药理学第二章

合集下载

药理学(第9版)第二章 药物代谢动力学

药理学(第9版)第二章 药物代谢动力学
Central South University
1. 简单扩散 (被动扩散)——主要方式 脂溶性物质直接溶于膜的类脂相而通过。 特点: • 转运速度与药物脂溶度(lipid solubility)成正比。 • 顺浓度差,不耗能。 • 转运速度与浓度差成正比。 • 转运速度与药物解离度 (pKa) 有关。
[HA]
10 pH-pKa =
[ A ] [HA]
碱性药
pKa-pH
药理学(第9版)
Institute of Clinical Pharmacology Central South University
pH和pKa决定药物分子解离多少
碱性药
Ka =
[ H+ ] [ B ] [BH+ ]
[ BH+ ] pKa -pH= log [B]
第一节
药物分子的跨膜转运
配套题库请下载 医学猫 APP,执业、三基、规培、主治、卫生资格、正副高等题库都已入库。
药理学(第9版) Institute of Clinical Pharmacology
Central South University
一、药物通过细胞膜的方式
主动转运
药理学(第9版) Institute of Clinical Pharmacology
药理学(第9版) Instituntral South University
2. 滤过 水溶性小分子药物通过细胞膜的水通道,受流体静压或渗透压的影响。
☺ 肠黏膜上皮细胞及其他大多数细胞膜孔道4~8Å(1Å=1010m),仅水、尿素
等小分子水溶性物质能通过,分子量>100者即不能通过。
药理学(第9版)
Institute of Clinical Pharmacology Central South University

2《药理学》第二章 药物效应动力学

2《药理学》第二章 药物效应动力学

Weak selecBiblioteka ivity :唾液分泌 ↓
口干 扩瞳
阿托品
(Atropine)
M受体阻断
抑制瞳孔括约肌
解除迷走神经对 心脏的抑制
心率↑
内脏平滑肌松弛
解痉
疗效, 二. 治疗作用 (疗效,Therapeutic effect )
—— 临床用药时,符合用药目的并 临床用药时, 达到防治疾病的效果。 达到防治疾病的效果。 药理效应与治疗效果(疗效)? 药理效应与治疗效果(疗效)?
药理学
2、根据作用部位分: 、根据作用部位分: (1)局部作用:(local action) )局部作用: 在吸收入血之前在用药部位产生作用。 在吸收入血之前在用药部位产生作用。如 口服硫酸镁导泻, 口服硫酸镁导泻,外用酮康唑治皮肤真菌感染 . (2)吸收作用:(absorptive action) )吸收作用: 药物被吸收入血之后分布到机体各部位产 生作用。如口服地高辛被吸收后产生强心作用。 生作用。如口服地高辛被吸收后产生强心作用。
一. 药物作用与药理效应
1.药物作用(drug action) .药物作用 药物与机体细胞间的初始作用, 药物与机体细胞间的初始作用 是分子反应 机制, 具有特异性。 机制 具有特异性。 2.药理效应(pharmacological effect) .药理效应 机体组织器官原有功能水平的变化。 机体组织器官原有功能水平的变化。 药物作用是动因, 药物作用是动因,药理效应是结果
最大效应: 最大效应:(maximum efficacy,Emax) ,
在量反应中,药物所能产生的最大效应, 在量反应中,药物所能产生的最大效应, 反映药物的内在活性。 反映药物的内在活性。
效价强度: 效价) 效价强度:(potency) (效价) 效价

药理学第二章

药理学第二章

第二章
1
药物分子的跨膜转运
2
药物的体内过程
3
房室模型
4
药物消除动力学
第二章
5 体内药物的药量时间关系 6 药物代谢动力学重要参数 7 药物剂量的设计与优化
第二章
❖ 掌握药物代谢动力学的基本规律 ❖ 药物的被动转运与主动转运 ❖ 首关消除 ❖ 药物与血浆蛋白结合之特点及意义 ❖ 体液的pH和药物的解离度 ❖ 酶的诱导或抑制 ❖ 药物排泄的途径、特点、影响因素。肝肠循环 ❖ 一级消除动力学 ❖ 药物代谢动力学重要参数:消除半衰期(t1/2)、
第二章
(2)直肠给药
经直肠给药仍避免不了首关消除。吸 收不如口服。唯一优点是防止药物对上消 化道的刺激性。
(3)舌下给药
由舌下静脉,不经肝脏而直接进入体 循环,适合经胃肠道吸收时易被破坏或有 明显首过消除的药物。如硝酸甘油、异丙 肾上腺素。
第二章
(4)注射给药
特点是吸收迅速、完全。适用于在胃肠 道易被破坏或不易吸收的药物(青霉素G、 庆大霉素);也适用于肝中首过消除明显 的药物(硝酸甘油 )。
吸收部位
主要在小肠。药物从胃肠道吸收后,都要经过门 静脉进入肝,再进入血液循环。舌下给药或直肠 给药,分别通过口腔、直肠和结肠的粘膜吸收
停留时间长,经绒毛吸收面积大 毛细血管壁孔道大,血流丰富 pH5-8,对药物解离影响小
Fick扩散定律 (Fick’s Law of Diffusi第on二)章
第二章
[CO2]i >[CO2]o
1.药物分子的跨膜转运 第二章
❖(二)简单扩散
非极性药物分子与其所具有的脂溶性溶解于细胞 膜的脂质层,顺浓度差通过细胞膜称简单扩散, 又称
被动扩散

