位错基本知识

合集下载

位错规律总结

位错规律总结

位错规律总结
位错是晶体中原子位置的偏移或错位,是晶体中的结构缺陷之一。

位错可以分为边界位错和螺旋位错两种类型。

位错是晶体材料中塑性变形的主要机制之一,并且具有重要的影响。

针对位错的规律总结如下:
1. 弗兰克-瓦尔斯位错规律:当晶体中存在一组边界位错时,
位错的总长度必须守恒。

具体来说,当两个滑移面之间发生位错滑移时,位错长度之和保持不变。

2. 彼勒斯位错规律:在材料的塑性变形过程中,位错沿着最密堆积晶面方向滑动,位错的伸长方向与滑动面垂直。

3. 剪切位错规律:在晶体中,剪切位错能够沿着特定的面和方向滑动,从而引起晶体的塑性变形。

剪切位错滑移的方向与剪切应力的方向相同。

4. 螺旋位错规律:螺旋位错是一种沿晶体的螺旋线形成的位错,它具有一个以单位长度平行于位错线方向的错向矢量。

螺旋位错滑移的过程中,晶体发生类似螺旋的变形。

5. 位错相互作用规律:位错之间的相互作用和排斥是晶体塑性变形的重要因素。

当两个位错靠近时,它们可能相互吸引或排斥,从而影响晶体的位错滑移和塑性形变。

总之,位错的规律总结了位错在晶体中的行为和相互作用,对于理解晶体的塑性变形和材料性能的研究具有重要意义。

晶体塑性变形的位错机制专业知识讲座

晶体塑性变形的位错机制专业知识讲座
XY由于平行与 AB的柏氏矢量交割后不会再 XY上 形成割阶。
此外,还有忍型位错与螺型位错、螺型位错 与螺型位错的交割,其结果都是形成割阶。这一 方面增加了位错线的长度,另一方面导致带割阶 的位错运动困难,从而成为后续位错运动的障碍。 这就是多滑移加工硬化 效果较大的原因。
在切应力作用下,弗兰克 —瑞德拉位错源所 产生的大量的位错沿滑移面运动过程中,如遇到 障碍物(固定位错、杂质粒子、晶界等)领先的 位错在障碍前被阻止,后续位错被堵塞起来,结 果形成位错的平面塞积群,并在障碍物前形成高 度的应力集中,这就是位错的 塞积。
一、单晶体塑性变形的位错机制 (滑移的位错机制)
1.1 由于晶体中存在着位错,晶体的滑移 不是晶体的一部分相对另一部分的移动, 而是位错在切应力作用下沿滑移面逐步移 动的结果。
当一条位错线移动到晶体表面时,会 使晶体在表面上留下一个原子间距的滑移 台阶,其大小等于柏矢量b.
若有大量的位错重复按此方式滑过晶体,就会在 晶体表面形成显微镜下能够观测到的滑移痕迹, 这就是滑移线的实质。
下图是由于位错塞积而在晶界处产生的竹节效应
Ni3Alቤተ መጻሕፍቲ ባይዱ0.1%B 合金拉伸时滑 移带终止于晶界
三、合金的塑性变形
根据合金的组织可以将合金分为两类,一是 具有以基体金属为基的单相固溶体组织,称为单 相固溶体;二是加入的合金元素量超过了它在基 体金属中的饱和溶解度,在显微组织中除了以基 体组织为基的固溶体外,还出现了第二相(各组 元形成的化合物或以合金元素为基形成的另一固 溶体)构成了多相合金。
3.1单相固溶体合金的塑性变形
由于单相固溶体合金的显微组织与多晶体纯金 属相似,其塑性变形也基本相似,但由于固溶体中 存在着溶质原子,使得合金强度、硬度提高;塑性、 韧性有所下降。这是因为合金中产生了固溶强化。

材料科学基础复习知识点

材料科学基础复习知识点

1 简述刃型位错和螺型位错的区别答:不同点:1、柏氏矢量b垂直于位错线是刃型位错,b平行于位错线是螺型位错。

2、对刃型位错外加作用力F与外加切应力t一致,对螺型位错F与t垂直 3、刃型位错由于b 垂直于位错线,所以具有唯一的滑移面,而螺型位错的b平行于位错线,所以滑移面不是唯一的。

4、刃型位错的应力场既有正应力也有切应力,而螺位错的应力场只有切应力没有正应力。

5、刃型位错既能滑移又能攀移,螺位错只能滑移不能攀移。

6,刃型位错可以形成对称倾侧晶界螺型位错可形成扭转晶界。

相同点:1.都是已滑移与未滑移的交线。

2,当位错线沿滑移面滑过整个晶体时,就会在晶体表面沿柏氏矢量方向产生一个滑移台阶,其宽度等于柏氏矢量b。

常见晶体缺陷各举一例位错运动方式面心立方金属不全位错有哪些?位错线是什么?位错增殖机制:假定有一两端扎钉的位错线段AB,在t作用下AB受F=tb作用,所以AB发生滑移,但AB 固定所以AB发生弯曲当r=r(min) 位错线在t的作用下不断扩展,当位错线m,n点相遇时彼此抵消,原来整根位错线断成两部分外部是一个封闭的位错环里面是一段位错线AB,在t的作用下位错环不断向外拓展,AB不断重复上述过程,结果便放出大量位错环造成位错的增值。

扭折:位错交割生成的小曲折线段与原位错线在同一滑移面上。

割阶:位错交割生成的小曲折线段与原位错线不在同一滑移面上。

固熔体:是固态下一种组元熔解在另一种组元中形成的新相,其特点是固熔体具有熔剂组元的点阵类型。

相:是指在任一给定的物质系统中,具有同一化学成分,同一原子聚集状态和性质的均匀连续组成部分。

置换固熔体:熔质原子占据熔剂点阵的固熔体。

间隙固熔体:是由那些原子半径小于0.1mm的非金属元素熔入到熔剂金属晶体点阵的间隙中所形成的固熔体中间相:金属与金属,或金属与类金属之间所形成的化合物统称为金属间化合物。

