实验四 计数器及其应用
北京科技大学数电实验四 Quartus II集成计数器及移位寄存器应用
北京科技大学实验报告学院:高等工程师学院专业:自动化(卓越计划)班级:自E181姓名:杨威学号:41818074 实验日期:2020 年5月26日一、实验名称:集成计数器及其应用1、实验内容与要求(1)用74161和必要逻辑门设计一个带进位输出的10进制计数器,采用同步置数方法设计;(2)用两个74161和必要的逻辑门设计一个带进位输出的60进制秒计数器;2、实验相关知识与原理(1)74161是常用的同步集成计数器,4位2进制,同步预置,异步清零。
引脚图功能表其中X。
3、10进制计数器(1)实验设计1)确定输入/输出变量输入变量:时钟信号CLK、复位信号CLRN;输出变量:计数输出QD、QC、QB、QA,进位输出RCO,显示译码输出OA、OB、OC、OD、OE、OF、OG2)计数范围:0000-10013)预置数值:00004)置数控制端LDN:计数到1001时输出低电平5)进位输出RCO:计数到1001时输出高电平画出如下状态转换表:CP QDQCQBQA0 00001 00012 00103 00114 01005 01016 01107 01117 10009 100110 0000(2)原理图截图仿真波形如下功能验证表格CLRN QD QC QB QA RCO0 0 0 0 0 01 0 0 0 1 01 0 0 1 0 01 0 0 1 1 01 0 1 0 0 01 0 1 0 1 01 0 1 1 0 01 0 1 1 1 01 1 0 0 0 01 1 0 0 1 11 0 0 0 0 04、60进制秒计数器(1)实验设计1)确定输入/输出变量输入变量:时钟信号CLK、复位信号CLRN;输出变量:计数十位输出QD2、QC2、QB2、QA2和计数个位输出QD1、QC1、QB1、QA1,进位输出RCO2)计数范围:0000 0000-0101 10013)预置数值:0000 00004)置数控制端LDN1(个位):计数到0101 1001时输出低电平5)清零端CLRN2(十位):计数到0110时输出低电平6)ENT:个位计数到1001时输出高电平7)进位输出RCO:计数到1001时输出高电平画出如下状态转换表CP QD2QC2QB2QA2QD1QC1QB1QA1CPQD2QC2QB2QA2QD1QC1QB1QA1CPQD2QC2QB2QA2QD1QC1QB1QA10 0000 0000 20 0010 0000 40 0100 00001 0000 0001 21 0010 0001 41 0100 00012 0000 0010 22 0010 0010 42 0100 00103 0000 0011 23 0010 0011 43 0100 00114 0000 0100 24 0010 0100 44 0100 01005 0000 0101 25 0010 0101 45 0100 01016 0000 0110 26 0010 0110 46 0100 01107 0000 0111 27 0010 0111 47 0100 01118 0000 1000 28 0010 1000 48 0100 10009 0000 1001 29 0010 1001 49 0100 100110 0001 0000 30 0011 0000 50 0101 000011 0001 0001 31 0011 0001 51 0101 000112 0001 0010 32 0011 0010 52 0101 001013 0001 0011 33 0011 0011 53 0101 001114 0001 0100 34 0011 0100 54 0101 010015 0001 0101 35 0011 0101 55 0101 010116 0001 0110 36 0011 0110 56 0101 011017 0001 0111 37 0011 0111 57 0101 011118 0001 1000 38 0011 1000 58 0101 100019 0001 1001 39 0011 1001 59 0101 100160 0000 0000 (2)设计原理图截图(3)实验仿真仿真波形:仿真结果表:5、实验思考题:(1)总结任意模计数器的设计方法。
数电实验报告:实验4-计数器及应用161
广东海洋大学学生实验报告书(学生用表)实验名称课程名称 课程号 学院(系)专业 班级 学生姓名 学号 实验地点 实验日期实验4 计数器及其应用一、实验目的1、熟悉中规模集成计数器的逻辑功能及使用方法2、掌握用74LS161构成计数器的方法3、熟悉中规模集成计数器应用二、实验原理计数器是典型的时序逻辑电路,它是用来累计和记忆输入脉冲的个数.计数是数字系统中很重要的基本操作,集成计数器是最广泛应用的逻辑部件之一。
计数器种类较多,按构成计数器中的多触发器是否使用一个时钟脉冲源来分,有同步计数器和异步计数器;根据计数制的不同,可分为二进制计数器、十进制计数器和任意进制计数器;根据计数的增减趋势,又分为加法、减法和可逆计数器。
