07总体均数的估计与假设检验2
07年春期《预防医学》课程期末复习指导
07年春期《预防医学》课程期末复习指导重庆电大远程教育导学中心理工导学部2007年6月修订第一部份课程考核说明1.考核目的考核学生对预防医学的基本理论和方法的理解及应用分析的能力。
2.考核方式期末考试为开卷、笔试,时间为90分钟。
3.适用范围、教材本课程期末复习指导适用范围为成人教育专科公共卫生管理专业的必修课程、护理学专业的选修课程。
考试命题的教材是由袁聚祥、黄悦勤、刘桂芬主编,北京医科大学出版社02年8月第2版《预防医学》教材。
4.命题依据本课程的命题依据是预防医学课程的教学大纲、教材、实施意见。
5.考试要求本课程的考试重点包括基本知识和应用能力两个方面,主要考核学生对预防医学的基本理论和方法的理解及应用分析的能力。
6.考题类型及比重考题类型及分数比重大致为:填空题(25%);单项选择题(20%);名词解释题(25%);问答题(30%)。
第二部份期末复习重点范围第一章人类与环境的关系一、重点名词:生物蓄积作用生物放大作用二次污染物生物浓缩作用二、重点掌握:环境化学物质的联合作用。
三、一般掌握:1、工业生产过程中排出“三废”的内容。
2、生活性污染的“三废”的内容。
3、次生环境的含义。
第二章生活环境与健康一、重点名词:地球化学性疾病自然疫源性疾病营养素二、重点掌握:1、细菌性食物中毒的治疗原则和预防措施。
2、介水传染病的特点。
3、亚硝酸盐中毒的中毒机理和急救原则。
4、合理膳食的基本卫生要求。
三、一般掌握:1、大气污染的来源、转归及其对健康的危害。
2、评价饮用水水质在流行病学安全的主要指标。
3、大气的自净作用。
4、居室空气细菌学的评价指标。
5、碘的生理功能。
第三章生产环境与健康一、重点掌握:1、三级预防原则。
2、慢性汞中毒的诊断分级。
二、一般掌握:1、急性苯中毒的主要损害。
2、常见职业中毒(铅、汞、苯):临床表现、治疗。
第四章社会心理环境与健康一、重点名词:药物滥用二、重点掌握:1、社会因素影响健康的特点。
总体均数的假设检验
$number {01}
目 录
• 引言 • 假设检验的基本原理 • 总体均数的假设检验方法 • 实例分析 • 总结与展望
01 引言
目的和背景
确定样本数据是否与假设的总体均数 存在显著差异,从而对总体均数进行 假设检验。
在科学实验、统计学、医学研究等领 域广泛应用,用于评估样本数据是否 支持或拒绝关于总体均数的假设。
配对样本均数假设检验实例
总结词
配对样本均数假设检验用于比较同一组研究对象在不同条件下的均数是否存在统计学显 著性差异。
详细描述
例如,为了比较同一组患者在接受两种不同治疗措施前后的改善程度,研究者收集了患 者的基线数据和接受不同治疗措施后的数据,并计算出各自治疗组的平均改善程度。然 后,研究者使用配对样本均数假设检验来比较同一组患者在不同治疗措施下的平均改善
概念简介
假设检验是一种统计推断方法,通过 检验样本数据是否符合某个假设,从 而对总体参数进行推断。
它基于概率论原理,通过计算样本数 据与假设的总体参数之间的差异,评 估这种差异是否具有统计学上的显著 性。
02
假设检验的基本原理
假设检验的步骤
建立假设
根据研究目的,提出一个关于总 体参数的假设,通常包括零假设 和备择假设。
收集样本数据
从总体中随机抽取一定数量的样 本,并记录样本数据。
确定检验水准
选择合适的检验水准,如α和β, 以平衡第一类和第二类错误的概 率。
计算统计量
根据样本数据计算适当的统计量, 如t值、Z值或χ^2值。
假设检验的类型
1 2
3
单样本均数检验
比较一个样本均数与已知总体均数或正常值范围。
两样本均数比较
统计学教案习题04总体均数的估计和假设检验
第四章 总体均数的估计和假设检验一、教学大纲要求(一) 掌握内容1. 抽样误差、可信区间的概念及计算; 2. 总体均数估计的方法;3. 两组资料均数比较的方法,理解并记忆应用这些方法的前提条件; 4. 假设检验的基本原理、有关概念(如I 、II 类错误)及注意事项。
(二) 熟悉内容 两样本方差齐性检验。
(三) 了解内容1. t 分布的图形与特征;2. 总体方差不等时的两样本均数的比较; 3. 等效检验。
二、教学内容精要(一) 基本概念 1. 抽样误差抽样研究中,样本统计量与总体参数间的差别称为抽样误差(sampling error )。
统计上用标准误(standard error ,SE )来衡量抽样误差的大小。
不同的统计量,标准误的表示方法不同,如均数的标准误用X S 表示,率的标准误用S P 表示,回归系数的标准误用S b 表示等等。
均数的标准误与标准差的区别见表4-1。
表4-1 均数的标准误与标准差的区别均数的标准误标准差意义 反映的抽样误差大小 反映一组数据的离散情况 记法X σ(样本估计值X S )σ(样本估计值S )计算X σ=nσ X S =nSσ =nX 2)(∑-μS=1)(2--∑n X X控制方法增大样本含量可减小标准误。
个体差异或自然变异,不能通过统计方法来控制。
2.可信区间(1)定义、涵义:即按预先给定的概率确定的包含未知总体参数的可能范围。
该范围称为总体参数的可信区间(confidence interval ,CI )。
它的确切含义是:CI 是随机的,总体参数是固定的,所以,CI 包含总体参数的可能性是1-α。
不能理解为CI 是固定随机的,总体参数是随机固定的,总体参数落在CI 范围内可能性为1-α。
当0.05α=时,称为95%可信区间,记作95%CI 。
当0.01α=时,称为99%可信区间,记作99%CI 。
(2)可信区间估计的优劣:一定要同时从可信度(即1-α的大小)与区间的宽度两方面来衡量。
总体均数估计与假设检验
t 检验
t-test
三、t检验和Z检验(参数检验)
以t分布为基础的检验称为t检验。 t分布的发现使得小样本统计推断成为 可能。因而,它被认为是统计学发展历 史中的里程碑之一。
在医学统计学中,t检验是重要的 假设检验方法之一。常用于两个均数之 间差别的比较,并根据资料的分布情况 及设计类型,选择不同的t检验方法。
配对样本t检验
Paired design t-test
关系:随着样本含量增加,都减小。
联系:都是表示变异度的指标,当样本量一定时,两者成正比。
标准误用途
衡量样本均数的可靠性:标准误越小,表明 样本均数越可靠;
参数估计:估计总体均数的置信区间(区 域);
假设检验:用于总体均数的假设检验(比 较)。
二、t分布:
标准正态分布
开创了小样本统计的新纪元,t分布主要用于总体均数的 区间估计和t检验!