由于它们常处在相图的中间位置上,故又称中间相。

间隙相:当非金属原子半径与过渡金属原子半径之比(Rx/RM)<0.59时化合物具有比较简单的结构称为简单间隙化合物,又称间隙相。

材料科学基础位错理论

材料科学基础位错理论

材料科学基础位错理论位错理论是材料科学领域中的重要概念之一、它是位错理论与晶体缺陷之间相互关联的核心。

本文将从位错的定义、分类和特征出发,进一步介绍位错理论的基本原理和应用。

首先,位错是固体晶体结构中的一种缺陷。

当晶体晶格中发生断裂、错位或移动时,就会形成位错。

位错可以被看作是晶体中原子排列的异常,它具有一定的形态、构型和特征。

根据位错发生的方向和类型,位错可分为直线位错、面位错和体位错。

直线位错是沿晶体其中一方向上的错排,常用符号表示为b。

直线位错一般由滑移面和滑移方向两个参数来表征。

滑移面是指位错的平移面,滑移方向是位错在晶体中的移动方向。

直线位错可以进一步分为边位错和螺位错。

边位错的滑移面为滑移方向的垂直面,螺位错则是在滑移面上存在沿位错线方向扭曲的位错。

面位错是晶体晶格上的一次干涉现象,即滑移面上的两部分之间发生错排。

面位错通常由面位错面和偏移量来描述。

面位错可以是平面GLIDE面位错、垂直GLIDE面位错或螺脚面位错。

体位错是沿体方向上的排列不规则导致的位错。

体位错通常是由滑移面间的晶体滑移产生的。

位错理论的基本原理是通过研究位错在晶体中的移动机制和相互作用,来理解材料的塑性变形和力学行为。

位错理论最早由奥斯勒(Oliver)于1905年提出,他认为材料的塑性变形是由于位错在晶体中游走和相互作用所引起的。

这一理论为后来的位错理论奠定了基础。

位错理论的应用非常广泛。

在材料加工和设计中,位错理论被广泛用于控制材料的力学性能和微观结构。

通过控制位错的生成、运动和相互作用,可以获得理想的材料性能。

同时,位错理论也被用于研究材料的磁性、电子输运和热传导性能等方面。

此外,位错理论也在材料的缺陷工程和腐蚀研究中发挥着重要作用。

通过控制位错的形态和分布,在材料中引入有利于抵抗腐蚀的位错类型,可以提高材料的抗腐蚀性能。

位错理论也可以用于解释材料的断裂行为和疲劳寿命等方面。

总结起来,位错理论是材料科学基础中的重要内容。

材料学基础知识

材料学基础知识

材料学基础知识1. 材料抵抗冲击载荷而不破坏的能力称为冲击韧性。

2. 材料在弹性范围内,应力与应变的比值εσ/称为弹性模量E (单位MPa )。

E 标志材料抵抗弹性变形的能力,用以表示材料的刚度。

3. 强度是指材料在外力作用下抵抗永久变形和破坏的能力。

4. 塑性是材料在外力作用下发生塑性变形而不破坏的能力。

5. 韧性是材料在塑性应变和断裂全过程中吸收能量的能力,它是强度和塑性的综合表现。

6. 硬度是指材料对局部塑性变形、压痕或划痕的抗力。

7. 应力场强度因子I K ,这个I K 的临界值,称为材料的断裂韧度,用C K I 表示。

换言之,断裂韧度C K I 是材料抵抗裂纹失稳扩展能力的力学性能指标。

8. 晶体是指原子在其内部沿三维空间呈周期性重复排列的一类物质。

9. 非晶体是指原子在其内部沿三维空间呈紊乱、无序排列的一类物质。

10. 把原子看成空间的几何点,这些点的空间排列称为空间点阵。

用一些假想的空间直线把这些点连接起来,就构成了三维的几何格架称为晶格。

从晶格中取出一个最能代表原子排列特征的最基本的几何单元,称为晶胞。

11. 体心立方晶格(bcc );面心立方晶格(fcc );密排六方晶格(hcp )12. 在晶体中,由一系列原子所组成的平面称为晶面。

任意两个原子的连线称为原子列,其所指的方向称为晶向。

立方晶系中,凡是指数相同的晶面与晶向是相互垂直的。

13.在晶体中,不同晶面和晶向上原子排列方式和密度不同,则原子间结合力的大小也不同,因而金属晶体不同方向上性能不同,这种性质叫做晶体的各向异性。

14.所谓位错是指晶体中一部分晶体沿一定晶面与晶向相对另一部分晶体发生了一列或若干列原子某种有规律的错排现象。

位错的基本类型有两种,即刃型位错和螺旋位错。

15.由于塑性变形过程中晶粒的转动,当形变量达到一定程度(70%以上)时,会使绝大部分晶粒的某一位向与外力方向趋于一致,形成特殊的择优取向。

择优取向的结果形成了具有明显方向性的组织,称为织构。

位错的名词解释

位错的名词解释

位错的名词解释位错,是指晶体中原子排列发生偏移或者交换,形成错位的现象。

它是晶体结构中常见的缺陷之一,对材料的机械性能和导电性能等起到重要影响。

细致观察位错的性质及其影响,对于材料科学和工程领域具有重要意义。

一、位错的形成和分类1. 形成位错的原因位错的形成通常是由晶体生长过程中的应力、温度变化以及机械变形等因素所引起。

例如,在晶体生长过程中,由于生长速度的不均匀或晶体材料的不完美,就会出现位错。

同样地,在材料的机械变形过程中,如弯曲、拉伸或压缩等,也会导致晶体中位错的产生。

2. 位错的分类根据原子重新排列的方式和排列结构的不同,位错可以分为线性位错、平面位错和体位错。

线性位错是指位错线与晶体的某一晶面交线的直线排列,具有一维特征。

最常见的线性位错有位错线、螺旋位错和阶梯位错等。