还有可预置数和可编程序功能计数器等。
本实验主要研究中规模十进制计数器74LS161的功能及应用。
1、中规模集成计数器74LS161 是四位二进制可预置同步计数器,由于它采用4 个主从JK 触发器作为记忆单元,故又称为四位二进制同步计数器,其集成芯片管脚如图1所示:管脚符号说明:电源正端Vcc ,接+5V ;异步置零(复位)端Rd ;时钟脉冲CP ;预置数控制端 A 、B 、C 、D ;数据输出端 QA 、QB 、QC 、QD ;进位输出端 RCO :使能端EP ,ET ;预置端 LD ;图1 74LS161 管脚图GDOU-B-11-112该计数器由于内部采用了快速进位电路,所以具有较高的计数速度。
各触发器翻转是靠时钟脉冲信号的正跳变上升沿来完成的。
时钟脉冲每正跳变一次,计数器内各触发器就同时翻转一次,74LS161的功能表如表1所示:表1 74LS161 逻辑功能表2、实现任意进制计数器由于74LS161的计数容量为16,即计16个脉冲,发生一次进位,所以可以用它构成16进制以内的各进制计数器,实现的方法有两种:置零法(复位法)和置数法(置位法)。
(1) 用复位法获得任意进制计数器假定已有N进制计数器,而需要得到一个M进制计数器时,只要M<N,用复位法使计数器计数到M时置“0”,即获得M进制计数器。
实验4-计数器及其应用
实验四计数器及其应用
姓名:班级:
学号:同组人员:
一、实验目的:
(1)熟悉常用中规模计数器的逻辑功能。
(2)掌握二进制计数器和十进制计数器的工作原理和使用方法。
二、实验设备:
数字电路实验箱,数字万用表,数字双踪示波器,74LS90,74LS161及基本门电路。
三、实验原理:
异步计数器74LS90引管脚图及功能表真值表
74LS90为中规模TTL集成计数器,可实现二分频、五分频和十分频等功能,它由一个二进制计数器和一个五进制计数器构成。
其引脚排列图和功能表如下所示:
74LS90的引脚排列图:
(1) 清除
令CR=1,其它输入为任意态,这时Q3Q2Q1Q0=0000,译码数字显示为0。
清除功能完成后,置CR=0
(2) 置数
CR=0,CP U,CP D任意,数据输入端输入任意一组二进制数,令LD= 0,观察计数
译码显示输出,予置功能是否完成,此后置LD=1。
(3) 加计数
CR=0,LD=CP D=1,CP U接单次脉冲源。
清零后送入10个单次脉冲,观察译码数字显示是否按8421码十进制状态转换表进行;输出状态变化是否发生在CP U的上升
沿。
(4) 减计数
CR=0,LD=CP U=1,CP D接单次脉冲源。
参照3)进行实验。
四、实验内容:
(1)产生10进制序列,从0~9显示。
(2)产生6进制序列,从0~5显示。
(3)产生如下序列:1,3,5,7,9,0,2,4,6,8并显示。
五、实验结果:。
数电实验报告:实验4-计数器及应用161
广东海洋大学学生实验报告书(学生用表)实验名称实验名称课程名称课程名称课程号课程号学院学院((系) 专业专业班级班级学生姓名学生姓名学号学号实验地点实验地点实验日期实验日期实验4 计数器及其应用一、实验目的1、熟悉中规模集成计数器的逻辑功能及使用方法、熟悉中规模集成计数器的逻辑功能及使用方法2、掌握用74LS161构成计数器的方法构成计数器的方法3、熟悉中规模集成计数器应用、熟悉中规模集成计数器应用二、实验原理计数器是典型的时序逻辑电路,它是用来累计和记忆输入脉冲的个数.计数是数字系统中很重要的基本操作,集成计数器是最广泛应用的逻辑部件之一。
计数器种类较多,按构成计数器中的多触发器是否使用一个时钟脉冲源来分,有同步计数器和异步计数器;步计数器和异步计数器;根据计数制的不同,根据计数制的不同,根据计数制的不同,可分为二进制计数器、可分为二进制计数器、可分为二进制计数器、十进制计数十进制计数器和任意进制计数器;根据计数的增减趋势,又分为加法、减法和可逆计数器。
还有可预置数和可编程序功能计数器等。
本实验主要研究中规模十进制计数器74LS161的功能及应用。
的功能及应用。
1、中规模集成计数器74LS161 是四位二进制可预置同步计数器,由于它采用4 个主从JK 触发器作为记忆单元,故又称为四位二进制同步计数器,其集成芯片管脚如图元,故又称为四位二进制同步计数器,其集成芯片管脚如图11所示:所示:管脚符号说明:电源正端Vcc ,接+5V ;异步置零(复位)端Rd ;时钟脉冲CP ;预置数控制端数控制端 A 、B 、C 、D ;数据输出端;数据输出端 QA 、QB 、QC 、QD ;进位输出端;进位输出端 RCO :使能端:使能端EP EP EP,,ET ET;预置端;预置端;预置端LD ;图1 74LS161 管脚图管脚图GDOU-B-11-112该计数器由于内部采用了快速进位电路,所以具有较高的计数速度。
计数器及应用实验报告
计数器及应用实验报告计数器及应用实验报告引言:计数器是一种常见的电子设备,用于记录和显示特定事件或过程中发生的次数。
在实际应用中,计数器广泛用于各种领域,如工业自动化、交通管理、计时系统等。
本文将介绍计数器的原理、分类以及在实验中的应用。
