聚合物的凝聚态结构
第2章《聚合物的凝聚态结构》习题
19、下列模型中,用来描述聚合物非晶态结构模型 的是:( D ) A、 缨状微束模型, B、折叠链模型, C、插线板模型, D、无规线团模型
20、某结晶性聚合物在偏光显微镜下呈现黑十字消 光图案,则其结晶形态是( C )。 A、 单晶, B、串晶, C、球晶, D、片晶 21、总体上,下列三类聚合物内聚能密度大小顺序 为:( A )>( C )>( B ) A、合成纤维;B、 合成橡胶;C、合成塑料
第三章
一、 概念
高分子聚集态结构习题
1. 内聚能密度 单位体积凝聚体汽化时所需要的能量。
CED E Vm
式中:Vm-摩尔体积,△E-内聚能。 2. 结晶度 实际晶态聚合物,是晶区和非晶区同时存在 的。结晶度即试样中结晶部分所占的质量分 数(质量结晶度xcm)或者体积分数(体积 结晶度xcv)。
8
16、在热塑性弹性体SBS的相态结构中,其相分离结 构为( B )。 A、 PS-连续相,PB-分散相; B、PB-连续相,PS-分散相; C、 PS和PB均为连续相;D、PS和PB均为分散相 17、下列说法,表述错误的是( B )。 A、HIPS树脂具有“海岛结构”。 B、SBS具有两相结构,PS相起化学交联作用。 C、HIPS基体是塑料,分散相是橡胶。 D、SBS具有两相结构,橡胶相为连续相。 18、下列聚合物内聚能密度最大的是( D )。 A、1,4-聚丁二烯, B、 聚苯乙烯, C、聚氯乙烯, D、聚丙烯腈 9
1
3. 液晶 是具有晶体的光学各向异性, 又具有液体的流 动性质的有序流体的总称。 4. 取向态结构 大分子链、链段或微晶在某些外场(如拉伸应 力或剪切应力)作用下,可以沿着外场方向有序 排列,这种有序的平行排列称为取向,所形成 的聚集态结构,称为取向态结构。 5. 高分子合金 指二种或多种聚合物组分通过物理或化学方法 形成的混合物,有时也称为多组分聚合物。
聚合物结构的三个层次
1.1 聚合物结构的三个层次近程结构——系指单个大分子链内部一个或几个结构单元的化学结构和立体化学结决定聚合物性能的根本性物质基础,亦是决定远程结构和凝聚态结构的重要因素。
远程结构——系指由数目众多的结构单元组成的单个大分子链的长短及其在空间存在的各种形态(是直链还是有支链?是刚性的还是柔性的?是折叠状,还是螺旋状的?)。
凝聚态结构——系指聚合物在宏观上所表现出的分子凝聚结构类型。
包括非晶态、结晶态、 取向态、液晶态、织态结构,前四个描述是聚合物的堆砌方式,织态为不同聚合物分子链或与添加剂间的结合和堆砌方式,以结晶态和非晶态最常见。
分子链结构是决定聚合物性质最基本、最重要的结构层次。
熔点、密度、溶解性、溶液或熔体的粘度、粘附性能很大程度上取决于分子结构;而凝聚态结构是决定聚合物材料和制品的使用性能,尤其是力学性能的重要因素。
关于化学结构与物理结构的确切划分,普遍认同的是 H.G.Elias 提出的界定原则:化学结构:除非通过化学键的断裂,即同时生成新的化学键才能够产生改变的分子结构。
聚合物结构中所包括的结构单元的组成及其空间构型属于化学结构。
物理结构:将大分子内部、之间或者基团与大分子之间的形态学表述。
取向、结晶和分子链的构象则属于物理结构 1.2 大分子链的近程结构大分子链的近程结构包括结构单元的化学组成,连接方式、结构异构、立体异构、以及共聚物的序列结构等五个主要方面。
1.2.1 结构单元的化学组成结论1:聚合物的近程结构,即结构单元的化学组成和结构是决定其远程结构和凝聚态结构以及聚合物性能最重要的决定性因素。
尼龙-66、PET 、PBT ~缩聚物, PP 、PS 、PMMA 、PB ~加聚物 归纳表中三条主要规律:1)杂链聚合物(多为缩合聚合物)与碳链聚合物(多为加成聚合物)相比较,前者的各项物理性能均优于后者; 2)在碳链聚合物中,侧基带有极性基团的PVC 和带有苯基的PS 的相对密度和熔点均高于非极性和低位阻侧基的PE 和PP ; 3)缩聚物尼龙和涤纶等的相对密度、熔点、强度和使用温度均普遍高于一般加聚物。
