①边:四条边都相等;②角:四角相等;③对角线:对角线互相垂直平分且相等,对角线与边的夹角为450; ④对称性:轴对称图形(4条).3.几种特殊四边形的判定方法(1)矩形的判定:满足下列条件之一的四边形是矩形①有一个角是直角的平行四边形; ②对角线相等的平行四边形; ③四个角都相等(2)菱形的判定:满足下列条件之一的四边形是矩形①有一组邻边相等的平行四边形; ②对角线互相垂直的平行四边形; ③四条边都相等.(3)正方形的判定:满足下列条件之一的四边形是正方形.① 有一组邻边相等 且有一个直角 的平行四边形② 有一组邻边相等 的矩形; ③ 对角线互相垂直 的矩形. ④ 有一个角是直角 的菱形 ⑤ 对角线相等 的菱形;4.几种特殊四边形的常用说理方法与解题思路分析(1)识别矩形的常用方法① 先说明四边形ABCD 为平行四边形,再说明平行四边形ABCD 的任意一个角为直角.② 先说明四边形ABCD 为平行四边形,再说明平行四边形ABCD 的对角线相等.③ 说明四边形ABCD 的三个角是直角.(2)识别菱形的常用方法① 先说明四边形ABCD 为平行四边形,再说明平行四边形ABCD 的任一组邻边相等.② 先说明四边形ABCD 为平行四边形,再说明对角线互相垂直.③ 说明四边形ABCD 的四条相等.(3)识别正方形的常用方法① 先说明四边形ABCD 为平行四边形,再说明平行四边形ABCD 的一个角为直角且有一组邻边相等.② 先说明四边形ABCD 为平行四边形,再说明对角线互相垂直且相等. ③ 先说明四边形ABCD 为矩形,再说明矩形的一组邻边相等.④ 先说明四边形ABCD 为菱形,再说明菱形ABCD 的一个角为直角.5.几种特殊四边形的面积问题① 设矩形ABCD 的两邻边长分别为a,b ,则S 矩形=ab .② 设菱形ABCD 的一边长为a ,高为h ,则S 菱形=ah ;若菱形的两对角线的长分别为a,b ,则S 菱形=12ab . ③ 设正方形ABCD 的一边长为a ,则S 正方形=2a ;若正方形的对角线的长为a ,则S 正方形=212a .特殊四边形练习题1.矩形具有而菱形不一定具有的性质是()A.对边分别相等B.对角分别相等C.对角线互相平分 D.对角线相等2.以下条件不能判别四边形ABCD是矩形的是()A.AB=CD,AD=BC,∠A=90°B.OA=OB=OC=ODC.AB=CD,AB∥CD,AC=BD D.AB=CD,AB∥CD,OA=OC,OB=OD3.顺次连接四边形ABCD各边中点所成的四边形为菱形,那么四边形ABCD的对角线AC和BD只需满足的条件是()A.相等B.互相垂直C.相等且互相垂直 D.相等且互相平分4.已知菱形的两条对角线长分别是6cm和8cm,则菱形的边长是()A.12cm B.10cm C.7cm D.5cm5.如图,在平行四边形ABCD中,用直尺和圆规作∠BAD的平分线AG交BC于点E,以A为圆心,AB长为半径画弧交AD于F,若BF=12,AB=10,则AE的长为()A.16 B.15 C.14 D.136.如图,E,G,F,H分别是矩形ABCD四条边上的点,EF⊥GH,若AB=2,BC=3,则EF:GH=()A.2:3 B.3:2 C.4:9 D.无法确定7.如图:在矩形ABCD中,AB=4,BC=8,对角线AC、BD相交于点O,过点O作OE垂直AC交AD于点E,则DE的长是.8.平行四边形ABCD中,对角线AC、BD相交于点O,BD=2AD,E、F、G分别是OC、OD,AB的中点.下列结论:①EG=EF;②△EFG≌△GBE;③FB平分∠EFG;④EA平分∠GEF;⑤四边形BEFG是菱形.其中正确的是.9. 如图,在矩形ABCD(AB<AD)中,将△ABE沿AE对折,使AB边落在对角线AC上,点B的对应点为F,同时将△CEG沿EG对折,使CE边落在EF所在直线上,点C的对应点为H.(1)证明:AF∥HG(图(1));(2)证明:△AEF∽△EGH(图(1));(3)如果点C的对应点H恰好落在边AD上(图(2)).求此时∠BAC的大小.10.如图,在Rt△ABC中,∠ACB=90°,D为AB的中点,AE∥CD,CE∥AB,连接DE交AC于点O.(1)证明:四边形ADCE为菱形.(2)BC=6,AB=10,求菱形ADCE的面积.11.如图:在△ABC中,CE、CF分别平分∠ACB与它的邻补角∠ACD,AE⊥CE 于E,AF⊥CF于F,直线EF分别交AB、AC于M、N.(1)求证:四边形AECF为矩形;(2)试猜想MN与BC的关系,并证明你的猜想;(3)如果四边形AECF是菱形,试判断△ABC的形状,直接写出结果,不用说明理由.12.如图,在△ABC中,∠ABC=90°,BD为AC的中线,过点C作CE⊥BD于点E,过点A作BD的平行线,交CE的延长线于点F,在AF的延长线上截取FG=BD,连接BG、DF.(1)求证:BD=DF;(2)求证:四边形BDFG为菱形;(3)若AG=13,CF=6,求四边形BDFG的周长.。
中考数学与平行四边形、矩形、菱形和正方形的简单证明有关的解答题(第01期)

1.(2017广东广州卷)如图,矩形ABCD 的对角线AC , BD 相交于点O , COD ∆关于CD 的对称图形为CED ∆.(1)求证:四边形OCED 是菱形;(2)连接AE ,若6cm AB =, 5BC cm =.①求sin EAD ∠的值;②若点P 为线段AE 上一动点(不与点A 重合),连接OP ,一动点Q 从点O 出发,以1/cm s 的速度沿线段OP 匀速运动到点P ,再以1.5cm /s 的速度沿线段PA 匀速运动到点A ,到达点A 后停止运动.当点Q 沿上述路线运动到点A 所需要的时间最短时,求AP 的长和点Q 走完全程所需的时间.2.(2017江苏淮安卷)已知:如图,在平行四边形ABCD 中,AE ⊥BD ,CF ⊥BD ,垂足分别为E ,F .求证:△ADE ≌△CBF .3.(2017贵州贵阳卷)如图,在△ABC 中,∠ACB=90°,点D ,E 分别是边BC ,AB 上的中点,连接DE 并延长至点F ,使EF=2DF ,连接CE 、AF .(1)证明:AF=CE ;(2)当∠B=30°时,试判断四边形ACEF 的形状并说明理由.4.(2017湖北鄂州卷)如图,将矩形ABCD沿对角线AC翻折,点B落在点F处,FC交AD于E.(1)求证:△AFE≌△CDF;(2)若AB=4,BC=8,求图中阴影部分的面积.5.(2017广西贵港市港南区模拟)△ABC中,∠BAC=90°,AB=AC,点D为直线BC上一动点(点D不与B,C重合),以AD为边在AD右侧作正方形ADEF,连接CF.(1)观察猜想如图1,当点D在线段BC上时,①BC与CF的位置关系为:.②BC,CD,CF之间的数量关系为:;(将结论直接写在横线上)(2)数学思考如图2,当点D在线段CB的延长线上时,结论①,②是否仍然成立?若成立,请给予证明;若不成立,请你写出正确结论再给予证明.(3)拓展延伸如图3,当点D在线段BC的延长线上时,延长BA交CF于点G,连接GE.若已知AB=2,CD=BC,请求出GE的长.6.(河北省石家庄市2017届中考数学二模试卷)四边形ABCD的对角线交于点E,有AE=EC,BE=ED,以AB为直径的半圆过点E,圆心为O.(1)利用图1,求证:四边形ABCD是菱形.(2)如图2,若CD的延长线与半圆相切于点F,已知直径AB=8.①连结OE,求△OBE的面积.②求弧AE的长.7.(2017年云南省曲靖市中考数学二模试卷)如图,在▱ABCD中,对角线AC与BD相交于点O,∠CAB=∠ACB,过点B作BE⊥AB交AC于点E.(1)求证:AC⊥BD;(2)若AB=14,cos∠CAB=78,求线段OE的长.8.(2017全国百强校模拟)如图,在平行四边形ABCD中,连接BD,在BD的延长线上取一点E,在DB 的延长线上取一点F,使BF DE,连接AF、CE.求证:AF CE.9.(2016湖南省怀化市)如图,△ABC为锐角三角形,AD是BC边上的高,正方形EFGH的一边FG在BC上,顶点E、H分别在AB、AC上,已知BC=40cm,AD=30cm.(1)求证:△AEH∽△ABC;(2)求这个正方形的边长与面积.10.(2017湖北省鄂州市模拟)如图,在正方形ABCD 中,E 、F 是对角线BD 上两点,且∠EAF=45°,将△ADF 绕点A 顺时针旋转90°后,得到△ABQ ,连接EQ ,求证:(1)EA 是∠QED 的平分线;(2)EF 2=BE 2+DF 2.11.(2017四川省自贡)如图,点E F 、分别在菱形ABCD 的边DC DA 、上,且CE AF =.求证: ABF CBE ∠=∠.12.(2017四川自贡卷)如图,点E ,F 分别在菱形ABCD 的边DC ,DA 上,且CE=AF .求证:∠ABF=∠CBE .13.(2017上海卷)已知:如图,四边形ABCD 中,AD ∥BC ,AD=CD ,E 是对角线BD 上一点,且EA=EC .(1)求证:四边形ABCD 是菱形;(2)如果BE=BC ,且∠CBE :∠BCE=2:3,求证:四边形ABCD 是正方形.14.(2017江苏无锡卷)(本题8分)已知,如图,平行四边形ABCD中,E是BC边的中点,连DE并延长交AB的延长线于点F.求证:AB=BF.15.(2017湖南张家界卷)如图,在平行四边形ABCD中,边AB的垂直平分线交AD于点E,交CB的延长线于点F,连接AF,BE.(1)求证:△AGE≌△BGF;(2)试判断四边形AFBE的形状,并说明理由.16.(2017贵州安顺卷)如图,DB∥AC,且DB=12AC,E是AC的中点,(1)求证:BC=DE;(2)连接AD、BE,若要使四边形DBEA是矩形,则给△ABC添加什么条件,为什么?17.(2017广西四市卷)如图,矩形ABCD的对角线AC,BD相交于点O,点E,F在BD上,BE=DF.(1)求证:AE=CF;(2)若AB=6,∠COD=60°,求矩形ABCD的面积.18.(福建省莆田仙游私立一中2016-2017学年八年级下学期期中数学试卷)如图,P为正方形ABCD的边BC 上一动点(P与B. C不重合),点Q在CD边上,且BP=CQ,连接AP、BQ交于点E,将△BQC沿BQ所在直线对折得到△BQN,延长QN交BA的延长线于点M.(1)求证:AP⊥BQ;(2)若AB=3,BP=2PC,求QM的长;(3)当BP=m,PC=n时,求AM的长。
人教版八年级下册数学平行四边形证明题专题训(带答案)

人教版八年级下册数学平行四边形证明题专题训练1.ABCD 中,点E 、F 是AC 上的两点,并且AE CF =.求证:四边形BFDE 是平行四边形.2.如图,矩形ABCD 的对角线AC ,BD 相交于点O ,且//,//DE AC CE BD .求证:四边形OCED 是菱形.3.如图,在ABC 中,90CAB ∠=︒,DE ,DF 是ABC 的中位线,连接EF ,AD .求证:EF AD =.4.如图,将▱AECF 的对角线EF 向两端延长,分别至点B 和点D ,且使EB =FD .求证:四边形ABCD 为平行四边形.5.如图,在四边形ABCD 中,AB CD =,BE DF =;AE BD ⊥,CF BD ⊥,垂足分别为E ,F .(1)求证:ABE △≌CDF ;(2)若AC 与BD 交于点O ,求证:AO CO =.6.如图,在ABCD中,点E,F分别在AD、BC上,且AE CF=,连接EF,AC交于点O.求证:OE OF=.7.已知:如图,矩形ABCD中,O是AC与BD的交点,过O点的直线EF与AB、CD的延长线分别相交于点E、F.(1)求证:△BOE≌△DOF;(2)当EF与AC满足什么关系时,以A、E、C、F为顶点的四边形是菱形?并给出证明.8.如图,在△ABC中,D是BC边上的一点,E是AD的中点,过A点作BC的平行线交CE的延长线于F,且AF =BD,连接BF.(1)求证:D是BC的中点(2)如果AB=AC,试判断四边形AFBD的形状,并证明你的结论.AC,连接CE、OE,连接AE交9.如图,菱形ABCD的对角线AC、BD相交于点O,过点D作DE∥AC且DE=12OD于点F.(1)求证:OE=CD;(2)若菱形ABCD的边长为2,∠ABC=60°,求AE的长.10.如图,在矩形ABCD中,AB=6,BC=10,点E在边CD上,连接AE,将四边形ABCE沿直线AE折叠,得'',且B C''恰好经过点D.到多边形AB C E(1)线段DC′的长度;(2)求ADE的面积.11.如图,在四边形ABCD中,AB=CD,BF=DE,AE⊥BD,CF⊥BD,垂足分别为E、F.(1)求证:△ABE≌△CDF;(2)若AC与BD交于点O,求证:AO=CO.12.如图将矩形ABCD沿对角线AC对折,使△ABC落在△ACE的位置,且CE与AD相交于点F,求证:EF=DF.13.如图,在四边形ABCD中,AB=AD,CB=CD,E是CD上一点,BE交AC于点F,连接DF.(1)求证:∠BAC=∠DAC,∠AFD=∠CFE;(2)若AB∥CD,试证明四边形ABCD是菱形;(3)在(2)的条件下,试确定E点的位置,使∠EFD=∠BCD,并说明理由.14.如图,在四边形ABCD中,AB=AD,CB=CD,E是CD上一点,BE交AC于F,连接DF,(1)证明:∠BAC=∠DAC.(2)若∠BEC=∠ABE,试证明四边形ABCD是菱形.15.如图,在ABCD中,过点D作DE AB=,连接AF,BF.⊥于点E,点F在边CD上,CF AE(1)求证:四边形BFDE是矩形;AD=,求DC的长度.(2)已知60∠=︒,AF是DABDAB∠的平分线,若316.如图,在▱ABCD中,对角线AC、BD交于点O,E是BD延长线上的点,且△ACE是等边三角形.(1)求证:四边形ABCD是菱形.(2)若∠AED=2∠EAD,求证:四边形ABCD是正方形.17.如图,DE是△ABC的中位线,延长DE至F,使EF=DE,连接BF.(1)求证:四边形ABFD是平行四边形;(2)求证:BF=DC.18.如图,在□ABCD中,分别以AD、BC为边向内作等边△ADE和等边△BCF,连接BE、DF.求证:四边形BEDF 是平行四边形.19.如图,在△ABC中,点D为边BC的中点,点E在△ABC内,AE平分∠BAC,CE⊥AE点F在AB上,且BF=DE(1)求证:四边形BDEF 是平行四边形(2)线段AB ,BF ,AC 之间具有怎样的数量关系?证明你所得到的结论20.如图,在矩形ABCD 中,8AB cm =,16BC cm =,点P 从点D 出发向点A 运动,运动到点A 停止,同时,点Q 从点B 出发向点C 运动,运动到点C 即停止,点P 、Q 的速度都是1/cm s .连接PQ 、AQ 、CP .设点P 、Q 运动的时间为ts .(1)当t 为何值时,四边形ABQP 是矩形;(2)当t 为何值时,四边形AQCP 是菱形;(3)分别求出(2)中菱形AQCP 的周长和面积.参考答案:1.证明:如图,连接,BD 交AC 于,OABCD ,,,OA OC OB OD ∴==,AE CF =,OA AE OC CF ∴-=-,OE OF ∴=∴四边形BFDE 是平行四边形.2.∵////DE AC CE BD ,,∴四边形OCED 是平行四边形.∵矩形ABCD 的对角线AC ,BD 相交于点O ,∴OC=OD ,∴四边形OCED 是菱形.3.证明:∵DE 、DF 是△ABC 的中位线,∴DE ∥AB ,DF ∥AC ,∴四边形DEAF 是平行四边形,∵∠CAB =90°,∴四边形DEAF 是矩形,∴EF =AD .4.解:连接AC 交EF 于点O∵四边形AECF 为平行四边形∴OF OE =,OA OC =∵EB FD =∴OF FD OE EB +=+∴OD OB =∴四边形ABCD 为平行四边形5.【详解】(1)证明:∵AE BD ⊥,CF BD ⊥,∴90AEB CFD ∠=∠=︒,∵AB CD =,BE DF =,∴ABE △≌CDF .(2)由(1)ABE △≌CDF ,∴AE CF =,∵AE BD ⊥,CF BD ⊥,∴90AEO CFO ∠=∠=︒,∵AOE COF ∠=∠,∴()AEO CFO AAS ≌∴AO CO =.6. 证明:四边形ABCD 是平行四边形,//AD BC ∴,AEO CFO在AOE △和COF 中AOE COF AEO CFO AE CF ∠=∠⎧⎪∴∠=∠⎨⎪=⎩AOE COF ∴≅OE OF ∴=.7.(1)证明:∵四边形ABCD 是矩形,∴OB =OD ,∵AE //CF ,∴∠E =∠F ,∠OBE =∠ODF ,在△BOE 与△DOF 中,E F OBE ODF OB OD ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△BOE ≌△DOF (AAS );(2)当EF ⊥AC 时,四边形AECF 是菱形.证明:∵△BOE ≌△DOF ,∴OE =OF ,∵四边形ABCD 是矩形,∴OA =OC ,∴四边形AECF 是平行四边形,∵EF ⊥AC ,∴四边形AECF 是菱形.8.证明: (1)∵AF ∥BC ,∴∠AFE =∠DCE ,∵E 是AD 的中点,∴AE =DE ,∵∠AFE =∠DCE , ∠AEF =∠DEC ,AE =DE ,∴△AEF≌△DEC(AAS),∴AF=DC,∵AF=BD,∴BD=CD,∴D是BC的中点;(2)四边形AFBD是矩形.理由:∵AB=AC,D是BC的中点,∴AD⊥BC,∴∠ADB=90°,∵AF=BD,过A点作BC的平行线交CE的延长线于点F,即AF∥BC,∴四边形AFBD是平行四边形,又∵∠ADB=90°,∴四边形AFBD是矩形.9.(1)∵四边形ABCD是菱形,∴OC=1AC,AC⊥BD,2AC,∵DE=12∴DE=OC,∵DE∥AC,∴四边形OCED是平行四边形.∵AC⊥BD,∴平行四边形OCED是矩形.∴OE=CD.(2)∵在菱形ABCD中,∠ABC=60°,∴△ABC是等边三角形,∴AC=AB=2,AC=1,AC⊥BD,AD=2,∵OA=12∴OD=∴在矩形OCED 中,CE =OD∴在Rt △ACE 中,AE10.解:(1)∵四边形ABCD 是矩形∴AD=BC=10,AB=CD=6,∠B=∠C=90°∵将四边形ABCE 沿直线AE 折叠,得到多边形AB′C′E , ∴AB=AB'=6,CE=C'E ,B'C'=BC=10,∠B'=∠B=90°,∠C=∠C'=90°∵8∴C'D=B'C'-B'D=2,(2)设DE=x ,则EC′=6-x ,由(1)可知∠C'=90°,C'D=2∴在Rt △C′DE 中,222(6)2x x -+=,解得:103x =∴ADE 的面积为111050102233AD DE ⋅=⨯⨯= 11.证明:(1)∵BF=DE ,∴BF EF DE EF -=-,即BE=DF ,∵AE ⊥BD ,CF ⊥BD ,∴∠AEB=∠CFD=90°,在Rt △ABE 与Rt △CDF 中,AB CD BE DF=⎧⎨=⎩, ∴Rt ABE Rt CDF ∆∆≌(HL );(2)如图,连接AC 交BD 于O ,∵Rt ABE Rt CDF ∆∆≌,∴ABE CDF ∠=∠,∴//D AB C ,∵=D AB C ,∴四边形ABCD 是平行四边形,∴AO CO =.12.∵四边形ABCD 是矩形,∴∠D =∠E ,AE =CD ,又∵∠AFE =∠CFD ,在△AEF 和△CDF 中,E D AFE CFD AE CD ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△AEF ≌△CDF (AAS ),∴EF =DF .13.(1)证明:在△ABC 和△ADC 中,AB AD CB CD AC AC =⎧⎪=⎨⎪=⎩∴△ABC ≌△ADC(SSS),∴∠BAC=∠DAC ,在△ABF 和△ADF 中,AB AD BAF DAF AF AF =⎧⎪∠=∠⎨⎪=⎩∴△ABF ≌△ADF(SAS),∴∠AFB=∠AFD ,∵∠CFE=∠AFB ,∴∠AFD=∠CFE ,∴∠BAC=∠DAC,∠AFD=∠CFE;(2)证明:∵AB∥CD,∴∠BAC=∠ACD,∵∠BAC=∠DAC,∴∠BAC=∠ACD,∴∠DAC=∠ACD,∴AD=CD,∵AB=AD,CB=CD,∴AB=CB=CD=AD,∴四边形ABCD是菱形;(3)BE⊥CD时,∠BCD=∠EFD;理由如下:∵四边形ABCD是菱形,∴BC=CD,∠BCF=∠DCF,∵CF=CF,∴△BCF≌△DCF,∴∠CBF=∠CDF,∵BE⊥CD,∴∠BEC=∠DEF=90°,∴∠BCD=∠EFD.14.(1)在△ABC和△ADC中,∵AB=AD,CB=CD,AC=AC,∴△ABC≌△ADC,∴∠BAC=∠DAC,在△ABF和△ADF中,∵AB=AD,∠BAC=∠DAC,AF=AF,∴△ABF≌△ADF,∴∠AFB=∠AFD.(2)证明:∵AB∥CD,∴∠BAC=∠ACD,∵∠BAC=∠DAC ,∴∠ACD=∠CAD ,∴AD=CD ,∵AB=AD ,CB=CD ,∴AB=CB=CD=AD ,∴四边形ABCD 是菱形.15.解:(1)证明:四边形ABCD 是平行四边形, //DC AB ∴,DC AB =,CF AE =,DF BE ∴=且//DC AB ,∴四边形DFBE 是平行四边形,又DE AB ⊥,∴四边形DFBE 是矩形;(2)60DAB ∠=︒,3AD =,DE AB ⊥,32AE ∴=,DE =四边形DFBE 是矩形,BF DE ∴==AF 平分DAB ∠,1302FAB DAB ∴∠=∠=︒,且BF AB ⊥, 92AB ∴==, 92CD ∴=. 16.证明:(1)∵▱ABCD ,∴AO =OC ,∵△ACE 是等边三角形,∴EO ⊥AC (三线合一)即 BD ⊥AC ,∴▱ABCD是菱形;(2)∵△ACE是等边三角形,∠EAC=60°由(1)知,EO⊥AC,AO=OC∴∠AEO=∠OEC=30°,△AOE是直角三角形∴∠EAO=60°,∵∠AED=2∠EAD,∴∠EAD=15°,∴∠DAO=∠EAO﹣∠EAD=45°,∵▱ABCD是菱形,∴∠BAD=2∠DAO=90°,∴菱形ABCD是正方形.17.(1)∵DE是△ABC的中位线,∴DE∥AB,AB=2DE,AD=CD,∵EF=DE,∴DF=2DE,∴AB=DF,且AB∥DF,∴四边形ABFD是平行四边形;(2)∵四边形ABFD是平行四边形,∴AD=BF,且AD=CD,∴BF=DC.18.证明:∵四边形ABCD是平行四边形,∴CD=AB,AD=CB,∠DAB=∠BCD,又∵△ADE和△CBF都是等边三角形,∴DE=BF,AE=CF,∠DAE=∠BCF=60°,∴∠BCD-∠BCF=∠DAB-∠DAE,即∠DCF=∠BAE,∴△DCF≌△BAE(SAS),∴DF=BE,∴四边形BEDF是平行四边形.19.(1)证明:延长CE 交AB 于点G∵AE ⊥CE∴90AEG AEC ︒∠=∠=在AEG ∆和AEC ∆GAE CAE AE AEAEG AEC ∠=∠⎧⎪=⎨⎪∠=∠⎩∴AEG ∆≅AEC ∆∴GE=EC∵BD=CD∴DE 为CGB ∆的中位线∴DE //AB∵DE=BF∴四边形BDEF 是平行四边形(2)1()2BF AB AC =- 理由如下:∵四边形BDEF 是平行四边形∴BF=DE∵D ,E 分别是BC ,GC 的中点∴BF=DE=12BG∵AEG ∆≅AEC ∆∴AG=AC BF=12(AB-AG )=12(AB-AC ).20.解:(1)在矩形ABCD 中,8AB cm =,16BC cm =, 16BC AD cm ∴==,8AB CD cm ==,由已知可得,BQ DP tcm ==,(16)AP CQ t cm ==-, 在矩形ABCD 中,90B ∠=︒,//AD BC ,当BQ AP =时,四边形ABQP 为矩形,16t t ∴=-,得8t =,故当8t s =时,四边形ABQP 为矩形;(2)AP CQ =,//AP CQ ,∴四边形AQCP 为平行四边形,∴当AQ CQ =时,四边形AQCP 为菱形16t -时,四边形AQCP 为菱形,解得6t =, 故当6t s =时,四边形AQCP 为菱形;(3)当6t s =时,16610AQ CQ CP AP cm ====-=, 则周长为41040cm cm ⨯=;面积为210880cm cm cm ⨯=.。
平行四边形、矩形、菱形-正方形练习题