平面位错是指位错线与晶体的某一晶面交线上有无限个交点,呈现出平面性的特点。

常见的平面位错有位错环、晶界以及孪晶等。

体位错是指位错线在晶体内没有终点,具有三维特征。

体位错通常有位错蠕变和位错多晶等。

二、位错的性质与作用1. 位错的性质位错对晶体的特性和行为有着重要影响。

它能够改变晶体的原子排列方式,导致晶体局部微结构的变化。

位错可以促进晶体的固溶体形成以及离子扩散等过程。

此外,位错还会影响晶体的力学性能,如硬度、韧性和弹性等。

因此,位错常常被用来研究晶体的性质和行为。

2. 位错的作用位错在材料科学和工程领域具有广泛的应用价值。

首先,位错可以增加晶体的强度和韧性,提高材料的抗变形能力。

这在制备金属材料和合金中起到重要作用。

此外,位错也可以影响材料的导电性能,例如半导体中的位错可以改变电子迁移的路径和速率,从而影响整个电子器件的性能。

除此之外,位错还可以用于晶体的生长和材料的表面改性等过程。

三、位错的观察和表征方法1. 传统观察方法传统的位错观察方法包括透射电镜、扫描电镜和X射线衍射等技术。

透射电镜可以通过对物质的薄片进行观察,获得高分辨率的位错图像。

材料工程基础知识点总结

材料工程基础知识点总结

材料工程基础知识点总结
第一章、材料的性能及应用
1、常用的力学性能,如:σS,σb,σe,σP 等所表示的含义,弹性模量E及其主要影响因素、塑性指标的意义。

不同材料所适用的硬度(HB、HR、HV)测量方法。

第二章、原子结构和结合键
1、结合键的类型(主要为金属键、离子键、共价键)及其主要特点,它们对材料性能的主要影响
第三章、晶体结构
1、晶面与晶向的标注和识别
2、BCC、FCC、HCP三种常见金属晶体结构中所含的原子数、它们的致密度。

3、相、固溶体、中间相、固溶强化的概念、固溶体的分类、中间相的分类以及固溶体和中间相的主要区别。

第四章、晶体缺陷
1、晶体缺陷的分类、位错的含义和分类及特点。

位错(及点缺陷)密度的变化对材料性能(主要是力学性能)的影响。

2、晶界原子排列?的特点及其分类,晶界的特性;相界的分类、润湿
第五章、固体材料中原子的扩散
1、Fick第一定律的含义、非稳态扩散的误差函数解的应用计算
2、扩散的机制及影响扩散的主要因素以及在工业上的应用(如:工业渗碳为何在奥氏体状态下进行)
第六章、相平衡与相图原理
1、Gibbs相律含义,二元匀晶、共晶相图分析,杠杆定律的应用计算;相图与合金使用性(强度、硬度)和工艺性(铸造)的关系
2、铁碳相图(简化版)及其标注上面主要的成分点和温度及相;不同含碳量的合金从高温到室温下组织的变化,利用杠杆定律计算组织或相组成物的含量(主要针对C%<2.11%的合金,即钢)第七章、材料的凝固
1、液态合金结构的特点,过冷度及其与冷却速率的关系?。

位错的基本类型和特征!

位错的基本类型和特征!

位错的基本类型和特征晶体在不同的应力状态下,其滑移方式不同。

根据原子的滑移方向和位错线取向的几何特征不同,位错分为刃位错、螺位错和混合位错。

1. 刃位错(1)形成及定义:晶体在大于屈服值的切应力τ作用下,以ABCD面为滑移面发生滑移。

AD是晶体已滑移部分和未滑移部分的交线,犹如砍入晶体的一把刀的刀刃,即刃位错(或棱位错)。

刃型位错形成的原因:晶体局部滑移造成的刃型位错(2)几何特征:位错线与原子滑移方向相垂直;滑移面上部位错线周围原子受压应力作用,原子间距小于正常晶格间距;滑移面下部位错线周围原子受拉应力作用,原子间距大于正常晶格间距。

刃型位错的分类:分类:正刃位错,“┴”;负刃位错,“┬”。

符号中水平线代表滑移面,垂直线代表半个原子面。

(3)刃型位错的结构特征①有一额外的半原子面,分正和负刃型位错;②位错线可理解为是已滑移区与未滑移区的边界线,可是直线也可是折线和曲线,但它们必与滑移方向和滑移矢量垂直;③只能在同时包含有位错线和滑移矢量的滑移平面上滑移;④位错周围点阵发生弹性畸变,有切应变,也有正应变;点阵畸变相对于多余半原子面是左右对称的,其程度随距位错线距离增大而减小。

就正刃型位错而言,上方受压,下方受拉。

⑤位错畸变区只有几个原子间距,是狭长的管道,故是线缺陷。

2. 螺位错(1)形成及定义:晶体在外加切应力τ作用下,沿ABCD面滑移,图中AD线为已滑移区与未滑移区的分界处。

由于位错线周围的一组原子面形成了一个连续的螺旋形坡面,形成螺位错。

晶体局部滑移造成的螺型位错(2)几何特征:位错线与原子滑移方向相平行;位错线周围原子的配置是螺旋状的。

螺型位错的分类:有左、右旋之分。

它们之间符合左手、右手螺旋定则。

(3)结构特征①螺型位错的结构特征无额外的半原子面,原子错排是轴对称的,分右旋和左旋螺型位错;②螺型位错线与滑移矢量平行,故一定是直线,位错线移动方向与晶体滑移方向垂直;③滑移面不是唯一的,包含螺型位错线的平面都可以作为它的滑移面;④位错周围点阵也发生弹性畸变,但只有平行于位错线的切应变而无正应变,即不引起体积的膨胀和收缩;⑤位错畸变区也是几个原子间距宽度,同样是线位错。

工程材料期末复习知识点

工程材料期末复习知识点

工程材料期末复习知识点《工程材料》复习思考题1.解释下列名词机械性能、强度、刚度、硬度、晶格、晶粒、位错、晶界、金属化合物、铁素体、渗碳体、变形织构、热处理、本质晶粒度、渗碳处理。