一、计数器的原理计数器是由一系列的触发器组成的,触发器是一种能够存储和改变状态的电子元件。
计数器的工作原理是通过触发器的状态改变来记录和显示计数值。
当触发器的状态从低电平变为高电平时,计数器的计数值加一;当触发器的状态从高电平变为低电平时,计数器的计数值减一。
计数器可以根据需要进行正向计数、逆向计数或者同时进行正逆向计数。
二、计数器的分类根据计数器的触发方式,计数器可以分为同步计数器和异步计数器。
同步计数器是指所有触发器在同一个时钟脉冲的控制下进行状态改变,计数值同步更新;异步计数器是指触发器的状态改变不依赖于时钟脉冲,计数值异步更新。
根据计数器的位数,计数器又可以分为4位计数器、8位计数器、16位计数器等。
三、计数器的应用实验1. 实验目的本实验旨在通过设计和搭建一个简单的计数器电路,了解计数器的工作原理和应用。
2. 实验器材- 74LS74触发器芯片- 电路连接线- LED灯- 开关按钮3. 实验步骤步骤一:搭建计数器电路根据实验原理,将74LS74触发器芯片与LED灯和开关按钮连接起来,形成一个简单的计数器电路。
步骤二:测试计数器功能将电路连接到电源,并按下开关按钮。
观察LED灯的亮灭情况,记录计数器的计数值变化。
步骤三:应用实验根据实际需求,将计数器电路应用到实际场景中。
例如,可以将计数器电路连接到流水线上,用于记录产品的数量;或者将计数器电路连接到交通信号灯上,用于记录通过的车辆数量。
4. 实验结果与分析通过实验测试,我们可以观察到LED灯的亮灭情况,并记录计数器的计数值变化。
根据实验结果,我们可以验证计数器的功能是否正常。
在应用实验中,我们可以根据实际需求来设计和改进计数器电路,以满足不同场景下的计数需求。
计数器及其应用实验报告
一、实验目的1. 理解计数器的基本原理和构成方式。
2. 掌握中规模集成计数器的使用方法和功能测试。
3. 了解计数器在数字系统中的应用,如定时、分频、数字运算等。
二、实验原理计数器是一种时序逻辑电路,用于对输入脉冲进行计数。
根据计数进制、触发器翻转方式、计数功能等不同,计数器可以分为多种类型。
1. 计数进制:二进制、十进制、任意进制。
2. 触发器翻转方式:同步、异步。
3. 计数功能:加法、减法、可逆(加/减)。
常见的集成计数器有74LS161(4位二进制同步加法计数器)、74LS193(4位二进制同步可逆计数器)等。
三、实验器材1. 数字电路实验箱2. 同步十进制可逆计数器74LS1923. 2输入四与门74LS001四、实验步骤1. 搭建实验电路:根据实验要求,搭建计数器实验电路,包括计数器芯片、时钟源、复位端等。
2. 功能测试:分别对计数器进行加法计数、减法计数、可逆计数等功能的测试,观察输出波形和计数结果。
3. 应用实验:利用计数器实现定时、分频等功能,观察实际效果。
五、实验结果与分析1. 功能测试:- 加法计数:输入时钟脉冲,观察计数器输出端Q0~Q3的变化,验证加法计数功能。
- 减法计数:输入时钟脉冲,观察计数器输出端Q0~Q3的变化,验证减法计数功能。
- 可逆计数:输入时钟脉冲,观察计数器输出端Q0~Q3的变化,验证可逆计数功能。
2. 应用实验:- 定时功能:利用计数器实现定时功能,例如,通过计数器计数1000个脉冲,实现1秒定时。
- 分频功能:利用计数器实现分频功能,例如,将输入的50Hz时钟信号分频为5Hz。
六、实验总结通过本次实验,我们掌握了计数器的基本原理、构成方式和使用方法,了解了计数器在数字系统中的应用。
实验过程中,我们学会了如何搭建实验电路、进行功能测试和应用实验。
本次实验有助于提高我们对数字电路和时序逻辑电路的理解,为后续学习打下基础。
七、实验心得1. 计数器在数字系统中应用广泛,掌握计数器的基本原理和构成方式非常重要。
实验四 集成计数器及其应用(DOC)
实验四集成计数器及其应用实验性质:设计性一、实验目的⑴熟悉集成计数器的逻辑功能及各控制端的作用。
⑵掌握用集成计数器构成任意进制计数器的方法。
二、实验原理计数器是数字系统中必不可少的组成部分,它不仅用来计输入脉冲的个数,还大量用于分频、程序控制及逻辑控制等。
计数器种类繁多,其分类方式大致有以下三种:第一种:按计数器的进制分。
通常分为二进制、十进制和N进制计数器。
第二种:按计数脉冲输入方式不同,可分为同步计数器和异步计数器两大类。
同步计数器是指内部的各个触发器在同一时钟脉冲作用下同时翻转,并产生进位信号。
其计数速度快、工作频率高、译码时不会产生尖峰信号。
而异步计数器中的计数脉冲是逐级传送的,高位触发器的翻转必须等低一位触发器翻转后才发生。
其计数速度慢,在译码时输出端会出现不应有的尖峰信号,但其内部结构简单,连线少,成本低,因此,在一般低速场合中应用。
第三种:按计数加减分类。
则有递减、递加计数器和可逆计数器。
其中可逆计数器又有加减控制式和双时钟输入式两种。
针对以上计数器的特点,我们在设计电路时,可根据任务要求选用合适器件。
一些常用的计数器如表4-4-1所示。
下面我们以74LS160、74LS161、74LS190、74LS193、74LS290为例,介绍计数器的一般使用方法,对于表中的其它器件更详细功能介绍请参阅有关手册。
