第三章 静定结构受力分析-三铰拱
第3章静定结构受力分析三铰拱
FN FQ0 sin FH cos
FQ FQ0 cos FH sin
(2)
M M 0 FH y
概念:
上式即为用相应简支梁的内力 表示的拱的内力式。当将上式 用作拱的内力计算公式时,可 以叫做公式法。
3.拱的内力图特征和制作
分析
由式2可知,在竖向荷载作用 下静定拱内力与相应简支梁
例1 图(a)所示三铰拱的拱轴 为半圆形。计算截面K1、K2的 内力。
FP=10kN
R=4m
(a)
解 1)求支座反力
竖 MA 0
向 FBy
1 [q R 2R
R 2
FP (R
R cos )] 11.33kN()
反 MB 0
力 FAy
1 [q R 2R
力与前规定相同;弯矩以使 拱的下侧受拉为正;
以图示三铰刚架为例说明拱的内 力计算的一般方法。
FH F Ay
FH
F By FN0
解:
截开指定截面K,取左侧为隔 离体,见下页图(c)(d),截 面上的内力均按规定的正方 向示出 。
M FN
FH
FQ
FAy
(c)
M0 0
FQ0
(d)
在轴力和剪力的两个正交方 向上建立投影方程,并建立 关于截面形心的力矩方程, 即得:
内力及拱水平反力有关。其
中拱水平反力对应确定的荷
载是一常数。此外,拱轴力
和剪力还与所计算截面外法
线与x轴的夹角a有关。
结论
拱轴上内力有以下3个特点:
1
不管是在均布荷载下还是在集 中荷载下,拱的三个内力图都 是曲线图形。
结构力学5三铰拱课件
根据设计要求,选用合适的材料搭设拱架;
施工流程与工艺要求
02
01
03
拱体安装
按照从两端向跨中的顺序,对称安装拱体构件;
拱顶合拢
在拱顶设置临时支撑,确保拱体稳定;
施工监测
对施工过程进行实时监测,确保施工安全和质量。
施工流程与工艺要求
工艺要求 拱架搭设应符合设计要求,确保稳定性和承载力;
拱体安装应保证构件对接准确,避免出现错位和扭曲;
施工流程与工艺要求
01
临时支撑设置应合理,确保拱体 在合拢过程中保持稳定;
02
施工监测应实时进行,及时发现 和解决施工中的问题。
安装方法与注意事项
安装方法 采用分段吊装法,将拱体分成若干段,分别吊装到位;
对接安装时,应保证对接位置准确,避免出现错位和扭曲;
安装方法与注意事项
• 合拢时,应设置临时支撑,确保拱体稳定。
结构力学5三铰拱课件
目
CONTENCT
录
• 三铰拱概述 • 三铰拱的力学分析 • 三铰拱的设计与计算 • 三铰拱的施工与安装 • 三铰拱的维护与加固
01
三铰拱概述
定义与特点
定义
三铰拱是一种静定结构,由两个 固定端和三个铰链支承构成。
特点
拱顶在竖向荷载作用下主要承受 压力,并通过铰链传递水平推力 ,保持拱的平衡。
保持三铰拱的清洁,避免 积尘、腐蚀等影响其使用 寿命的因素。
紧固与润滑
对三铰拱的连接部位进行 紧固,对活动部位进行润 滑,确保其正常运转。
常见问题与处理方法
1 2
结构损伤
如发现三铰拱出现裂纹、变形等损伤,应立即采 取措施进行修复或更换。
连接松动
结构力学 三铰拱
4 4 yk 2 4(16 4) 3m 求MK 16 MK 0 MK 12.5 4 10 3 20kN.m(下拉)
求MJ
yJ 3m
M
J
0
M J 7.5 4 10 3 30 30 0
3. 求FQ、FN的计算公式
拱轴任意截面D切线与水平线夹角为φ。 相应代梁中, F 设为正方向。
FP1=15kN K FHA A yk 4m
l/2
C f=4m
MC 0
FVA
4m
l l FVA FHA f FP1 0 2 4 0 MC 1 l l FHA ( FVA FP1 ) () f 2 4 f
0 上式中,M C 为代梁C截面弯矩。
M FHB () f
0 ND右 QD右 sin D H cosD 12 0.555 10.5 0.832 15.4kN
重复上述步骤,可求出各等分截面的内力,作出内力图。
三、三较拱的合理轴线
