高等几何课后答案(第三版)之欧阳语创编
同济大学《高等数学》上册答案之欧阳学创编
练习11时间:2021.03.03 创作:欧阳学练习12练习13练习14练习15练习16练习17练习18练习19练习110总习题一HYPERLINK "javascript:if(confirm('/kj/lrn/xtjdgdsx/01/11/02/LX(1).37.gif%20%20\\n\\n这个文件不能通过%20Teleport%20Pro%20取回,%20因为%20它难以获得,%20或它的取回被终止,%20或方案过早被停止.%20%20\\n\\n你想从服务器打开它吗?'))window.location='/kj/lrn/xtjdgdsx/01/11/02/LX%281%29.37.gif'" \t "_blank"HYPERLINK "javascript:if(confirm('/kj/lrn/xtjdgdsx/01/11/02/LX(1).39.gif%20%20\\n\\n这个文件不能通过%20Teleport%20Pro%20取回,%20因为%20它难以获得,%20或它的取回被终止,%20或方案过早被停止.%20%20\\n\\n你想从服务器打开它吗?'))window.location='/kj/lrn/xtjdgdsx/01/11/02/LX%281%29.39.gif'"HYPERLINK "javascript:if(confirm('/kj/lrn/xtjdgdsx/01/11/02/LX(1).43.gif%20%20\\n\\n这个文件不能通过%20Teleport%20Pro%20取回,%20因为%20它难以获得,%20或它的取回被终止,%20或方案过早被停止.%20%20\\n\\n你想从服务器打开它吗?'))window.location='/kj/lrn/xtjdgdsx/01/11/02/LX%281%29.43.gif'" \t "_blank"HYPERLINK "javascript:if(confirm('/kj/lrn/xtjdgdsx/01/11/02/LX(1).47.gif%20%20\\n\\n这个文件不能通过%20Teleport%20Pro%20取回,%20因为%20它难以获得,%20或它的取回被终止,%20或方案过早被停止.%20%20\\n\\n你想从服务器打开它吗?'))window.location='/kj/lrn/xtjdgdsx/01/11/02/LX%281%29.47.gif'" \t "_blank"HYPERLINK "javascript:if(confirm('/kj/lrn/xtjdgdsx/01/11/02/LX(1).49.gif%20%20\\n\\n这个文件不能通过%20Teleport%20Pro%20取回,%20因为%20它难以获得,%20或它的取回被终止,%20或方案过早被停止.%20%20\\n\\n你想从服务器打开它吗?'))window.location='/kj/lrn/xtjdgdsx/01/11/02/LX%281%29.49.gif'" \t "_blank"练习21HYPERLINK "javascript:if(confirm('/kj/lrn/xtjdgdsx/02/01/02/LX(1).44.gif%20%20\\n\\n这个文件不能通过%20Teleport%20Pro%20取回,%20因为%20它难以获得,%20或它的取回被终止,%20或方案过早被停止.%20%20\\n\\n你想从服务器打开它吗?'))window.location='/kj/lrn/xtjdgdsx/02/01/02/LX%281%29.44.gif'" \t "_blank"HYPERLINK "javascript:if(confirm('/kj/lrn/xtjdgdsx/02/01/02/LX(1).54.gif%20%20\\n\\n这个文件不能通过%20Teleport%20Pro%20取回,%20因为%20它难以获得,%20或它的取回被终止,%20或方案过早被停止.%20%20\\n\\n你想从服务器打开它吗?'))window.location='/kj/lrn/xtjdgdsx/02/01/02/LX%281%29.54.gif'" \t "_blank"练习22。
高等几何教案与课后答案
高等几何教案与课后答案教案章节:第一章绪论教学目标:1. 了解高等几何的基本概念和发展历程。
2. 掌握空间解析几何的基本知识。
3. 理解高等几何在数学和物理学中的应用。
教学内容:1. 高等几何的基本概念点的定义向量的定义线和面的定义2. 发展历程古典几何的发展微积分与解析几何的兴起高等几何的发展和应用3. 空间解析几何坐标系和坐标变换向量空间和线性变换行列式和矩阵运算教学重点与难点:1. 重点:高等几何的基本概念,发展历程,空间解析几何。
2. 难点:空间解析几何中的坐标变换和线性变换。
教学方法:1. 采用讲授法,系统地介绍高等几何的基本概念和发展历程。
2. 通过示例和练习,让学生掌握空间解析几何的基本知识。
3. 利用图形和实物,帮助学生直观地理解高等几何的概念。
教学准备:1. 教案和教材。
2. 多媒体教学设备。
教学过程:1. 引入新课:通过简单的几何图形,引导学生思考高等几何的基本概念。
2. 讲解:按照教材的顺序,系统地介绍高等几何的基本概念和发展历程。
3. 示例:通过具体的例子,讲解空间解析几何的基本知识。
4. 练习:布置练习题,让学生巩固所学知识。
5. 总结:对本节课的内容进行总结,强调重点和难点。
课后作业:1. 复习本节课的内容,整理笔记。
2. 完成教材中的练习题。
教学反思:在课后对教学效果进行反思,根据学生的反馈调整教学方法和内容。
教案章节:第二章向量空间教学目标:1. 掌握向量空间的基本概念。
2. 理解线性变换和矩阵运算。
3. 学会运用向量空间解决实际问题。
教学内容:1. 向量空间向量的定义和运算向量空间的性质向量空间的基底和维度2. 线性变换线性变换的定义和性质线性变换的矩阵表示线性变换的图像3. 矩阵运算矩阵的定义和运算矩阵的逆矩阵矩阵的秩教学重点与难点:1. 重点:向量空间的基本概念,线性变换和矩阵运算。
2. 难点:线性变换的矩阵表示和矩阵的秩。
教学方法:1. 采用讲授法,系统地介绍向量空间的基本概念。
高等数学复旦大学出版第三版下册课后答案习题全之欧阳引擎创编
习题七欧阳引擎(2021.01.01)1. 在空间直角坐标系中,定出下列各点的位置:A(1,2,3); B(-2,3,4); C(2,-3,-4);D(3,4,0); E(0,4,3); F(3,0,0).解:点A在第Ⅰ卦限;点B在第Ⅱ卦限;点C在第Ⅷ卦限;点D在xOy面上;点E在yOz面上;点F在x轴上.2. xOy坐标面上的点的坐标有什么特点?yOz面上的呢?zOx面上的呢?答: 在xOy面上的点,z=0;在yOz面上的点,x=0;在zOx面上的点,y=0.3. x轴上的点的坐标有什么特点?y轴上的点呢?z轴上的点呢?答:x轴上的点,y=z=0;y轴上的点,x=z=0;z轴上的点,x=y=0.4. 求下列各对点之间的距离:(1)(0,0,0),(2,3,4);(2)(0,0,0),(2,-3,-4);(3)(-2,3,-4),(1,0,3);(4)(4,-2,3),(-2,1,3).解:(1)s=(2)s==(3)s==(4)s==.5. 求点(4,-3,5)到坐标原点和各坐标轴间的距离.解:点(4,-3,5)到x轴,y轴,z轴的垂足分别为(4,0,0),(0,-3,0),(0,0,5).故s==s==.5z6. 在z轴上,求与两点A(-4,1,7)和B(3,5,-2)等距离的点.解:设此点为M(0,0,z),则解得14z=9).即所求点为M(0,0,1497. 试证:以三点A(4,1,9),B(10,-1,6),C(2,4,3)为顶点的三角形是等腰直角三角形.证明:因为|AB|=|AC|=7.且有|AC|2+|AB|2=49+49=98=|BC|2.故△ABC为等腰直角三角形.8. 验证:()()a b c a b c.++=++证明:利用三角形法则得证.见图7-1图7-19. 设2, 3.=-+=-+-u a b c v a b c 试用a, b, c 表示23.-u v解:10. 把△ABC 的BC 边分成五等份,设分点依次为D1,D2,D3,D4,再把各分点与A 连接,试以AB =c ,BC =a 表示向量1D A ,2D A ,3D A 和4D A . 解:1115D A BA BD =-=--c a11. 设向量OM 的模是4,它与投影轴的夹角是60°,求这向量在该轴上的投影.解:设M 的投影为M ',则12. 一向量的终点为点B (2,-1,7),它在三坐标轴上的投影依次是4,-4和7,求这向量的起点A 的坐标.解:设此向量的起点A 的坐标A(x, y, z),则解得x=-2, y=3, z=0故A 的坐标为A(-2, 3, 0).13. 一向量的起点是P1(4,0,5),终点是P2(7,1,3),试求:(1) 12PP 在各坐标轴上的投影; (2) 12PP 的模;(3) 12PP 的方向余弦; (4) 12PP 方向的单位向量. 解:(1)12Pr j 3,x x a PP ==(2) 12(7PP == (3) 12cos 14xa PP α==12cos 14za PP γ== (4) 12012{14PP PP ===-e j . 14. 三个力F1=(1,2,3), F2=(-2,3,-4), F3=(3,-4,5)同时作用于一点. 求合力R 的大小和方向余弦.解:R=(1-2+3,2+3-4,3-4+5)=(2,1,4)15. 求出向量a= i+j+k, b=2i-3j+5k 和c=-2i-j+2k 的模,并分别用单位向量,,a b c e e e 来表达向量a, b, c. 解:||=a 16. 设m=3i+5j+8k, n=2i-4j-7k, p=5i+j-4k,求向量a=4m+3n-p 在x 轴上的投影及在y 轴上的分向量.解:a=4(3i+5j+8k)+3(2i-4j-7k)-(5i+j-4k)=13i+7j+15k在x 轴上的投影ax=13,在y 轴上分向量为7j.17.解:设{,,}x y z a a a a =则有 求得12x a =.设a 在xoy 面上的投影向量为b 则有{,,0}x y b a a =则222cos 42a ba b π⋅=⇒=⋅ 则214y a = 求得12y a =± 又1,a =则2221x y z a a a ++=从而求得11{,,}222a =±或11{,,}222-± 18. 已知两点M1(2,5,-3),M2(3,-2,5),点M 在线段M1M2上,且123M M MM =,求向径OM 的坐标.解:设向径OM ={x, y, z}因为,123M M MM = 所以,11423(3)153(2) 433(5)3x x x y y y z z z ⎧=⎪-=-⎧⎪⎪⎪-=--⇒=-⎨⎨⎪⎪+=-⎩=⎪⎪⎩故OM ={111,,344-}. 19. 已知点P 到点A (0,0,12)的距离是7,OP 的方向余弦是236,,777,求点P 的坐标.解:设P 的坐标为(x, y, z ),2222||(12)49PA x y z =++-=得2229524x y z z ++=-+又122190cos 2, 749x x α==⇒== 故点P 的坐标为P (2,3,6)或P (190285570,,494949). 20. 已知a, b 的夹角2π3ϕ=,且3,4==b a ,计算: (1) a·b; (2) (3a-2b)·(a+ 2b).解:(1)a·b=2π1cos ||||cos 3434632ϕ⋅⋅=⨯⨯=-⨯⨯=-a b (2) (32)(2)3624-⋅+=⋅+⋅-⋅-⋅a b a b a a a b b a b b21. 已知a=(4,-2, 4), b=(6,-3, 2),计算:(1)a·b; (2) (2a-3b)·(a+ b); (3)2||-a b 解:(1)46(2)(3)4238⋅=⨯+-⨯-+⨯=a b(2) (23)()2233-⋅+=⋅+⋅-⋅-⋅a b a b a a a b a b b b(3) 222||()()2||2||-=-⋅-=⋅-⋅+⋅=-⋅+a b a b a b a a a b b b a a b b22. 已知四点A (1,-2,3),B (4,-4,-3),C (2,4,3),D (8,6,6),求向量AB 在向量CD 上的投影.解:AB ={3,-2,-6},CD ={6,2,3}23. 若向量a+3b 垂直于向量7a-5b,向量a-4b 垂直于向量7a-2b,求a 和b 的夹角.解: (a+3b)·(7a-5b)=227||1615||0+⋅-=a a b b ①(a-4b)·(7a-2b) = 227||308||0-⋅+=a a b b ②由①及②可得:222221()1||||2||||4⋅⋅⋅==⇒=a b a b a b a b a b 又21||02⋅=>a b b ,所以1cos ||||2θ⋅==a b a b , 故1πarccos 23θ==. 24. 设a=(-2,7,6),b=(4,-3,-8),证明:以a 与b 为邻边的平行四边形的两条对角线互相垂直.证明:以a,b 为邻边的平行四边形的两条对角线分别为a+b,a -b,且a+b={2,4,-2}a-b={-6,10,14}又(a+b)·(a-b)= 2×(-6)+4×10+(-2)×14=0故(a+b)⊥(a-b).25. 已知a=3i+2j-k, b=i-j+2k,求:(1) a×b;(2) 2a×7b;(3) 7b×2a; (4) a×a.解:(1) 211332375122111--⨯=++=----a b i j k i j k(2) 2714()429870⨯=⨯=--a b a b i j k(3) 7214()14()429870⨯=⨯=-⨯=-++b a b a a b i j k(4) 0⨯=a a .26. 已知向量a 和b 互相垂直,且||3, ||4==a b .计算:(1) |(a +b)×(a -b)|;(2) |(3a +b)×(a -2b)|.(1)|()()|||2()|+⨯-=⨯-⨯+⨯-⨯=-⨯a b a b a a a b b a b b a b(2) |(3)(2)||362||7()|+⨯-=⨯-⨯+⨯-⨯=⨯a b a b a a a b b a b b b a27. 求垂直于向量3i-4j-k 和2i-j+k 的单位向量,并求上述两向量夹角的正弦. 解:411334555111221----⨯=++=--+--a b i j k i j k与⨯a b 平行的单位向量)||⨯==--+⨯a b e i j k a b||sin||||26θ⨯===⨯a b a b . 28. 一平行四边形以向量a=(2,1,-1)和b=(1,-2,1)为邻边,求其对角线夹角的正弦.解:两对角线向量为13=+=-l a b i j ,232=-=+-l a b i j k因为12|||2610|⨯=++=l l i j k所以1212||sin 1||||θ⨯===l l l l . 即为所求对角线间夹角的正弦.29. 已知三点A(2,-1,5), B(0,3,-2), C(-2,3,1),点M ,N ,P 分别是AB ,BC ,CA 的中点,证明:1()4MN MP AC BC ⨯=⨯.证明:中点M ,N ,P 的坐标分别为故 1()4MN MP AC BC ⨯=⨯.30.(1)解: x y z x y z i j k a b a a a b b b ⨯=则 C=-C +-+-y z z y x z x x z y x y y x y a b a b a b a b a b C a b a b C ⨯⋅()()()() 若,,C a b 共面,则有 a b ⨯后与 C 是垂直的. 从而C 0a b ⨯⋅=() 反之亦成立. (2)C xy z x y z x y z a a a a b b b b C C C ⨯⋅=() 由行列式性质可得:故 C a ?b a b b C C a ⨯⋅=⨯⋅=⨯⋅()()()31. 四面体的顶点在(1,1,1),(1,2,3),(1,1,2)和(3,-1,2)求四面体的表面积.解:设四顶点依次取为A, B, C, D.则由A ,B ,D 三点所确定三角形的面积为111|||542|222S AB AD =⨯=+-=ij k . 同理可求其他三个三角形的面积依次为12故四面体的表面积12S =+ 32.解:设四面体的底为BCD ∆,从A 点到底面BCD ∆的高为h ,则13BCD V S h =⋅⋅,而11948222BCD S BC BD i j k =⨯=--+= 又BCD ∆所在的平面方程为:48150x y z +-+=则43h == 故1942323V =⋅⋅= 33. 已知三点A(2,4,1), B(3,7,5), C(4,10,9),证:此三点共线. 证明:{1,3,4}AB =,{2,6,8}AC = 显然2AC AB =则22()0AB AC AB AB AB AB ⨯=⨯=⨯=故A ,B ,C 三点共线.34. 一动点与M0(1,1,1)连成的向量与向量n=(2,3,-4)垂直,求动点的轨迹方程.解:设动点为M(x, y, z)因0M M n ⊥,故00M M n ⋅=.即2(x-1)+3(y-1)-4(z-1)=0整理得:2x+3y-4z-1=0即为动点M 的轨迹方程.35.求通过下列两已知点的直线方程:(1) (1,-2,1), (3,1,-1); (2) (3,-1,0),(1,0,-3).解:(1)两点所确立的一个向量为s={3-1,1+2,-1-1}={2,3,-2}故直线的标准方程为:121232x y z -+-==- 或 311232x y z --+==- (2)直线方向向量可取为s={1-3,0+1,-3-0}={-2,1,-3}故直线的标准方程为:31213x y z -+==-- 或 13213x y z -+==-- 36. 求直线234035210x y z x y z +--=⎧⎨-++=⎩的标准式方程和参数方程.解:所给直线的方向向量为另取x0=0代入直线一般方程可解得y0=7,z0=17于是直线过点(0,7,17),因此直线的标准方程为:且直线的参数方程为:37. 求过点(4,1,-2)且与平面3x-2y+6z=11平行的平面方程. 解:所求平面与平面3x-2y+6z=11平行故n={3,-2,6},又过点(4,1,-2)故所求平面方程为:3(x-4)-2(y-1)+6(z+2)=0即3x-2y+6z+2=0.38. 求过点M0(1,7,-3),且与连接坐标原点到点M0的线段OM0垂直的平面方程.解:所求平面的法向量可取为0{1,7,3}OM ==-n故平面方程为:x-1+7(y-7)-3(z +3)=0即x+7y-3z-59=039. 设平面过点(1,2,-1),而在x 轴和z 轴上的截距都等于在y 轴上的截距的两倍,求此平面方程.解:设平面在y 轴上的截距为b 则平面方程可定为122x y z b b b++= 又(1,2,-1)在平面上,则有得b=2. 故所求平面方程为1424x y z ++=40. 求过(1,1,-1), (-2,-2,2)和(1,-1,2)三点的平面方程. 解:由平面的三点式方程知 代入三已知点,有1112121*********x y z --+----+=---+ 化简得x-3y-2z=0即为所求平面方程.41. 指出下列各平面的特殊位置,并画出其图形:(1) y =0; (2) 3x-1=0;(3) 2x-3y-6=0; (4) x –y=0;(5) 2x-3y+4z=0.解:(1) y=0表示xOz 坐标面(如图7-2)(2) 3x-1=0表示垂直于x 轴的平面.(如图7-3)图7-2 图7-3(3) 2x-3y-6=0表示平行于z 轴且在x 轴及y 轴上的截距分别为x=3和y =-2的平面.(如图7-4)(4) x–y=0表示过z轴的平面(如图7-5)(5) 2x-3y+4z=0表示过原点的平面(如图7-6).图7-4 图7-5 图7-6 42. 通过两点(1,1,1,)和(2,2,2)作垂直于平面x+y-z=0的平面.解:设平面方程为Ax+By+Cz+D=0则其法向量为n={A,B,C}已知平面法向量为n1={1,1,-1}过已知两点的向量l={1,1,1}由题知n·n1=0, n·l=0即0,.A B CC A B A B C+-=⎧⇒==-⎨++=⎩所求平面方程变为Ax-Ay+D=0又点(1,1,1)在平面上,所以有D=0故平面方程为x-y=0.43. 