平行四边形、矩形、菱形、正方形1.已知:如图,在▱ABCD中,点E、F是对角线AC上的两点,且AE=CF.求证:BF∥DE.2.如图,平行四边形ABCD的对角线AC、BD交于点O,EF过点O且与BC、AD分别交于点E、F.试猜想线段AE、CF的关系,并说明理由.~3.如图,四边形ABCD是平行四边形,E、F分别是BC、AD上的点,∠1=∠2.求证:AF=CE.~4.已知:如图,在平行四边形ABCD中,点M在边AD上,且AM=DM.CM、BA的延长线相交于点E.求证:(1)AE=AB;(2)如果BM平分∠ABC,求证:BM⊥CE.5.如图,在▱ABCD中,点E、F在BD上,且BE=AB,DF=CD.求证:四边形AECF是平行四边形.-6.在▱ABCD中,E,F分别是AB,DC上的点,且AE=CF,连接DE,BF,AF.(1)求证:四边形DEBF是平行四边形;(2)若AF平分∠DAB,AE=3,DE=4,BE=5,求AF的长.)7.如图,在四边形ABCD中,AD∥BC,AC与BD交于点E,点E是BD的中点,延长CD到点F,使DF=CD,连接AF,(1)求证:AE=CE;(2)求证:四边形ABDF是平行四边形;(3)若AB=2,AF=4,∠F=30°,则四边形ABCF 的面积为.!8.如图,在▱ABCD中,E,F分别是AC上两点,BE⊥AC于E,DF⊥AC于F.求证:四边形BEDF为平行四边形.9.已知:如图,点E、F在线段BD上,AB=CD,∠B=∠D,BF=DE.|求证:(1)AE=CF;(2)AF∥CE.10.如图所示,▱ABCD中,E,F分别是AB、CD上的点,AE=CF,M、N分别是DE、BF的中点.(1)求证:四边形ENFM是平行四边形.、(2)若∠ABC=2∠A,求∠A的度数.11.在▱ABCD中,点E,F分别在AD,BC上,AE=CF,连接EF,BD.(1)求证:四边形EBFD是平行四边形;:(2)若∠C+∠ABE=90°,求证:BD=EF.12.如图,在▱ABCD中,AE⊥BD,CF⊥BD,E,F分别为垂足.(1)求证:△ABE≌△CDF.(2)求证:四边形AECF是平行四边形.<13.如图,在△NMB中,BM=6,点A,C,D分别在边MB、BN、MN上,DA∥NB,DC∥MB,∠NDC=∠MDA.求四边形ABCD的周长.;14.在矩形ABCD中,AB=3,BC=4,E,F是对角线AC上的两个动点,分别从A,C同时出发相向而行,速度均为1cm/s,运动时间为t秒,0≤t≤5.(1)AE =,EF=|(2)若G,H分别是AB,DC中点,求证:四边形EGFH是平行四边形.(3)在(2)条件下,当t为何值时,四边形EGFH为矩形.15.如图,在▱ABCD中,过点D作DE⊥AB于点E,点F在边CD上,CF=AE,连接AF,BF."(1)求证:四边形BFDE是矩形;(2)已知∠DAB=60°,AF是∠DAB的平分线,若AD=3,求DC的长度.)16.如图,▱ABCD中,O是AB的中点,CO=DO.(1)求证:▱ABCD是矩形.(2)若AD=3,∠COD=60°,求▱ABCD的面积.|17.如图,在△ABC中,AB=AC,D为BC中点,AE∥BD,且AE=BD (1)求证:四边形AEBD是矩形;(2)连接CE交AB于点F,若BE=2,AE=2,求EF的长.,18.如图,在平行四边形ABCD中,对角线AC、BD交于点O,AC⊥BC,AC=2,BC=3.点E是BC 延长线上一点,且CE=3,连结DE.(1)求证:四边形ACED为矩形.(2)连结OE,求OE的长.|19.如图,▱ABCD中,点E在BC延长线上,EC=BC,连接DE,AC,AC⊥AD于点A.(1)求证:四边形ACED是矩形;(2)连接BD,交AC于点F.若AC=2AD,猜想∠E与∠BDE的数量关系,并证明你的猜想.|20.如图,在△ABC中,BD平分∠ABC交AC于D,作DE∥BC交AB于点E,作DF∥AB交BC于点F.(1)求证:四边形BEDF是菱形;(2)若∠BDE=15°,∠C=45°,CD=,求DE的长.|21.如图,在△ABC中,BD平分∠ABC交AC于D,EF垂直平分BD,分别交AB,BC,BD于E,F,G,连接DE,DF.(1)求证:四边形BEDF是菱形;(2)若∠BDE=15°,∠C=45°,DE=2,求CF的长./22.如图,在Rt△ABC中,∠BAC=90°,D是BC的中点,E是AD的中点,过点A作AF∥BC交BE 的延长线于点F.](1)求证:四边形ADCF是菱形;(2)若AC=12,AB=16,求菱形ADCF的面积."23.如图,在四边形ABCD中,对角线AC、BD交于点O,AB∥DC,AB=BC,BD平分∠ABC,过点C 作CE⊥AB交AB的延长线于点E,连接OE.(1)求证:四边形ABCD是菱形;(2)若AB=2,BD=4,求OE的长.24.如图,AC是▱ABCD的对角线,∠BAC=∠DAC.(1)求证:四边形ABCD是菱形;}(2)若AB=2,AC=2,求四边形ABCD的面积.25.同学张丰用一张长18cm、宽12cm矩形纸片折出一个菱形,他沿矩形的对角线AC折出∠CAE=∠DAC,∠ACF=∠ACB的方法得到四边形AECF(如图).@(1)证明:四边形AECF是菱形;(2)求菱形AECF的面积.!26.如图,EF是平行四边形ABCD的对角线BD的垂直平分线,EF与边AD、BC分别交于点E、F.(1)求证:四边形BFDE是菱形;(2)若ED=5,BD=8,求菱形BFDE的面积.|27.如图,AE∥BF,AC平分∠BAE,且交BF于点C,BD平分∠ABF,且交AE于点D,连接CD.(1)求证:四边形ABCD是菱形;(2)若∠ADB=30°,BD=12,求AD的长.—28.如图,在▱ABCD中,BC=2AB,点E、F分别是BC、AD的中点,AE、BF交于点O,连接EF,OC.(1)求证:四边形ABEF是菱形;(2)若AB=4,∠ABC=60°,求OC的长.<29.已知:如图,菱形ABCD的对角线AC与BD相交于点O,若∠CAD=∠DBC.#(1)求证:四边形ABCD是正方形.(2)E是OB上一点,DH⊥CE,垂足为H,DH与OC相交于点F,求证:OE=OF.30.已知:如图,在矩形ABCD中,E是BC边一点,DE平分∠ADC,EF∥DC交AD边于点F,连结BD.(1)求证:四边形EFCD是正方形;(2)若BE=1,ED=2,求BD的长.{31.如图,正方形ABCD的对角线AC与BD交于点O,分别过点C、点D作CE∥BD,DE∥AC.求证:四边形OCED是正方形.【32.如图,点E是正方形ABCD对角线AC上一点,EF⊥AB,EG⊥BC,垂足分别为E,F,若正方形ABCD的周长是40cm.(1)求证:四边形BFEG是矩形;(2)求四边形EFBG的周长;(3)当AF的长为多少时,四边形BFEG是正方形《33.如图,正方形ABCD的对角线AC、BD相交于点O,BE∥AC,CE∥DB.求证:四边形OBEC是正方形.\34.E、F、M、N分别是正方形ABCD四条边上的点,AE=BF=CM=DN,四边形EFMN是什么图形证明你的结论.35.如图,点E、F分别是矩形ABCD的边AB、CD上的一点,且DF=BE.求证:四边形AECF是平行四边形.;36.如图,矩形ABCD中,对角线AC、BD交于点O,以AD、OD为邻边作平行四边形ADOE,连接BE.求证:四边形AOBE为菱形.>37.如图,在矩形ABCD中,点O为对角线AC的中点,过点O作EF⊥AC交BC于点E,交AD于点F,连接AE,CF.(1)求证:四边形AECF是菱形;(2)连接OB,若AB=8,AF=10,求OB的长.38.如图,已知在菱形ABCD中,∠ABC=60°,对角线AC=8,求菱形ABCD的周长和面积./39.如图,在菱形ABCD中,过点B作BE⊥AD于E,过点B作BF⊥CD于F,求证:AE=CF.>40.如图,菱形ABCD的对角线AC和BD交于点O,AB=10,∠ABC=60°,求AC和BD的长.41.如图,已知菱形ABCD两条对角线BD与AC的长之比为3:4,周长为40cm,求菱形的高及面积.,42.如图,四边形ABCD是菱形,对角线AC、BD相交于点O,DH⊥AB于H,连接OH,~(1)求证:∠DHO=∠DCO.(2)若OC=4,BD=6,求菱形ABCD的周长和面积.】43.如图,菱形ABCD中,对角线AC、BD相交于点O,点E是AB的中点,已知AC=8cm,BD=6cm,(1)求菱形ABCD的面积.(2)求OE的长度.44.在菱形ABCD中,E是AB边的中点,连接DE,DE⊥AB,对角线AC、BD交于点H.(1)求∠ABC的度数;(2)如果菱形的对角线AC=2,求菱形的面积.<¥45.如图,在正方形ABCD中,点E,F在对角线BD上,AE∥CF,连接AF,CE.(1)求证:△ABE≌△CDF;(2)试判断四边形AECF的形状,并说明理由.46.如图,小方将一个正方形纸片剪去一个宽为4cm的长方形(记作A)后,再将剩下的长方形纸片剪去一个宽为5cm的长方形(记作B).(1)若A与B的面积均为Scm2,求S的值.(2)若A的周长是B的周长的倍,求这个正方形的边长.47.已知:如图,E,F是正方形ABCD的对角线BD上的两点,且BE=DF.求证:四边形AECF是菱形48.如图,正方形ABCD中,点P,Q分别为AD,CD边上的点,且DQ=CP,连接BQ,AP.求证:BQ =AP.49.如图,已知正方形CDEF的面积为169cm2,且AC⊥AF,AB=3cm,BC=4cm,AF=12cm,试判断△ABC的形状,并说明你的理由.50.如图,正方形ABCD中,AB=AD,G为BC边上一点,BE⊥AG,于E,DF⊥AG于F,连接DE.(1)求证:△ABE≌△DAF;(2)若AF=1,EF=4,求四边形ABED的面积.。
《四边形》专题训练(1)——证明题(平行四边形,矩形,菱形,正方形)

《四边形》专题训练(一)证明题,求解题专题训练1.如图所示,在 AABCD 中,/ C=60, DEL AB 于 E , DF 丄 BC 于 F ;(1) 求/ EDF 的度数;(2) 若 AE=4, CF=7,求 AABCD 的周长。
32.如图,已知 Z^^BCD 的周长是 32 叫 BC=_AB , AE L BC, AF L CD E 、F 是垂足,且/ EAF=2/ C;5(1)求/ C 的度数;在矩形 ABCD 中, DEI AC 于 E , AE EC=3 1,若 DC=6c m ,求 AC 的长。
在矩形 ABCD 中, AB=2BC E 在 AB 延长线上,/ BCE=60,求/ ADE.(2)求 BE DF 的长。
3.如图,4.如图, DC5.如图,在菱形ABCD中,E是AB的中点,且DEI AB, AB=a.(1)求/ ABC的度数;(2)求对角线AC的长;(3) 求菱形ABCD的面积。
四边形。
7.如图,在Z3BCD点N,求证: 四边形中,点E在AD上,连接BE, DF// BE交BC于点F, AF与BE交于点M CE与DF交于MFNE 是平行四边形。
6.如图,将/ABCD 中的对角线BD向两个方向延长至点E和点F,使BE=DF求证:四边形AECF是平行C8.如图,在△ ABC 中,D, E , F 分别为边AB, BC , CA 的中点.求证:四边形 DECF 是平行四边形.10已知:如图,AD 是△ ABC 的角平分线,DE// AC 交AB 于E ,DF// AB交AC 于 F ,求证:四边形 形。
9.如图,在 /ABCD 中,E , F 为 BC 上两点,且 BE=CF AF=DE.(1)求证: △ ABF ^A DCE(2)求证: 四边形 ABCD 是矩形。
AEDF 是菱 C E11.如图,已知点 E F 在正方形 ABCD 勺对角线 AC 上,AE=CF.13.如图,在正方形 ABCD 中, F 是AC 上一点,FC=BC EF 丄AC 交AB 于E ,求证:AF=EB.求证:四边形 BFDE是菱形.12.如图,在△ ABC 中,/ ACB=90 , CD 平分/ ACB DE// BC, DF// AC,分别交 AC BC 于 E 、F. 求证:四边形 DECF 是正方形.B。
平行四边形、矩形、菱形、正方形归纳及基础练习

第 16周日期2014.6.7 Unit 第二单元教学道具打印试题教学目标平行四边形、矩形、菱形、正方形归纳重点掌握和应用平行四边形、矩形、菱形、正方形的性质和判定难点掌握和应用平行四边形、矩形、菱形、正方形的性质和判定教学过程平行四边形平行四边形特殊平四边形性质:判定三角形的中位线:矩形:对边相等,对边平行,对角相等,对角线互相平分边角对角线①两组对边分别相等的四边形是平行四边形②一组对边平行且相等的四边形是平行四边形两组对角分别相等的四边形是平行四边形对角线互相平分的四边形是平行四边形三角形的中位线平行于三角形的第三边,且等于第三边的一半性质:判定:四个角都是直角,对角线相等且互相平分。
(具备平行四边形的一切性质)推论:直角三角形斜边上的中线等于斜边的一半①三个角都是直角的四边形是矩形②有一个角是直角的平行四边形是矩形③对角线相等的平行四边形是矩形平行四边形、菱形、矩形、正方形测试题一、 选择题(38分)。
1.平行四边形ABCD 中,∠A=50°,则∠D=( )A. 40°B. 50°C. 130°D. 不能确定 2.下列条件中,能判定四边形是平行四边形的是( )A. 一组对边相等B. 对角线互相平分C. 一组对角相等D. 对角线互相垂直 3.在平行四边形ABCD 中,EF 过对角线的交点O ,若AB=4,BC=7,OE=3,则四边形EFCD 周长是( )A .14 B. 11 C. 10 D. 17 4.菱形具有的性质而矩形不一定有的是( )菱形:正方形:特殊平行四边形性质:判定:面积:性质:判定:四边都相等,对角线互相垂直平分,每一条对角线平分一组对角(具备平行四边形的一切性质)① 四边都相等的四边形是菱形② 一组邻边相等的平行四边形是菱形 ③ 对角线互相垂直的平行四边形是菱形菱形的面积=底高=两条对角线长 乘积的一半(菱形的两条对角线将菱形分成四个全等的三角形)① 四边相等,四个角都是直角 ② 对角线相等且互相垂直平分,每一条对角线平分一组对角。
平行四边形及特殊平行四边形含答案

平行四边形、菱形、矩形、正方形测试题一、选择题(每题3分,共30分)。
1.平行四边形ABCD 中,∠A=50°,则∠D=( )A. 40°B. 50°C. 130°D. 不能确定2.下列条件中,能判定四边形是平行四边形的是( )A. 一组对边相等B. 对角线互相平分C. 一组对角相等D. 对角线互相垂直3.在平行四边形ABCD 中,EF 过对角线的交点O ,若AB=4,BC=7,OE=3,则四边形EFCD 周长是( )A .14 B. 11 C. 10 D. 174.菱形具有的性质而矩形不一定有的是( )A . 对角相等且互补B . 对角线互相平分C . 一组对边平行另一组相等D . 对角线互相垂直5.已知菱形的周长为40cm ,两条对角线的长度比为3:4,那么两条对角线的长分别为( )A .6cm ,8cm B. 3cm ,4cm C. 12cm ,16cm D. 24cm ,32cm6.如图在矩形ABCD 中,对角线AC 、BD 相交于点O ,则以下说法错误的是( )A .AB=21ADB .AC=BDC . 90===∠=∠CDA BCD ABC DABD .AO=OC=BO=OD7.如图5连结正方形各边上的中点,得到的新四边形是 ( ) A .矩形 B.正方形 C.菱形 D.平行四边形8. 一矩形两对角线之间的夹角有一个是600, 且这角所对的边长5cm,则对角线长为( )A. 5 cmB. 10cmC. 52cmD. 无法确定 9. 当矩形的对角线互相垂直时, 矩形变成( )A. 菱形B. 等腰梯形C. 正方形D. 无法确定.10.如图所示,在 ABCD 中,E 、F 分别AB 、CD 的中点,连结DE 、EF 、BF ,则图中平行四边形共有( )A .2个B .4个C .6个D .8个二、填空题(每题3分,共24分 )11.□ABCD 中, AB :BC=1:2,周长为24cm, 则AB=_____cm, AD=_____cm. 12.已知:四边形ABCD 中,AB =CD ,要使四边形ABCD 为平行四边形,需要增加__________,(只需填一个你认为正确的条件即可)你判断的理由是:_____________________________。
八年级数学四边形的相关计算与证明解答题提升专练