在给定荷载作用下,三铰拱任一截面弯 矩为零的轴线就线为合理拱轴。 三铰拱任一截面弯矩为 M M FH y
超静定拱
拉杆拱 静定拱
拱顶
C
拱轴线 拱高 f
B
拱趾
A
起拱线 跨度 l
f l
f
高跨比
l 通常 f l 在1-1/10之间变化,f 的值对内力有 很大影响。
工程实例
拱桥 (无铰拱)
超静定拱
世界上最古老的铸铁拱桥(英国科尔布鲁克代尔桥)
万县长江大桥:世界上跨度最大的混凝土拱桥
二、三铰拱的计算
A 12.5kN K左 Fº =12.5kN QK左 A 12.5kN
第3章 三铰拱
(二) 对称三铰拱的数解法
1. 计算支座反力
图示三铰拱中,共有 四个反力: VA、HA、VB、HB。 根据整体的平衡 条件可建立三个 平衡方程: ∑MA=0 ∑MB=0 ∑X=0 再取中间铰一侧隔离 体, ∑ MC=0, 由这四个方程可 解出四个反力。
由∑MB= 0,得: VAl-P1b1- P2b2-…= 0 VA= (P1b1 + P2b2 + …)/ l V0A 由∑MA= 0,得: VB= (P1a1+ P2a2+…)/ l V0B 把两个竖向反力VA 、VB与相应简支梁支座反力V0A 、 V0B 相比,可知竖向荷载作用下,对称三铰拱的竖向反力与 其相应简支梁的反力完全相同。
两个投影方程可用拱轴在该点的法线n和切线t为 投影轴。
∑n = 0 ,得: QD = VA cosφD -P1 cosφD -P2 cosφD -H sinφD = (V0A-P1-P2) cosφD -H sinφD
= Q0D cosφD -H sinφD
∑t = 0 ,得: ND = VA sinφD - P1 sinφD -P2 sinφD +H cosφD = (V0A-P1-P2) sinφD +H cosφD
由∑X= 0,得: HA= HB = H 中间铰左侧隔离体 ∑MC=0 得:
∑ MC =
VAl1-P1(l1 - a1) - P2(l1 - a2) - P3(l1 - a3)- H f = 0 得: H=[VAl1-P1(l1 - a1)- P2(l1 - a2)- P3(l1 - a3)] / f 因 VA = V0A ,得:H= M0C / f M0C为相应简支梁截面C的弯矩。
最后根据本例的已知条件,进行具体计算。
VA=VB= V0A = q l / 2= 4× 16 / 2 = 32kN H = (q l 2 / 8) / f = (4× 162 / 8) / 4 = 32kN
静定梁、静定平面刚架和三铰拱的计算
举例: 3、举例:
解: 研究整体: 研究整体 :
ql (↑) 2
∑M ∑M
B
=0
VA =
研究 AC 段:
C
=0
ql 2 HA = (→) 8f
任一截面的弯矩(参阅左下隔离体图) 任一截面的弯矩 (参阅左下隔离体图):
M ( x) = ql ql 2 qx 2 ⋅x− ⋅y− 2 8f 2
令上式等于零,可得合理拱轴 : 令上式等于零, 可得合理拱轴:
例题2 例题2: 图示三跨静定梁,全长承受均布荷载q 试确定铰E 图示三跨静定梁,全长承受均布荷载q,试确定铰E、F的位置,使中 的位置, 间一跨支座的负弯矩与跨中正弯矩数据数值相等。 间一跨支座的负弯矩与跨中正弯矩数据数值相等。
解:
1 研究 AE 杆: V E = q (l − x ) 2 1 1 研究 EF 杆: M B = M C = q (l − x ) x + qx 2 2 2 ∵MB + MC = ql 2 (叠加弯矩值) 8
解: (一)求支座反力 一 求支座反力 研究整体: 研究整体:
∑X =0 ∑M = 0 ∑M = 0
A B
HA = HB VB = 80kn(↑) V A = 80kn(↑)
取半刚架研究: 取半刚架研究:
∑M
C
=0
H B = 20kn(←) H A = 20kn(→)
校核: 校核 ∑ Y = 80 + 80 − 20 × 8 = 0 (二)绘内力图 二 绘内力图 (三)内力图校核 略) 内力图校核(略 三 内力图校核
