中心对称及其性质 (2)

合集下载

人教版九年级数学上册23.2.2:中心对称图形(教案)

人教版九年级数学上册23.2.2:中心对称图形(教案)
3.实践活动中的分组讨论和实验操作,学生们表现得积极主动,这让我很欣慰。但同时,我也注意到有些学生在讨论过程中过于依赖同伴,缺乏独立思考。在接下来的教学中,我会加强对学生的引导,鼓励他们提出自己的观点,培养他们的独立思考能力。
4.学生小组讨论环节,大家在分享成果时表现出很高的热情。但在讨论过程中,我发现有些小组在解决问题时过于依赖教师,缺乏自主解决问题的能力。针对这个问题,我将在后续的教学中,逐步减少对学生的干预,让他们在探讨中学会自主分析和解决问题。
(4)中心对称图形的创新能力:学生在创作中心对称图形时,往往局限于教材中的例子,缺乏创新意识。
突破方法:鼓励学生发挥想象,尝试将中心对称知识应用于不同的场景和领域,提高学生的创新能力和实践能力。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《中心对称图形》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否见过一些美丽的图案,它们看起来是完全对称的?”(举例说明)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索中心对称图形的奥秘。
3.重点难点解析:在讲授过程中,我会特别强调中心对称的定义和性质这两个重点。对于难点部分,如对称中心的寻找,我会通过举例和比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与中心对称相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。这个操作将演示中心对称的基本原理。
5.总结回顾环节,学生对中心对称图形的基本概念和性质有了较好的掌握,但在实际应用方面还显得有些吃力。为了提高学生的应用能力,我计划在课后布置一些具有实际背景的作业,让学生在完成作业的过程中,进一步巩固所学知识。

人教初中数学九年级上册 23.2 中心对称(第2课时)教案

人教初中数学九年级上册  23.2 中心对称(第2课时)教案

23.2 中心对称(2)第二课时教学内容1.关于中心对称的两个图形,对称点所连线段都经过对称中心,•而且被对称中心所平分.2.关于中心对称的两个图形是全等图形.教学目标理解关于中心对称的两个图形,对称点所连线段都经过对称中心,而且被对称中心所平分;理解关于中心对称的两个图形是全等图形;掌握这两个性质的运用.复习中心对称的基本概念(中心对称、对称中心,关于中心的对称点),提出问题,让学生分组讨论解决问题,老师引导总结中心对称的基本性质.重难点、关键1.重点:中心对称的两条基本性质及其运用.2.难点与关键:让学生合作讨论,得出中心对称的两条基本性质.教学过程一、复习引入(老师口问,学生口答)1.什么叫中心对称?什么叫对称中心?2.什么叫关于中心的对称点?3.请同学随便画一三角形,以三角形一顶点为对称中心,•画出这个三角形关于这个对称中心的对称图形,并分组讨论能得到什么结论.(每组推荐一人上台陈述,老师点评)(老师)在黑板上画一个三角形ABC,分两种情况作两个图形(1)作△ABC一顶点为对称中心的对称图形;(2)作关于一定点O为对称中心的对称图形.第一步,画出△ABC.第二步,以△ABC的C点(或O点)为中心,旋转180°画出△A′B′和△A′B′C′,如图1和用2所示.(1) (2)从图1中可以得出△ABC与△A′B′C是全等三角形;分别连接对称点AA′、BB′、CC′,点O在这些线段上且O平分这些线段.下面,我们就以图2为例来证明这两个结论.证明:(1)在△ABC和△A′B′C′中,OA=OA′,OB=OB′,∠AOB=∠A′OB′∴△AOB≌△A′OB′∴AB=A′B′同理可证:AC=A′C′,BC=B′C′∴△ABC≌△A′B′C′(2)点A′是点A绕点O旋转180°后得到的,即线段OA绕点O•旋转180•°得到线段OA′,所以点O在线段AA′上,且OA=OA′,即点O是线段AA′的中点.同样地,点O也在线段BB′和CC′上,且OB=OB′,OC=OC′,即点O是BB′和CC′的中点.因此,我们就得到1.关于中心对称的两个图形,对称点所连线段都经过对称中心,而且被对称中心所平分.2.关于中心对称的两个图形是全等图形.例1.如图,已知△ABC和点O,画出△DEF,使△DEF和△ABC关于点O成中心对称.分析:中心对称就是旋转180°,关于点O成中心对称就是绕O旋转180°,因此,我们连AO、BO、CO并延长,取与它们相等的线段即可得到.解:(1)连结AO并延长AO到D,使OD=OA,于是得到点A的对称点D,如图所示.(2)同样画出点B和点C的对称点E和F.(3)顺次连结DE、EF、FD.则△DEF即为所求的三角形.例2.(学生练习,老师点评)如图,已知四边形ABCD和点O,画四边形A′B•′C′D′,使四边形A′B′C′D′和四边形ABCD关于点O成中心对称(只保留作图痕迹,不要求写出作法).二、巩固练习教材P70 练习.三、应用拓展例3.如图等边△ABC内有一点O,试说明:OA+OB>OC.分析:要证明OA+OB>OC,必然把OA、OB、OC转为在一个三角形内,应用两边之和大于第三边(两点之间线段最短)来说明,因此要应用旋转.以A为旋转中心,•旋转60°,便可把OA、OB、OC转化为一个三角形内.解:如图,把△AOC以A为旋转中心顺时针方向旋转60°后,到△AO′B•的位置,则△AOC≌△AO′B.∴AO=AO′,OC=O′B又∵∠OAO′=60°,∴△AO′O为等边三角形.∴AO=OO′在△BOO′中,OO′+OB>BO′即OA+OB>OC四、归纳小结(学生总结,老师点评)本节课应掌握:中心对称的两条基本性质:1.关于中心对称的两个图形,对应点所连线都经过对称中心,•而且被对称中心所平分; 2.关于中心对称的两个图形是全等图形及其它们的应用.五、布置作业1.教材复习巩固1 综合运用6、7.。