假设检验(Hypothesis test)
假设检验的推断原理 假设检验的基本步骤 t检验和Z检验 两样本总体方差齐性检验 正态性检验 假设检验的两类错误 注意事项
一、假设检验的推断原理
上面介绍过的区间估计方法是统计 推断的内容之一,假设检验是统计推 断的另一重要内容。正是应用统计推 断的理论和方法,人们才能顺利地通 过有限的样本信息去把握总体特征, 实现抽样研究的目的。
s / n 25.74 36
在H0成立的前提下,当前t值出现的概率有多 大???
如何给出这个量的界限?
小概率事件在一次试验 中基本上不会发生 !
从附表2中查出在显著性水平 =0.05(双侧),自由度为35所 对应的t界值=2.318,即为拒绝 域与接受域的界限。如果计算
公卫执业医师-综合笔试-卫生统计学-第三单元总体均数的估计和假设检验
公卫执业医师-综合笔试-卫生统计学-第三单元总体均数的估计和假设检验[单选题]1.两个样本均数比较作t检验,其他条件不变,犯第Ⅱ类错误的概率最小的是A.α=0.05B.α=0.(江南博哥)01C.α=0.1D.α=0.2E.该问题提法不对正确答案:D参考解析:一类错误α和二类错误β有一定的关系,α越大,β越小。
所以本题答案选择D。
掌握“Ⅰ型错误与Ⅱ型错误”知识点。
[单选题]5.下列关于均数的标准误的叙述,错误的是A.是样本均数的标准差B.反映样本均数抽样误差大小C.与总体标准差成正比,与根号n成反比D.增加样本含量可以减少标准误E.其值越大,用样本均数估计总体均数的可靠性越好正确答案:E参考解析:样本均数的标准差称为均数的标准误,是描述样本均数抽样误差大小的指标,其大小与总体标准差成正比,与根号n成反比。
标准误越小,抽样误差越小,用样本均数估计总体均数的可靠性越好。
故选项E叙述错误,本题选E。
掌握“标准误及可信区间★”知识点。
[单选题]6.关于可信区间,正确的说法是A.可信区间是总体中大多数个体值的估计范围B.95%可信区间比99%可信区间更好C.不管资料呈什么分布,总体均数的95%的可信区间计算公式是一致的D.可信区间也可用于回答假设检验的问题E.可信区间仅有双侧估计正确答案:D参考解析:按一定的概率估计总体参数的可能范围,该范围称为可信区间,可以用来估计总体均数的可能所在范围,常按95%可信度估计总体参数的可能范围。
掌握“标准误及可信区间★”知识点。
[单选题]7.同类定量资料下列指标,反映样本均数对总体均数代表性的是A.四分位数间距B.标准误C.变异系数D.百分位数E.中位数正确答案:B参考解析:样本均数的标准差即均数的标准误,简称标准误。
可用来描述样本均数的抽样误差,标准误越小,则说明样本均数的抽样误差越小,样本均数对总体均数的代表性越好。
掌握“标准误及可信区间★”知识点。
[单选题]8.比较两药疗效时,下列可作单侧检验的是A.己知A药与B药均有效B.不知A药好还是B药好C.己知A药与B药差不多好D.己知A药不会优于B药E.不知A药与B药是否有效正确答案:D参考解析:已知A药不会优于B药,只有低于B药的一种可能,所以可作单侧检验。
医学统计学第二版高等教育出版社课后习题答案
第一章绪论1.举例说明总体和样本的概念。
研究人员通常需要了解和研究某一类个体,这个类就是总体。
总体是根据研究目的所确定的所有同质观察单位某种观察值(即变量值)的集合,通常有无限总体和有限总体之分,前者指总体中的个体是无限的,如研究药物疗效,某病患者就是无限总体,后者指总体中的个体是有限的,它是指特定时间、空间中有限个研究个体。
但是,研究整个总体一般并不实际,通常能研究的只是它的一部分,这个部分就是样本。
例如在一项关于2007年西藏自治区正常成年男子的红细胞平均水平的调查研究中,该地2007年全部正常成年男子的红细胞数就构成一个总体,从此总体中随即抽取2000人,分别测的其红细胞数,组成样本,其样本含量为2000人。
2.简述误差的概念。
误差泛指实测值与真实值之差,一般分为随机误差和非随机误差。
随机误差是使重复观测获得的实际观测值往往无方向性地围绕着某一个数值左右波动的误差;非随机误差中最常见的为系统误差,系统误差也叫偏倚,是使实际观测值系统的偏离真实值的误差。
3.举例说明参数和统计量的概念。
某项研究通常想知道关于总体的某些数值特征,这些数值特征称为参数,如整个城市的高血压患病率。
根据样本算得的某些数值特征称为统计量,如根据几百人的抽样调查数据所算得的样本人群高血压患病。
统计量是研究人员能够知道的,而参数是他们想知道的。
一般情况下,这些参数是难以测定的,仅能够根据样本估计。
显然,只有当样本代表了总体时,根据样本统计量估计的总体参数才是合理的。
4.简述小概率事件原理。
当某事件发生的概率小于或等于0.05时,统计学上习惯称该事件为小概率事件,其含义是该事件发生的可能性很小,进而认为它在一次抽样中不可能发生,这就是所谓的小概率事件原理,它是进行统计推断的重要基础。
第二章调查研究设计1.调查研究主要特点是什么?调查研究的主要特点是:①研究的对象及其相关因素(包括研究因素和非研究因素)是客观存在的,不能人为给予干预措施②不能用随机化分组来平衡混杂因素对调查结果的影响。