聚合物的凝聚态结构
聚合物的非晶态结构模型
• 非晶态聚合物可以有玻璃态,高弹态和黏 流态三种力学状态。 • 共同的结构特征:分子排列远程无序,近 程有序。 • 玻璃态的非晶态聚合物属于过冷液体。 • 一种观点认为非晶态聚合物的结构是完全 无序的。 • 一种观点认为非晶态聚合物的结构是局部 有序的。
非晶态聚合物的分子运动和热转变 Nhomakorabea影响玻璃化温度的因素
• • • • • 分子链的柔性 分子链间的相互作用 相对分子质量 交联 其他如增塑,共聚,升温和降温速率等
聚合物熔体的粘性流动
• 粘性液体的流动分为牛顿流动和非牛顿流 动
影响聚合物黏流温度的因素
• 在黏流温度以上,在外力作用下,聚合物 不仅链段能够运动,而且整个分子链也能 发生相对移动,在宏观上聚合物表现为发 生粘性流动,产生不可逆的流动形变。 • 高分子链的柔性 • 高分子的极性 • 相对分子质量 • 外力大小和外力作用时间
结晶速度和测定方法
• 结晶速度常用的方法有:膨胀计法,解偏 振光强度法,DSC法,X射线衍射法,小角 激光光散射,热台偏光显微镜等。 • 膨胀计法:是一种测量物质的体积随时间 变化的方法。它是测量聚合物结晶速度的 经典方法。但目前使用很少了。 • 用膨胀计法跟踪聚合物试样的体积随时间 的减小值,可得聚合物的结晶速度。
液晶分子形成的条件
三种液晶的结构类型
高分子液晶的类型
高分子液晶的应用
液晶态聚合物
差示扫描量热法( 差示扫描量热法(DSC):根据晶体聚合物在 ) 熔融过程中吸收的热量来测定其结晶度,是目 前测定聚合物结晶度最常用的手段。
X射线衍射法 射线衍射法:原理是结晶部分 射线衍射法 和非结晶部分的X射线衍射强度 来确定结晶度
聚合物的结晶过程
聚合物的凝聚态结构
Z为单位晶胞中单体(即链构造单元)旳数目;
单位晶胞中所含链数
V为晶胞体积; NA为阿佛加德罗常数
PE:以z=2代入上式可得 ρc =1.00g/ml, 而实测旳聚乙烯密度, ρ= 0.92~0.96g/cm3。
2.2.2聚合物旳结晶形态
•结晶形态:由微观构造堆砌而成旳晶体外形,尺寸可达几十 微米旳。 •单晶:即结晶体内部旳微观粒子在三维空间呈有规律地、周 期性地排列。 特点:一定外形、长程有序。 •多晶:是由无数微小旳单晶体无规则地汇集而成旳晶体构造。
(2)球晶 Spherulite
• 球晶是聚合结晶旳一种常见旳特征形式; • 形成条件:从浓溶液析出,或从熔体冷结晶时,在不
存在应力或流动旳情况下形成。 • 特征:外形呈圆球形,直径0.5~100微米数量级。 • 在正交偏光显微镜下可呈现特有旳黑十字消光图像和
消光同心环现象。 • 黑十字消光图像是聚合物球晶旳双折射性质是对称性
2.2.4 结晶度旳测定
结晶聚合物旳物理和机械性能、电性能、光性能在相当旳程 度上受结晶程度旳影响。
实际晶态聚合物,是晶区和非晶区同步存在旳。
高分子结晶度旳概念缺乏明确旳物理意义,其数值随测定措 施不同而不同。
Buoyancy method 密度法
密度结晶度
X-ray diffraction X射线衍射法
(Vc Va ) cVc aVa
X
v c
Vc V
a c a
X
w c
Wc W
W cWc aWa W Wc Wa
(Wc Wa ) cWc aWa
X
w c
Wc W
c( a ) (c a )
(2) X射线衍射法 Wide-angle X-ray diffraction (WAXD)
聚合物的凝聚态结构
第2章聚合物的凝聚态结构凝聚态指物质的物理状态,通常包括固态、液态和气态。
(0注意与相态的区别。
)高分子的凝聚态是指高分子链之间的几何排列和堆砌状态。