拟简支梁法” 3、用“拟简支梁法”绘弯矩图
结论: 结论: 弯矩图时, 用叠加法绘 弯矩图时,先绘出控制截面 的弯矩竖标,其间若无外荷载作用, 的弯矩竖标,其间若无外荷载作用,可用直线 相连;若有外荷载作用,则以上述直线为基线, 相连;若有外荷载作用,则以上述直线为基线, 再叠加上荷载在相应简支梁上的弯矩图。 再叠加上荷载在相应简支梁上的弯矩图。
结构力学第三章静定结构的受力分析
例2: MA
A
MA
FP L/2 L/2
FP
MB
B 结论
把两头的弯矩标在杆
端,并连以直线,然
后在直线上叠加上由
节间荷载单独作用在
简支梁上时的弯矩图
MB MA
FPL/4
FPL/4
2020年5月29日星期五7时56分M25秒B
§3-1 梁的内力计算的回顾
3)画剪力图
要求杆件上某点的剪力,通常是以弯矩图为
C
B FQBA
由: MA 0 FQBA (81 26) 2 9kN
也可由: Y 0 FQCA 17 8 9kN
剪力图要注意以下问题: ▲ 集中力处剪力有突变; ▲ 没有荷载的节间剪力是常数; ▲ 均布荷载作用的节间剪力是斜线; ▲ 集中力矩作用的节间剪力是常数。
2020年5月29日星期五7时56分25秒
L/2
M/2
FPL/4
L/2
M
M/2
2020年L5/月229日星期五L7/时2 56分25秒
§3-1 梁的内力计算的回顾
2)用叠加法画简支梁在几种简单荷载共同作用下 的弯矩图
例1: MA
q
MB
q
A
B=
qL2/8
MA
MB
+
+
MA
=A
qL2/8
MB
B
2020年5月29日星期五7时56分25秒
§3-1 梁的内力计算的回顾
2020年5月29日星期五7时56分25秒
§3-1 梁的内力计算的回顾
正 MAB
杆端内力
FNAB
A端 FQAB
MBA 正
B端
FNBA
FQBA
第三章 静定结构的受力分析
斜直线
FS=0处
有突变
突变值为P
如变号
无变化
M图
斜直线
抛物线
有尖角
↓
↑
有极值
尖角指向同P
有极值
有突变
M=0
利用上述关系可迅速正确地绘制梁的内力图(简易法)8
Structural mechanics
静定结构的受力分析
简易法绘制内力图的一般步骤:
(1)求支反力。
2)分段:凡外力不连续处均应作为分段点,如集中力
15
Structural mechanics
基本部分:
静定结构的受力分析
不依赖其它部分的存在而能独立地维持其几何不变性的部 分。 如:AB、CD部分。
(a)
基本部分
(b) A
B
层叠图:
基本部分
C
附属部分:
必须依靠基本部分 才能维持其几何不变 D 性的部分。如BC部分 。
为了表示梁各部分之间的支撑关系,把基本部分画在下层, 而把附属部分画在上层, (b)图所示,称为层叠图。
3
Structural mechanics
静定结构的受力分析
§3—1 梁的内力计算的回顾
单跨静定梁应用很广,是组成各种结构的基构件之一,其受 力分析是各种结构受力分析的基础。这里做简略的回顾和必
要的补充。
1. 单跨静定梁的反力
常见的单跨静定梁有:
简支梁
外伸梁
悬臂梁
↷
→↑
↙ ↑
→↙ ↑↑
→↑ ↙
反力只有三个,由静力学平衡方程求出。 4
16
Structural mechanics
(2)受力分析方面:
静定结构的受力分析
结构力学I-第三章 静定结构的受力分析(桁架、组合结构)
Y 0 FNEC sin FNED sin FNEA sin 10 kN 0
联立解出
FNEC FNED 10 5 33.5 思考:能否更快呢? FNEC 22.36 kN, FNED 11.18 kN
00:44
静定平面桁架
• 桁架的内力计算
由力矩平衡方程 ∑ ME = 0,可求CD杆内力。
FA×d - FNCD×h = 0
FNCD = FAd / h = M0E / h
F1 F2 F3 F4 F5
M0E FA
6d
M FB
若M0E > 0,则FNCD >0 (下弦杆受拉 )
M0E是什么?