药理学第2章 药效学

药理学第2章 药效学

Type II (Antibody-dependent cytotoxicity)
1. opsonization of the host cells whereby phagocytes stick to host cells by way of IgG, C3b, or C4b and discharge their lysosomes
2 . 非竞争性拮抗 ①最大反应降低 ②曲线不平行右移
二、药物作用机制
(一) 非特异性药物作用机制 主要与药物理化性质有关:
1、改变渗透压 如口服硫酸镁,静注甘露醇。 2、脂溶作用 如乙醚。 3、络合作用 如二巯基丁二酸钠。 4、改变 pH 值 如碳酸氢钠、氢氧化铝。
Opsonization During Type-II Hypersensitivity
IgG reacts with epitopes on the host cell membrane. Phagocytes then bind to the Fc portion of the IgG and discharge their lysosomes.
4. 迟发型Ⅳ型变态反应:接触性皮炎,药热等。
Type I (IgE-mediated or anaphylactic-type)
Type- I Hypersensitivity: Production of IgE in Response to an Allergen
Type- I Hypersensitivity: Allergen Interaction with IgE on the Surface of Mast Cells Triggers the Release of Inflammatory Mediators

药理学第二章药物效应动力学

药理学第二章药物效应动力学
原发(直接)作用:指药物被吸收后对 机体首先产生的作用。
继发(间接)作用:通过神经反射或体 液调节机制引起远隔器官功能改变。
(四)药物的作用性质
(1)调节功能:调整机体原有 生理生化功能水平。
兴奋(亢进)/抑制(麻痹)
(2)抗病原体及抗肿瘤:杀灭或抑制 病原体和抑瘤,达到治疗目的作用。
(3)补充不足(补充治疗):补充机体 某些物质如维生素、激素、微量元素 不足。
2. 吸收作用:药物被吸收入血循环 后分布到机体各部位而产生的作用,也 称为吸收作用。
(二)对因治疗和对症治疗 按用药目的分: 1. 对因治疗(治本):消除致病因子, 如P-G治疗脑膜炎。
2. 对症治疗(治标):减轻或消除疾 病症状,如吗啡镇痛,阿斯匹林解热。
(三)原发作用和继发作用
从药物作用先后分:
麻醉药品:如吗啡、大麻等 可产生生理依赖性。
精神药品:如镇静催眠药、中兴药、 致幻药等
其他:烟草、酒精等可产生心理依赖性。
小结
药 物 作
防治作用 (治病)
预防作用 如接种乙肝疫苗 治疗作用 如抗菌,降压

的 双 重 不良反应
副作用、毒性反应、变态 反应、后遗效应、继发反

(致病)
应、特异质反应、依赖性
3、不良反应的种类
不符合用药目的,并为病人带来 不适或痛苦的反应,称之。
药源性疾病:是由于药物所引起的、 较严重、较难恢复的不良反应。如 GM引起的N性耳聋。
不良反应包括:副反应、毒性 反应、变态反应、后遗效应、继发 反应、特异质反应、“三致” 反 应、药物依赖性等。
(一)副作用(副反应)(side reaction) : 药物在常用量(治疗量)下发生 的与治疗