总体均数的估计和t检验
它不受样本大小和样本变异性的影响,是衡量数据分布中心位
03
置的重要参数。
总体均数的点估计
点估计(Point Estimation):使用 样本统计量来估计总体参数的方法。
样本均数(Sample Mean):作为总 体均数的点估计量,它是从样本数据 中计算得出的平均值。
总体均数的区间估计
要点一
区间估计(Interval Estimation)
根据t统计量的显著性,得出配对观测值之 间是否存在显著差异的结论。
配对样本t检验的应用
01
比较同一受试者在不同时间点的生理指标或心理指 标是否存在显著差异。
02
比较同一受试者在不同条件下的行为表现是否存在 显著差异。
03
比较不同治疗方法的效果是否存在显著差异。
04
CHAPTER
两独立样本t检验
两独立样本t检验的概念
它适用于在实验设计时将观测值配对的情况,例如同一受试者在不同时间 点或不同条件下获得的观测值。
配对样本t检验的目的是检验两组配对观测值的均值是否存在显著差异。
配对样本t检验的步骤
1. 数据收集
收集两组配对观测值的数据,确保数据来源可靠、准确。
2. 数据整理
将数据整理成适合进行t检验的表格形式,包括配对观测值的编 号、观测值、差值等。
两独立样本t检验是用来比较 两个独立样本的总体均数是否
有显著差异的统计方法。
它适用于两个独立样本,且 每个样本的观察值相互独立,
不受其他因素的影响。
两独立样本t检验的前提假设 是:两个样本的总体均数相等, 且每个样本的观察值服从正态
分布。
两独立样本t检验的步骤
01
02
03
总体均数的估计和假设检验
无统计学意义,按 0.05检验水
准,不拒绝H0,尚不能认为两种
方法的检查结果不同。
成组设计的两样本均数的检验
01
完全随机设计(又称成组设计):将受试对象完全随机地分配到各个处理组中或分别从不同总体中随机抽样进行研究。
02
01
若n1 ,n2 较小,且σ12=σ22
02
两独立样本的t检验(例3.7);
01
方差分析法。
02
单侧检验和双侧检验(根据 研究目的和专业知识选择)
假设检验(1)双侧检验:如要比较A、B两个药物的疗效,无效假设为两药疗效相同(H0:μA=μB),备择假设是两药疗效不同(H1:μA≠μB),可能是A药优于B药,也可能B药优于A药,这就是双侧检验。
01
02
单侧检验:若实际情况是A药的疗效不劣差于B药,则备择假设为A药优于B药(H1:μA>μB),此时,备择假设成立时只有一种可能(另一种可能已事先被排除了),这就是单侧检验。
01
备注:单侧检验和双侧检验中计算统计量t的过程是一样的,但确定概率时的临界值是不同的。
01
统计推断应包括统计结论和专业结论两部分。统计结论只说明有统计学意义(statistical significance) 或无统计学意义,而不能说明专业上的差异大小。只有将统计结论和专业知识有机地相结合,才能得出恰如其分的专业结论。
A,B处理。
2
0.05
H0:μd =0 H1:μd ≠0
其中
式中d为每对数据的差值, 为差值的样本均数, Sd为差值的标准差, 为差值样本均数的标准误, n为对子数。
开机: 进入统计状态: 清除内存:
SHIFT
b. 近似t检验,即t'检验(n1,n2 较小,且σ12≠σ22)
第三章 总体均数的估计与假设检验
Sd
d
d Sd / n
2
(
d)
n
n 1
S d 0.1087 t 2.7424 0.1087/ 10 7.925
v 10 1 9
3)确定P值,作出推断结论 T0.05,9=2.262, 7.925>2.262,故P<0.05.可以认为两种 方法对脂肪含量的测定结果不同。
167.41, 2.74
165.56, 6.57
168.20, 5.36 n j=10
…. 165.69, 5.09
将上述100个样本均数看成新变量值,则这个 100个样本均数构成一新分布,绘制直方图
样本均数的抽样分布具有如下特点:
1) 各样本均数未必等于总体均数
2) 各样本均数间存在差异
3) 样本均数的分布很有规律,围绕着总体均 数,中间多,两边少,左右基本对称,也 服从正态分布
假设检验的基本步骤:
1、建立检验假设
H0: 检验假设, 无效假设,零假设 μ=μ0
H1: 备择假设,对立假设
μ≠μ0
2、确定检验水准 α=0.05 单双侧
3、选定检验方法和计算检验统计量
4、确定P值和作出推论结论。
P值是指从H0所规定的总体进行随机抽样,获 得大于(或等于及小于)现有样本获得的检验 统计量值的概率。
(1012/L)
血红蛋白 (g/L)
女
男 女
255
360 255
4.18
134.5 117.6
0.29
7.1 10.2
4.33
140.2 124.7
*标准值:使用内科学(1976年)所载均数(转位法定单位)
1)说明女性的红细胞数与血红蛋白的变异程度何者为大? 2)抽样误差是? 3)试估计该地健康成年女性红细胞数的均数? 4) 该地健康成年男女血红蛋白含量是否不同? 5)该地男性两项血压指标是否均低于上表的标准值(若测 定方法相同)?
