方差分析实例

合集下载

单因素方差分析完整实例

单因素方差分析完整实例

什么是单因素方差分析单因素方差分析是指对单因素试验结果进行分析,检验因素对试验结果有无显著性影响的方法。

单因素方差分析是两个样本平均数比较的引伸,它是用来检验多个平均数之间的差异,从而确定因素对试验结果有无显著性影响的一种统计方法。

单因素方差分析相关概念•因素:影响研究对象的某一指标、变量。

•水平:因素变化的各种状态或因素变化所分的等级或组别。

•单因素试验:考虑的因素只有一个的试验叫单因素试验。

单因素方差分析示例[1]例如,将抗生素注入人体会产生抗生素与血浆蛋白质结合的现象,以致减少了药效。

下表列出了5种常用的抗生素注入到牛的体内时,抗生素与血浆蛋白质结合的百分比。

现需要在显著性水平a = 0.0!下检验这些百分比的均值有无显著的差异。

设各总体服从正态在这里,试验的指标是抗生素与血浆蛋白质结合的百分比,抗生素为因素,不同的5种抗生素就是这个因素的五个不同的水平。

假定除抗生素这一因素外,其余的一切条件都相同。

这就是单因素试验。

试验的目的是要考察这些抗生素与血浆蛋白质结合的百分比的均值有无显著的差异。

即考察抗生素这一因素对这些百分比有无显著影响。

这就是一个典型的单因素试验的方差分析问题单因素方差分析的基本理论⑴备择假设Hi,然后寻找适当的检验统计量进行假设检验。

本节将借用上面的实例来讨论单因素试验的方差分析问题。

2厂…j $)下进行了nj = 4次独立试验,得到如上表所示的结果。

这些结果是一个随机变量。

表中的数据可以看成来自s个不同总体(每个水平对应一个总体)的样本值,将各个总体的均值依次记为山、》2、…r »则按题意需检验假设页:旳=“2 =…=川尸1 : \J “5不全相等为了便于讨论,现在引入总平均卩[Ho :屍="2 =…=毎=qI 闻:力屆…:吗不全为零因此,单因素方差分析的任务就是检验s个总体的均值®是否相等,也就等价于检验各水平Aj的效应6是否都等于零。

样本产恥…佔吁/来自正态总体N (虬2), 9与02未知,且设不同水平Aj 下的样本 之间相互独立,则单因素方差分析所需的检验统计量可以从总平方和的分解导出来。

7-2(方差分析)

7-2(方差分析)

基本操作 【Contrast钮】 钮 用于对比检验,对各个控制变量不同水平下 用于对比检验 对各个控制变量不同水平下 的均值是否与某个检验值存在差异进行比 较,检验值的指定有 检验值的指定有 Deviation:观测变量的均值 观测变量的均值 Simple:第一水平或最后一水平观测变量的 第一水平或最后一水平观测变量的 均值 Difference:前一水平观测变量的均值 前一水平观测变量的均值 Helmert:后一水平观测变量的均值 后一水平观测变量的均值
基本操作 【Plots】 】 因素变量交互作用图形分析 【Post Hoc】 】 多重比较检验 【Save钮】 钮 将模型拟合时产生的中间结果或参数 保存为新变量供继续分析时用, 保存为新变量供继续分析时用,可保 存的东西有预测值、残差、 存的东西有预测值、残差、异常值诊 断。
基本操作 【Options钮】 钮 选项 Estimated Marginal Means:估计边际均值 估计边际均值
S A× B S A× B = 交互作用 S A× B ( r − 1)( s − 1) ( r − 1)( s − 1)

差 SE 和 ST
rs( t − 1)
rst − 1
SE SE = rs( t − 1)

二、双因素无重复试验的方差分析
检验两个因素的交互效应,对两个因素的每一 检验两个因素的交互效应 对两个因素的每一 组合至少要做两次试验. 组合至少要做两次试验 如果已知不存在交互作用,或已知交互作用对 如果已知不存在交互作用 或已知交互作用对 试验的指标影响很小,则可以不考虑交互作用 则可以不考虑交互作用. 试验的指标影响很小 则可以不考虑交互作用 对两个因素的每一组合只做一次试验,也可以 对两个因素的每一组合只做一次试验 也可以 对各因素的效应进行分析——双因素无重复试验 双因素无重复试验 对各因素的效应进行分析 的方差分析. 的方差分析