八年级数学四边形的相关计算与证明解答题提升专练题型一:判定图形的形状1.如图,四边形ABCD是矩形,E是BC边上一点,点F在BC的延长线上,且CF=BE.求证:四边形AEFD是平行四边形.2. 如图,∠B=∠E=90°,点B、C、F、E在一条直线上,AC=DF,BF=EC.求证:四边形ACDF是平行四边形.3. 如图,在四边形ABCD中,∠BAC=90°,E是BC的中点,AD∥BC,AE∥DC,EF⊥CD于点F.(1)求证:四边形AECD是菱形;(2)若AB=6,BC=10,求EF的长.4. 如图,在△ABC中,点O是AC边上的一个动点,过点O作MN∥BC,交∠ACB的平分线于点E,交∠ACB的外角平分线于点F.(1)求证:OC=1EF;2(2)当点O位于AC边的什么位置时,四边形AECF是矩形?并给出证明.5. 如图,正方形ABCD的对角线AC,BD相交于点O,CE∥BD,DE∥AC.(1)求证:四边形OCED是正方形.(2)若AC=√2,则点E到边AB的距离为.题型二:长度、面积相关的计算或证明1. 如图,在□ABCD中,AE⊥BC,交边BC于点E,点F为边CD上一点,且DF=BE,过点F作FG⊥CD,交边AD于点G,求证:DG=DC.2. 如图,四边形ABCD中,AD∥BC,AE∥CD,BD平分∠AB C.求证:AB=CE.3. 如图,在四边形ABCD中,AD∥BC,AD=2BC,E为AD的中点,连接BD、BE,∠ABD=90°.求证:BC=CD.4. 如图,在平行四边形ABCD中,点O是对角线AC的中点,点E在AD的延长线上,连接EO,并延长交CB的延长线于点F.求证:DE=BF.5. 如图,平行四边形ABCD中,BE⊥AD,BF⊥CD,∠EBF=60°,AE=3,DF =2.求EC、EF的长.题型三:角度相关的计算或证明1. 如图,在菱形ABCD中,点E为对角线AC上一点,连接DE并延长交AB延长线于点F,连接BE.求证:∠AFD=∠EB C.2. 如图,四边形ABCD是矩形,过点D作DE∥AC,交BA的延长线于点E.求证:∠BDA=∠ED A.3. 如图,已知在四边形ABCD中,BC=AD,点E、F分别是BC、AD边上的中点,且AE=CF.求证:AB∥C D.4.如图,正方形ABCD中,点E、F分别在AD、CD上,且DE=CF,AF、BE相交于点G.求证:BE⊥AF.题型四:四边形的综合应用1. 如图,正方形ABCD的边长为6,E、F是对角线BD上的两个动点,且EF =2,连接AE、AF,求AE+AF的最小值.2. 如图,将□ABCD沿过点A的直线l折叠,使点D落到AB边上的点D'处,折痕l 交CD边于点E,连接BE.(1)求证:四边形BCED'是平行四边形;(2)若BE平分∠ABC,求证:AB2=AE2+BE2.3.如图,在平行四边形ABCD中,点E是CD的中点,连接AE,F为AE上一点,且∠BFE=∠C.求证:AB2=2AE·AF.4. 综合与实践问题情境:如图①,点E为正方形ABCD内一点,90∠=︒,将Rt△ABE绕点B按顺时针AEB方向旋转90︒,得到△CBE'(点A的对应点为点)C.延长AE交CE'于点F,连接DE.猜想证明:(1)试判断四边形BE FE'的形状,并说明理由;(2)如图②,若DA DE=,请猜想线段CF与FE'的数量关系并加以证明;解决问题:(3)如图①,若15CF=,请直接写出DE的长.AB=,3。
八下 平行四边形9.4 矩形、菱形、正方形练习含答案 含答案

一.选择题1.菱形具有而一般平行四边形不具有的性质是()A.对边相等B.对角相等C.对角线互相平分D.对角线互相垂直2.如图,四边形ABCD是菱形,AC=8,DB=6,DH⊥AB于H,则DH等于()A.B.C.5 D.43.矩形OABC在平面直角坐标系中的位置如图所示,点B的坐标为(3,4),D是OA的中点,点E在AB上,当△CDE的周长最小时,点E的坐标为()A.(3,1)B.(3,)C.(3,)D.(3,2)4.如图,在矩形ABCD中,AB=4,BC=6,点E为BC的中点,将△ABE沿AE折叠,使点B 落在矩形内点F处,连接CF,则CF的长为()A.B.C.D.5.如图,矩形ABCD的顶点A、C分别在直线a、b上,且a∥b,∠1=60°,则∠2的度数为()A.30°B.45°C.60°D.75°6.如图,点P是矩形ABCD的边AD上的一动点,矩形的两条边AB、BC的长分别是6和8,则点P到矩形的两条对角线AC和BD的距离之和是()A.4.8 B.5 C.6 D.7.27.如图,矩形ABCD与菱形EFGH的对角线均交于点O,且EG∥BC,将矩形折叠,使点C与点O重合,折痕MN恰好过点G若AB=,EF=2,∠H=120°,则DN的长为()A.B.C.﹣D.2﹣8.如图,矩形ABCD中,O为AC中点,过点O的直线分别与AB、CD交于点E、F,连结BF交AC于点M,连结DE、BO.若∠COB=60°,FO=FC,则下列结论:①FB垂直平分OC;②△EOB≌△CMB;③DE=EF;④S△AOE:S△BCM=2:3.其中正确结论的个数是()A.4个B.3个C.2个D.1个9.如图,在矩形ABCD中,AD=6,AE⊥BD,垂足为E,ED=3BE,点P、Q分别在BD,AD 上,则AP+PQ的最小值为()A.2B.C.2D.310.有3个正方形如图所示放置,阴影部分的面积依次记为S1,S2,则S1:S2等于()A.1:B.1:2 C.2:3 D.4:9二、填空题17.如图,在菱形ABCD中,对角线AC与BD相交于点O,AC=8,BD=6,OE⊥BC,垂足为点E,则OE=.18.如图,菱形ABCD的对角线AC、BD相交于点O,E为AD的中点,若OE=3,则菱形ABCD的周长为.19.如图,已知菱形ABCD的边长2,∠A=60°,点E、F分别在边AB、AD上,若将△AEF 沿直线EF折叠,使得点A恰好落在CD边的中点G处,则EF=.20.如图,在菱形ABCD中,∠BAD=120°,点E、F分别在边AB、BC上,△BEF与△GEF关于直线EF对称,点B的对称点是点G,且点G在边AD上.若EG⊥AC,AB=6,则FG的长为.21.如图,延长矩形ABCD的边BC至点E,使CE=BD,连结AE,如果∠ADB=30°,则∠E=度.22.如图,在矩形ABCD中,对角线AC与BD相交于点O,过点A作AE⊥BD,垂足为点E,若∠EAC=2∠CAD,则∠BAE=度.三.解答题:1.如图,在平行四边形ABCD中,BC=2AB=4,点E、F分别是BC、AD的中点.(1)求证:△ABE≌△CDF;(2)当四边形AECF为菱形时,求出该菱形的面积.2.如图,四边形ABCD是菱形,CE⊥AB交AB的延长线于点E,CF⊥AD交AD的延长线于点F,求证:DF=BE.3.如图,将一张直角三角形ABC纸片沿斜边AB上的中线CD剪开,得到△ACD,再将△ACD 沿DB方向平移到△A′C′D′的位置,若平移开始后点D′未到达点B时,A′C′交CD于E,D′C′交CB于点F,连接EF,当四边形EDD′F为菱形时,试探究△A′DE的形状,并判断△A′DE与△EFC′是否全等?请说明理由.4.已知:如图,在菱形ABCD中,点E、F分别为边CD、AD的中点,连接AE,CF,求证:△ADE≌△CDF.5.如图,在菱形ABCD中,对角线AC、BD相交于点O,过点D作对角线BD的垂线交BA 的延长线于点E.(1)证明:四边形ACDE是平行四边形;(2)若AC=8,BD=6,求△ADE的周长.一.选择题1.(2016•莆田)菱形具有而一般平行四边形不具有的性质是()A.对边相等B.对角相等C.对角线互相平分 D.对角线互相垂直【分析】由菱形的性质可得:菱形的对角线互相平分且垂直;而平行四边形的对角线互相平分;则可求得答案.【解答】解:∵菱形具有的性质:对边相等,对角相等,对角线互相平分,对角线互相垂直;平行四边形具有的性质:对边相等,对角相等,对角线互相平分;∴菱形具有而一般平行四边形不具有的性质是:对角线互相垂直.故选D.【点评】此题考查了菱形的性质以及平行四边形的性质.注意菱形的对角线互相平分且垂直.2.(2016•枣庄)如图,四边形ABCD是菱形,AC=8,DB=6,DH⊥AB于H,则DH等于()A.B.C.5 D.4【分析】根据菱形性质求出AO=4,OB=3,∠AOB=90°,根据勾股定理求出AB,再根据菱形的面积公式求出即可.【解答】解:∵四边形ABCD是菱形,∴AO=OC,BO=OD,AC⊥BD,∵AC=8,DB=6,∴AO=4,OB=3,∠AOB=90°,由勾股定理得:AB==5,=,∵S菱形ABCD∴,∴DH=,故选A.【点评】本题考查了勾股定理和菱形的性质的应用,能根据菱形的性质得出S菱=是解此题的关键.形ABCD3.(2016•苏州)矩形OABC在平面直角坐标系中的位置如图所示,点B的坐标为(3,4),D是OA的中点,点E在AB上,当△CDE的周长最小时,点E的坐标为()A.(3,1)B.(3,)C.(3,)D.(3,2)【分析】如图,作点D关于直线AB的对称点H,连接CH与AB的交点为E,此时△CDE的周长最小,先求出直线CH解析式,再求出直线CH与AB的交点即可解决问题.【解答】解:如图,作点D关于直线AB的对称点H,连接CH与AB的交点为E,此时△CDE的周长最小.∵D(,0),A(3,0),∴H(,0),∴直线CH解析式为y=﹣x+4,∴x=3时,y=,∴点E坐标(3,)故选:B.【点评】本题考查矩形的性质、坐标与图形的性质、轴对称﹣最短问题、一次函数等知识,解题的关键是利用轴对称找到点E位置,学会利用一次函数解决交点问题,属于中考常考题型.4.(2016•威海)如图,在矩形ABCD中,AB=4,BC=6,点E为BC的中点,将△ABE沿AE折叠,使点B落在矩形内点F处,连接CF,则CF的长为()A.B.C.D.【分析】连接BF,根据三角形的面积公式求出BH,得到BF,根据直角三角形的判定得到∠BFC=90°,根据勾股定理求出答案.【解答】解:连接BF,∵BC=6,点E为BC的中点,∴BE=3,又∵AB=4,∴AE==5,∴BH=,则BF=,∵FE=BE=EC,∴∠BFC=90°,∴CF==.故选:D.【点评】本题考查的是翻折变换的性质和矩形的性质,掌握折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等是解题的关键.5.(2016•海南)如图,矩形ABCD的顶点A、C分别在直线a、b上,且a∥b,∠1=60°,则∠2的度数为()A.30°B.45°C.60°D.75°【分析】首先过点D作DE∥a,由∠1=60°,可求得∠3的度数,易得∠ADC=∠2+∠3,继而求得答案.【解答】解:过点D作DE∥a,∵四边形ABCD是矩形,∴∠BAD=∠ADC=90°,∴∠3=90°﹣∠1=90°﹣60°=30°, ∵a ∥b , ∴DE ∥a ∥b ,∴∠4=∠3=30°,∠2=∠5, ∴∠2=90°﹣30°=60°. 故选C .【点评】此题考查了矩形的性质以及平行线的性质.注意准确作出辅助线是解此题的关键.6.(2016•宜宾)如图,点P 是矩形ABCD 的边AD 上的一动点,矩形的两条边AB 、BC 的长分别是6和8,则点P 到矩形的两条对角线AC 和BD 的距离之和是( )A .4.8B .5C .6D .7.2【分析】首先连接OP ,由矩形的两条边AB 、BC 的长分别为6和8,可求得OA=OD=5,△AOD 的面积,然后由S △AOD =S △AOP +S △DOP =OA•PE +OD•PF 求得答案. 【解答】解:连接OP ,∵矩形的两条边AB 、BC 的长分别为6和8,∴S 矩形ABCD =AB•BC=48,OA=OC ,OB=OD ,AC=BD=10, ∴OA=OD=5,∴S △ACD =S 矩形ABCD =24, ∴S △AOD =S △ACD =12,∵S △AOD =S △AOP +S △DOP =OA•PE +OD•PF=×5×PE +×5×PF=(PE +PF )=12,解得:PE +PF=4.8. 故选:A .【点评】此题考查了矩形的性质以及三角形面积问题.此题难度适中,注意掌握辅助线的作法以及掌握整体数学思想的运用是解题的关键.7.(2016•资阳)如图,矩形ABCD 与菱形EFGH 的对角线均交于点O ,且EG ∥BC ,将矩形折叠,使点C 与点O 重合,折痕MN 恰好过点G 若AB=,EF=2,∠H=120°,则DN 的长为( )A .B .C .﹣D .2﹣【分析】延长EG 交DC 于P 点,连接GC 、FH ,则△GCP 为直角三角形,证明四边形OGCM 为菱形,则可证CG=OM=CM=OG=,由勾股定理求得GP 的值,再由梯形的中位线定理CM +DN=2GP ,即可得出答案.【解答】解:延长EG 交DC 于P 点,连接GC 、FH ;如图所示: 则CP=DP=CD=,△GCP 为直角三角形,∵四边形EFGH 是菱形,∠EHG=120°, ∴GH=EF=2,∠OHG=60°,EG ⊥FH , ∴OG=GH•sin60°=2×=,由折叠的性质得:CG=OG=,OM=CM ,∠MOG=∠MCG ,∴PG==,∵OG ∥CM ,∴∠MOG +∠OMC=180°,∴∠MCG +∠OMC=180°,∴OM ∥CG ,∴四边形OGCM 为平行四边形,∵OM=CM ,∴四边形OGCM 为菱形,∴CM=OG=,根据题意得:PG 是梯形MCDN 的中位线,∴DN +CM=2PG=,∴DN=﹣; 故选:C .【点评】本题考查了矩形的性质、菱形的性质、翻折变换的性质、勾股定理、梯形中位线定理、三角函数等知识;熟练掌握菱形和矩形的性质,由梯形中位线定理得出结果是解决问题的关键.8.(2016•眉山)如图,矩形ABCD 中,O 为AC 中点,过点O 的直线分别与AB 、CD 交于点E 、F ,连结BF 交AC 于点M ,连结DE 、BO .若∠COB=60°,FO=FC ,则下列结论:①FB 垂直平分OC ;②△EOB ≌△CMB ;③DE=EF ;④S △AOE :S △BCM =2:3.其中正确结论的个数是( )A .4个B .3个C .2个D .1个【分析】①利用线段垂直平分线的性质的逆定理可得结论;②在△EOB和△CMB中,对应直角边不相等;③可证明∠CDE=∠DFE;④可通过面积转化进行解答.【解答】解:①∵矩形ABCD中,O为AC中点,∴OB=OC,∵∠COB=60°,∴△OBC是等边三角形,∴OB=BC,∵FO=FC,∴FB垂直平分OC,故①正确;②∵△BOC为等边三角形,FO=FC,∴BO⊥EF,BF⊥OC,∴∠CMB=∠EOB=90°,但BO≠BM,故②错误;③易知△ADE≌△CBF,∠1=∠2=∠3=30°,∴∠ADE=∠CBF=30°,∠BEO=60°,∴∠CDE=60°,∠DFE=∠BEO=60°,∴∠CDE=∠DFE,∴DE=EF,故③正确;④易知△AOE≌△COF,∴S△AOE=S△COF,∵S△COF=2S△CMF,∴S△AOE :S△BCM=2S△CMF:S△BCM=,∵∠FCO=30°,∴FM=,BM=CM,∴=,∴S△AOE :S△BCM=2:3,故④正确;所以其中正确结论的个数为3个;故选B【点评】本题综合性比较强,既考查了矩形的性质、等腰三角形的性质,又考查了全等三角形的性质和判定,及线段垂直平分线的性质,内容虽多,但不复杂;看似一个选择题,其实相当于四个证明题,属于常考题型.9.(2016•雅安)如图,在矩形ABCD中,AD=6,AE⊥BD,垂足为E,ED=3BE,点P、Q分别在BD,AD上,则AP+PQ的最小值为()A.2 B.C.2 D.3【分析】在Rt△ABE中,利用三角形相似可求得AE、DE的长,设A点关于BD 的对称点A′,连接A′D,可证明△ADA′为等边三角形,当PQ⊥AD时,则PQ最小,所以当A′Q⊥AD时AP+PQ最小,从而可求得AP+PQ的最小值等于DE的长,可得出答案..【解答】解:设BE=x,则DE=3x,∵四边形ABCD为矩形,且AE⊥BD,∴△ABE∽△DAE,∴AE2=BE•DE,即AE2=3x2,∴AE=x,在Rt△ADE中,由勾股定理可得AD2=AE2+DE2,即62=(x)2+(3x)2,解得x=,∴AE=3,DE=3,如图,设A点关于BD的对称点为A′,连接A′D,PA′,则A′A=2AE=6=AD,AD=A′D=6,∴△AA′D是等边三角形,∵PA=PA′,∴当A′、P、Q三点在一条线上时,A′P+PQ最小,又垂线段最短可知当PQ⊥AD时,A′P+PQ最小,∴AP+PQ=A′P+PQ=A′Q=DE=3,故选D.【点评】本题主要考查轴对称的应用,利用最小值的常规解法确定出A的对称点,从而确定出AP+PQ的最小值的位置是解题的关键,利用条件证明△A′DA是等边三角形,借助几何图形的性质可以减少复杂的计算.10.(2016•南宁)有3个正方形如图所示放置,阴影部分的面积依次记为S1,S2,则S1:S2等于()A.1:B.1:2 C.2:3 D.4:9【分析】设小正方形的边长为x,再根据相似的性质求出S1、S2与正方形面积的关系,然后进行计算即可得出答案.【解答】解:设小正方形的边长为x,根据图形可得:∵=,∴=,∴=,∴S1=S正方形ABCD,∴S1=x2,∵=,∴=,∴S2=S正方形ABCD,∴S2=x2,∴S1:S2=x2:x2=4:9;故选D.【点评】此题考查了正方形的性质,用到的知识点是正方形的性质、相似三角形的性质、正方形的面积公式,关键是根据题意求出S1、S2与正方形面积的关系.17.(2016•内江)如图,在菱形ABCD中,对角线AC与BD相交于点O,AC=8,BD=6,OE⊥BC,垂足为点E,则OE=.【分析】先根据菱形的性质得AC⊥BD,OB=OD=BD=3,OA=OC=AC=4,再在Rt△OBC中利用勾股定理计算出BC=5,然后利用面积法计算OE的长.【解答】解:∵四边形ABCD为菱形,∴AC⊥BD,OB=OD=BD=3,OA=OC=AC=4,在Rt△OBC中,∵OB=3,OC=4,∴BC==5,∵OE⊥BC,∴OE•BC=OB•OC,∴OE==.故答案为.【点评】本题考查了菱形的性质:菱形具有平行四边形的一切性质;菱形的四条边都相等;菱形的两条对角线互相垂直,并且每一条对角线平分一组对角.也考查了勾股定理和三角形面积公式.18.(2016•扬州)如图,菱形ABCD的对角线AC、BD相交于点O,E为AD的中点,若OE=3,则菱形ABCD的周长为24.【分析】由菱形的性质可得出AC⊥BD,AB=BC=CD=DA,再根据直角三角形斜边上的中线等于斜边的一半得出AD的长,结合菱形的周长公式即可得出结论.【解答】解:∵四边形ABCD为菱形,∴AC⊥BD,AB=BC=CD=DA,∴△AOD为直角三角形.∵OE=3,且点E为线段AD的中点,∴AD=2OE=6.C菱形ABCD=4AD=4×6=24.故答案为:24.【点评】本题考查了菱形的性质以及直角三角形的性质,解题的关键是求出AD=6.本题属于基础题,难度不大,解决该题型题目时,根据菱形的性质找出对角线互相垂直,再通过直角三角形的性质找出菱形的一条变成是关键.19.(2016•盐城)如图,已知菱形ABCD的边长2,∠A=60°,点E、F分别在边AB、AD上,若将△AEF沿直线EF折叠,使得点A恰好落在CD边的中点G处,则EF=.【分析】延长CD,过点F作FM⊥CD于点M,连接GB、BD,作FH⊥AE交于点H,由菱形的性质和已知条件得出∠MFD=30°,设MD=x,则DF=2x,FM=x,得出MG=x+1,由勾股定理得出(x+1)2+(x)2=(2﹣2x)2,解方程得出DF=0.6,AF=1.4,求出AH=AF=0.7,FH=,证明△DCB是等边三角形,得出BG⊥CD,由勾股定理求出BG=,设BE=y,则GE=2﹣y,由勾股定理得出()2+y2=(2﹣y)2,解方程求出y=0.25,得出AE、EH,再由勾股定理求出EF即可.【解答】解:延长CD,过点F作FM⊥CD于点M,连接GB、BD,作FH⊥AE交于点H,如图所示:∵∠A=60°,四边形ABCD是菱形,∴∠MDF=60°,∴∠MFD=30°,设MD=x,则DF=2x,FM=x,∵DG=1,∴MG=x+1,∴(x+1)2+(x)2=(2﹣2x)2,解得:x=0.3,∴DF=0.6,AF=1.4,∴AH=AF=0.7,FH=AF•sin∠A=1.4×=,∵CD=BC,∠C=60°,∴△DCB是等边三角形,∵G是CD的中点,∴BG⊥CD,∵BC=2,GC=1,∴BG=,设BE=y,则GE=2﹣y,∴()2+y2=(2﹣y)2,解得:y=0.25,∴AE=1.75,∴EH=AE﹣AH=1.75﹣0.7=1.05,∴EF===.故答案为:.【点评】本题考查了菱形的性质、翻折变换的性质、勾股定理、等边三角形的判定与性质等知识;本题综合性强,难度较大,运用勾股定理得出方程是解决问题的关键.20.(2016•哈尔滨)如图,在菱形ABCD中,∠BAD=120°,点E、F分别在边AB、BC上,△BEF与△GEF关于直线EF对称,点B的对称点是点G,且点G在边AD上.若EG⊥AC,AB=6,则FG的长为3.【分析】首先证明△ABC,△ADC都是等边三角形,再证明FG是菱形的高,根=BC•FG即可解决问题.据2•S△ABC【解答】解:∵四边形ABCD是菱形,∠BAD=120°,∴AB=BC=CD=AD,∠CAB=∠CAD=60°,∴△ABC,△ACD是等边三角形,∵EG⊥AC,∴∠AEG=∠AGE=30°,∵∠B=∠EGF=60°,∴∠AGF=90°,∴FG⊥BC,=BC•FG,∴2•S△ABC∴2××(6)2=6•FG,∴FG=3.故答案为3.【点评】本题考查菱形的性质、等边三角形的判定和性质、翻折变换、菱形的面积等知识,记住菱形的面积=底×高=对角线乘积的一半,属于中考常考题型.21.(2016•巴中)如图,延长矩形ABCD的边BC至点E,使CE=BD,连结AE,如果∠ADB=30°,则∠E=15度.【分析】连接AC,由矩形性质可得∠E=∠DAE、BD=AC=CE,知∠E=∠CAE,而∠ADB=∠CAD=30°,可得∠E度数.【解答】解:连接AC,∵四边形ABCD是矩形,∴AD∥BE,AC=BD,且∠ADB=∠CAD=30°,∴∠E=∠DAE,又∵BD=CE,∴CE=CA,∴∠E=∠CAE,∵∠CAD=∠CAE+∠DAE,∴∠E+∠E=30°,即∠E=15°,故答案为:15.【点评】本题主要考查矩形性质,熟练掌握矩形对角线相等且互相平分、对边平行是解题关键.22.(2016•包头)如图,在矩形ABCD中,对角线AC与BD相交于点O,过点A作AE⊥BD,垂足为点E,若∠EAC=2∠CAD,则∠BAE=22.5度.【分析】首先证明△AEO是等腰直角三角形,求出∠OAB,∠OAE即可.【解答】解:∵四边形ABCD是矩形,∴AC=BD,OA=OC,OB=OD,∴OA=OB═OC,∴∠OAD=∠ODA,∠OAB=∠OBA,∴∠AOE=∠OAD+∠ODA=2∠OAD,∵∠EAC=2∠CAD,∴∠EAO=∠AOE,∵AE⊥BD,∴∠AEO=90°,∴∠AOE=45°,∴∠OAB=∠OBA==67.5°,∴∠BAE=∠OAB﹣∠OAE=22.5°.故答案为22.5°.【点评】本题考查矩形的性质、等腰直角三角形的性质等知识,解题的关键是发现△AEO是等腰直角三角形这个突破口,属于中考常考题型.23.(2016•黄冈)如图,在矩形ABCD中,点E、F分别在边CD、BC上,且DC=3DE=3a.将矩形沿直线EF折叠,使点C恰好落在AD边上的点P处,则FP= 2a.【分析】作FM⊥AD于M,则MF=DC=3a,由矩形的性质得出∠C=∠D=90°.由折叠的性质得出PE=CE=2a=2DE,∠EPF=∠C=90°,求出∠DPE=30°,得出∠MPF=60°,在Rt△MPF中,由三角函数求出FP即可.【解答】解:作FM⊥AD于M,如图所示:则MF=DC=3a,∵四边形ABCD是矩形,∴∠C=∠D=90°.∵DC=3DE=3a,∴CE=2a,由折叠的性质得:PE=CE=2a=2DE,∠EPF=∠C=90°,∴∠DPE=30°,∴∠MPF=180°﹣90°﹣30°=60°,在Rt△MPF中,∵sin∠MPF=,∴FP===2a;故答案为:2a.【点评】本题考查了折叠的性质、矩形的性质、三角函数等知识;熟练掌握折叠和矩形的性质,求出∠DPE=30°是解决问题的关键.1.(2016•安顺)如图,在平行四边形ABCD中,BC=2AB=4,点E、F分别是BC、AD的中点.(1)求证:△ABE≌△CDF;(2)当四边形AECF为菱形时,求出该菱形的面积.【分析】第(1)问要证明三角形全等,由平行四边形的性质,很容易用SAS证全等.第(2)要求菱形的面积,在第(1)问的基础上很快知道△ABE为等边三角形.这样菱形的高就可求了,用面积公式可求得.【解答】(1)证明:∵在▱ABCD中,AB=CD,∴BC=AD,∠ABC=∠CDA.又∵BE=EC=BC,AF=DF=AD,∴BE=DF.∴△ABE≌△CDF.(2)解:∵四边形AECF为菱形,∴AE=EC.又∵点E是边BC的中点,∴BE=EC,即BE=AE.又BC=2AB=4,∴AB=BC=BE,∴AB=BE=AE,即△ABE为等边三角形,▱ABCD的BC边上的高为2×sin60°=,∴菱形AECF的面积为2.【点评】考查了全等三角形,四边形的知识以及逻辑推理能力.(1)用SAS证全等;(2)若四边形AECF为菱形,则AE=EC=BE=AB,所以△ABE为等边三角形.2.(2016•广安)如图,四边形ABCD是菱形,CE⊥AB交AB的延长线于点E,CF⊥AD交AD的延长线于点F,求证:DF=BE.【分析】连接AC,根据菱形的性质可得AC平分∠DAE,CD=BC,再根据角平分线的性质可得CE=FC,然后利用HL证明Rt△CDF≌Rt△CBE,即可得出DF=BE.【解答】证明:连接AC,∵四边形ABCD是菱形,∴AC平分∠DAE,CD=BC,∵CE⊥AB,CF⊥AD,∴CE=FC,∠CFD=∠CEB=90°.在Rt△CDF与Rt△CBE中,,∴Rt△CDF≌Rt△CBE(HL),∴DF=BE.【点评】此题考查了菱形的性质,角平分线的性质,关键是掌握菱形的两条对角线互相垂直,并且每一条对角线平分一组对角;角平分线的性质:角的平分线上的点到角的两边的距离相等.同时考查了全等三角形的判定与性质.3.(2016•荆州)如图,将一张直角三角形ABC纸片沿斜边AB上的中线CD剪开,得到△ACD,再将△ACD沿DB方向平移到△A′C′D′的位置,若平移开始后点D′未到达点B时,A′C′交CD于E,D′C′交CB于点F,连接EF,当四边形EDD′F为菱形时,试探究△A′DE的形状,并判断△A′DE与△EFC′是否全等?请说明理由.【分析】当四边形EDD′F为菱形时,△A′DE是等腰三角形,△A′DE≌△EFC′.先证明CD=DA=DB,得到∠DAC=∠DCA,由AC∥A′C′即可得到∠DA′E=∠DEA′由此即可判断△DA′E的形状.由EF∥AB推出∠CEF=∠EA′D,∠EFC=∠A′D′C=∠A′DE,再根据A′D=DE=EF即可证明.【解答】解:当四边形EDD′F为菱形时,△A′DE是等腰三角形,△A′DE≌△EFC′.理由:∵△BCA是直角三角形,∠ACB=90°,AD=DB,∴CD=DA=DB,∴∠DAC=∠DCA,∵A′C′∥AC,∴∠DA′E=∠A,∠DEA′=∠DCA,∴∠DA′E=∠DEA′,∴DA′=DE,∴△A′DE是等腰三角形.∵四边形DEFD′是菱形,∴EF=DE=DA′,EF∥DD′,∴∠C′EF=∠DA′E,∠EFC′=∠C′D′A′,∵CD∥C′D′,∴∠A′DE=∠A′D′C′=∠EFC′,在△A′DE和△EFC′中,,∴△A′DE≌△EFC′.【点评】本题考查平移、菱形的性质、全等三角形的判定和性质、直角三角形斜边中线定理等知识,解题的关键是灵活运用这些知识解决问题,属于中考常考题型.4.(2016•淮安)已知:如图,在菱形ABCD中,点E、F分别为边CD、AD的中点,连接AE,CF,求证:△ADE≌△CDF.【分析】由菱形的性质得出AD=CD,由中点的定义证出DE=DF,由SAS证明△ADE ≌△CDF即可.【解答】证明:∵四边形ABCD是菱形,∴AD=CD,∵点E、F分别为边CD、AD的中点,∴AD=2DF,CD=2DE,∴DE=DF,在△ADE和△CDF中,,∴△ADE≌△CDF(SAS).【点评】此题主要考查了全等三角形的判定、菱形的性质;熟练掌握菱形的性质,证明三角形全等是解决问题的关键.5.(2016•苏州)如图,在菱形ABCD中,对角线AC、BD相交于点O,过点D 作对角线BD的垂线交BA的延长线于点E.(1)证明:四边形ACDE是平行四边形;(2)若AC=8,BD=6,求△ADE的周长.【分析】(1)根据平行四边形的判定证明即可;(2)利用平行四边形的性质得出平行四边形的周长即可.【解答】(1)证明:∵四边形ABCD是菱形,∴AB∥CD,AC⊥BD,∴AE∥CD,∠AOB=90°,∵DE⊥BD,即∠EDB=90°,∴∠AOB=∠EDB,∴DE∥AC,∴四边形ACDE是平行四边形;(2)解:∵四边形ABCD是菱形,AC=8,BD=6,∴AO=4,DO=3,AD=CD=5,∵四边形ACDE是平行四边形,∴AE=CD=5,DE=AC=8,∴△ADE的周长为AD+AE+DE=5+5+8=18.【点评】此题考查平行四边形的性质和判定问题,关键是根据平行四边形的判定解答即可.。
2022年中考数学《四边形》专题训练及答案