对于柔性聚合物:包括晶态、非晶态。
刚性聚合物:包括晶态、液晶态、非晶态。
分子间作用力强弱的表征:内聚能密度。
内聚能:克服分子间作用力,1mol 的凝聚体汽化时所需的能量。
E=△HV-RT式中:△HV:摩尔蒸发热, RT:汽化时所做的膨胀功。
内聚能密度(cohesive energy density ,CED):单位体积凝聚体汽化时所需要的能量。
式中:Vm-摩尔体积。
聚合物的 CED 的测定:(1)最大溶胀比法;(2)最大特性粘度法。
一般 CED 300J/cm3 以下,橡胶;300-400 J/cm3,塑料;400 J/cm3 以上,纤维、工程塑料。
2.1晶态结构空间点阵、晶胞和晶系:在结晶学中,把组成晶体的质点抽象成为几何点,由这些等同点集合而成的点阵,称为空间点阵,或将这些集合所形成的格子叫做空间格子。
在空间格子中,可找出一个具有周期性排列的,大小与形状相等的,体积最小的平行六面体,这个最小单位格子用以表示晶体结构的基本单元,称为晶胞。
描述晶胞结构的六个参数:a,b,c,α,β,γ (平行六面体的三边的长度及它们之间的夹角)。
晶体七种类型:立方,四方,斜方(正交),单斜,三斜,六方,三方(菱形)。
图2-1晶面指数晶面的标记——密勒(Miller)指数或晶面指数。
一晶面与晶轴a,b,c分别相交于M1,M2,M3三点,相应的截距为OM1=3a,OM2=2b,OM3=1c,全为单位向量的整数倍。
如取三个截距的倒数1/3,1/2,1/1,通分后则得2/6,3/6,6/6,弃去共分母,取2,3,6作为M1,M2,M3晶面的指标,则(2,3,6)即为该晶面的密勒指数。
晶体:物质的重复单元在空间呈三维有序的周期性排列。
重复单元:原子、分子、离子、链节。
2.1.2聚合物的晶体结构几种典型的聚合物晶体结构:(一)平面锯齿形结构1、聚乙烯聚乙烯分子链具有锯齿形的反式构象。
高分子物理 第2章 聚合物的凝聚态结构资料
原因
聚合物没有气态的原因:
1)聚合物分子量很大,分子链很长; 2)聚合物中总范德华力超过化学键的键能; 3)消除所有的范德华力作用以前化学键断列而分解。
范德华力与化学键的区别 ?
化学键: 是构成分子的原子键的作用力吸引力和排斥 力达到平衡时形成的稳定的键。
共价键,离子键,金属键
范德华力: 是存在于分子间或者分子内非键合原子 间的相互作用力。
PE球晶的微光显微镜照片
PE球晶的电子显微镜照片
研究球晶的结构、形成条件、影响因素和变形 破坏,有着十分重要的实际意义:
◆ 球晶的大小直接影响聚合物的力学性能,球晶越大,材 料的冲击强度越小,越容易破裂。
◆ 球晶的大小对聚合物的透明性也有很大影响,通常非晶 聚合物是透明的,而结晶聚合物由于存在晶相和非晶 相,两相折射率不同,使得物质呈现乳白色而不透明。
★ CED=300 — 400J/cm3聚合物,为塑料。
192 4
例1 : 根据高聚物的分子结构和分子间作用能,定性地讨 论表中所列各高聚物的性能。
高聚物 聚乙烯 聚异丁烯 天然橡胶 聚丁二烯 丁苯橡胶 聚苯乙烯
内聚能密度 高聚物
259
聚甲基丙烯酸甲酯
272
聚醋酸乙烯酯
280
聚氯乙烯276源自聚对苯二甲酸乙二酯由晶体结构(十分之几纳米)堆砌而成的晶体外形, 尺寸一般可达到几十微米,有时可以达到几厘米。
聚合物的结晶形态有几种
按结晶条件不同可以分为以下几种类型:
结晶形态
单晶 树枝状晶
柱晶
球晶 纤维状晶和串晶
伸直链晶
第二节 结晶聚合物
3、聚合物的结晶形态 1)单晶 单晶的结构特点: ◆ 只能在极稀的溶液中(0.01~0.1%)缓慢结晶时生成的; ◆ 聚合物单晶的横向尺寸可以从几微米到几十微米,
高分子物理名词解释1
一、概念与名词第一章高分子链的结构高聚物的结构指组成高分子的不同尺度的结构单元在空间相对排列,包括高分子的链结构和聚集态结构。