医学统计学-8-方差分析

医学统计学-8-方差分析

第二节 单因素方差分析
单因素方差分析
单因素方差分析:研究的是一个处理因素的 不同水平间效应的差别。
处 理 因 素
水平1 水平2 水平1 水平2 水平c
单因素方差分析
例1、某地用A、B和C三种方案治疗血红蛋 白含量不满10g的婴幼儿贫血患者,A方案 为每公斤体重每天口服2.5%硫酸亚铁1ml, B方案为每公斤体重每天口服2.5%硫酸亚 铁0.5ml,C方案为每公斤体重每天口服3g 鸡肝粉,治疗一月后,记录下每名受试者血 红蛋白的上升克数,资料见下表,问三种治 疗方案对婴幼儿贫血的疗效是否相同?
A、B、C三种方案治疗婴幼儿贫血的疗效观察表
治疗方案 A n=20
血红蛋白增加量(g) 1.8 1.4 0.5 1.2 2.3 2.3 3.7 0.7 2.4 0.5 2.0 1.4 1.5 1.7 2.7 3.0 1.1 3.2 0.9 2.5
B
n=19
0.2
0.0 2.1 -0.7
0.5
1.6 1.9 1.3
q XA XB


MSe 1 1 2 nA nB
ν=νe
一、q检验
例、在前面对某地用A、B和C三种方案治疗 血红蛋白含量不满10g的婴幼儿贫血患者的 例题(完全随机设计方差分析例1)进行了 方差分析,我们得出三组总体不等的结论。 究竟哪些总体均数之间存在着差别,我们需 要在前方差分析基础之上,再对该资料作两 两比较的q检验。
随机因素是无法避免的,而实质性差异是我们 需要得到的。 如何排除随机因素的干扰,利用样本信息对总 体均数间是否存在差异作出推断?
方差分析的基本思想
按照设计类型将总变异分解为处理因素引 起的变异和随机因素造成的变异; 以处理因素变异与随机因素变异之比来构 造检验统计量F。

单因素方差分析完整实例

单因素方差分析完整实例

什么是单因素方差分析单因素方差分析是指对单因素试验结果进行分析,检验因素对试验结果有无显著性影响的方法。

单因素方差分析是两个样本平均数比较的引伸,它是用来检验多个平均数之间的差异,从而确定因素对试验结果有无显著性影响的一种统计方法。

单因素方差分析相关概念●因素:影响研究对象的某一指标、变量。

●水平:因素变化的各种状态或因素变化所分的等级或组别。

●单因素试验:考虑的因素只有一个的试验叫单因素试验。

单因素方差分析示例[1]例如,将抗生素注入人体会产生抗生素与血浆蛋白质结合的现象,以致减少了药效。

下表列出了5种常用的抗生素注入到牛的体内时,抗生素与血浆蛋白质结合的百分比。

现需要在显著性水平α = 0.05下检验这些百分比的均值有无显著的差异。

设各总体服从正态分布,且方差相同。

青霉素四环素链霉素红霉素氯霉素29. 627.35.821.629.224. 332.66.217.432.828. 530.811.18.325.32. 034.88.319.24.2在这里,试验的指标是抗生素与血浆蛋白质结合的百分比,抗生素为因素,不同的5种抗生素就是这个因素的五个不同的水平。

假定除抗生素这一因素外,其余的一切条件都相同。

这就是单因素试验。

试验的目的是要考察这些抗生素与血浆蛋白质结合的百分比的均值有无显著的差异。

即考察抗生素这一因素对这些百分比有无显著影响。

这就是一个典型的单因素试验的方差分析问题。

单因素方差分析的基本理论[1]与通常的统计推断问题一样,方差分析的任务也是先根据实际情况提出原假设H0与备择假设H1,然后寻找适当的检验统计量进行假设检验。

本节将借用上面的实例来讨论单因素试验的方差分析问题。

在上例中,因素A(即抗生素)有s(=5)个水平,在每一个水平下进行了n j = 4次独立试验,得到如上表所示的结果。

这些结果是一个随机变量。

表中的数据可以看成来自s个不同总体(每个水平对应一个总体)的样本值,将各个总体的均值依次记为,则按题意需检验假设不全相等为了便于讨论,现在引入总平均μ其中:再引入水平A j的效应δj显然有,δj表示水平A j下的总体平均值与总平均的差异。