00:44
I
II
静定平面桁架
I
II
• 桁架的内力计算
简支梁
悬臂梁
伸臂梁
刚架:受弯构件,由若干直杆联结而成的结构,其中全部或部份 结点为刚结点;
A
D
B
C
简支刚架
悬臂刚架
三铰刚架
00:44
回顾
• 结构内力图
M–AB (表0) 示结构上各截面内力值的图形:弯矩图、M剪BA (0)
力图、A端轴力图;
A
B
FNA横B 坐标 -- 截面位置;
内力图 - 弯矩
A
FA
FB
– 截面法
• 例1:试求图示桁架中杆EF、ED,CD,DG的内力。
解: ⑶ 求上弦杆EF内力,力矩法;
取 ED 和 CD 杆 的 交 点 D 为 矩 心 , 先 求 EF 杆 的 水 平 分 力
FxEF,由力矩平衡方程∑MD = 0,
FA×2d - F1×d + FxEF×H = 0
第三章静定结构受力分析三铰拱
(1)求反力:Fy (2)列弯矩方程
(3)令M (x) 0 y
qL A FV B 2
M (x) Fy Ax
1 FH
(Fy Ax
1 2
12qFxHq2x)2q8q8LFfL2fH2
y
(1 2
qLx
1 2
qx2
)
4f L2
(L x)x
结论:均布荷载作用下,合理拱轴线方程为抛物线。
§3-3 三铰拱
a2
b2
F =F YA
YA0
F =F XA
XB
=FH
FYB0
M
0 c
[FYA0
l 2
l P1( 2
a1)]
FH= MC0 / f
§3-3 三铰拱
结论: ①简支梁不存在水平推力,三铰结构水平推力不为零;
②对于平拱、竖向反力与拱高无关; 平拱
③反力与拱轴线形式无关,只与三个铰的位置有关;
④水平推力与拱高成反比。
例2:求集中荷载作用下的合理拱轴线
(1)求反力:Fy A FyB 1.5P
(2)求合理拱轴线
FH
1 (1.5P 2a P a) a
2P
AD段 : M (x)
DC段 : M (x)
1.5Px FH y
1.5Px P(x a)
0
FH
y
y0
3x 4
y
(直线)
1 (0.5Px 2P
Pa)
§3-3 三铰拱
MK
M
0 K
FH y
FQK
FQ
0 K
cos FH
sin
FNK
F Q
0 K
sin FH
cos
第三章静定结构受力分析
内力的概念和表示在平面杆件的任意截面上,将内力一般分为三个分量:轴力F N 、剪力F Q 和弯矩MM A轴力----截面上应力沿杆轴切线方向的合力。
轴力以拉力为正。
剪力----截面上应力沿杆轴法线方向的合力。
剪力以绕微段隔离体顺时针转者为正。
内力的概念和表示弯矩----截面上应力对截面形心的力矩。
在水平杆件中,当弯矩使杆件下部受拉时,弯矩为正。
作图时,轴力图和剪力图要注明正负号,弯矩图规定画在杆件受拉的一侧,不用注明正负号。
内力的计算方法梁的内力的计算方法主要采用截面法。
截面法可用“截开、代替、平衡”六个字来描述:1.截开----在所求内力的截面处截开,任取一部分作为隔离体;隔离体与其周围的约束要全部截断。
2.代替----用截面内力代替该截面的应力之和;用相应的约束力代替截断约束。
3.平衡----利用隔离体的平衡条件,确定该截面的内力。
内力的计算方法利用截面法可得出以下结论:1.轴力等于截面一边的所有外力沿杆轴切线方向的投影代数和;2.剪力等于截面一边所有外力沿杆轴法线方向的投影代数和;3.弯矩等于截面一边所有外力对截面形心力矩的代数和。
以上结论是解决静定结构内力的关键和规律,应熟练掌握和应用。
分段叠加法画弯矩图1.叠加原理:几个力对杆件的作用效果,等于每一个力单独作用效果的总和。
= +=+2.分段叠加原理:上述叠加法同样可用于绘制结构中任意直杆段的弯矩图。
例例:下图为一简支梁,AB段的弯矩可以用叠加法进行计算。
(1)(2)(3)(4)静定多跨连续梁的实例现实生活中,一些梁是由几根短梁用榫接相连而成,在力学中可以将榫接简化成铰约束,这样由几个单跨梁组成几何不变体系,称作为静定多跨连续梁。
下图为简化的静定多跨连续梁。
静定多跨梁的受力特点结构特点:图中AB依靠自身就能保持其几何不变性的部分称为基本部分,如图中AB;而必须依靠基本部分才能维持其几何不变性的部分称为附属部分,如图中CD。
受力特点:作用在基本部分的力不影响附属部分,作用在附属部分的力反过来影响基本部分。
3静定结构的受力分析-三铰拱结构力学