决定参数k的值,使平面x+ky-2z=9适合下列条件:(1)经过点(5,-4,6);(2)与平面2x-3y+z=0成π4的角.解:(1)因平面过点(5,-4,6)故有5-4k-2×6=9得k=-4.(2)两平面的法向量分别为n1={1,k,-2} n2={2,-3,1}且1212πcos cos||||42θ⋅====n nn n解得k=44. 确定下列方程中的l和m:(1) 平面2x+ly+3z-5=0和平面mx-6y-z+2=0平行;(2) 平面3x-5y+lz-3=0和平面x+3y+2z+5=0垂直.解:(1)n1={2,l,3}, n2={m,-6,-1}(2) n1={3, -5,l }, n2={1,3,2}45. 通过点(1,-1,1)作垂直于两平面x-y+z-1=0和2x+y+z+1=0的平面.解:设所求平面方程为Ax+By+Cz+D=0其法向量n={A,B,C}n1={1,-1,1}, n2={2,1,1}又(1,-1,1)在所求平面上,故A-B+C+D=0,得D=0故所求平面方程为即2x-y-3z=046. 求平行于平面3x-y+7z=5,且垂直于向量i-j+2k的单位向量.解:n1={3,-1,7}, n2={1,-1,2}.故1217733152122111--=⨯=++=+---n n n i j k i j k则2).n =+-e i j k 47. 求下列直线与平面的交点: (1)11126x y z -+==-, 2x+3y+z-1=0; (2) 213232x y z +--==, x+2y-2z+6=0. 解:(1)直线参数方程为1126x ty t z t =+⎧⎪=--⎨⎪=⎩代入平面方程得t=1故交点为(2,-3,6).(2) 直线参数方程为221332x ty t z t =-+⎧⎪=+⎨⎪=+⎩代入平面方程解得t=0.故交点为(-2,1,3).48. 求下列直线的夹角:(1)533903210x y z x y z -+-=⎧⎨-+-=⎩ 和 2223038180x y z x y z +-+=⎧⎨++-=⎩; (2)2314123x y z ---==- 和 38121y z x --⎧=⎪--⎨⎪=⎩ 解:(1)两直线的方向向量分别为:s1={5,-3,3}×{3,-2,1}=533321i j k--={3,4,-1}s2={2,2,-1}×{3,8,1}=221381i j k-={10,-5,10}由s1·s2=3×10+4×(-5)+(-1) ×10=0知s1⊥s2 从而两直线垂直,夹角为π2.(2) 直线2314123x y z ---==-的方向向量为s1={4,-12,3},直线38121y z x --⎧=⎪--⎨⎪=⎩的方程可变为22010y z x -+=⎧⎨-=⎩,可求得其方向向量s2={0,2,-1}×{1,0,0}={0,-1,-2},于是49. 求满足下列各组条件的直线方程:(1)经过点(2,-3,4),且与平面3x-y+2z-4=0垂直;(2)过点(0,2,4),且与两平面x+2z=1和y-3z=2平行;(3)过点(-1,2,1),且与直线31213x y z --==-平行. 解:(1)可取直线的方向向量为s={3,-1,2}故过点(2,-3,4)的直线方程为(2)所求直线平行两已知平面,且两平面的法向量n1与n2不平行,故所求直线平行于两平面的交线,于是直线方向向量 故过点(0,2,4)的直线方程为(3)所求直线与已知直线平行,故其方向向量可取为s={2,-1,3}故过点(-1,2,1)的直线方程为121213x y z +--==-. 50. 试定出下列各题中直线与平面间的位置关系:(1)34273x y z ++==--和4x-2y-2z=3;(2)327x y z ==-和3x-2y+7z=8; (3)223314x y z -+-==-和x+y+z=3. 解:平行而不包含. 因为直线的方向向量为s={-2,-7,3} 平面的法向量n={4,-2,-2},所以于是直线与平面平行.又因为直线上的点M0(-3,-4,0)代入平面方程有4(3)2(4)2043⨯--⨯--⨯=-≠.故直线不在平面上.(2) 因直线方向向量s 等于平面的法向量,故直线垂直于平面.(3) 直线在平面上,因为3111(4)10⨯+⨯+-⨯=,而直线上的点(2,-2,3)在平面上.51. 求过点(1,-2,1),且垂直于直线的平面方程. 解:直线的方向向量为12123111-=++-ij k i j k ,取平面法向量为{1,2,3},故所求平面方程为1(1)2(2)3(1)0x y z ⨯-+++-=即x+2y+3z=0.52. 求过点(1,-2,3)和两平面2x-3y+z=3, x+3y+2z+1=0的交线的平面方程.解:设过两平面的交线的平面束方程为233(321)0x y z x y z λ-+-++++=其中λ为待定常数,又因为所求平面过点(1,-2,3)故213(2)33(13(2)231)0λ⨯-⨯-+-++⨯-+⨯+=解得λ=-4.故所求平面方程为2x+15y+7z+7=053. 求点(-1,2,0)在平面x+2y-z+1=0上的投影.解:过点(-1,2,0)作垂直于已知平面的直线,则该直线的方向向量即为已知平面的法向量,即s=n={1,2,-1}所以垂线的参数方程为122x ty t z t =-+⎧⎪=+⎨⎪=-⎩将其代入平面方程可得(-1+t)+2(2+2t)-(-t)+1=0 得23t =- 于是所求点(-1,2,0)到平面的投影就是此平面与垂线的交点522(,,)333- 54. 求点(3,-1,2)到直线10240x y z x y z +-+=⎧⎨-+-=⎩的距离.解:过点(3,-1,2)作垂直于已知直线的平面,平面的法向量可取为直线的方向向量 即11133211==-=---i j kn s j k 故过已知点的平面方程为y+z=1.联立方程组102401x y z x y z y z +-+=⎧⎪-+-=⎨⎪+=⎩解得131,,.22x y z ==-= 即13(1,,)22-为平面与直线的垂足于是点到直线的距离为2d ==55. 求点(1,2,1)到平面x+2y+2z-10=0距离.解:过点(1,2,1)作垂直于已知平面的直线,直线的方向向量为s=n={1,2,2}所以垂线的参数方程为12212x ty t z t =+⎧⎪=+⎨⎪=+⎩ 将其代入平面方程得13t =. 故垂足为485(,,)333,且与点(1,2,1)的距离为1d == 即为点到平面的距离.56. 建立以点(1,3,-2)为中心,且通过坐标原点的球面方程.解:球的半径为R =设(x,y,z)为球面上任一点,则(x-1)2+(y-3)2+(z+2)2=14即x2+y2+z2-2x-6y+4z=0为所求球面方程.57. 一动点离点(2,0,-3)的距离与离点(4,-6,6)的距离之比为3,求此动点的轨迹方程.解:设该动点为M(x,y,z)3.=化简得:8x2+8y2+8z2-68x+108y-114z+779=0即为动点的轨迹方程.58. 指出下列方程所表示的是什么曲面,并画出其图形:(1)22()()22a a x y -+=; (2)22149x y -+=; (3)22194x z +=; (4)20y z -=; (5)220x y -=; (6)220x y +=.解:(1)母线平行于z 轴的抛物柱面,如图7-7.(2)母线平行于z 轴的双曲柱面,如图7-8.图7-7 图7-8(3)母线平行于y 轴的椭圆柱面,如图7-9.(4)母线平行于x 轴的抛物柱面,如图7-10.图7-9 图7-10(5)母线平行于z 轴的两平面,如图7-11.(6)z 轴,如图7-12.图7-11 图7-1259. 指出下列方程表示怎样的曲面,并作出图形:(1)222149y z x ++=; (2)22369436x y z +-=; (3)222149y z x --=; (4)2221149y z x +-=; (5)22209z x y +-=.解:(1)半轴分别为1,2,3的椭球面,如图7-13.(2) 顶点在(0,0,-9)的椭圆抛物面,如图7-14.图7-13 图7-14(3) 以x 轴为中心轴的双叶双曲面,如图7-15.(4) 单叶双曲面,如图7-16.图7-15 图7-16(5) 顶点在坐标原点的圆锥面,其中心轴是z 轴,如图7-17.图7-1760. 作出下列曲面所围成的立体的图形:(1) x2+y2+z2=a2与z=0,z=2a(a>0); (2)x+y+z=4,x=0,x=1,y=0,y=2及z=0;(3) z=4-x2, x=0, y=0, z=0及2x+y=4; (4) z=6-(x2+y2),x=0, y=0, z=0及x+y=1.解:(1)(2)(3)(4)分别如图7-18,7-19,7-20,7-21所示.图7-18 图7-19图7-20 图7-2161. 求下列曲面和直线的交点: (1)222181369x y z ++=与342364x y z --+==-; (2) 22211694x y z +-=与2434x y z +==-. 解:(1)直线的参数方程为代入曲面方程解得t=0,t=1.得交点坐标为(3,4,-2),(6,-2,2). (2) 直线的参数方程为 代入曲面方程可解得t=1, 得交点坐标为(4,-3,2).62. 设有一圆,它的中心在z 轴上,半径为3,且位于距离xOy 平面5个单位的平面上,试建立这个圆的方程. 解:设(x ,y ,z )为圆上任一点,依题意有 即为所求圆的方程.63. 试考察曲面22219254x y z -+=在下列各平面上的截痕的形状,并写出其方程.(1) 平面x=2; (2) 平面y=0; (3) 平面y=5; (4) 平面z=2.解:(1)截线方程为2212x ⎧=⎪⎪⎨⎪⎪=⎩ 其形状为x=2平面上的双曲线.(2)截线方程为221940x z y ⎧+=⎪⎨⎪=⎩为xOz 面上的一个椭圆.(3)截线方程为2215y ==⎩为平面y=5上的一个椭圆.(4) 截线方程为229252x y z ⎧-=⎪⎨⎪=⎩为平面z=2上的两条直线.64. 求曲线x2+y2+z2=a2, x2+y2=z2在xOy 面上的投影曲线. 解:以曲线为准线,母线平行于z 轴的柱面方程为故曲线在xOy 面上的投影曲线方程为22220a x y z ⎧+=⎪⎨⎪=⎩65. 建立曲线x2+y2=z, z=x+1在xOy 平面上的投影方程. 解:以曲线为准线,母线平行于z 轴的柱面方程为x2+y2=x+1即2215()24x y -+=.故曲线在xOy 平面上的投影方程为2215()240x y z ⎧-+=⎪⎨⎪=⎩ 习题八1. 判断下列平面点集哪些是开集、闭集、区域、有界集、无界集?并分别指出它们的聚点集和边界: (1) {(x, y)|x≠0};(2) {(x, y)|1≤x2+y2<4}; (3) {(x, y)|y<x2};(4) {(x, y)|(x-1)2+y2≤1}∪{(x, y)|(x+1)2+y2≤1}.解:(1)开集、无界集,聚点集:R2,边界:{(x, y)|x=0}. (2)既非开集又非闭集,有界集,聚点集:{(x, y)|1≤x2+y2≤4},边界:{(x, y)|x2+y2=1}∪{(x, y)| x2+y2=4}. (3)开集、区域、无界集, 聚点集:{(x, y)|y≤x2}, 边界:{(x, y)| y=x2}.(4)闭集、有界集,聚点集即是其本身,边界:{(x, y)|(x-1)2+y2=1}∪{(x, y)|(x+1)2+y2=1}. 2. 已知f(x, y)=x2+y2-xytan x y,试求(,)f tx ty . 解:222(,)()()tan(,).tx f tx ty tx ty tx ty t f x y ty=+-⋅= 3. 已知(,,)w u v f u v w u w +=+,试求(,,).f x y x y xy +-解:f( x + y, x-y, x y) =( x + y)xy+(x y)x+y+x-y =(x + y)xy+(x y)2x. 4. 求下列各函数的定义域: 解:2(1){(,)|210}.D x y y x =-+> 5. 求下列各极限: 解:(1)原式0ln 2.=(2)原式=+∞. (3)原式=01.4x y →→=-(4)原式=02.x y →→=(5)原式=0sin lim100.x y xyy xy →→⋅=⨯=(6)原式=22222222222()00001()2lim lim 0.()e 2ex y x y x x y y x y x y x y ++→→→→++==+6. 判断下列函数在原点O(0,0)处是否连续: (3)222222222,0,(2)()0,0;x y x y z x y x y x y ⎧+≠⎪=+-⎨⎪+=⎩解:(1)由于3333333322223333sin()sin()sin()0()x y x y x y x y y x x y x y x y x y ++++≤=≤+⋅++++ 又00lim()0x y y x →→+=,且3333000sin()sin lim lim 1x u y x y ux y u →→→+==+, 故0lim 0(0,0)x y z z →→==.故函数在O(0,0)处连续. (2)00sin lim lim1(0,0)0x u y uz z u→→→==≠= 故O(0,0)是z 的间断点.(3)若P(x,y) 沿直线y=x 趋于(0,0)点,则2222000lim lim 10x x y x x x z x x →→=→⋅==⋅+, 若点P(x,y) 沿直线y=-x 趋于(0,0)点,则 故0lim x y z →→不存在.故函数z 在O(0,0)处不连续.7. 指出下列函数在向外间断:(1) f (x,y)=233x y x y-+; (2) f (x,y)=2222y xy x+-;(3) f (x,y)=ln(1-x2-y2);(4)f (x,y)=222e ,0,0,0.x y x y y y -⎧⎪≠⎨⎪=⎩解:(1)因为当y=-x 时,函数无定义,所以函数在直线y=-x 上的所有点处间断,而在其余点处均连续.(2)因为当y2=2x 时,函数无定义,所以函数在抛物线y2=2x 上的所有点处间断.而在其余各点处均连续.(3)因为当x2+y2=1时,函数无定义,所以函数在圆周x2+y2=1上所有点处间断.而在其余各点处均连续. (4)因为点P(x,y)沿直线y=x 趋于O(0,0)时.12lim (,)lime x x y x xf x y x -→→=→==∞. 故(0,0)是函数的间断点,而在其余各点处均连续. 8. 求下列函数的偏导数: (1)z = x2y+2x y ;(2)s =22u v uv+;; (4)z = lntan x y; (5)z = (1+xy)y; (6)u = zxy; (7)u = arctan(x-y)z; (8)yzu x =.解:(1)223122,.z z x xy x x y y y∂∂=+=-∂∂ (2)u v s vu =+2211,.s v s u u v u v v u∂∂=-=-+∂∂(3)2222212ln(),2z x x x x y x x y ∂==++∂+(4)21122sec csc ,tan z x x x x y y y yy∂=⋅⋅=∂ (5)两边取对数得ln ln(1)z y xy =+ 故 []221(1)(1)(1).ln(1)1y y y x z y xy xy y xy y xy x xy-∂'=+⋅=+⋅=++∂+ (6)1ln ln xy xy xy u u uz z y z z x xy z x y z-∂∂∂=⋅⋅=⋅⋅=⋅∂∂∂ (7)11221()().1[()]1()z z z zu z x y z x y x x y x y --∂-=⋅-=∂+-+- (8)1.yzu y x x z-∂=∂9.已知22x y u x y=+,求证:3u u xy u x y∂∂+=∂∂. 证明:222223222()2()()u xy x y x y x y xy x x y x y ∂+-+==∂++. 由对称性知 22322()u x y yx y x y ∂+=∂+. 于是 2223()3()u u x y x y x y u x y x y ∂∂++==∂∂+. 10.设11ex y z ⎛⎫+- ⎪⎝⎭=,求证:222z zx y z x y∂∂+=∂∂. 证明:11112211e e x y x y z x xx ⎛⎫⎛⎫++-- ⎪ ⎪⎝⎭⎝⎭∂⎡⎤⎛⎫=-=- ⎪⎢⎥∂⎝⎭⎣⎦, 由z 关于x,y 的对称性得 故11111122222211e e 2e 2.x y x y x y z z x y x y z x y x y ⎛⎫⎛⎫⎛⎫+++--- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭∂∂+⋅=⋅+⋅==∂∂ 11.设,求fx(x,1) .欧阳引擎创编 2021.01.01解:1(,)1(x f x y y y =+- 则(,1)101x f x =+=.12.求曲线2244x y z y ⎧+=⎪⎨⎪=⎩在点(2,4,5)处的切线与正向x 轴所成的倾角. 解:(2,4,5)1,1,2z z x x x ∂∂==∂∂ 设切线与正向x 轴的倾角为α, 则tanα=1. 故α=π4. 13.求下列函数的二阶偏导数: (1)z = x4+ y4-4x2y2; (2)z = arctan y x; (3)z = yx;(4)z = 2e x y +.解:(1)2322224812816z z z x xy x y xy x x x y∂∂∂=-=-=-∂∂∂∂ ,, 由x,y 的对称性知 (2)222211z y y xx y x y x ∂⎛⎫=⋅=-- ⎪∂+⎝⎭⎛⎫+ ⎪⎝⎭, (3)222ln ,ln ,xx z z y y y y x x ∂∂==∂∂(4)22e 2,e ,x y x y z z x x y++∂∂=⋅=∂∂14.设f (x, y, z) = xy2+yz2+zx2,求(0,0,1),(0,1,0),(2,0,1).xx yz zzx f f f - 解:2(,,)2x f x y z y zx=+15.设z = x ln ( x y),求32z x y ∂∂∂及32zx y ∂∂∂.解:ln()1ln(),z yx xy xy x xy∂=⋅+=+∂ 232223221,0,11,.z y zx xy x x y z x z x y xy y x y y∂∂===∂∂∂∂∂===-∂∂∂∂16.求下列函数的全微分: (1)22ex y z +=;(2)z =;(3)zy u x =;(4)yzu x =.解:(1)∵2222e 2,e 2x y x y z z x y x y++∂∂=⋅=⋅∂∂ ∴222222d 2e d 2e d 2e (d d )xy xy xy z x x y y x x y y +++=+=+(2)∵22223/21()z xy y x y x x y ∂⎛⎫-=⋅=- ⎪+∂+⎝⎭2223/2()z x yx y ∂==∂+ ∴223/2d (d d ).()xz y x x y x y =--+(3)∵11,ln z z z y y z u u y x x x zy x y--∂∂==⋅⋅∂∂ 2ln ln y z ux x y y z∂=⋅⋅⋅∂ ∴211d d ln d ln ln d .z z zy y z y z u y x x x x zy y x x y y z --=+⋅+⋅⋅⋅(4)∵1yz u y x x z-∂=∂1ln yz u x x y z∂=⋅⋅∂ ln y z u y x x z z 2∂⎛⎫=⋅⋅- ⎪∂⎝⎭∴121d d ln d ln d .y y yz zz y y u x x x x y x x z z z z -⎛⎫=+⋅⋅+⋅⋅- ⎪⎝⎭17. 求下列函数在给定点和自变量增量的条件下的全增量和全微分: (1)222,2,1,0.2,0.1;z x xy y x y x y =-+==-∆=∆=- (2)e ,1,1,0.15,0.1.xy z x y x y ===∆=∆=解:(1)22()()()2()9.688 1.68z x x x x y y y y z ∆=+∆-+∆+∆++∆-=-=d (2)(4) 1.6z x y x x y y =-∆+-+∆=(2)()()0.265ee e(e 1)0.30e.x x y y xy z +∆+∆∆=-=-=d e e e ()0.25e xy xy xy z y x x y y x x y =∆+∆=∆+∆=18.