执业医师考试药理学 第二章 药物代谢动力学习题及答案

执业医师考试药理学 第二章 药物代谢动力学习题及答案

第二章药物代谢动力学一、最佳选择题1、决定药物每天用药次数的主要因素是A、吸收快慢B、作用强弱C、体内分布速度D、体内转化速度E、体内消除速度2、药时曲线下面积代表A、药物血浆半衰期B、药物的分布容积C、药物吸收速度D、药物排泄量E、生物利用度3、需要维持药物有效血浓度时,正确的恒定给药间隔时间是A、每4h给药一次B、每6h给药一次C、每8h给药一次D、每12h给药一次E、每隔一个半衰期给药一次4、以近似血浆半衰期的时间间隔给药,为迅速达到稳态血浓度,可以首次剂量A、增加半倍B、增加1倍C、增加2倍D、增加3倍E、增加4倍5、某药的半衰期是7h,如果按每次0.3g,一天给药3次,达到稳态血药浓度所需时间是A、5~10hB、10~16hC、17~23hD、24~28hE、28~36h6、按一级动力学消除的药物,按一定时间间隔连续给予一定剂量,达到稳态血药浓度时间长短决定于A、剂量大小B、给药次数C、吸收速率常数D、表观分布容积E、消除速率常数7、恒量恒速给药最后形成的血药浓度为A、有效血浓度B、稳态血药浓度C、峰浓度D、阈浓度E、中毒浓度8、药物吸收到达血浆稳态浓度时意味着A、药物作用最强B、药物吸收过程已完成C、药物消除过程正开始D、药物的吸收速度与消除速率达到平衡E、药物在体内分布达到平衡9、按一级动力学消除的药物有关稳态血药浓度的描述中错误的是A、增加剂量能升高稳态血药浓度B、剂量大小可影响稳态血药浓度到达时间C、首次剂量加倍,按原间隔给药可迅速达稳态血药浓度D、定时恒量给药必须经4~6个半衰期才可达稳态血药浓度E、定时恒量给药达稳态血药浓度的时间与清除率有关10、按一级动力学消除的药物,其消除半衰期A、与用药剂量有关B、与给药途径有关C、与血浆浓度有关D、与给药次数有关E、与上述因素均无关11、某药按一级动力学消除,其血浆半衰期与消除速率常数k的关系为A、0.693/kB、k/0.693C、2.303/kD、k/2.303E、k/2血浆药物浓度12、对血浆半衰期(一级动力学)的理解,不正确的是A、是血浆药物浓度下降一半的时间B、能反映体内药量的消除速度C、依据其可调节给药间隔时间D、其长短与原血浆浓度有关E、一次给药后经4~5个半衰期就基本消除13、静脉注射1g某药,其血药浓度为10mg/dl,其表观分布容积为A、0.05LB、2LC、5LD、10LE、20L14、在体内药量相等时,Vd小的药物比Vd大的药物A、血浆浓度较低B、血浆蛋白结合较少C、血浆浓度较高D、生物利用度较小E、能达到的治疗效果较强15、下列叙述中,哪一项与表观分布容积(Vd)的概念不符A、Vd是指体内药物达动态平衡时,体内药量与血药浓度的比值B、Vd的单位为L或L/kgC、Vd大小反映分布程度和组织结合程度D、Vd与药物的脂溶性无关E、Vd与药物的血浆蛋白结合率有关16、下列关于房室概念的描述错误的是A、它反映药物在体内分却速率的快慢B、在体内均匀分布称一室模型C、二室模型的中央室包括血浆及血流充盈的组织D、血流量少不能立即与中央室达平衡者为周边室E、分布平衡时转运速率相等的组织可视为一室17、影响药物转运的因素不包括A、药物的脂溶性B、药物的解离度C、体液的pH值D、药酶的活性E、药物与生物膜接触面的大小18、药物消除的零级动力学是指A、消除半衰期与给药剂量有关B、血浆浓度达到稳定水平C、单位时间消除恒定量的药物D、单位时间消除恒定比值的药物E、药物消除到零的时间19、下列有关一级药动学的描述,错误的是A、血浆药物消除速率与血浆药物浓度成正比B、单位时间内机体内药物按恒比消除C、大多数药物在体内符合一级动力学消除D、单位时间机体内药物消除量恒定E、消除半衰期恒定20、关于一室模型的叙述中,错误的是A、各组织器官的药物浓度相等B、药物在各组织器官间的转运速率相似C、血浆药物浓度与组织药物浓度快速达到平衡D、血浆药物浓度高低可反映组织中药物浓度高低E、各组织间药物浓度不一定相等21、对药时曲线的叙述中,错误的是A、可反映血药浓度随时间推移而发生的变化B、横坐标为时间,纵坐标为血药浓度C、又称为时量曲线D、又称为时效曲线E、血药浓度变化可反映作用部位药物浓度变化22、药物在体内的半衰期依赖于A、血药浓度B、分布容积C、消除速率D、给药途径E、给药剂量23、依他尼酸在肾小管的排泄属于A、简单扩散B、滤过扩散C、主动转运D、易化扩散E、膜泡运输24、药物排泄的主要器官是A、肾脏B、胆管C、汗腺D、乳腺E、胃肠道25、有关药物排泄的描述错误的是A、极性大、水溶性大的药物在肾小管重吸收少,易排泄B、酸性药在碱性尿中解离少,重吸收多,排泄慢C、脂溶性高的药物在肾小管重吸收多,排泄慢D、解离度大的药物重吸收少,易排泄E、药物自肾小管的重吸收可影响药物在体内存留的时间26、下列关于肝微粒体药物代谢酶的叙述错误的是A、又称混合功能氧化酶系B、又称单加氧化酶C、又称细胞色素P450酶系D、肝药物代谢酶是药物代谢的主要酶系E、肝药物代谢专司外源性药物代谢27、药物的首过消除可能发生于A、舌下给药后B、吸入给药后C、口服给药后D、静脉注射后E、皮下给药后28、具有肝药酶活性抑制作用的药物是A、酮康唑B、苯巴比妥C、苯妥英钠D、灰黄霉素E、地塞米松29、下列关于肝药酶的叙述哪项是错误的A、存在于肝及其他许多内脏器官B、其作用不限于使底物氧化C、对药物的选择性不高D、肝药酶是肝脏微粒体混合功能酶系统的简称E、个体差异大,且易受多种因素影响30、下列关于肝药酶诱导剂的叙述中错误的是A、使肝药酶的活性增加B、可能加速本身被肝药酶的代谢C、可加速被肝药酶转化的药物的代谢D、可使被肝药酶转化的药物血药浓度升高E、可使被肝药酶转化的药物血药浓度降低31、促进药物生物转化的主要酶系统是A、单胺氧化酶B、细胞色素P450酶系统C、辅酶ⅡD、葡萄糖醛酸转移酶E、胆碱酯酶32、下列关于药物体内转化的叙述中错误的是A、药物的消除方式是体内生物转化B、药物体内的生物转化主要依靠细胞色素P450C、肝药酶的作用专一性很低D、有些药物可抑制肝药酶活性E、有些药物能诱导肝药酶活性33、不符合药物代谢的叙述是A、代谢和排泄统称为消除B、所有药物在体内均经代谢后排出体外C、肝脏是代谢的主要器官D、药物经代谢后极性增加E、P450酶系的活性不固定34、药物在体内的生物转化是指A、药物的活化B、药物的灭活C、药物化学结构的变化D、药物的消除E、药物的吸收35、不影响药物分布的因素有A、肝肠循环B、血浆蛋白结合率C、膜通透性D、体液pH值E、特殊生理屏障36、关于药物分布的叙述中,错误的是A、分布是指药物从血液向组织、组织间液和细胞内转运的过程B、分布多属于被动转运C、分布达平衡时,组织和血浆中药物浓度相等D、分布速率与药物理化性质有关E、分布速率与组织血流量有关37、影响药物体内分布的因素不包括A、组织亲和力B、局部器官血流量C、给药途径D、生理屏障E、药物的脂溶性38、药物通过血液进入组织器官的过程称A、吸收B、分布C、贮存D、再分布E、排泄39、药物与血浆蛋白结合A、是不可逆的B、加速药物在体内的分布C、是可逆的D、对药物主动转运有影响E、促进药物的排泄40、药物肝肠循环影响药物在体内的A、起效快慢B、代谢快慢C、分布程度D、作用持续时间E、血浆蛋白结合率41、下列关于药物吸收的叙述中错误的是A、吸收是指药物从给药部位进入血液循环的过程B、皮下或肌注给药通过毛细血管壁吸收C、口服给药通过首过消除而使吸收减少D、舌下或直肠给药可因首过消除而降低药效E、皮肤给药大多数药物都不易吸收42、丙磺舒可以增加青霉素的疗效。