1. 四位二进制同步计数器74LS161其功能见表4-4-2所示,计数范围0~15。
0303端;CT T ,CT P :计数控制端;LD :同步并行置入控制端,低电平有效;CR :异步清除输入端,低电平有效。
该器件具有异步清零、同步预置数功能。
当CR =0时,计数器清零,Q 3Q 2Q 1Q 0=0000,与CP 无关;当CR =1、LD =0时,在CP 脉冲上升沿的作用下,D 3~D 0输入的数据d 3 d 2 d 1 d 0被置入计数器,即Q 3Q 2Q 1Q 0=d 3 d 2 d 1 d 0.进位输出CO= Q 3Q 2Q 1Q 0。
计数器及其应用实验报告
计数器及其应用实验报告实验目的,通过实验,掌握计数器的工作原理和应用,加深对数字电路的理解。
实验仪器,示波器、信号发生器、逻辑分析仪、计数器芯片等。
实验原理,计数器是一种能够在输入脉冲信号的作用下,按照一定规律进行计数的数字电路。
常见的计数器有二进制计数器、BCD计数器等。
在实验中,我们将使用示波器和信号发生器来观察计数器的工作状态,并利用逻辑分析仪来分析计数器的输出信号。
实验步骤:1. 连接实验电路,按照实验指导书上的电路图,连接计数器芯片、示波器、信号发生器和逻辑分析仪。
2. 设置信号发生器,将信号发生器设置为产生一定频率的脉冲信号,并输入到计数器的时钟输入端。
3. 观察示波器波形,使用示波器观察计数器的输出波形,记录下不同计数器状态下的波形特征。
4. 使用逻辑分析仪,利用逻辑分析仪来分析计数器的输出信号,观察计数器的工作状态和输出特点。
实验结果与分析:通过实验观察和分析,我们发现计数器在接收到时钟脉冲信号后,按照固定的规律进行计数。
不同类型的计数器在计数规律上有所不同,但都能够实现稳定的计数功能。
同时,我们还发现计数器的输出信号具有一定的脉冲特性,这对于数字电路的设计和应用具有重要意义。
实验应用:计数器在数字电路中有着广泛的应用,例如在计时器、频率计、脉冲计数等电路中都有计数器的身影。
通过本次实验,我们对计数器的工作原理和应用有了更深入的了解,为今后的电路设计和应用打下了良好的基础。
结论:本次实验通过观察和分析计数器的工作特性,加深了对数字电路中计数器的理解。
同时,实验还展示了计数器在数字电路中的重要应用,为今后的电路设计和应用提供了有益的参考。
通过本次实验,我们不仅掌握了计数器的工作原理和应用,还提高了实验操作能力和数据分析能力。
希望通过今后的实验学习,能够进一步深化对数字电路和计数器的理解,为将来的工程实践做好充分的准备。
计数器及其应用的实验原理
计数器及其应用的实验原理1. 什么是计数器?计数器是一种电子数字逻辑电路,用于计算和记数。
它由触发器和逻辑门组成,根据输入信号的变化来记录和显示一个有序的数字序列。
计数器可以实现加法、减法、乘法和除法等运算。
2. 计数器的工作原理计数器基于触发器工作,触发器是一种可以存储和改变其状态的电子开关。
常见的触发器有RS触发器、JK触发器和D触发器。
计数器根据触发器的状态改变来计数。
2.1 二进制计数器二进制计数器是最常用的计数器类型。
它由多个触发器按照一定顺序串联而成,每个触发器表示一个二进制位(0或1)。
当计数器接收到时钟信号时,触发器按照设定的计数模式改变其状态,从而实现计数功能。
2.2 计数模式计数器可以采用不同的计数模式,如递增计数、递减计数、加法计数和减法计数等。
计数模式根据输入信号的变化来确定计数的方向和方式。
3. 计数器的应用3.1 秒表计数器可用于制作秒表。
通过将计数器连接到一个时钟信号源,每个时钟周期就会触发计数器计数一次。
当需要计时时,可以启动计数器并显示经过的时间。
3.2 频率计计数器可以用来测量和显示信号的频率。
通过将计数器连接到输入信号,每个计数器计数周期都会表示输入信号的一个完整周期。
根据计数器计数的频率,可以得到输入信号的频率。
3.3 数字表计数器可以用于制作数字表。
通过将计数器的输出与数码管连接,可以实现数字表对时间、温度、湿度等数值的显示。
通过控制计数器的计数速度,可以调整数字表的刷新速率。
3.4 电子游戏计数器还可以用于制作电子游戏。
通过将计数器的输出与游戏的计分系统连接,可以实现计分的功能。
玩家的得分通过计数器累加并显示在游戏界面上。
4. 总结计数器是一种重要的数字电路,可以用于计数、计时和计算等应用。
它基于触发器的工作原理,通过触发器的状态改变来实现计数功能。
计数器可应用于秒表、频率计、数字表和电子游戏等领域。
掌握计数器的原理和应用可以帮助我们理解和设计更复杂的数字逻辑电路。
实验四 MSI计数器的应用
实验四MSI计数器的应用一、实验目的:1.熟悉同步计数器的功能及应用特点;2.掌握中规模集成计数器的使用方法及功能测试方法。
二、实验仪器、设备、元器件:1.数字逻辑电路实验仪1台2. 元器件:74LS192(CC40192)CC40161 74LS74(CC4013)74LS00(CC4011)74LS161、74LS20、74LS138 导线若干3. 示波器和万用表三、实验原理:1.掌握利用74LS161及门电路构成任意进制计数器的方法。
2.预习中规模集成电路计数器74LS192的逻辑功能及使用方法。