析因设计的方差分析

析因设计的方差分析

SS SS SS 如AB的交互效应:AB=[(a1b1-a2b1)-(a1b2-a2b2)]/2=(0.
总 处 理 H0:染毒与不染毒的大鼠吞噬指数的总体均数相等 误 差
确定P值,作出推断结论
SS SS SS SS 01 ,提示染毒对吞噬指数有影响,可以降低大鼠吞噬指数。
其方法有很多种,析因设计就是其中的一种。
研究目的
当研究的因素不止一个时,这种研究设计就称为 多因素的实验设计 。其方法有很多种,析因设计 就是其中的一种。
研究目的:不仅分析单个因素不同水平效应之间 的差异,还要知道两个因素各水平间效应的相互 影响。
分析方法:采用多因素方差分析。
方差分析的根本思想
• 变异分解: --固定因子〔处理因素〕:A、B
定义3个列变量: 1个因变量〔y〕,2个处理因素分组变量 〔A,B〕,设置值标签。 主要分析过程
1〕Analyze ->General Linear Model ->Univariate ,弹出单变量对 话框:
--因变量名称:y --固定因子〔处理因素〕:A、B 2〕点击“模型〞按钮,弹出重复度量模型对话框。 --指定模型:本例选择全模型,即分析所有主效应及交 互效应〔系统默认〕。假设选择定制,可以自由选择进入 分析模型的主效应及交互效应。
假设i :表示因素A的水平〔i=1,2,…,a〕, 指两个或多个研究因素间的效应互不独立,当某一因素在各水平间变化时,另一个或多个因素各水平的效应也相应地发生改变。
建立检验假设,确定检验水准 〔2〕A因素主效应的P>0.
4〕 Post Hocj〔:比照表〕按示钮:因素B的水平〔j=1,2,…,b〕,
相等 H1:给药与不给药的大鼠吞噬指数的总体均数

EXCEL方差分析实例

EXCEL方差分析实例

EXCEL方差分析实例在Excel中进行方差分析可以使用数据分析工具包中的Anova: Single Factor分析工具。

下面我们使用一个实例来演示如何进行方差分析。

假设有一个实验,研究不同品牌汽车轮胎的寿命是否有差异。

我们随机选择了3个品牌的轮胎,每个品牌选择了10个样本。

寿命的数据如下所示:品牌1:500,510,505,495,485,490,500,495,505,500品牌2:490,485,480,495,500,495,505,500,510,495品牌3:505,500,495,490,485,500,500,495,500,505首先,将数据输入到Excel的工作表中。

在A列中输入"品牌1", "品牌2", "品牌3",在B列中分别输入对应品牌的寿命数据,共30个数据点。

然后,在Excel的菜单栏中选择"数据",点击"数据分析"按钮。

如果"数据分析"按钮没有显示,可以在Excel选项中打开数据分析工具包。

在"数据分析"对话框中选择"Anova:Single Factor",点击"确定"。

在"Anova: Single Factor"对话框中,将输入范围设置为包含我们的数据,即B1:B30。

选择"纵向位置"为第一列。

点击"确定"。

Excel将显示方差分析的结果。

在"Anova: Single Factor"结果窗口中,我们可以看到各个组的平均值、方差、观测次数等信息。

方差分析的结果也可以在工作表中显示。

在C1单元格中输入"组间平方和",在D1单元格中输入"组内平方和",在E1单元格中输入"总平方和",在F1单元格中输入"自由度组间",在G1单元格中输入"自由度组内",在H1单元格中输入"自由度总",在I1单元格中输入"组间均方",在J1单元格中输入"组内均方",在K1单元格中输入"F值",在L1单元格中输入"P值"。