2022年中考数学《四边形》专题训练及答案一.选择题(共17小题)1.如图是一个由5张纸片拼成的平行四边形ABCD,相邻纸片之间互不重叠也无缝隙,其中两张等腰直角三角形纸片的面积都为S1,另两张直角三角形纸片的面积都为S2,中间一张矩形纸片EFGH的面积为S3,FH与GE 相交于点O.当△AEO,△BFO,△CGO,△DHO的面积相等时,下列结论一定成立的是()A.S1=S2B.S1=S3C.AB=AD D.EH=GH2.数学兴趣小组同学从“中国结”的图案(图1)中发现,用相同的菱形纵向排列放置,可得到更多的菱形.如图2,用2个相同的菱形放置,得到3个菱形.下面说法正确的是()A.用3个相同的菱形放置,最多能得到6个菱形B.用4个相同的菱形放置,最多能得到16个菱形C.用5个相同的菱形放置,最多能得到27个菱形D.用6个相同的菱形放置,最多能得到41个菱形3.如图,菱形ABCD中,∠B=60°,点P从点B出发,沿折线BC﹣CD方向移动,移动到点D停止.在△ABP 形状的变化过程中,依次出现的特殊三角形是()A.直角三角形→等边三角形→等腰三角形→直角三角形B.直角三角形→等腰三角形→直角三角形→等边三角形C.直角三角形→等边三角形→直角三角形→等腰三角形D.等腰三角形→等边三角形→直角三角形→等腰三角形4.如图,在矩形ABCD 中,AB =6,BC =10,E 是BC 边上一动点(不含端点B ,C ),连接EA ,F 是CD 边上一点,设DF =a ,若存在唯一的点E ,使∠FEA =90°,则a 的值是( )A .256B .116C .103D .35.如图,E ,F 是正方形ABCD 的边BC 上两个动点,BE =CF .连接AE ,BD 交于点G ,连接CG ,DF 交于点M .若正方形的边长为1,则线段BM 的最小值是( )A .12B .√3−12C .√2−12D .√5−126.如图,在矩形ABCD 中,以对角线AC 为斜边作Rt △AEC ,过点E 作EF ⊥DC 于点F ,连结AF ,若AD =DF ,S △AEF =3,S △ACF =5,则矩形ABCD 的面积为( )A .18B .19C .20D .217.如图,在▱ABCD 中,BD =6,AC =10,BD ⊥AB ,则AD 的长为( )A .8B .√42C .2√5D .2√138.如图,在Rt △ABC 中(AC >BC ),∠ACB =90°,过C 作CD ⊥AB 于点D ,分别以AD ,AC ,BC 为边向上作正方形ADQP,正方形ACEF,正方形CBGH,其中CE与PQ相交于点O,连接PF,QH,EH.若点F,P,Q,H在同一直线上,且△OCQ的面积为1,则六边形ABGHEF的面积为()A.5+3√5B.15+7√5C.20+10√5D.30+14√59.已知四边形ABCD为平行四边形,要使四边形ABCD为矩形,则可增加条件为()A.AB=BC B.AC=BD C.AC⊥BD D.AC平分∠BAD10.如图,矩形ABCD中,AB:AD=2:1,点E为AB的中点,点F为EC上一个动点,点P为DF的中点,连接PB,当PB的最小值为3√2时,则AD的值为()A.2B.3C.4D.611.如图,在矩形ABCD中,点F为边AD上一点,过F作EF∥AB交边BC于点E,P为边AB上一点,PH⊥DE 交线段DE于H,交线段EF于Q,连接DQ.当AF=AB时,要求阴影部分的面积,只需知道下列某条线段的长,该线段是()A.EF B.DE C.PH D.PE12.如图,在Rt△ABC中,∠ACB=90°,BC=6,AC=8,里面放置两个大小相同的正方形CDEF与正方形GHIJ,点F在边BC上,点D,H在边AC上,点G在边DE上,点I,J在斜边AB上,则正方形CDEF的边长为()A .3613B .3013C .2413D .181313.已知,矩形ABCD 中,E 为AB 上一定点,F 为BC 上一动点,以EF 为一边作平行四边形EFGH ,点G ,H 分别在CD 和AD 上,若平行四边形EFGH 的面积不会随点F 的位置改变而改变,则应满足( )A .AD =4AEB .AD =2ABC .AB =2AED .AB =3AE14.如图,矩形ABCD 由两直角边之比皆为1:2的三对直角三角形纸片甲、乙、丙拼接而成它们之间互不重叠也无缝隙,则AD AB的值为( )A .23B .34C .45D .2√5515.如图,已知大矩形ABCD 由①②③④四个小矩形组成,其中AE =CG ,则只需要知道其中一个小矩形的面积就可以求出图中阴影部分的面积,这个小矩形是( )A .①B .②C .③D .④16.将一个边长为4的正方形ABCD 分割成如图所示的9部分,其中△ABE ,△BCF ,△CDG ,△DAH 全等,△AEH ,△BEF ,△CFG ,△DGH 也全等,中间小正方形EFGH 的面积与△ABE 面积相等,且△ABE 是以AB 为底的等腰三角形,则△AEH 的面积为( )A .2B .169C .32D .√217.一张矩形纸板和圆形纸板按如图方式分别剪得同样大定理特例图(AC =3,BC =4,AB =5,分别以三边为边长向外作正方形),图1中边HI 、LM 和点K 、J 都恰好在矩形纸板的边上,图2中的圆心O 在AB 中点处,点H 、I 都在圆上,则矩形和圆形纸板的面积比是( )A .400:127πB .484:145πC .440:137πD .88:25π二.填空题(共7小题)18.如图,在矩形ABCD 中,点E 在边AB 上,△BEC 与△FEC 关于直线EC 对称,点B 的对称点F 在边AD 上,G 为CD 中点,连结BG 分别与CE ,CF 交于M ,N 两点.若BM =BE ,MG =1,则BN 的长为 ,sin ∠AFE 的值为 .19.图1是邻边长为2和6的矩形,它由三个小正方形组成,将其剪拼成不重叠、无缝隙的大正方形(如图2),则图1中所标注的d 的值为 ;记图1中小正方形的中心为点A ,B ,C ,图2中的对应点为点A ′,B ′,C ′.以大正方形的中心O 为圆心作圆,则当点A ′,B ′,C ′在圆内或圆上时,圆的最小面积为 .20.如图,在▱ABCD中,对角线AC,BD交于点O,AB⊥AC,AH⊥BD于点H,若AB=2,BC=2√3,则AH的长为.21.如图,点O是菱形ABCD对角线的交点,DE∥AC,CE∥BD,连接OE,设AC=10,BD=24,则OE的长为.22.如图,在▱ABCD中,P为AB上的一点,E、F分别是DP、CP的中点,G、H为CD上的点,连接EG、FH,若▱ABCD的面积为24cm2,GH=12AB,则图中阴影部分的面积为.23.如图1,某学校楼梯墙面上悬挂了四幅全等的正方形画框,画框下边缘与水平地面平行.如图2,画框的左上角顶点B,E,F,G都在直线AB上,且BE=EF=FG,楼梯装饰线条所在直线CD∥AB,延长画框的边BH,MN得到▱ABCD.若直线PQ恰好经过点D,AB=275cm,CH=100cm,∠A=60°,则正方形画框的边长为cm.24.如图,F是矩形ABCD内一点,AF=BF.连接DF并延长交BC于点G,且点C与AB的中点E恰好关于直线DG 对称.若AD =9,则AB 的长为 .三.解答题(共13小题) 25.【推理】如图1,在正方形ABCD 中,点E 是CD 上一动点,将正方形沿着BE 折叠,点C 落在点F 处,连结BE ,CF ,延长CF 交AD 于点G . (1)求证:△BCE ≌△CDG . 【运用】(2)如图2,在【推理】条件下,延长BF 交AD 于点H .若HD HF=45,CE =9,求线段DE 的长.【拓展】(3)将正方形改成矩形,同样沿着BE 折叠,连结CF ,延长CF ,BF 交直线AD 于G ,H 两点,若AB BC=k ,HD HF=45,求DE EC的值(用含k 的代数式表示).26.【证明体验】(1)如图1,AD 为△ABC 的角平分线,∠ADC =60°,点E 在AB 上,AE =AC .求证:DE 平分∠ADB . 【思考探究】(2)如图2,在(1)的条件下,F 为AB 上一点,连结FC 交AD 于点G .若FB =FC ,DG =2,CD =3,求BD 的长. 【拓展延伸】(3)如图3,在四边形ABCD 中,对角线AC 平分∠BAD ,∠BCA =2∠DCA ,点E 在AC 上,∠EDC =∠ABC .若BC =5,CD =2√5,AD =2AE ,求AC 的长.27.小王在学习浙教版九上课本第72页例2后,进一步开展探究活动:将一个矩形ABCD绕点A顺时针旋转α(0°<α≤90°),得到矩形AB′C′D′,连结BD.[探究1]如图1,当α=90°时,点C′恰好在DB延长线上.若AB=1,求BC的长.[探究2]如图2,连结AC′,过点D′作D′M∥AC′交BD于点M.线段D′M与DM相等吗?请说明理由.[探究3]在探究2的条件下,射线DB分别交AD′,AC′于点P,N(如图3),发现线段DN,MN,PN存在一定的数量关系,请写出这个关系式,并加以证明.28.如图,在菱形ABCD中,∠ABC是锐角,E是BC边上的动点,将射线AE绕点A按逆时针方向旋转,交直线CD于点F.(1)当AE⊥BC,∠EAF=∠ABC时,①求证:AE=AF;②连结BD,EF,若EFBD =25,求S△AEFS菱形ABCD的值;(2)当∠EAF=12∠BAD时,延长BC交射线AF于点M,延长DC交射线AE于点N,连结AC,MN,若AB=4,AC=2,则当CE为何值时,△AMN是等腰三角形.29.如图,在四边形ABCD中,AB∥CD,AD∥BC,过B作BE⊥BD与DA的延长线交于点E.(1)若点A为DE中点,求证:四边形ABCD为菱形.(2)若BA=BE,tan∠EDB=√22,求△ABE与四边形ABCD面积的比值.30.如图,四边形ABCD是菱形,E是AB的中点,AC的垂线EF交AD于点M,交CD的延长线于点F.(1)求证:AM=AE;(2)连接CM,DF=2.①求菱形ABCD的周长;②若∠ADC=2∠MCF,求ME的长.31.如图1,在正方形ABCD中,BD为对角线,点E为边AB上的点,连结DE,过点A作AG⊥DE交BC于点G,交BD于点H,垂足为F,连结EH.(1)AE与BG相等吗,请说明理由;(2)若BE:AE=n,求证:DH:BH=n+1;(3)在(2)的基础上,如图2时,当EH∥AD时,求n的值.32.如图,在矩形ABCD中,点E在射线CB上,连结AE,∠DAE的平分线AG与CD交于点G,与BC的延长线交于F点.设CEEB =λ(λ>0),ABBC=k(k>0且k≠2).(1)若AB=8,λ=1,k=43,求线段CF的长.(2)连结EG,若EG⊥AF,①求证:点G为CD边的中点;②求λ的值(用k表示).33.在正方形ABCD中,点E为边AB上的点,连结DE,过点A作AG⊥DE交BC于G.(1)如图1,AE与BG相等吗?请说明理由;(2)如图2,连接BD,交AG于H,ED于F,连接EH,若BE:AE=n,求DH:BH;(3)在(2)的基础上,如图3,当EH∥AD时,求n的值.34.如图,在△ABC中,AC=BC=2√5,tan∠CAB=12,P为AC上一点,PD⊥AB交AB于点E,AD⊥AC交PD于点D,连结BD,CD,CD交AB于点Q.(1)若CD⊥BC,求证:△AED∽△QCB;(2)若AB平分∠CBD,求BQ的长;(3)连结PQ并延长交BD于点M.①当点P是AC的中点时,求tan∠BQM的值;②当PM平行于四边形ADBC中的某一边时,求BMDM的值.35.在三角形中,一个角两夹边的平方和减去它对边的平方所得的差,叫做这个角的勾股差.(1)概念理解:在直角三角形中,直角的勾股差为 ;在底边长为2的等腰三角形中,底角的勾股差为 ;(2)性质探究:如图1,CD 是△ABC 的中线,AC =b ,BC =a ,AB =2c ,CD =d ,记△ACD 中∠ADC 的勾股差为m ,△BCD 中∠BDC 的勾股差为n ;①求m ,n 的值(用含a ,b ,c ,d 的代数式表示); ②试说明m 与n 互为相反数;(3)性质应用:如图2,在四边形ABCD 中,点E 与F 分别是AB 与BC 的中点,连接BD ,DE ,DF ,若DF AB=34,且CD ⊥BD ,CD =AD ,求DE DF的值.36.【发现问题】小聪发现图1所示矩形甲与图2所示矩形乙的周长与面积满足关系:C 乙C 甲=S 乙S 甲=12.【提出问题】对于任意一个矩形A ,是否一定存在矩形B ,使得C B C A=S B S A=12成立?【解决问题】(1)对于图2所示的矩形乙,是否存在矩形丙(可设两条邻边长分别为x 和7﹣x ),使得C 丙C 乙=S 丙S 乙=12成立.若存在,求出矩形丙的两条邻边长;若不存在,请说明理由; (2)矩形A 两条邻边长分别为m 和1,若一定存在矩形B ,使得C B C A=S B S A=12成立,求m 的取值范围;(3)请你回答小聪提出来的问题.若一定存在,请说明理由;若不一定存在,请直接写出矩形A 两条邻边长a ,b 满足什么条件时一定存在矩形B .37.如图,矩形ABCD 中,AB =7,AD =3,点E 是AD 边上的一点,DE =2AE ,连接EB ,F 是EB 的中点,连接CF ,点M 为DC 边上的一点,当动点P 从点C 匀速运动到点F 时,动点Q 恰好从点M 匀速运动到点C .(1)求tan∠DCF的值;(2)若点P运动到CF的中点时,Q,P,B三点恰好共线,求此时DM的长;(3)连接EM,BM,当∠EMB=90°且DM<CM时,记MQ=x,CP=y.①求y关于x的函数关系式;②当PQ平行于△BEM的某一边时,求所有满足条件的x的值.参考答案与试题解析一.选择题(共17小题)1.【解答】解:如图,连接DG,AH,过点O作OJ⊥DE于J.∵四边形EFGH是矩形,∴OH=OF,EF=GH,∠HEF=90°,∵OJ⊥DE,∴∠OJH=∠HEF=90°,∴OJ∥EF,∵HO=OF,∴HJ=JE,∴EF=GH=2OJ,∵S△DHO=12•DH•OJ,S△DHG=12•DH•GH,∴S△DGH=2S△DHO,同法可证S△AEH=2S△AEO,∵S△DHO=S△AEO,∴S△DGH=S△AEH,∵S△DGC=12•CG•DH,S△ADH=12•DH•AE,CG=AE,∴S△DGC=S△ADH,∴S△DHC=S△ADE,∴S1=S2,故A选项符合题意;S3=HE•EF≠S1,故B选项不符合题意;AB=AD,EH=GH均不成立,故C选项,D选项不符合题意,故选:A.2.【解答】解:如图所示,用2个相同的菱形放置,最多能得到3个菱形;用3个相同的菱形放置,最多能得到8个菱形,用4个相同的菱形放置,最多能得到16个菱形,用5个相同的菱形放置,最多能得到29个菱形,用6个相同的菱形放置,最多能得到47个菱形.故选:B.3.【解答】解:∵∠B=60°,故菱形由两个等边三角形组合而成,当AP⊥BC时,此时△ABP为直角三角形;当点P到达点C处时,此时△ABP为等边三角形;当P为CD中点时,△ABP为直角三角形;当点P 与点D 重合时,此时△ABP 为等腰三角形, 故选:C .4.【解答】解:∵∠FEA =90°, ∴∠AEB +∠FEC =90°, ∵∠B =90°,∴∠AEB +∠EAB =90°, ∴∠EAB =∠FEC , ∵∠B =∠C =90°, ∴△ABE ∽△ECF , ∴AB EC=BE CF,设BE =x ,则EC =BC ﹣BE =10﹣x , ∵DF =a ,∴FC =DC ﹣DF =6﹣a , ∴x (10﹣x )=6(6﹣a ), ∴x 2﹣10x +36﹣6a =0, 由题意判别式b 2﹣4ac =0, ∴24a ﹣44=0, ∴a =116, 故选:B .5.【解答】解:如图,在正方形ABCD 中,AB =AD =CB ,∠EBA =∠FCD ,∠ABG =∠CBG ,在△ABE 和△DCF 中, {AB =CD∠EBA =∠FCD BE =CF, ∴△ABE ≌△DCF (SAS ), ∴∠BAE =∠CDF , 在△ABG 和△CBG 中,{AB =BC∠ABG =∠CBG BG =BG, ∴△ABG ≌△CBG (SAS ), ∴∠BAG =∠BCG , ∴∠CDF =∠BCG ,∵∠DCM +∠BCG =∠FCD =90°, ∴∠CDF +∠DCM =90°, ∴∠DMC =180°﹣90°=90°, 取CD 的中点O ,连接OB 、OF , 则OF =CO =12CD =12,在Rt △BOC 中,OB =√CB 2+OC 2=√12+(12)2=√52,根据三角形的三边关系,OM +BM >OB , ∴当O 、M 、B 三点共线时,BM 的长度最小, ∴BM 的最小值=OB ﹣OF =√52−12=√5−12. 故选:D .6.【解答】解:过点E 作EG 垂直AD 延长线于点G , ∵EF ⊥DC ,∴S △AEF =12EF •DF =3,S △ACF =12CF •AD =5, ∵DF =AD , ∴EF :CF =3:5,设EF =3b ,CF =5b ,AD =DF =a ,∵∠G =90°,∠EFD =90°,∠GDF =90°, ∴四边形EFDG 是矩形, ∴GE =DF =a ,GD =EF =3b , 在Rt △GEA 中,GE 2+AG 2=AE 2, 在Rt △EFC 中,EF 2+FC 2=EC 2, 在Rt △CEA 中,AE 2+CE 2=AC 2,∴AC 2=GE 2+AG 2+EF 2+FC 2=a 2+(a +3b )2+(3b )2+(5b )2=2a 2+43b 2+6ab , 在Rt △DAC 中,AC 2=AD 2+CD 2=a 2+(a +5b )2=2a 2+25b 2+10ab , ∴2a 2+43b 2+6ab =2a 2+25b 2+10ab , ∴18b 2=4ab ,∵b>0,∴a=92b,∴S△AEF=12EF•DF=12×3b×a=12×3b×92b=3,∴b=2 3,∴a=92×23=3,∴S矩形ABCD=AD•CD=a(a+5b)=3×(3+5×23)=19.故选:B.7.【解答】解:AC与BD相交于点O,∵四边形ABCD是平行四边形,∴2AO=AC,2OB=BD,∵BD=6,AC=10,∴OA=5,OB=3,∵DB⊥AB,在Rt△AOB中,由勾股定理得,AB=√OA2−OB2=√52−32=4,在Rt△ADB中,由勾股定理得,AD=√DB2+AB2=√62+42=2√13,故选:D.8.【解答】解:设CQ=x,∵∠CQO=90°,S△OCQ=1,∴12•CQ•OQ=1,∴OQ=2 x,∵∠CDB=∠CQH=∠BCH=90°,∴∠DCB +∠HCQ =90°,∠HCQ +∠CHQ =90°, ∴∠DCB =∠CHQ , 在Rt △CDB 和△HQC 中, {∠CDB =∠HQC∠DCB =∠CHQ CB =HC, ∴△CDB ≌△HQC (AAS ), ∴BD =CQ =x , ∵QO ∥BD , ∴△QCO ∽△DCB , ∴OQ BD=CQCD, ∴CD =x×x2x=12x 3,∵∠CAD +∠ACD =90°,∠DCB +∠ACD =90°, ∴∠CAD =∠DCB , ∵∠ADC =∠CDB =90°, ∴△ACD ∽△CBD , ∴AD CD=CD BD,∴CD 2=AD •DB , ∴(12x 3)2=(x +12x 3)•x ,解得x 2=1+√5或1−√5(舍弃), ∴CD =1+√52x ,AD =√5+32x , ∴AB =AD +BD =5+√52x , ∴AB 2=(5+√52)2×(1+√5)=20+10√5, ∴S 正方形ACEF +S 正方形BCHG =AB 2=20+10√5, ∵S △ACB =12•AB •CD =12×1+√52x ×5+√52x =5+2√5, ∴S 六边形ABGHEF =S 正方形ACEF +S 正方形CBGH +2S △ABC =20+10√5+2(5+2√5)=30+14√5, 故选:D .9.【解答】解:A 、∵四边形ABCD 是平行四边形,AB =BC , ∴四边形ABCD 是菱形,故A 不符合题意; B 、∵四边形ABCD 是平行四边形,AC =BD , ∴四边形ABCD 是矩形,故B 符合题意;C、∵四边形ABCD是平行四边形,AC⊥BD,∴四边形ABCD是菱形,故C不符合题意;D、∵四边形ABCD是平行四边形,∴AD∥BC,∴∠DAC=∠ACB,∵AC平分∠BAD,∴∠DAC=∠BAC,∴∠BAC=∠ACB,∴AB=AC,∴四边形ABCD是菱形,故D不符合题意;故选:B.10.【解答】解:如图,当点F与点C重合时,点P在P1处,CP1=DP1,当点F与点E重合时,点P在P2处,EP2=DP2,∴P1P2∥CE且P1P2=12CE..且当点F在EC上除点C、E的位置处时,有DP=FP.由中位线定理可知:P1P∥CE且P1P=12CF,∴点P的运动轨迹是线段P1P2,.∴当BP⊥P1P2时,PB取得最小值.∵矩形ABCD中,AB:AD=2:1,设AB=2t,则AD=t,∵E为AB的中点,∴△CBE、△ADE、△BCP1为等腰直角三角形,CP1=t,∴∠ADE=∠CDE=∠CP1B=45°,∠DEC=90°.∴∠DP2P1=90°.∴∠DP1P2=45°.∴∠P2P1B=90°,即BP1⊥P1P2,∴BP的最小值为BP1的长.在等腰直角△BCP1中,CP1=BC=t,∴BP 1=√2t =3√2, ∴t =3. 故选:B .11.【解答】解:过点P 作PM ⊥EF 于点M ,如图:∵四边形ABCD 为矩形,∴AB ∥DC ,AD ∥BC ,∠C =90°, ∵EF ∥AB , ∴EF ∥DC , ∴∠EDC =∠DEF , ∵PH ⊥DE ,PM ⊥EF , ∴∠PMQ =∠EHQ =90°, 又∵∠PQM =∠EQH , ∴∠QPM =∠DEF =∠EDC , 在△PMQ 和△DCE 中, {∠MPQ =∠EDCPM =CD∠PMQ =∠C,∴△PMQ ≌△DCE (ASA ), ∴PQ =DE ,∴阴影部分的面积=S △PDE ﹣S △QED =12×DE ×PH −12DE ×QH =12DE 2, ∴故选:B .12.【解答】解:在Rt △ABC 中, ∵∠ACB =90°,BC =6,AC =8, ∴AB =√AC 2+BC 2=10.∴sin ∠A =BCAB =35,cos ∠A =ACAB =45. ∵四边形GHIJ 为正方形, ∴GH ∥AB . ∴∠GHD =∠A .∴cos ∠GHD =cos ∠A =45.设正方形CDEF 与正方形GHIJ 的边长为x ,则HI =CD =x .在Rt △AHI 中,∵sin ∠A =HI AH , ∴x AH =35.∴AH =53x .在Rt △GHD 中,∵cos ∠GHD =DH GH , ∴DH x =45. ∴DH =45x .∵AC =CD +DH +AH =8,∴x +45x +53x =8.解得:x =3013. 故选:B .13.【解答】解:设AB =a ,BC =b ,BE =c ,BF =x ,∴S 平行四边形EFGH =S 矩形ABCD ﹣2(S △BEF +S △AEH )=ab ﹣2[12cx +12(a ﹣c )(b ﹣x )] =ab ﹣(cx +ab ﹣ax ﹣bc +cx )=ab ﹣cx ﹣ab +ax +bc ﹣cx=(a ﹣2c )x +bc ,∵F 为BC 上一动点,∴x 是变量,(a ﹣2c )是x 的系数,∵平行四边形EFGH 的面积不会随点F 的位置改变而改变,为固定值,∴x 的系数为0,bc 为固定值,∴a ﹣2c =0,∴a =2c ,∴E 是AB 的中点,∴AB =2AE ,故选:C .14.【解答】解:如图所示设丙的短直角边为x,乙的短直角边为y,则HG=2x,DG=2x+y,CG=12DG=2x+y2,∵BF=DH=y,FG=EH=x,∴CF=2BF=2y,CF=CG+FG=2x+y2+x,∴2y=2x+y2+x,∴x=34y,∵AB=DC=√CG2+DG2=√(2x+y2)2+(2x+y)2=√(54y)2+(52y)2=5√54y,AD=√DH2+AH2=√y2+(2y)2=√5y,∴ADAB=√5y5√54y=45.故选:C.15.【解答】解:如图所示:∵四边形ABCD和四边形③是矩形,∴AB=CD,FP=CG,∵AE=CG,∴BE=DG,∴阴影部分的面积=△BFD的面积﹣△BFP的面积=12BF×CD−12BF×FP=12BF×(CD﹣CG)=12BF×DG=12BF×BE=12矩形②面积,故选:B.16.【解答】解:连接EG,向两端延长分别交AB、CD于点M、N,如图,∵△ABE,△BCF,△CDG,△DAH全等,△ABE是以AB为底的等腰三角形,∴AE=BE=CG=DG,∴EG是AB、CD的垂直平分线,∴MN⊥AB,∴EM=GN(全等三角形的对应高相等),∵四边形ABCD是正方形,∴∠BAD=∠ADC=90°,∴四边形AMND是矩形,∴MN=AD=4,设ME=x,则EG=4﹣2x,∵中间小正方形EFGH的面积与△ABE面积相等,∴12(4−2x)2=12×4x,解得,x=1或x=4(舍),∵△ABE,△BCF,△CDG,△DAH全等,△AEH,△BEF,△CFG,△DGH也全等,∴△AEH的面积=S正方形ABCD−5S△ABE4=42−5×12×4×14=32,故选:C.17.【解答】解:在图1中延长CA与GF交于点N,延长CB与EF交于点P,在图2中,连接OH,过O作OQ⊥AC于点Q,则,在图1中,∵四边形ABJK是正方形,∴AB=BJ,∠ABJ=90°,∴∠ABC +∠PBJ =90°=∠ABC +∠BAC ,∴∠BAC =∠JBP ,∵∠ACB =∠BPJ =90°,∴△ABC ≌△BJK (AAS ),∴AC =BP =3,∵AC =MC =3,BC =4,∴DE =MP =3+4+3=10,同理得,DG =HN =4+3+4=11,∴矩形DEFG 的面积为11×10=110,在图2中,OQ =12CB =2,CQ =12AC =1.5,∴HQ =4+1.5=5.5,∴OH =√22+5.52=√1372,∴⊙O 的面积为:π×(√1372)2=137π4, ∴矩形和圆形纸板的面积比是:110:137π4=440:137π,故选:C .二.填空题(共7小题)18.【解答】解:∵BM =BE ,∴∠BEM =∠BME ,∵AB ∥CD ,∴∠BEM =∠GCM ,又∵∠BME =∠GMC ,∴∠GCM =∠GMC ,∴MG =GC =1,∵G 为CD 中点,∴CD =AB =2.连接BF ,FM ,由翻折可得∠FEM=∠BEM,BE=EF,∴BM=EF,∵∠BEM=∠BME,∴∠FEM=∠BME,∴EF∥BM,∴四边形BEFM为平行四边形,∵BM=BE,∴四边形BEFM为菱形,∵∠EBC=∠EFC=90°,EF∥BG,∴∠BNF=90°,∵BF平分∠ABN,∴F A=FN,∴Rt△ABF≌Rt△NBF(HL),∴BN=AB=2.∵FE=FM,F A=FN,∠A=∠BNF=90°,∴Rt△AEF≌Rt△NMF(HL),∴AE=NM,设AE=NM=x,则BE=FM=2﹣x,NG=MG﹣NM=1﹣x,∵FM∥GC,∴△FMN∽△CGN,∴CGFM=GNNM,即12−x=1−xx,解得x=2+√2(舍)或x=2−√2,∴EF=BE=2﹣x=√2,∴sin∠AFE=AEEF=√2√2=√2−1.故答案为:2;√2−1.19.【解答】解:如图,连接FW,由题意可知点A′,O,C′在线段FW上,连接OB′,B′C′,过点O作OH ⊥B′C′于H.∵大正方形的面积=12,∴FG=GW=2√3,∵EF=WK=2,∴在Rt△EFG中,tan∠EGF=EFFG=2√3=√33,∴∠EGF=30°,∵JK∥FG,∴∠KJG=∠EGF=30°,∴d=JK=√3GK=√3(2√3−2)=6﹣2√3,∵OF=OW=12FW=√6,C′W=√2,∴OC′=√6−√2,∵B′C′∥QW,B′C′=2,∴∠OC′H=∠FWQ=45°,∴OH=HC′=√3−1,∴HB′=2﹣(√3−1)=3−√3,∴OB′2=OH2+B′H2=(√3−1)2+(3−√3)2=16﹣8√3,∵OA′=OC′<OB′,∴当点A′,B′,C′在圆内或圆上时,圆的最小面积为(16﹣8√3)π.故答案为:6﹣2√3,(16﹣8√3)π.20.【解答】解:如图,∵AB⊥AC,AB=2,BC=2√3,∴AC=√(2√3)2−22=2√2,在▱ABCD中,OA=OC,OB=OD,∴OA=OC=√2,在Rt△OAB中,OB=√22+(√2)2=√6,又AH⊥BD,∴12OB •AH =12OA •AB ,即12×√6⋅AH =12×2×√2, 解得AH =2√33. 故答案为:2√33. 21.【解答】解:∵DE ∥AC ,CE ∥BD ,∴四边形OCED 为平行四边形,∵四边形ABCD 是菱形,∴AC ⊥BD ,OA =OC =12AC =5,OB =OD =12BD =12, ∴∠DOC =90°,CD =√OC 2+OD 2=√52+122=13, ∴平行四边形OCED 为矩形,∴OE =CD =13,故答案为:13.22.【解答】解:如图,设EG ,FH 交于点O ,∵四边形ABCD 为平行四边形,且▱ABCD 的面积为24cm 2, ∴S △PCD =12S ▱ABCD =12cm 2,AB =CD ,AB ∥CD , ∵E 、F 分别是DP 、CP 的中点,∴EF 为△PCD 的中位线,∴CD =2EF ,EF ∥CD ∥AB ,∴S △PEF :S △PCD =1:4,∴S △PEF =3,∵GH =12AB ,∴EF =GH ,EF ∥GH ,∴S △OEF =S △OGH =12S △PEF =1.5cm 2,∴S 阴影=3+2×1.5=6cm 2,故答案为6cm 2.23.【解答】解:延长EP ,与CD 交于点K ,如图, ∵AB ∥CD ,BC ∥EK ,∴四边形BCKE 是平行四边形,∴PK=CH=100cm,∵∠A=60°,四边形ABCD是平行四边形,∴∠C=∠A=60°,AB=CD=275cm,∵BC∥EK,∴∠PKD=∠C=60°,∴DK=PKcos60°=200cm,∴BE=CK=CD﹣DK=75cm,∵BE=EF=FG,∴AG=AB﹣3BE=275﹣75×3=50cm,∴GM=AG•sin∠A=50×√32=25√3cm.正方形画框的边长为25√3cm.故答案为:25√3.24.【解答】解:连接EF、EG、EC,如图所示:∵四边形ABCD是矩形,∴BC=AD=9,AD∥BC,∠BAD=∠ABC=90°,∴AB⊥AD,∵AF=BF,点E是AB的中点,∴EF⊥AB,∴EF∥AD∥BC,∴EF是梯形ABGD的中位线,∠EFG=∠CGF,∴EF=12(AD+BG),设BG=x,则CG=9﹣x,EF=12(9+x),∵点C与AB的中点E关于直线DG对称,∴EG=CG,∠CGF=∠EGF,∴EF=CG,∴12(9+x)=9﹣x,解得:x=3,∴BG=3,EG=CG=6,∴BE=√EG2−BG2=√62−32=3√3,∴AB=2BE=6√3;故答案为:6√3.三.解答题(共13小题)25.【解答】(1)证明:如图1中,∵△BFE是由△BCE折叠得到,∴BE⊥CF,∴∠ECF+∠BEC=90°,∵四边形ABCD是正方形,∴∠D=∠BCE=90°,∴∠ECF+∠CGD=90°,∴∠BEC=∠CGD,∵BC=CD,∴△BCE≌△CDG(AAS).(2)如图2中,连接EH.∵△BCE≌△CDG,∴CE=DG=9,由折叠可知BC=BF,CE=FE=9,∴∠BCF=∠BFC,∵四边形ABCD是正方形,∴AD∥BC,∴∠BCG=∠HGF,∵∠BFC=∠HFG,∴∠HFG=∠HGF,∴HF=HG,∵HDHF=45,DG=9,∴HD=4,HF=HG=5,∵∠D=∠HFE=90°,∴HF2+FE2=DH2+DE2,∴52+92=42+DE2,∴DE=3√10或﹣3√10(舍弃),∴DE=3√10.(3)如图3中,连接HE.由题意HD HF =45,可以假设DH =4m ,HG =5m ,设DE EC =x .①当点H 在点D 的左侧时,∵HF =HG ,∴DG =9m ,由折叠可知BE ⊥CF ,∴∠ECF +∠BEC =90°,∵∠D =90°,∴∠ECF +∠CGD =90°,∴∠BEC =∠CGD ,∵∠BCE =∠D =90°,∴△CDG ∽△BCE ,∴DG CE =CD BC , ∵CD BC =AB BC =k , ∴9m CE =k 1,∴CE =9m k=FE , ∴DE =9mx k , ∵∠D =∠HFE =90°∴HF 2+FE 2=DH 2+DE 2,∴(5m )2+(9m k )2=(4m )2+(9mx k )2, ∴x =√k 2+93或−√k 2+93(舍弃), ∴DE EC =√k 2+93.②当点H 在点D 的右侧时,如图4中,同理HG =HF ,△BCE ∽△CDG ,∴DG =m ,CE =m k =FE ,∴DE =mx k, ∵HF 2+FE 2=DH 2+DE 2,∴(5m )2+(m k )2=(4m )2+(mx k )2,∴x =√9k 2+1或−√9k 2+1(舍弃),∴DE EC =√9k 2+1.综上所述,DE EC =√k 2+93或√9k 2+1.26.【解答】(1)证明:如图1,∵AD 平分∠BAC ,∴∠EAD =∠CAD ,∵AE =AC ,AD =AD ,∴△EAD ≌△CAD (SAS ),∴∠ADE =∠ADC =60°,∵∠BDE =180°﹣∠ADE ﹣∠ADC =180°﹣60°﹣60°=60°, ∴∠BDE =∠ADE ,∴DE 平分∠ADB .(2)如图2,∵FB =FC ,∴∠EBD =∠GCD ;∵∠BDE =∠CDG =60°,∴△BDE ∽△CDG ,∴BD CD =DE DG ;∵△EAD ≌△CAD ,∴DE =CD =3,∵DG =2,∴BD =CD 2DG =322=92. (3)如图3,在AB 上取一点F ,使AF =AD ,连结CF . ∵AC 平分∠BAD ,∴∠F AC =∠DAC ,∵AC =AC ,∴△AFC ≌△ADC (SAS ),∴CF =CD ,∠FCA =∠DCA ,∠AFC =∠ADC ,∵∠FCA +∠BCF =∠BCA =2∠DCA ,∴∠DCA=∠BCF,即∠DCE=∠BCF,∵∠EDC=∠ABC,即∠EDC=∠FBC,∴△DCE∽△BCF,∴CDBC=CECF,∠DEC=∠BFC,∵BC=5,CF=CD=2√5,∴CE=CD2BC=(2√5)25=4;∵∠AED+∠DEC=180°,∠AFC+∠BFC=180°,∴∠AED=∠AFC=∠ADC,∵∠EAD=∠DAC(公共角),∴△EAD∽△DAC,∴AEAD=ADAC=12,∴AC=2AD,AD=2AE,∴AC=4AE=43CE=43×4=163.27.【解答】解:[探究1]如图1,设BC=x,∵矩形ABCD绕点A顺时针旋转90°得到矩形AB′C′D′,∴点A,B,D'在一条线上,∴AD'=AD=BC=x,D'C'=AB'=AB=1,∴D'B=AD'﹣AB=x﹣1,∵∠BAD=∠D'=90°,∴D'C'∥DA,又∵点C'在DB的延长线上,∴△D'C'B∽△ADB,∴D′C′AD=D′BAB,∴1x=x−11,解得x1=1+√52,x2=1−√52(不合题意,舍去),∴BC=1+√5 2.[探究2]D'M=DM.证明:如图2,连接DD',∵D'M∥AC',∴∠AD'M=∠D'AC',∵AD'=AD,∠AD'C'=∠DAB=90°,D'C'=AB,∴△AC'D'≌△DBA(SAS),∴∠D'AC'=∠ADB,∴∠ADB=∠AD'M,∵AD'=AD,∴∠ADD'=∠AD'D,∴∠MDD'=∠MD'D,∴D'M=DM;[探究3]关系式为MN2=PN•DN.证明:如图3,连接AM,∵D'M=DM,AD'=AD,AM=AM,∴△AD'M≌△ADM(SSS),∴∠MAD'=∠MAD,∵∠AMN=∠MAD+∠NDA,∠NAM=∠MAD'+∠NAP,∴∠AMN=∠NAM,∴MN=AN,在△NAP和△NDA中,∠ANP=∠DNA,∠NAP=∠NDA,∴△NP A∽△NAD,∴PNAN=ANDN,∴AN2=PN•DN,∴MN2=PN•DN.28.【解答】(1)①证明:∵四边形ABCD是菱形,∴AB=AD,∠ABC=∠ADC,AD∥BC,∵AE⊥BC,∴AE⊥AD,∴∠ABE+∠BAE=∠EAF+∠DAF=90°,∵∠EAF=∠ABC,∴∠BAE=∠DAF,∴△ABE≌△ADF(ASA),∴AE=AF;②解:连接AC,如图1所示:∵四边形ABCD是菱形,∴AB=BC=DC,AC⊥BD,由①知,△ABE≌△ADF,∴BE=DF,∴CE=CF,∵AE=AF,∴AC⊥EF,∴EF∥BD,∴△CEF∽△CBD,∴ECBC=EFBD=25,设EC=2a,则AB=BC=5a,BE=3a,∴AE=√AB2−BE2=√(5a)2−(3a)2=4a,∵AEAB=AFBC,∠EAF=∠ABC,∴△AEF∽△BAC,∴S△AEFS△BAC=(AEAB)2=(4a5a)2=1625,∴S△AEFS菱形ABCD=S△AEF2S△BAC=12×1625=825;(2)解:∵四边形ABCD是菱形,∴∠BAC=12∠BAD,∵∠EAF=12∠BAD,∴∠BAC=∠EAF,∴∠BAE=∠CAM,∵AB∥CD,∴∠BAE=∠ANC,∴∠ANC=∠CAM,同理:∠AMC=∠NAC,∴△MAC∽△ANC,∴ACCN=AMNA,△AMN是等腰三角形有三种情况:①当AM=AN时,如图2所示:∵∠ANC =∠CAM ,AM =AN ,∠AMC =∠NAC , ∴△ANC ≌△MAC (ASA ),∴CN =AC =2,∵AB ∥CN ,∴△CEN ∽△BEA ,∴CE BE =CN AB =24=12, ∵BC =AB =4,∴CE =13BC =43;②当NA =NM 时,如图3所示:则∠NMA =∠NAM ,∵AB =BC ,∴∠BAC =∠BCA ,∵∠BAC =∠EAF ,∴∠NMA =∠NAM =∠BAC =∠BCA ,∴△ANM ∽△ABC ,∴AM AN =AC AB =12, ∴AC CN =AM NA =12, ∴CN =2AC =4=AB ,∴△CEN ≌△BEA (AAS ),∴CE =BE =12BC =2;③当MA =MN 时,如图4所示:则∠MNA =∠MAN =∠BAC =∠BCA ,∴△AMN ∽△ABC ,∴AM AN =AB AC =42=2, ∴CN =12AC =1,∵△CEN ∽△BEA ,∴CE BE =CN AB =14, ∴CE =15BC =45;综上所述,当CE 为43或2或45时,△AMN 是等腰三角形.29.【解答】(1)证明:∵AB∥CD,AD∥BC,∴四边形ABCD是平行四边形,∵BE⊥BD,∴∠EBD=90°,∵A为DE的中点,∴AB=AD=12DE,∴四边形ABCD是菱形;(2)解:过B作BF⊥DE于F,tan ∠EDB =√22=BE BD, 设BE =√2x ,BD =2x ,由勾股定理得:DE =√BE 2+BD 2=√(√2x)2+(2x)2=√6x , ∵S △BDE =12×BE ×BD =12×DE ×BF , ∴12×√2x ×2x =12×√6x ×BF , 解得:BF =2√33x , ∴△ABE 与四边形ABCD 面积的比值是(12×√2x ×2x ):(√62x •2√33x )=√2x 2:√2x 2=1:1. 30.【解答】(1)证明:如图,连接BD , ∵四边形ABCD 是菱形,∴AC ⊥DB ,AD =AB ,∵EM ⊥AC ,∴ME ∥BD ,∵点E 是AB 的中点,∴点M 是AD 的中点,AE =12AB ,∴AM =12AD ,∴AM =AE .(2)解:①由(1)得,点M 是AD 的中点, ∴AM =MD ,∵四边形ABCD 是菱形,∴AB ∥CD ,∴∠F =∠AEM ,∠EAM =∠FDM ,∴△MDF ≌△MAE (AAS ),∴AE =DF ,∵AB =2AE ,DF =2,∴AB =4,∴菱形ABCD 的周长为4AB =4×4=16.②如图,连接CM ,记EF 与AC 交点为点G ,∵AM=AE,△MAE≌△MDF,∴DF=DM,MF=ME,∴∠DMF=∠DFM,∴∠ADC=2∠DFM,∵∠ADC=2∠MCD,∴∠MCD=∠DFM,∴MF=MC=ME,∠EMC=2∠FDM=∠MDC,∵ME⊥AC,AM=AE,∴∠MGC=90°,ME=2MG,∴MC=2MG,∴∠GMC=60°,∴∠ADC=60°,∴∠MCD=30°,∴∠DMC=90°,∴△DMC为直角三角形,∵DF=2,∴DM=2,CD=4,∴CM=√DM2+CM2=√22+42=2√3,∴ME=2√3.31.【解答】(1)解:相等,理由如下:∵四边形ABCD是正方形,∴AD=AB,∠DAB=∠ABC=90°,∴∠DAG+∠BAG=90°,∵AG⊥DE,∴∠DAG+∠ADF=90°,∴∠BAG=∠ADF,∵AD=AB,∠DAB=∠ABG,∴△ADE≌△BAG(ASA),∴AE =BG .(2)解:∵△ADE ≌△BAG ,∴BG =AE ,∵四边形ABCD 是正方形,∴AD ∥BC ,∴△ADH ∽△GBH ,∴DH BH =AD BG ,∵BE :AE =n ,BG =AE ,AD =AB ,∴DH BH =AD AG =AB AE =AE+BE AE =AE+nAE AE =n +1.(3)解:设BG =AE =k ,则BE =nk ,∵EH ∥AD ,∴∠BEH =∠BAD =90°,∠EHB =∠ADB =45°,∵∠ABD =45°,∴∠EHB =∠ABD ,∴BE =EH =nk ,∵EH ∥AD ,∴△AEH ∽△ABG ,∴AE AB =EH BG , ∴k k+nk =nk k, ∵n >0,∴n =√5−12.32.【解答】解:(1)∵AB BC =k ,k =43, ∴BC =6,∵CE EB =λ,λ=1,∴CE =EB ,∴点E 为BC 的中点,∵在矩形ABCD 中,AD ∥BC ,∴∠DAG =∠F ,又∵AG 平分∠DAE ,∴∠DAG =∠EAG ,∴∠EAG =∠F ,∴EA =EF ,∵AB =8,∠B =90°,点E 为BC 的中点,∴BE =EC =3,∴AE =√AB 2+BE 2=√73,∴EF =√73,∴CF =EF ﹣EC =√73−3;(2)①证明:∵EA =EF ,EG ⊥AF ,∴AG =FG ,在△ADG 和△FCG 中,{∠D =∠GCF ∠AGD =∠FGC AG =FG,∴△ADG ≌△FCG (AAS ),∴DG =CG ,即点G 为CD 的中点;②设CD =2a ,则CG =a ,∵AB BC =k (k >0且k ≠2).AB =CD ,AD =BC ,∴CF =AD =BC =2a k ,∵EG ⊥AF ,∠GCF =90°,∴∠EGC +∠CGF =90°,∠F +∠CGF =90°,∠ECG =∠GCF =90°,∴∠EGC =∠F ,∴△EGC ∽△GFC ,∴EC GC =GC FC ,∵GC =a ,FC =2a k , ∴GC FC =k 2, ∴EC GC =k 2,∴EC =k 2•a =ka 2,BE =BC ﹣EC =2a k −ka 2=4−k 22k a ,∴λ=CEEB=k24−k2.33.【解答】解:(1)AE=BG,理由如下:∵四边形ABCD是正方形,∴AD=AB,∠DAB=∠ABC=90°,∴∠DAG+∠BAG=90°,∵AG⊥DE,∴∠DAG+∠ADF=90°,∴∠BAG=∠ADF,∵AD=AB,∠DAB=∠ABG,∴△ADE≌△BAG(ASA),∴AE=BG;(2)∵△ADE≌△BAG,∴BG=AE,∵四边形ABCD是正方形∴AD∥BC∴△ADH∽△GBH∴DHBH=ADBG,∵BE:AE=n,BG=AE,AD=AB,∴DHBH=ADAE=ABAE=AE+BEAE,∵BE:AE=n,∴DHBH=AE+nAEAE=n+1;(3)设BG=AE=k,则BE=nk,∵EH∥AD,∴∠BEH=∠BAD=90°,∠EHB=∠ADB=45°,∵∠ABD=45°,∴∠EHB=∠ABD,∴BE=EH=nk,∵EH∥AD,AD∥BC,∴EH∥BC,∴△AEH∽△ABG,∴AEAB=EHBG,∴kk+nk=nkk,∵n>0,∴n=√5−1 2.34.【解答】(1)证明:∵AD⊥AC,CD⊥BC,PD⊥AB,∴∠DAP=∠DEA=∠BCQ=90°,∵∠P AE+∠DAE=90°,∠ADE+∠DAE=90°,∴∠P AE=∠ADE,∵CA=CB,∴∠CAB=∠CBA,∴∠ADE=∠QBC,∴△AED∽△QCB;(2)解:过点C作CH⊥AB于H,∵tan∠CAB=CHAH=12,∴设CH=a,则AH=2a,∴AC=√AH2+CH2=√5a=2√5,∴a=2,∴CH=2,AH=4,∵CA=CB,CH⊥AB,∴AH=BH=4,∠CAB=∠CBA,∴AB=8,∵AB平分∠CBD,∴∠CBA=∠DBA,∴∠CAB=∠DBA,∴AC∥BD,∵AD⊥AC,∴AD⊥BD,∴tan∠ABD=ADBD=tan∠CAB=12,∴AB=√5AD=8,∴AD=8√55,BD=2AD=16√55,∵△AQC∽△BQD,∴AQBQ=ACBD=√516√55=58,∴BQAB=813,∴BQ=813AB=6413;(3)解:①作QG⊥AD于G,∵点P是AC的中点,∴AP=12AC=√5,∵∠CAB=∠CBA=∠ADP,tan∠CAB=1 2,∴AD=2AP=2√5,∴AC=AD,∠ACD=∠ADC=45°,设AG=x,则QG=2x,DG=QG=2x,∴x+2x=2√5,解得:x=2√5 3,∴AQ=√5x=10 3,在Rt△APE中,AP=√5,PE=1,AE=2,∴EQ=AQ﹣AE=103−2=43,∴tan∠BQM=PEEQ=143=34;②作CH⊥AB于H,则CH ∥PD ,∴△CHQ ∽△DEQ ,∴CQ DQ =CH DE =QH EQ ,由(2)知,CH =2,AH =4,若PM ∥BC ,∴BM DM =CQ DQ ,∵CH ∥PD ,∴QH EQ =CH DE =CQ DQ ,∠PQA =∠CBA =∠CAB ,设PE =x ,∵tan ∠CAB =12,∴AE =QE =2x ,DE =4x ,∴QH =4﹣4x ,又∵QH EQ =CH DE , ∴24x =4−4x 2x , ∴x =34,∴BM DM =CQ DQ =CH DE =12x =23; 若PM ∥AD ,如图,∴BMMD=BQAQ,PCAP=CQDQ,∵CH∥PD,∴△CHQ∽△EDQ,∴CHDE=CQDQ=HQEQ,∴PCAP=CHDE,∵∠CAB=∠ADE,∴tan∠CAB=tan∠ADE=1 2,∵CH=2,AH=4,设PE=x,则AE=2x,DE=4x,由勾股定理得:AP=√5x,∴PC=2√5−√5x=√5(2﹣x),∵PCAP=CHDE,∴√5(2−x)√5x=24x,∴x=3 2,∵PM∥AD,AD⊥AC,∴PM⊥AC,∴∠EPQ=∠CAB,∴EQ=12PE=34,∴AQ=AE+EQ=3+34=154,BQ=8−154=174,∴BMMD=BQAQ=1715,综上所述,若PM∥BC,BMDM =23,若PM∥AD,BMDM =17 15.35.【解答】解:(1)∵一个角两夹边的平方和减去它对边的平方所得的差,叫做这个角的勾股差,∴直角的勾股差为两直角边的平方和与斜边的平方的差.∴等腰三角形的底角的勾股差为腰的平方+底边的平方+另一腰的平方.∵等腰三角形的两个腰相等,∴等腰三角形的底角的勾股差为底边的平方=22=4.故答案为:两直角边的平方和与斜边的平方的差;4;(2)①∵CD是△ABC的中线,AB=2c,∴AD=BD=c.依据勾股差的定义可得:m=c2+d2﹣b2,n=c2+d2﹣a2;②过点C作CM⊥AB于点M,如图,在Rt△ACM中,由勾股定理得:b2=CM2+AM2,同理可得:a2=CM2+BM2,CM2=d2﹣MD2.∴a2+b2=2CM2+AM2+BM2.∵AD=BD=c,∴AM=AD﹣MD=c﹣MD,BM=BD+MD=c+MD.∴a2+b2=2(d2﹣MD2)+(c﹣MD)2+(c+MD)2=2d2﹣2MD2+c2﹣2cMD+MD2+c2+2cMD+MD2=2d2+2c2.由(1)知:m=c2+d2﹣b2,n=c2+d2﹣a2,∴m+n=c2+d2﹣b2+c2+d2﹣a2=2c2+2d2﹣(a2+b2)=0.∴m与n互为相反数.(3)∵DF AB =34, ∴设DF =3m ,AB =4m .∵F 是BC 的中点,CD ⊥BD ,∴DF =12BC .∴BC =2DF =6m .∵点E 与F 分别是AB 与BC 的中点,∴CF =DF =BF =3m ,BE =AE =2m .∵点E 与F 分别是AB 与BC 的中点,∴利用(2)中的结论可得:BF 2+DF 2﹣BD 2+CF 2+DF 2﹣CD 2=0,BE 2+DE 2﹣BD 2+AE 2+DE 2﹣AD 2=0.∴4DF 2=BD 2+CD 2,2AE 2+2DE 2=BD 2+AD 2.∵CD =AD ,∴BD 2+CD 2=BD 2+AD 2.∴4DF 2=2AE 2+2DE 2.∴2×(3m )2=(2m )2+DE 2.解得:DE =√14m .∴DE DF =√14m 3m √143. 36.【解答】解:(1)不存在矩形丙,使得C 丙C 乙=S 丙S 乙=12成立.理由: 假定存在矩形丙,∵C 丙C 乙=S 丙S 乙=12, ∴矩形丙的两个邻边之和为7,它的面积为24.设两条邻边长分别为x 和7﹣x ,由题意得:x (7﹣x )=24.∴x 2﹣7x +24=0.∵Δ=(﹣7)2﹣4×1×24=﹣47<0,∴此方程没有实数根,∴不存在矩形丙,使得C 丙C 乙=S 丙S 乙=12成立. (2)∵矩形A 两条邻边长分别为m 和1,∴若存在矩形B ,使得C BC A =S B S A =12成立,则矩形B 的邻边之和为m+12. 设矩形B 的一边为x ,则另一边为m+12−x ,由题意得: x (m+12−x )=m×12. 化简得:2x 2﹣(m +1)x +m =0.由题意方程2x 2﹣(m +1)x +m =0一定有实数根.∴Δ=[﹣(m +1)]2﹣4×2m ≥0.解得:m ≥3+2√2或m ≤3﹣2√2.∵m 为矩形A 的边长,∴m >0.∴m 的取值范围为:0<m ≤3﹣2√2或m ≥3+2√2.(3)由(2)可知:对于任意一个矩形A ,不一定存在矩形B ,使得C BC A =S B S A =12成立. 当矩形A 两条邻边长a ,b 满足0<b a ≤3﹣2√2或b a≥3+2√2时,一定存在矩形B . 37.【解答】解:(1)如图1,∵AD =3,DE =2AE ,∴AE =1,DE =2,取AB 的中点G ,连接GF ,并延长交CD 于H ,∵F 是BE 的中点,∴FG =12AE =12,FG ∥AD ,在矩形ABCD 中,AB ∥CD ,∠A =90°,∴四边形AGHD 是平行四边形,∴▱AGHD 是矩形,。
平行四边形、矩形、菱形、正方形 题库二