中心对称和轴对称的几何性质

中心对称和轴对称的几何性质

中心对称和轴对称的几何性质在几何学中,中心对称和轴对称是两种重要的对称性质。

它们在数学、物理、化学等领域中都有着广泛的应用。

本文将详细介绍中心对称和轴对称的几何性质,以及它们之间的区别和联系。

1. 中心对称中心对称是指图形相对于一个中心点进行对称,即图形中的每个点与中心点之间的连线都会与另一个点对称。

中心对称特性使得图形能够在某个中心点进行旋转180度后不变。

1.1 中心对称的判定条件一个图形是否具有中心对称可以通过以下两个判定条件来验证:1)图形中存在至少一个点,它与中心点之间的连线与该点与另一个点之间的连线对称。

2)图形中的每个点都与中心点之间的连线都能够与另一个点对称。

1.2 中心对称的性质中心对称具有以下几何性质:1)中心对称的图形具有镜像对称性,即图形可以关于中心点进行对称,将其中一个点对称到另一个位置。

2)中心对称的图形无论进行旋转多少度,都不会改变其形状和大小,只会改变位置。

2. 轴对称轴对称是指图形相对于一个轴线进行对称,即图形中的每个点与轴线之间的连线都会与另一个点对称。

轴对称特性使得图形能够在轴线上进行翻转后不变。

2.1 轴对称的判定条件判断一个图形是否具有轴对称可以通过以下两个条件来验证:1)图形中存在一个轴线,使得图形中的每个点与轴线之间的连线与该点与另一个点之间的连线对称。