高级统计学:第七章方差分析

高级统计学:第七章方差分析

第七章方差分析第一节方差分析的基本原理方差分析(Analysis of variance,简称ANOV A)是对多个总体均值是否相等这一假设进行检验的一种方法。

一、方差分析的内容1实例[例] 某饮料生产企业研制出一种新型饮料。

饮料的颜色共有四种,分别为橘黄色、粉色、绿色和无色透明。

这四种饮料的营养含量、味道、价格、包装等可能影响销售量的因素全部相同。

现从地理位置相似、经营规模相仿的五家超级市场上收集了前一期该种饮料的销售量情况,见表7—1。

新型饮料在五家超市的销售情况表解:从表7—1中看到20个数据各不相同,什么原因使其不同呢?2产生的原因①是销售地点的影响;②是饮料颜色的影响。

A 有可能是抽样的随机性造成的;B 有可能是由于人们对不同颜色有所偏爱。

可以将上述问题就归结为一个检验问题——检验饮料颜色对销售量是否有影响,即要检验各个水平的均值k μμμ,,21 是否相等。

二、方差分析的原理1基本概念因素:一个独立的变量就称为一个因素。

如,颜色水平:将因素中不同的现象称为水平。

(每一水平也称为一组) 单因素方差分析:方差分析只针对一个因素进行。

多因素方差分析:同时针对多个因素进行分析。

观察值之间的差异产生来自于两个方面:①是由因素中的不同水平造成系统性差异的; ②是由于抽选样本的随机性产生的差异。

方差分析数据结构表7-2在一元情形下假设:ik i2i1X ,,X ,X ,i=1,2…n j ,j=1,2,…k,为来自总体)N(2σ,μ的随机样本。

如果假设k H μμμ=== 210:也可表达为 j j αμμ+=其中j α是第j 个水平的偏差。

如果各水平下均值相等,则可以表述为: 0:210====k H ααα对于第j 个因素有ij j ij X εαμ++=其中()2,0~σεN ij 为独立同分布随机变量。

对于观察值则有)()(j ij j ij x x x x xx -+-+=将式两端减去x 然后平方,得))((2)()()(222j ij j j ij j ij x x x x x x x x x x --+-+-=-等式两边求和,有也即如上例可以建立如下的假设:43210:μμμμ===H ;43211,,,:μμμμH 不全相等。

SAS方差分析(理论+程序实例)

SAS方差分析(理论+程序实例)

SAS方差分析(理论+程序实例)第二十五课方差分析当影响观察结果的影响因素(原因变量或分组变量)的水平数大于2或原因变量的个数大于1个,一元时常用F 检验(也称一元方差分析),多元时用多元方差分析(最常用Wilks ’∧检验)。

一、方差分析概述方差分析(analysis of variance )又称变异数分析,可简记为ANOV A ,主要用于检验计量资料中的两个或两个以上均值间差别显著性的方法。

当欲比较几组均值时,理论上抽得的几个样本,都假定来自正态总体,且有一个相同的方差,仅仅均值可以不相同。

还需假定每一个观察值都由若干部分累加而成,也即总的效果可分成若干部分,而每一部分都有一个特定的含义,称之谓效应的可加性。

所谓的方差是离均差平方和除以自由度,在方差分析中常简称为均方MS (mean square )。

1. 方差分析的基本思想根据效应的可加性,将总的离均差平方和分解成若干部分,每一部分都与某一种效应相对应,总自由度也被分成相应的各个部分,各部分的离均差平方除以相应部分的自由度得出各部分的均方,然后列出方差分析表算出F 值,作出统计推断。

方差分析的关键是总离均差平方和的分解,分解越细致,各部分的含义就越明确,对各种效应的作用就越了解,统计推断就越准确。

方差分析表的一般形式见表25.1所示:表25.1 方差分析表形式变异来源source离差平方和 SS 自由度 df 均方 MS F 统计量 F P 概率值 P 效应S 1SS 1 df 1 MS 1= SS 1/df 1 F 1(df 1, df e )= MS 1/ MS e P 1 效应S 2SS 2 df 2 MS 2= SS 2/df 2 F 2(df 2, df e )= MS 2/ MS e P 2 ………… …… …… …… 效应S mSS m df m MS m = SS m /df m F m (df m , df e )= MS m / MS e P m 误差S eSS e df e MS e = SS e /df e 总变异S T SS T = SS 1+ SS 2+…+ SS m + SS e df T =df 1+ df 2+…+ df m + df e MS T = SS T /df T F T (df T , df e )= MS T / MS e P T表中变异来源一栏,可分为总变异(total ),误差(residual ),各个效应(effect )相对应的项。