最新中国医科大学研究生医学统计学 第三讲 总体均数的估计与假设检验2_PPT课件ppt课件
Sn
x
u
x~N(,2) u~N(0,1)
x~N(,2n)
u x x
x ( x )~ N(0,1)
ux x x / n
未知
t x
S/ n
二、t 分布的图形与特征
t 分布是一簇曲线。当自由度ν不同时,曲线
的形状不同。当ν
时,t 分布趋近于标准正
态分布,但当自由度ν较小时,与标准正态分布差
异较大。其图形如下:
X
( X u 2 X , X u 2 X )
准正态分布是 t分布的特例。
自由度
单侧 双侧
1
2 3 4 5
6 7 8 9 10
21 22 23 24 25
0.25 0.50
1.000 0.816 0.765 0.741 0.727
0.718 0.711 0.706 0.703 0.700
0.686 0.686 0.685 0.685 0.684
中国医科大学研究生医 学统计学 第三讲 总体 均数的估计与假设检验
2_PPT课件
第一节 均数的抽样误差 与标准误
• 统计推断(statistical inference):
样本 推断 总体
(1)参数估计 (2)假设检验
S S Sx X nn
均数的标准误: (1)意义: (2)应用:
-t
0
t
0.005 0.01
63.657 9.925 5.841 4.604 4.032
0.0025 0.001
0.005 0.002
127.321 318.309
14.089 7.453 5.598 4.773
22.327 10.215 7.173 5.893
医学统计学总体均数的估计与假设检验
一、 均数的抽样误差与标准误( )
例4.1某市随机抽查12岁男孩100人,得身高均数139.6cm,标准差6.85cm,资料,求标准误?
第三章 总体均数的估计与假设检验
添加副标题
汇报人姓名
均数的抽样误差与标准误
t分布
总体均数的估计
假设检验的一般步骤
t检验
u 检验
两均数的等效检验
正态性检验
两样本方差齐性检验
假设检验时应注意的问题
利用总体均数的可信区间进行假设检验
课堂讨论
第三章 总体均数的估计与假设检验
一、 均数的抽样误差与标准误( )
等效检验的假设
七、两均数的等效检验
H0: | 1- 2| H1: | 1- 2|< 为等效界值,若两总体均数差值在范围内为等效,超过则为不等效。 是推断两种处理效果是否相近或相等的统计方法。 为什么推断两种处理效果是否相近或相等不能用前面所述的假设检验方法?
检验水准、自由度及结果判断同t检验。
=n- 1=25 -1=24 查t界值表(P804),得单侧 t0.05,24 = 1.711 因: t =1.833> t0.05,24 所以:P < 0.05
结论:按照 = 0.05水准,拒绝H0 ,故可认为该山区健康成年男子脉搏高于一般人群。
1
上例如用双侧检验,查表得双侧 t0.05,24 = 2.064
样本含量一定时,增大,则减少,减少则增大,所以, 的确定并不是越小越好,一般取0.05较合理。
结论时,尽可能明确相结合。
02
医学统计学总体均数的估计和假设检验
3.106
3.055
3.012 2.977 2.947 2.921 2.898 2.878 2.861 2.845 2.750 2.704 2.678 2.626
2.58
3.497
3.428
3.372 3.326 3.286 3.252 3.222 3.197 3.174 3.153 3.030 2.971 2.937 2.871 2.8070
t x
sX
统计量是t的分布就是t分布。
t分布的特征: ① 以0为中心,左右对称呈单峰分布; ② t分布是一簇曲线,分布参数为自由度υ。 ③ t分布的形状与样本例数n有关,高峰比正态分
布略低,两侧尾部翘得比正态分布略高。越大, 曲线越近正态分布,当ν=∞时,t分布即为z分布。 由于t分布是一簇曲线,为了便于应用,统计学 家编制了表4-4-1 t界值表。
3)与例数的关系不同:当样本含量足够大时,标准 差趋向稳定。而标准误随例数的增大而减小,甚至趋 向于0。若样本含量趋向于总例数,则标准误接近于0。
联系;二者均为变异指标,如果把总体中各样本均 数看成一个变量,则标准误可称为样本均数的标准差。 当样本含量不变时,均数的标准误与标准差成正比。 两者均可与均数结合运用,但描述的内容各不相同。
活量的95%的可信区间。
本例n=5, =4,t0.05,4=2.776
x t0.05sx =2.44±2.776×0.33/ 5 =2.03~2.85(L)
该地17岁女中学生肺活量均数的95%可信区间为2.03L~2.85L。
例4-4-3 由例4-2-1 101名30~49岁健康男子血清总 胆固醇 X 4.735mmol·L-1,S=0.88 mmol·L-1,求该 地健康男子血清总胆固醇值均数的95%可信区间。