药理学-药物效应动力学

药理学-药物效应动力学
药物与毒物之间是没有明显界限的,因此药 物的治疗作用和不良反应是其本身固有的两 重性作用。
由药物不良反应引起的疾病称为药源性疾病 (drug induced diseases) 。
不良反应
毒性反应(toxic reaction) 变态剂反量应(过al大ler或gic体re内ac蓄tio积n)过
二、受体与药物的相互作用
1.药物和受体的结合: 药物和受体的结合形式取决于药物的化
学结构和由此产生的对受体的亲和力 (affinity),即药物和受体相结合的能力。
亲和力常数 pD2
pD2 = - logKD • pD2:产生50%最大效应时的激动剂的摩
尔浓度的负对数(EC50的负对数)。与亲和 力成正比。
变态反应 ③③反应一严般重不程度严与重剂;量 成④比例难。以避免。
*特异质反应
反应停所致 海豹儿
畸胎
第二节 药物剂量与效应关系
量效关系 (dose-effect relationship) :
在一定范围内,药物剂量和药 理 效应成比例。
一、剂量
二、量效曲线
1.量反应 (graded response)
理化反应
参与/干扰细胞代谢 影响生理物质转运 影响酶的活性 作用与离子通道 影响免疫机制 非特异性作用
◆ 补改充变:pH如值铁、、
◆ ◆ ◆ ◆
锌改、变钙渗、透V压it等 影干响扰如N:新a+斯-K的+、明、 N钠a奥5+通--美H氟道+拉尿交阻唑嘧换滞、啶药卡、 钙钾环托酶通通孢普等道道素利阻开、、滞 放 雷尿药 药 公激、
第二章 药物效应动力 学
2019/6/6
药物效应动力学(Pharmacodynamics, 简称药效学) -----研究药物对机体的 作用、作用规律及作用机制。

药学专业知识一_药理学 第二章 药物代谢动力学_2012年版

药学专业知识一_药理学 第二章 药物代谢动力学_2012年版

中大网校引领成功职业人生
中大网校 “十佳网络教育机构”、 “十佳职业培训机构” 网址: 1、弱酸性药物在碱性尿液中
A:解离多,再吸收多,排泄慢
B:解离多,再吸收少,排泄快
C:解离多,再吸收多,排泄快
D:解离少,再吸收少,排泄快
E:解离少,再吸收多,排泄慢
答案:B
2、药物与血浆蛋白结合的特点正确的是 A:是不可逆的
B:加速药物在体内的分布
C:是疏松可逆的
D:促进药物排泄
E:无饱和性和置换现象
答案:C
3、大多数药物经代谢转化
A:极性增加
B:极性减小
C:药理活性减弱或消失
D:药理活性增强
E:药理活性基本不变
答案:A,C。