矩形、菱形、正方形辅导练习题(一)一、复习矩形、菱形、正方形有关的性质和判定方法。
二、例题讲解例1、如图,在平行四边形ABCD中,E是CD的中点,△ABE是等边三角形,求证:四边形ABCD是矩形。
例2、已知如图,菱形ABCD中,E是AB的中点,且DE⊥AB,AE=2。
求:(1)∠ABC的度数;(2)对角线AC、BD的长;(3)菱形ABCD的面积。
例3、如图①,四边形ABCD是正方形, 点G是BC上任意一点,DE⊥AG于点E,BF⊥AG于点F.(1) 求证:DE-BF = EF.(2) 当点G为BC边中点时, 试探究线段EF与GF之间的数量关系,并说明理由.(3) 若点G为CB延长线上一点,其余条件不变.请你在图②中画出图形,写出此时DE、BF、EF之间的数量关系(不需要证明).三、巩固提高(一)选择题1、矩形具有而一般平行四边形不具有的性质是().A、对角线相等B、对边相等C、对角相等D、对角线互相平分2、下列对矩形的判定:“(1)对角线相等的四边形是矩形;(2)对角线互相平分且相等的四边形是矩形;(3)有一个角是直角的四边形是矩形;(4)有四个角是直角的四边形是矩形;(5)四个角都相等的四边是矩形;(6)对角线相等,且有一个直角的四边形是矩形;(7)一组邻边垂直,一组对边平行且相等的四边形是矩形;(8)对角线相等且互相垂直的四边形是矩形”中,正确的个数有()A、3 个B、4个C、5个D、6个3、下列性质中,菱形具有而矩形不一定具有的性质是( )A、对边平行且相等B、对角线互相平分C、内角和等于外角和D、每一条对角线所在直线都是它的对称轴4、下列条件中,能判定一个四边形为菱形的条件是( )A、对角线互相平分的四边形B、对角线互相垂直且平分的四边形C、对角线相等的四边形D、对角线相等且互相垂直的四边形5、已知四边形ABCD是平行四边形,下列结论中不一定正确的是( )A、AB=CDB、AC=BDC、当AC⊥BD时,它是菱形D、当∠ABC=90°时,它是矩形6、正方形具有而矩形不一定具有的性质是()。
平行四边形--矩形、菱形、正方形中考试题分类汇编(含答案)