利用全微分代替全增量,近似计算: (1) (1.02)3·(0.97)2;;(3)(1.97)1.05.解:(1)设f(x,y)=x3·y2,则223(,)3,(,)2,x y f x y x y f x y x y ==故df(x,y)=3x2y2dx+2x3ydy=xy(3xydx+2x2dy) 取x=1,y=1,dx=0.02,dy=-0.03,则 (1.02)3·(0.97)2=f(1.02,0.97)≈f(1,1)+df(1,1)d 0.02d 0.03x y ==-=13×12+1×1[3×1×1×0.02+2×12×(-0.03)]=1.(2)设f(x,y)=则(,)(,)x y f x y f x y ===故d (,)d d )f x y x x y y =+取4,3,d 0.05,d 0.07x y x y ====-,则d 0.05d 0.07(4.05,2.93)(4,3)d (4,3)0.053(0.07)]15(0.01)54.998x y f f f ==-=≈+=⨯+⨯-=+⨯-=(3)设f(x,y)=xy,则df(x,y)=yxy-1dx+xylnxdy , 取x=2,y=1,dx=-0.03,dy=0.05,则1.05d 0.03d 0.05(1.97)(1.97,1.05)(2,1)d (2,1)20.0393 2.0393.x y f f f =-==≈+=+=19.矩型一边长a=10cm ,另一边长b=24cm, 当a 边增加4mm ,而b 边缩小1mm 时,求对角线长的变化.解:设矩形对角线长为l ,则d d ).l l x x y y ==+当x=10,y=24,dx=0.4,dy=-0.1时,d 0.4240.1)0.062l =⨯-⨯=(cm)故矩形的对角线长约增加0.062cm. 20.解:因为圆锥体的体积为21.3V r h π=⋅0030,0.1,60,0.5r r h h ====-而221.33V V V dV r h yh r r h r h ππ∂∂≈=⋅+⋅=⋅+⋅∂∂ 0030,0.1,60,0.5r r h h ====-时,2213.1430600.130(0.5)33V π≈⨯⨯⨯⨯+⨯⨯-230()cm =-21.解:设水池的长宽深分别为,,x y z 则有:V xyz = 精确值为:50.242 2.850.22 3.6 2.80.2V =⨯⨯+⨯⨯⨯+⨯⨯⨯313.632()m =近似值为:V dV zx y xy z ≈=+ 0.4,0.4,0.2x y z ===430.4530.4540.2V dV ≈=⨯⨯+⨯⨯+⨯⨯314.8()m =22. 求下列复合函数的偏导数或全导数:(1)22,cos ,sin ,z x y xy x u v y u v =-==求z u ∂∂,z v∂∂; (2)z =arc tanx y ,x =u +v,y =u -v,求z u ∂∂,z v∂∂; (3)ln(e e )xyu =+,y =x3,求d d ux; (4)u =x2+y2+z2,x =e cos tt ,y =e sin tt ,z =e t,求d d ut. 解:(1)222(2)cos (2)sin 3sin cos (cos sin )z z x z y xy y v x xy v u x u y u u v v v v ∂∂∂∂∂=⋅+⋅=-⋅+-∂∂∂∂∂=-223333(2)sin (2)cos 2sin cos (sin cos )(sin cos ).z z x z yxy y u v x xy u v v x v y v u v v v v u v v ∂∂∂∂∂=⋅+⋅=--⋅+-⋅∂∂∂∂∂=-+++ (2)222222211111x z z x z y y x v y u x u y uyx y u v x x y y ∂∂∂∂∂--⎛⎫-=⋅+⋅=⋅+⋅== ⎪∂∂∂∂∂++⎝⎭⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭2222222111(1)11.x z z x z y y v x v y vy x x y y y x ux y u v -∂∂∂∂∂⎛⎫=⋅+⋅=⋅+⋅⋅- ⎪∂∂∂∂∂⎝⎭⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭+==++ (3)33222d d d 11e 3e e 3e e e 3.d d d e e e e e e e ex y x x x y x y x y x yx x u u x u y x x x x x x y x ∂∂++=⋅+⋅=⋅+⋅⋅==∂∂++++ (4)d d d d d d d d u u x u y u z t x t y t z t∂∂∂=⋅+⋅+⋅∂∂∂22(e cos e sin )2(e sin e cos )2e 4e t t t t t t x t t y t t z =-+++⋅=.23. 设f 具有一阶连续偏导数,试求下列函数的一阶偏导数: (1)22(,e );xyu f x y =- (2),;x y u f y z ⎛⎫= ⎪⎝⎭(3)().,,u f x xy xyz = 解:(1)12122e 2e .xy xy uf x f y xf y f x∂''''=⋅+⋅⋅=+∂ 1212(2)e 2e .xy xy uf y f x yf x f y∂''''=⋅-+⋅⋅=-+∂ (2)1111u f f x y y∂''=⋅=∂ 121222222211..x u x f f f f y y z y z u y y f f z z z ∂⎛⎫''''-=⋅+⋅=-+ ⎪∂⎝⎭∂⎛⎫''=⋅=-- ⎪∂⎝⎭(3)1231231,uf f y f yz f yf yzf x∂''''''=⋅+⋅+⋅=++∂ 12323330,.uf f x f xz xf xzf yuf xy xyf z∂'''''=⋅+⋅+⋅=+∂∂''=⋅=∂24.设(),,()yz xy xF u u F u x=+=为可导函数,证明: .z z xy z xy x y∂∂+=+∂∂ 证明:2()()()()z y y y xF u F u F u y F u x x x ∂⎛⎫''=+⋅+=+-- ⎪∂⎝⎭1()().z x xF u x F u y x∂''=+⋅=+∂ 故[]()()()()()()().z z F u y x y x y x F u F u y x y x xF u xy yF u xy yF u xy xF u xy z xy '∂∂⎡⎤'+=+++-⎢⎥∂∂⎣⎦''=+-++=++=+ 25. 设22()yz f x y =-,其中f(u)为可导函数,验证: 211z z zx x y y y∂∂+=∂∂. 证明:∵2222z yf x xyf x f f''∂⋅=-=-∂, 222(2)2z f y f y f y f y f f''∂-⋅⋅-+==∂, ∴22222112211z z yf f y f y zx x y y f yf yf f y y ''∂∂++=-+==⋅=∂∂⋅ 26. 22()z f x y =+,其中f 具有二阶导数,求22222,,.z z zx x y y∂∂∂∂∂∂∂ 解:2,2,z zxf yf x y∂∂''==∂∂ 222222224,224,zf x xf f x f xzxf y xyf x y∂''''''=+⋅=+∂∂''''=⋅=∂∂ 由对称性知,22224.z f y f y∂'''=+∂27. 设f 具有二阶偏导函数,求下列函数的二阶偏导数: (1),;x x z f y ⎛⎫= ⎪⎝⎭(2)()22;,z f xy x y =(3)().sin ,cos ,e x y z f x y += 解:(1)1212111,z f f f f x y y∂''''=⋅+⋅=+∂2212211121112222221222122222222222222222223211121,1111,,2z f f f f f f f y x y y y yx x z x f f f f f f y y y x y y y y yx z x f f y y y z x x f f y y y ∂⎛⎫''''''''''''''+⋅=+⋅+=+⋅+ ⎪∂⎝⎭∂⎛⎫⎛⎫⎛⎫''''''''''--+=⋅-+⋅=-- ⎪ ⎪ ⎪∂∂⎝⎭⎝⎭⎝⎭∂⎛⎫''-==- ⎪∂⎝⎭∂''=-∂22222342.x x x f f y yy ⎛⎫''''-⋅=+ ⎪⎝⎭,(2)22121222,zf y f xy y f xyf x∂''''=⋅+⋅=+∂ ()()22222211122122432221112222222244,zy yf xy f y f xy f y f xy x yf y f xy f x y f ∂'''''''''=++⋅+⋅⋅+⋅∂'''''''=+++()()()()222212111221223322121122122212122222121112212212222222225,22,22222zyf y xf xy f xy f x f xy f x x yyf xf xy f x yf x y f zf xy f x xyf x f yzxf xy x f xy f x f xy f x yxf ∂''''''''''=+++⋅+⋅⋅+⋅∂∂''''''''=++++∂''''=⋅+⋅=+∂∂'''''''''=++⋅+⋅⋅+⋅∂'=223411122244.x y f x yf x f ''''''+++(3)1313cos e cos e ,x y x y zf x f xf f x++∂''''=⋅+⋅=+∂ ()()1321113313322()311113332312133233sin cos e e cos e cos e e sin cos 2e cos e ,cos e e (sin )e (sin )x y x y x y x y x y x y x y x y x y x y zxf x f f x f f x f xf xf xf xf f z x f f y f f y f x y++++++++++∂''''''''''=-+++⋅+⋅+⋅∂''''''''=-+++∂'⎡⎤''''''=++⋅⋅-+⋅⋅-+⎣⎦∂∂2()3121332332323223222233233e e cos sin e cos e sin e ,(sin )e sin e ,cos sin e e (sin )e (sin )e x y x y x y x y x y x y x y x y x y x y x y f x yf xf yf f zf y f yf f yz yf y f f y f f y f y +++++++++++⎡⎤''⋅⎣⎦'''''''''=-+-+∂''''=-+=-+∂∂''⎡⎤⎡''''''''=--++-+⋅-+⋅⎣⎦∂22()32222333e cos sin 2e sin e .x y x y x y f yf yf yf f +++⎤⎣⎦''''''''=-+-+28. 试证:利用变量替换1,3x y x y ξη=-=-,可将方程22222430u u ux x y y∂∂∂++=∂∂∂∂ 化简为20uξη∂=∂∂. 证明:设1(,),3u f f x y x y ξη⎛⎫==-- ⎪⎝⎭2222222222222222222222221411(1)(1)3333u u u u ux x x u u u u u u u ux x x x x u u u uuu u x y ξηξηξηξηξηξξηηξηξξηηξξηηξηξξη∂∂∂∂∂∂∂=⋅+⋅=+∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂=⋅+⋅+⋅+⋅=++∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂⎛⎫⎛⎫=+⋅-+⋅+⋅-=----- ⎪ ⎪∂∂∂∂∂∂∂∂∂∂∂⎝⎭⎝⎭22u η∂∂222222222222222222222222211(1)33111211(1)(1)33933343142433u u u u u y u u u uuu u u y u u u x x y yu u u u ξηξηξξηηξηξξηηξξηηξ∂∂∂∂∂⎛⎫=⋅+⋅-=--- ⎪∂∂∂∂∂⎝⎭∂∂∂∂∂∂∂∂⎛⎫⎛⎫=-⋅-⋅--⋅-⋅-=++-- ⎪ ⎪∂∂∂∂∂∂∂∂∂∂∂⎝⎭⎝⎭∂∂∂++∂∂∂∂∂∂∂∂∂=+++--∂∂∂∂∂2222222221239340.3u u u u u u ξηηξξηηξη⎛⎫⎛⎫∂∂∂∂+-++ ⎪ ⎪∂∂∂∂∂∂∂⎝⎭⎝⎭∂=-=∂∂故20.uξη∂=∂∂ 29. 求下列隐函数的导数或偏导数:(1)2sin e 0xy xy +-=,求d d yx ;(2)arctan y x =,求d d y x;(3)20x y z ++-=,求,z zx y∂∂∂∂; (4)333z xyz a -=,求22,z z x y ∂∂∂∂. 解:(1)[解法1] 用隐函数求导公式,设F(x,y)=siny+ex-xy2,则 2e ,cos 2,x x y F y F y xy =-=-故 22d e e d cos 2cos 2x xx y F y y y x F y xy y xy--=-=-=--. [解法2] 方程两边对x 求导,得()2cos e 02x y y y x yy '⋅+-='+⋅故 2e .cos 2xy y y xy-'=- (2)设()221(,)arctanln arctan ,2y y F x y x y x x==-+ ∵222222121,21x xx y y F x yx y x y x +⎛⎫=-⋅=- ⎪++⎝⎭⎛⎫+ ⎪⎝⎭222221211,21y yy x F x yx x yy x -=-⋅=++⎛⎫+ ⎪⎝⎭∴d .d x y F y x y x F x y+=-=- (3)方程两边求全微分,得d 2d d 0,x y z ++-=,z x y =则d ,z x y =故z z x y ∂∂==∂∂ (4)设33(,,)3F x y z z xyz a =--,23,3,33,x y z F yz F xz F z xy =-=-=-则223,33x z F z yz yzx F z xy z xy∂-=-=-=∂--223,33y z F z xz xz y F z xy z xy∂-=-=-=∂-- ()()()()22222222322232222()zz z x x xz z xy xz y z y z xy y y z xy xz xz z x x xz z xy z xy x yzz xy xy z z xy ∂∂⎛⎫--- ⎪∂∂∂∂⎛⎫⎝⎭== ⎪-∂∂⎝⎭-⎛⎫⋅--- ⎪--⎝⎭==--30. 设F(x, y, z)=0可以确定函数x = x(y, z), y = y(x, z), z = z(x, y),证明:1x y zy z x∂∂∂⋅⋅=-∂∂∂. 证明:∵,,,y x z x y zF F F x y zy F z F x F ∂∂∂=-=-=-∂∂∂ ∴ 1.y z x y z x F F F x y z F F F y z x ⎛⎫⎛⎫∂∂∂⎛⎫---⋅⋅=⋅⋅=- ⎪ ⎪ ⎪∂∂∂⎝⎭⎝⎭⎝⎭ 31. 设11,0F y z x y ⎛⎫++= ⎪⎝⎭确定了函数z = z(x,y),其中F 可微,求,z z x y ∂∂∂∂.解:12122110x F F F F x x ⎛⎫'''=⋅+⋅=--⎪⎝⎭122122121222122221222011111z y x z y zF F F F F F F y F F F z x x F F x F F F F F y F z y y F F y F '''=⋅+⋅=⎛⎫''-=⋅+⋅ ⎪⎝⎭'-'∂=-=-=∂''''-''-∂=-=-=∂''32. 求由下列方程组所确定的函数的导数或偏导数:(1)22222,2320,z x y x y z ⎧=+⎪⎨++=⎪⎩ 求:d d ,;d d y z x x (2)1,0,xu yv yu xv +=⎧⎨-=⎩ 求:,,,;u v u v x x y y ∂∂∂∂∂∂∂∂(3)2(,),(,),u f ux v y v g u x v y =+⎧⎨=-⎩ 其中f,g 具有连续偏导数函数,求,;u v x x∂∂∂∂ (4)e sin ,e cos ,uux u v y u v ⎧=+⎪⎨=-⎪⎩ 求,,,.u u v v x y x y ∂∂∂∂∂∂∂∂ 解:(1)原方程组变为222222320y z xy z x⎧-=-⎪⎨+=-⎪⎩ 方程两边对x 求导,得d d 22d d d d 23d d y z y x x xy z y z x xx ⎧-=-⎪⎪⎨⎪-=-⎪⎩ 当 2162023y J yz y y z-==+≠21d 16(61),3d 622(31)22d 12.2d 6231x y xz x x z x z x J yz y y z y x z xy x y x x J yz y z ----+===--++-===-++(2)设(,,,)1,(,,,),F x y u v xu yv G x y u v yu xv =+-=-,,,,,,,,x y u v x y u v F u F v F x F y G v G u G y G x =====-===-22u v u v F F x yJ x y G G y x===---故 22xvx v F F u yG G v x uux yv x J J x y--∂-+=-=-=∂+222222,,.u x u x y v yvuy u y F F x u G G y v vvx uy x J J x yF F v yG G u x u vx uy yJ J x yF F x vG G y u v xu vy y J J x y-∂--=-=-=∂+-∂--=-=-=∂+∂-=-=-=∂+ (3)设(,,,)(,),F u v x y f ux v y u =+-2(,,,)(,),G u v x y g u x v y v =--则 121221121(1)(21),21uv uvF F xf f J xf yvg f gG G g vyg ''-''''===---''- 故 12121221122121(21),(1)(21)xv xvuf f F F G G g yvg uf yvg f g u xJ J xf yvg f g ''''''''-----∂=-=-=∂''''---111111112211(1).(1)(21)u x uxxf uf F F G G g g g xf uf v xJ J xf yvg f g ''-'''''-+-∂=-=-=∂''''--- (4)(,),(,)u u x y v v x y ==是已知函数的反函数,方程组两边对x 求导,得1e sin cos ,0e cos (sin ),u u u u v v u v x x xu u v v u v x x x ∂∂∂⎧=++⎪⎪∂∂∂⎨∂∂∂⎪=---⎪∂∂∂⎩整理得 (e sin )cos 1,(e cos )sin 0,uu u v v u v x xu v v u v x x ∂∂⎧++=⎪⎪∂∂⎨∂∂⎪-+=⎪∂∂⎩解得sin e (sin cos )1u u vx v v ∂=∂-+。
高等几何课后答案第三版新编
高等几何课后答案第三
版新编
tio n office [IMB
高等几何课后答案(第三版)
第一章仿射坐标与仿射变换第二章射影平面
习题一
习题二
习题三
习题四
第三章射影变换与射影坐标
习题一
习题二
1.求还:如果一维肘龙对俺使直线/ 上的无穷远点对应直线厂上的无穷远点? 则这亍对应一定是仿館对应.
1.提示: 因为仿射对应杲保持共线三点的单比不变的,设A,
L设直绘/上的点P沁0)?冃(I),已(2)经射老对应"顾次对应「上的L点P;(-I).P2 (O)(-2),人射影对应式,并化为齐机塑标式?求出上的无穷远点的
对应点. J
第巨迄
第
勰曙
麻此(ABC)= M B C >.
◎,尺?又顶点B.C 各在一条定直线上?求证;顶点A 也在一条定直线上.