过冷度:实际结晶温度与理论结晶温度之差称为过冷度。

非自发形核:是液态金属依附在一些未溶颗粒表面所形成的晶核。

变质处理:在液态金属结晶前,特意加入某些难熔固态颗粒,造成大量可以成为非自发晶核的固态质点,使结晶时的晶核数目大大增加,从而提高了形核率,细化晶粒,这种处理方法即为变质处理。

加工硬化:随着塑性变形的增加,金属的强度、硬度迅速增加;塑性、韧性迅速下降的现象。

再结晶:冷作金属材料被加热到较高的温度时,原子具有较大的活动能力,使晶粒的外形开始变化,从破碎拉长的晶粒变成新的等轴晶粒,和变形前的晶粒形状相似,晶格类型相同,把这一阶段称为“再结晶”。

冷加工:在再结晶温度以下进行的压力加工。

相:在金属或合金中,凡成分相同、结构相同并与其它部分有界面分开的均匀组成部分,均称之为相。

相图:用来表示合金系中各个合金的结晶过程的简明图解称为相图。

固溶体:合金的组元之间以不同的比例混合,混合后形成的固相的晶格结构与组成合金的某一组元的相同,这种相称为固溶体。

枝晶偏析:实际生产中,合金冷却速度快,原子扩散不充分,使得先结晶出来的固溶体合金含高熔点组元较多,后结晶含低熔点组元较多,这种在晶粒内化学成分不均匀的现象称为枝晶偏析。

比重偏析:比重偏析是由组成相与溶液之间的密度差别所引起的。

如果先共晶相与溶液之间的密度差别较大,则在缓慢冷却条件下凝固时,先共晶相便会在液体中上浮或下沉,从而导致结晶后铸件上下部分的化学成分不一致,产生比重偏析。

固溶强化:通过溶入某种溶质元素形成固溶体而使金属的强度、硬度升高的现象称为固溶强化。

弥散强化:合金中以固溶体为主再加上适量的金属间化合物弥散分布,会提高合金的强度、硬度及耐磨性,这种强化方式为弥散强化。

珠光体:铁素体和渗碳体的机械混合物。

位错的运动和分解

位错的运动和分解

位错的运动和分解
位错的运动主要包括滑移和攀移两种基本方式,并且位错还可以发生分解。

1. 滑移:这是位错运动的主要方式之一。

当外部施加的切应力克服了位错运动所受的阻力时,位错将沿着特定的原子面(即滑移面)移动。

这种运动会导致晶体的一部分相对于另一部分滑动,从而引起塑性变形。

2. 攀移:攀移是刃型位错特有的运动方式。

在晶体内,刃型位错可以沿着垂直于滑移面的方向上进行移动。

攀移通常需要点缺陷的存在,例如空位或间隙原子,因为位错通过吸收或排放这些点缺陷来改变其位置。

3. 位错分解:在复杂的晶体结构中,全位错可以分解为不全位错。

不全位错之间的区域称为堆垛层错。

这种分解通常发生在低能层错能的材料中,并且这种分解会影响材料的力学性能。

位错的运动和分解是材料科学中非常重要的概念,它们对材料的塑性变形和力学性能有着决定性的影响。

了解位错的这些行为对于材料的设计和应用至关重要。

位错规律总结

位错规律总结

位错规律总结位错是晶体中原子或离子的位置偏离其理想的坐标位置,可以导致晶体的畸变和性质的变化。

位错规律是研究位错形成和运动的基本原理和关系的科学,对于理解晶体缺陷行为、晶体生长、相变及其它相关现象具有重要意义。

下文将详细介绍位错规律及其总结。

1.位错分类根据晶体中原子位移方向和位移面的不同,位错可以分为线位错、面位错和体位错。

线位错是晶体中一维的位错,描述了某一面或平行于某一方向面的原子位置发生偏移。

常见的线位错有边位错和螺旋位错。

面位错是晶体中二维的位错,描述了某一层面或平行于某一层面的原子位置发生偏移。

常见的面位错包括错配位错、平移位错和层错。

体位错是晶体中三维的位错,描述了晶体中原子整体发生平移的情况。

体位错可以看作是线位错或面位错的堆叠。

2.位错的形成和移动位错的形成通常由外界应力或温度变化引起。

当晶体中的原子或离子受到应力作用时,原子可能发生位移以消除或缓解应力。

这种位移会导致新的晶体结构缺陷形成,即位错的形成。

位错的移动可以通过原子的滑移或旋转来实现。

滑移是指位错沿晶体晶面发生平行位移,而旋转则是指位错沿某一方向发生转动。

位错的移动过程中,原子之间发生相互切变、滑动和扩散,从而引起位错的传播和畸变。

3.位错的影响位错对晶体的性质和行为具有重要影响。

首先,位错会引起晶体的畸变。

位错形成后,晶体中的原子排列发生变化,导致晶体形状和结构的变化。

这种畸变可以通过适当的外界条件下进行修正,如加热退火或应力释放。

其次,位错会影响晶体的力学性能。

位错会引起晶体中应力场的存在,导致力学性能如强度、韧性、硬度等发生变化。

一些金属的加工硬化、回复等性质变化都与位错的运动和积累有关。

此外,位错还会影响晶体的电学和输运性能。

位错附近的原子排列不规则,会导致晶体中电荷的扩散障碍、介质常数的变化和电导率的变化,从而影响晶体的电学性质和输运行为。

4.位错和晶体缺陷位错是晶体中最常见的缺陷之一。

晶体中的其他缺陷如点缺陷、面缺陷等也与位错有密切关系。

材料科学基础知识点

材料科学基础知识点

材料科学基础知识点第一章1.1原子的结合有哪些?1.2工程材料可分为哪几类?1.3晶向指数、晶面指数能画图,给图能写出。

1.4金属常见的晶格类型、配位数、致密度、原子密排面、密排晶向、结构中的间隙。

1.5晶体中缺陷的种类。

1.6位错的种类、位错方向与柏氏矢量的关系、位错的运动方式。

1.7位错反应条件及计算。

1.8晶界的种类,界面能与晶界的关系。

第二章2.1影响置换固溶体溶解度有哪些因素?有何规律?1、原子尺寸因素:溶质和溶剂的尺寸差别越小越容易形成置换固溶体2、晶体结构因素:同一种间隙原子在fcc的固熔度大于bcc的3、负电性因素;负电性相差很大时,即亲和力很大,往往比较容易形成比较稳定的化合物; 负电性差不大时,随负电性值增加,有利于增大固溶度4、电子浓度因素:溶质元素的原子价越高,形成固溶体的极限固溶度越小。

