基因定位常用的方法(精选PPT)
合集下载
基因定位常用的方法
6
HAT选择系统: HAT选择系统: 选择系统
人的突变细胞株:缺乏HGPRT 人的突变细胞株:缺乏HGPRT酶 HGPRT酶 小鼠细胞株:缺乏TK TK酶 小鼠细胞株:缺乏TK酶 两者融合培养于HAT HAT培养基中 两者融合培养于HAT培养基中 HAT培养基: HAT培养基: 培养基 为次黄嘌呤, HGPRT的底物 的底物, DNA合成提 H为次黄嘌呤,是HGPRT的底物,为DNA合成提 供原料(核苷酸旁路合成原料) 供原料(核苷酸旁路合成原料) 可阻断正常的DNA合成(嘌呤及TMP DNA合成 TMP合成受抑 A可阻断正常的DNA合成(嘌呤及TMP合成受抑 制) 在胸苷激酶(TK) T在胸苷激酶(TK)的作用下生成胸腺嘧啶核 苷酸, DNA合成提供原料 苷酸,为DNA合成提供原料
1)概念: 概念: 基因定位的连锁分析是根据基因在染 色体上呈直线排列, 色体上呈直线排列,不同基因相互连锁成 连锁群的原理, 连锁群的原理,即应用被定位的基因与同 一染色体上另一基因或遗传标记相连锁的 特点进行定位。 特点进行定位。
19
2)重组值(recombination fraction) fraction) 重组值( 是基因定位时两个基因间遗传图距的量 即基因间的遗传距离。 度,即基因间的遗传距离。如果两个基因 间有1%的重组值,其遗传图的距离为1厘摩。 1%的重组值 间有1%的重组值,其遗传图的距离为1厘摩。 centimorgan,cM) (centimorgan,cM) 遗传标记( marker) 3)遗传标记(genetic marker) 用连锁分析发法进行基因定位需要已知 的记忆内作为遗传标记, 的记忆内作为遗传标记,这些标记按孟德 尔方式遗传,标记位点应是多态的。 尔方式遗传,标记位点应是多态的。
HAT选择系统: HAT选择系统: 选择系统
人的突变细胞株:缺乏HGPRT 人的突变细胞株:缺乏HGPRT酶 HGPRT酶 小鼠细胞株:缺乏TK TK酶 小鼠细胞株:缺乏TK酶 两者融合培养于HAT HAT培养基中 两者融合培养于HAT培养基中 HAT培养基: HAT培养基: 培养基 为次黄嘌呤, HGPRT的底物 的底物, DNA合成提 H为次黄嘌呤,是HGPRT的底物,为DNA合成提 供原料(核苷酸旁路合成原料) 供原料(核苷酸旁路合成原料) 可阻断正常的DNA合成(嘌呤及TMP DNA合成 TMP合成受抑 A可阻断正常的DNA合成(嘌呤及TMP合成受抑 制) 在胸苷激酶(TK) T在胸苷激酶(TK)的作用下生成胸腺嘧啶核 苷酸, DNA合成提供原料 苷酸,为DNA合成提供原料
1)概念: 概念: 基因定位的连锁分析是根据基因在染 色体上呈直线排列, 色体上呈直线排列,不同基因相互连锁成 连锁群的原理, 连锁群的原理,即应用被定位的基因与同 一染色体上另一基因或遗传标记相连锁的 特点进行定位。 特点进行定位。
19
2)重组值(recombination fraction) fraction) 重组值( 是基因定位时两个基因间遗传图距的量 即基因间的遗传距离。 度,即基因间的遗传距离。如果两个基因 间有1%的重组值,其遗传图的距离为1厘摩。 1%的重组值 间有1%的重组值,其遗传图的距离为1厘摩。 centimorgan,cM) (centimorgan,cM) 遗传标记( marker) 3)遗传标记(genetic marker) 用连锁分析发法进行基因定位需要已知 的记忆内作为遗传标记, 的记忆内作为遗传标记,这些标记按孟德 尔方式遗传,标记位点应是多态的。 尔方式遗传,标记位点应是多态的。
基因定位
有色显性 A
无色隐性 a
有色显性 A a 有色显性 a 无色假显
× a
有色显性
无色隐性
例如:玉米有色A无色a 粳性W糯性w 饱满S 凹陷s 例如:玉米有色A无色a 粳性W糯性w 饱满S 凹陷s 玉米单体Ⅰ 玉米单体Ⅰ 玉米单体Ⅱ 玉米单体Ⅱ 玉米单体Ⅲ 玉米单体Ⅲ 玉米单体Ⅳ 玉米单体Ⅳ 玉米单体 Ⅴ 玉米单体 Ⅵ 玉米单体 Ⅶ 玉米单体 Ⅷ 玉米单体 Ⅸ 玉米单体 Ⅹ 有色 有色 有色 有色 有色 有色 有色 有色 有色 有色 × 突变体无色 × 突变体无色 × 突变体无色 × 突变体无色 × 突变体无色 × 突变体无色 × 突变体无色 × 突变体无色 × 突变体无色 × 突变体无色 全有色 全有色 有色 :无色 全有色 全有色 全有色 全有色 全有色 全有色 全有色