统计学与研究方法试题答案
统计学与研究方法试题答案第一章绪论1单选题1、总体是指()A.全部研究对象B.全部研究对象中抽取的一份C.全部样本D.全部研究指标E.全部同质研究对象的某个变量的值2、统计学中所说的样本是指()A.随意抽取的总体中任意部分B.有意识的选择总体中的典型部分C.依照研究者要求选取总体中有意义的一部分D.依照随机原则抽取总体中有代表性的一部分E.有目的的选择总体中的典型部分3、下列资料属等级资料的是()A.白细胞计数B.住院天数C.门急诊就诊人数D.病人的病情分类E.ABO血型分类4、为了估计某年华北地区家庭医疗费用的平均支出,从华北地区的5个城市随机抽样调查了1500户家庭,他们的平均年医疗费用支出是997元,标准差是391元。
该研究中研究者感兴趣的总体是()A.华北地区1500户家庭B.华北地区的5个城市C.华北地区1500户家庭的年医疗费用D.华北地区所有家庭的年医疗费用E.全国所有家庭的年医疗费用5、欲了解研究人群中原发性高血压病(EH)的患病情况,某研究者调查了1043人,获得了文化程度、高血压家族史、月人均收入、吸烟、饮酒、打鼾、脉压差、心率等指标信息。
则构成计数资料的指标有()A.文化程度、高血压家族史吸烟、饮酒、打鼾B.月人均收入、脉压差、心率C.文化程度、高血压家族史、、打鼾D.吸烟、饮酒E.高血压家族史、饮酒、打鼾第二章计量资料统计描述及计数资料统计描述1、描述一组偏态分布资料的变异度,以()指标较好。
A.全距B.标准差C.变异系数D.四分位数间距E.方差2、用均数和标准差可以全面描述()资料的特征。
A.正偏态分布B.负偏态分布C.正态分布D.对称分布E.对数正态分布3、各观察值均加(或减)同一数后()。
A.均数不变B.几何均数不变C.中位数不变D.标准差不变E.变异系数不变4、比较某地1~2岁和5~5.5岁儿童身高的变异程度。
宜用()。
A.极差B.四分位数间距C.方差D.变异系数E.标准差5、偏态分布宜用()描述其分布的集中趋势。
总体均数的估计和假设检验
(一) 单项选择题1. 标准误的英文缩写为:A .SB .SEC .X SD .SD2. 通常可采用以下那种方法来减小抽样误差:A .减小样本标准差B .减小样本含量C .扩大样本含量D .以上都不对 3. 配对设计的目的:A .提高测量精度B .操作方便C .为了可以使用t 检验D .提高组间可比性 4. 以下关于参数估计的说法不正确的是:A . 区间估计优于点估计B . 样本含量越大,参数估计准确的可能性越大C . 样本含量越大,参数估计越精确D .对于一个参数只能有一个估计值5. 关于假设检验,下列那一项说法是正确的A .单侧检验优于双侧检验B .采用配对t 检验还是成组t 检验是由实验设计方法决定的C .检验结果若P 值大于0.05,则接受H 0犯错误的可能性很小D .用u 检验进行两样本总体均数比较时,要求方差齐性6. 两样本比较时,分别取以下检验水准,下列何者所取第二类错误最小A .α=0.05B .α=0.01C .α=0.10D .α=0.20 7. 统计推断的内容是A .用样本指标推断总体指标B .检验统计上的“假设”C .A 、B 均不是D .A 、B 均是8.当两总体方差不齐时,以下哪种方法不适用于两样本总体均数比较 A .t 检验 B .t ’ 检验 C .u 检验(假设是大样本时) D .F 检验9.甲、乙两人分别从随机数字表抽得30个(各取两位数字)随机数字作为两个样本,求得1X ,21S ,2X ,22S ,则理论上A .1X =2X ,21S =22SB .作两样本t 检验,必然得出无差别的结论C .作两方差齐性的F 检验,必然方差齐D .分别由甲、乙两样本求出的总体均数的95%可信区间,很可能有重叠(二) 名词解释1. 统计推断 2. 抽样误差3. 标准误及X σ 4. 可信区间 5. 参数估计6. 假设检验中P 的含义7.I型和II型错误8.检验效能9.检验水准(三)是非题1.若两样本均数比较的假设检验结果P值远远小于0.01,则说明差异非常大。
统计学习题及答案(完整)2
统计学习题及答案(完整)2第一部分计量资料的统计描述一、最佳选择题1、描述一组偏态分布资料的变异度,以()指标较好。
A、全距B、标准差C、变异系数D、四分位数间距E、方差2.用均数和标准差可以全面描述()资料的特征。
A.正偏态分布B.负偏态分布C.正态分布D.对称分布E.对数正态分布3.各观察值均加(或减)同一数后()。
A.均数不变,标准差改变B.均数改变,标准差不变C.两者均不变D.两者均改变E.以上都不对4.比较身高和体重两组数据变异度大小宜采用()。
A.变异系数B.方差C.极差D.标准差E.四分位数间距5.偏态分布宜用()描述其分布的集中趋势。
A.算术均数B.标准差C.中位数D.四分位数间距E.方差6.各观察值同乘以一个不等于0的常数后,()不变。