药理学第二章药物代谢动力学PPT课件

药理学第二章药物代谢动力学PPT课件

半衰期(T1/2)
总结词
描述药物在体内消除一半所需时间的参数。
详细描述
半衰期是药物在体内消除一半所需的时间,它是药物代谢动力学的重要参数之一。T1/2值越短,药物 消除越快。药物的消除途径、代谢速率和排泄速率等因素都会影响T1/2值。
清除率(Cl)
总结词
描述肾脏清除药物的能力的参数。
详细描述
清除率是指肾脏清除药物的能力,它是药物代谢动力学的重要参 数之一。Cl值越大,肾脏清除药物的能力越强。药物的排泄速率 、尿液pH值和尿液流量等因素都会影响Cl值。
二室模型

总结词
二室模型考虑了药物在体内分布的不均 匀性,将身体分为中央室和周边室两个 部分。
VS
详细描述
二室模型将身体分为中央室和周边室两个 部分,中央室包括血液和主要的脏器,周 边室包括其他组织。该模型适用于药物在 体内分布不均匀,且在中央室和周边室的 转运速率不同的情况。
微生物模型
总结词
微生物模型是用于描述药物在微生物中的代谢和消除过程的模型,常用于药物制剂的微 生物学质量控制。
05
药物代谢动力学的实际应用
个体化给药方案设计
根据患者的年龄、体重、性别、生理状态等因素,制定个性化的给药方案,确保 药物在体内达到最佳的治疗效果。
通过监测患者的药物代谢情况,调整给药剂量和频率,以实现最佳的治疗效果并 减少不良反应。
新药研发与评价
药物代谢动力学是新药研发的重要环 节,用于评估药物的吸收、分布、代 谢和排泄等特性。
疾病状态
疾病状态可以影响药物的吸收、分布、代谢和排泄,导致药 物代谢动力学参数的变化。
肝肾功能不全的患者对药物的代谢和排泄能力较弱,需要调 整药物剂量。

药理学 第2章 药物代谢动力学

药理学 第2章 药物代谢动力学
是少数药物消除形式
等量等间隔多次给药血中积累药物总药量
t1/2数
给药后的
经过半衰期药量
1
100% A0
50% A0
2
150% A0
75% A0
3
175% A0
87.5% A0
4
187.5% A0
93.8% A0
5
193.8% A0
96.9% A0
6
196.9% A0
98.4% A0
7
198.4% A0
99.2% A0
常用药动学参数
1.. 血浆半衰期:
Half-life (in Conc.-Time Curve)
是临床用药间隔的依据
Half-Life The amount of time required to rid the body of half of the initial concentration of the drug.
三、药物的分布:
影响药物分布的因素: 1.药物与血浆蛋白结合; 2.局部器官的血流量; 3.体液pH; 4.组织亲和力; 5.体内屏障,包括血脑屏障和胎盘屏障。
血浆蛋白结合(Plasma protein binding)
D+P
DPc
可逆性(Reversible equilibrium) 可饱和性(Saturable)
血脑屏障
(Blood-brain barrier, BBB)
由毛细血管 壁和N胶质细 胞构成
Blood Brain Barrier
四、生物转化 (transformation / metabolism)
又称为药物代谢,是药物在体内发生的 化学变化,药物经转化后成为极性高的 水溶性代谢物而利于排出体外。

药理学第二章外周神经系统药理总结

药理学第二章外周神经系统药理总结

【临床应用】
1.支气管哮喘,用于控制支气管哮喘急性发 作,舌下或气雾给药。
2.房室传导阻滞, 舌下或静脉滴注给药。 3.心脏骤停,比AD作用强,心室内注射。 4.感染性休克,应补足血容量。
【不良反应】
1.心悸。 2.心律失常,严重时心动过速,甚至心室 颤动。 3.禁用于心肌炎
克仑特罗(clenbuterol)
三、 传出神经系统的递质
递质:当神经冲动到达末梢时,从末梢释放的
一种化学传递物称为递质,递质传递神经的冲 动和信号,与受体结合产生效应。
递质在神经末梢膨体内合成、贮存,前膜释放, 与受体结合产生效应,被酶所灭活。
去甲肾上腺素(NA) 传出神经系统递质
乙酰胆碱(Ach)
神经递质的释放
神经递质的消除
N2受体兴奋效应
N2受体兴奋时,骨骼肌收缩
2 肾上腺素受体( 、 )
(1) 受体
1受体:皮肤、粘膜血管,内脏血管
2受体:突触前膜、 突触后膜(20%)
(2) 受体
1受体:心脏 2受体: 支气管平滑肌、冠状血管、骨骼肌血管、
骨骼肌
受体兴奋效应
1受体:血管收缩,冠状血管收缩。
胃肠平滑肌松弛
2受体:突触前膜受体——负反馈抑制NA的释放。
(1) 摄取(uptake)
NA的消除
摄取-1:约75~90%被神经末梢摄取。 摄取-2 :心肌、血管、肠道平滑肌摄取。
(2)灭活
摄取-1的NA——MAO 摄取-2的NA——COMT和MAO
Ach的消除
Ach被突触间隙内的 乙酰胆碱酯酶(AchE)水 解。每一分子的AchE 1min内可水解105分子 Ach。
受体激动药
去甲肾上腺素(norepinephrine,NE)