高分子链结构表明一个高分子链中原子或基团的几何排列情况。
聚集态结构指高分子整体的内部结构,包括晶态结构、非晶态结构、取向态结构、液晶态结构和织态结构。
近程结构指单个大分子内一个或几个结构单元的化学结构和立体化学结构。
远程结构指单个高分子的大小和在空间所存在的各种形状称为远程结构化学结构除非通过化学键的断裂和生成新的化学键才能改变的分子结构为化学结构。
物理结构而一个分子或其基团对另一个分子的相互作用构型分子中各原子在空间的相对位置和排列叫做构型,这种化学结构不经过键的破坏或生成是不能改变的。
旋光异构结构单元-CH2--C*HR-型的高分子,由于每一个结构单元含有一个C*,因此,它们在高分子链中有三中键接方式,即全同、间同、无规立构,此即为旋光异构。
全同立构结构单元-CH2--C*HR-型的高分子,由于每一个结构单元含有一个C*,因此,它们在高分子链中有三种键接方式,若高分子链中C*的异构体是相同的,此即为全同立构。
间同立构结构单元-CH2--C*HR-型的高分子,由于每一个结构单元含有一个C*,因此,它们在高分子链中有三种键接方式,若高分子链中C*的两种异构体是交替出现的,此即为间同立构。
无规立构结构单元-CH2--C*HR-型的高分子,由于每一个结构单元含有一个C*,因此,它们在高分子链中有三种键接方式,若高分子链中C*的两种异构体是无规则出现的,此即为无规立构。
有规立构全同和间同立构高分子统称为有规立构。
等规度全同立构高分子或全同立构高分子和间同立构高分子在高聚物中的百分含量。
几何异构当主链上存在双键时,而组成双键的两个碳原子同时被两个不同的原子或基团取代时,即可形成顺反异构,此即为几何异构。
顺反异构当主链上存在双键时,而组成双键的两个碳原子同时被两个不同的原子或基团取代时,即可形成顺反异构,此即为几何异构。
第2章 聚合物的凝聚态结构
次价力的影响
CED<70 cal/cm3 (290J/cm3 ) 分子链间相互作用小 分子链柔软、宏观为橡胶材料 分子链柔软、 CED>100 cal/cm3 (400J/cm3 ) 分子链间相互作用大 分子链刚硬、 分子链刚硬、宏观为纤维材料 CED 介于之间、宏观为塑料 介于之间、
线型高聚物的内聚能密度
等规聚丙烯的的结晶结构
---分子链呈螺旋状结构 ---分子链呈螺旋状结构
等规聚丙烯的等同周期为0 65nm 且每个等同周期中含有3 nm, 等规聚丙烯的等同周期为 0 . 65 nm, 且每个等同周期中含有 3 个单 体单元。 体单元。 665nm nm, 096nm nm, 90° 99. a=0.665nm,b=2.096nm,α=γ=90°,β=99.2°, 单 位 晶 胞属于单斜晶系。 胞属于单斜晶系。 由图2 12可知,单位晶胞中单体数目为12 据此, 12可知 12。 由图2—12可知,单位晶胞中单体数目为12。据此,可以计算出等 规聚丙烯的密度ρc ρc。 规聚丙烯的密度ρc
X射线衍射实验证明,在很多结晶聚合物中高分子链确 射线衍射实验证明, 实堆砌成具有三维远程有序的点阵结构,即晶格。 实堆砌成具有三维远程有序的点阵结构,即晶格。 结晶聚合物的晶体结构、结晶程度、 结晶聚合物的晶体结构 、 结晶程度 、 结晶形态等对其 力学性能、电学性能、光学性质都有很大影响, 力学性能 、 电学性能 、 光学性质都有很大影响 , 研究 晶态结构具有重要理论和实际意义。 晶态结构具有重要理论和实际意义。 晶胞的类型一共有7 其中,立方、六方为高级晶系, 晶胞的类型一共有7种,其中,立方、六方为高级晶系, 正方(四方) 斜方为中级晶系,三斜、 正方 ( 四方) 、 斜方为中级晶系 , 三斜 、 单斜为初级晶 系。 在高分子晶系中, 在高分子晶系中 , 由于长链造成各向异性而不出现立 方晶系,而且,属于高级晶系的也很少, 方晶系 , 而且 , 属于高级晶系的也很少 , 多数属于初 中级晶系。 级、中级晶系。