3.复习实现任意进制计数的方法。
四、实验内容和步骤:1. 用74LS161及74LS138构成5进制计数器,要求画出电路连接图,完成相应测试并记录实验结果。
图10-1 74LS161及74LS138构成5进制计数器设计性实验(1)用2片74LS161和附加门电路构成一个50分频的分频器(提示:可用预置输入数据的方法)。
(2)用两片74LS161和少量的门电路及显示译码器设计一个BCD码的两位十进制计数器。
2.中规模+进制计数器4LS192是同步十进制可逆计数器,如图10-2所示。
图10-2 74LS192逻辑符号及引脚排列CPu-加计数端 CPD-减计数端 -置数端 -非同步进位输出端 -非同步借位输出端 D0、D1、D2、D3-计数器输入端 CR-清零端Q0、Q1、Q2、Q3-数据输出端表10-1 74LS192逻辑功能表将74LS192的CP接单脉冲源,清零端()、置数端()、数据输入端(D3~D0)分别接逻辑开关,输出端(Q3~Q0)接逻辑电平显示插孔;和接逻辑电平显示插孔或译码显示输入的相应插孔。
按表5、1逐项测试,检查是否相符。
(1)清零(CR)当CR=1,其它输入端状态为任意态,此时Q3Q2Q1Q0=0000。
之后,置CR=0,清零结束。
(2)置数当CR=0,CPu、CPD任意,D3D2D1D0任给一组数据, =0时,输出Q3Q2Q1Q0与D3D2D1D0数据相同,此时74LS192处于置数状态。
计数器及其应用 实验报告
计数器及其应用实验报告计数器及其应用实验报告引言:计数器是一种常见的数字电路元件,用于计数和记录特定事件的发生次数。
计数器在电子设备中广泛应用,如时钟、计时器、频率计等。
本实验旨在通过设计和实现一个简单的计数器电路,探索计数器的原理和应用。
实验目的:1. 理解计数器的基本原理和工作方式;2. 掌握计数器的设计和实现方法;3. 熟悉计数器在数字电路中的应用。
实验器材:1. 74LS74型D触发器芯片;2. 74LS47型BCD-七段译码器芯片;3. 七段数码管;4. 连接线、电源等。
实验步骤:1. 连接电路:将D触发器芯片和BCD-七段译码器芯片按照电路图连接。
将七段数码管连接到译码器芯片的输出端口。
2. 设置初始状态:将D触发器的D端口和清零端口连接到高电平(Vcc),将时钟端口连接到脉冲发生器。
将BCD-七段译码器芯片的输入端口连接到D触发器的输出端口。
3. 测试计数器:通过调节脉冲发生器的频率,观察七段数码管的显示变化。
可以尝试不同的频率,观察计数器的计数速度。
实验结果:1. 当脉冲发生器频率较低时,七段数码管的显示会逐个数字递增,较慢。
2. 当脉冲发生器频率适中时,七段数码管的显示会快速变化,呈现出连续计数的效果。
3. 当脉冲发生器频率过高时,七段数码管的显示会变得模糊,无法分辨数字。
实验分析:1. 计数器的工作原理:D触发器是计数器的基本构建模块,通过时钟信号的触发,将输入信号存储并输出。
BCD-七段译码器将二进制计数器的输出转换为七段数码管的显示。
2. 计数器的应用:计数器广泛应用于时钟、计时器、频率计等场景中。
通过调节时钟信号的频率,可以实现不同速度的计数功能。
3. 计数器的局限性:计数器的频率受限于时钟信号的稳定性和触发器的响应速度。
过高或过低的频率都会影响计数器的正常工作。
实验总结:通过本次实验,我们深入了解了计数器的原理和应用。
计数器是数字电路中重要的组成部分,它能够记录和计算特定事件的发生次数。
计数器及其应用
计数器及其应用简介计数器是一种用于记录和追踪数量的工具。
它可以在各种应用中使用,包括计数事物的数量、测量时间的经过、统计事件的发生频率等。
本文将介绍计数器的基本原理和常见的应用场景。
计数器的原理计数器是由一个数字和一个递增或递减的操作组成。
计数器的初始值可以是任意数字,而每次执行计数操作后,计数器的值都会相应地增加或减少。
计数器可以使用不同的方式实现,例如使用变量、列表、数据库等数据结构。
计数器的基本操作包括增加、减少和重置。
增加操作将计数器的值加一,而减少操作则将计数器的值减一。
重置操作将计数器的值重新设置为初始值。
计数器的应用1. 事件计数计数器可以用于统计事件的发生次数。
例如,网站管理员可以使用计数器来追踪特定页面的访问量,或者追踪用户在某个时间段内的登录次数。
通过计数器,我们可以了解事件的发生频率和趋势,以便做出相应的决策。
以下是一个使用计数器统计网站访问量的示例代码:# 初始化计数器visits =0# 网站访问处理逻辑def handle_request(request):global visits# 处理请求逻辑visits +=1# 其他处理逻辑# 获取网站访问量def get_visits():return visits2. 时间测量计数器可以用于测量时间的经过。
例如,我们可以使用计数器来计算一个任务的执行时间,或者测量一个过程的耗时。
通过计数器,我们可以分析程序的性能和效率,并作出相应的优化。