配子与交换型配子想乘后再乘以2 规则Ⅱ 配子与交换型配子想乘后再乘以2(规则Ⅱ), 例如:AABb=(AB×Ab) 2=(45%×5%) 例如:AABb=(AB×Ab)×2=(45%×5%) 2=4.5%,aaBb=(ab×aB) 2=(45%×5%) ×2=4.5%,aaBb=(ab×aB)×2=(45%×5%) ×2=4.5%。 2=4.5%。 第三类为两位点杂合的类型 AaBb 此类基因型的形成涉及到四种配子( 此类基因型的形成涉及到四种配子(两种亲本型 配子和两种交换型配子), ),此种基因型的概率等 配子和两种交换型配子),此种基因型的概率等 于亲本型配子的平方加上交换型配子的平方后再乘 以2(规则Ⅲ),既AaBb=【(AB× ab)+(Ab× 规则Ⅲ),既AaBb=【 AB× ab)+(Ab× )+(Ab aB) 2=【 5%) 2=41%。 aB)】×2=【(45%)2+(5%)2】×2=41%。
基因定位常用的方法ppt课件
4)原位杂交的步骤
制备中期染色体 DNA原位变性 变性 放射性或非放射性标记探针 杂交(在载玻片上) 洗膜 放射性标记:放射自显影 检测 非放射性标记:荧光染料与抗体或蛋白结合 记录杂交信号 结合染色体形态进行基因定位
DMD女性患者的核型
X染色体与常染色体易位时X染色体失活的结果
两个研究小组分别采用两种不同的方法克隆了DMD基因: 一组是通过X常染色体易位,克隆了该基因的一部分。 另一研究组使用有Xp21.1微小缺失的男孩的DNA,利用消减技术,获得了在正常X染色体存在而在这个男孩DNA中缺乏的DNA克隆片段。
遗传做图:是以研究家族的减数分裂,以了解两个基因分离趋势为基础来绘制基因座位间的距离,它表明基因之间连锁关系和相对距离,并以重组率来计算和表示,以厘摩(cM)为单位。 染色体定位:只把基因定位到某条染色体上。 细胞水平上的基因图又称细胞遗传图 区域定位:从细胞遗传学水平,用染色体显带等技术在光学显微镜下观察,将基因定位到染色体的具体区带。
5)荧光原位杂交 (florescence in situ hybridization,FISH)
用特殊荧光素(dig或Biotin)标记探针DNA(Nick translation 标记法),变性成单链后与变性后的染色体或细胞核靶DNA杂交。在荧光显微镜下观察并记录结果。 FISH 优点:可用来作基因或特定DNA片段的染色体区 域定位。 缺点:必须在已知探针的情况下方可进行。
HAT选择系统:
人的突变细胞株:缺乏HGPRT酶 小鼠细胞株:缺乏TK酶 两者融合培养于HAT培养基中 HAT培养基: H为次黄嘌呤,是HGPRT的底物,为DNA合成提供原料(核苷酸旁路合成原料) A可阻断正常的DNA合成(嘌呤及TMP合成受抑制) T在胸苷激酶(TK)的作用下生成胸腺嘧啶核苷酸,为DNA合成提供原料
基因定位与克隆PPT课件
基因分布在24种染色体上,它们在染色体上的位置可通过两
种制图方法来表示:
1、物理图谱(physical map),即确定基因之间的绝对物
理学距离,通常用Mb(百万碱基对)或Kb(千碱基对)来表示
2、遗传图谱(genetic map),即确定基因之间的遗传学
距离,用cM(centimorgen分摩)表示。
编辑版ppt
NLM8 G
体细胞杂种法
• 体细胞杂种通常由人和鼠的体细胞融合而成。这些 融合细胞在最初几代培养过程中具有选择性丢失人 类染色体趋势,而保留所有的鼠染色体。
• 保留在融合细胞中的染色体可以是多条,也可能只 有一条甚至某条染色体的一部分。
• 根据研究的需要可将含有不同人类染色体的人鼠杂 种细胞组合成人鼠杂种细胞板(hybrid panel),结 合杂种细胞板和PCR的方法或基因剂量分析,或蛋 白质表达分析,可将相应的基因定位到特定的染色 体或染色体片段上,该杂种细胞板在人类基因定位 以及人类基因组计划中发挥过重要的作用。