1 结构力学多媒体课件一、拱式结构的特征 1、拱与曲梁的区别拱式结构:指的是杆轴线是曲线,且在竖向荷载作用下会产生水平反力(推力)的结构。
FABH A =0 FABH A =0 三铰拱F PF P曲梁H≠0H≠0是否产生水平推力,是拱与梁的基本区别。
拱结构的应用:主要用于屋架结构、桥梁结构。
拱结构的应用:主要用于屋架结构、桥梁结构。
拱桥 (无铰拱)超静定拱 世界上最古老的铸铁拱桥(英国科尔布鲁克代尔桥) 万县长江大桥:世界上跨度最大的混凝土拱桥 灞陵桥是一座古典纯木结构伸臂曲拱型廊桥, 号称“渭水长虹”、“渭水第一桥” 主跨:40 米 建成时间:三峡工程对外交通专用公路下牢溪大桥(上承式钢管混凝土拱桥,主跨:160米 ,建成时间:1997)2、拱的类型三铰拱两铰拱无铰拱拉杆拱静 定 拱超 静 定 拱3、拱的优缺点a、在拱结构中,由于水平推力的存在,其各截面的弯矩要比相应简支梁或曲梁小得多,因此它的截面就可做得小一些,能节省材料、减小自重、加大跨度b、在拱结构中,主要内力是轴压力,因此可以用抗拉性能比较差而抗压性能比较好的材料来做。
c、由于拱结构会对下部支撑结构产生水平的推力,因此它需要更坚固的基础或下部结构。
同时它的外形比较复杂,导致施工比较困难,模板费用也比较大4、拱的各部分名称lf 高跨比 BACf拱顶拱轴线拱高 f拱趾 起拱线跨度 l 平拱斜拱二、三铰拱的计算 1、支座反力的计算L 2L 1Lb 2a 2b 3a 3b 1a 1k y kx kCBAfF P1F P2F P3kCBAF P1F P2F P3B M =∑0Pi iYA YAFbF FL ==∑0A M =∑0Pi iYB YBF a F FL==∑取左半跨为隔离体:CM=∑()()01111212YA P P CH F L F L a F L a M F ff⨯----==F HF H1、支座反力的计算L 2L 1Lb 2a 2b 3a 3b 1a 1k y kx kCBA fF P1F P2F P3kCBAF P1F P2F P3在竖向荷载作用下,三铰拱的支座反力有如下特点: 1)支座反力与拱轴线形状无关,而与三个铰的位置有关。
结构力学 5静定结构受力分析-三铰拱
tg 2 =
4 f 2x 1 l l
x =3
=
4 × 4 2 × 3 1 12 12
= 0.667
2 = 33 41′, sin 2 = 0.555,cos 2 = 0.832
M 2 = M 2 Hy2 = (11 × 3 2 × 3 × 15) 7.5 × 3 . = 15kN m .
q=2kN .m y
P=8kN
f=4m
0
例 5.1 三铰拱及其 所受荷载如图所示拱 的轴线为抛物线方程
y= 4f x(l x) 2 l
7.5kN
A
x 6m 3m 6m
B
H= 7.5kN VB = 9kN
计算反力
x2=3m VA =11kN
并绘制内力图。
解:(1)计算支座反力
2×6×9+8×3 VA = VA = = 11kN 12 2 × 6× 3+ 8× 9 VB = VB = = 9 kN 12 M C 11 × 6 2 × 6 × 3 H= = = 7.5kN f 4
M 0 ( x) 则轴线方程为: y ( x) ≡ H
② 竖向荷载下三铰拱的合理拱轴线 例1:求均布荷载q作用下三铰拱的合理拱轴线。
q y A l/2 l/2 C f B x
A x
q l
B
解:
q C f B l/2 x
M 0 ( x) y y ( x) = H A 1 1 2 0 M ( x) = qlx qlx l/2 2 2 1 l 1 l 2 1 2 ql ql × q × ( ) 0 MC 2 2 2 2 =8 H= = f f f 1 1 2 qlx qlx 4f 2 2 y ( x) = = 2 x(l x) 1 2 l ( ql / f ) 8
三铰拱受力分析
三铰拱受力分析
第1页,本讲稿共13页
拱 (arch)
一、概述
杆轴线为曲线 在竖向荷载作
用下不产生水
平反力。
1.拱的定义 这是拱结构吗?
曲梁
拱--杆轴线为曲
线,在竖向荷载 作用下会产生水 平推力的结构。
MC0=ql2/8 H=ql2/8f M0=qlx/2-qx2 /2 =qx(l-x)/2 y=4fx(l-x)/l2
抛物线
第9页,本讲稿共13页
第二章应能回答的问题
梁式杆件内力有几个?