以下是一个使用计数器测量任务执行时间的示例代码:```python import time初始化计数器start_time = time.time()任务执行逻辑def perform_task(): # 任务逻辑 passperform_task()获取任务执行时间end_time = time.time() execution_time = end_time -start_timeprint(。
计数器及其应用实训报告
通过本次实训,使学员掌握计数器的基本原理、电路结构及功能特点,熟悉计数器的应用电路,提高学员的动手能力和实际操作技能。
同时,了解计数器在电子技术应用中的重要性,为今后从事相关领域的工作打下基础。
二、实训环境1. 实训场地:电子实验室2. 实训设备:计数器模块、示波器、信号发生器、万用表、面包板、导线等3. 实训软件:Keil uVision5、Proteus等三、实训原理计数器是一种用于计数脉冲信号的电路,根据计数原理的不同,可分为同步计数器和异步计数器。
同步计数器所有触发器在同一时钟脉冲作用下同时翻转,而异步计数器各个触发器翻转的时间不同。
本次实训主要采用异步计数器74LS163,该计数器为4位同步上升沿计数器,具有以下特点:1. 可实现二进制、十进制计数;2. 具有预置功能,可直接将所需计数值预设到计数器中;3. 具有保持功能,当计数过程中遇到外部干扰时,计数器可以保持当前计数值。
四、实训过程1. 熟悉计数器74LS163的引脚功能,了解其内部电路结构;2. 利用面包板搭建计数器电路,包括计数器模块、时钟信号发生器、显示模块等;3. 在Proteus软件中绘制计数器电路图,进行仿真实验;4. 使用示波器观察计数器电路的波形,分析计数过程;5. 利用万用表测量计数器输出端口的电压,验证计数器的工作状态;6. 根据实训要求,编写Keil uVision5软件,实现计数器的预置和保持功能;7. 将程序烧录到实验板中,验证计数器功能。
1. 成功搭建计数器电路,并验证其计数功能;2. 在Proteus软件中仿真实验,观察计数器波形;3. 使用示波器测量计数器输出端口的电压,验证计数器工作状态;4. 编写Keil uVision5软件,实现计数器的预置和保持功能;5. 将程序烧录到实验板中,验证计数器功能。
六、实训总结通过本次实训,我掌握了计数器的基本原理、电路结构及功能特点,熟悉了计数器的应用电路。
在实训过程中,我提高了动手能力和实际操作技能,为今后从事相关领域的工作打下了基础。
计数器实验报告
计数器实验报告Coca-cola standardization office【ZZ5AB-ZZSYT-ZZ2C-ZZ682T-ZZT18】实验4 计数器及其应用一、实验目的1、学习用集成触发器构成计数器的方法2、掌握中规模集成计数器的使用及功能测试方法二、实验原理计数器是一个用以实现计数功能的时序部件,它不仅可用来计脉冲数,还常用作数字系统的定时、分频和执行数字运算以及其它特定的逻辑功能。
计数器种类很多。
按构成计数器中的各触发器是否使用一个时钟脉冲源来分,有同步计数器和异步计数器。
根据计数制的不同,分为二进制计数器,十进制计数器和任意进制计数器。
根据计数的增减趋势,又分为加法、减法和可逆计数器。
还有可预置数和可编程序功能计数器等等。
目前,无论是TTL还是CMOS集成电路,都有品种较齐全的中规模集成计数器。
使用者只要借助于器件手册提供的功能表和工作波形图以及引出端的排列,就能正确地运用这些器件。
1、中规模十进制计数器CC40192是同步十进制可逆计数器,具有双时钟输入,并具有清除和置数等功能,其引脚排列及逻辑符号如图5-9-1所示。
图5-9-1 CC40192引脚排列及逻辑符号图中LD—置数端 CPU —加计数端 CPD—减计数端CO—非同步进位输出端BO—非同步借位输出端D0、D1、D2、D3—计数器输入端Q0、Q1、Q2、Q3—数据输出端 CR—清除端CC40192的功能如表5-9-1,说明如下:表5-9-1当清除端CR 为高电平“1”时,计数器直接清零;CR 置低电平则执行其它功能。
当CR 为低电平,置数端LD 也为低电平时,数据直接从置数端D 0、D 1、D 2、D 3 置入计数器。
当CR 为低电平,LD 为高电平时,执行计数功能。
执行加计数时,减计数端CP D 接高电平,计数脉冲由CP U 输入;在计数脉冲上升沿进行 8421 码十进制加法计数。
执行减计数时,加计数端CP U 接高电平,计数脉冲由减计数端CP D 输入,表5-9-2为8421码十进制加、减计数器的状态转换表。
数电实验四——精选推荐
实验四:时序逻辑电路(集成寄存器和计数器)一、实验目的:1.熟悉中规模集成计数器的逻辑功能和使用方法;掌握用集成计数器组成任意模数为M的计数器。
2.加深理解移位寄存器的工作原理及逻辑功能描述;熟悉中规模集成移位寄存器的逻辑功能和使用方法;掌握用移位寄存器组成环形计数器的基本原理和设计方法。
二、知识点提示和实验原理:㈠计数器:计数器的应用十分广泛,不仅可用来计数,也可用于分频、定时和数字运算。
计数器种类繁多,根据计数体制不同,计数器可分为二进制计数器和非二进制计数器两大类。
在非二进制计数器中,最常用的是十进制计数器,其他的称为任意进制计数器。
根据计数器的增减趋势的不同,计数器可分为加法计数器和减法计数器。