19~20、平行四边形 矩形、菱形、正方形 经典题汇编要点一:特殊四边形的性质 一、选择题1、(2010·台州中考)如图,矩形A BCD 中,AB >AD ,AB =a,AN 平分∠DAB ,DM ⊥AN 于点M ,C N⊥A N于点N.则DM +CN 的值为(用含a 的代数式表示)( )A .aB .a 54C.a 22 D. a 23答案:C2、(2010·兰州中考)如图所示,菱形A BCD 的周长为20cm ,DE ⊥A B,垂足为E ,sin A=53,则下列结论正确的个数有( )①cm DE 3= ②cm BE 1= ③菱形的面积为215cm ④cm BD 102=A. 1个 B. 2个 C. 3个 D . 4个 答案:C3、(2010年怀化市)如图2,在菱形A BCD 中,对角线AC=4,∠BAD=120°,则菱形A BCD 的周长为( )aM DA .20B .18 C.16 D.15 答案:C4、(2009·桂林中考)如图,在平行四边形A BCD 中,A C、BD 为对角线,B C=6, BC 边上的高为4,则图中阴影部分的面积为( )A 、3 B、6 C 、12 D、24【解析】选C.由平行四边形的性质得.12462121=⨯⨯==ABCD S S 平行四边形阴影 5、(2009·长沙中考)如图,矩形ABCD 的两条对角线相交于点O ,602AOB AB ∠==°,,则矩形的对角线AC 的长是( )A.2ﻩ B.4C .23D.43【解析】选B.由矩形ABCD 的性质得OA=OB,又602AOB AB ∠==°,,∴△OAB 是等边三角形,∴OA=AB=2, ∴A C=4.6、(2009·济南中考)如图,矩形ABCD 中,35AB BC ==,.过对角线交点O 作OE AC ⊥ 交AD 于E ,则AE 的长是( )A.1.6 ﻩ B .2.5 C.3ﻩD .3.4【解析】选D .连接EC,∵四边形是ABCD 矩形,∴OA =OC, ∵OE AC ⊥,设AE =x ,在Rt △EC D中,由勾股定理得,)5(3222x x -+=解得x=3.4.7、 (2009·河北中考)如图,在菱形ABCD 中,AB = 5,∠B CD = 120°,则对角线AC 等于( )A.20 B .15 C.10 D .5【解析】选D .由菱形A BCD中,∠BCD = 120°,得∠B = 60°, ∴B A=AC,∴△A BC 是等边三角形, ∴AC= AB = 5.8、(2009·齐齐哈尔中考)梯形ABCD 中,AD BC ∥,1AD =,4BC =,70C ∠=°,40B ∠=°,则AB 的长为( )A.2 B.3 C.4 D.5 【解析】选B .过点D 作DE ∥A B于E,则∠DEC=40B ∠=°,∴∠EDC=180-∠DEC-∠C=70°,∵AD BC ∥,∴四边形ADEB 是平行四边形,∴BE=AD =1,AB=DE, ∴AB=DE=E C=BC-BE =4-1=3.9、(2007·自贡中考)矩形、菱形、正方形都具有的性质是( )(A )每一条对角线平分一组对角 (B)对角线相等(C)对角线互相平分ﻩﻩ(D)对角线互相垂直 答案:C . 二、填空题10、(2010·哈尔滨中考)如图,将矩形纸片ABCD 折叠,使点D与点B 重合,点C 落在点C′处,折痕为EF,若∠A BE =20°,那么∠EFC ′的度数为 度.答案:12511、(2010·珠海中考)如图,P是菱形ABCD对角线BD上一点,PE⊥AB于点E,PE=4cm,则点P到BC的距离是_____cm.答案:412、(2009·钦州中考)如图,在□ABCD中,∠A=120°,则∠D=.【解析】由□ABCD得∠D=180°-∠A=180°-120°=60°.答案:60°.13、(2009·牡丹江中考)如图,ABCD中,E、F分别为BC、AD边上的点,要使=,需添加一个条件:.BF DE=,可使四边形【解析】由ABCD得,AD=BC,AD∥BC, ∠A=∠C要使BF DEBEDF是平行四边形或△ABE≌△CDE,因此可添加一个条件为:()或∥;;等==∠=∠∠=∠;BE DF BF DE AF CE BFD BED AFB ADE答案:答案不唯一14、(2008·肇庆中考)边长为5cm的菱形,一条对角线长是6cm,则另一条对角线的长是.答案:8cm三、解答题15、(2009·济南中考)已知,如图,在ABCD 中,E 、F 是对角线BD 上的两点,且BF DE =.求证:AE CF =.证明:∵四边形ABCD 是平行四边形, ∴AD BC AD BC =,∥. ∴ADE FBC =∠∠ 在ADE △和CBF △中,∵AD BC ADE FBC DE BF ===,∠∠, ∴ADE CBF △≌△ ∴AE CF =16、(2009·钦州中考)已知:如图,在矩形ABC D中,AF =BE .求证:DE =CF ;【解析】证明:∵A F=BE ,EF =EF ,∴A E=B F. ∵四边形AB CD 是矩形, ∴∠A =∠B =90°,AD =BC. ∴△DA E≌△CBF . ∴DE =CF ;17、(2009·南充中考)如图,A BCD是正方形,点G 是BC 上的任意一点,DE AG ⊥于E ,BF DE ∥,交AG于F .求证:AF BF EF =+.证明:ABCD 是正方形,90AD AB BAD ∴=∠=,°.DE AG ⊥,90DEG AED ∴∠=∠=°. 90ADE DAE ∴∠+∠=°.又90BAF DAE BAD ∠+∠=∠=°,ADE BAF ∴∠=∠.BF DE ∥,AFB DEG AED ∴∠=∠=∠.在ABF △与DAE △中,AFB AED ADE BAF AD AB ∠=∠⎧⎪∠=∠⎨⎪=⎩,(AAS)ABF DAE ∴△≌△.BF AE ∴=. AF AE EF =+, AF BF EF ∴=+.18、(2008·双柏中考)如图,E F ,是平行四边形ABCD 的对角线AC 上的点,CE AF =. 请你猜想:BE 与DF 有怎样的位置..关系和数量..关系?并对你的猜想加以证明.猜想:【解析】猜想:BE DF ∥,BE DF = 证明:如图四边形ABCD 是平行四边形.BC AD ∴= 12∠=∠又CE AF =BCE DAF ∴△≌△BE DF ∴= 34∠=∠BE DF ∴∥要点二:特殊四边形的判定 一、选择题1、(2010·连云港中考)如图,四边形ABCD 的对角线AC 、BD 互相垂直,则下列条件能判定四边形ABCD 为菱形的是( )A .BA =BC B.AC 、BD互相平分 C.A C=BD D.A B∥CD 答案: B2、(2009·威海中考)如图,在四边形AB CD 中,E是BC 边的中点,连结DE 并延长,交AB 的延长线于F点,AB BF =.添加一个条件,使四边形ABCD 是平行四边形.你认为下面四个条件中可选择的是( )A.AD BC =B.CD BF =ﻩﻩC .A C ∠=∠ﻩ D .F CDE ∠=∠【解析】选D .由F CDE ∠=∠,∠FEB =∠DEC,B E=CE,得△FBE ≌△DCE,BF ∥CD. ∴B F=CD 又AB BF =,∴AB =CD, AB ∥CD , ∴四边形ABCD 是平行四边形. 3、(2009·南宁中考)如图,将一个长为10cm ,宽为8c m的矩形纸片对折两次后,沿所得矩形两邻边中点的连线(虚线)剪下,再打开,得到的菱形的面积为( )A.210cm B .220cm C.240cm D.280cm 【解析】选A.由题意知AC=4cm,BC=5cm, )cm 1054212(菱形=⨯⨯=S 4、(2009·郴州中考)如图是一张矩形纸片ABCD ,AD =10cm ,若将纸片沿DE折叠,使DC 落在DA 上,点C的对应点为点F ,若BE =6cm,则CD =( )A .4cmB .6cm C.8cm D.10cm【解析】选A.由折叠知DC =DF,四边形CD FE 为正方形,∴CD=CE=BC -BE=10-6=4(cm) 二、填空题5、(2010山东德州)在四边形ABCD 中,点E ,F,G ,H 分别是边AB ,BC ,CD ,DA 的中点,如果四边形EFG H为菱形,那么四边形AB CD 是 (只要写出一种即可).6、(2009·郴州中考)如图,在四边形ABCD 中,已知ABCD ,再添加一个条件___________(写出一个即可),则四边形ABCD 是平行四边形.(图形中不再添加辅助线)【解析】由一组对边平行且相等的四边形是平行四边形可添加AB ∥CD或∠A+∠D=180°或∠B+∠C=180°;由两组对边分别相等的四边形是平行四边形可添加A D=BC .答案:答案不唯一.AB ∥C D或 AD=BC 或 ∠A+∠D=180°或∠B+∠C=180°等. 7、(2009·日照中考)如图,在四边形ABCD 中,已知AB与CD 不平行,∠ABD =∠A CD ,请你添加一个条件: ,使得加上这个条件后能够推出AD∥B C且AB =C D.答案:∠DAC =∠AD B,∠BAD=∠CDA ,∠DBC =∠A CB ,∠AB C=∠DCB ,OB =OC,OA =O D;(任选其一)8、(2008·郴州中考)已知四边形ABC D中,90A B C ∠=∠=∠=︒,若添加一个条件即可判定该四边形是正方形,那么这个条件可以是____________. 答案:AB =BC 或者BC =C D或者CD =D A或者D A=AB9、(2008·沈阳中考)如图所示,菱形ABCD 中,对角线AC BD ,相交于点O ,若再补充一个条件能使菱形ABCD 成为正方形,则这个条件是 (只填一个条件即可).答案:90BAD ∠=(或AD AB ⊥,AC BD =等) 三、解答题10、(2009·柳州中考)如图,四边形AB CD 中,AB∥CD ,∠B =∠D ,3 ,6==AB BC ,求四边形ABCD 的周长.【解析】解法一: ∵AB CD ∥ ∴︒=∠+∠180C B 又∵B D ∠=∠∴︒=∠+∠180D C ∴AD ∥BC 即得ABCD 是平行四边形 ∴36AB CD BC AD ====,∴四边形ABCD 的周长183262=⨯+⨯=解法二: 连接AC∵AB CD ∥,∴DCA BAC ∠=∠又∵B D AC CA ∠=∠=,,∴ABC △≌CDA △ ∴36AB CD BC AD ====,∴四边形ABCD 的周长183262=⨯+⨯=解法三: 连接BD∵AB CD ∥,∴CDB ABD ∠=∠又∵ABC CDA ∠=∠ ∴ADB CBD ∠=∠ ∴AD ∥BC 即ABCD 是平行四边形 ∴36AB CD BC AD ====,∴四边形ABCD 的周长183262=⨯+⨯=11、(2009·恩施中考)两个完全相同的矩形纸片ABCD 、BFDE 如图放置,BF AB =.求证:四边形BNDM 为菱形.证明: ∵四边形AB CD 、BFDE 是矩形 ∴BM ∥DN,D M∥BN ∴四边形BNDM 是平行四边形又∵AB=BF =ED,∠A =∠E=90°∠AMB=∠EMD∴△ABM ≌△ED M ,∴BM=DM ∴平行四边形BNDM 是菱形12、(2009·云南中考)如图,在△ABC和△DCB中,AB= DC,AC=DB,AC与DB 交于点M.(1)求证:△ABC≌△DCB;(2)过点C作CN∥BD,过点B作BN∥AC,CN与BN交于点N,试判断线段BN与CN的数量关系,并证明你的结论.【解析】(1)如图,在△ABC和△DCB中,∵AB=DC,AC=DB,BC=CB,∴△ABC≌△DCB.(2)据已知有BN=CN.证明如下:∵CN∥BD,BN∥AC,∴四边形BMCN是平行四边形.由(1)知,∠MBC=∠MCB,∴BM=CM,∴四边形BMCN是菱形.∴BN=CN要点三:折叠、旋转后图形的性质一、选择题1.(2009·荆州中考)如图,将边长为8㎝的正方形ABCD折叠,使点D落在BC边的中点E 处,点A落在F处,折痕为MN,则线段CN的长是( )A.3cmB.4cmC.5cmﻩD.6cm答案:A.2、(2009·兰州中考)如图7所示,将一张正方形纸片对折两次,然后在上面打3个洞,则纸片展开后是( )答案:D3、(2009·凉山中考)如图,将矩形ABCD 沿对角线BD 折叠,使C 落在C '处,BC '交AD 于E ,则下列结论不一定成立的是( )A .AD BC '=ﻩﻩﻩB.EBD EDB ∠=∠C .ABE CBD △∽△ ﻩD .sin AEABE ED∠= 答案:C4、(2009·衡阳中考)如图,矩形纸片AB CD 中,A B=4,AD =3,折叠纸片使A D边与对角线BD 重合,折痕为DG ,则AG 的长为( )ﻩA .1 B .34 ﻩC .23D.2 答案:C5、(2009·抚顺中考)如图所示,正方形ABCD 的面积为12,ABE △是等边三角形,点E 在正方形ABCD 内,在对角线AC 上有一点P ,使PD PE +的和最小,则这个最小值为( )A .23B .6C .3D 6【解析】选A.根据轴对称的性质知:PD PE +最小时其值=B E的长.6、(2009·白银中考)如图,四边形AB CD 中,AB =B C,∠ABC =∠CDA =90°,B E⊥AD于点E ,且四边形AB CD的面积为8,则B E=( )A .2ﻩﻩB .3C.22 ﻩD.23【解析】选D.本题可以通过旋转变换将△ABE 绕点B 逆时针旋转900得正方形计算答案. 二、填空题7、(2009·本溪中考)如图所示,在ABCD 中,对角线AC BD 、相交于点O ,过点O 的直线分别交AD BC 、于点M N 、,若CON △的面积为2,DOM △的面积为4,则AOB △的面积为 .O N答案:68、(2007·白银中考)如图,矩形ABCD 的对角线AC 和BD 相交于点O ,过点O 的直线分别交AD 和BC 于点E 、F ,23AB BC ==,,则图中阴影部分的面积为 .答案:3 三、解答题9、(2008·兰州中考)如图,平行四边形ABCD 中,AB AC ⊥,1AB =,5BC =.对角线AC BD ,相交于点O ,将直线AC 绕点O 顺时针旋转,分别交BC AD ,于点E F ,.ABEO(1)证明:当旋转角为90时,四边形ABEF 是平行四边形; (2)试说明在旋转过程中,线段AF 与EC 总保持相等;(3)在旋转过程中,四边形BEDF 可能是菱形吗?如果不能,请说明理由;如果能,说明理由并求出此时AC 绕点O 顺时针旋转的度数. 【解析】(1)证明:当90AOF ∠=时,AB EF ∥, 又AF BE ∥,∴四边形ABEF 为平行四边形.(2)证明:四边形ABCD 为平行四边形,AO CO FAO ECO AOF COE ∴=∠=∠∠=∠,,. AOF COE ∴△≌△. AF EC ∴=(3)四边形BEDF 可以是菱形. 理由:如图,连接BF DE ,,由(2)知AOF COE △≌△,得OE OF =,EF ∴与BD 互相平分.∴当EF BD ⊥时,四边形BEDF 为菱形.在Rt ABC △中,512AC =-=,1OA AB ∴==,又AB AC ⊥,45AOB ∴∠=,45AOF ∴∠=,AC ∴绕点O 顺时针旋转45时,四边形BEDF 为菱形.10、(2008·牡丹江中考)已知:正方形ABCD 中,45MAN ∠=,MAN ∠绕点A 顺时针旋转,它的两边分别交CB DC ,(或它们的延长线)于点M N ,.当MAN ∠绕点A 旋转到BM DN =时(如图1),易证BM DN MN +=.BMEACND(1)当MAN ∠绕点A 旋转到BM DN ≠时(如图2),线段BM DN ,和MN 之间有怎样的数量关系?写出猜想,并加以证明.(2)当MAN ∠绕点A 旋转到如图3的位置时,线段BM DN ,和MN 之间又有怎样的数量关系?请直接写出你的猜想. 【解析】(1)BM DN MN +=成立.如图,把AND △绕点A 顺时针90,得到ABE △, 则可证得E B M ,,三点共线(图形画正确) 证明过程中,证得:EAM NAM ∠=∠ 证得:AEM ANM △≌△ME MN ∴=ME BE BM DN BM =+=+ DN BM MN ∴+=(2)DN BM MN -=11、(2007·台州中考)把正方形ABCD 绕着点A ,按顺时针方向旋转得到正方形AEFG ,边FG 与BC 交于点H(如图).试问线段HG 与线段HB 相等吗?请先观察猜想,然后再证明你的猜想.。
中考复习:《平行四边形、矩形菱形、正方形》计算类典型题汇总