杆端内力如何标记?习惯上杆端轴力、剪力正、负号如 何规定?杆端弯矩正、负如何规定?作弯矩图有何规定 ?
如何求指定截面的内力?轴力图和轴向荷载,弯矩
何谓“单杆”?那些情况下单杆是零杆?除单杆外还 有哪些情况杆件内力为零(零杆)?
三铰拱有何特点?一般来说应如何求反力和指定 截面内力?
何谓合理拱轴?竖向荷载下合理拱轴与什么有关?
何谓基本部分、附属部分?如何将多跨静定梁变成 带外伸的单跨梁并作出叠层关系图?
第11页,本讲稿共13页
如何根据弯矩图勾画挠曲线大致形状?
根据几何组成情况刚架可分成哪些类型?
试说明单体刚架求解的一般步骤?
试说明三铰刚架求解的一般步骤?
试说明有基本-附属部分刚架的求解步骤? 何谓反问题?一般来说反问题能否得到唯一解? 何谓静定组合结构?他的求解应注意什么?
各类静定结构受力各有什么特点?结构方案设计时 应该如何考虑?
静定结构的基本性质是什么?由他派生出那些性质 ?
不是平a1拱,右
Y边A0的结论还a2
第三章静定结构受力分析三铰拱
第三章静定结构受力分析三铰拱三铰拱是指拱脚处设置了三个支座,可以在三个方向(横向、纵向和垂直)上无约束移动。
在受力分析中,三铰拱是一个非常重要的结构。
本文将对三铰拱的受力分析进行详细介绍。
三铰拱的受力分析首先需要了解其受力形式。
三铰拱受力主要包括水平向力和垂直向力。
水平向力主要来自于拱腹对拱脚的水平压力,而垂直向力主要来自于拱腹对拱脚的垂直压力。
在分析中,我们需要计算拱脚处的支座反力和弯矩大小。
首先,我们考虑横向受力平衡。
根据平衡条件,拱脚处的水平向力和法线向力之和为零。
即:∑Fx=0∑Fy=0其中,∑Fx表示水平向力的总和,∑Fy表示垂直向力的总和。
在接下来的分析中,我们假设拱脚处三个支座的反力分别为F1、F2和F3、由于三铰拱的支座可以自由移动,在计算反力时需要考虑拱腹对支座的约束力。
接下来,我们考虑拱腹对支座的约束力。
根据平衡条件,拱腹受到的约束力可以通过对整个拱腹的受力分析来得到。
我们将拱腹切割成多个小段,每个小段的受力可以看做静定问题。
对于每个小段,我们可以分别计算其水平向力和垂直向力。
在计算过程中需要注意,由于拱脚处的支座反力的未知,我们需要通过整个拱腹的受力平衡来解算这些未知。
最后,我们通过将每个小段的受力结果进行积分,得到拱脚处支座反力的大小和作用点位置。
在进行受力分析时,还需要考虑拱腹的几何特征,如拱的形状、拱腹曲线的方程等。
这些特征对于计算拱脚处的支座反力非常重要。
总的来说,三铰拱的受力分析是一个复杂而重要的过程。
通过考虑拱腹对支座的约束力,我们可以计算得到拱脚处支座反力的大小和作用点位置。
这些结果对于设计和分析三铰拱结构非常有帮助。
结构力学I-第三章 静定结构的受力分析(拱、隔离体法、虚位移法)
特点: 杆件都是二力杆;
分类:简单桁架、联合桁架、复杂桁架;
简单桁架 联合桁架 复杂桁架
Page
9
14:33
LOGO
回顾
桁架
内力计算:结点法、截面法、联合法;
结点法:结点为隔离体,2个平衡方程,适用于简单桁架; 截面法:隔离体包含两个以上几点,非交汇力系,3个平衡方程; 联合法:结点法和截面法的结合应用;
三铰拱受力分析
内力计算: K点
⑴ 弯矩 MK = MK 0 - FH y 拱的弯矩等于等代梁相应截面 的弯矩再减去推力引起的弯矩 ⑵ 截面力分量 Fx = - FH - Fy = FVA - F1 - F2 = FQK0 ⑶ 剪力和轴力 FQ = FQK0 cosθ - FH sinθ FN = - FQK0 sinθ - FH cosθ
FHA FHB FH 1 FH f l l l F F a F a yA 1 1 2 2 2 2 2
Page 20
FV0 A
a1 a2 a3
FVB
0
等代梁
14:33
LOGO
三铰拱
y F F K A x l/ 2 FVA x l/ 2 FVB C f B FHB F
A
三铰拱
F1 F2 K C F3 B
同跨度、同荷载的简支梁。 其反力、内力记为