2)图形中的每个点都与轴线之间的连线都能够与另一个点对称。

2.2 轴对称的性质轴对称具有以下几何性质:1)轴对称的图形具有镜像对称性,即图形可以关于轴线进行对称,将其中一部分镜像到另一部分。

2)轴对称的图形无论进行旋转多少度,只要不改变轴线的位置和方向,都不会改变图形的形状和大小,只会改变位置。

3. 中心对称和轴对称的区别和联系尽管中心对称和轴对称都是几何形状的对称性质,它们之间存在一些区别和联系。

区别:1)中心对称是相对于一个点进行对称,而轴对称是相对于一个轴线进行对称。

2)中心对称的图形无论进行旋转多少度,都不会改变其形状和大小,但轴对称的图形必须在轴线上进行翻转才能保持不变。

对称中心与对称轴

对称中心与对称轴

对称中心与对称轴对称是数学中的一个重要概念,它在几何学、代数学以及其他数理学科中都有着广泛的应用。

在几何学中,对称可以通过对称中心和对称轴来进行描述和理解。

本文将详细介绍对称中心与对称轴的概念及其特性,以及它们在几何学中的应用。

一、对称中心的定义和性质1. 对称中心的定义对称中心是指一个图形中能够使得该图形对称的一个点。

即对于一个图形中的任意一点P,如果以对称中心O为中心,通过P作对称轴,得到的新点Q在图形上。

则称点P关于点O为对称的。

2. 对称中心的性质(1)对称中心是图形中唯一的,不存在多个对称中心。

(2)对称中心与图形的边界上的点的关系:如果一个点在图形的边界上,则它是关于对称中心的对称点;如果点在图形的内部,则不存在关于对称中心的对称点。

(3)对称中心与图形的对称性:对称中心可以作为图形对称性的一个重要判断条件。

如果一个图形具有对称中心,则它是一个对称图形;如果一个图形没有对称中心,则它是一个非对称图形。

二、对称轴的定义和性质1. 对称轴的定义对称轴是指图形中的一条直线,对于图形中的任意一点P,如果把点P关于对称轴作对称,得到的新点Q也在图形上。

则称直线L为图形的对称轴。

2. 对称轴的性质(1)对称轴可以是图形中的一个边或者一条线段,也可以是边界上的一个点。

(2)图形的边平行于对称轴。

(3)对称轴可以作为图形的分割线,把图形分成两个完全对称的部分。

(4)如果一个图形具有对称轴,则它是一个对称图形;如果一个图形没有对称轴,则它是一个非对称图形。

三、对称中心与对称轴的应用1. 对称中心与对称轴在平面几何中的应用(1)以对称中心为基础,可以设计出一些特殊的图形,如对称心形、对称五角星等。

(2)对称轴可以用于求解图形的对称性质,从而简化问题的求解过程。

(3)对称中心和对称轴的概念在图形的变化与平移中也有着广泛的应用。

通过对对称中心和对称轴的理解,可以更好地掌握图形的平移和旋转变换。

2. 对称中心与对称轴在代数学中的应用对称中心和对称轴的概念不仅在几何学中有应用,在代数学中也有着广泛的应用。

轴对称、中心对称图形的性质及应用

轴对称、中心对称图形的性质及应用

轴对称、中心对称图形的性质及应用一、轴对称图形如果把一个图形沿着某一条直线对折过来,在直线两旁的部分能够完全重合,那么这个图形叫做轴对称图形,这条直线叫做对称轴,能够重合的点互为对称点.轴对称图形具有以下的性质:(1)轴对称图形的两部分是全等的;(2)对称轴是连结两个对称点的线段的垂直平分线.在几何证题、解题时,如果是轴对称图形,则经常要添设对称轴以便充分利用轴对称图形的性质.譬如,等腰三角形经常添设顶角平分线;矩形和等腰梯形问题经常添设对边中点连线和两底中点连线;正方形,菱形问题经常添设对角线等等.另外,如果遇到的图形不是轴对称图形,则常选择某直线为对称轴,补添为轴对称图形,或将轴一侧的图形通过翻折反射到另一侧,以实现条件的相对集中.例1 已知直线l外有一定点 P,试在l上求两点A、B,使AB=m(定长),且PA+PB最短.分析当把P点沿l方向平移至C(如图1),使PC=m,那么问题就转化为在l上求一点B,使CB+PB为最短.作法过P作PC∥l,使PC=m,作P关于l的对称点P',连结CP'交l于B.在l上作AB=m,点A、B为所求之两点.证在l上另任取A'B'=m,连PA、PA'、PB',CB',A'P',B'P',则PA'=P'A',PB'=P'B',又PA'B'C 为平行四边形,∴CB'=PA'.∵CB'+B'P'>CP',∴ PA'+PB'>PA+PB.例2 如图2,△ABC中,P为∠A外角平分线上一点,求证:PB+PC>AB+AC.分析由于角平分线是角的对称轴,作AC关于AP的轴对称图形AD,连结DP、CP,则DP=CP,BD=AB+AC.这样,把 AB+AC、AC、PB、PC集中到△BDP中,从而由PB+PD>BD,可得PB+PC>AB+AC.证 (略)说明通过变为轴对称图形后,起到相对集中条件的作用,又有将折线化直的作用(如AB+AC化直为BD).例3 等腰梯形的对角线互相垂直,且它的中位线等于m,求此梯形的高.解如图3.设等腰梯形AD∥BC,AB=DC,对角线AC与BD相交于O,且AC⊥BD,中位线EF=m.过AD、BC的中点M、N作直线,由等腰梯形ABCD关于直线MN成轴对称图形,∴O点在MN上,且OA=OD,OB=OC,AM=DM,BN=CN.又 AC⊥BD,故△AOD和△BOC均为等腰直角三角形.2OM=AD,2ON=BC.∵AD+BC=2EF=2m,∴2OM+2ON=2m.∴OM+ON=m,即梯形高MN=m.例4 凸四边形EFGH的四个顶点分别在边长为a的正方形ABCD的四条边上.证如图4,连结AA2,EE3.正方形ABCD和正方形A1BCD1关于BC对称;EFGH和E1FG1H1关于BC对称;A1BCD1和A2B1CD1关于 CD1对称;E1FG1H1和 E2F1G1H2关于CD1对称;A2B1CD1和A2B2C1D1关于A2D1对称,E2F1G1H2和E3F2G2H2关于A2D1对称.例5 如果一个四边形关于它的两组对边中点的两条连线成轴对称,则此四边形为矩形.已知如图22-5.四边形ABCD中,M、F、N、E分别为各边的中点,且MN、EF为它的对称轴.求证 ABCD是矩形.分析欲证ABCD是矩形,首先证明它是平行四边形,再证明它有一个直角即可.证∵四边形ABCD关于EF成轴对称,∴DC⊥EF,AB⊥EF,∴AB∥DC.同理AD∥BC.∴ABCD是平行四边形.∴DC=AB.又∵DE=DC/2,AF=AB/2.∴DE AF,∴ADEF为平行四边形.∴AD∥EF,而DE⊥EF,∴DE⊥AD,∠D=Rt∠.∴ABCD是矩形.二、中心对称图形如果把一个图形绕着某一点旋转180°后,能和原图形重合,那么这个图形叫做中心对称图形.这个点叫做对称中心,能重合的点互为对称点.中心对称图形具有以下性质:(1)关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分.(2)关于中心对称的两个图形,对应线段平行(或在同一条直线上)且相等.平行四边形是中心对称图形.矩形、菱形、正方形既是中心对称图形,也是轴对称图形.例6 如图6.已知ABCD,O是对角线 AC与BC的交点. EF过O点与AB交于E,与DC交于F.求证:OE=OF.证∵O点是ABCD的对称中心,EF过O点与AB相交于E,与DC相交于F.故E、F两点是以点O为对称中心的对称点.∴OE=OF.例7 △ABC中,底边BC上的两点M、N把BC三等分,BE是AC上的中线,AM、AN分BE 为a,b,c三部分,求:a∶b∶c.分析本题解法很多,我们利用中心对称图形求解.如图7,以E为中心,作已知图形的中心对称图形,则M'C∥AM,N'C ∥AN,于是可得a∶(2b+2c)=1/2,∴a=b+c,①(a+b)∶2c=DN'∶N'A=2∶1,∴a+b=4c,②由①得,a-b=c,③②+③, 2a=5c,∴a=5c/2.②-③,2b=3c,∴b=3c/2.∴ a∶b∶c=5c/2∶3c/2∶c=5∶3∶2.解 (略)例8 若四边形的一组对边相等,延长这一组对边,使各与另一组对边的中点连线的延长线相交,则这两个交角必相等.已知如图8.四边形ABCD中, AD=BC,E、F分别是AB、CD的中点,AD、BC的延长线分别与EF的延长线交于G、H.求证∠AGE=∠BHE.分析为了使求证的两个角与已知条件发生联系,利用“旋转法”使角或线段搬家而沟通思路.证如图8,以E为对称中心,作△EBC的中心对称图形△EAM(即连结CE并延长CE到M 使EM=EC,连结AM).连结DM,AM=BC=AD,∴∠2=∠3.∵DF=FC,CE=EM,∴DM∥HE,∴∠1=∠2.∵AE=EB, EM=EC,∴AMBC是平行四边形.∴AM∥BH,而DA∥HE,∴∠3=∠BHE.∴∠1=∠BHE,即∠AGE=∠BHE.习题1.如图9 一牧童在A处牧马,牧童家在B处.A、B处距河岸分别为300m、500m,CD =600m,天黑前,牧童从A点将马牵到河边去饮水后再赶回家.那么牧童最少要走多少米?2.证明:任一点关于正方形各边中点的对称点是一个正方形的顶点.3.求证:在四边形ABCD中,如果AB=AD,CB=CD,那么它的面积等于AC·BD/2.4.在直线MN两侧有A,B两点,在MN上求一点P,使P到A、B两点之差最大.5.等腰梯形的周长为22cm,中位线长为 7cm,两条对角线中点连线为3cm,求各边长.。