• 染色体多态法(chromosome heteromorphism) • 染色体畸变法(chromosome abnormality) • 体细胞杂种法(somatic cell hybrids) • 染色体分类法(chromosome sorting ) • 原位杂交法(FISH) • 剂量分析法(dosage ananlysis) • 测序法(sequencing) • 家系分析法 (pedigree ananlysis)
编辑版ppt
13
连锁分析原理
生殖细胞在减数分裂时发生交换,一对同源染色体 上存在着两两相邻的基因座位,若两者之间距离较 远,发生交换的机会较多,则出现重组次数就多; 若两者之间距离较近,则重组机会较少。
数量性状的遗传—数量性状基因定位(遗传学课件)
如果分子标记覆盖整个基因组,控制数量性状的 基因( Qi)两侧会有相连锁的分子标记( M i- 和 M i+ ),这 些与Qi紧密连锁的分子标记将表现不同程度的遗传效应。
利用分子标记定位QTL(Qi),实质就是分析分子 标记与数量性状基因座Qi的连锁关系,即利用已知座位 的分子标记来定位未知座位的Qi,通过分子标记与Qi之 间的重组率,来确定Qi的具体位置。
注意把QTL与具体的群体相联系。 QTL有统计学特征 统计分析确定的QTL的位置也并
非物理上的位置。所以QTL位置与效应均有概率上的 含意。
型3种带型,这3种带型即代表某一分子标记的3种基因 型。如果将含有P1带型的个体赋值为1,P2带型的赋值 为3,杂合体赋值为2,即可得到数据化的分子标记图。
三、QTL作图一般步骤
(三)检测分离世代群体中每一个体的标记基因型
21 113 22
三、QTL作图一般步骤
(四)测量数量性状 测定作图群体的每个个体(系)数量性状值。如: 株高 百粒重 蛋白质含量 ……
四、基于混合线性模型的复合区间作图法 (MCIM)
朱军提出了用随机效应的预测方法获得基因型效 应及基因型与环境互作效应,然后再用区间作图法进 行遗传主效应及基因型与环境互作效应的QTL分析。
四、基于混合线性模型的复合区间作图法 (MCIM)
该模型可以扩展到分析具有加×加、加×显、显× 显上位性的各项遗传主效应及其与环境互作效应的QTL。
缺点:无法检测上位性效应和基因型与环境的互作; 当相邻QTL相距较近时,QTL间相互干扰使QTL的
位置和效应估计出现偏差; 每次检验仅用两个标记,其他标记的信息未加利用。
三、复合区间定位法(CIM)
Kao 和Zeng等(1999)提出了多重区间作图法进 行基因定位,这种方法也是以极大似然法估算遗传参 数,突破了回归方法的局限性,可同时在多个区间上 检测多个QTL,使QTL作图的精确度和有效性得到了改 进。
利用分子标记定位QTL(Qi),实质就是分析分子 标记与数量性状基因座Qi的连锁关系,即利用已知座位 的分子标记来定位未知座位的Qi,通过分子标记与Qi之 间的重组率,来确定Qi的具体位置。
注意把QTL与具体的群体相联系。 QTL有统计学特征 统计分析确定的QTL的位置也并
非物理上的位置。所以QTL位置与效应均有概率上的 含意。
型3种带型,这3种带型即代表某一分子标记的3种基因 型。如果将含有P1带型的个体赋值为1,P2带型的赋值 为3,杂合体赋值为2,即可得到数据化的分子标记图。
三、QTL作图一般步骤
(三)检测分离世代群体中每一个体的标记基因型
21 113 22
三、QTL作图一般步骤
(四)测量数量性状 测定作图群体的每个个体(系)数量性状值。如: 株高 百粒重 蛋白质含量 ……
四、基于混合线性模型的复合区间作图法 (MCIM)
朱军提出了用随机效应的预测方法获得基因型效 应及基因型与环境互作效应,然后再用区间作图法进 行遗传主效应及基因型与环境互作效应的QTL分析。
四、基于混合线性模型的复合区间作图法 (MCIM)
该模型可以扩展到分析具有加×加、加×显、显× 显上位性的各项遗传主效应及其与环境互作效应的QTL。
缺点:无法检测上位性效应和基因型与环境的互作; 当相邻QTL相距较近时,QTL间相互干扰使QTL的