根据计数脉冲引入方式不同,计数又可分为同步计数器和异步计数器。
在实际工程应用中,一般很少使用小规模的触发器组成计数器,而是直接选用中规模集成计数器。
用集成计数器实现任意M进制计数器:一般情况任意M进制计数器的结构分为3类,第一种是由集成二进制计数器构成,第二种为移位寄存器构成的移位寄存型计数器,第三种为集成触发器构成的简单专用计数器。
当M较小时通过对集成计数器的改造即可以实现,当M较大时,可通过多片计数器级联实现。
实现方法:(1)当所需计数器M值小于集成计数器本身二进制计数最大值时,用置数(清零)法构成任意进制计数器;⑵当所需计数器M值大于集成计数器本身二进制计数最大值时,可采用级联法构成任意进制计数器。
常用的中规模集成器件:4位二进制计数器74HC161,十进制计数器74HC160,加减计数器74HC191、74HC193,异步计数器74LS290。
所有芯片的电路、功能表见教材。
㈡寄存器:寄存器用来寄存二进制信息,将一些待运算的数据、代码或运算的中间结果暂时寄存起来。
按功能划分,寄存器可分为数码寄存器和移位寄存器两大类。
数码寄存器用来存放数码,一般具有接收数码、保持并清除原有数码等功能,电路结构和工作原理郡比较简单。
实验四计数器(1)
实验报告---计数器及其应用试验一、实验目的1.熟悉计数器的工作原理,掌握中规模(MSI)计数器的逻辑功能。
2. 掌握用 MSI 计数器实现任意模计数器的方法。
二、实验设备和器件1、数字逻辑电路实验板 1 块2、74HC(LS)00(四二输入与非门) 1 片3、74HC(LS)160(4 位十进制计数器) 2 片三、实验原理时序逻辑电路是数字电路中另一类重要电路。
时序逻辑电路的特点,就是任意时刻的输出不仅取决于该时刻的输入信号,而且与信号作用前电路所处的状态有关。
计数器是一个用以实现计数功能的时序部件,它不仅可用来计脉冲数,还常用作数字系统的定时、分频以及其它特定的逻辑功能。
计数器种类很多。
根据计数制的不同,分为二进制计数器和十进制计数器。
实现四个状态变量十进制计数功能的电路称为 4 位十进制计数器。
利用集成计数器芯片可方便地构成任意模计数器,方法有反馈清零法和反馈置数法两种。
实验用器件管脚介绍:1、74HC(LS)00(四二输入与非门)管脚如下图所示。
2、74HC(LS)160(4 位十进制计数器)管脚如下图所示。
四、实验内容与步骤1、测试 74HC(LS)160 的逻辑功能(基本命题)例如,74HC(LS)160 工作于计数模式时,接通电源后,利用数码管显示说明其确为模 10 计数器。
实验步骤:1.将电路板接通电源,正确插入74HC(LS)160芯片;2.将芯片上的CLR,ENP,ENT,LOAD引脚接向高电平,A,B,C,D四个引脚均接入低电平,QA ,QB,QC,QD分别接数码管的D,D1,D2,D3引脚。
CLK引脚接向脉冲信号端;3.观察数码管显示的计数情况。
电路图如下:2、74HC(LS)160 构成模 6 计数器(基本命题)设计用与非门74HC(LS)00及计数器74HC(LS)160实现模6计数器的实验电路图,搭接电路,利用数码管显示说明其确为模 6 计数器。
实验步骤:1.将电路板接通电源,正确插入一个74HC(LS)160芯片,一个74HC(LS)00芯片,一个74HC(LS)20芯片;2.将160芯片的A,B,C,D均接入低电平,CLR,ENP,ENT分别接入高电平,将Q A ,QB,QC,QD均接至扩展区,QB与QD先接至00芯片的两个与非门1A与2A,并由1B与2B接高电平,由1Y与2Y接20芯片的1B,1D,QA 与QC直接接至20芯片的1A与1C;再由1Y接至160芯片的LOAD。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验四计数器及其应用
一、实验目的
l、学习用集成触发器构成计数器的方法
2、掌握中规模集成计数器的使用及功能测试方法
3、运用集成计数计构成l位分频器
二、实验原理
计数器是一个用以实现计数功能的时序部件,它不仅可用来计脉冲数,还常用作数字系统的定时、分频和执行数字运算以及其它特定的逻辑功能。
计数器种类很多。
按构成计数器中的各触发器是否使用一个时钟脉冲源来分,有同步计数器和异步计数器。
根据计数制的不同,分为二进制计数器,十进制计数器和任意进制计数器。
根据计数的增减趋势,又分为加法、减法和可逆计数器。
还有可预置数和可编程序功能计数器等等。
目前,无论是TTL还是CMOS集成电路,都有品种较齐全的中规模集成计数器。
使用者只要借助于器件手册提供的功能表和工作波形图以及引出端的排列,就能正确地运用这些器件。
l、用D触发器构成异步二进制加/减计数器
图4-1是用四只D触发器构成的四位二进制异步加法计数器,它的连接特点是将每只D 触发器接成T’触发器,再由低位触发器的Q端和高—位的CP端相连接。
图4-1 四位二进制异步加法计数器
若将图4-l稍加改动,即将低位触发器的Q端与高一位的CP端相连接,即构成了一个4位二进制减法计数器。
2、中规模十进制计数器