A.算术均数B.标准差C.几何均数D.中位数E.变异系数7.()分布的资料,均数等于中位数。
A.对数正态B.正偏态C.负偏态D.偏态E.正态8.对数正态分布是一种()分布。
(说明:设X变量经Y=lgX变换后服从正态分布,问X变量属何种分布?)A.正态B.近似正态C.左偏态D.右偏态E.对称9.最小组段无下限或最大组段无上限的频数分布资料,可用()描述其集中趋势。
A.均数B.标准差C.中位数D.四分位数间距E.几何均数10.血清学滴度资料最常用来表示其平均水平的指标是()。
A.算术平均数B.中位数C.几何均数D.变异系数E.标准差二、简答题1、对于一组近似正态分布的资料,除样本含量n 外,还可计算,S 和,问各说明什么?2、试述正态分布、标准正态分布及对数正态分布的某单位1999年正常成年女子血清联系和区别。
甘油三酯(mmol/L)测量结果3、说明频数分布表的用途。
4、变异系数的用途是什么?组段频数5、试述正态分布的面积分布规律。
0.6~ 10.7~ 3三、计算分析题0.8~ 91、根据1999年某地某单位的体检资料,116名正常0.9~ 13成年女子的血清甘油三酯(mmol/L)测量结果如右表, 1.0~ 19 请据此资料: 1.1~ 25(1)描述集中趋势应选择何指标?并计算之。
总体均数的区间估计和假设检验
【疑难点】
标准误的意义 可信区间的含义 t分布的概念 假设检验的基本原理 P值的意义 Ⅰ型错误和Ⅱ型错误
学习目标
掌握: ① 均数抽样误差的概念和计算方法; ② 总体均数区间的概念,意义和计算方法; ③ 假设检验的基本步骤及注意问题; ④ u检验和t分布的概念,意义,应用条件和计 算方法。
➢ 反之,标准误愈大,估计总体均数可信区间的范 围也愈宽,说明样本均数距总体均数愈远,对总 体均数的估计也愈差。
标 准 差(S)
标 准 误( S ) X
1.表示个体变量值的变异度大小,即原始变量值的
1.表示样本均数抽样误差的大小,即样本均数的离散程
离散程度。公式为: S (X X )2 n 1
称差异有统计学意义。
假设检验的一般步骤
1.建立检验假设
❖ 一种是无效假设(null hypothesis)符号为H0; ❖ 一种是备择假设(alternative hypothesis)符
号为H1。
H0: 0
H1: 0
表3-2 样本均数所代表的未知总体均数 与已知总体均数的比较
双侧检验 单侧检验
第四节 假设检验的意义和基本步骤
假设检验(hypothesis test)亦称显著 性检验(significance test),是统计 推断的重要内容。它是指先对总体的参数 或分布作出某种假设,再用适当的统计方 法根据样本对总体提供的信息,推断此假 设应当拒绝或不拒绝。
例3.3 根据调查,已知健康成年男子脉搏的均数为72次/分 钟,某医生在一山区随机测量了25名健康成年男子脉搏数, 求得其均数为74.2次/分钟,标准差为6.5次/分钟,能否认为 该山区成年男子的脉搏数与一般健康成年男子的脉搏数不同?
总体均数估计和假设检验
THANKS
感谢观看
检验的步骤与逻辑
步骤
提出假设、选择合适的统计量、计算P值、根据P值做出决策。
逻辑
基于样本信息推断总体特征,利用统计量进行假设检验,并根据P值判断假设是否成立。
03
常见假设检验方法
t检验
t检验是一种常用的参数检验方法,用 于比较两组数据的均值是否存在显著 差异。
t检验基于假设和样本数据计算t统计 量,并根据临界值判断假设是否成立。 通常用于小样本数据或已知总体分布 的情况。
当实际无差异时,由于误差率较高或检验效能不足,错误地判断 出差异,导致得出阳性结论。
多重比较与校正
多重比较问题
在多个样本或组别的比较中,如果没有采取适当的校正措施,会导致假阳性结论增多。
校正方法
为控制多重比较导致的假阳性风险,可以采用Bonferroni校正、Holm-Bonferroni校 正等校正方法,对显著性水平进行调整。
卡方检验
卡方检验是一种非参数检验方法,用于比较实际观测频数 与期望频数之间的差异。
卡方检验基于卡方统计量,通过比较实际观测频数与期望 频数,评估分类变量之间是否存在显著关联。
04
假设检验中的问题与注意 事项
样本选择与偏差
样本选择偏差
在选择样本时,如果未能遵循随机抽 样的原则,或者存在选择偏见,会导 致样本不能代表总体,从而影响估计 的准确性。
Z检验
Z检验是用来检验比例或比率是否显 著不同于预期值。
Z检验基于正态分布理论,通过计算Z 统计量来评估样本比例或比率与预期 值之间的差异程度。
方差分析
方差分析(ANOVA)用于比较两个或多个组间的均值是否存 在显著差异。
方差分析通过比较组间和组内方差,评估各组均值是否存在 显著差异,适用于多组数据的比较。
医学统计学第3章
均数的抽样示意图
X1 S1
μσ
X2 S2 XI Si Xn Sn
σx
X服从什么分布?