2.2间隙固溶体与间隙相之间的关系。

间隙固熔体式固熔体的一种,间隙相是一种金属间化合物两者的晶体结构也各不相同。

2.3金属间化合物的种类及特点金属间化合物分为正常价化合物,电子价化合物和间隙化合物;正常价化合物:电负性差值越大,稳定性越高;电子价化合物:间隙化合物:主要受组元的原子尺寸因素控制。

通常是由渡族金属与原子半径很小的非金属元素组成,分为简单间隙化合物与复杂间隙化合物,非金属元素处于化合物晶格的间隙中。

第三章3.1金属结晶的热力学条件是什么?热力学第二定律:在等温等压条件下物质系统总是自发地从自由能较高的状态向自由能较低的状态转变,就是说只有伴随着自由能降低的过程才能自发的进行。

3.2金属结晶的能量条件是什么?能量起伏详细看书P85-86固态金属自由能低于液态金属自由能。

当温度低于Tm时液态的自由能Gl高于固态的自由能,由液态转为固态时,将释放出那份能量而是系统自由能降低,所以过程才能够自动进行。

凝固过程一定要在低于熔点温度时才能进行。

3.3金属结晶的结构条件是什么?结构起伏详细看书P86-873.4金属结晶时的形核有哪些方式?均匀形核、非均匀形核3.5根据凝固理论,如何细化晶粒?单位体积中的晶粒数取决于两个因素:形核率N和长大速度V;增加过冷度;小制件:增加冷却速度,大制件:采用形核剂;振动。

晶体位错解析

晶体位错解析

晶体位错是指晶体中存在的一类线缺陷,即晶体中的原子或分子的排列在某一方向上出现了局部的不规则排列。

位错的存在对晶体的物理、化学和机械性质具有显著的影响。

位错具有以下基本性质:
1. 位错是晶体中原子排列的线缺陷,不是几何意义的线,而是具有一定尺度的管道。

2. 位错处的原子或分子的排列与周围不同,形变滑移是位错运动的结果,而不是说位错是由形变产生的。

3. 位错线可以终止在晶体的表面或晶界上,但不能终止在一个完事的晶体内部。

4. 在位错线附近有很大应力集中,附近原子能量较高,易运动。

位错的研究方法包括光学显微镜、X光衍射电子衍射和电子显微镜等技术进行直接观察和间接测定。

晶体位错的应用包括金属材料中的塑性变形和断裂行为、半导体材料中的缺陷和掺杂行为、陶瓷材料中的增韧机制等。

此外,晶体位错的形成和控制对于晶体生长、晶体的微观结构和性能调控以及材料的加工和制备等方面也有着重要的意义。

位错的基本类型和特征

位错的基本类型和特征

位错的基本类型和特征位错的基本类型和特征什么是位错?位错(dislocation)是晶体中的一种结构缺陷,它代表了晶体中原子排列的变形和重组。

位错的存在对晶体的物理性质和机械性能具有重要影响。

位错的基本类型位错可以分为以下几个基本类型:1.直线位错:也称为边界位错(edge dislocation),可看作两个晶体之间的边界。

它是晶体中某个层面与其上方、下方的层面之间原子排列不一致所形成的。

2.螺旋位错:也称为线性位错(screw dislocation),是晶体中绕某一点形成螺旋状结构的位错。

它是由某一平面与其上方或下方的层面之间原子排列不一致所形成的。

3.混合位错:是直线位错和螺旋位错相互结合形成的位错。

位错的特征位错在晶体中具有以下特征:•位错存在与位错线(dislocation line)上,其形状可以是直线、螺旋状或弯曲的。

•位错的长度可以从纳米级到微米级,取决于材料的结晶度和应变状态。

•位错引入了局部应变场,使得晶体中原子间的距离发生变化。

•位错会导致局部应力场的形成,其中位错线附近有压应力和拉应力。

•位错可以移动和增殖,对物质的可塑性和断裂行为起重要作用。

位错的影响位错的存在对材料的性质和行为具有重要影响:•位错可以增加材料的塑性,使其具有更好的变形能力和可塑性。

•位错可以使材料的强度和硬度发生变化,影响其力学性能。

•位错还可以影响材料的电学、热学和光学性能,改变其导电性、热导率和光学吸收等特性。

•位错在材料的断裂行为中起重要作用,影响材料的断裂强度和断裂方式。

结论位错作为一种晶体中的结构缺陷,具有不可忽视的重要性。

通过研究位错的基本类型和特征,我们可以更好地理解材料的结构和性质,为材料的设计和应用提供更好的基础。

参考文献:1.Hirth, J. P., & Lothe, J. (1992). Theory of dislocations.Wiley.2.Hull, D., & Bacon, D. J. (2001). Introduction todislocations (Vol. 952). Butterworth-Heinemann.补充位错的性质和应用位错的形成原因位错的形成主要是由于晶体生长和形变过程中的原子排列不完美引起的。

工程材料知识点总结(全)

工程材料知识点总结(全)