习题二习题三
第六章二次曲线的仿射性质与度量性质。
工程制图基础习题集与答案之欧阳音创编
第1章制图的基本知识和技能时间:2021.03.11 创作:欧阳音1-2按照左图的形式,在图形右边空白处重画一次。
1-3尺寸标注练习:填注下列图形中的尺寸,尺寸数值按1:1从图上量,取整数。
1-4 分析下列平面图形并标注尺寸。
(尺寸数值按1:1从图中量,取整数)(1)(2)1-5尺寸标注改错:圈出错误的尺寸标注,并在右边空白图上正确标注。
1-6 按1:2的比例画下面的图形。
(1)椭圆(2)1:8锥度第1章制图的基本知识和技能1-7在A4图纸上按1:1比例画出吊钩的平面图形,图名为:几何作图。
2-1 根据直观图中各点的位置,画出它们的两面投影图。
2-2 已知各点的两面投影,画出它们的第三投影和直观图。
2-3 画出A(10,35,15)、B(20,35,0)、C(30,0,25)三点的三面投影图。
2-4 已知点B在点A的左方35毫米,在点A的前方10毫米,在点A的上方20毫米处;点C与点B同高,且点C的坐标X=Y=Z;点D在点C的正下方26毫米处,试画出各点的三面投影图。
2-5已知点A的两面投影,点B在点A的左方20毫米,前方15毫米,上方10毫米处,求线段AB的三面投影。
2-6 已知点A,作正平线AB的三面投影,使AB=20毫米,α=450,(点B在点A的右侧)。
2-7 画出下列各直线的第三投影,并判别直线对投影面的相对位置。
(1)(2)(3)(4)AB是___水平__线CD是__正平__线EF是__侧垂___线 GH是_一般位置_线第2章投影基础2-8根据已知条件完成直线的三面投影。
(1)AB是侧平线,(2)CD是一般位置直线,点C在(3)EF 是正垂线,在(4)GH是正平线,长度为距离W面18mm。
V面前方22mm,点D则属于V面。
H面上方20mm处。
25mm, 点H在点G的下方。
2-9 已知线段AB的两面投影,求AB的实长和对W面的倾角。
2-10 根据已知条件,完成线段AB的投影。
(1)AB的实长为25毫米。
高等几何课后答案(第三版)
高等几何课后答案(第三版)第一章仿射坐标与仿射变换1.经耳A(-3「2)和的直成AB与真级* + 3.丫一6二D相交于P点,衣EBP)=?U苴线A8的方程为工+%「一15 =山P点的坐标为(y-y);(ABP)= —1.n求一仿射变披,它使直睡工+2了- 1 =o上的每个点都不也且使点(1,-1)变为点(-L2).2.在白线量十卷一13)上任取网点1.1).由于AUQm)・BmEJb i>?又点u, - n-i⑵I仿射变换式{, •可解得所求为3-求仿射变挨= 7.r - y + 11项=4/ +电+ 4的不变点和不受直线.3.不变点为- 2).怀变直线为2/ -23,一3 = 0与4工一;y = 0.4.问在仿射变换下,下列图形的对应图形为何?①箓形;②正方形;③梯形;④等腰三角形.4.(1)平行四边形"2)平行四边形;G)梯形"4)三角形.5.下述桂质是否是仿射性质?①三角形的三高线共点;②三角形的三中线共点;③三角形内接于一圆;® 一角的平分线上的点到两边等孑站5. Q)为仿射性质,其余皆不是.第二章射影平面习题一I.下列娜些图形具有射蛇性员?平行直哉;三点共线;三宜钱共教;两点月的距离;两直鼬的夹角;两相箸浅段1.答:⑵.⑶具有射影性质」2.求证:任意四边奉可以射影嵌平行四边形. |2. 提示:将四边形两对对边的交点连线业作影消线,作+ 心射影射得.3. 在平(8 w上.有一定直线儿以0方射心,校射到平面/上得到直线”,求证当。
变动时/'通过•定点.3「提示』…平面(O I,A I>-(O"E皆充于直线△,它们与平面虹的交线为/J;* P;,如果口与/交于点P*则p" P〉…都通过点P・如果P是无绑远点,则p'pw…彼此平行.町以选取射豺中心V与另•平面/,将OS二点射影成平面/上的无穷远点.如圈2-2-3,这时LLM'N•皆为平行四边形的对角线文点,容易证明它们共线,且所共直线与匕■"平行, 根据姑合性是射影性质,所以JM,N共技,旦此直线与桐口上共点.5, 试用梅萨格症理死明:任意四边形告对封边中点的连线与二耐角线中点的连找相文于「点.5.捉泌如图」2-4,设四边形AT3CD四边中点依次为E, F, H,对种线AC所的中点是P.。
大学解析几何之欧阳化创编
空间解析几何基本知识 一、向量1、已知空间中任意两点),,(1111z y x M 和),,(2222z y x M ,则向量2、已知向量),,(321a a a a =→、),,(321b b b b =→,则 (1)向量→a 的模为232221||a a a a ++=→(2)),,(332211b a b a b a b a ±±±=±→→(3)),,(321a a a a λλλλ=→3、向量的内积→→⋅b a(1)><⋅⋅=⋅→→→→→→b a b a b a ,cos |||| (2)332211b a b a b a b a ++=⋅→→其中><→→b a ,为向量→→b a ,的夹角,且π>≤≤<→→b a ,0 注意:利用向量的内积可求直线与直线的夹角、直线与平面的夹角、平面与平面的夹角。
4、向量的外积→→⨯b a (遵循右手原则,且→→→⊥⨯a b a 、→→→⊥⨯b b a )5、(1)332211//b a b a b a b a b a ==⇔=⇔→→→→λ (2)00332211=++⇔=⋅⇔⊥→→→→b a b a b a b a b a 二、平面1、平面的点法式方程已知平面过点),,(000z y x P ,且法向量为),,(C B A n =→,则平面方程为注意:法向量为),,(C B A n =→垂直于平面2、平面的一般方程0=+++D Cz By Ax ,其中法向量为),,(C B A n =→3、(1)平面过原点)0,0,0(⇔ 0=++Cz By Ax(2)平面与x 轴平行(与yoz 面垂直)⇔法向量→n 垂直于x 轴0=++⇔D Cz By(如果0=D ,则平面过x轴)平面与y 轴平行(与xoz 面垂直)⇔法向量→n 垂直于y 轴0=++⇔D Cz Ax(如果0=D ,则平面过y轴)平面与z 轴平行(与xoy 面垂直)⇔法向量→n 垂直于z 轴0=++⇔D By Ax(如果0=D ,则平面过z轴)(3)平面与xoy 面平行⇔法向量→n 垂直于xoy 面0=+⇔D Cz平面与xoz 面平行⇔法向量→n 垂直于xoz 面0=+⇔D By平面与yoz面平行⇔法向量→n 垂直于yoz面0=+⇔D Ax注意:法向量的表示 三、直线1、直线的对称式方程过点),,(000z y x P 且方向向量为),,(321v v v v =→直线方程32010v z z v y y v x x -=-=- 注意:方向向量),,(321v v v v =→和直线平行2、直线的一般方程⎩⎨⎧=+++=+++0022221111D z C y B x A D z C y B x A ,注意该直线为平面1111=+++D z C y B x A 和02222=+++D z C y B x A 的交线3、直线的参数方程⎪⎩⎪⎨⎧+=+=+=tv z z t v y y tv x x 3020104、(1)方向向量),,0(32v v v =→,直线垂直于x 轴 (2)方向向量),0,(31v v v =→,直线垂直于y 轴 (3)方向向量)0,,(21v v v =→,直线垂直于z 轴 5、(1)方向向量),0,0(3v v =→,直线垂直于xoy 面 (2)方向向量)0,,0(2v v =→,直线垂直于xoz 面 (3)方向向量)0,0,(1v v =→,直线垂直于yoz 面 应用 一、柱面1、设柱面的准线方程为⎩⎨⎧==0),,(0),,(21z y x f z y x f ,母线的方向向量),,(321v v v v =→,求柱面方程方法:在准线上任取一点),,(111z y x M ,则过点),,(111z y x M 的母线为又因为),,(111z y x M 在准线上,故0),,(1111=z y x f (1) 0),,(1112=z y x f(2)令 t v z z v y y v x x =-=-=-312111(3)由(1)、(2)、(3)消去111,,z y x 求出t ,再把t 代入求出关于z y x ,,的方程0),,(=z y x F ,则该方程为所求柱面方程例1:柱面的准线为⎩⎨⎧=++=++2221222222z y x z y x ,而母线的方向为{}1,0,1-=v ,求这柱面方程。
VisualBasic程序设计教程第三版课后习题答案之欧阳育创编
《VB程序设计》综合复习资料第一章 Visual Basic程序设计概述一、填空题1、VisualBasic是一种面向__________的可视化程序设计语言,采取了__________的编程机制。
2、在VB中工程文件的扩展名是____________,窗体文件的扩展名是____________,标准模块文件的扩展名是____________。
3、执行“工程”菜单下的__________命令,可选择并添加ActiveX 控件。
4、Visual Basic 6.0用于开发__________环境下的应用程序。
二、选择题1、下面不是VB工作模式的是()A.设计模式B.运行模式C.汇编模式D.中断模式2、可视化编程的最大优点是()A.具有标准工具箱B.一个工程文件由若干个窗体文件组成C.不需要编写大量代码来描述图形对象D.所见即所得3、下列不能打开属性窗口的操作是()A.执行“视图”菜单中的“属性窗口”命令B.按F4键C.按Ctrl+TD.单击工具栏上的“属性窗口”按钮4、下列可以打开立即窗口的操作是()A.Ctrl+D B.Ctrl+E C.Ctrl+F D.Ctrl+G5、Visual Basic的编程机制是()A.可视化 B.面向对象 C.面向图形 D.事件驱动三、简答题1、代码窗口主要包括哪几部分?2、在工程资源管理器窗口中,主要列出了哪三类文件?3、窗体布局窗口的主要用途是什么?4、VB的基本特点是什么?5、怎样理解可视化设计?6、怎要理解事件驱动编程?第二章简单的VB程序设计一、填空题1、设置是否可以用Tab键来选取命令按钮,应该用______________属性。
2、一个控件在窗体的位置由_______和________属性决定,其大小由__________和_________属性决定。
3、利用对象的属性setfocus可获得焦点,对于一个对象,只有其visible属性和____________属性为true,才能接受焦点。
高等几何课后答案(第三版)
高等几何课后答案(第三版)第一章仿射坐标与仿射变换1.经过几(一3,2)和^(6,1)的直纯AB与直线工+ 3,一6二0 相交于P A^(ABP)=?U 4 线AB 的方程为x+9j^- 15 = (1:P点的坐标为住存);(ABP)= -L2,求一仿射变换,它使直线工+2$- 1 =0上的每金点都不变j且使点仃,-1)变为点(-L2).2.在岂线工十為-1=0上任取两点A(.lA)>,Ii(-hl).±T-A<1,0)^A<1.0)• B<- L (- b L>?又点(L -H-l心[j1=竝“丁+应位¥+0沁1仿射变换式 < . 、可解得所求为ly=細/ 4 gy+ 如 * 工"=2工十2y 一1 * [$ = _芬_切寺.3.求仿射变换” =7.r —于+ 11 y = 4Hy + 4 的不变点和不亶直线.3.不变点为(一*卩一2)・不殳山线为2r -2$ - 3 = 0与4 ar- y-0.4 •问在仿射变换下,于列图形的对应图形为何?①菱形;②正方形;③梯形;④等腰三角形.4.(D半行卩U边形;(2)平行网边形;(3)梯形;<4)三宦形.5.节述性质是否是仿射性质?①三角形的三高线共点;②三角形的三中线*点;③三角形内接于一國;④一角的平分线上的点到两边等距.5. 0)为仿射性质,其余皆不是.第二章射影平面习题一1.下列哪些图带具有射影性质?平行宣蝕;三点共线;三武錢共点;两点阿的陌离;两亶统的先角;两相聘找段L答:(2)>具有射影性质.2.求证:仟宦四边涉可以射齡虑甲行四边影. |2.捉示:将四边竝两对对也的交点连线収作燈消线,作•屮心射影即得.3・在平闻2上有一定直线宀以0対射右.投对封平面『上得到直线//•求证当Q变动时•”通过•定点.3.提灵平面(0-0)宀皆交于总线和它们与平而孑的交线为P;■如果p 口 J交于点FS则嵐皿二…都通过点P. 如果P是无穷远点*则pjp.…彼此平行.4・设三直线.交于一点S”JVQ (Qj ・Rj 心分别 交二直线/, J 2于P I >Q I >«I 与码・Q ■局,求iff :直线P 、Q 2与 g 的 交点・Q 局与Q,乩的交点・乩几与K 3P.的交点•三点共线,且此直线与可以选取射彩中心F 与另•平面*,将O 、S 二点射繆成平 面t 上的无穷远点.如圏2-2-3,这时L',M ,N‘皆为平行四 边形的对和线交点,容易证明它们共线,11所其血线与l\.r 2平行』 根抑:給合性是射彩性质,所以JM ,、「兀线.且此血线与 人“共点.5.试用1«萨格定理证明:任慮四边形各对时边中点的连线与二对角线 中点的连线相交于「点.5.提爪:如图2-27.设四边形A/3CD 四边中点依次为E, F. G.6.捉小:如图2-2-5.研究三点形HQA 和RSD,对应边交点PQ x RS = X,QA x SI) = C,APx DR 二B •因为X.B.C 共线,根据徳萨格定埋的逆 定理,必有刈应顶点的连线兀点.H,对角线AGED 的中点是P,Q,研究三点形PEH 和QGF,利 用德萨格定理的逆定理,可以证明其对应顶点连线EG,FH,PQ 共点.6.ABCD 星四面体』K 在BC •上•一直线運过X 分别交AB.AC TP, Q,另一直线通过X,分别交DH,DC 干乩头求iE :PR 与QS 交于AD.A习题二下列谱点•若它的非齐Ifc 量标存在■晴挹它写出来:(2,4 …,0几(0沖」)JAM 』). J2:-八俘厂驾),无,(0•胡无-J.当正负号ffjg 选取时才问( ± L + l.±l )^示几个相异点?3.答:四个相异点. 取求下列各直线的齐冼线坐标】「0 丁辆;(2),轴汀3)无穷五直如⑷ 通过原点且斜車为2的直践 4答:|<1> [山1,0〕 (2)CbO.D]⑶ Q ),Oi 1] ⑷ C2* - 1/B 桌T 列诸线坐标所表肓线的方程:(OJ llJLUJjjH-UOj5. S:| , fJTj +屯=U*工| +忙壬一王i = 0卩工1 + ZTj二(L丈]-X r=0・6-下列诸方ftfr*示什么图弦?k L = - w A = 0h K| + u3 u5=0T2H( + Bf? - O.iiJ ^5«i tii =0. |心答’点点(0d, - 1 儿点<hbl>点Q7L»两点心-4.0)和(1, 一1卫)・习题二2 •写出下利命魁的对偶命題-(0爾点决定一直01 :<2)对电平贡上至少存庄四条倉线十其中怪何三圣不共点:(3)设~亍蹩翡的三点晤*它的两边SiHS一个定点■術三15点奁共点的三直统上■则第三边也通过一节定点”2.答:(1)M线必交T-C2)射膨平血上至少存在四个点,贞;中任何三点不北线;⑴设•变功的三线形,它的两顶点各在烷山线上川if三边齐经过技线的三个点「则第三个顶点也在僚定n饭上・3:已懼点人“工」几片《4一仃1耳几(真・E3)^证F 片舄共线,并以,的值,曲P3= ZP| + FTiPj若鬥』"旳为三<»«?3- ftY : / = 11 w = 2.|軾设A,£.C:为三帽异共线点证,可适当Jiff A,B的齐次蛙标S 乩而使丁〜T由中t是C点的坐标•写出耳对傅情兄|4.证明J设儿乩匸的齐次坐标勞别为⑷""门则根据定理3・4 •存在常数Zim f使亡二仙+血「因为儿时C为不同的点,所以fHO,加工山取A点的座标为In |»B点的坐标为mb|,则有u = a b ・习题四1■⑴求逹接南点(1 +i+2+i t l)+(l -i t2+i T l)的直线方注.⑺求亘线(】・"g "2和)心+卫工厂0上的吴点1.答;(1)工[一工上+ JTg = 0>Q>实点为Q.-1;D・r 2.求证’三点“卫)江1儿0)、(1・一1卫)共堤・擀量舀一点的坐标表示为前两点的统性纽合.2, ® fi<l* -Ld&ifiQ-bOJirdB -liO)由于故三点共线.3・求证俩坦点所定直线与菖間共純复点所定直規为两条共寵克线* 乳证明’设两复点“」所定更直线为人卿共純逐点衽应在f的共總复克线』上■同理b也在「匕故矗由确定复対梢命題;两复宜线所交之复点「及这两归线的共觇复宜线所交之复点,为两共舰复点・g求圆甘匕;二g -i^y+^=8*;的交点.4.答:四个交点为;<lUrQ>» (lr-LiO)»Or2rl)r(一1・2, -1).第三章射影变换与射影坐标习题一1.设儿乩口门用为其蜒五点求址’(AB,CD)-(>iB t DE>*(AB,EC)= L1 .证附h(AH-C7J)* (AH-/JE)* (Art. EC)_ (ABC).(AM・ D) . (AHE) _ .-JWP GSB;E)T AHC T-1*2.若A (2 J. ・1 ・lW(「(h(n*fJfL』r -时皆共线四点. ^(ABXn).2.執(:= 4-CA t H) 可号旳(?= A * li./J=2A -3B- 町写为□二八一斗■也所口C/Vl .(!?)= 一〒亠■3. a巴门门J).巳(1.• i」hPj门・DJ)为其坡三点•且(”巴. 円FJ -4卓巧的圭标.3・執设Pj=p t+必则 人二2. 所以所求为卩」(3・一1・3)・4.巳知直线的方程分别为2丄| 十才2 一刁3 =0 ■才 | - ♦ J 3 =0f^| =0R且-寺■求6的方程.4.答:厶的方程列11巧-2.巾+ 2.巧=0」5.设P l .P 2.P J .P 4,P 5,P,是六个不同的共线点,求址: (O(PlP 2.P ?PJ(P|P 2.P J P #>-(PpP I .P>(2)如果(巴P :,P.,PJ 珂f\P-PO 则(件巴,鬥巴2 -1. 5.证明(I )与第I 题类似•根据定义证明.⑵ (PR ,几匕)=I -(件匕,P J P 4) = 1- (P 2P 3,PJ\)因为Pj 是不同的点.所(U(P I P J P F 2F 4) = -1.8如图3 - 12*AB 为ISO 直径・C 为AB 延长线上一点.Cf 为圈的切 线、M 为切点,求证M 在/!£上的5J B H 是C 关于的谢和共純点. 证法一:MH • MA 是Z CMH 的内外角平分线(图2-3-1). 根据原书第三章§1例题乩得(AB.HC ) = -L证法二:先匹明命题:设(AB, CD ) = - L O 为CD Z 屮点•则(X :1 - OA-OB-反之亦真.在术题川可以先证明OA 2~OH-(:X.\ 利用上述命题即可得证.9.已S:直线U 占丄的方程分剖为2^ - >+ 1 = 0T3x+ > -1=^0,?^ -y= O(5^ -1 = 0,求证儕直绸共点,并感⑴ n9・答丄2#仃V二右嵌4氐6 ry =^2^ +打心:$二岭工+ 4打初工+心北农n j * f. (4t _ijX^i ~共i*求H:上“比心)■(爲一上:)(右二打)12.眾启过原加1:分别打此四杠线平帶的口线,得:/;:y^ k2.Tr!v = i 17 -即心=虽寸・仃:y = ij,T・即和二札百・选基线a: 7'j =(ii 6:Ti — 0Md Z| :a- 4|6- /2: a —jfci6«Zj:E、h f Z4: a —i4 ft.则(ZM仏心站心门:心驾习题二1.求证侦I躍一维时怡对虫便直践I上的无勢远点讨应克线厂上的无霸远点•則这片对应一定是彷殆对应.k提示:因为仿射对应是保持共线三点的单比不变的,【殳A, B>C是直线r上的任意三点•其射影对应点是厂上的用;廿& 又/上的卩“刘应广上的卩「所iy (AZi,CP w)=悯此(AbC)=(AliC).2.血果三倉幣ABC的fflBC.CAMB 通过在同一直绘的三刈P.又顼熾在一来定直线上求证;瓦点X泡在一条定盘找上.2.证明:如图设三点形①血匸.足满足条件的力•三点形,则有佃,耳,…)K (C, (\,…〉p(C, C,,-)悯为PQ与RQ是同寸线,即PR是门对应元素,故有P(B,〃「・••)天R(C,(.「…)|所以,对应直线的交点A, A,,…共线.