第2章_药理学_作用于中枢神经系统的药物汇总

第2章_药理学_作用于中枢神经系统的药物汇总
第二章 作用于中枢神经系统的药物
第一节 第二节 第三节 第四节 第五节 第六节
2019/2/16
镇静催眠药 抗癫痫药和抗惊厥药 抗精神失常药 镇痛药 解热镇痛抗炎药 中枢兴奋药
1
第一节
镇静催眠药
中枢神经系统(CNS)的抑制药 镇静药:CNS轻度抑制 ----能缓和激动、消除躁动、恢复安定情绪的药物 催眠药: CNS进一步抑制 ----能引起类似正常生理睡眠或改善睡眠状态的药物 ( 两药之间无质的差异,仅是量的不同) 抗焦虑药:抗焦虑不安作用 (焦虑表现:紧张、恐惧、心悸、颤抖、头晕-神经官能症) 特点: 三类药物之间很难分开,小剂量的催眠药可以镇静, 亦有一定的抗焦虑作用,抗焦虑药用于镇静催眠的效果也 很好,因此三者统称为“镇静催眠药”
2019/2/16
20
癫痫发作分类
[局限性发作]
大脑局部异常放电且只扩散至局部者,仅表现为大脑局部 功能紊乱的症状
1. 单纯性局限发作
局部肢体运动或感觉异常,持续20-60s
2. 复合性局限性发作(神经运动性发作) 冲动性神经异常,无意识的运动,如唇抽动、摇头等 病灶在颞叶和额叶,持续30s-20min
2019/2/16
10
[不良反应]
1. 治疗量连续应用可见头昏、嗜睡、乏力 2. 大剂量偶见共济失调
3. 过量急性中毒可致昏迷、呼吸抑制
4. 静脉注射过快对心血管有抑制作用 5. 与中枢抑制药、吗啡、乙醇等合用可显著增强毒性 6. 久服可发生依赖性、成瘾性,停药时可出现反跳和 戒断症状(失眠、焦虑、激动、震颤等) 7. 本品通过胎盘屏障、可随乳汁分泌,孕妇、哺乳妇忌用
2019/2/16
2
一、苯二氮卓类
传统的镇静催眠药(如巴比妥类)都是普遍性中枢抑 制药,随剂量逐渐增加,而产生镇静、催眠、抗惊厥和麻 醉作用,中毒量可致呼吸麻痹而死亡,曾认为这是镇静催 眠药的一般规律,但60年代开始,应用的苯二氮卓类具有 较好的抗焦虑和镇静催眠作用,无麻醉作用。安全范围大, 目前几乎已完全取代了巴比妥类传统镇静催眠药 优点: 1、治疗指数高 2、对肝微粒体酶诱导作用小 3、在人用半量安定即能抑制夜间胃酸分泌 ---有利于失眠兼用消化道溃疡病人 常用药物:地西泮,氟西泮,氯氮卓,奥沙西泮,三唑仑等

药理学 第二章 药物效应动力学

药理学 第二章 药物效应动力学
阿托品 抑制腺体分泌 松ቤተ መጻሕፍቲ ባይዱ平滑肌
治疗作用
不良反应
(2)毒性反应:指由于用药剂量过大或者用药 时间久,药物在体内蓄积过多引起的对机体有 明显损害的反应。 急性毒性:用药剂量过大而迅速发生的毒性反 应,多损害:循环、呼吸及神经系统功能。
慢性毒性:长期用药在体内蓄积而逐渐发生的 毒性反应,常损害:肝、肾、骨髓及内分泌等 器官功能,一般比较严重,危害较大。
特异性:受体对其配体具有高度特异性识别能力,
能与其结构相适应的配体特异性结合。特定的受
体只与某种特定的配体结合,受体结合部位与配 体的结构具有专一性,从而产生特定的效应。
敏感性:受体只需与很低浓度的配体结合就能产 生显著的效应。
饱和性:因受体的数目是一定的,当配体达到某
一浓度时,其最大结合值不再随配体浓度增加而 增大。因此,受体与配体的结合具有饱和性,作 用于同一受体的配体之间存在竞争结合现象。
2、 药物的普遍细胞作用
普遍细胞作用:有的药物对机体的各种 组织都产生类似的作用,可影响酶的活 性,干扰组织细胞的代谢,甚至引起细 胞原生质变性,这种作用称为普遍细胞 作用又称原生质毒。
二 防治作用和不良反应
(一)防治作用分为预防作用和治疗作用 预防作用:是指提前用药以防止疾病或症 状发生的作用
二 药物作用的主要类型
(一) 局部作用和吸收作用 局部作用
吸收作用
是药物被吸收之后 随血液循环分布到 组织器官所发生的 作用又称全身作用
是指未被吸收的 药物在用药部位 所呈现的作用。
(二)直接作用和间接作用
直接作用
是指药物对其所 接触的器官、 细胞直接产生的 作用。
去甲肾上腺素 间接作用 激动血管平滑肌α受体 是由于机体的整 体性而通过机体 血管收缩 反射机制或生理 性调节间接产生 血压升高 的药物作用。