工程材料知识点总结(全)第二章材料的性能1、布氏硬度布氏硬度的优点:测量误差小,数据稳定。

缺点:压痕大,不能用于太薄件、成品件及比压头还硬的材料。

适于测量退火、正火、调质钢,铸铁及有色金属的硬度(硬度少于450HB)。

2、洛氏硬度HRA用于测量高硬度材料, 如硬质合金、表淬层和渗碳层。

HRB用于测量低硬度材料, 如有色金属和退火、正火钢等。

HRC用于测量中等硬度材料,如调质钢、淬火钢等。

洛氏硬度的优点:操作简便,压痕小,适用范围广。

缺点:测量结果分散度大。

3、维氏硬度维氏硬度所用载荷小,压痕浅,适用于测量零件表面的薄硬化层、镀层及薄片材料的硬度,载荷可调范围大,对软硬材料都适用。

4、耐磨性是材料抵抗磨损的性能,用磨损量来表示。

分类有黏着磨损(咬合磨损)、磨粒磨损、腐蚀磨损。

5、接触疲劳:(滚动轴承、齿轮)经接触压应力的反复长期作用后引起的一种表面疲劳剥落损坏的现象。

6、蠕变:恒温、恒应力下,随着时间的延长,材料发生缓慢塑变的现象。

7、应力强度因子:描述裂纹尖端附近应力场强度的指标。

第三章金属的结构与结晶1、晶体中原子(分子或离子)在空间的规则排列的方式为晶体结构。

为便于描述晶体结构,把每个原子抽象成一个点,把这些点用假想直线连接起来,构成空间格架,称为晶格。

晶格中每个点称为结点,由一系列原子所组成的平面成为晶面。

由任意两个原子之间连线所指的方向称为晶向。

组成晶格的最小几何组成单元称为晶胞。

晶胞的棱边长度、棱边夹角称为晶格常数。

①体心立方晶格晶格常数用边长a表示,原子半径为√3a/4,每个晶胞包含的原子数为1/8×8+1=2(个)。

属于体心立方晶格的金属有铁、钼、铬等。

②面心立方晶格原子半径为√2a/4,每个面心立方晶胞中包含原子数为1/8×8+1/2×6=4(个)典型金属(金、银、铝、铜等)。

③密排六方晶格每个面心立方晶胞中包含原子数为为12×1/6+2*1/2+3=6(个)。

位错基本理论

位错基本理论
的研究。发现:塑性变形的主要方式是滑移,即在切应力作 用下,晶体相邻部分彼此产生相对滑动。
晶体滑移: 总沿一定的滑移面(密排面)和其上的
一个滑移方向进行,且只有当切应力 达到一定临界值时,滑移才开始。
此切应力被称为临界分切应力,即晶 体的切变强度。
1926年,弗兰克( Frankel)从刚体滑移模型出发,推算晶体的 理论强度。
点缺陷的移动: 晶体中点缺陷并非固定不动,而在不断改变位置的运动中。 空位周围的原子,因热振动能量起伏而获得足够能量而跳入
空位,则在该原子原位置上,形成一个空位。此过程为空位 向邻近结点的迁移。如图
(a)原来位置; (b)中间位置; (c)迁移后位置 空位从位置A迁移到B
当原子在C处时,为能量较高不稳定状态,空位迁移须获足 够能量克服此障碍,称该能量为空位迁移激活能ΔEm。
正刃位错:滑移面上方点阵受压应力,下方点阵受拉应力。 负刃型位错与此相反。
5)在位错线周围的过渡区(畸变区)每个原子具有较大的 平均能量。但只有2~5个原子间距宽,呈狭长的管道。
晶体在外切应力τ作用下,右端晶体上下区在滑移面(ABCD) 发生一个原子间距的切变。
BC为已滑移区与未滑移区的交界处,即位错线。 在BC线和aa'线间的原子失去正常相邻关系,连接则成了一
握位错各种性质的基础。
根据原子滑移方向和位错线取向几何特征不同, 位错:分为刃位错、螺位错和混合位错。
晶体在外切应力 作用下,以ABCD面为滑移面发生滑移,
EFGH面以左发生了滑移,以右尚未滑移,致使ABCD面上 下两部分晶体间产生了原子错排。 EF-将滑移面分成已滑移区和未滑移区,即是“位错”。 EFGH晶面称多余半原子面。
离开平衡位置的原子可有两个去处:

位错基础

位错基础
量等于从体心立方晶体的原点到体心的矢量来 表示,则b=a/2+b/2+c/2,可写成b=a/2[111]。
一般立方晶系中柏氏矢量可表示为 b=a/n<uvw>,其中n为正整数。
通常柏氏矢量的大小(即位错强度)还用下式
来表示。
| b |
a
u2 v2 w2
n
3. 柏氏矢量的守恒性(Conservation)
位错理论的发展历史较短,还存在一些不 完善之处。弗兰克和斯蒂兹(J.W.Steeds)在1975 年的一篇“晶体位错”的评论中指出:位错有 些理论是确切的,因为它们是纯几何的或纯形 貌的。有些部分显然是近似的,然而是可靠的。 但现在有意义的问题是不能确信那些已做的近 似的可靠性,因此必须依靠全部的理论方法以 及观察和推测来谋求进一步发展。除了这些 “近似”之外,在位错领域中迄今还没有完全 解决的主要问题是如何填补单个位错的性质和 位错集团的行为之间的鸿沟。因此,位错理论 尚有待今后进一步发展和完善。
混合型位错线是一条曲线,在A处位错线与滑移矢量 平行,因此是螺型位错;而在C处位错线与滑移矢量垂直, 因此是刃型位错。A与C之间,位错线既不垂直也不平行 于滑移矢量,每一小段位错线都可分解为刃型和螺型两个 部分,因此是混合型位错。
由于位错线是已滑移区与未滑移区的边界 线,因此一根位错线不能终止于晶体内部,而 只能露头于晶体表面或晶界。
1939年柏格斯(J.M.Burgers)提出了螺型位错的概
念和柏氏矢量,使位错的概念普遍化,并发展了位错应 力场的一般理论,接着位错理论得到多方面的发展。 1940年派尔斯(Peierls)提出半点阵模型,到1947年在 纳波罗(Nabarro)的帮助下,计算出使位错滑移所需 的临界切应力(P-N力)。 1949年柯垂尔(A.H.Cottrell) 提出位错与溶质原子的作用问题,用碳原子钉扎位错来 解释钢中屈服点的现象获得成功(Cottrell气团),弗兰 克尔的螺型位错促进晶体生长的理论预告获得了令人信 服的证实。而后许多人几乎同时独立地在显微镜下观察 到了位错的存在及其形状。