位置和效应估计出现偏差; 每次检验仅用两个标记,其他标记的信息未加利用。
三、复合区间定位法(CIM)
Kao 和Zeng等(1999)提出了多重区间作图法进 行基因定位,这种方法也是以极大似然法估算遗传参 数,突破了回归方法的局限性,可同时在多个区间上 检测多个QTL,使QTL作图的精确度和有效性得到了改 进。
基因定位常用的方法
基因定位常用的方法基因定位是指通过一系列方法和技术确认、标定和描述基因在染色体上的相对位置。
它对于研究基因的功能、结构和演化以及遗传病的诊断和治疗都至关重要。
下面将介绍几种常用的基因定位方法。
1.遗传连锁图谱法:遗传连锁图谱法是一种早期应用广泛的基因定位方法。
通过观察不同基因的遗传连锁关系,查看它们在染色体上的距离,从而确定基因的相对位置。
这种方法需要大量的家系结构和大规模的家系分析来确定基因的连锁关系。
2.连锁不平衡分析法:连锁不平衡指的是染色体上两个以上基因的组合在多个个体中的频率比预期的频率要高或者低。
通过分析连锁不平衡信息,可以确定基因的精确定位位置。
这种方法是通过分析大规模人群的基因型和表型数据来实现的。
3.瓶颈扩大法:瓶颈扩大法是基于起源研究的一种基因定位方法。
它假设一个繁衍历史上的能够产生其中一疾病相关基因变异的细胞个体群通过瓶颈效应限制了群体的大小,从而使得该变异在群体内被广泛扩大,进而形成基因浮游。
通过分析该基因浮游的遗传差异,可以获得基因的定位信息。
4.启动子活性测定法:启动子活性测定法是一种通过观察基因的启动子(调控基因转录的DNA区域)活性来确定基因定位的方法。
这种方法利用了启动子活性与基因的转录活性之间的关联。
通过测定基因的转录活性,可以间接确定其启动子的位置。
6.比较基因组分析法:比较基因组分析法是一种通过比较不同物种或相同物种不同个体的基因组序列来确定基因位置的方法。
通过分析基因组序列上的保守区域和变异区域,可以确定基因在染色体上的位置。
以上是一些常用的基因定位方法。
随着研究技术的不断进步和发展,基因定位方法也在不断更新和完善。
这些方法的应用不仅可以帮助我们更好地理解基因的功能和结构,还可以为人类遗传病的诊断和治疗提供重要的帮助。
基因定位(3)
++ wxwx cc
F1
饱满 非糯 有色 x 凹陷 糯性 无色
+sh +wx +c
shsh wxwx cc
Ft表现型
饱满 糯性 无色 饱满 非糯 有色 饱满 非糯 无色 凹陷 非糯 无色 凹陷 非糯 有色 饱满 糯性 有色 凹陷 糯性 无色 凹陷 糯性 有色 总数
根据Ft表现型推知 粒数
Ft胚子基因型
=(116+113+4+2)/6708=0.035
5) 连锁遗传图的绘制
小结: (1)确定基因在染色体上的位置 a、判断基因是否连锁遗传 b、按表现型的个体数,对测交后代进行分组 c、进一步确定两种亲本类型和两种双交换类型 d、判断基因在染色体上的排列顺序 e、判断相 (2)确定基因染色体在上的距离 a、计算交换值 b、绘制连锁遗传图
第三节 基因定位
1、基因定位的概念:就是确定基因在染色 体上的位置。
2、最常用的方法就是三点测交。 三点测交:是通过一次杂交和一次用隐性亲 本测交,同时确定三对基因在染色体上的位 置。
现以玉米Cc、Shsh、和Wxwx三对基因为例,说明三点测交的基 本步骤
P
凹陷 非糯 有色 X 饱满 糯性 无色
shsh ++ ++
+ wx c 2708
+
+ +4
+
+ c 626
Sh + c 113
Sh + + 2538
+
wx + 116
Sh wx c 2
Sh wx + 601
6708
交换类型
判断基因位置的方法.ppt分析ppt课件
火灾袭来时要迅速疏散逃生,不可蜂 拥而出 或留恋 财物, 要当机 立断, 披上浸 湿的衣 服或裹 上湿毛 毯、湿 被褥勇 敢地冲 出去
火灾袭来时要迅速疏散逃生,不可蜂 拥而出 或留恋 财物, 要当机 立断, 披上浸 湿的衣 服或裹 上湿毛 毯、湿 被褥勇 敢地冲 出去
火灾袭来时要迅速疏散逃生,不可蜂 拥而出 或留恋 财物, 要当机 立断, 披上浸 湿的衣 服或裹 上湿毛 毯、湿 被褥勇 敢地冲 出去
(1)仅根据同学甲的实验,能不能证明控制黄体的基因位于X染 色体上,并表现为隐性?