《中心对称》知识全解

《中心对称》知识全解

《中心对称》知识全解课标要求(1)了解中心对称、对称中心、关于中心的对称点等概念及利用这些概念解决一些问题.(2)会画出与已知图形成中心对称的图形.知识结构内容解析本节课是中心对称的第一课时.它是初中数学的一项重要内容.它与轴对称、轴对称图形、旋转有着密不可分的联系,实际生活中也随处可见中心对称的应用.一、中心对称的定义把一个..图形绕着某一点旋转180°,如果它能够与另一个...图形重合,那么就说这两个图形关于这个点对称,这个点叫做对称中心,两个图形中的对应点叫做关于中心的对称点.二、中心对称与轴对称中心对称轴对称定义把一个图形绕某点旋转180°,如果能与另一个图形完全重合,那么就说这两个图形关于这个点成中心对称,这个点叫做对称中心.把一个图形沿着某条直线折叠,如果能够与另一个图形重合,那么就说着两个图形关于这条直线成轴对称,这条直线叫做对称轴.性质1.关于中心对称的两个图形是全等图形;2.关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分;3.关于中心对称的两个图形,对应线段平行(或在同一直线上)且相等.1.关于轴对称的两个图形是全等图形;2.如果两个图形关于某条直线对称,那么对称轴是对称点连线的垂直平分线;3.两个图形关于某条直线对称,如果它们的对应线段(或延长线)相交,那么交点在对称轴上.举例线段、平行四边形、圆线段、等腰三角形、矩形、菱形、圆温馨提示:中心对称是两个图形之间的关系,它可以看作是特殊的旋转,在解决中心对称问题时,可用一些旋转的方法;全等的图形不一定是中心对称,而中心对称的图形一定是全等的.三、中心对称的性质1.中心对称是一种特殊的旋转,因此,它具有旋转的一切性质,除了具有旋转的一般性质以外,中心对称还具有以下特殊性质:(1)关于中心对称的两个图形是全等形;(2)关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分;(3)关于中心对称的两个图形,对应角相等,对应线段平行(或在同一直线上)且相等.2.确定对称中心的方法(1)连接任意一对对称点,取这条线段的中点,则该点为对称中心;(2)任意连接两对对称点,这两条线段的交点即是对称中心.3.中心对称的识别如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点成中心对称.重点难点本节的重点是:中心对称的概念和性质.教学重点的解决方法:从日常生活现象入手,循序渐进,引导学生从旋转中归纳出中心对称的概念,借助线段、三角形、四边形的旋转过程来归纳出中心对称的性质,学生利用已有的旋转知识,设置一些由浅入深的练习题,加深对中心对称概念和性质的理解.本节的难点是:中心对称性质的应用.教学难点的解决方法:从生活中的旋转入手,让学生体会生活中的中心对称的应用,并通过这种应用对其中的两个量,对应线段和对应角来理解中心对称的性质,最后通过课堂练习得到巩固.教法导引教育家布鲁纳指出“探索是数学教学的生命线”.结合本节课的教学内容以及学生的心理特点和认知水平,主要采用启发探究和直观演示的教学方法,创设情境启导学生观察、探索、抽象、分析中心对称的概念,揭示刻画中心对称的性质.同时,利用多媒体直观演示,使得难于理解的知识形象生动,既锻炼学生的思维,又不超出学生的思维能力,这是用黑板、粉笔所不能达到的效果.学法建议学习本章内容时应注意以下三点:1.学习基本概念和性质时,注意观察现实生活中的各种变换现象,从而加深对基本概念和性质的理解;2.学习图形变换的性质时,要主动参与,积极探索,动手操作,这样才能加深对性质的理解;3.学习时要多观察图形,多与同学的合作交流,在交流和探讨中获得新知识.。

小学二年级数学 中心对称图形 (2)

小学二年级数学 中心对称图形 (2)

(5)在成中心对称的两个图形中,对应线段 平行(或在同一直线上)且相等。 (√ )
3. 判断下列图形是否是中心对称图形?