单因素方差分析完整实例

单因素方差分析完整实例

单因素方差分析完整实例假设有一家医院的研究人员想要比较三种不同药物对高血压患者的降压效果。

为了进行实验,他们随机选择了60名患有高血压的病人,并将他们随机分成三组。

第一组患者接受药物A的治疗,第二组患者接受药物B的治疗,第三组患者接受药物C的治疗。

在治疗开始前,研究人员记录了每个患者的收缩压数据。

第一步是对数据进行描述性统计分析。

研究人员计算了每一组的平均值、标准差和样本量。

结果如下:药物A组:平均收缩压150,标准差10,样本量20药物B组:平均收缩压145,标准差12,样本量20药物C组:平均收缩压155,标准差15,样本量20第二步是进行假设检验。

研究人员的零假设是所有药物的降压效果相同,即三组的平均收缩压相等。

备择假设是至少有一组的平均收缩压不同。

为了进行单因素方差分析,我们需要计算组内方差和组间方差,然后进行F检验。

组内方差反映了每一组内部数据的离散程度,组间方差反映了不同组之间平均值的差异程度。

组内方差的计算方法是对每一组的方差进行平均,然后再对所有组的方差进行加权平均。

组间方差的计算方法是对所有组的平均值进行方差分析。

我们通过公式计算出组内方差为10.08,组间方差为58.67、接下来我们计算F值,F值是组间方差除以组内方差的比值。

F=组间方差/组内方差=58.67/10.08=5.81第三步是通过查找F分布表来计算p值。

根据自由度为2(组数-1)和df = 57(总样本量-组数)的F分布表,我们可以找到在F = 5.81条件下的p值。

假设我们选择显著性水平为0.05,我们发现在F分布表上,F=5.81对应的p值小于0.05、因此,我们拒绝零假设,接受备择假设。

这意味着至少有一组的平均收缩压与其他组有显著差异。

最后一步是进行事后检验。

由于我们有三组进行比较,我们可以使用事后检验方法来确定哪两组之间存在显著差异。

常用的事后检验方法包括Tukey HSD检验、Duncan检验等。

综上所述,单因素方差分析可以帮助我们判断不同组之间是否存在显著差异。

方差分析--实例

方差分析--实例

例6.1 测定东北、内蒙古、河北、安徽、贵州5个地区黄鼬冬季针毛的长度,每个地区随机抽取4个样本,测定的结果列于表6-1。

试比较各地区黄鼬针毛长度的差异显著性。

表6-1 不同地区黄鼬冬季针毛长度(单位:mm)
地区东北内蒙古河北安徽贵州合计
1 32.0 29.
2 25.5 23.
3 22.3
2 32.8 27.4 26.1 25.1 22.5
3 31.2 26.3 25.8 25.1 22.9
4 30.4 26.7 26.7 25.
5 23.7
∑x126.4 109.6 104.1 99.0 91.4 530.5
n 4 4 4 4 4 20
x31.60 27.40 26.03 24.75 22.85 26.53 ∑X23997.44 3007.98 2709.99 2453.16 2089.64 14258.21
例6.2 园艺研究所调查了3个品种草莓的维生素C含量(mg/100g),测定结果列于表6-2。

试分析不同品种之间维生素C含量是否有显著性差异。

表6-2 不同品种草莓维生素C含量(单位:mg/100g)
例6.3 研究三种不同日粮对猪日增重的影响,每种日粮饲喂5头猪,三种日粮分别用TR1、TR2、TR3表示。

相关数据如下表所示:
TR1 TR2 TR3
270 290 290
300 250 340
280 280 330
280 290 300
270 280 300 总和 1400 1390 1560 4350
n 5 5 5 15
y280 278 312 290。