0 0 0 0 M F FV F 、 、 、 VB A S
FV0 A
a1 a2 a3
FVB
0
等代梁
Page 19
14:33
LOGO
三铰拱
y F F K A F HA x l/ 2 FVA x l/ 2 FVB C f B FHB F
静定结构的内力—三铰拱(建筑力学)
愈大)。
三铰拱
(2)截面内力的计算
① 截面内力的正负规定
轴力以压力为正;剪力以有使截面产生顺时针转动的趋势者为正;弯矩
以拱内侧纤维受拉者为正。
② 任意截面的内力计算
设K截面形心的坐标分别为xK、yK,K截面的法线与x轴
的夹角为φK,且左半拱的φK为正值,右半拱的φK为负值。
取三铰拱的K截面以左
部分为隔离体,得
FNE FQ0E sin E Fx cosE 134kN
三铰拱
4 三铰拱的合理拱轴线
若拱的所有截面上的弯矩都为零,这样的拱轴线为合理拱轴线。
三铰拱在竖向荷载作用下任意截面上的弯矩为
MK
M
0 K
Fx yK
由 M M 0 Fx y 0 得
M0
合理拱轴线方程为: y
Fx
M 0——代梁在该竖向荷载作用下的弯矩方程
三铰拱
C B
C
C
A
B
A
B
l
有拉杆的三铰拱
两铰拱
(c)
(a)
梁式结构在竖向荷载作用下是不会产生推力的。
C
A B
B
A
B
曲梁
三铰拱
2 三铰拱的组成
拱顶
拱轴线
f 矢高
拱趾
拱趾
l 跨度
拱顶:拱的最高点
拱趾:支座处
跨度:两支座之间的水平距离,用l表示
矢高:拱顶到两拱趾间联线的竖向距离,用f 表示 高跨比 f/l 是拱的一个重要的几何参数 工程实际中,高跨比在1/10 ~ 1之间,变化的范围很大
Fx
M
0 C
f
ql 2 f
8 ql 2 8f
合理拱轴的方程为
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
C
B
a1
b1 a2 b 2 FY
0 B
FH
0 c
1 f
[Y A
l 2
P1 (
l 2
a 1 )]
FY
B
0 A
M
[ FY 0
A
l 2
P1 (
l 2
a1 )]
FY =F
A
YB0
FY =FY
A
0 A
FX =FX =FH
B
FH= MC0 / f
§3-3
三铰拱
结论: ①简支梁不存在水平推力,三铰结构水平推力不为零; ②对于平拱、竖向反力与拱高无关; 平拱 ③反力与拱轴线形式无关,只与三个铰的位置有关; ④水平推力与拱高成反比。
y P 1
A
2、内力计算
K
C
P2
B
FQ
P1
FX
B
M
K
K
x
y f l/2 x l/2 l
FN
P1
0 K
K
FX
A
FX
FY
M
A
A
FY
§3-3
三铰拱
三铰刚架与三铰拱的区别:
三铰刚架
三铰拱
在求支座反力方面无区别,区别在于一个是 由直杆组成,一个由曲杆组成。
§3-3
2、拱的分类
三铰拱
静定拱
三铰拱 拉杆 拉杆拱 两铰拱
超静定拱
无铰拱
§3-3
3、拱的有关名称
三铰拱
顶铰 矢高
拱肋
拱趾铰
拱肋
拱趾铰
4、拱的应用
跨度 f/L——高跨比
适用于抗压强度大于抗拉强度的材料。
0 K
F N FQ
sin FH cos
注意: (1)以上简化公式只对平拱有效; (2)α 角度取截面的切线至水平轴的锐角, 顺时针为正。
§3-3
三铰拱
例1:计算图示三铰拱 K 截面内力。
M
0 Fy B 1 12 (100 3 20 6 9) 115 kN
A
FY
P2
B
FY 0
A
FQ 0
0 K
K
P1 A a1 FY
0 A
K
M
K
K
M
0 K
FH y
C b1
B FQ FQ cos FH sin
F N FQ
K 0 K
sin FH cos
a2
b2 FY
0 B
§3-3
三铰拱
三铰拱的内力不但与荷 载及三个铰的位置有关, 而且与拱轴线的形状有 关。
§3-3 2、合理拱轴线的求法
三铰拱
(1)图解法:与压力线重合的拱轴线即为合理拱轴线。 (2 )数解法:
a ) 当荷载与铰的位置确定时,可求出支座反力;
b) 建立弯矩方程,以拱轴竖标y为变量; c) 令弯矩处处为零,就得到轴线y的方程,即 合理拱轴线。