×

√ √

√ √

×

×


×

×






4. 观察图形,并回答下面的问题: (1)哪些只是轴对称图形?(3)(4)(6) ( 1) (2)哪些只是中心对称图形? (3)哪些既是轴对称图形,又是中心对称图形? (2)(5)
教学重点、教学难点
中心对称的两条基本性质及其运用。
中心对称图形的有关概念及其它们的运用。
区别关于中心对称的两个图形和中心对称图形。
A
D O
B
C
知识要点
把一个图形绕着某一个点旋转180°, 如果旋转后的图形能够与原来的图形重合, 那么这个图形叫做中心对称图形(central symmetry figure),这个点就是它的对称 中心。
6. 正三角形是中心对称图形吗?正方形呢?正 五边形呢?正六边形呢?……你能发现什么规律?
×

×

边数为偶数的正多边形都是中心对称图形。
7. 下面的扑克牌中,哪些牌面是中心对称图形?



8. 在26个英文大写正体字母中,哪些字母是 中心对称图形?
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
通过了解中心对称图形及对称中心的概念, 掌握其应用。 利用所学知识探索一个图形是中心对称图形, 进一步经历观察、讨论、操作、思考、归纳和 应用等认识过程。

九年级中心对称知识点

九年级中心对称知识点

九年级中心对称知识点中心对称(也称为旋转对称)是几何学中的基本概念之一,广泛应用于各个层面的图形研究中。

它与对称轴的概念密切相关,通过图形的转动来确定图形上的对称性。

本文将为您介绍九年级数学课程中关于中心对称的知识点。

一、中心对称的定义与性质中心对称是指存在一个点,在其周围旋转一定角度后,图形可以重合。

这个点被称为中心对称的中心。

根据中心对称的定义,我们可以得出以下性质:1. 对于任意直线上的两个点A和B,如果B是以A为中心旋转180度之后得到的点,则A、B关于这条直线中心对称。

2. 如果一个图形关于某个点中心对称,则该点必然在图形的内部。

3. 中心对称的图形具有对称轴,对称轴连接中心和对称点,是图形上的一条直线。

二、中心对称图形的构造通过一些基本的构造方法,可以构造出中心对称图形。

下面以正方形为例,介绍一种构造中心对称图形的方法。

首先,在纸上画一个正方形ABCD,然后在正方形的边上选择一个点E。

接下来,以中点O为中心,将边AE旋转180度,得到点F。

连接点O和F,可以发现线段OF正好位于正方形的内部,并且将正方形分成了两个对称的部分。

三、中心对称图形的判断在几何题目中,常常需要判断一个图形是否具有中心对称性。

下面介绍两种常见的判断方法。

1. 观察法:观察图形的构造和特点,如果可以找到一个中心对称的中心和对称轴,就可以判断该图形具有中心对称性。

2. 旋转法:将图形旋转一定角度,看是否可以与原图形完全重合。

如果可以,则证明图形具有中心对称性。

四、中心对称的应用中心对称的概念在日常生活中有广泛的应用。

以下列举几个例子:1. 花朵和雪花:观察花朵或雪花的形状可以发现,它们通常具有中心对称性,每一瓣或每一片都基本相同。

2. 几何艺术:许多几何艺术作品中运用了中心对称的设计手法,通过将图形进行旋转和镜像来创造出华丽的图案。

3. 标志和徽章:许多组织、学校和公司的标志和徽章都采用中心对称的设计,使其更具美感和平衡感。

中心对称知识点

中心对称知识点

中心对称知识点一.图形旋转1.中心对称知识点在平面内,将一个图形一个定点转动一定的角度 ,这样的图形运动称为图形的旋转。

这个定点称为旋 转中心,旋转的角度称为旋转角。

注意点: 旋转角通常与旋转方向有关,因此在写旋转角时通常要说明旋转方向。

2.旋转图形的性质:(1)旋转前、后的图形全等。

(2)对应点到旋转中心的距离相等。

(3)每一对对应点与旋转中心的边线所成的角彼此相等。

二.中心对称1.中心对称的有关概念:中心对称、对称中心、对称点把一个图形绕着某一点旋转 180°,如果它能够与另一个图形重合 ,那么称这两个图形关于这点对称 , 也称这两个图形成中心对称,这个点叫做对称中心,两个图形中的对应点叫做对称点。

2.中心对称的基本性质:(1)成中心对称的两个图形具有图形旋转的一切性质。

(2)成中心对称的两个图形 ,对称点连线都经过对称中心 ,并且被对称中心平分。

三.中心对称图形1.中心对称图形的有关概念:中心对称图形、对称中心把一个平面图形绕某一点旋转 180°,如果旋转后的图形能够和原来的图形互相重合 ,那么这个图形 叫做中心对称图形。

这个点就是它的对称中心。

2.中心对称与中心对称图形的区别与联系如果将成中心对称的两个图形看成一个图形 ,那么这个整体就是中心对称图形; 反过来,如果把一个 中心对称图形沿着过对称中心的任一条直线分成两个图形 ,那么这两个图形成中心对称。