药理学第二章药物代谢动力学

药理学第二章药物代谢动力学
Absorption, Distribution, Metabolism and Excretion
主要在小肠
1
口服给药 (Oral ingestion) 吸收 (Absorption) 从给药部位进入血液循环的过程。
2
吸收部位 停留时间长,经绒毛吸收面积大 毛细血管壁孔道大,血流丰富 pH5~8,对药物解离影响小
第 三 节 房室模型
一室模型(one partment open model)
二室模型(two partment open model) 定义:以简化的数学模式图(房室空间) 来分析药物在体内的动态变化(分 布与消除)。
1
2
一室模型: 假设条件 ① 将机体视“匀一单元” ② 均匀分布于血液及组织
弱酸性药物
在酸性的环境中易解离,解离性成分多,非解离性成分少,脂溶性低,不易通过生物膜 在碱性的环境中不易解离,解离性成分少,非解离性成分多,脂溶性高,易通过生物膜
弱碱性药物
问 题
某人过量服用苯巴比妥(酸性药)中毒,有何办法加速脑内药物排至外周,并从尿内排出?
2. 滤过(Filtration) 水溶性小分子药物通过细胞膜的水通道,受流体静压或渗透压的影响。
98% 2% 保泰松 96% 4% 华法林
与保泰松合用
体内屏障 血脑屏障(blood brain barrier): 由毛细血管壁(被神经胶质细胞包围)和神经胶质细胞构成 大分子、脂溶度低、DP不能通过 有中枢作用的药物脂溶度一定高 也有载体转运,如葡萄糖可通过 可变:炎症时,通透性↑,如青霉素难以进入健康人的脑脊液,脑膜炎时易进入。
消除 5单位/h
2.5单位/h
1.25单位/h
消除2.5单位/h
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

C
定义
核酸中核苷酸的排
列顺序。
A
由于核苷酸间的差
异主要是碱基不同,所
以也称为碱基序列。
G
3′端
药理学第二章
5´端
C
核苷酸的连接
核苷酸之间以
磷酸二酯键连接形
A
成多核苷酸链,即
核酸。
G
药理学3第´端二章
书写方法
AGT GCT
5 P P P P P P OH 3
5 pApGpTpGpCpT-OH 3 5 A G T G C T 3
第二章
核酸的结构和功能
核酸:
药理学第二章
核酸的发现和研究工作进展
• 1868年 Fridrich Miescher从脓细胞中提取“核素” • 1944年 Avery等人证实DNA是遗传物质 • 1953年 Watson和Crick发现DNA的双螺旋结构 • 1968年 Nirenberg发现遗传密码 • 1975年 Temin和Baltimore发现逆转录酶 • 1981年 Gilbert和Sanger建立DNA 测序方法 • 1985年 Mullis发明PCR 技术 • 1990年 美国启动人类基因组计划(HGP) • 1994年 中国人类基因组计划启动 • 2001年 美、英等国完成人类基因组计划基本框架
脱氧核苷酸:
OOHH OO HH
dAMP, dGMP, dTMP, dCMP 药理学第二章
体内重要的游离核苷酸及其衍生物
多磷酸核苷酸:NMP,NDP,NTP 环化核苷酸: cAMP,cGMP
• 含核苷酸的生物活性物质:
NAD+、NADP+、CoA-SH、FAD 等都含有 AMP
NNHHN22H2
药理学第二章
(二) DNA双螺旋结构模型要点
(Watson, Crick, 1953)
碱基垂直螺旋轴居双螺旋内 側,与对側碱基形成氢键配 对 ( 互 补 配 对 形 式 : A=T; GC) 。
相邻碱基平面距离0.34nm, 螺旋一圈螺距3.4nm,一圈 10对碱基。
药理学第二章
碱基互补配对
A
T
第一节 核酸的化学组成及一级结构
核酸的化学组成
1. 元素组成: C、H、O、N、P(9~10%)
2. 分子组成 —— 碱基:嘌呤碱,嘧啶碱
—— 戊糖:核糖,脱氧核糖
—— 磷酸
一、核苷酸的结构 药理学第二章
两类核酸的基本化学组成比较
碱基
嘌呤碱 嘧啶碱
DNA
腺嘌呤 (A ) 鸟嘌呤 (G) 胞嘧啶 (C) 胸腺嘧啶(T)
C
G
药理学第二章
(二) DNA双螺旋结构模型要点
(Watson, Crick, 1953)
氢键维持双链横向稳定 性,碱基堆积力维持双 链纵向稳定性。
药理学第二章
(二)DNA结构的多样性
A-DNA:右手螺旋 B-DNA:Watson-Crick模型,右手螺 旋生理条件下DNA最稳定的结构形式 Z-DNA:左手螺旋
碱基组成分析 Chargaff 规则
碱基的理化数据分析 A-T、G-C以氢键配对较合理 DNA纤维的X-线衍射图谱分析
药理学第二章
Chargaff 碱基组成规律
(1) 腺嘌呤和胸腺嘧啶的摩尔数相等. A=T
鸟嘌呤与胞嘧啶的摩尔数相等. G=C
嘌呤总数=嘧啶总数
A+G=C+T
(2) DNA的组成具有种属特异性
药理学第二章
与DNA的差别在于:
1、戊糖是核糖而非脱氧核糖
2、嘧啶成分是胞嘧啶(C)和尿 嘧啶(U),无胸腺嘧啶(T)
核酸分子的大小常用碱基数目或 碱基对数目来表示。核酸片段<50bp 称为寡核苷酸 药理学第二章
第二节 DNA的空间结构与功能
一、DNA的二级结构——双螺旋结构模型
药理学第二章
(一)DNA双螺旋结构的研究背景
O
H 3C NH
NH
O
胞嘧啶(C)
药理学第二章
NH
O
胸腺嘧啶(T)
戊糖
H O CH 2
O H H O CH 2
OH
5´ O
O