高分子物理讲义-第二章 聚合物的凝聚态结构 分子运动和热转变-1
高分子合金的相容性
热力学相容性——分子水平的单相体系
△G= △H-T △S
△G<0,相容。一般以△H <0确定。 PVC/NBR
大多数△H >0,不互容。
已实现工业化的均相高分子合金:
PVC/NBR(nitrile butadiene rubber )、PS/PPO(Modified Polyphenylene Oxide, MPPO)
结
构
18
2.3 液晶态结构
液晶(Liquid crystal,LC)一些物质的结晶结构受热熔融 或被溶剂溶解后,表观上失去了固体物质的刚性,具有流动 性,结构上仍保持有序结构,表现各向异性,成为固体-液 体过渡状态。 一、液晶的化学结构 R-ph-X-ph-R X = -CH=N-,-N=N-,-N=(O)-,-COOR = -COOR,-CN,-NO2,-NH2,-NHCONH2 液晶 条件 棒状分子——分子的长径比(长宽比,轴比)>4 盘状分子——分子的轴比<1/4
制备方法
PC/PET
36
互穿聚合物网络
由两种或多种互相贯穿的交联聚合物组成的共混物, 至少 一种组分是在另一种组分存在下聚合或交联的。
(1)完全互穿聚合物网络(interpenetrating polymer network,IPN),两种聚合物均为交联网络;
(2)半互穿聚合物网络(semi-IPN),一种聚合物 是交联网络,另一种聚合物是线型的; (3)乳液IPN,由两种线型弹性乳胶混合凝聚交联制 成;
例如聚乳酸 (PLA):
单轴取向
双轴取向
PLA 2002D
PLA 4032D
30
取向度
取向函数:
f=1/2(3cos2θ-1)(θ:取向角)
大学本科高分子物理第二章《聚合物的凝聚态结构》课件
===90
Three perpendicular two-fold rotation axis
Monoclinic
a bc ==90; 90One two-fold rotation axis
Triclinic
a bc 90
None
a,b,c – unit vectorial distances
第二章 聚合物的凝聚态结构
本章课时 6
1
固体
凝聚态为物质的物理状态
液体
气体
晶态 液态
相态为物质的热力学状态
气态
高分子凝聚态是指高分子链 之间的几何排列和堆砌状态
液体 固体 液晶态
取向结构
晶态 非晶态
织态结构
2
高分子的 凝聚态结构
决 聚合物的基本 决 定 性能特点 定
材料的 性能
控制成型 加工条件
=bc;= ac;= ab
20
Structure of PE、PP crystal cell
左图:PE的晶体结构 上图:PP的晶体结构
21
晶胞密度求解
c
MZ N AV
M是结构单元分子量;
Z为单位晶胞中单体(即链结构单元)的数目;
V为晶胞体积;
NA为阿佛加德罗常数
22
2.2.2聚合物的结晶形态(晶体的外形)
24
Maltese Cross in Isotactic Polystyrene
偏光显微镜照片
25
Maltese Cross的形成原因
26
Maltese Cross
27
电镜观察的球晶结构
Spherulite model and the Microscopy of PE spherulite 球晶模型及PE球晶的电镜照片
聚合物的凝聚态结构
2024届高三一轮复习联考(四)数学试题注意事项:1.答卷前,考生务必将自己的姓名、考场号、座位号、准考证号填写在答题卡上2.回答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