3.图形的平移、轴对称(折叠)、中心对称(旋转)的对比四.平行四边形1.定义:图形的平移 图形沿某方向平移一定距离 对应点的连线平行或在同一直线上, 中心对称(图形) 对称中心——点 图形绕对称中心旋转 180°后重合 对称点连线经过对称中心,且被对称中心平分 轴对称(图形)对称轴——直线图形沿对称轴对折(翻折 180°)后重合对称点的连线被对称轴垂直平分两组对边分别平行的四边形叫做平行四边形。

2.性质: (边、角、对角线)(1)平行四边形的对边相等。

数学:23.2《中心对称》教案(人教版九年级上)

数学:23.2《中心对称》教案(人教版九年级上)

数学:23.2《中心对称》教案(人教版九年级上)一. 教学内容:中心对称1. 中心对称的概念、中心对称与旋转的关系、中心对称的基本性质.2. 画已知图形关于已知点的对称图形.3. 两个关于原点对称的点的坐标间的关系.4. 运用轴对称、平移、旋转等变换关系及组合进行简单的图案设计.二. 知识要点:1. 中心对称和中心对称图形把一个图形绕着某一个点旋转180°,如果它能够和另一个图形完全重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心.这两个图形中的对应点叫做关于中心的对称点.把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形.区别:中心对称是指两个全等图形之间的相互位置关系,这两个图形关于某一点(对称中心)对称叫做中心对称.联系:如果把中心对称的两个图形看成一个整体(一个图形),那么这个图形是中心对称图形.如果把一个中心对称图形中对称的部分看成两个图形,那么它们是中心对称.2. 中心对称的性质(1)关于中心对称的两个图形是全等形;(2)关于中心对称的两个图形,对称点的连线都经过对称中心并且被对称中心平分;(3)如果两个图形的对应点的连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称;(4)过对称中心的直线把中心对称图形分为面积相等的两部分.3. 点P(x,y)关于原点的对称点是P’(-x,-y).4. 图案设计的步骤(1)整体构思①图案的设计要突出主题,即设计图案的意图,要求简捷,自然、别致,具有一定的意义.例如:奥运会会徽是由五个两两相联的圆环组成的,分别代表世界上五大洲的人民热爱体育运动,携手共创美好的未来.②确定整幅图案的形状(如圆形或正方形)和“基本图案”(不宜太复杂).③构思图案的形成过程:首先构思该图案由哪几部分构成,再构思如何运用平移、旋转、轴对称等方法实现由“基本图形”到各部分图案的组合,并作出草图.(2)具体作图:根据草图,运用尺规作图的方法,准确地作出图案.(3)对图案进行适当的修饰(如着色等).三. 重点难点:本讲重点是中心对称的性质和关于原点对称的两点间的坐标关系.难点是正确运用中心对称的性质解决相关问题.四. 考点分析:旋转和轴对称、平移这三种图形变换关系是中考的热点问题,通常出现一道填空题或选择题.从近几年各地中考试卷来看,图形变换经常和三角形、四边形相联系以综合题、探究题的形式出现,相关知识所占分值有所增加.【典型例题】例1.如图所示,已知平行四边形ABCD,画出平行四边形ABCD关于点C对称的平行四边形A’B’CD’.分析:画平行四边形ABCD关于点C的对称图形,只要画出A、B、D关于点C的对称点,而点C的对称点就是它本身.解:连接AC并延长到A’,使CA’=CA,延长BC到B’使CB’=CB,延长DC到D’使CD’=CD.顺次连接A’、B’、C、D’就得到平行四边形ABCD关于点C对称的平行四边形A’B’CD’.评析:画与已知图形关于某点中心对称的图形问题,思路较简单,只要分别画出图形各个顶点关于对称中心的对称点,再顺次连接即可,这样就将问题转化为画点关于点的对称点的问题.例2.如图所示,矩形ABCD的四个顶点的坐标分别为A(-4,4)、B(-4,0)、C(-1,0)、D(-1,4),画出矩形ABCD,并作出与矩形ABCD关于原点对称的图形.分析:找点A关于原点O的对称点A’的坐标,可以根据关于原点对称的点的坐标的关系,即坐标的符号相反,得A’(4,-4),同理可得到其他三点的对称点的坐标.解:由两个点关于原点对称时,它们的符号相反,得到点A、B、C、D关于原点对称的对应点A’、B’、C’、D’的坐标分别为A’(4,-4)、B’(4,0)、C’(1,0)、D’(1,-4),分别画出这四个点,顺次连接,得到矩形ABCD关于原点O对称的矩形A’B’C’D’.评析:通过画出关于原点对称的图形可以验证P(x,y)与P’(-x,-y)关于原点对称.如果在图中发现两个点不是关于O对称,就要检查改变符号是否有误或描点时是否出错.例3.如图所示,一个长方形内有任意一圆,请你用一条直线同时将圆和长方形的面积二等分,并说明作图的道理和方法.分析:因为长方形是中心对称图形,两条对角线的交点是它的对称中心,根据对称的性质,经过对称中心的任何一条直线都将长方形的面积二等分,因此,所作的直线必须经过长方形的两条对角线的交点;因为圆同样是中心对称图形,经过圆心的任何一条直线都将圆面积二等分,所以这条直线必须经过圆的圆心.综上所述,这条直线必须是经过长方形对角线交点和圆心的直线.解:作长方形的两条对角线,令交点为O1,圆的圆心为O2,过O1、O2作直线l,则这条直线l将长方形和圆的面积二等分(如图所示).评析:根据中心对称图形的性质:过对称中心的任一条直线能将其面积两等分,因此,由两个中心对称图形组合而成的复合图形,经过两个中心对称图形的对称中心画一条直线,将整个图形的面积两等分,这是等分组合图形面积的基本方法.例4.用6根一样长的小棒搭成如图(1)所示的图形,试移动其中两根小棒使组成的图形是中心对称图形.分析:这种题要善于动手操作,抓住中心对称的特征,旋转180°后与原图形重合.解:如图(2)所示,将AC移到BM位置,将DE移到BN位置;或如图(3)所示沿AB所在直线将AC 和BC翻折.例5.