例3-1 若某市1999年18岁男生身高服从均数 =167.7cm、标准差 =5.3cm的正态分布。从该正态分布N(167.7,5.32)总体中随机抽样 100次即共抽取样本g=100个,每次样本含量nj=10人,得到每个样 本均数 及标准差Sj 如图3-1和表3-1所示。
95%CL 175.72 173.44 174.31 170.90 171.04 170.83 173.11 171.90 172.52 172.00 169.40 171.56 171.53 172.94
171.21 170.33 169.03 167.63 168.66 168.84 169.31 168.46 168.60 168.47 165.68 165.68 168.03 169.37
171.00 170.10 170.47 175.98 169.97 171.91 173.37
样本号 61 62 63 64 65 66 67 68 69 70 71 72 73 74
x
j
Sj 6.30 4.34 7.38 4.58 3.33 2.78 5.31 4.81 5.48 5.05 5.19 8.22 4.89 5.00 166.70 167.23 163.75 164.36 166.27 166.85 165.51 165.02 164.88 164.86 161.97 159.80 164.53 165.79
抽样误差:样本统计量与参数之间的差异, 称抽样误差。 样本统计量是一个随机变量,在随机的原则 下从同一总体抽取不同的样本,即使每个样 本的样本含量n相同,它们的结果也会不同。
统计学--第三章总体均数的估计与假设检验
总体均数的估计 与假设检验
课件
1
统计推断的目的:
用样本的信息去推论总体。
医学研究中大多数是无限总体, 即使是有限总体,但也经常受各种条 件的限制,不可能直接获得总体的信 息。
课件本科生卫生学(5)
2
第一节 均数的抽样误差与标准误
• 抽样误差(sampling
error):因各样本 包含的个体不同,所得的各个样本统计量 (如均数)往往不相等,这种由于个体差 异和抽样造成的样本统计量与总体参数的 差异,称为抽样误差。
均数的95%可信区间为3.47~ 3.81(mmol / L) 95%参考值范围为1.29~ 5.99(mmol / L)
S 1.20 X u / 2 S X X 1.96 3.64 1.96 n 200 (3.47, 3.81)
X 1.96S 3.64 1.961.20 (1.29, 5.99) 32 课件本科生卫生学(5)
t分布的应用: 总体均数的区间估计 t检验
课件本科生卫生学(5) 18
第三节 总体均数的置信区间估计 confidence interval
可信区间的概念 总体均数可信区间的计算 均数可信区间与参考值范围的区别
课件本科生卫生学(5)
19
一、可信区间的概念
统计推断:参数估计与假设检验。 参数估计: parametric estimation,用样本统 计量估计总体参数的方法。 点(值)估计:point estimation,直接用样 本统计量作为总体参数的估计值。方法简 单但未考虑抽样误差大小。 区间估计:interval estimation,按预先给定 的概率95%,或(1-),确定的包含未知总 体参数的可能范围。考虑了抽样误差。
医学统计学--第三章 总体均数的估计与假设检验
32
本例 n=10,按公式(3-2)算得样本均数的标准误为
S1=101=9,双尾 =0.05,
查附表 2 的 t 界值表得 t0.05 2,9 2.262 。 按公式(3-5) (166.95 2.262 1.1511) 即(164.35, 169.55)cm 故该地 18 岁男生身高均数的 95%可信区间 为(164.35, 169.55)cm。
X
2 X
、
) ,则 通
过同样方式的 u 变换( X
2
)也 可 将 其 转 换 为
标 准 正 态 分 布 N (0 , 1 ), 即 u 分 布 。
17
3.实际工作中,由于 X 未知,用S X 代替,
则(X
) / SX
不再服从标准正态分布,而
服从t 分布。
t X SX X S n , n 1
2
第一节 均数的抽样误差与标准误
3
统计推断:由样本信息推断总体特征。
样本统计指标 (统计量)
总体统计指标 (参数)
2
正态(分布)总体:N 说明!
~ ( , )
推断 !
为说明抽样误差规律,先用一个实例,后 引出理论。
4
例 3-1 若某市 1999 年 18 岁男生身高服从均 数μ =167.7cm、标准差 =5.3cm 的正态分布。对 该总体进行随机抽样,每次抽 10 人, n =10) ( , 共抽得 100 个样本( g =100) ,计算得每个样本均 数 X 及标准差 S 如图 3-1 和表 3-1 所示。
1 2 3 4 5 6 7 8 9 10 21 22 23 24 25
单侧 双侧
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
即(-0.79,7.21) IU/ml
三、可信区间的确切涵义
观察表3-1:
当1=95%时,在算得的100个可信区间中,有95个
可信区间包含了总体均数,而另外5个(表3-1中第 20号、31号、54号、76号和82号)不包括。
三、可信区间的确切涵义
如果能够进行重复抽样试验,平均有1(如95%) 的可信区间包含了总体参数,而不是总体参数落在 该范围的可能性为1。
在双尾概率为的情况下:
/2
u / 2
/2
1
P u
2
X
X
u
2
u / 2
100(1 )%可 信 区 间 为 ( X
u
/ 2
X,X
u / 2
)
X
② 未知,但n足够大(如n>60)时,
在双尾概率为的情况下:
1
P u
2
X
S X
u
2
100(1 )%可 信 区 间 为 ( X
实际工作中,我们只根据一次抽样结果估计总体 均数的可信区间,可以认为这个区间有95%的可能 性包含了总体均数,即估计正确的概率为95%。
可信区间估计的评价:
一是可信度1,愈接近1愈好,如99%的可信度比95%的可
信度要好;
二是区间的宽度,区间愈窄愈好。当样本含量为定值时, 上述两者互相矛盾。
95%可信区间
公式 区间范围
X
窄
t0.05
/
2 ,
S
X
估计错误的概率 大(0.05)
99%可信区间
X
宽
t0.01/
2 ,
S
X
小(0.01)
在可信度确定的情况下,增加样本含量可减小区间宽度。
四、总体均数的可信区间与参考值范围的区别
区别
总体均数可信区间
参考值范围
按预先给定的概率,确定的未知参数 的可能 含 范围。实际上一次抽样算得的可信区间要么包含了 “正常人”的解剖,生理,生化某
可信区间有可信下限(lower limit, L)和可信上 限(upper limit, U),一般表示为(L,U)。
二、总体均数可信区间的计算
1.单一总体均数的可信区间
, ?