方差分析

方差分析

方差分析方差分析是对多个总体均值是否相等这一假设进行检验。

下面通过一个例子说明方差分析的内容。

例:某化妆品生产公司研制出一种饮料。

饮料的颜色共有四种,分别为橘黄色、粉色、绿色和无色透明。

随机从五家专卖市场上收集了前一期该种饮料的销售量,如表9-1所示。

这是一个方差分析问题,即对四种不同颜色的饮料的销售量均值是否相等进行检验。

我们把四种不同颜色的饮料的销售量均值分别记为,由题意知,要检验假设;不全相等如果检验结果为不全相等,则表明饮料颜色对销售量产生影响。

反之,如果检验结果为不存在显著影响,则可以认为饮料颜色对销售量没有影响,他们来自于相同的总体。

方差分析的基本概念在方差分析中,常常用到一些术语。

我们把要考察的对象的某种特征称为指标。

试验条件分为可控制的和不可控制的两类,称可控制的试验条件为因素;因素所处的状态称为该因素的水平。

如果在一项试验中只有一个因素在变化,称他为单因素试验。

若试验中变化因素多于一个,称他为双因素以及多因素试验。

在上例中,饮料的销售量为指标,饮料的颜色为因素,饮料的四种颜色为该因素的四个水平,该例是一个单因素四水平试验。

上一章所讲的对两个总体均值的比较,实际上就是单因素两水平试验。

下面,我们简单阐述单因素方差分析的基本原理。

1.2单因素方差分析1.2.1 单因素方差分析的基本原理单因素方差分析是研究一个因素的变化对试验指标的影响是否显著的统计分析方法,是方差分析中最简单的情形。

设因素A有r个水平在水平下进行次独立试验,试验记录如表9-2其中表示第i水平进行第j次试验的可能结果。

假设,。

待检假设为:,不全相等。

如果成立,那么r个总体间无显著差异,即是说因素A对试验结果的影响不显著,所有可视为来自同一个总体,各间的差异只是由随机因素引起的。

若不成立,则在所有的总变差中,除随机波动引起的变差外,还应包括由于因素A的不同水平作用产生的差异。

如果不同水平作用产生的差异比随机因素引起的差异大得多,就认为因素A 对试验结果有显著影响,否则就认为因素A对试验的影响不显著。

单因素方差分析

单因素方差分析

2.
对前面的例子
H0: µ1 = µ2 = µ3 = µ4 • 颜色对销售量没有影响 H0: µ1 ,µ2 ,µ3, µ4不全相等 • 颜色对销售量有影响
方差分析的基本思想和原理
(两类方差) 两类方差)
1.
组内方差
因素的同一水平(同一个总体) 因素的同一水平(同一个总体)下样本数据的方差 比如,无色饮料A 比如,无色饮料A1在5家超市销售数量的方差 组内方差只包含随机误差
构造检验的统计量
(计算检验的统计量 F )
1. 将 MSA 和 MSE 进行对比,即得到所需要的检 MSA和 MSE进行对比 , 2.
验统计量F 验统计量F 当H0为真时,二者的比值服从分子自由度为 为真时, k-1、分母自由度为 n-k 的 F 分布,即 分布, MSA F= ~ F(k −1, n − k) MSE
k 2 k i=1 j =1 i=1 ni 2
前例的计算结果:SSA 前例的计算结果:SSA = 76.8455
构造检验的统计量
(三个平方和的关系) 三个平方和的关系 的关系)
总离差平方和(SST) 总离差平方和 (SST) 、 误差项离差平方和 (SSE)、水平项离差平方和 (SSA) 之间的关系 SSE) SSA)
对于因素的每一个水平, 对于因素的每一个水平,其观察值是来自服从正态分 布总体的简单随机样本 比如, 比如,每种颜色饮料的销售量必需服从正态分布
2.
各个总体的方差必须相同
对于各组观察数据, 对于各组观察数据,是从具有相同方差的总体中抽取 的 比如, 比如,四种颜色饮料的销售量的方差都相同
3.
观察值是独立的
误差的大小;SSA反映了随机误差和系统误差的大小 误差的大小;SSA反映了随机误差和系统误差的大小 2. 如果原假设成立,即H1= H2 =…= Hk为真,则表明 如果原假设成立, 为真, 没有系统误差,组间平方和SSA除以自由度后的均方 没有系统误差,组间平方和SSA除以自由度后的均方 与组内平方和SSE和除以自由度后的均方 与组内平方和SSE和除以自由度后的均方差异就不会 均方差异就不会 太大;如果组间均方 太大;如果 组间均方 显著地大于组内均方 , 说明各 组间均方显著地大于 组内均方 组内均方, 水平(总体)之间的差异不仅有随机误差, 水平(总体)之间的差异不仅有随机误差,还有系统误 差 3. 判断因素的水平是否对其观察值有影响 , 实际上就 判断因素的水平是否对其观察值有影响, 是比较组间方差 组内方差之间差异的大小 是比较组间方差与组内方差之间差异的大小 组间方差与 4. 为检验这种差异,需要构造一个用于检验的统计量 为检验这种差异,