(1)在图(1)所示编号为①、②、③、④的四个三角形中,关于y轴对称的两个三角形的编号为__________;关于坐标原点O对称的两个三角形的编号为__________.(2)在图(2)中,画出与△ABC关于x轴对称的△A1B1C1.分析:(1)观察图(1)知:沿y轴对折后①和②这两个三角形可以重合,故关于y轴对称的两个三角形的编号为①②;连结①和③这两个三角形的对应点,就会发现这些对应点的连线都过原点O且被原点O平分,所以关于原点O对称的两个三角形的编号为①和③.(2)先根据A、B、C的位置确定A1、B1、C1的位置(利用网格确定),再顺次连结.解:(1)①和②;①和③.(2)如图(3)所示.评析:注意中心对称和轴对称的区别,作已知图形的轴对称图形时要特别注意以谁为对称轴.例6.如图所示,过平行四边形ABCD对角线的交点O作两条互相垂直的直线EF、GH分别交平行四边形ABCD四边于E、G、F、H,求证:四边形EGFH是菱形.分析:已知EF⊥GH,只要能证出EF、GH互相平分即可,由对角线互相垂直平分的四边形是菱形可证.证明:∵O是平行四边形ABCD的对称中心,EF经过点O与AB交于点E,与CD交于点F,∴E、F关于点O中心对称,∴EO=FO.同理可得GO=HO.又∵EF⊥GH,∴四边形EGFH是菱形.评析:通过平行四边形是中心对称图形,及过对称中心的直线与对应线段的交点等性质证明,思路清晰、新颖.【方法总结】1. 关于原点对称的两个点的坐标的符号相反,可以通过这个规律,确定已知点关于原点对称的点的坐标,由此可以画出已知图形关于原点对称的图形.2. 判定一个图形是中心对称图形主要方法是根据定义,即某点旋转180°后与自身重合,常见的几何图形中是中心对称图形的有:线段、平行四边形、圆等.过中心对称图形的对称中心的直线平分其面积.【预习学案】(期中复习)二. 预习导学2. 解下列方程:(1)x2-2x=0;(2)2x2-x+1=0;(3)4x2-9=0.3. 将图1按顺时针方向旋转180°后得到的是()反思:(1)二次根式有什么性质?如何对二次根式进行化简?(2)二次根式的运算法则是怎样的?(3)一元二次方程的常用解法有哪几种?(4)旋转、中心对称的性质是什么?【模拟试题】(答题时间:50分钟)一. 选择题1. 下列英文单词或标记中,可看作中心对称图形的是()A.SOS B.CEO C.MBA D.SARS2. 下列图形中,既是轴对称图形,又是中心对称图形的是()3. 下列图形中,既是轴对称图形又是中心对称图形的是()A.角B.等边三角形 C.线段 D.长方形4. 下列各图中,是中心对称图形的是()5. 已知点A(1,a)、点B(b,2)关于原点对称,则a+b的值为()A. 1B. 3C. -1D. -36. 把下图中①向右平移叠放在图②上,可以形成A~D中的哪个图形()*7. 下列说法正确的是()①中心对称与中心对称图形是两个不同的概念;②中心对称图形是指两个图形之间的一种关系;③中心对称与中心对称图形都只有一个对称中心;④关于某点成中心对称的两点连线的中点正好是对称中心.A. ①②B. ①②③C. ①③④D. ②③④**8. 将平行四边形纸片沿过其对称中心的任一直线对折,下图不可能的是()二. 填空题1. 关于中心对称的两个图形,对称点的连线经过__________,并且__________.2. 如果△ABC与△A'B'C'关于点O成中心对称,那么△ABC与△A'B'C'的关系是__________.3. 利用图形的__________、__________和__________可以设计出许多美丽的图案,我们将图形的平移,旋转和轴对称统称为__________.4. 点A(a,3)与点B(-4,b)关于原点对称,则点P(a,b)在第__________象限..**6. 在平面直角坐标系中,已知3个点的坐标分别为A1(1,1)、A2(0,2)、A3(-1,1).一只电子蛙位于坐标原点处,第1次电子蛙由原点跳到以A1为对称中心的对称点P1,第2次电子蛙由P1点跳到以A2为对称中心的对称点P2,第3次电子蛙由P2点跳到以A3为对称中心的对称点P3,…,按此规律,电子蛙分别以A1、A2、A3为对称中心继续跳下去.问当电子蛙跳了2009次后,电子蛙落点的坐标是P2009(_______,_______).三. 解答题1. 如图所示,找出下列图形的对称中心(画图表示).2. 已知点M(a-1,2a+4)关于原点对称的点在第三象限,求a的取值范围.3. 请探究以下两个问题.(1)过中心对称图形的对称中心的任一直线,能否将该图形分成面积相等的两部分?为什么?(2)如图所示的是由5个相同正方形组成的图形,你能否画一条直线将这个图形分成面积相等的两部分?请至少找出两种不同的画法.4. 利用如图所示的两个直角三角形,你能设计出满足下列条件的图案吗?(1)是轴对称图形但不是中心对称图形;(2)是中心对称图形,但不是轴对称图形;(3)既是轴对称图形,又是中心对称图形;(4)既不是轴对称图形,又不是中心对称图形,但既利用了旋转,又利用了平移.5. 图①、图②均为7×6的正方形网格,点A、B、C在格点上.(1)在图①中确定格点D,并画出以A、B、C、D为顶点的四边形,使其为轴对称图形.(画一个即可)(2)在图②中确定格点E,并画出以A、B、C、E为顶点的四边形,使其为中心对称图形.(画一个即可)(1)【试题答案】一. 选择题1. A2. D3. C4. B5. D6. B7. C8. B二. 填空题1. 对称中心;被对称中心平分2. △ABC≌△A'B'C'3. 平移;旋转;轴对称;图形变换4.四 5. m<0 6. (-2,2)三. 解答题1. 提示:先确定两对对应点,分别连结两对对应点,交点即为对称中心2. 依题意可知,点M在第一象限,∴a-1>0,且2a+4>0,∴a>1.3. 提示:(1)能.因为被直线分成的两部分之一旋转180°能与另一部分重合.(2)①作出右上角小正方形的对称中心,再作出下边田字形的对称中心,过这两点的直线即是.②作出左边两个小正方形的对称中心.再作出右边三个小正方形的对称中心,过这两点的直线即是.4. 如图所示:5. (1)有以下答案供参考:(2)有以下答案供参考:。