CC40192是同步十进制可逆计数器,具有双时钟输入,并具有清除和置数等功能,具引脚排列及逻辑符号如图4-2所示。
图4-2 CC40192引脚排列及逻辑符号
图中LD一置数端CP L一加计数端CP D一减计数端
CO一非同步进位输出端BO一非同步借位输出端
D0、D1、D2、D3一计数器输入端
Q0、Q1、Q2、Q3一数据输出端CR一清除端
CC40192(同74LS192,二者可互换使用)的功能如表4-1,说明如下:表4-1
当清除端CR为高电平“1”时,计数器直接清零;CR置低电平则执行其它功能。
当CR为低电平,置数端LD也为低电平时,数据直接从置数端D0、D1、D2、D3置入计数器。
当CR为低电平,LD为高电平时,执行计数功能。
执行加计数时,减计数端CP D接高
电平,计数脉冲由CP U输入;在计数脉冲上升沿进行842l码十进制加法计数。
执行减计数时,加计数端CPu接高电平,计数脉冲由减计数端CP D输入,表4-2为8421码十进制加、减计数器的状态转换表。
表4-2
3、计数器的级联使用
一个十进制计数器只能表示0~9十个数,为了扩大计数器范围,常用多个十进制计数器级联使用。
同步计数器往往设有进位(或借位)输出端,故可选用其进位(或借位)输出信号驱动下一级计数器。
图4-3是由CC40192利用进位输出CO控制高一位的CP U端构成的加数级联图。
图4-3 CC40192级联电路
4、实现任意进制计数
(1)用复位法获得任意进制计数器
假定已有N进制计数器,而需要得到一个M进制计数器时,只要M<N,用复位法使计数器计数到M时置“0”,即获得M进制计数器。
如图4-4所示为一个由CC40192十进制计数器接成的6进制计数器。
(2)利用预置功能获M进制计数器
图4-5为用三个CC40192组成的421进制计数器。
外加的由与非门构成的锁存器可以克服器件计数速度的离散性,保证在反馈置“0”信号作用下计数器可靠置“0”。
图4-4六进制计数器图4-5 421进制计数器
图4-6是一个特殊12进制的计数器电路方案。
在数字钟里,对时位的计数序列是1、2、…11,12、1、…是12进制的,且无0数。
如图所示,当计数到13时,通过与非门产生一个复位信号,使CC40192(2)(时十位)直接置成0000,而CC40192(1),即时的个位直接置成000l,从而实现了1—12计数。
三、实验设备与器件
1、十5V直流电源
2、双踪示波器
3、连续脉冲源
4、单次脉冲源
5、逻辑电平开关
6、逻辑电平显示器
7、译码显示器
8、CC4013×2(74LS74)CC40192×3(74LS192)
CC4011(74LS00)CC4012(74LS20)
四、实验内咨
1、用CC4013或74LS74 D触发器构成4位二进制异步加法计数器。
(1)按图4-1接线,R D接至逻辑开关输出插口,将低位CP0端接单次脉源,输出端Q3、Q2、
Q1、Q0接逻辑电平显示输入插口,各S D接高电平“1”。
(2) 清零后,逐个送入单次脉冲,观察并列表记录Q3~Q0状态。
(3) 将单次脉冲改为1HZ的连续脉冲,观察Q3~Q0的状态。
(4) 将1Hz的连续脉冲改为1KHz,用双踪示波器观察CP、Q3、Q2、Q1、Q0端波形,描绘之。
(5)将图4-1电路中的低位触发器的Q端与高一位的CP端相连接,构成减法计数器,按实验内容2),3),4)进行实验,观察并列表记录Q3~Q0的状态。
2、测试CC40192或74LSl92同步十进制可逆计数器的逻辑功能
计数脉冲由单次脉冲源提供,清除端CR、置数端LD、数据输入端D3、D2、D1、D0分别接逻辑开关,输出端Q3、Q2、Q1、Q0接实验设备的一个译码显示输入相应插口A、B、C、D;CO和BO接逻辑电平显示插口。
按表4-1逐项测试并判断该集成块的功能是否正常。
(1) 清除
令CR=1,其它输入为任意态,这时Q3Q2Q1Q0=0000,译码数字显示为0。
清除功能完成后,置CR=0
(2) 置数
CR=0,CP U,CP D任意,数据输入端输入任意一组二进制数,令LD=0,观察计数译码显示输出,予置功能是否完成,此后置面LD=1。
(3) 加计数
CR=0,LD=CP D=l,CP U接单次脉冲源。
清零后送入10个单次脉冲,观察译码数字显示是否按8421码十学制状态转换表进行:输出状态变化是否发生在CP U的上升沿。
(4) 减计数
CR=0,LD=CP U=l,CP D接单次脉冲源。
参照3)进行实验。
3、图4-3所示,用两片CC40192组成两位十进制加法计数器,输入1Hz连续计数脉冲,进行由00---99累加计数,记录之。
4、将两位十进制加法计数器改为两位十进制减法计数器,实现由99—00递减计数,记录之。
5、按图4-4电路进行实验,记录之。
6、按图4-5进行实验,记录之。
7、选作:设计一个数字钟移位60进制计数器并进行实验。
五、实验预习要求
1、复习有关计数器部分内容
2、绘出各实验内容的详细线路图
3、拟出各实验内容所需的测试记录表格
4、查手册,给出并熟悉实验所用各集成块的引脚排列图
六、实验报告
1、画出实验线路图,记录、整理实验现象及实验所得的有关波形。
对实验结果进行分析。
2、总结使用集成计数器的体会。