§3-3
三铰拱
例1:求均布荷载作用下的合理拱轴线
K
FQR
K
注意:集中荷载作用两侧, 5 0.832 82.5 0.555 41.76kN 剪力、轴力有突变。
FN R 5 0.555 82.5 0.832 71.42kN
K
§3-3
三、合理拱轴线及求法 1、合理拱轴线的概念
三铰拱
一般情况下,拱在荷载作用下,其截面上将产生三 个内力。若能使所有截面上的 弯矩为零(可以证明此 时剪力也为零),此时截面上只有轴力作用,正应力沿 截面均匀分布,材料得到充分利用,从理论上讲这样的 拱最经济,故称在特定荷载作用下,使拱处于无弯矩状 态的拱轴线称力合理拱轴线。
sin 0.555
cos 0.832
M K 105 3 82.5 3 67.5kN.m
FQL 105 0.832 82.5 0.555 41.75kN
K
FN L 105 0.555 82.5 0.832 126.92kN
3 4
x (直线)
1 2P (0.5Px Pa ) 1 4 ( x 2a ) (直线)
DC段 : M ( x) 1.5Px P( x a ) FH y 0 y
结论:集中荷载作用下,合理拱轴线方程为折线。
§3-3
注意:
三铰拱
(1)以上结论与拱轴(线)位置无关; (2)合理拱轴线是与特定荷载相对应的,对于一 种特定的拱轴线方程,在某种荷载作用下,弯矩处处 为零;在另一种荷载作用下,弯矩可以不为零。因此 合理拱轴线是以主要荷载来考虑的。
8f
结论:均布荷载作用下,合理拱轴线方程为抛物线。
§3-3
三铰拱
例2:求集中荷载作用下的合理拱轴线
()求反力:Fy A Fy B 1.5 P FH 1
(2)求合理拱轴线
1 a
(1.5 P 2a P a ) 2 P
AD段 : M ( x) 1.5Px FH y 0 y
yK
(12 3) 3 3m
tan
4f L
2
( L 2 x)
4 4 12 12
(12 2 3)
2 3
sin 0.555
cos 0.832
Fy B 115kN Fy A 105kN FH 82.5kN
yK 3m
(3)求内力:
§3-3
三铰拱
二、平拱的计算(两拱趾在同一水平线上)
1、支座反力
比较同跨简支梁,三铰刚架,三铰拱的支座反力
P1
A
FX
A
FY
l/2
A
等代梁 P1
A
三铰拱的竖向反 P2 C 力与其等代梁的 FX 反力相等;水平反 f FH B 力与拱轴线形状 Mc0 无关.荷载与跨度 FY l/2 FY l 一定时,水平推 FY P2 力与矢高成反比.
§3-3
三铰拱
§3-3
一、拱式结构的特点及应用 1、拱的定义
三铰拱
什么叫拱?
一般指杆的轴线为曲线形状,并且在竖向荷载
作用下会产生水平支座反力的结构。
§3-3
曲梁与拱的区别:
在竖向荷载作 用下不产生水 平反源自。三铰拱在竖向荷载作用下 会产生水平推力。
曲梁 二个刚片,三个联系
拱 三个刚片,三个铰
水平推力存在是拱式结构区别于梁式结构的 重要标志,拱式结构通常又称为推力结构。
由于推力的存在,拱的 弯矩比相应简支梁的弯 矩要小。
M
K
M
0 K
FH y
FQ FQ
K
0 K
cos FH sin
F N FQ
K
0 K
sin FH cos
三铰拱在竖向荷载 作用下轴向受压。
M
K
K
M
0 K
0 K
FH y
FQ FQ
K
cos FH sin
( )求反力: 1
A
F
y
0 Fy A 100 20 6 115 105kN
1 4 (105 6 100 3) 82.5 kN
M C 0 FH
§3-3
(2)求系数 拱轴方程为抛物线:y
4 4 12 12
三铰拱
4f L
2
(l x) x
()求反力:Fy A FV B 1
FH 2 1 8f 2 (2)列弯矩方程 M ( x) Fy A x qx FH y 2
1 FH ( Fy A x 1 qx )
2
qL
qL
2
(3)令M ( x) 0 y
2
1 1 2 4f ( qLx qx ) 2 ( L x) x 2 qL 2 2 L