*3-如果点列(卩)A(r)fc其屁八广交点、垠UE:P,P:与PF.的交点K的轨迹足一条克垛3・证明:如果O是口对应点•则八』巧天厂(r')| I所以P』;通过透视中心V(定点)・如图2-3-9. |闵为WM是完金四点形的村边三点形.故有:||(//\ OVOX) = - I由于頁线I.l .ov是固宦的•所以0X是一条固定直线.如果0不是白对应点;设0作为2王的点时0二旷甘在d 上儿0作为厂上的点时UFb 如阳2-3 - 10*则有(OU.Pf J = ^VO.P\P\) =(OV\/);P f ).由业得到O 点门村应•所以(3 rj v\ 巴」;)・ SW=S 线 uv\ mPf ;共曲ih ]盲线UW 是周应M 所以卩』;£卩;巴的交点X 在周应阿胃 线cn 厂上・Ii\在 I 上P “mQ,R -R .岡为〔戸 P\Q I R )矣 <fj>(FtEt^AtB )天(「』・F ・Q ) f 听以这是一个姑笑变换. W ・QR \二 umQ )|(/m )= ""◎J 根据定理2.4如,这射彫变换是一个对合.习题二L,燒苴绘/上的点P 「QhP 】UnP 、(2)经射总对JSLWllfc 对宜厂上的 点P ; (--2).求射豪对应武、并化为齐Ifc 堂标或■求出t 上的无穷远点的对应点一■JZ* 直數与完全四点丿E ABC Q 的三对对边的交点为P - N ;Q.P 4证明二任童一羸不通过完全四点罡顶虐的宜蜒导完全四点孫的三对 时边的交点‘是用于同一对合的三对对应虑+ 4 r pr2=3TJ -4T3非齐次坐标式\4r 1.答:齐次坐标式:严:八" =3;\43.r 一4F w(I 川)f 卩(一4・3)•卩(4・3)f P;(1.0)2.求直线,到自身的射够变檢式,便PJOJ.Pifl),?.分SI对应点3.已知①轴上的射形变換式为._2上一1文"TTJ试求坐标原点•无勞远点的对应点一3.答:(Q,1)f(-1・3儿|(1卫)・(2・I)」4.求以尸射影变换的自时应元索的$«:(1} U' - 2A + 1^0:(2) 2H+ 1=64.答:(1)1: L(2)-y;<x>fc(3)2:3.5.求对合的方程,这个对仑的二it元索的塞«t为:(1) 2 与3$(2)方程血1十2庐十0的根.5.答:⑴ 2U -5(A t A z)十12 = 0:(2) aAA' */(入 +人')> /=(!・6记知对合的两对对直点曲蠡敕为:3-2.5-1.试求时合的方程和二載点的赫敕6・答乂 + CA * 厂)-1=(l ( -1±2j3.习题四I 求-射影变换,餐点(―“・{01.门.“・「1)・5』」)用次对应点 <i,o^j,{oa,oh (o r oj )xi J 4).1. 答;所求变换式为:2. 壊射幣徑恢{fl^t ~2^1 才J 丰占:\ 貝兀;=+ 2xj - Xy■ pF ; - *T I 4 T a + T 3馬i£变袂式•井末出昭潸ete 旳=0対对应直线的方程2・答:根据公式(4.4),求出逆变换为.曲 i — 3 rj + 2ri —.带;申 oij = — 2,r | + 乂; + 3 J ?J ! o :j :j =—工;-3工;+ 5.工;・ 兀=0的对应直线为:乳+ 3丁; — 5丁;二0・ 3, 求射誓禮换* ftr 卩=心 的不霓点坐拆一3・解:根据公成5.G 列出特征方程:5 - 1P = (L fi - 1 {三重根).将f£ — I 代入不变戌方程组(4. 5)■得rj = 0 - = 0上的点都是不变点■即斗=0是不变点列乂)4.求射屢迎换*的不宜无索・[甘;-4j| - J?阿;-3J-J 血F -孔「Ml4・解.特征方程为勺心二_ 2r/^ =3*i 1)S 十2)(产- 3、= 0p 解得——1 F将特征值代入不变点方程组•得不变点为({hOdi),(bL0)- tl 16*5).不变/(线为:叮一工二十工】二巧一巧=0« 5x( -巧二氛第四章变换群与几何学第五章二次曲线的射影理论习题一—・三点理A«?利A®「同时外切于僚二次曲蜿■琳迹它们也同时内摄于一築二次曲毀5 ■证明:设三点形ABC和A H匕同时外切于一二诜曲线S・如图2-51-有a伶・<r)7Va(/j ■—林* f、Iiflj a (Z J * 厂M f ) K 八‘ U3 * f 二li') * [a' (61 c» ft i )天A (C i B- J" • B ) i所以"气G B. C\ H^7\A((:・"■ m很据二阶线的射影定义.ABC:和A方厂内接于二択ffi线7求由胸卩成肘举对应“三陽的线束叭-- 0 W T!= O 所禰感的二阶曲战的芳思.7.解匕两射影线束可以写为’习题二E写出布利安桑定理的逆定理并加以证明.捉示:利用二级曲线的射影定义.3.给定二阶曲线上去个点’可认产生多少条帕斯卡线?对偶地■对于二红曲纯悄况如何?3-提示二利用州比A,人A,九六平元素的环狀耳列的性质及A,A1A J A^A S A A 4 A fl A s A+A3 A±J%裂示同一选取♦因此已知六点形龍加定磐二“)条怕斯卡线•对偶地I对于:级曲线的z b外切六边形也有60个布利安桑点.4.已打射衫平面上的五个点(无三者共线h利用荫斯卡定理)求作其中一点的切?V4,解:LS 阶曲线s上的卫个点为A. 九,比,试作/h点的切线■如圏2-5-2.作4^ A>x AM5=P IX 14^A)—tj tA,A^PQ = R.则A S R为二阶曲线的切线.5.在内接于圆的曲金三点形AHC欷ABC中、设AB汎Ali^PdiC^BC=Q^CA f x CA^R7证明巴三点携线,5.握示I将三兰点形之顶点扌I#列枕序为AHCAMf 圆为:次曲线■由帕斯卡定理可知F、Q. R三点共线.6T证明柏斯卡定理的逆定理.6.捉示:利用二阶曲线的射澎定义.习题三1.思肴:若_L接从二级曲线出发,如忖君虑极点.概践的槪念及农法?1.捉示,用对偶甌则.可光讨论直线的极点.2.证明定理乳5推论3:囉PA . Pti为二阶曲线妁切线'若其中儿H为切点.则AH为卩点的极IV・2.梃示:用配枫瓯则证明.3.已钿一条直钱〃求作/>关于二阶曲钱舗极点・工捉示匸在p上任収一•点,作它们的极线的交点.4.已知二阶曲线上一点从求作P点的极线.4.捉示『过P任作一直线,作出此直线的极点.5.已知二阶曲钱(C' ):2卅十4T1T;十6丁]工、+ 丁;⑴求点p(1,1717*于(⑴的极氟(2)求直线也=0关于(「)的枫点.5 .答:⑴了斗十2T2+6工、=0:(2> 匕-6-7).6-亲点(5」7)关于二阶曲线:2Xj + 3工;+工;—6J T|工士_2JTJ兀—4工丄工」=0的极线■6-答—门=0.设ABCD是二阶曲线制内接四点形杲对边三点求证 * 处的切线交在直线上、八」丿处的切线也交在YZ 直钱上.7.捉示:设乩匸处的-切线交丁卩,则P的极线& HC\而B('x AD=Xi 所IU X的极线必过卩点+又知对边三点形XVZ是自极的,即X的极线定Y乙所以F在浮1:*同理可证A、D处的切线也交在YZ上.&根据帕斯卡定理证明布利安桑定理.8,证明’设心仏仏&足九是二级曲线Z外班六边形■翌证对顶点的连线人/一A J A『人役共点,设此外切六边形每边的切点为P」凡,珂,卩获巴,P"则巴P;P』斗巴代构成此二阶曲线之内接六心形’市帕斯卡定理知L =HE X F4F4(J W=k/^x卩J J N=儿匕x p.p^三点共线,但卩i巴的极点为A屮巴几的機点足A,所以L的械线是如A「同理的械线圧入的极线是儿比,宙于L、WN北线,故它们的极线丸丄A弋・A 心N A/ A i 共点** f—第六章二次曲线的仿射性质与度量性质。
高等几何教案与课后答案
高等几何教案与课后答案教案章节:第一章绪论教学目标:1. 了解高等几何的研究对象和基本概念。
2. 掌握几何图形的性质和相互关系。
3. 理解几何变换的基本原理。
教学内容:1. 高等几何的研究对象和基本概念。
2. 几何图形的性质和相互关系。
3. 几何变换的基本原理。
教学步骤:1. 引入高等几何的概念,引导学生思考几何图形的性质和相互关系。
2. 讲解几何图形的性质和相互关系,举例说明。
3. 介绍几何变换的基本原理,解释其应用。
教学方法:1. 采用讲授法,系统地讲解高等几何的基本概念和性质。
2. 利用图形和实例,直观地展示几何图形的相互关系。
3. 通过练习题,巩固学生对几何变换的理解。
教学评估:1. 课堂提问,检查学生对高等几何概念的理解。
2. 课后作业,评估学生对几何图形性质和相互关系的掌握。
3. 期中期末考试,全面检验学生对几何变换的应用能力。
课后答案:1. 高等几何是研究几何图形的性质、相互关系和几何变换的学科。
2. 几何图形包括点、线、面及其相关性质。
3. 几何变换包括平移、旋转、反射等,它们可以改变几何图形的形状和位置。
教案章节:第二章直线与平面教学目标:1. 掌握直线的性质和方程。
2. 理解平面的性质和方程。
3. 学会利用直线和平面解决几何问题。
教学内容:1. 直线的性质和方程。
2. 平面的性质和方程。
3. 直线与平面的相互关系。
教学步骤:1. 讲解直线的性质和方程,举例说明。
2. 介绍平面的性质和方程,解释其应用。
3. 分析直线与平面的相互关系,引导学生思考。
教学方法:1. 采用讲授法,系统地讲解直线和平面的性质。
2. 利用图形和实例,直观地展示直线与平面的相互关系。
3. 通过练习题,巩固学生对直线与平面几何问题的解决能力。
教学评估:1. 课堂提问,检查学生对直线性质的理解。
2. 课后作业,评估学生对平面方程的掌握。
3. 期中期末考试,全面检验学生对直线与平面几何问题的解决能力。
课后答案:1. 直线的性质包括方向、斜率、截距等,直线的方程可以表示为y = kx + b。
计量经济学第三版庞浩版课后答案全之欧阳与创编
第二章2.2(1)①对预算收入与全省生产总值的模型,用Eviews阐发结果如下:Dependent Variable: YMethod: Least SquaresDate: 12/03/14 Time: 17:00Sample (adjusted): 1 33Included observations: 33 after adjustmentsVariable Coefficient Std. Error tStatistic Prob.X0.1761240.00407243.256390.0000C154.306339.08196 3.9482740.0004Rsquared0.983702 Mean dependent var902.5148 Adjusted Rsquared0.983177 S.D. dependent var1351.009S.E. of regression175.2325 Akaike info criterion13.22880 Sum squared resid951899.7 Schwarz criterion13.31949Log likelihood216.2751 HannanQuinn criter.13.25931 Fstatistic1871.115 DurbinWatson stat0.100021 Prob(Fstatistic)0.000000②由上可知,模型的参数:斜率系数0.176124,截距为—154.3063③关于财务预算收入与全省生产总值的模型,检验模型的显著性:1)可决系数为0.983702,说明所建模型整体上对样本数据拟合较好。
2)对回归系数的t检验:t(β2)=43.25639>t0.025(31)=2.0395,对斜率系数的显著性检验标明,全省生产总值对财务预算总收入有显著影响。
④用规范形式写出检验结果如下:Y=0.176124X—154.3063(0.004072) (39.08196)t= (43.25639) (3.948274)R2=0.983702 F=1871.115 n=33⑤经济意义是:全省生产总值每增加1亿元,财务预算总收入增加0.176124亿元。
人教版高中数学必修3课后解答答案之欧阳法创编
第一章算法初步时间:2021.03.09 创作:欧阳法1.1算法与程序框图练习(P5)1、算法步骤:第一步,给定一个正实数.第二步,计算以为半径的圆的面积.第三步,得到圆的面积.2、算法步骤:第一步,给定一个大于1的正整数.第二步,令.第三步,用除,等到余数.第四步,判断“”是否成立. 若是,则是的因数;否则,不是的因数.第五步,使的值增加1,仍用表示.第六步,判断“”是否成立. 若是,则结束算法;否则,返回第三步.练习(P19)算法步骤:第一步,给定精确度,令.第二步,取出的到小数点后第位的不足近似值,赋给;取出的到小数点后第位的过剩近似值,赋给.第三步,计算.第四步,若,则得到的近似值为;否则,将的值增加1,仍用表示.返回第二步.第五步,输出.程序框图:习题1.1 A组(P20)1、下面是关于城市居民生活用水收费的问题.为了加强居民的节水意识,某市制订了以下生活用水收费标准:每户每月用水未超过7 m3时,每立方米收费1.0元,并加收0.2元的城市污水处理费;超过7m3的部分,每立方收费1.5元,并加收0.4元的城市污水处理费.设某户每月用水量为 m3,应交纳水费元,那么与之间的函数关系为我们设计一个算法来求上述分段函数的值.算法步骤:第一步:输入用户每月用水量.第二步:判断输入的是否不超过7.若是,则计算;若不是,则计算.第三步:输出用户应交纳的水费.程序框图:2、算法步骤:第一步,令i=1,S=0.第二步:若i≤100成立,则执行第三步;否则输出S.第三步:计算S=S+i2.第四步:i= i+1,返回第二步.程序框图:3、算法步骤:第一步,输入人数x,设收取的卫生费为m元.第二步:判断x与3的大小. 若x>3,则费用为;若x≤3,则费用为.第三步:输出.程序框图:B组 1、算法步骤:第一步,输入..第二步:计算.第三步:计算.第四步:输出.程序框图:2、算法步骤:第一步,令n=1第二步:输入一个成绩r,判断r与6.8的大小. 若r≥6.8,则执行下一步;若r<6.8,则输出r,并执行下一步.第三步:使n的值增加1,仍用n 表示.第四步:判断n与成绩个数9的大小. 若n≤9,则返回第二步;INPUT “a ,b=”;a ,b sum=a+b diff=a -bpro=a*b若n >9,则结束算法.程序框图:说明:本题在循环结构的循环体中包含了一个条件结构.1.2基本算法语句练习(P24)1、程序: INPUT “F=”;FC=(F -32)*5/9PRINT “C=”;C3、程序: 练习(P29)1、程序:2、本程序的运行过程为:输入整数x . 若x 是满足9<x <100的两位整数,则先取出x 的十位,记作a ,再取出x 的个位,记作b ,把a ,b 调换位置,分别作两位数的个位数与十位数,然后输出新的两位数. 如输入25,则输出52.3、程序:INPUT “a ,b ,c=”;a ,b ,cp=(a+b+c)/2s=SQR(p*(p -a) *(p -b) *(p -c)) INPUT “a ,b ,c=”;a ,b ,cIF a+b>c AND a+c>b AND b+c>a THENPRINT “Yes.”ELSE INPUT “Please input an integer :”;aIF a MOD 2=0 THENPRINT “Even.”ELSE 4、程序:4练习(P32)2、程序:1INPUT “n=”;n i=1 sum=0 WHILE i<=nsum=sum+(i+1)/i习题1.2 A 组(P33)1、23、程序:习题1.2 B 组(P33) 1、程序:2n=1 p=1000 WHILE n<=7 p=p*(1+0.5) n=n+1INPUT “a ,b ,c=”;a ,b ,c INPUT “r ,s ,t=”;r ,s ,t d=a*s -r*b IF d≠0 THEN x=(s*c -b*t)/d y=(a*t -r*c)/d INPUT “a ,b ,h=”;a ,b ,h p=a+b S=p*h/23 4、程序:1.3算法案例 练习(P45)1、(1)45; (2)98; (3)24; (4)17.2、2881.75.3、,INPUT “a=”;a INPUT “n=”;n tn=0 sn=0 i=1WHILE i<=n tn=tn+a sn=sn+tnINPUT “x=”;x IF x<1 THEN y=x ELSE IF x<10 THEN y=2*x -1 ELSE习题1.3 A组(P48)1、(1)57;(2)55.2、21324.3、(1)104;(2)(3)1278;(4).4、习题1.3 B组(P48)1、算法步骤:第一步,令,,,,.第二步,输入.第三步,判断是否. 若是,则,并执行第六步.第四步,判断是否. 若是,则,并执行第六步.第五步,判断是否. 若是,则,并执行第六步.第六步,. 判断是否. 若是,则返回第二步.第七步,输出成绩分别在区间的人数.2、如“出入相补”——计算面积的方法,“垛积术”——高阶等差数列的求和方法,等等.第一章复习参考题A组(P50)1、(1)程序框图:1、(2)程序框图:2、见习题1.2 B组第1题解答. 34、程序框图:程序:51)向下的运动共经过约10次着地后反弹约)全程共经过约299.609 mINPUT “n=”;ni=1 S=0 WHILE i<=n S=S+1/i i=i+1 WEND PRINT “S=”;S END第一章 复习参考题B 组(P35)1、 2、3、算法步骤:第一步,输入一个正整数和它的位数.第二步,判断是偶数,令;如果是奇数,令.第三步,令 第四步,判断的第位与第位上的数字是否相等. 若是,则使的值增加1,仍用表示;否则,不是回文数,结束算法.第五步,判断“”是否成立. 若是,则是回文数,结束算法;否则,返回第四步.第二章统计21随机抽样 练习(P57)1、.抽样调查和普查的比较见下表:INPUT “n=”;n IF n MOD 7=0 THENPRINT “Sunday”END IFIF n MOD 7=1 THEN PRINT “Monday”END IFIF n MOD 7=2 THENPRINT “Tuesday” END IFIF n MOD 7=3 THENPRINT “Wednesday” END IFIF n MOD 7=4 THEN PRINT “Thursday” END IFIF n MOD 7=5 THENPRINT “Friday”END IFIF n MOD 7=6 THENPRINT “Saturday” END IF END抽样调查的好处是可以节省人力、物力和财力,可能出现的问题是推断的结果与实际情况之间有误差. 如抽取的部分个体不能很好地代表总体,那么我们分析出的结果就会有偏差.2、(1)抽签法:对高一年级全体学生450人进行编号,将学生的名字和对应的编号分别写在卡片上,并把450张卡片放入一个容器中,搅拌均匀后,每次不放回地从中抽取一张卡片,连续抽取50次,就得到参加这项活动的50名学生的编号.(2)随机数表法:第一步,先将450名学生编号,可以编为000,001, (449)第二步,在随机数表中任选一个数. 例如选出第7行第5列的数1(为了便于说明,下面摘取了附表的第6~10行).16 22 77 94 39 49 54 43 54 82 17 37 93 23 78 87 35 20 96 43 84 26 34 91 6484 42 17 53 31 57 24 55 06 88 77 04 74 47 67 21 76 33 50 25 83 92 12 06 7663 01 63 78 59 16 95 55 67 19 98 10 50 71 75 12 86 73 58 07 44 39 52 38 7933 21 12 34 29 78 64 56 07 82 52 42 07 44 38 15 51 00 13 42 99 66 02 79 5457 60 86 32 44 09 47 27 96 54 49 17 46 09 62 90 52 84 77 27 08 02 73 43 28第三步,从选定的数1开始向右读,得到一个三位数175,由于175<450,说明号码175在总体内,将它取出;继续向右读,得到331,由于331<450,说明号码331在总体内,将它取出;继续向右读,得到572,由于572>450,将它去掉. 