最全《平行四边形、矩形菱形、正方形》计算类典型题汇总一、平行四边形中,边(周长)的计算例1:在平行四边形ABCD中,对角线AC,BD交于点O,AC=10,BD=8,则AD 的取值范围是_________.解析:利用平行四边形的性质,对角线互相平分,得AO=5,DO=4.借助三角形三边关系,AO-DO<AD<AO+DO,则1<AD<9变式:1.已知平行四边形ABCD的周长是12,AC,BD交于点O,△ABO的周长比△BOC 的周长大1,求AB,BC的长.解析:对照上图,我们知道AO=CO,BO为公共边,则△ABO的周长与△BOC的周长之差就是AB与BC之差,设AB=x,BC=x-1,根据周长=12,可得2(x+x-1)=12,x=3.5,AB=3.5,BC=2.5例2:如图,平行四边形ABCD的周长为16,AC,BD相交于点O,OE⊥AC于O,则△BCE的周长为_________.解析:由OE⊥BD,BO=DO,可知OE垂直平分BD,则BE=DE,C△BCE=BC+CE +BE= BC+CE+DE=BC+CD=8变式:如图,EF过平行四边形ABCD对角线的交点O,分别交AD于E,交BC于点F,若OE=5,四边形CDEF的周长为25,则平行四边形ABCD的周长为________.解析:首先,可证△AEO≌△CFO,则OE=OF.(事实上,经过平行四边形对称中心的线段,既平分平行四边形的周长,也平分面积.)EF=2OE=10,AE=CF,C四边形CDEF=CD+DE+CF+EF=CD+DE+AE+EF=CD +DA+EF=25CD+DA=15,C平行四边形ABCD=30例3:在平行四边形ABCD中,AD=11,∠A、∠D的角平分线分别交BC于E、F,EF=3,则AB=__________.解析:本题是典型的易错题,极易漏解,我们应该想到,AE,DF必然相交,且夹角为90°,但交点可以在平行四边形内,也可在形外.故而要分类讨论.同时,这里面隐藏着一个常见的基本模型,平行+角平分,构造等腰,△ABE和△FCD是等腰三角形,且腰相同,AB=BE=DC=CF.如图,当AE,DF交于形内,BE+CF-EF=11,2BE-3=11,BE=7,AB=7如图,当AE,DF交于形外,BE+CF+EF=11,2BE+3=11,BE=4,AB=4综上,AB=7或4变式:1.平行四边形ABCD的周长为32,∠ABC的角平分线交边AD所在直线于点E,且AE:ED=3:2,则AB=______.解析:看到“所在直线” 这样的字眼,第一时间应该想到两解了吧.如图,AD<AB,则E在AD延长线上,AE=AB,∵AE:ED=3:2,∴AE:AD=3:1,AB:AD=3:1,设AD=x,AB=3x,3x+x=16,x=4,AB=3x=12.如图,AD>AB,则E在AD上,AE=AB,∵AE:ED=3:2,∴AE:AD=3:5,AB:AD=3:5,设AB=3x,AD=5x,3x+5x=16,x=2,AB=3x=6.综上,AB=6或12.二、平行四边形面积类问题例1:平行四边形ABCD中,DE⊥AB,DF⊥BC,若DE=2,DF=3,四边形ABCD 的周长是30,求其面积.解析:本题其实早在小学阶段,可能就有同学做过,知道平行四边形周长,则知道了邻边之和为其一半,有了2条高,自然想到面积,用等积法解决.如图,设AB=x,BC=15-x,2x=3(15-x),x=9,S=2x=18例2:如图,M、N是平行四边形ABCD的边AB、AD的中点,连接MN、MC,若阴影四边形的面积为10,则图中空白部分的面积是____________.解析:面对一般四边形的面积问题,我们通常转化为熟悉的平行四边形求面积,或者将四边形分割成2个小三角形,分别求面积,再求和.本题显然不能转化,尝试分割,若连接NC,则△NMC的面积不好求,所以连接MD.例3:解析:初次拿到这样的题目,很难下手,没有具体的底边和高长,我们求不出各图形的面积,但既然平行四边形对边平行,我们不妨过点P再作一次平行.如图,过点P作EF∥AD,则EF∥BC,四边形AEFD,四边形EBCF均为平行四边形.本题重要结论:S1+S3=S2+S4三、矩形正方形线段和的计算、菱形中面积,最值类问题例1:在矩形ABCD中,AB=3, BC=4,对角线AC,BD交于点O,点P是BC边上的一点,PE⊥BO,PF⊥CO,求PE+PF=_________.解析:拿到题目,有些同学立刻反应,说是“将军饮马”问题,但这里是求值,是定值,而将军饮马属于求最值问题.PE,PF分别是高,则想到面积,这才应该是第一反应.如图,连接OP变式:1.如图,正方形ABCD的对角线AC,BD交于点O,对角线长为10,P是BC边上的一点,PE⊥BO,PF⊥CO,求PE+PF=_________.解析:本题同样也能用上题思路,PE+PF=BO=5,也能证明四边形EPFO是矩形,PF=EO,∠EBP=∠EPB=45°,则BE=PE,PE+PF=BE+EO=BO=5例2:已知菱形ABCD的周长为20,面积为20,求对角线AC,BD的长.解析:由周长为20,我们可以知道,边长是5,由面积是20,我们可以知道对角线乘积的一半是20,因此,不妨设AC=2x,BD=2y,x>y,例3:如图,菱形ABCD的两条对角线分别长6和8,点P是AC上的一个动点,点M、N分别是边AB、BC的中点,则PM+PN的最小值是________.解析:这才是标准的将军饮马问题,作点M关于AC的对称点M’,则PM+PN=P M’+PN≥M’N(当M’,P,N三点共线时可取等号),则最小值即为M’N=5变式:1.如图,菱形ABCD的两条对角线分别长6和8,点P、N是AC,BC上的一个动点,点M是边AB的中点,则PM+PN的最小值是________.解析:变成了一定(点M)一动问题(点N),方法与之前一致,确定AD边上的点M’,则当M’N⊥BC时,M’N最短,过点M’作M’Q⊥BC,利用面积法,S菱形ABCD =24,BC=5,M’Q=4.8,PM+PN的最小值是4.8。
四边形专题训练:平行四边形和特殊平行四边形(矩形、菱形和正方形)