不能;Aa(灰)×aa(黄)或 Aa(黄)×aa(灰); (2)请用同学甲得到的子代果蝇为材料设计两个不同的实验, 这两个实验都能独立证明同学乙的结论。(要求:每个实验只用 一个杂交组合,并指出支持同学乙结论的预期实验结果。)
三、根据子代性状的数量比进行基因定位
例3:步步高P123 3题
总结三: 若子代中某性状在雌雄中比例相同,则基因位于 常染色体上; 若子代中某性状在雌雄中比例不同,则基因位于 X染色体上。
火灾袭来时要迅速疏散逃生,不可蜂 拥而出 或留恋 财物, 要当机 立断, 披上浸 湿的衣 服或裹 上湿毛 毯、湿 被褥勇 敢地冲 出去
反交: XaXa♀×XAY♂→XAXa: XaY=1:1
正交:多对 紫眼雌果蝇×红眼雄果蝇; 反交:多对 红眼雌果蝇×紫眼雄果蝇,
①如果两个杂交组合的子一代中都是紫眼个体多于红眼个体,并且眼色 的遗传与性别无关,则紫眼为显性,基因位于常染色体上
②如果两个杂交组合的子一代中都是红眼个体多于紫眼个体,并且眼色 的遗传与性别无关,则红眼为显性,基因位于常染色体上
Q3:控制性状的基因位于常染色体、XY的 同源区段,正反交的结果相同,如何进一步 判断基因的位置?请说出杂交方案并用遗传 图解表示。
基因定位
19.2 16.1 4.8 4.7 15.3 15.5 15.0 3.8 3.3 34.3 2.5 23.5 8.2 13.2 33.1 2.6 9.2 (50) (154) (159) (75) (160) (39) (163) (108) (32) (57) (60) (102) (84) (141)
基因组学 Genomics
§4.1 基因的鉴定
§4.1.1 基因的概念 基因的广义概念: 基因的广义概念: 基因是具有某种功能的DNA 基因是具有某种功能的 片段,包括结构基因和调控基因, 片段,包括结构基因和调控基因, 即包括能转录和不能转录的具有 某种功能的DNA序列,其含义非 序列, 某种功能的 序列 常广泛。 常广泛。
基因组学 Genomics
§4.2 主基因定位
§4.2.3 分子标记的分析 已定位标记的利用: 已定位标记的利用:
通过遗传图谱的构建, 通过遗传图谱的构建,很多分子标记在染 色体上的位置已经确定, 色体上的位置已经确定,因此只要找到与基因 连锁的分子标记, 连锁的分子标记,就可以确定基因在染色体上 的位置。 这类标记有RFLP标记和 标记和SSR标记等 。 标记等。 的位置 。 这类标记有 标记和 标记等 已定位标记的利用, 已定位标记的利用,通常是从现有的遗传 图谱中,按一定距离均匀选取分子标记。 图谱中,按一定距离均匀选取分子标记。 1)亲本多态性的分析 , 筛选出具有多态 ) 亲本多态性的分析, 性的分子标记; 性的分子标记; 2)作图群体的标记基因型分析,找到与 )作图群体的标记基因型分析, 目的基因连锁的分子标记。 目的基因连锁的分子标记。
基因组学 Genomics
§4 Mapping of genes
§4.2 主基因定位
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
9
将筛选出来的杂种细胞转移到正常培 养基继续培养,由于人和鼠都有各自不同 的生化和免疫学特性,Miller等运用体细 胞杂交并结合杂种细胞的特征,证明杂种 细胞的存活需要胸苷激酶(TK)。凡是含 有人17号染色体的杂种细胞都因有TK活性 而存活,反之则死亡,从而推断TK基因定 位于17号染色体上,这是首例应用体细胞 杂交法进行的基因定位。
2)原理:碱基的互补配对,同源的DNA-DNA双链 或DNA-RNA双链在一定条件下能结合成双链。用放 射性或非放射性物质标记的DNA、RNA或与mRNA互 补的cDNA作探针,可检测细胞基因组中的同源部 分。
13