按照这种方法继续向右读,依次下去,直到样本的50个号码全部取出,这样我们就得到了参加这项活动的50名学生. 3、用抽签法抽取样本的例子:为检查某班同学的学习情况,可用抽签法取出容量为5的样本. 用随机数表法抽取样本的例子:部分学生的心理调查等.抽签法能够保证总体中任何个体都以相同的机会被选到样本之中,因此保证了样本的代表性.4、与抽签法相比,随机数表法抽取样本的主要优点是节省人力、物力、财力和时间,缺点是所产生的样本不是真正的简单样本.练习(P59)1、系统抽样的优点是:(1)简便易行;(2)当对总体结构有一定了解时,充分利用已有信息对总体中的个体进行排队后再抽样,可提高抽样调查;(3)当总体中的个体存在一种自然编号(如生产线上产品的质量控制)时,便于施行系统抽样法.系统抽样的缺点是:在不了解样本总体的情况下,所抽出的样本可能有一定的偏差.2、(1)对这118名教师进行编号;(2)计算间隔,由于不是一个整数,我们从总体中随机剔除6个样本,再来进行系统抽样. 例如我们随机剔除了3,46,59,57,112,93这6名教师,然后再对剩余的112位教师进行编号,计算间隔;(3)在1~7之间随机选取一个数字,例如选5,将5加上间隔7得到第2个个体编号12,再加7得到第3个个体编号19,依次进行下去,直到获取整个样本.3、由于身份证(18位)的倒数第二位表示性别,后三位是632的观众全部都是男性,所以这样获得的调查结果不能代表女性观众的意见,因此缺乏代表性.练习(P62)1、略2、这种说法有道理,因为一个好的抽样方法应该能够保证随着样本容量的增加,抽样调查结果会接近于普查的结果. 因此只要根据误差的要求取相应容量的样本进行调查,就可以节省人力、物力和财力.3、可以用分层抽样的方法进行抽样. 将麦田按照气候、土质、田间管理水平的不同而分成不同的层,然后按照各层麦田的面积比例及样本容量确定各层抽取的面积,再在各层中抽取个体(这里的个体是单位面积的一块地).习题2.1 A组(P63)1、产生随机样本的困难:(1)很难确定总体中所有个体的数目,例如调查对象是生产线上生产的产品.(2)成本高,要产生真正的简单随机样本,需要利用类似于抽签法中的抽签试验来产生非负整值随机数.(3)耗时多,产生非负整数值随机数和从总体中挑选出随机数所对的个体都需要时间.2、调查的总体是所有可能看电视的人群.学生A的设计方案考虑的人数是:上网而且登录某网址的人群,那些不能上网的人群,或者不登录某网址的人群就被排除在外了. 因此A方案抽取的样本的代表性差.学生B的设计方案考虑的人群是小区内的居民,有一定的片面性. 因此B方案抽取的样本的代表性差.学生C的设计方案考虑的人群是那些有电话的人群,也有一定的片面性. 因此C方案抽取的样本的代表性.所以,这三种调查方案都有一定的片面性,不能得到比较准确的收视率.3、(1)因为各个年级学习任务和学生年龄等因素的不同,影响各年级学生对学生活动的看法,所以按年级分层进行抽样调查,可以得到更有代表性的样本.(2)在抽样的过程中可能遇到的问题如敏感性问题:有些学生担心提出意见对自己不利;又如不响应问题:由于种种原因,有些学生不能发表意见;等等.(3)前面列举的两个问题都可能导致样本的统计推断结果的误差.(4)为解决敏感性问题,可以采用阅读与思考栏目“如何得到敏感性问题的诚实反应”中的方法设计调查问卷;为解决不响应问题,可以事先向全体学生宣传调查的意义,并安排专人负责发放和催收调查问卷,最大程度地回收有效调查问卷.4、将每一天看作一个个体,则总体由365天组成. 假设要抽取50个样本,将一年中的各天按先后次序编号为0~364天用简单随机抽样设计方案:制作365个号签,依次标上0~364. 将号签放到容器内充分搅拌均匀,从容器中任意不放回取出50个号签. 以签上的号码所对应的那些天构成样本,检测样本中所有个体的空气质量.用系统抽样设计抽样方案:先通过简单随机抽样方法从365天中随机抽出15天,再把剩下的350天重新按先后次序编号为0~349. 制作7个分别标有0~7的号签,放在容器中充分搅拌均匀. 从容器中任意取出一个号签,设取出的号签的编号为,则编号为所对应的那些天构成样本,检测样本中所有个体的空气质量.显然,系统抽样方案抽出的样本中个体在一年中排列的次序更规律,因此更好实施,更受方案的实施者欢迎.5、田径队运动员的总人数是(人),要得到28人的样本,占总体的比例为.于是,应该在男运动员中随机抽取(人),在女运动员中随机抽取(人).这样我们就可以得到一个容量为28的样本.6、以10为分段间隔,首先在1~10的编号中,随机地选取一个编号,如6,那么这个获奖者奖品的编号是:6,16,26,36,46.7、说明:可以按年级分层抽样的方法设计方案.习题2.1 B组(P64)1、说明:可以按年级分层抽样的方法设计方案,调查问卷由学生所关心的问题组成.例如:(1)你最喜欢哪一门课程?(2)你每月的零花钱平均是多少?(3)你最喜欢看《新闻联播》吗?(4)你每天早上几点起床?(5)你每天晚上几点睡觉?要根据统计的结果和具体的情况解释结论,主要从引起结论的可能原因及结论本身含义来解释.2、说明:这是一个开放性的题目,没有一个标准的答案.2.2用样本估计总体练习(P71)1、说明:由于样本的极差为,取组距为,将样本分为10组. 可以按照书上的方法制作频率分布表、频率分布直观图和频率折线图.2、说明:此题目属于应用题,没有标准的答案.3、茎叶图为:由该图可以看出30名工人的日加工零件个数稳定在120件左右.练习(P74)这里应该采用平均数来表示每一个国家项目的平均金额,因为它能反应所有项目的信息. 但平均数会受到极端数据2000万元的影响,所以大多数项目投资金额都和平均数相差比较大.练习(P79) 茎 叶 10 7 8 11 0 2 2 2 3 6 6 6 7 7 8 12 0 0 1 2 2 3 4 4 6 6 7 8 8 13 0 2 3 41、甲乙两种水稻6年平均产量的平均数都是900,但甲的标准差约等于23.8,乙的标准差约等于41.6,所以甲的产量比较稳定.2、(1)平均重量,标准差. (2)重量位于之间有14袋白糖,所占的百分比约为%.3、(1)略. (2)平均分,中位数为,标准差.这些数据表明这些国家男性患该病的平均死亡率约为19.25,有一半国家的死亡率不超过15.2,说明存在大的异常数据,值得关注. 这些异常数据使标准差增大.习题2.2 A 组(P81)1、(1)茎叶图为: 茎叶 (2)汞含量分布偏向于大于1.00 ppm 的方向,即多数鱼的汞含量分布在大于1.00 ppm 的区域. (3)不一定. 因为我们不知道各批鱼的汞含量分布是否都和这批鱼相同. 即使各批鱼的汞含量分布相同,上面的数据只能为这个分布作出估计,不能保证平均汞含量大于1.00 ppm. (4)样本平均数,样本标准差. (5)有28条鱼的汞含量在平均数与2倍标准差的和(差)的范围内.0.07 0.24 0.39 0.54 0.61 0.7 22、作图略. 从图形分析,发现这批棉花的纤维长度不是特别均匀,有一部分的纤维长度比较短,所以在这批棉花中混进了一些次品.3、说明:应该查阅一下这所大学的其他招生信息,例如平均数信息、最低录取分数线信息等. 尽管该校友的分数位于中位数之下,而中位数本身并不能提供更多录取分数分布的信息.在已知最低录取分数线的情况下,很容易做出判断;在已知平均数小于中位数很多,则说明最低录取分数线较低,可以推荐该校友报考这所大学,否则还要获取其他的信息(如标准差的信息)来做出判断.4、说明:(1)对,从平均数的角度考虑;(2)对,从标准差的角度考虑;(3)对,从标准差的角度考虑;(4)对,从平均数和标准差的角度考虑;5、(1)不能. 因为平均收入和最高收入相差太多,说明高收入的职工只占极少数. 现在已知知道至少有一个人的收入为万元,那么其他员工的收入之和为(万元)每人平均只有1.53. 如果再有几个收入特别高者,那么初进公司的员工的收入将会很低.(2)不能,要看中位数是多少.(3)能,可以确定有%的员工工资在1万元以上,其中%的员工工资在3万元以上.(4)收入的中位数大约是2万. 因为有年收入100万这个极端值的影响,使得年平均收入比中位数高许多.6、甲机床的平均数,标准差;乙机床的平均数,标准差. 比较发现乙机床的平均数小而且标准差也比较小,说明乙机床生产出的次品比甲机床少,而且更为稳定,所以乙机床的性能较好.7、(1)总体平均数为199.75,总体标准差为95.26.(2)可以使用抓阄法进行抽样. 样本平均数和标准差的计算结果和抽取到的样本有关.(3)(4)略习题2.2 B组(P82)1、(1)由于测试的标准差小,所以测试结果更稳定,所以该测试做得更好一些.(2)由于测出的值偏高,有利于增强队员的信心,所以应该选择测试.(3)将10名运动员的测试成绩标准化,得到如下的数据:A B C D E F G H I J0.00 1.50 2.00 -1.00 -1.50 -2.00 2.50 2.00 0.50 -0.50-1.33 1.33 1.33 -2 -2.33 -1.33 1.67 -1.67 -1.33 -1.67 从两次测试的标准化成绩来看,运动员G的平均体能最强,运动员E的平均体能最弱.2、说明:此题需要在本节开始的时候就布置,先让学生分头收集数据,汇总所收集的数据才能完成题目.2.3变量间的相关关系练习(P85)1、从已经掌握的知识来看,吸烟会损害身体的健康. 但除了吸烟之外,还有许多其他的随机因素影响身体健康,人体健康是很多因素共同作用的结果. 我们可以找到长寿的吸烟者,也更容易发现由于吸烟而引发的患病者,所以吸烟不一定引起健康问题. 但吸烟引起健康问题的可能性大,因此“健康问题不一定是由吸烟引起的,所以可以吸烟”的说法是不对的.2、从现在我们掌握的知识来看,没有发现根据说明“天鹅能够带来孩子”,完全可能存在既能吸引天鹅和又使婴儿出生率高的第3个因素(例如独特的环境因素),即天鹅与婴儿出生率之间没有直接的关系,因此“天鹅能够带来孩子”的结论不可靠.而要证实此结论是否可靠,可以通过试验来进行. 相同的环境下将居民随机地分为两组,一组居民和天鹅一起生活(比如家中都饲养天鹅),而另一组居民的附近不让天鹅活动,对比两组居民的出生率是否相同.练习(P92)1、当时,,这个值与实际卖出的热饮杯数150不符,原因是:线性回归方程中的截距和斜率都是通过样本估计的,存在随机误差,这种误差可以导致预测结果的偏差;即使截距和斜率的估计没有误差,也不可能百分之百地保证对应于,预报值能够等于实际值. 事实上:. (这里是随机变量,是引起预报值与真实值之间的误差的原因之一,其大小取决于的方差.)2、数据的散点图为:从这个散点图中可以看出,鸟的种类数与海拔高度应该为正相关(事实上相关系数为0.793). 但是从散点图的分布特点来看,它们之间的线性相关性不强.习题2.3 A组(P94)1、教师的水平与学生的学习成绩呈正相关关系. 又如,“水涨船高”“登高望远”等.2、(3)基本成正相关关系,即食品所含热量越高,口味越好.(4)因为当回归直线上方的食品与下方的食品所含热量相同时,其口味更好.3、(1)散点图如下:(2)回归方程为:.(3)加工零件的个数与所花费的时间呈正线性相关关系.4、(1)散点图为:(2)回归方程为:.(3)由回归方程知,城镇居民的消费水平和工资收入之间呈正线性相关关系,即工资收入水平越高,城镇居民的消费水平越高.习题2.3 B组(P95)1、(1)散点图如下:(2)回归方程为:.(3)如果这座城市居民的年收入达到40亿元,估计这种商品的销售额为(万元).2、说明:本题是一个讨论题,按照教科书中的方法逐步展开即可.第二章复习参考题A组(P100)1、.2、(1)该组的数据个数,该组的频数除以全体数据总数;(2).3、(1)这个结果只能说明城市中光顾这家服务连锁店的人比其他人较少倾向于选择咖啡色,因为光顾连锁店的人使一种方便样本,不能代表城市其他人群的想法.(2)这两种调查的差异是由样本的代表性所引起的. 因为城市的调查结果来自于该市光顾这家服装连锁店的人群,这个样本不能很好地代表全国民众的观点.4、说明:这是一个敏感性问题,可以模仿阅读与思考栏目“如何得到敏感性问题的诚实反应”来设计提问方法.5、表略. 可以估计出句子中所含单词的分布,以及与该分布有关的数字特征,如平均数、标准差等.6、(1)可以用样本标准差来度量每一组成员的相似性,样本标准差越小,相似程度越高.(2)组的样本标准差为,组的样本标准差为. 由于专业裁判给分更符合专业规则,相似程度应该高,因此组更像是由专业人士组成的.7、(1)中位数为182.5,平均数为217.1875.(2)这两种数字特征不同的主要原因是,430比其他的数据大得多,应该查找430是否由某种错误而产生的. 如果这个大数据的采集正确,用平均数更合适,因为它利用了所有数据的信息;如果这个大数据的采集不正确,用中位数更合适,因为它不受极端值的影响,稳定性好.8、(1)略.(2)系数0.42是回归直线的斜率,意味着:对于农村考生,每年的入学率平均增长0.42%.(3)城市的大学入学率年增长最快.说明:(4)可以模仿(1)(2)(3)的方法分析数据.第二章复习参考题B组(P101)分组频数频率累计频率2 0.04 0.041、频率分布如下表:从表中看出当把指标定为17.46千元 时,月65%的推销员经过努力才能完成销售指标.2、(1)数据的散点图如下:(2)用表示身高,表示年龄,则数据的回归方程为.(3)在该例中,斜率6.317表示孩子在一年中增加的高度.(4)每年身高的增长数略. 3~16岁的身高年均 4 0.08 0.12 3 0.06 0.18 8 0.16 0.34 13 0.26 0.6 11 0.22 0.82 3 0.06 0.88 3 0.06 0.94 1 0.02 0.96 2 0.04 1增长约为6.323 cm.(5)斜率与每年平均增长的身高之间之间近似相等.第三章概率3.1随机事件的概率练习(P113)1、(1)试验可能出现的结果有3个,两个均为正面、一个正面一个反面、两个均为反面.(2)通过与其他同学的结果汇总,可以发现出现一个正面一个反面的次数最多,大约在50次左右,两个均为正面的次数和两个均为反面的次数在25次左右. 由此可以估计出现一个正面一个反面的概率为0.50,出现两个均为正面的概率和两个均为反面的概率均为0.25.2、略3、(1)例如:北京四月飞雪;某人花两元钱买福利彩票,中了特等奖;同时抛10枚硬币,10枚都正面朝上.(2)例如:在王府井大街问路时,碰到会说中文的人;去烤鸭店吃饭的顾客点烤鸭;在1~1000的自然数任选一个数,选到的数大于1.练习(P118)1、说明:例如,计算机键盘上各键盘的安排,公交线路及其各站点的安排,抽奖活动中各奖项的安排等,其中都用到了概率. 学生可能举出各种各样的例子,关键是引导他们正确分析例子中蕴涵的概率思想.2、通过掷硬币或抽签的方法,决定谁先发球,这两种方法都是公平的. 而猜拳的方法不太公平,因为出拳有时间差,个人反应也不一样.3、这种说法是错误的. 因为掷骰子一次得到2是一个随机事件,在一次试验中它可能发生也可能不发生. 掷6次骰子就是做6次试验,每次试验的结果都是随机的,可能出现2也可能不出现2,所以6次试验中有可能一次2都不出现,也可能出现1次,2次,…,6次.练习(P121)1、0.72、0.6153、0.44、5、习题3.1 A组(P123)1、.2、(1)0;(2)0.2;(3)1.3、(1);(2);(3).4、略5、0.136、说明:本题是想通过试验的方法,得到这种摸球游戏对先摸者和后摸者是公平的结论. 最好把全班同学的结果汇总,根据两个事件出现的频率比较近,猜测在第一种情况下摸到红球的概率为,在第二种下也为. 第4次摸到红球的频率与第1次摸到红球的频率应该相差不远,因为不论哪种情况,第4次和第1次摸到红球的概率都是.习题3.1 B组(P124)1、.2、略. 说明:本题是为了学生根据实际数据作出一些推断. 一般我们假定每个人的生日在12个月中哪一个月是等可能的,这个假定是否成立,引导学生通过收集的数据作出初步的推断.3.2古典概率练习(P130)1、.2、.3、.练习(P133)1、,.2、(1);(2);(3);(4);(5);(6);(7);(8)1.说明:模拟的方法有两种.(1)把1~52个自然数分别与每张牌对应,再用计算机做模拟试验.(2)让计算机分两次产生两个随机数,第一次产生1~4的随机数,代表4个花色;第二次产生1~13的随机数,代表牌号.3、(1)不可能事件,概率为0;(2)随机事件,概率为;(3)必然事件,概率为1;(4)让计算机产生1~9的随机数,1~4代表白球,5~9代表黑球.4、(1);(2)略;(3)应该相差不大,但会有差异. 存在差异的主要原因是随机事件在每次试验中是否发生是随机的,但在200次试验中,该事件发生的次数又是有规律的,所以一般情况下所得的频率与概率相差不大.习题3.2 A组(P133)1、游戏1:取红球与取白球的概率都为,因此规则是公平的.游戏2:取两球同色的概率为,异色的概率为,因此规则是不公平的.游戏3:取两球同色的概率为,异色的概率为,因此规则是公平的.2、第一位可以是1~9这9个数字中的一个,第二位可以是0~9这10个数字中的一个,所以(1);(2);(3)3、(1)0.52;(2)0.18.4、(1);(2);(3);(4).5、(1);(2).6、(1);(2);(3).习题3.2 B组(P134)1、(1);(2).2、(1);(2);(3).说明:(3)先计算该事件的对立事件发生的概率会比较简单.3、具体步骤如下:①建立概率模型. 首先要模拟每个人的出生月份,可用1,2,…,11,12表示月份,用产生取整数值的随机数的办法,随机产生1~12之间的随机数. 由于模拟的对象是一个有10个人的集体,故把连续产生的10个随机数作为一组模拟结果,可模拟产生100组这样的结果.②进行模拟试验. 可用计算器或计算机进行模拟试验.如使用Excel软件,可参看教科书125页的步骤,下图是模拟的结果:。
高考数学专题立体几何专题之欧阳歌谷创编