北航911材料综合考试大纲(2011版)

北航911材料综合考试大纲(2011版)

911材料综合考试大纲(2011版)《材料综合》满分150分,考试内容包括《物理化学》、《材料现代研究方法》《材料科学基础》三门课程,其中《物理化学》占总分的50%,《材料现代研究方法》占总分的30%,《材料科学基础》占总分的20%。

特别注意:《材料科学基础》分为三部分,考生可任选其中一部分作答。

物理化学考试大纲(2011版)适用专业:材料科学与工程专业《物理化学》是化学、化工、材料及环境等专业的基础课。

它既是专业知识结构中重要的一环,又是后续专业课程的基础。

要求考生通过本课程的学习,掌握化学热力学及化学动力学的基本知识;培养学生对化学变化和相变化的平衡规律及变化速率规律等物理化学问题,具有明确的基本概念,熟练的计算能力,同时具有一般科学方法的训练和逻辑思维能力,体会并掌握怎样由实验结果出发进行归纳和演绎,或由假设和模型上升为理论,并能结合具体条件应用理论分析解决较为简单的化学热力学及动力学问题。

一、考试内容及要求以下按化学热力学基础、多组分系统热力学、相平衡、化学平衡、界面现象、电化学、以及化学动力学六部分列出考试内容及要求。

并按深入程度分为了解、理解(或明了)和掌握(或会用)三个层次进行要求。

(一)化学热力学基础理解平衡状态、状态函数、可逆过程、热力学标准态等基本概念;理解热力学第一、第二、第三定律的表述及数学表达式涵义;明了热、功、内能、焓、熵和Gibss函数,以及标准生成焓、标准燃烧焓、标准摩尔熵和标准摩尔吉布斯函数等概念。

熟练掌握在物质的p、T、V变化,相变化和化学变化过程中求算热、功以及各种热力学状态函数变化值的原理和方法;在将热力学公式应用于特定体系的时候,能应用状态方程(主要是理想气体状态方程)和物性数据(热容、相变热、蒸汽压等)进行计算。

掌握熵增原理和吉布斯函数减小原理判据及其应用;明了热力学公式的适用条件,理解热力学基本方程、对应系数方程。

(二)多组分系统热力学及相平衡理解偏摩尔量和化学势的概念;理解并掌握化学势判据及其应用;理解并掌握Clapeyron公式和Clausius-Clapeyron方程,并能进行有关计算。

材料科学基础位错部分知识点

材料科学基础位错部分知识点

材料科学基础位错部分知识点第三章晶体结构缺陷(位错部分)1.刃型位错及螺型位错的特征刃型位错特征:1)刃型位错是由一个多余半原子面所组成的线缺陷;2)位错滑移矢量(柏氏向量)垂直于位错线,而且滑移面是位错线和滑移矢量所构成唯一平面;3)位错的滑移运动是通过滑移面上方的原子面相对于下方原子面移动一个滑移矢量来实现的;4)刃型位错线的形状可以是直线、折线和曲线;5)晶体中产生刃型位错时,其周围的点阵发生弹性畸变,使晶体处于受力状态,既有正应变,又有切应变。

螺型位错特征:1)螺型位错是由原子错排呈轴线对称的一种线缺陷;2)螺型位错线与滑移矢量平行,因此,位错线只能是直线;3)螺型位错线的滑移方向与晶体滑移方向、应力矢量方向互相垂直;4)位错线与滑移矢量同方向的为右螺型位错;为此系与滑移矢量异向的为左螺型位错。

刃型位错螺型位错位错线和柏氏矢量关系(判断位错类型)⊥∥滑移方向∥b∥b位错线运动方向和柏氏矢量关系∥⊥相关概念(ppt上的,大概看一看):A.位错运动与晶体滑移:通过位错运动可以在较小的外加载荷下晶体产生滑移,宏观显现为产生塑性变形。

B.位错线:位错产生点阵畸变区空间呈线状分布。

对于纯刃型位错,其可以描述为刃型位错多余半原子面的下端沿线。

为了与其它类型位错统一,位错线可表述为已滑移区与未滑移区的交界线。

C.混合型位错:在外力作用下,两部分之间发生相对滑移,在晶体内部已滑移和未滑移部分的交线既不垂直也不平行滑移方向(柏氏矢量b),这样的位错称为混合位错。

(位错线上任意一点,经矢量分解后,可分解为刃位错和螺位错分量。

晶体中位错线的形状可以是任意的。

)=l/V;单位面积内位错条数来表示位错密度:D.错位密度:单位体积内位错线的长度:ρv=n/S。

(金属中位错密度通常在106~8—1010~121/c㎡之间。

)ρs2.柏氏矢量:1)刃型位错和螺型位错的柏氏矢量表示:2)柏氏矢量的含义:柏氏矢量反映出柏氏回路包含的位错所引起点阵畸变的总累计。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Fc
f b2
; f 是空位的形成能。
产生攀移的力:①外加正应力; ②过饱和空位产生的力——渗透力(化学力)F0。
如攀移力靠外加正应力 提供,则,Fc
b
f b2