3)原位杂交的特点:
杂交在载玻片上的中期染色体上进行, 而不是在溶液和膜上进行。所谓原位是指 在标本上DNA原位变性,再与放射性或非放 射性物质(通常用3H)标记的已知核酸探 针杂交,通过放射自显影来检测染色体上 特异DNA或RNA顺序,用放射性颗粒在某条 染色体的区带出现的最高频率或荧光的强 度来确定探针的位置,从而准确地进行基 因定位。
DNA(Nick translation 标记法),变性成单 链后与变性后的染色体或细胞核靶DNA杂交。 在荧光显微镜下观察并记录结果。
FISH
优点:可用来作基因或特定DNA片段的染色体区 域定位。
缺点:必须在已知探针的情况下方可进行。
16
单色FISH
17
多色FISH
18
3.连锁分析(Linkage analysis)
4
2)对象: 人的细胞 鼠类:大鼠、小鼠、仓鼠
3)杂种细胞的特点: 在繁殖传代过程中,人的染色体优先
丢失,以至最后只剩几条或一条人的染色 体,而啮齿类的染色体被保留下来。
5
4)原理:
细胞进行融合时,培养液中只有部分细 胞融合成杂种细胞,还有大量未融合的双 亲细胞。这就需要选择分离纯化杂种细胞。 为此要创造一种只让杂种细胞生长繁殖而 亲本细胞死亡的环境。这就要利用杂种细 胞和亲本细胞对生长条件的要求和代谢的 差异来进行选择。其中最常用的是HAT选择 系统。
基因定位对提高人类对疾病产生的病因学的 认识有重要意义。
1
明确几个基本概念
基 因:DNA的功能片段。 基因组:有机体全部DNA序列(它包括基因
外的非基因DNA序列),它是基因和 非基因DNA序列的总和。 基因定位:是用一定的方法将基因确定到染 色体的实际位置。
2
遗传做图:是以研究家族的减数分裂,以了解两 个基因分离趋势为基础来绘制基因座位间的距离, 它表明基因之间连锁关系和相对距离,并以重组 率来计算和表示,以厘摩(cM)为单位。
1 2 345678
A
+ + + +- - - -
B
+ + - -++- -
C
+ - + - + - +-
12
2.原位杂交和荧光原位杂交
1)原位杂交(in situ hybridization):是最 直接的基因定位方法之一,是分子生物学技术在 基因定位中的应用,胰岛素基因用此方法定位于 11p15。
14
4)原位杂交的步骤
制备中期染色体
DNA原位变性
变性
放射性或非放射性标记探针
杂交(在载玻片上)
洗膜 检测
放射性标记:放射自显影 非放射性标记:荧光染料与抗体或蛋白结合
记录杂交信号
结合染色体形态进行基因定位
15
5)荧光原位杂交
(florescence in situ hybridization,FISH) 用 特 殊 荧 光 素 ( dig 或 Biotin ) 标 记 探 针
7
因此在HAT培养基上
人细胞: ①由于A的存在,正常的DNA 合成通路受
阻。 ②同时由于HGPRT的缺乏,无法利用次黄
嘌呤通过旁路合成DNA( 嘌呤合成障碍)
8
鼠细胞:由于A的存在正常的DNA合成通 道受阻,有HGPRT可以利用次黄嘌呤合成 腺嘌呤,鸟嘌呤,但由于无TK,无法合 成胸腺嘧啶。(嘧啶合成障碍 ) 杂种细胞:有HGPRT旁路合成腺嘌呤,鸟 嘌呤;并可以利用TK合成胸腺嘧啶(嘌 呤和嘧啶都可以正常合成)
染色体定位:只把基因定位到某条染色体上。 细胞水平上的基因图又称细胞遗传图
区域定位:从细胞遗传学水平,用染色体显带等 技术在光学显微镜下观察,将基因定位、体细胞杂交法基因定位: 体细胞:即生物体除生殖细胞外的任一细
胞。 1)体细胞杂交的概念:
也称细胞融合(cell infusion),是 将来源不同的两种细胞融合成一个新细胞。 新产生的细胞称杂种细胞(hybrid cell), 含双亲不同的染色体。
10
TK-
TK+
HPRT+ 鼠
X
人
HPRT-
鼠
鼠