考试时间为120分钟,满分150分一、选择题:本题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合{}{}{}1,2,3,4,5,2,3,2,UA B x x k k ====∈Z ,则U B A = ( )A .{}4B .{}2,4C .{}1,2D .{}1,3,5 2.已知复数z 满足()()2i 1i 2z −−=,则z =( )A B C .3 D .23.已知12311cos ,3,log 22a b c ===,则( )A .c a b >>B .b c a >>C .b a c >>D .a b c >>4.“a ≤或a ≥”是“圆221:1C x y +=与圆222:()(2)36C x a y a ++−=存在公切线”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件 5.已知13tan sin2αα=,则cos2α=( ) A .13−B .13C .23−D .236.如图,111ABC A B C −是一个正三棱台,而且下底面边长为4,上底面边长和侧棱长都为2,则异面直线1AC 与1BB 夹角的余弦值为( )ABC7.已知函数()()22log 121xf x x =+++,则不等式()14f x +<的解集为( )A .()2,0−B .(),2−∞−C .()0,+∞D .()(),20,−∞−∪+∞ 8.已知函数()()21e xf x m x x x =−−+在1,22x∈上有两个极值点,则实数m 的取值范围为( ) A .230,2eB .231,2e eC .1,e +∞D .2310,,2e e+∞ 二、选择题:本题共4小题,每小题5分,共20分。
第二章 聚合物的凝聚态结构
第二章聚合物的凝聚态结构2.1 物质的凝聚态和相态2. 2 聚合物的凝聚态和相态2. 3 聚合物的晶态结构2. 4 聚合物的非晶态结构2.1 物质的凝聚态和相态凝聚态乃是物质在确定条件下所表现出的物理状态、由分子热运动程度和力学形态所区分的存在状态(宏观状态)。
相态乃是物质在确定条件下所处的热力学状态(微观状态)。
凝聚态与相态不能完全一一对应,也不能截然划分。
如玻璃态或液晶态聚合物,按凝聚态划分属于固态,但是按相态判断却又分别属于固相和液相。
换言之,玻璃态聚合物是处于固态的液相物质(或被凝固的液体),而液晶则是处于液态的晶相物质。
2. 2 聚合物的凝聚态和相态聚合物的凝聚态通常只包括固态和液态两种类型,而不存在气态聚合物。
处于同一种凝聚态的的聚合物在不同条件下有时却又表现出不同的宏观形态和性质,这种现象在聚合物中是十分普遍的。
例如:透明的聚乙烯经过注塑成型以后成为不透明的蜡状制品;迅速冷却并经过双轴向拉伸以后的涤纶薄膜是韧性极好的透明薄膜;慢慢冷却而未经拉伸的涤纶切片又表现出一定的脆性。
聚合物处于固态或液态时,其内部分子链也可能表现出一定程度的有序排列,所以聚合物也有晶态和非晶态之分。
不过,由于聚合物分子链的长度往往超过一般晶格的尺寸,出现晶格缺陷和分子链在晶格之间的贯穿是结晶态聚合物的重要特征之一。
聚合物的凝聚态和相态的决定因素首先是聚合物的特殊分子连结构及其相互作用。
其次是外界条件。
外界条件总是通过对不同结构的分子链产生不同的作用,从而影响聚合物的凝聚态结构和相态结构。
一般认为,聚合物的凝聚态结构通常包括非晶态、晶态、取向态、液晶态和织态等五种类型。
2.3 聚合物的晶态结构大量实验证明,如果高分子链本身具有必要的规整结构,同时给予适宜的条件(温度等),就会发生结晶,形成晶体。
高分子链可以从熔体结晶,从玻璃体结晶,也可以从溶液结晶。
结晶聚合物的晶体结构、结晶程度、结晶形态等对其力学性能、电学性能、光学性质都有很大影响,研究结晶聚合物的晶态结构具有重要的理论和实际意义。
第三版高分子物理课后习题答案详解