专题三立体几何专题欧阳歌谷(2021.02.01)【命题趋向】高考对空间想象能力的考查集中体现在立体几何试题上,着重考查空间点、线、面的位置关系的判断及空间角等几何量的计算.既有以选择题、填空题形式出现的试题,也有以解答题形式出现的试题.选择题、填空题大多考查概念辨析、位置关系探究、空间几何量的简单计算求解,考查画图、识图、用图的能力;解答题一般以简单几何体为载体,考查直线与直线、直线与平面、平面与平面的位置关系,以及空间几何量的求解问题,综合考查空间想象能力、推理论证能力和运算求解能力.试题在突出对空间想象能力考查的同时,关注对平行、垂直关系的探究,关注对条件或结论不完备情形下的开放性问题的探究.【考点透析】立体几何主要考点是柱、锥、台、球及其简单组合体的结构特征、三视图、直观图,表面积体积的计算,空间点、直线、平面的位置关系判断与证明,空间向量在平行、垂直关系证明中的应用,空间向量在计算空间角中的应用等.【例题解析】题型1 空间几何体的三视图以及面积和体积计算例1某几何体的一条棱长为7,在该几何体的正视图中,这条棱的投影是长为6的线段,在该几何体的侧视图与俯视图中,这条棱的投影分别是长为a和b的线段,则a b的最大值为A . 22B . 32C . 4D . 52分析:想像投影方式,将问题归结到一个具体的空间几何体中解决.解析:结合长方体的对角线在三个面的投影来理解计算,如图设长方体的高宽高分别为,,m n k ,由题意得2227m n k ++=,226m k +=1n ⇒=,21k a +=,21m b +=,所以22(1)(1)6a b -+-=228a b ⇒+=,22222()282816a b a ab b ab a b +=++=+≤++=∴4a b ⇒+≤当且仅当2a b ==时取等号.点评:本题是高考中考查三视图的试题中难度最大的一个,我们通过移动三个试图把问题归结为长方体的一条体对角线在三个面上的射影,使问题获得了圆满的解决.例2下图是一个几何体的三视图,根据图中数据,可得该几何体的表面积是A .9πB .10πC .11πD .12π分析:想像、还原这个空间几何体的构成,利用有关的计算公式解答.解析:这个空间几何体是由球和圆柱组成的,圆柱的底面半径是1,母线长是3,球的半径是1,故其表面积是22213214112ππππ⨯⨯+⨯⨯+⨯=,答案D .点评:由三视图还原空间几何体的真实形状时要注意“高平齐、宽相等、长对正”的规则.例3已知一个正三棱锥P ABC -的主视图如图所示,若32AC BC ==, 6PC =,则此正三棱锥的全面积为_________.分析:正三棱锥是顶点在底面上的射影是底面正三角形的中心的三棱锥,根据这个主试图知道,主试图的投影方向是面对着这个正三棱锥的一条侧棱,并且和底面三角形的一条边垂直,这样就知道了这个三棱锥的各个棱长.解析:这个正三棱锥的底面边长是3、高是6,故底面正三角形的中心到一个顶点的距离是233332⨯⨯=,故这个正三棱锥的侧棱长是22363+=,由此知道这个正三棱锥的侧面也是边长为3的正三角形,故其全面积是2343934⨯⨯=,答案93.点评:由空间几何体的一个视图再加上其他条件下给出的问题,对给出的这“一个视图”要仔细辨别投影方向,这是三视图问题的核心.题型2 空间点、线、面位置关系的判断例4已知n m ,是两条不同的直线,βα,为两个不同的平面,有下列四个命题:①若βα⊥⊥n m ,,m n ⊥,则βα⊥;②若n m n m ⊥,//,//βα,则βα//;③若n m n m ⊥⊥,//,βα,则βα//;④若βαβα//,//,n m ⊥,则n m ⊥.其中正确的命题是(填上所有正确命题的序号)_______________.分析:根据空间线面位置关系的判定定理和性质定理逐个作出判断.解析:我们借助于长方体模型解决.①中过直线,m n 作平面γ,可以得到平面,αβ所成的二面角为直二面角,如图(1),故βα⊥①正确;②的反例如图(2);③的反例如图(3);④中由,m ααβ⊥可得m β⊥,过n 作平面γ可得n 与交线g 平行,由于m g ⊥,故m n ⊥.答案①④.点评:新课标的教材对立体几何处理的基本出发点之一就是使用长方体模型,本题就是通过这个模型中提供的空间线面位置关系解决的,在解答立体几何的选择题、填空题时合理地使用这个模型是很有帮助的.例5设,m n 是两条不同的直线,,αβ是两个不同的平面,下列命题正确的是A .若,,//m n m n αβ⊥⊥,则//αβB .若//,//,//,m n αβαβ则//m nC .若,//,//m n αβαβ⊥,则m n ⊥D .若//,//,//,m n m n αβ则//αβ分析:借助模型、根据线面位置关系的有关定理逐个进行分析判断.解析:对于//αβ,结合,//,m n αβ⊥则可推得m n ⊥.答案C .点评:从上面几个例子可以看出,这类空间线面位置关系的判断类试题虽然形式上各异,但本质上都是以空间想象、空间线面位置关系的判定和性质定理为目标设计的,主要是考查考生的空间想象能力和对线面位置关系的判定和性质定理掌握的程度.题型 3 空间平行与垂直关系的证明、空间几何体的有关计算(文科解答题的主要题型)例6.如图所示,在棱长为2的正方体1111ABCD A B C D -中,E 、F 分别为1DD 、DB 的中点.(1)求证:EF //平面11ABC D ;(2)求证:1EF B C ⊥;(3)求三棱锥EFC B V -1的体积.分析:第一问就是找平行线,最明显的就是1EF BD ;第二问转化为线面垂直进行证明;第三问采用三棱锥的等积变换解决.解析:(1)连结1BD ,如图,在B DD 1∆中,E 、F 分别为1D D ,DB 的中点,则111111////EF D BD B ABC D EF EF ABC D ⎫⎪⊂⇒⎬⎪⊄⎭平面平面平面11ABC D .(2)(3)CF ⊥平面11BDD B ,1CF EFB ∴⊥平面且2CF BF ==,1132EF BD ==,222211(2)26B F BF BB =+=+=,∴22211EF B F B E += 即190EFB ∠=,11113B EFC C B EF B EF V V S CF --∆∴==⋅⋅=11132EF B F CF ⨯⋅⋅⋅=11362132⨯⨯⨯⨯= .点评:空间线面位置关系证明的基本思想是转化,根据线面平行、垂直关系的判定和性质,进行相互之间的转化,如本题第二问是证明线线垂直,但问题不能只局限在线上,要把相关的线归结到某个平面上(或是把与这些线平行的直线归结到某个平面上,通过证明线面的垂直达到证明线线垂直的目的,但证明线面垂直又得借助于线线垂直,在不断的相互转化中达到最终目的.立体几何中的三棱柱类似于平面几何中的三角形,可以通过“换顶点”实行等体积变换,这也是求点面距离的基本方法之一.例7.在四棱锥P ABCD -中,90ABC ACD ∠=∠=,60BAC CAD ∠=∠=,PA ⊥平面ABCD ,E 为PD 的中点,22PA AB ==.(1)求四棱锥P ABCD -的体积V ;(2)若F 为PC 的中点,求证PC ⊥平面AEF ;(3)求证CE ∥平面PAB .分析:第一问只要求出底面积和高即可;第二问的线面垂直通过线线垂直进行证明;第三问的线面平行即可以通过证明线线平行、利用线面平行的判定定理解决,也可以通过证明面面平行解决,即通过证明直线CE 所在的一个平面和平面PAB 的平行解决.解析:(1)在ABC ∆Rt 中,1,60AB BAC =∠=,∴3BC =,2AC =.在ACD Rt Δ中,2,60AC ACD =∠=,∴23,4CD AD ==.∴1122ABCD S AB BC AC CD =⋅+⋅115132233222=⨯⨯+⨯⨯=.则155323323V =⨯⨯=. (2)∵PA CA =,F 为PC 的中点,∴AF PC ⊥.∵PA ⊥平面ABCD ,∴PA CD ⊥,∵AC CD ⊥,PA AC A =,∴CD ⊥平面PAC ,∴CD PC ⊥.∵E 为PD 中点,F 为PC 中点,∴EF ∥CD ,则EF CD ⊥,∵AF EF F =,∴PC ⊥平面AEF .(3)证法一:取AD 中点M ,连,EM CM .则EM ∥PA ,∵EM ⊄平面PAB ,PA ⊂平面PAB ,∴EM ∥平面PAB .在ACD ∆Rt 中,60CAD ∠=,2AC AM ==,∴60ACM ∠=.而60BAC ∠=,∴MC ∥AB .∵MC ⊄平面PAB ,AB ⊂平面PAB ,∴MC ∥平面PAB .∵EM MC M =,∴平面EMC ∥平面PAB .∵EC ⊂平面EMC ,∴EC ∥平面PAB . 证法二:延长,DC AB ,设它们交于点N ,连PN .∵60NAC DAC ∠=∠=,AC CD ⊥,∴C 为ND 的中点. ∵E 为PD 中点,∴EC ∥PN .∵EC ⊄平面PAB ,PN ⊂平面PAB ,∴EC ∥平面PAB .点评:新课标高考对立体几何与大纲的高考有了诸多的变化.一个方面增加了空间几何体的三视图、表面积和体积计算,拓展了命题空间;另一方面删除了三垂线定理、删除了凸多面体的概念、正多面体的概念与性质、球的性质与球面距离,删除了空间向量,这就给立体几何的试题加了诸多的枷锁,由于这个原因课标高考文科的立体几何解答题一般就是空间几何体的体积和表面积的计算、空间线面位置关系的证明(主要是平行与垂直). 题型4 空间向量在立体几何中的应用例8.如图,在棱长为2的正方体1111ABCD A B C D -中,E F 、分别为11A D 和1CC 的中点.(1)求证:EF ∥平面1ACD ;(2)求异面直线EF 与AB 所成的角的余弦值;(3)在棱1BB 上是否存在一点P ,使得二面角P AC P --的大小为30?若存在,求出BP 的长;若不存在,请说明理由.【解析】解法一:如图分别以1,,DA DC DD 所在的直线为x 轴、y 轴、z 轴建立空间直角坐标系D xyz -,由已知得()0,0,0D 、()2,0,0A 、()2,2,0B 、()0,2,0C 、()12,2,2B 、()10,0,2D ()1,0,2E 、、()0,2,1F .(1)取1AD 中点G ,则()1,0,1G ,()1,2,1CG =-,又()1,2,1EF =--,由EF CG =-,∴EF 与CG 共线.从而EF ∥CG ,∵CG ⊂平面1ACD , EF ⊄平面1ACD ,∴EF ∥平面1ACD .(2)∵()0,2,0AB =, 6cos ,3||||26EF AB EF AB EF AB ⋅===⋅ ∴异面直线EF 与AB 所成角的余弦值为36.(3)假设满足条件的点P 存在,可设点()2,2,P t (02t <≤),平面ACP 的一个法向量为(),,n x y z =,则0,0.n ACn AP⎧⋅=⎪⎨⋅=⎪⎩∵()0,2,AP t=()2,2,0AC=-,∴220,20,x yy tz-+=⎧⎨+=⎩取2(1,1,)nt=-.易知平面ABC的一个法向量1(0,0,2)BB =,依题意知,1,30BB n =或150,∴14||cos,BB N-==,即22434(2)4t t=+,解得3t=∵(0,2]3,∴在棱1BB上存在一点P,当BP的长为3面角P AC B--的大小为30.解法二:(1)同解法一知()1,2,1EF=--,()12,0,2AD=-,()2,2,0AC=-,∴112EF AC AD=-,∴EF、AC、1AD共面.又∵EF⊄平面1ACD,∴EF∥平面1ACD.(2)、(3)同解法一.解法三:易知平面1ACD的一个法向量是()12,2,2DB=.又∵()1,2,1EF=--,由1EF DB⋅=·,∴1EF DB⊥,而EF⊄平面1ACD,∴EF∥平面1ACD.(2)、(3)同解法一.点评:本题主要考查直线与直线、直线与平面的位置关系、二面角的概念等基础知识;考查空间想像能力、推理论证能力和探索问题、解决问题的能力.利用空间向量证明线面平行的方法基本上就是本题给出的三种,一是证明直线的方向向量和平面内的一条直线的方向向量共线,二是证明直线的方向向量和平面内的两个不共线的向量共面、根据共面向量定理作出结论;三是证明直线的方向向量与平面的一个法向量垂直.例9已知几何体A BCED -的三视图如图所示,其中俯视图和侧视图都是腰长为4的等腰直角三角形,正视图为直角梯形.(1)求异面直线DE 与AB 所成角的余弦值;(2)求二面角A ED B --的正弦值;(3)求此几何体的体积V 的大小.【解析】(1)取EC 的中点是F ,连结BF ,则BF DE ,∴FBA ∠或其补角即为异面直线DE 与AB 所成的角.在BAF ∆中,42AB =25BF AF ==∴10cos 5ABF ∠=. ∴异面直线DE 与AB 10.(2)AC ⊥平面BCE ,过C 作CG DE ⊥交DE 于G ,连结AG . 可得DE ⊥平面ACG ,从而AG DE ⊥,∴AGC ∠为二面角A ED B --的平面角.在ACG ∆Rt 中,90ACG ∠=,4AC =,55CG =,∴5tan 2AGC ∠=. ∴5sin 3AGC ∠=.∴二面角A ED B --的的正弦值为53.(3)1163BCED V S AC =⋅⋅=,∴几何体的体积V 为16. 方法二:(坐标法)(1)以C 为原点,以,,CA CB CE 所在直线为,,x y z 轴建立空间直角坐标系. 则()4,0,0A ,(0,4,0)B ,(0,4,2)D ,()0,0,4E ,(0,4,2),(4,4,0)DE AB =-=-,∴10cos ,DE AB <>=∴异面直线DE 与AB 10(2)平面BDE 的一个法向量为(4,0,0)CA =, 设平面ADE 的一个法向量为(,,)n x y z =, ∴0,0nAD n DE ==从而4420,420x y z y z -++=-+=, 令1y =,则(2,1,2)n =, 2cos ,3CA n <>= ∴二面角A ED B --5(3)1163BCED V S AC =⋅⋅=,∴几何体的体积V 为16.点评:本题考查异面直线所成角的求法、考查二面角的求法和多面体体积的求法.空间向量对解决三类角(异面直线角、线面角、面面角)的计算有一定的优势.对理科考生来说除了要在空间向量解决立体几何问题上达到非常熟练的程度外,不要忽视了传统的方法,有些试题开始部分的证明就没有办法使用空间向量.题型5 距离(点到平面,线与线、线与面、面与面)求点到平面的距离就是求点到平面的垂线段的长度,其关键在于确定点在平面内的垂足,当然别忘了转化法与等体积法的应用. 典型例题例10如图,正三棱柱111ABC A B C -的所有棱长都为2,D 为1CC 中点.(Ⅰ)求证:1AB ⊥平面1A BD ;(Ⅱ)求二面角1A A DB --的三角函数值;(Ⅲ)求点C 到平面1A BD 的距离.考查目的:本小题主要考查直线与平面的位置关系,二面角的大小,点到平面的距离等知识,考查空间想象能力、逻辑思维 能力和运算能力.解答过程:解法一:(Ⅰ)取BC 中点O ,连结AO .ABC △为正三角形,AO BC ∴⊥.正三棱柱111ABC A B C -中,平面ABC ⊥平面11BCC B,AO ∴⊥平面11BCC B .连结1B O ,在正方形11BB C C 中,O D ,分别为1BC CC ,的中点,1B O BD ∴⊥,1AB BD ∴⊥.在正方形11ABB A 中,11AB A B ⊥,1AB ∴⊥平面1A BD .(Ⅱ)设1AB 与1A B 交于点G ,在平面1A BD 中,作1GF A D ⊥于F ,连结AF ,由(Ⅰ)得1AB ⊥平面1A BD .1AF A D ∴⊥,AFG ∴∠为二面角1A A D B --的平面角.在1AA D △中,由等面积法可求得AFABC D1A1C1BA BCD1A1C1BOF又112AG AB ==sin AG AFG AF ∴==∠.所以二面角1A A DB --(Ⅲ)1A BD △中,111A BD BD A D A B S ==∴△1BCD S =△.在正三棱柱中,1A 到平面11BCC B设点C 到平面1A BD 的距离为d .由11A BCDC A BD VV --=,得111333BCDA BD S S d=△△,1A BD d ∴==△∴点C 到平面1A BD解法二:(Ⅰ)取BC 中点O ,连结AO .ABC △为正三角形,AO BC ∴⊥.在正三棱柱111ABC A B C -中,平面ABC ⊥平面11BCC B ,AD ∴⊥平面11BCC B .取11B C 中点1O ,以O 为原点,OB ,1OO ,OA 的方向为x y z ,,轴的正方向建立空间直角坐标系,则(100)B ,,,(D 1(120)B ,,,1(12AB ∴=,,(210)BD =-,,,1(1BA =-. 12200AB BD =-++=,111430AB BA =-+-=, 1AB BD ∴⊥,11AB BA ⊥.1AB ∴⊥平面1A BD .(Ⅱ)设平面1A AD 的法向量为()x y z =,,n .(11AD =-,,,1(020)AA =,,.AD ⊥n ,1AA ⊥n ,令1z =得(1)=,n 为平面1A AD 的一个法向量.由(Ⅰ)知1AB ⊥平面1A BD ,1AB ∴为平面1A BD 的法向量.cos <n ,11133222AB AB AB -->===n n∴二面角1A A D B --的大小为(Ⅲ)由(Ⅱ),1AB 为平面1A BD 法向量,1(200)(12BC AB =-=,,,,.∴点C 到平面1A BD 的距离1122BC AB d AB -===小结:本例中(Ⅲ)采用了两种方法求点到平面的距离.解法二采用了平面向量的计算方法,把不易直接求的B 点到平面1AMB 的距离转化为容易求的点K 到平面1AMB 的距离的计算方法,这是数学解题中常用的方法;解法一采用了等体积法,这种方法可以避免复杂的几何作图,显得更简单些,因此可优先考虑使用这一种方法.例2. 如图,已知两个正四棱锥P -ABCD 与Q -ABCD 的高分别为1和2,AB =4.(Ⅰ)证明PQ ⊥平面ABCD ; (Ⅱ)求点P 到平面QAD 的距离.命题目的:本题主要考查直线与平面的位置关系及点到平面的距离基本知识,考查空间想象能力、逻辑思维能力和运算能力.过程指引:方法一关键是用恰当的方法找BCPADOM到所求的空间距离和角;方法二关键是掌握利用空间向量求空间距离和角的一般方法. 解答过程:方法一 (Ⅰ)取AD 的中点,连结PM ,QM . 因为P -ABCD 与Q -ABCD 都是正四棱锥, 所以AD ⊥PM ,AD ⊥QM . 从而AD ⊥平面PQM . 又⊂PQ 平面PQM ,所以PQ ⊥AD . 同理PQ ⊥AB ,所以PQ ⊥平面ABCD . (II)连结OM ,则112.22OM AB OQ === 所以∠MQP =45°.由(Ⅰ)知AD ⊥平面PMQ ,所以平面PMQ ⊥平面QAD . 过P 作PH ⊥QM 于H ,PH ⊥平面QAD .从而PH 的长是点P 到平面QAD 的距离.又03,sin 45PQ PO QO PH PQ =+=∴==. 即点P 到平面QAD方法二(Ⅰ)连结AC 、BD ,设O BD AC = .由P -ABCD 与Q -ABCD 都是正四棱锥,所以PO ⊥平面ABCD ,QO ⊥平面ABCD .从而P 、O 、Q 三点在一条直线上,所以PQ ⊥平面ABCD . (Ⅱ)点D 的坐标是(0,-22,0),)0,22,22(--=AD ,(0,0,3)PQ =-,设),,(z y x n =是平面QAD 的一个法向量,由⎪⎩⎪⎨⎧=⋅=⋅0AD n AQ n 得⎪⎩⎪⎨⎧=+=+002y x z x . 取x =1,得)2,1,1(--=n .所以点P 到平面QAD 的距离322PQ n d n⋅==. 题型 6割补法:割补法主要是针对平面图形或空间图形所采用的一种几何变换,其主要思想是把不规则问题转化为规则问题,这个方法常常用来求不规则平面图形的面积或不规则空间几何体的体积.例6.1其外接球的表面积是. 分析:将其补成一个正方体.解析:这样的三棱锥实际上是正方体被一个平面所截下来的,我们考虑在原来的正方体中解决这个问题.设原来的正方体,则本题中的三棱锥和原来的正方体具有同一个外接球,这个球的直径就是正方体的体对角线,长度为3=,即球的半径是32,故这个球的表面积是23492ππ⎛⎫= ⎪⎝⎭. 点评:三条侧棱两两垂直的三棱锥习惯上称为“直角三棱锥”,它就隐含在正方体之中,在解题中把它看作正方体的一个部分,在整个正方体中考虑问题,往往能化难为易,起到意想不到的作用.例6.2如图,已知多面体ABC DEFG -中,AB AC AD ,,两两互相垂直,平面ABC ∥平面DEFG,平面BEF ∥平面ADGC,2AB AD DC ===,1AC EF ==,则该多面体的体积为A.2 B.4 C.6 D.8分析:这个几何体即可以看作两个三棱柱拼合而成的,也可以看作是从一个正方体割下来的.解析一(割):如图,过点C 作CH DG ⊥于H ,连结EH ,这样就把多面体分割成一个直三棱柱DEH ABC-和一个斜三棱柱BEF CHG -.于是所求几何体的体积为DEH BEF V S AD S DE =⨯+⨯△△11212212422⎛⎫⎛⎫=⨯⨯⨯+⨯⨯⨯= ⎪ ⎪⎝⎭⎝⎭.解析二(补):如图,将多面体补成棱长为2的正方体,那么显然所求的多面体的体积即为该正方体体积的一半.于是所求几何体的体积为31242V =⨯=.点评:割补法是我们解决不规则空间几何体体积的最主要的技巧,其基本思想是利用割补将其转化为规则空间几何体加以解决.【专题训练与高考预测】 一、选择题1.如图为一个几何体的三视图,尺寸如图所示,则该几何体的表面积为(不考虑接触点) ( )A . 6πB . 184πC . 18π+D . 32π+2.某几何体的三视图如图所示,根据图中数据,可得该几何体的体积是 ( )A ... 3.已知一个几何体的主视图及左视图均是边长为2的正三角形,俯视图是直径为2的圆,则此几何体的外接球的表面积为( )A .π34B .π38C .π316D .π3324.一个水平放置的平面图形的斜二测直观图是一个底角为45,腰和上底长均为1的等腰梯形,则这个平面图形的面积是 ( ) A .2221+B .221+C .21+D .22+5. 一个盛满水的三棱锥容器S ABC -,不久发现三条侧棱上各有一个小洞,,D E F ,且知:::2:1SD DA SE EB CF FS ===,若仍用这个容器盛水,则最多可盛原来水的( ) A .2923B .2719C .3130D .2723 6. 点P 在直径为2的球面上,过P 作两两垂直的三条弦,若其中一条弦长是另一条弦长的2倍,则这三条弦长之和为最大值是( )A .5B .5C .5D .57.正方体''''ABCD A B C D -中,AB 的中点为M ,'DD 的中点为N ,异面直线'B M 与CN 所成的角是( ) A .30B .90C .45D .608.