人
人
HAT 鼠人 TK+ HPRT+
17 3
TK+ 17 3
17
TK+
3
TK-
11
②克隆嵌板法(clone panel method)
根据不同杂种细胞保留或丢失的人染色体有 时是重叠的情况,设计的一种简便而实用的基因 定位方法。
克隆嵌板
杂种克隆
保留的人染色体
6
HAT选择系统:
人的突变细胞株:缺乏HGPRT酶 小鼠细胞株:缺乏TK酶 两者融合培养于HAT培养基中
HAT培养基: H为次黄嘌呤,是HGPRT的底物,为DNA合成提 供原料(核苷酸旁路合成原料) A可阻断正常的DNA合成(嘌呤及TMP合成受抑 制) T在胸苷激酶(TK)的作用下生成胸腺嘧啶核 苷酸,为DNA合成提供原料
1)概念: 基因定位的连锁分析是根据基因在染
色体上呈直线排列,不同基因相互连锁成 连锁群的原理,即应用被定位的基因与同 一染色体上另一基因或遗传标记相连锁的 特点进行定位。
19
2)重组值(recombination fraction) 是基因定位时两个基因间遗传图距的量
第四节 基因定位常用的方法
Wilson于1911年将红绿色盲基因首次定位于X 染色体上,开创了人类基因定位的先河.1968 年,Donahue利用系谱分析的方法将Duffy血型基因 定位于1 号染色体上,是人类首次在常染色体上进 行的基因定位.20世纪70年代后,体细胞杂交重组 DNA、分子杂交和PCR等技术的出现和应用,基因 定位的方法愈加先进,基因定位的速度、数量明 显加快。人类基因组计划的实施和完成,更加促 进了基因定位的进程。
将筛选出来的杂种细胞转移到正常培 养基继续培养,由于人和鼠都有各自不同 的生化和免疫学特性,Miller等运用体细 胞杂交并结合杂种细胞的特征,证明杂种 细胞的存活需要胸苷激酶(TK)。凡是含 有人17号染色体的杂种细胞都因有TK活性 而存活,反之则死亡,从而推断TK基因定 位于17号染色体上,这是首例应用体细胞 杂交法进行的基因定位。
2)原理:碱基的互补配对,同源的DNA-DNA双链 或DNA-RNA双链在一定条件下能结合成双链。用放 射性或非放射性物质标记的DNA、RNA或与mRNA互 补的cDNA作探针,可检测细胞基因组中的同源部 分。
13
3)原位杂交的特点:
杂交在载玻片上的中期染色体上进行, 而不是在溶液和膜上进行。所谓原位是指 在标本上DNA原位变性,再与放射性或非放 射性物质(通常用3H)标记的已知核酸探 针杂交,通过放射自显影来检测染色体上 特异DNA或RNA顺序,用放射性颗粒在某条 染色体的区带出现的最高频率或荧光的强 度来确定探针的位置,从而准确地进行基 因定位。
DNA(Nick translation 标记法),变性成单 链后与变性后的染色体或细胞核靶DNA杂交。 在荧光显微镜下观察并记录结果。
FISH
优点:可用来作基因或特定DNA片段的染色体区 域定位。
缺点:必须在已知探针的情况下方可进行。
16
单色FISH
17
多色FISH
18
3.连锁分析(Linkage analysis)
4
2)对象: 人的细胞 鼠类:大鼠、小鼠、仓鼠
3)杂种细胞的特点: 在繁殖传代过程中,人的染色体优先
丢失,以至最后只剩几条或一条人的染色 体,而啮齿类的染色体被保留下来。
5
4)原理:
细胞进行融合时,培养液中只有部分细 胞融合成杂种细胞,还有大量未融合的双 亲细胞。这就需要选择分离纯化杂种细胞。 为此要创造一种只让杂种细胞生长繁殖而 亲本细胞死亡的环境。这就要利用杂种细 胞和亲本细胞对生长条件的要求和代谢的 差异来进行选择。其中最常用的是HAT选择 系统。
基因定位对提高人类对疾病产生的病因学的 认识有重要意义。
1
明确几个基本概念
基 因:DNA的功能片段。 基因组:有机体全部DNA序列(它包括基因