X,S
未知总体
样本
(1) 未知,按t分布计算。
/2
t / 2,
/2
1
P t
2,
X
S X
t
2,
t / 2,
X t 2, S X X t 2, S X
0.05, u0.05/ 2 1.96
(3.64 1.96 0.0849, 3.64 1.96 0.0849)
(3.47, 3.81)
在该地正常成人血清胆固醇均数的双侧95%的 可信区间为(3.47,3.81)mmol/L。
2.两总体均数之差的可信区间
从总体标准差相等,但总体均数不等的两个正态总体
令取双尾0.05, =n1+n2 -2=59
S X1 X 2
(29 1) 7.022 (32 1) 8.462 1 1
( ) 2.0023
29 32 2
29 32
t0.05/ 2,60 2.000
1 2 双侧可信区间为:
(20.10 16.89) 2.000 2.0023
u /2S X, X
u
/
2
S
)
X
例3-3 某地抽取正常成年人200名,测得其血清胆固醇
的均数为3.64mmol/L,标准差为1.20mmol/L,估 计该地正常成年人血清胆固醇均数的95%可信区间。
解:
未知。但n足够大,可以按u分布计算
n 200, X 3.64, S 1.20
SX
S 1.20 0.0849 n 200
直接估计总体参数 、
区间估计:按预先给定的概率(1-) 所确定的包含未知总体参数的一个范围 ,这个范围称为参数的可信区间( Confidence interval, CI)
可信度与可信区间
预先给定的概率1- 称为可信度或置信度 (confidence level),常取95%或99%。没有特别说明, 一般取双侧95%。
N (1, 2 )和 N (2 , 2 )进行随机抽样,求两总体均数之差
1 2可信区间。
1,
2 ,
X1, S1
1 2 ?
n1
X2, S2 n22.两总体均数 Nhomakorabea差的可信区间
( X 1 X 2 ) t / 2, S X1 X 2
其中自由度 (n1 1) (n2 1) n1 n2 2
第三章
总体均数的估计与假设检验(2)
1.抽样误差
2.标准误 / n X
SX
S n
3.抽样试验
X
j
~
N
(,
2 X
)
4. t分布 t X X ,
S X
Sn
n 1
5. t分布曲线下面积
t ,
t ,
/2
t / 2,
/2
t / 2,
第三节 总体均数的估计
参数的估计
点估计:由样本统计量 X 、 S
SX1X2 为两均数之差的标准误。
S X1 X 2
S
2 c
(
1 n1
1 n2
)
Sc2
(n1
1) S12
(n2
1)
S
2 2
n1 n2 2
其中 Sc2 称为合并方差
例3-4
为了解甲氨蝶呤(MTX)对外周血IL-2水平的影响,某 医生将61名哮喘患者随机分为两组。其中对照组29例(n1), 采用安慰剂;试验组32例(n2 ),采用小剂量甲氨蝶呤治疗。 测得对照组治疗前IL-2的均数为20.10IU/ml( X1 ),标准差 为7.02IU/ml( S1 );试验组治疗前IL-2的均数为 16.89IU/ml( X2 ),标准差为8.46IU/ml( S2 )。问两组治疗 前基线的IL-2总体均数相差有多大?
用途 总体均数的区间估计
正态分布: X u / 2S 偏态分布:PX~P100X 绝大多数(如 95%)观察对象某项指 标的分布范围
作业:
1.用自己的数据,计算年龄的总体均数的双侧95% 可信区间。 2.按性别分组,计算年龄总体均数之差的双侧95% 可信区间。 要求:按例题格式写出相应的公式及步骤。
100(1 )%可信区间为(X
t / 2, S X,X
t
/
2 ,
S
)
X
或写成X t / 2, S X
在单尾概率为的情况下:
1
P
X
S X
t ,
t ,
单侧1-可信区间(下限): X t , S X
1
P
X
S X
t ,
t ,
单侧1-可信区间(上限): X t , S X
例3-2
在例3-1中抽得第15号样本均数 X 166.95cm , 标准差 S 3.64cm ,求其总体均数的95%可信区间。
总体均数,要么不包含。但可以说:当=0.05 时, 项指标的波动范围。 义 95%CI 估计正确的概率为 0.95,估计错误的概率小
于或等于 0.05,即有 95%的可能性包含了总体均数。
总体均数的可能范围
个体值的波动范围
计算 未知: X t /2, SX 公式 已知或未知但 n>60:X u /2SX
n 1 9, 0.05 t0.05/ 2,9 2.262
SX
S 3.64 1.1511(cm) n 10
双侧95%可信区间:X t / 2, S X
(166.95 2.262 1.1511, 166.95 2.262 1.1511)
(164.35,169.55)cm。
(2) 已知或 未知但n足够大(如n>60)时,按u分布计算。 ①当 已知时