=
f b3
已知 f
1 5
b3,
代入上式:
=
f b3
1 。可知,刃型位错要整体向上攀移, 5
第一节 直线位错的应力场
直线位错的应力场
⑴螺型位错
柱面坐标表示:
z
z
G z
Gb
2r
rr r rz 0
直角坐标表示:
式中,G为切变模量,b为柏氏矢量,r为距位错中心的距离
螺型位错应力场的特点: (1)只有切应力分量,正应力分量全为零,这表明螺型位错不引起晶体的膨胀和收缩。 (2)螺型位错所产生的切应力分量只与r有关(成反比),且螺型位错的应力场是轴对称
②位错的应变能与b2成正比。因此,从能量的观点来看,晶体中具有最小b的 位错应该是最稳定的,而b大的位错有可能分解为b小的位错,以降低系统的能量。 由此也可理解为滑移方向总是沿着原子的密排方向的。
③螺位错的弹性应变能约为刃位错的2/3。 ④位错的能量是以单位长度的能量来定义的,故位错的能量还与位错线的形 状有关。由于两点间以直线为最短,所以直线位错的应变能小于弯曲位错的,即 更稳定,因此,位错线有尽量变直和缩短其长度的趋势。 ⑤位错的存在均会使体系的内能升高,虽然位错的存在也会引起晶体中熵值 的增加,但相对来说,熵值增加有限。可以忽略不计。因此,位错的存在使晶体 处于高能的不稳定状态,可见位错是热力学上不稳定的晶体缺陷。
的,并随着与位错距离的增大,应力值减小。
(3)这里当r→0时,τθz→∞,显然与实际情况不符,这说明上述结果不适用位错中心的
严重畸变区(r =b)。
⑴刃型位错 柱面坐标表示:
直角坐标表示:
式中,
;G为切变模量;ν为泊松比;为b柏氏矢量。
刃型位错应力场的特点: (1)同时存在正应力分量与切应力分量,
第二节 位错的应变能与线张力
位错的应变能-位错周围点阵畸变引起弹性应力场导致晶体能量增加,这部分能量称为位错
的应变能。
位错的能量可分为两部分:位错中心畸变能和位错应力场引起的弹性应变能。
①螺型位错的应变能(单位长度):
Es
Gb 2
4
ln
r1 r0
②刃型位错的应变能(单位长度):
Ee
Gb 2
ln r1
位错的线张力T—位错线每增加单位长度所增加的能量
T dE Gb2 dl
0.3 ~ 1.2。若取 1 ,T可表示为: 2
T 1 Gb2 2
上式是假定刃型、螺型和混合位错的单位长度能量都相等得到的。由于刃型位错的 能量比螺型位错的大,所以线张力也大。因此可知:
①直的刃型位错弯曲后,增加了螺型位错分量,虽然位错线的长度增加了,但单位 位错线的能量却减少。
在外应力作用下,单位长度位错线上所受的力(方向恒与位错线垂直):
dF
b
dl
式中, 外加应力或其他位错的 应力; 位错线元的单位矢量
平行螺位错间的作用力
Fx
Gb1b2 2
x x2 y2
i ;Fy
Gb1b2 2
y x2 y2
j
或,Fr
Gb1b2 2
1 r
因此,两平行螺型位错间的作用力,其大小与两位错强度的乘积成正比,而与两位错间
4 (1 ) r0
如果取
1 ,可知, Ee 3
3 2
ES
③混合位错的应变能(单位长度):
E
Ee ES
Gb 2 4k
ln
r1 r0
式中,k sin 2 cos2 ,是位错线与柏氏矢量的 夹角。 1
④单位长度位错的总应变能可简化为: E Gb 2
总结:
①位错的能量包括两部分:位错中心畸变能和位错应力场引起的弹性应变能。 位错中心区的能量一般小于总能量1/10,可忽略。
2 1
y 3x2 x2
y2 y2 2
Fx是沿滑移方向的作用力 。 Fy是垂直于滑移面的作用 力,使位错b2攀移。
平行刃位错间相互作用稳定位置
两个肖克莱 (Shockley)位错间的作用力
⑴肖克莱 (Shockley)位错——柏氏矢量平行于滑移面的半位错,例如面心立方晶体中的柏
氏矢量为
b
a
112
6
⑵两个肖克莱 (Shockley)位错间的作用力
的半位错.
F
Ga 2
16r
2
31
Ga 2
16r
两个肖克莱位错间的作用力为斥力,使两个肖克莱位错分开,分开的距离r与层错能 (SFE)的表面张力有关,达到平衡时:
r
Ga 216 SFE第四节 位错的攀移攀移—位错垂直于滑移面的运动。①刃位错才能攀移;②攀移引起晶体的体积变化。 攀移力FC——单位长度位错攀移时所需要的力
距成反比,其方向则沿径向r垂直于所作用的位错线,当bl与b2同向时,Fr>0,即两同号平 行螺型位错相互排斥;而当bl与b2反向时,Fr<0,即两异号平行螺型位错相互吸引。
平行刃位错间的作用力
Fx
xyb2
Gb1b2
2 1
x x2 y2 x2 y2 2
Fy
xxb2
Gb1b2
而且各应力分量的大小与G和b成正比,与 r成反比,即随着与位错距离的增大,应力 的绝对值减小。
(2)各应力分量都是x,y的函数,而 与z无关。这表明在平行于位错的直线上, 任一点的应力均相同。
(3)刃型位错的应力场对称于多余半原 子面(y-z面),即对称于y轴。
(4) 在滑移面(y=0)上,没有正 应力,只有切应力,而且切应力τxy 达到 极大值 。
②直的螺型位错弯曲后,增加了刃型位错分量,单位位错线的能量要增加,所以螺 型位错比刃型位错难弯曲。
上述结论对分析位错的绕过机制非常重要。
第三节 位错间的作用力
实际晶体中往往有许多位错同时存在。任一位错在其相邻位错应力场作用下都会受到作 用力,此交互作用力随位错类型、柏氏矢量大小、位错线相对位向的变化而变化。 Peach-Koehler公式
(5)y>0时,σxx<0;而y<0时,σxx>0。 这说明正刃型位错的位错滑移面上侧为压应力,滑移面下侧为拉应力。
(6) x=±y时,σyy,τxy均为零,说明在直角坐标的两条对角线处,只有σxx,而且 在每条对角线的两侧,τxy(τyx)及σyy的符号相反。
(7) 产生体积应变(体积膨胀率)θ。在滑移面以上θ<0,在滑移面以下θ>0。 (8) 同螺型位错一样,上述公式不能用于刃型位错的中心区。
相关文档
最新文档