外的非基因DNA序列),它是基因和 非基因DNA序列的总和。 基因定位:是用一定的方法将基因确定到染 色体的实际位置。
2
遗传做图:是以研究家族的减数分裂,以了解两 个基因分离趋势为基础来绘制基因座位间的距离, 它表明基因之间连锁关系和相对距离,并以重组 率来计算和表示,以厘摩(cM)为单位。
1 2 345678
A
+ + + +- - - -
B
+ + - -++- -
C
+ - + - + - +-
12
2.原位杂交和荧光原位杂交
1)原位杂交(in situ hybridization):是最 直接的基因定位方法之一,是分子生物学技术在 基因定位中的应用,胰岛素基因用此方法定位于 11p15。
14
4)原位杂交的步骤
制备中期染色体
DNA原位变性
变性
放射性或非放射性标记探针
杂交(在载玻片上)
洗膜 检测
放射性标记:放射自显影 非放射性标记:荧光染料与抗体或蛋白结合
记录杂交信号
结合染色体形态进行基因定位
15
5)荧光原位杂交
(florescence in situ hybridization,FISH) 用 特 殊 荧 光 素 ( dig 或 Biotin ) 标 记 探 针
7
因此在HAT培养基上
人细胞: ①由于A的存在,正常的DNA 合成通路受
阻。 ②同时由于HGPRT的缺乏,无法利用次黄
嘌呤通过旁路合成DNA( 嘌呤合成障碍)
8
鼠细胞:由于A的存在正常的DNA合成通 道受阻,有HGPRT可以利用次黄嘌呤合成 腺嘌呤,鸟嘌呤,但由于无TK,无法合 成胸腺嘧啶。(嘧啶合成障碍 ) 杂种细胞:有HGPRT旁路合成腺嘌呤,鸟 嘌呤;并可以利用TK合成胸腺嘧啶(嘌 呤和嘧啶都可以正常合成)
染色体定位:只把基因定位到某条染色体上。 细胞水平上的基因图又称细胞遗传图
区域定位:从细胞遗传学水平,用染色体显带等 技术在光学显微镜下观察,将基因定位、体细胞杂交法基因定位: 体细胞:即生物体除生殖细胞外的任一细
胞。 1)体细胞杂交的概念:
也称细胞融合(cell infusion),是 将来源不同的两种细胞融合成一个新细胞。 新产生的细胞称杂种细胞(hybrid cell), 含双亲不同的染色体。
10
TK-
TK+
HPRT+ 鼠
X
人
HPRT-
鼠
鼠
人
人
HAT 鼠人 TK+ HPRT+
17 3
TK+ 17 3
17
TK+
3
TK-
11
②克隆嵌板法(clone panel method)
根据不同杂种细胞保留或丢失的人染色体有 时是重叠的情况,设计的一种简便而实用的基因 定位方法。
克隆嵌板
杂种克隆
保留的人染色体
6
HAT选择系统:
人的突变细胞株:缺乏HGPRT酶 小鼠细胞株:缺乏TK酶 两者融合培养于HAT培养基中
HAT培养基: H为次黄嘌呤,是HGPRT的底物,为DNA合成提 供原料(核苷酸旁路合成原料) A可阻断正常的DNA合成(嘌呤及TMP合成受抑 制) T在胸苷激酶(TK)的作用下生成胸腺嘧啶核 苷酸,为DNA合成提供原料
1)概念: 基因定位的连锁分析是根据基因在染
色体上呈直线排列,不同基因相互连锁成 连锁群的原理,即应用被定位的基因与同 一染色体上另一基因或遗传标记相连锁的 特点进行定位。
19
2)重组值(recombination fraction) 是基因定位时两个基因间遗传图距的量
第四节 基因定位常用的方法
Wilson于1911年将红绿色盲基因首次定位于X 染色体上,开创了人类基因定位的先河.1968 年,Donahue利用系谱分析的方法将Duffy血型基因 定位于1 号染色体上,是人类首次在常染色体上进 行的基因定位.20世纪70年代后,体细胞杂交重组 DNA、分子杂交和PCR等技术的出现和应用,基因 定位的方法愈加先进,基因定位的速度、数量明 显加快。人类基因组计划的实施和完成,更加促 进了基因定位的进程。