方差分析实例

方差分析实例

方差分析实例
案例分析一:
方差分析实例
某化工厂化验室检验过程中要确定温度(记为因子A)对检验结果的影响。

现让同一个检验人员从同一批样品中随机抽取三个样品,用同一种测量方法、同一台仪器,在四个温度水平(记为A1、A2、A3、A4)下对三个样品主要成分进行测量,数据如下表,其中,含量的单位为%,温度单位为℃,测定结果的显著性水平α=0.05。

温度和含量的数据分析图含量(%)
从数据图可清晰得知,温度对样品中主要成分的含量的测量结果有着显著的影响,即温度越高,样品含量越大。

为了减少决策风险,对于
该结论还需进行方差分析。

(二)组间方差齐性检验
1、计算A1~A4的极差R1~R4,
2、平均极差R ,
3、根据α=0.05,m=3,查“均值-极差控制图系数表”得D3、D4,
4、计算上临界值:D4*R;下临界值:D3*R
5、验证R1~R4是否在上下临界值直间,即D3R﹤R1,R2,R3,R4﹤D4R,则证明每个水平内样品的测定数据方差是一致的。

(三)计算因子A在每一温度水平下不同样本测定数据的和Ti及总和Tn
(四)依次计算平方和Sr、S A、Se及自由度fr、f A、fe
(五)计算各均方及F比值并列出方差分析表
F=105.685
(六)根据F=105.685,对于给定的显著性水平α=0.05,查F 分布表F1-α(F A,Fe),可得1-α=0.95,F0.95(3,8)=4.07,F﹥F0.95(3,8),因此,温度对含量测定结果的影响是显著的。

方差分析实例

方差分析实例

总平方和: 组间平方和: 区组平方和:- 61314.86-361 2 =941 一厶N12隔八[空卜竺空“47_ 盘N12—疋N 3 12让4名学生前后做3份测验卷,得到如下表的分数,运用方差分析法可以推断分析的问题是:3份测验卷测试的效果是否有显著性差异?1、确定类型由于4名学生前后做3份试卷,是同一组被试前后参加三次考试,4位学生的考试成绩可看成是从同一总体中抽岀的4个区组,它们在三个测验上的得分是相关样本。

2、用方差分析方法对三个总体平均数差异进行综合性地F检验检验步骤如下:第一步,提出假设:适「至少有两个总体平均数不相等。

第二步,计算F检验统计量的值:因为是同一组被试前后参加三次考试,4位学生的考试成绩可看成是从同一总体中抽出的4个区组,它们在三个测验上的得分是相关样本,所以可将区组间的个别差异从组内差异中分离岀来,剩下的是实验误差,这样就可以选择公式(6.6 )组间方差与误差方差的F比值来检验三个测验卷的总体平均数差异的显著性。

①根据表6.4的数据计算各种平方和为:误差平方和: 朗° =鸥一鸥一備=9.41-5.47 - 3 48 = 0.46②计算自由度总自由度:4/;= ^1 = 12-1 = 11组间自由度:-. ---区组自由度:二■;-' - --误差自由度:,;「讥J 2 :③计算方差临=碍「化2加组间方差:3区组方差:dfr辱-■—- 0.08歧6误差方差:④计算F值2 74 “ “- -34.250.08第三步,统计决断根据—…宀一匸,a =0.01,查F值表,得到:H " 1 '',而实际计算的F检验统计量的/古斗F =34.25 > 甩#Yjni = 10.9 0n值为,即P(F >10.9)<0.01 ,样本统计量的值落在了拒绝域内,所以拒绝零假设-匕,接受备择假设,即三个测验中至少有两个总体平均数不相等。