特殊的平行四边形【知识精讲】1. 主要概念(1)平行四边形——有两组对边分别平行的四边形叫平行四边形. (2)矩形——有一个角是直角的平行四边形叫做矩形. (3)菱形——有一组邻边相等的平行四边形叫做菱形. (4)正方形——有一个角是直角的菱形叫做正方形 (5)梯形——只有一组对边平行的四边形叫做梯形. (6)等腰梯形——两腰相等的梯形叫做等腰梯形.(7)直角梯形——有一个角是直角的梯形叫做直角梯形.(8)三角形中位线——连接三角形两边中点的线段叫做三角形的中位线. 2. 几种特殊四边形的关系四边形平行四边形梯形矩形菱形正方形直角梯形等腰梯形3.附:矩形菱形正方形的性质和判定总表4. (1)有些四边形问题可以转化为三角形问题来解决.(2)有些梯形的问题可以转化为三角形、平行四边形问题来解决. (3)有时也可以运用平移、轴对称来构造图形,解决四边形问题.矩形是中心对称图形,对称中心是对角线的交点,矩形也是轴对称图形,对称轴是通过对边中点的直线,有两条对称轴; 矩形的性质:(具有平行四边形的一切特征) 矩形性质1: 矩形的四个角都是直角. 矩形性质2: 矩形的对角线相等且互相平分.如图,在矩形ABCD 中,AC 、BD 相交于点O ,由性质2有AO=BO=CO=DO=21AC=21BD .因此可以得到直角三角形的一个性质:直角三角形斜边上的中线等于斜边的一半.矩形的判定方法.矩形判定方法1:对角钱相等的平行四边形是矩形.矩形判定方法2:有三个角是直角的四边形是矩形.矩形判定方法3:有一个角是直角的平行四边形是矩形.矩形判定方法4:对角线相等且互相平分的四边形是矩形.例1已知:如图,矩形ABCD,AB长8 cm ,对角线比AD边长4 cm.求AD的长及点A到BD的距离AE的长.例2已知:如图,矩形ABCD中,E是BC上一点,DF⊥AE于F,若AE=BC.求证:CE=EF.例3.如图,已知矩形ABCD中,E是AD上的一点,F是AB上的一点,EF⊥EC,且EF=EC,DE=4cm,矩形ABCD的周长为32cm,求AE的长.例4、ABCD 中,E 为BC 的中点,连接AE 并延长交DC 的延长线于点F .(1)求证:AB=CF ;(2)当BC 与AF 满足什么数量关系时,四边形ABFC 是矩形,并说明理由.【强调】 菱形(1)是平行四边形;(2)一组邻边相等. 菱形的性质性质1 菱形的四条边都相等;性质2 菱形的对角线互相平分,并且每条对角线平分一组对角; 菱形的判定菱形判定方法1:对角线互相垂直的平行四边形是菱形.注意此方法包括两个条件:(1)是一个平行四边形;(2)两条对角线互相垂直. 菱形判定方法2:四边都相等的四边形是菱形.例1 已知:如图,四边形ABCD 是菱形,F 是AB 上一点,DF 交AC 于E . 求证:∠AFD=∠CBE .FEDCBA例2已知:如图ABCD 的对角线AC 的垂直平分线与边AD 、BC 分别交于E 、F .求证:四边形AFCE 是菱形.例3、如图,在 平行四边形 ABCD 中,O 是对角线AC 的中点, 过点O 作AC 的垂线与边AD 、BC 分别交于E 、F ,求证:四边形AFCE 是菱形.例4、已知如图,菱形ABCD 中,E 是BC 上一点,AE 、BD 交于M ,若AB=AE,∠EAD=2∠BAE 。
题型专项研究:平行四边形、矩形、菱形、正方形的判定与性质

题型6平行四边形、矩形、菱形、正方形的判定与性质,备考攻略)1.简单的应用平行四边形、矩形、菱形、正方形的性质或判定解答证明题.2.四边形动态问题——旋转变换类、平移变换类、折叠变换类,运动问题类,利用折叠(翻折)、轴对称解答最值问题.3.平行四边形的存在性问题.4.四边形与二次函数的综合题.1.折叠、轴对称及特殊平行四边形的性质应用出错.2.平行四边形的存在性问题中解有遗漏.3.很难解答四边形与二次函数的综合题,无从下手.1.四边形是几何知识中非常重要的一块内容,因其“变化多端”更是成为中考数学考试的一个热门考点.近几年随着新课改的不断深入,中考题更加考查学生思维能力,如出现一些图形折叠、翻转等问题.这类问题的实践性强,要利用图形变化前后线段、角的对应相等关系,构造一些特殊三角形等知识来求解.2.中考还常把四边形与平面直角坐标系结合起来考查,这类题目不仅仅把“数”与“形”联系起来思考,更提高同学们综合运用知识的能力.数形结合题目可以考查学生对“新事物”“新知识”的接受和理解能力,也考查学生运用所学知识来解决“新事物”“新知识”的能力.3.四边形作为特殊的四边形,一直是中考试题中的主角.尤其是在综合了函数知识后动态研究它的存在性问题,对学生分析问题和解决问题的要求较高.此类题目主要考查平行四边形的判定与性质、函数解析式的确定与性质,考查识图作图、运算求解、数学表达等能力,数形结合、分类讨论、函数与方程等数学思想.1.简单的应用平行四边形、矩形、菱形、正方形的性质或判定解答证明题:平行四边形具有对边平行且相等、对角相等、对角线互相平分等性质,它们在计算、证明中都有广泛的应用:(1)求角的度数;(2)求线段的长;(3)求周长;(4)求第三边的取值范围.2.四边形动态问题——旋转变换类、平移变换类、折叠变换类,运动问题类,利用折叠(翻折)、轴对称解答最值问题:有关矩形纸片折叠的问题,通过动手操作去发现解决问题的方法.其规律为利用折叠前后线段、角的对应相等关系,构造直角三角形,利用勾股定理来求解.折叠问题数学思想:(1)思考问题的逆向(反方向),(2)转化与化归思想;(3)归纳与分类的思想;(4)从变寻不变性的思想.3.综合了函数知识后动态研究平行四边形的存在性问题:此类题目主要考查平行四边形的判定与性质、函数解析式的确定与性质,考查识图作图、运算求解、数学表达等能力,数形结合、分类讨论、函数与方程等数学思想.学生在处理问题的时候,往往不能正确分类,导致漏解.此外,在解题时一般需要添设辅助线,利用平行四边形的性质,转化为全等进行计算,学生顺利完成的难度就更大.如何才能让他们有目的的进行分类、简单明了的给出解答,从而减轻学习负担呢?借助平行四边形的对角线性质,来探究平行四边形的存在性问题就是一个很好的途径.4.四边形与二次函数的综合题是压轴题:综合考查了二次函数,一次函数,尺规作图,勾股定理,平面直角坐标系,一元二次方程,轴对称——翻折,最值问题.读懂题目、准确作图、熟悉二次函数及其图象是解题的关键.解决压轴题关键是找准切入点,如添辅助线,构造定理所需的图形或基本图形;紧扣不变量,并善于使用前题所采用的方法或结论;深度挖掘题干,反复认真的审题,在题目中寻找多解的信息,等等.压轴题牵涉到的知识点较多,知识转化的难度较高,除了要熟知各类知识外,平时要多练,提高知识运用和转化的能力.,典题精讲)◆简单的应用平行四边形、矩形、菱形、正方形的性质或判定解答证明题【例1】(成都中考)如图,在矩形ABCD中,AB=3,对角线AC,BD相交于点O,AE垂直平分OB于点E,则AD的长为________.【解析】由矩形的性质和线段垂直平分线的性质证出OA=AB=OB=3,得出BD=2OB =6,由勾股定理求出AD即可.【答案】3 31.(巴中中考)如图,延长矩形ABCD的边BC至点E,使CE=BD,连接AE,如果∠ADB=30°,则∠E=__15__°.2.(2017甘肃中考)如图,矩形ABCD中,AB=6,BC=4,过对角线BD中点O的直线分别交AB,CD边于点E,F.(1)求证:四边形BEDF 是平行四边形; (2)当四边形BEDF 是菱形时,求EF 的长.解:(1)∵四边形ABCD 是矩形,O 是BD 的中点, ∴∠A =90°,AD =BC =4,AB ∥DC ,OB =OD, ∴∠OBE =∠ODF.在△BOE 和△DOF 中,⎩⎨⎧∠OBE =∠ODF ,OB =OD ,∠BOE =∠DOF ,∴△BOE ≌△DOF(ASA ), ∴EO =FO,∴四边形BEDF 是平行四边形;(2)当四边形BEDF 是菱形时,BD ⊥EF, 设BE =x ,则DE =x ,AE =6-x. 在Rt △ADE 中,DE 2=AD 2+AE 2, ∴x 2=42+(6-x)2, 解得:x =133.∵BD =AD 2+AB 2=213, ∴OB =12BD =13.∵BD ⊥EF,∴EO =BE 2-OB 2=2133,∴EF =2EO =4133.◆四边形动态问题——旋转变换类、平移变换类、折叠变换类,运动问题类,利用折叠(翻折)、轴对称解答最值问题【例2】(宿迁中考)如图,把正方形纸片ABCD 沿对边中点所在的直线对折后展开,折痕为MN ,再过点B 折叠纸片,使点A 落在MN 上的点F 处,折痕为BE.若AB 的长为2,则FM 的长为( )A .2B . 3C . 2D .1【解析】根据翻折不变性,AB =FB =2,BM =1,在Rt △BFM 中,可利用勾股定理求出FM 的值.【答案】B3.(咸宁中考)已知菱形OABC 在平面直角坐标系的位置如图所示,顶点A(5,0),OB =45,点P 是对角线OB 上的一个动点,D(0,1),当CP +DP 最短时,点P 的坐标为( D )A .(0,0)B .⎝⎛⎭⎫1,12C .⎝⎛⎭⎫65,35D .⎝⎛⎭⎫107,57(第3题图)(第4题图)4.(苏州中考)矩形OABC 在平面直角坐标系中的位置如图所示,点B 的坐标为(3,4),D 是OA 的中点,点E 在AB 上,当△CDE 的周长最小时,点E 的坐标为( B )A .(3,1)B .⎝⎛⎭⎫3,43C .⎝⎛⎭⎫3,53 D .(3,2)5.(黄冈中考)如图,在矩形ABCD 中,点E ,F 分别在边CD ,BC 上,且DC =3DE =3a ,将矩形沿直线EF 折叠,使点C 恰好落在AD 边上的点P 处,则FP =.6.(2017甘肃中考)如图,E ,F 分别是▱ABCD 的边AD ,BC 上的点,EF =6,∠DEF =60°,将四边形EFCD 沿EF 翻折,得到EFC′D′,ED ′交BC 于点G ,则△GEF 的周长为( C )A .6B .12C .18D .247.(2017广东中考)如图①,将一张矩形纸片ABCD 沿着对角线BD 向上折叠,顶点C 落到点E 处,BE 交AD 于点F.(1)求证:△BDF 是等腰三角形;(2)如图②,过点D 作DG ∥BE ,交BC 于点G ,连接FG 交BD 于点O. ①判断四边形BFDG 的形状,并说明理由; ②若AB =6,AD =8,求FG 的长.解:(1)如图①,根据折叠,∠DBC =∠DBE, 又AD ∥BC,∴∠DBC =∠ADB, ∴∠DBE =∠ADB, ∴DF =BF,∴△BDF 是等腰三角形;(2)①∵四边形ABCD 是矩形, ∴AD ∥BC, ∴FD ∥BG.∴四边形BFDG 是平行四边形. ∵DF =BF,∴四边形BFDG 是菱形; ②∵AB =6,AD =8, ∴BD =10, ∴OB =12BD =5.假设DF =BF =x ,∴AF =AD -DF =8-x.∴在Rt △ABF 中,AB 2+AF 2=BF 2,即62+(8-x)2=x 2,解得x =254,即BF =254, ∴FO =BF 2-OB 2=⎝⎛⎭⎫2542-52=154, ∴FG =2FO =152. ◆解决平面直角坐标系中平行四边形存在性问题【例3】(2017大理中考模拟)如图,A ,B ,C 是平面上不在同一直线上的三个点. (1) 画出以 A ,B ,C 为顶点的平行四边形;(2)若 A ,B ,C 三点的坐标分别为(-1,5),(-5,1),(2,2),请写出这个平行四边形第四个顶点 D 的坐标.【解析】利用坐标系的知识点解题.【答案】(1)如图所示;(2)第四个顶点D 的坐标为(-2,-2)或(6,6)或(-8,4).1.(兰州中考)如图所示,菱形ABCD 的周长为20 cm ,DE ⊥AB ,垂足为E ,sin A =35,则下列结论正确的个数有( C )①DE =3 cm ;②BE =1 cm ;③菱形的面积为15 cm 2;④BD =210 cm . A .1个 B .2个 C .3个 D .4个2.(济南中考)如图,矩形ABCD 中,AB =3,BC =5,过对角线交点O 作OE ⊥AC 交AD 于E ,则AE 的长是( D )A .1.6B .2.5C .3D .3.4(第2题图)3.(珠海中考)如图,P是菱形ABCD对角线BD上一点,PE⊥AB于点E,PE=4 cm,则点P到BC的距离是__4__cm.4.(新疆中考)如图,▱ABCD中,AB=2,AD=1,∠ADC=60°,将▱ABCD沿过点A 的直线l折叠,使点D落到AB边上的点D′处,折痕交CD边于点E.(1)求证:四边形BCED′是菱形;(2)若点P是直线l上的一个动点,请计算PD′+PB的最小值.解:(1)∵将▱ABCD沿过点A的直线l折叠,使点D落到AB边上的点D′处,∴∠DAE=∠D′AE,∠DEA=∠D′EA,∠D=∠AD′E.∵DE∥AD′,∴∠DEA=∠EAD′,∴∠DAE=∠EAD′=∠DEA=∠D′EA,∴∠DAD′=∠DED′,∴四边形DAD′E是平行四边形,∴DE=AD′.∵四边形ABCD是平行四边形,∴AB=DC,AB∥DC,∴CE=D′B,CE∥D′B,∴四边形BCED′是平行四边形;(2)∵AD=AD′,∴▱DAD′E是菱形.∴D与D′关于AE对称.连接BD交AE于P,则BD的长即为PD′+PB的最小值,过D作DG⊥BA于G.∵CD ∥AB ,∴∠DAG =∠CDA =60°. ∵AD =1,∴AG =12,DG =32,BG =52,∴BD =DG 2+BG 2=7, ∴PD ′+PB 的最小值为7.5.(资阳中考)如图,在平行四边形ABCD 中,点A ,B ,C 的坐标分别是(1,0),(3,1),(3,3),双曲线y =kx(k ≠0,x >0)过点D.(1)求双曲线的解析式;(2)作直线AC 交y 轴于点E ,连接DE ,求△CDE 的面积.解:(1)∵▱ABCD 中,点A ,B ,C 的坐标分别是(1,0),(3,1),(3,3), ∴点D 的坐标为(1,2). ∵点D 在双曲线y =kx 上,∴k =1×2=2,∴双曲线的解析式为y =2x ;(2)∵直线AC 交y 轴于点E , ∴点E 的横坐标为0. ∵AD =2,∵S △ADC =12·(3-1)·AD =2,∴S △CDE =S △EDA +S △ADC =1+2=3.。
八年级数学四边形证明题专项练习

八年级数学四边形证明题专项练习课题教学目标重点难点【四边形证明题专题熟悉四边形的性质和判定,了解线段和角度证明的方法。
掌握各种特殊四边形的性质和判定。
熟悉线段和角度数量关系的证明方法运用平行、三角形全等、特殊三角形性质、四边形性质进行证明。
课堂练习】:_ A_ D1.已知:在矩形ABCD中,AE?BD于E,∠DAE=3∠BAE ,求:∠EAC的度数。
_ B_ C_ E_ F2.已知:直角梯形ABCD中,BC=CD=a且∠BCD=60?,E、F分别为梯形的腰AB、DC的中点,求:EF的长。
3、已知:在等腰梯形ABCD中,AB∥DC,AD=BC,E、F分别为AD、BC的中点,BD 平分∠ABC交EF于G,EG=18,GF=10求:等腰梯形ABCD的周长。
_ A_ B_ E_ D_ C_ G_ F4、已知:梯形ABCD中,AB∥CD,以AD,AC为邻边作平行四边形ACED,DC延长线交BE于F,求证:F 是BE的中点。
_ D_ E_ C_ F_ A_ B5、已知:梯形ABCD中,AB∥CD,AC?CB,AC平分∠A,又∠B=60?,梯形的周长是20cm,求:AB的长。
6、从平行四边形四边形ABCD的各顶点作对角线的垂线AE、BF、CG、DH,垂足分别是E、F、G、H,求证:EF∥GH。
7、已知:梯形ABCD的对角线的交点为E若在平行边的一边BC的延长线上取一点F,使S?ABC=S?EBF,求证:DF∥AC。
8、在正方形ABCD中,直线EF平行于对角线AC,与边AB、BC的交点为E、F,在DA的延长线上取一点G,使AG=AD,若EG 与DF的交点为H,求证:AH与正方形的边长相等。
2_ G_ A_ D_ A_ E_ D_ A_ H_ D_ E_ O_ G_ B_ F_ C_ A_ B_ D_ C_ B_ C_ F_ E_ H_ B_ F_ C9、若以直角三角形ABC的边AB为边,在三角形ABC的外部作正方形ABDE,AF是BC边的高,延长FA使AG=BC,求证:BG=CD。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《四边形》专题训练(一)
————证明题,求解题专题训练
1.
中,∠C=60°,DE ⊥AB 于E ,DF ⊥BC 于F ; (
1)求∠EDF 的度数;
(2)若AE=4,CF=7,求的周长。
2.如图,已知的周长是32㎝,AB BC 5
3
,AE ⊥BC ,AF ⊥CD ,E 、F 是垂足,且∠EAF=2∠C ; (1)求∠C 的度数; (2)求BE 、DF 的长。
3.如图,在矩形ABCD 中,DE ⊥AC 于E ,AE :EC=3:1,若DC=6㎝,求AC 的长。
4.如图,在矩形ABCD 中,AB=2BC ,E 在AB 延长线上,∠BCE=60°,求∠ADE.
A
B
D
C
E
F
A B
C
D
E
F
A
B C
D
E
A
B
C
D
E
5.如图,在菱形ABCD 中,E 是AB 的中点,且DE ⊥AB ,AB=a . (1)求∠ABC 的度数; (2)求对角线AC 的长;
(3)求菱形ABCD 的面积。
6.如图,将
中的对角线BD 向两个方向延长至点E 和点F ,使BE=DF ,求证:四边形AECF 是平行四边形。
7.中,点E 在AD 上,连接BE ,DF ∥BE 交BC 于点F ,AF 与BE 交于点M ,CE 与DF 交于点N ,求证:四边形MFNE 是平行四边形。
A
C
D
E
A
B
C
D
E
F
A B
C
D
E
F
M
N
8.如图,在△ABC 中,D ,E ,F 分别为边AB ,BC ,CA 的中点.求证:四边形DECF 是平行四边形.
9.如图,在
中,E ,F 为BC 上两点,且BE=CF ,AF=DE. (1)求证:△ABF ≌△DCE ; (2)求证:四边形ABCD 是矩形。
10已知:如图,AD 是△ABC 的角平分线,DE ∥AC 交AB 于E ,DF ∥AB 交AC 于F ,求证:四边形AEDF 是菱形。
A
B
C
D F
A
B
E F C
D
A
B
C
D
E
F
11.如图,已知点E 、F 在正方形ABCD 的对角线AC 上,AE=CF. 求证:四边形BFDE 是菱形.
12.如图,在△ABC 中,∠ACB=90°,CD 平分∠ACB ,DE ∥BC ,DF ∥AC ,分别交AC 、BC 于E 、F. 求证:四边形DECF 是正方形.
13.如图,在正方形ABCD 中,F 是AC 上一点,FC=BC ,EF ⊥AC 交AB 于E ,求证:AF=EB.
A
B
C
D
E
F
A B
C
D
E
F
A
B
C
D
E F。