已知异面直线a 和b 所成的角为50,P 为空间一定点,则过点P 且与,a b 所成角都是30的直线有且仅有( )A . 1条B . 2条C . 3条D . 4条 9.如图所示,四边形ABCD中,//,,45,90AD BC AD AB BCD BAD =∠=∠=,将△ABD 沿BD 折起,使平面ABD ⊥平面BCD ,构成三棱锥A BCD -,则在三棱锥A BCD -中,下列命题正确的是( )A .平面ABD ⊥平面ABCB .平面ADC ⊥平面BDC C .平面ABC ⊥平面BDCD .平面ADC ⊥平面ABC10.设x 、y 、z 是空间不同的直线或平面,对下列四种情形:①x 、y 、z 均为直线;② x 、y 是直线,z 是平面;③ z 是直线,x 、y 是平面;④x 、y 、z 均为平面.其中使“x ⊥z 且y ⊥z ⇒x ∥y ”为真命题的是( )A . ③ ④B . ① ③C . ② ③D . ① ②11.已知三条不重合的直线m 、n 、l 两个不重合的平面α、β,有下列命题 ①若//,m n n α⊂,则//m α;②若l α⊥,m β⊥且l m ,则αβ; ③若,m m αα⊂⊂,,m n ββ,则αβ;④若αβ⊥,m αβ=,n β⊂,n m ⊥,则n α⊥.中正确的命题个数是( )A .1B . 2C .3D .412.直线AB 与直二面角l αβ--的两个面分别交于,A B 两点,且,A B 都不在棱上,设直线AB 与平面,αβ所成的角分别为,θϕ,则θϕ+的取值范围是 ( )A .(0,)2π B .0,2π⎛⎤⎥⎝⎦C .(,)2ππD .{}2π 二、填空题 13.在三棱锥P ABC-中,2PA PB PC ===,30APB BPC CPA ∠=∠=∠=,一只蚂蚁从A 点出发沿三棱锥的侧面绕一周,再回到A 点,则蚂蚁经过的最短路程是.14.四面体的一条棱长为x ,其它各棱长为1,若把四面体的体积V 表示成x 的函数()f x ,则()f x 的增区间为,减区间为.15. 如图,是正方体平面展开图,在这个正方体中:① BM 与ED平行; ② CN 与BE 是异面直线;③CN 与BM 成60角; ④DM 与BN 垂直. 以上四个说法中,正确说法的序号依次是.16. 已知棱长为1的正方体1111ABCD A B C D -中,E 是11A B 的中点,则直线AE 与平面11ABC D 所成的角的正弦值是. 三、解答题17.已知,如图是一个空间几何体的三视图. (1)该空间几何体是如何构成的; (2)画出该几何体的直观图; (3)求该几何体的表面积和体积.18.如图,已知等腰直角三角形RBC ,其中90RBC ∠=,2==BC RB .点,A D 分别是RB ,RC 的中点,现将RAD ∆沿着边AD 折起到PAD ∆位置,使PA AB ⊥,连结PB 、PC .(1)求证:BC PB ⊥;(2)求二面角P CD A --的平面角的余弦值.19.如下图,在正四棱柱1111ABCD A B C D -中,112AA AB =,点,E M 分别为11,A B CC 的中点,过点1,,A B M 三点的平面1A BMN 交11C D 于点N .(1)求证:EM 平面1111A B C D ; (2)求二面角11B A N B --的正切值;(3)设截面1A BMN 把该正四棱柱截成的两个几何体的体积分别为12,V V (12V V <),求12:V V 的值.20. 如图,在四棱锥ABCD P -中,底面为直角梯形,//,90AD BC BAD ︒∠=,PA垂直于底面ABCD,N M BC AB AD PA ,,22====分别为PB PC ,的中点.(1)求证:DM PB ⊥;(2)求BD 与平面ADMN 所成的角;(3)求截面ADMN 的面积.21.如图,正方形ACDE 所在的平面与平面ABC 垂直,M 是CE 和AD 的交点,BC AC ⊥,且BC AC =.(1)求证:⊥AM 平面EBC ;(2)求直线AB 与平面EBC 所成的角的大小; (3)求二面角C EB A --的大小.22.已知斜三棱柱111ABC A B C -,90BCA ∠=,2AC BC ==,1A 在底面ABC 上的射影恰为AC 的中点D ,又知11BA AC ⊥.(1)求证:1AC ⊥平面1A BC ;(2)求1CC 到平面1A AB 的距离; (3)求二面角1A A B C --的一个三角函数值. 【参考答案】1.解析:C 该几何体是正三棱柱上叠放一个球.故其表面积为2213232241842ππ⎛⎫⨯⨯+⨯+⨯=+ ⎪⎝⎭.2.解析:B 这个空间几何体的是一个底面边长为的正方形、的正方形、高为的四棱锥,故其体积为13=.3.解析:C 由三视图知该几何体是底面半径为1.4.解析:D 如图设直观图为''''O A B C ,建立如图所示的坐标系,按照斜二测画法的规则,在原来的平面图形中OC OA ⊥,且2OC =,1BC =,1212OA =+⨯=+(112222⋅+⋅=5.解析:D 当平面EFD 处于水平位置时,容器盛水最多最多可盛原来水得42312727-=. 6.解析:A 设三边长为,2,x x y ,则2254xy +=,令,2sin ,32sin x y x y θθθθ=∴+=+≤ 7.解析:B 如图,取'AA 的中点P ,连结BP ,在正方形''ABB A 中易证'BP B M ⊥.8.解析:B 过点P 作a a ',b b ',若P a ∈,则取a 为a ',若P b ∈,则取b 为b '.这时a ',b '相交于P 点,它们的两组对顶角分别为50和130. 记a ',b '所确定的平面为α,那么在平面α内,不存在与a ',b '都成30的直线. 过点P 与a ',b '都成30角的直线必在平面α外,这直线在平面α的射影是a ',b '所成对顶角的平分线.其中射影是50对顶角平分线的直线有两条l 和l ',射影是130对顶角平分线的直线不存在.故答案选B .9.解析:D 如图,在平面图形中CD BD ⊥,折起后仍然这样,由于平面ABD ⊥平面BCD ,故CD ⊥平面ABD ,CD AB ⊥,又AB AD ⊥,故AB ⊥平面ADC ,所以平面ADC ⊥平面ABC .10.解析:C x 、y 、z 均为直线,显然不行;由于垂直于同一个平面的两条直线平行,故②,可以使“x ⊥z 且y ⊥z ⇒x ∥y ”为真命题;又由于垂直于同一条直线的两个平面平行,故③可以使“x ⊥z 且y ⊥z ⇒x ∥y ”为真命题;当x 、y 、z 均为平面时,也不能使“x ⊥z 且y ⊥z ⇒x ∥y ”为真命题.11.解析:B ①中有m α⊂的可能;l m 且l α⊥,可得m α⊥,又m β⊥,故αβ,②正确;③中当m n 时,结论不成立;④就是面面垂直的性质定理,④正确.故两个正确的.12.解析:B 如图,在Rt ADC ∆中,cos ,sin AD AB AC AB θϕ==,而AD AC >,即cos sin cos 2πθϕϕ⎛⎫>=- ⎪⎝⎭,故2πθϕ<-,即2πθϕ+<,而当AB l ⊥时,2πθϕ+=.13.解析: 将如图⑴三棱锥P ABC -,沿棱PA 展开得图⑵,蚂蚁经过的最短路程应是A A ',又∵30APB BPC CPA ∠=∠=∠=,'90APA ∠=,∴A A '=22.14.解析:⎛ ⎝⎦,⎪⎪⎭⎫⎢⎣⎡326,()f x =,利用不等式或导数即可判断.15.解析:③④ 如图,逐个判断即可. 16.解析:取CD 的中点F ,连接EF 交平面11ABC D 于O ,连AO .由已知正方体,易知EO ⊥平面11ABC D ,所以EAO ∠为所求.在EOA∆Rt 中,11122EO EF A D ==,AE ==,sin EO EAO AE ∠=.所以直线AE 与平面11ABC D 所成的角的正弦.17.解析:(1)这个空间几何体的下半部分是一个底面边长为2的正方形高为1的长方体,上半部分是一个底面边长为2的正方形高为1的四棱锥.(2)按照斜二测的规则得到其直观图,如图.(3)由题意可知,该几何体是由长方体''''ABCD A B C D -与正四棱锥''''P A B C D -构成的简单几何体.由图易得:2,'1,'1AB AD AA PO ====,取''A B 中点Q ,连接PQ ,从而PQ ==体积11622122133V =⨯⨯+⨯⨯⨯=. 18.解析:(1)∵点A 、D 分别是RB 、RC 的中点,∴BC AD BC AD 21,//=.∴90PAD RAD RBC ∠=∠=∠=,∴AD PA ⊥.∴ BC PA ⊥,∵A AB PA AB BC =⊥ ,,∴BC ⊥平面PAB . ∵⊂PB 平面PAB ,∴PB BC ⊥.(2)取RD的中点F,连结AF、PF . ∵1==AD RA ,∴RC AF ⊥.∵AD AP AR AP ⊥⊥,,∴⊥AP 平面RBC . ∵⊂RC 平面RBC ,∴AP RC ⊥. ∵,A AP AF = ∴⊥RC 平面PAF . ∵⊂PF 平面PAF ,∴PF RC ⊥.∴AFP ∠是二面角P CD A --的平面角. 在RAD ∆Rt 中, 22212122=+==AD RA RD AF , 在PAF ∆Rt 中, 2622=+=AF PA PF ,332622cos ===∠PF AF AFP . ∴ 二面角P CD A --的平面角的余弦值是33.19.解析:(1)设11A B 的中点为F ,连结1,EF FC .∵E 为1A B 的中点,∴EF 112BB . 又1C M 112BB ,∴EF 1MC .∴四边形1EMC F为平行四边形.∴1EM FC .∵EM⊄平面1111A B C D ,1FC ⊂平面1111A B C D ,∴EM 平面1111A B C D .(2)作11B H A N ⊥于H ,连结BH ,∵1BB ⊥⊥平面1111A B C D ,∴1BH A N ⊥.∴1BHB ∠为二面角11B A N B --的平面角. ∵EM ∥平面1111A B C D ,EM⊂平面1A BMN ,平面1A BMN平面11111A B C D A N= ,∴1EM A N .又∵1EM FC ,∴11A N FC .又∵11A F NC ,∴四边形11A FC N 是平行四边形.∴11NC A F =. 设1AA a =,则112A B a =,1D N a =.在11A D N∆Rt 中,1A N ==,∴sin ∠A 1ND 1=11111sin A D A ND A N ∠==.在11A B H ∆Rt中,11111sin 2B H A B HA B a =∠== 在1BB H ∆Rt 中,111tan 44BB a BHB B H ∠===. (3)延长1A N 与11B C 交于P ,则P ∈平面1A BMN ,且P ∈平面11BB C C .又∵平面1ABMN 平面11BB C C BM =,∴P BM ∈,即直线111,,A N B C BM 交于一点P .又∵平面1MNC ∥平面11BA B ,∴几何体111MNC BA B -为棱台. ∵112122A BB S a a a ∆=⋅⋅=,12111224MNC S a a a ∆=⋅⋅=,棱台111MNC BA B -的高为112B C a =,故22311172346V a a a a ⎛⎫=⋅= ⎪ ⎪⎝⎭,3327172266V a a a a a =⋅⋅-=,.∴12717V V =.20.解析:(1)因为N 是PB 的中点,AB PA =, 所以PB AN ⊥. 由PA ⊥底面ABCD ,得PA AD ⊥,又90BAD ︒∠=,即BA AD ⊥,∴⊥AD 平面PAB ,所以PB AD ⊥ ,∴⊥PB 平面ADMN , ∴DM PB ⊥.(2)连结DN , 因为⊥BP 平面ADMN ,即⊥BN 平面ADMN ,所以BDN ∠是BD 与平面ADMN 所成的角. 在ABD ∆Rt 中,BD ==,在PAB ∆Rt中,PB ==,故12BN PB ==,在BDN ∆Rt 中, 21sin ==∠BD BN BDN ,又02BDN π≤∠≤,故BD 与平面ADMN 所成的角是6π.(3)由,M N 分别为PB PC ,的中点,得//MN BC ,且1122MN BC ==,又//AD BC ,故//MN AD ,由(1)得⊥AD 平面PAB ,又AN ⊂平面PAB ,故AD AN ⊥,∴四边形ADMN 是直角梯形,在Rt PAB ∆中,PB ==,12AN PB ==,∴ 截面ADMN 的面积111()(2)2224S MN AD AN =+⨯=+=. 法二: (1)以A 点为坐标原点建立空间直角坐标系A xyz -,如图所示(图略)由22====BC AB AD PA ,得(0,0,0)A ,1(0,0,2),(2,0,0),(1,,1),(0,2,0)2P B M D因为3(2,0,2)(1,,1)2PB DM ⋅=--0= ,所以DM PB ⊥.(2)因为 (2,0,2)(0,2,0)PB AD ⋅=-⋅0=,所以PB AD ⊥,又DM PB ⊥ ,故PB ⊥平面ADMN ,即(2,0,2)PB =-是平面ADMN 的法向量. 设BD 与平面ADMN 所成的角为θ,又(2,2,0)BD =-. 则||1sin |cos ,|2||||4BD PB BD PB BD PB θ⋅=<>===,又[0,]2πθ∈,故6πθ=,即BD 与平面ADMN 所成的角是6π. 因此BD 与平面ADMN 所成的角为6π. (3)同法一.21.解析:法一:(1)∵四边形ACDE 是正方形,EC AM AC EA ⊥⊥∴,.∵平面⊥ACDE 平面ABC ,又∵AC BC ⊥,⊥∴BC 平面EAC . ⊂AM 平面EAC ,⊥∴BC AM . ⊥∴AM 平面EBC .(2)连结BM ,⊥AM 平面EBC ,ABM ∠∴是直线AB 与平面EBC 所成的角.设a BC AC EA 2===,则a AM 2=,a AB 22=,21sin ==∠∴AB AM ABM , ︒=∠∴30ABM . 即直线AB 与平面EBC 所成的角为︒30(3)过A 作EB AH ⊥于H ,连结HM . ⊥AM 平面EBC ,EB AM ⊥∴.⊥∴EB 平面AHM .AHM ∠∴是二面角C EB A --的平面角.∵平面⊥ACDE 平面ABC ,⊥∴EA 平面ABC .⊥∴EA AB . 在EAB Rt ∆中, EB AH ⊥,有AH EB AB AE ⋅=⋅.由(2)所设a BC AC EA 2===可得a AB 22=,a EB 32=,322aEB AB AE AH =⋅=∴. 23sin ==∠∴AH AM AHM .︒=∠∴60AHM .∴二面角C EB A --等于︒60.法二: ∵四边形ACDE 是正方形 ,EC AM AC EA ⊥⊥∴,,∵平面⊥ACDE 平面ABC ,⊥∴EA 平面ABC , ∴可以以点A 为原点,以过A 点平行于BC 的直线为x 轴,分别以直线AC 和AE 为y 轴和z 轴,建立如图所示的空间直角坐标系xyz A -.设2===BC AC EA ,则),0,2,2(),0,0,0(B A )2,0,0(),0,2,0(E C ,M是正方形ACDE 的对角线的交点,)1,1,0(M ∴. (1)=AM )1,1,0(,)2,2,0()2,0,0()0,2,0(-=-=EC ,)0,0,2()0,2,0()0,2,2(=-=CB ,0,0=⋅=⋅∴CB AM EC AM , CB AM EC AM ⊥⊥∴,⊥∴AM 平面EBC .(2) ⊥AM 平面EBC ,AM ∴为平面EBC 的一个法向量,)0,2,2(),1,1,0(==AB AM ,21==∴AMAB .︒=60.∴直线AB 与平面EBC 所成的角为︒30.(3)设平面EAB 的法向量为),,(z y x =,则AE n ⊥且AB n ⊥, 0=⋅∴且0=⋅.⎩⎨⎧=⋅=⋅∴.0),,()0,2,2(,0),,()2,0,0(z y x z y x 即⎩⎨⎧=+=.0,0y x z ,取1-=y ,则1=x , 则)0,1,1(-=n .又∵AM 为平面EBC 的一个法向量,且)1,1,0(=,21-==∴,设二面角C EB A --的平面角为θ,则21cos cos ==θ,︒=∴60θ.∴二面角C EB A --等于︒60.22.解析:法一:(1)因为1A D ⊥平面ABC ,所以平面11AA C C ⊥平面ABC ,又BC AC ⊥,所以BC ⊥平面11AAC C ,得1BC AC ⊥,又11BA AC ⊥,所以1AC ⊥平面1A BC ;(2)因为11AC A C ⊥,所以四边形11AAC C 为 菱形,故12AA AC ==,又D 为AC 中点,知160A AC ∠=.取1AA 中点F ,则1AA ⊥平面BCF ,从而面1A AB ⊥面BCF , 过C 作CH BF ⊥于H ,则CH ⊥面1A AB .在Rt BCF ∆中,2,BC CF ==7CH =,即1CC 到平面1A AB 的距离为7CH =. (3)过H 作1HG A B ⊥于G ,连CG ,则1CG A B ⊥, 从而CGH ∠为二面角1A A B C --的平面角,在1Rt A BC ∆中,12A C BC ==,所以CG =,在Rt CGH ∆中,sin 7CH CGH CG ∠==,故二面角1A A B C --的正弦值为7.法二:(1)如图,取AB 的中点E ,则//DE BC ,因为BC AC ⊥,所以DE AC ⊥,又1A D ⊥平面ABC ,。
大学物理(上)课后习题答案之欧阳生创编
第1章质点运动学P21时间:2021.02.08创作人:欧阳生1.8一质点在xOy 平面上运动,运动方程为:x =3t +5, y =21t 2+3t -4. 式中t 以 s 计,x ,y 以m 计。
⑴以时间t 为变量,写出质点位置矢量的表示式;⑵求出t =1 s 时刻和t =2s 时刻的位置矢量,计算这1秒内质点的位移;⑶计算t =0 s 时刻到t =4s 时刻内的平均速度;⑷求出质点速度矢量表示式,计算t =4 s 时质点的速度;(5)计算t =0s 到t =4s 内质点的平均加速度;(6)求出质点加速度矢量的表示式,计算t =4s 时质点的加速度(请把位置矢量、位移、平均速度、瞬时速度、平均加速度、瞬时加速度都表示成直角坐标系中的矢量式)。
解:(1)jt t i t r)4321()53(2-+++=m⑵1=t s,2=t s时,j i r5.081-=m ;2114r i j =+m∴213 4.5r r r i j∆=-=+m⑶0t =s 时,054r i j =-;4t =s 时,41716r i j =+ ∴140122035m s 404r r ri ji j t --∆+====+⋅∆-v ⑷1d 3(3)m s d ri t j t-==++⋅v ,则:437i j =+v 1s m -⋅(5) 0t =s 时,033i j =+v ;4t =s 时,437i j =+v (6)2d 1 m s d a j t-==⋅v这说明该点只有y 方向的加速度,且为恒量。
1.9质点沿x 轴运动,其加速度和位置的关系为226a x =+,a 的单位为m/s2,x 的单位为m 。
质点在x=0处,速度为10m/s,试求质点在任何坐标处的速度值。
解:由d d d d d d d d x a tx tx===v v v v 得:2d d (26)d a x x x ==+v v两边积分2100d (26)d xx x =+⎰⎰vv v 得:232250x x =++v∴1m s -=⋅v1.11一质点沿半径为1 m 的圆周运动,运动方程为θ=2+33t ,式中θ以弧度计,t 以秒计,求:⑴t =2s 时,质点的切向和法向加速度;⑵当加速度的方向和半径成45°角时,其角位移是多少? 解:t t t t 18d d ,9d d 2====ωβθω⑴s 2=t 时,2s m 362181-⋅=⨯⨯==βτR a⑵当加速度方向与半径成ο45角时,有:tan 451n a a τ︒==即:βωR R =2,亦即t t 18)9(22=,解得:923=t 则角位移为:322323 2.67rad 9t θ=+=+⨯=1.13一质点在半径为0.4m 的圆形轨道上自静止开始作匀角加速度转动,其角加速度为α=0.2 rad/s2,求t =2s 时边缘上各点的速度、法向加速度、切向加速度和合加速度。