第23章 第4课 中心对称

第23章 第4课 中心对称
返回目录
基础过关 1.下列各组图形中,△A'B'C'与△ABC成中心对称的是( D )
A
B
C
D
返回目录
2.(2023·韶关仁化县期中)如图所示,已知△ABC和△A'B'C'关于点O成 中心对称,则下列结论错误的是( D ) A.∠ABC=∠A'B'C' B.∠AOC=∠A'OC' C.AB=A'B' D.OA=OC'
B.O2 D.O4
返回目录
(教材P65)如图,已知四边形ABCD和点O,画出四边形ABCD 关于点O中心对称的图形A'B'C'D'. 解:如图所示,四边形A'B'C'D'即为所求作图形.
返回目录
如图,在网格图中已知格点三角形ABC,画出△ABC关于点C 中心对称的△A'B'C. 解:如图所示,△A'B'C即为所求作图形.
返回目录
如图,△ABC与△A'B'C'关于点O成中心对称,则 (1)△ABC_≌___△A'B'C'; (2)OA=__O__A_'___,OB=___O_B_'___,OC=___O_C__' __; (3)AA',BB',CC'都经过点__O__; (4)O是___A_A_'___,___B_B__' __,__C__C_'___的中点.
返回目录
能力过关
5.(2023·云浮罗定市期中)如图,已知菱形ABCD与菱形EFGH关于直线
BD上某个点成中心对称,则点B的对称点是( D )
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2.3 中心对称和中心对称图形
第1课时 中心对称及其性质
学习目标:
1、掌握中心对称的定义以及相关概念.理解中心对称的性质,能够利用性质解决相关问题.
2、能够依据中心对称的性质解决相关作图问题.
重点:作图以及利用性质解决问题.
难点:利用性质解决问题.
学习过程:
一、自学教材回答下列问题.
1、自学教材思考,解答:有何__________________________.
2、把一个图形__________________________________________那么就说这两个图形关于这个点中心对称.这个点叫_______.
二、自学教材探究,回答下列问题:
1、利用旋转的性质——对应点到_________的距离相等,可知中心对称的两个图形的对称点到______的距离相等,亦即对称点的连线被__________平分.对称点的连线经过_________.
2、由旋转的性质——旋转前后对应的线段___________,可知中心对称的两个图形的对称线段_______,由此可得到,中心对称的两个图形是__________.
三、利用上述性质解答:(可参看教材例题)
例(1)如图,选择点O 为对称中心,画出点A 关于点O 的对称点A ′.
A O
(2)如图,选择点O 为对称中心,画出与△ABC 关于点O 对称的△A ′B ′C ′.
(3)、如图,已知△ABC 与△A’B’C’中心对称,求出它们的对称中心O .
B C
A’
四、随堂检测:
1、下列说法错误的是( )
A.中心对称图形一定是旋转对称图形
B.轴对称图形不一定是中心对称图形
C.在成中心对称的两个图形中,连接对称点的线段都被对称中心平分
D.旋转对称图形一定是中心对称图形.
2、关于中心对称的两个图形,对应线段的关系是( )
(A) 平行 (B) 相等 (C) 平行且相等 (D) 相等且平行或在同一直线上
3、如果两个图形的对应点连成的线段都经过某一点,并且被平分,则这两个图形一定关于
这一点成____________对称.
4、ΔABC和ΔA’B’C’关于点O中心对称,若ΔABC的周长为12cm,ΔA’B’C’的面积
为6cm2,则ΔA’B’C’的周长为___________,ΔABC的面积为_________.
5、下图中②③④⑤分别由①图顺时针旋转180°变换而成的是____________.
6、在下面四个图形中,图形①与_______成轴对称,图形①与图形________成中心对称.
7、如下图所示的四组图形中,左边图形与右边图形成中心对称__________组.。

相关文档
最新文档