3´ 2´
OH OH
OH
核糖 (构成RNA)
脱氧核糖 (构成DNA)
药理学第二章
核苷的形成
碱基和核糖(脱氧核糖)通过糖 苷键连接形成核苷(脱氧核苷)。
NH2
N
核苷:AR, GR, UR, CR
N
NN N
O OO OOO HO PHOO PPH OOO PPP OOO CCHCH2H2OO2O NNN
NN N O
NN N
C H 2O
N
OH OOHH OOHOHH
cAMP
ADANPTAPD+AMP
OOHOH HOOHOH H
药理学第二章
O
P O OH O HNADP+
NH2 N
N
5′端
二、核酸的一级结构
药理学第二章
药理学第二章
二、DNA的超螺旋结构及其在染色质 中的组装
(一)DNA的超螺旋结构
超螺旋结构 DNA双螺旋链再盘绕即形成超螺旋结构。
正超螺旋 盘绕方向与DNA双螺旋方同相同
负超螺旋 盘绕方向与DNA双螺旋方向相反
药理学第二章
意义 DNA超螺旋结构整体或局部的拓扑学
药理学第二章
二、核酸的分类及分布
脱氧核糖核酸
( DNA)
90%以上分布于细胞核,其余分布于 核外如线粒体,叶绿体,质粒等。
携带遗传信息,决定细Biblioteka 和个 体的基因型(genotype)。
核糖核酸
(RNA)
分布于胞核、胞液。
参与细胞内DNA遗传信息的表 达。某些病毒RNA也可作为遗 传信息的载体。
药理学第二章
1
H O CH 2 O N
O

脱氧核苷:dAR, dGR, dTR, dCR
OH OH
药理学第二章
核苷酸的结构与命名
核苷(脱氧核苷)和磷酸以磷酸酯键
连接形成核苷酸(脱氧核苷酸)。
NN HH 22
NN O
核苷酸:
H O P H OO CCHH 22 OO NN OO OH
AMP, GMP, UMP, CMP
(3) DNA的碱基组成没有组织的特异性, 且较为稳定,不随年龄、营养状态、 环境改变的影响
药理学第二章
(二) DNA双螺旋结构模型要点
(Watson, Crick, 1953)
DNA分子由两条相互平行但 走向相反的脱氧多核苷酸链 组成,两链以-脱氧核糖-磷 酸-为骨架,以右手螺旋方 式绕同一公共轴盘。螺旋直 径为2nm,形成大沟及小沟 相间。
RNA
腺嘌呤 (A) 鸟嘌呤 (G) 胞嘧啶 (C) 尿嘧啶 (U)
戊糖
D-2-脱氧核糖 D-核糖

磷酸
磷酸
药理学第二章
碱基
嘌呤
N 7
5 6 1N
8 9 NH
43 2 N
NH2 N
N
NH
N
腺嘌呤(A)
O
N NH
NH
N
NH2
鸟嘌呤(G)
药理学第二章
嘧啶
54
N 3
612
NH
NH2
N
O
NH
NH
O
尿嘧啶(U)
相关文档
最新文档