商务统计学课件-无交互作用双因素方差分析实例应用

商务统计学课件-无交互作用双因素方差分析实例应用

0.0736 0.0018




无交互作用双因素方差分析应用
“数据” “数据分析” “方差分析:无重复双因 素方差分析”
无交互作用双因素方差分析应用
图 “方差分析:无重复双因素方差分析”工具分析结果
小结
1.无交互作用双因素方差分析实例 2.无交互作用双因素方差分析应用
思考练习
显著性水平为0.01时,分析这种产品的销售地区 与外观设计是否对订单的数量有高度显著的影响?
无交互作用双因素方差分析
1.无交互作用双因素方差分析实例 2.无交互作用双因素方差分析应用
无交互作用双因素方差分析实例
【例】企业订单的多少直接反映了企业生产的产品畅销程 度,因此企业订单数目的增减是企业经营者所关心的。一家企 业经营者为了研究产品的销售地区及外观设计对月订单数目的 影响,记录了一月中不同外观设计的一种产品在不同地区的订 单数据。以此为基础,该经营者想检验下这种产品的销售地区 与外观设计是否对订单的数量有所影响?(显著性水平为0.05)
因此,不能拒绝原假设,但能够拒绝原假设,认为销售地区对订单 的数量没有显著影响,外观设计对订单的数量有显著影响。
无交互作用双因素方差分析应用
解 P 值利用在Excel中录入:FDIST(2.865,5,10)、FDIST
(12.671,2,10)得到。
检验销售地区的 P 0.0736 0.05 检验外观设计的 P 0.0018 0.05
kr
SSA
( Xi X )2 67546.278
i1 j1
kr
SSB
( X j X )2 119504.78
i1 j1
SSE SST SSA SSB 234208.28 67546.278 119504.78 47157.222
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

让4名学生前后做3份测验卷,得到如下表的分数,运用方差分析法可以推断分析的问题就是:3份测验卷测试的效果就是否有显著性差异?
1、确定类型
由于4名学生前后做3份试卷,就是同一组被试前后参加三次考试,4位学生的考试成绩可瞧成就是从同一总体中抽出的4个区组,它们在三个测验上的得分就是相关样本。

2、用方差分析方法对三个总体平均数差异进行综合性地F检验
检验步骤如下:
第一步,提出假设:
第二步,计算F检验统计量的值:
因为就是同一组被试前后参加三次考试,4位学生的考试成绩可瞧成就是从同一总体中抽出的4个区组,它们在三个测验上的得分就是相关样本,所以可将区组间的个别差异从组内差异中分离出来,剩下的就是实验误差,这样就可以选择公式(6、6)组间方差与误差方差的F比值来检验三个测验卷的总体平均数差异的显著性。

①根据表6、4的数据计算各种平方与为:
总平方与:
组间平方与:
区组平方与:
误差平方与:
②计算自由度
总自由度 :
组间自由度 :
区组自由度 :
误差自由度 :
③计算方差
组间方差:
区组方差:
误差方差:
④计算F值
第三步,统计决断
根据,α=0、01,查F值表,得到,而实际计算的F检验统计量的值为
,即P(F >10、9)<0、01,
样本统计量的值落在了拒绝域内,所以拒绝零假设,接受备择假设,即三个测验中至少有两个总体平均数不相等。

3、用q检验法对逐对总体平均数差异进行检验
检验步骤如下:
第一步,提出假设:
第二步,因为就是多个相关样本,所以选择公式(6、8)计算q检验统计量的值:
在为真的条件下,将一次样本的有关数据及代入上式中,得到A与B两组的平均数之差的q值,即:
以此类推,就可得到每对样本平均数之间差异比较的q值,如下表所示:
第三步,统计决断
为了进行统计决断,在本例中,将A,B,C共3组学生英语单词测验成绩的等级排列为:
A与C之间与B与C之间包含有1,2两个组,a=2;A与B之间包含有1,2,3三个组,a=3。

根据,得到当a=2时,q检验的临界值为
;
当a=3时,q检验的临界值为;将表(6、5)中的q检验统计量的值与q临界值进行比较,得到表(6、6)中的3次测验成绩各对平均数之间的比较结果:
表6、6 3次测试各对样本平均数之差q值的比较结果
*表示在α=0、05显著性水平上有差异,**表示在α=0、01显著性水平上有差异)
从表中可以瞧出,三个测验中每两个之间的总体平均数都不相等。

因为就是同一组被试前后参加三次考试,所得到的样本就是相关样本,这些样本所属总体的方差基本相等,所以不需要对两个相关样本所属总体的方差进行齐性检验。

通过以上推断分析,我们可以知道:三份测验卷测试的效果有显著性差异,并且每两份测验卷测试的效果之间都有显著性差异。

相关文档
最新文档