第三版⾼分⼦物理课后习题答案详解第1章⾼分⼦的链结构1.写出聚氯丁⼆烯的各种可能构型,举例说明⾼分⼦的构造。
等。
举例说明⾼分⼦链的构造:线形:聚⼄烯,聚α-烯烃环形聚合物:环形聚苯⼄烯,聚芳醚类环形低聚物梯形聚合物:聚丙烯腈纤维受热,发⽣环化形成梯形结构⽀化⾼分⼦:低密度聚⼄烯交联⾼分⼦:酚醛、环氧、不饱和聚酯,硫化橡胶,交联聚⼄烯。
2.构象与构型有何区别?聚丙烯分⼦链中碳—碳单键是可以旋转的,通过单键的内旋转是否可以使全同⽴构聚丙烯变为间同⽴构聚丙烯?为什么?答:(1)区别:构象是由于单键的内旋转⽽产⽣的分⼦中原⼦在空间位置上的变化,⽽构型则是分⼦中由化学键所固定的原⼦在空间的排列;构象的改变不需打破化学键,⽽构型的改变必须断裂化学键。
(2)不能,碳-碳单键的旋转只能改变构象,却没有断裂化学键,所以不能改变构型,⽽全同⽴构聚丙烯与间同⽴构聚丙烯是不同的构型。
3.为什么等规⽴构聚丙⼄烯分⼦链在晶体中呈螺旋构象,⽽间规⽴构聚氯⼄烯分⼦链在晶体中呈平⾯锯齿构象?答(1)由于等归⽴构聚苯⼄烯的两个苯环距离⽐其范德华半径总和⼩,产⽣排斥作⽤,使平⾯锯齿形(…ttt…)构象极不稳定,必须通过C-C键的旋转,形成31螺旋构象,才能满⾜晶体分⼦链构象能最低原则。
(2)由于间规聚氯⼄烯的氯取代基分得较开,相互间距离⽐范德华半径⼤,所以平⾯锯齿形构象是能量最低的构象。
4.哪些参数可以表征⾼分⼦链的柔顺性?如何表征?答:(1)空间位阻参数(或称刚性因⼦),值愈⼤,柔顺性愈差;(2)特征⽐Cn,Cn值越⼩,链的柔顺性越好;(3)连段长度b,b值愈⼩,链愈柔顺。
5.聚⼄烯分⼦链上没有侧基,内旋转位能不⼤,柔顺性好。
该聚合物为什么室温下为塑料⽽不是橡胶?答:这是由于聚⼄烯分⼦对称性好,容易结晶,从⽽失去弹性,因⽽在室温下为塑料⽽不是橡胶。
6.从结构出发,简述下列各组聚合物的性能差异:(1)聚丙烯睛与碳纤维;(2)⽆规⽴构聚丙烯与等规⽴构聚丙烯;(3)顺式聚1,4-异戊⼆烯(天然橡胶)与反式聚1,4-异戊⼆烯(杜仲橡胶)。
02 聚合物凝聚态结构复习题
《聚合物凝聚态结构》复习题
1、让聚乙烯在下列条件下结晶,各生成什么样的晶体?其结构有何特点?
(1)从极稀溶液中缓慢结晶; (2)从熔体中结晶;
(3)极高压力下固体挤出; (4)在溶液中强烈搅拌下结晶。
2、某注射成型制品截面内核芯区和皮层的结构示意图如下图所示,它们的广角x 射线衍射图的主要差别是什么?
3、由什么事实可证明结晶高聚物中有非晶态结构?
4、试用两种方法证明PS 本体符合Flory 无规线团模型。
5、由文献查得涤纶树脂的密度ρc =1.50×103 kg.m -3,和ρa =1.335×103 kg.m -3,内聚能ΔΕ=66.67 kJ.mol -1(单元).今有一块1.42×2.96×0.51×10-6 m 3的涤纶试样,重量为2.92×10-3 kg ,试由以上数据计算:(1)涤纶树脂试样的密度和结晶度;(2)涤纶树脂的内聚能密度.
6、、证明1w a c X A ρρ⎛⎫=- ⎪⎝⎭
,其中A 取决于聚合物的种类,但与结晶度无关。
如果某种聚合物的两个样品的密度为1 346和1 392 kg.m -3,通过X 光衍射测得w c X 为10%和50%,计算a ρ和c ρ,以及密度为1 357kg.m -3的第三个样品的质量结晶度。
7、何谓高聚物的取向?为什么有的材料(如纤维)进行单轴取向,有的材料(如薄膜),则需要双轴取向?说明理由。
8、解释下列实验:将一个砝码系于聚乙烯醇纤维的一端,把砝码和部分纤维浸入盛有沸水的烧杯中.如果砝码悬浮在水中,则体系是稳定的;如果砝码挨着烧杯底部,则纤维被溶解了.。
聚合物的凝聚态结构
202X
2.1 晶态结构 2.2 非晶态结构 2.3 液晶态结构 2.4 聚合物的取向结构 2.5 高分子合金的形态结构
单击添加副标题
清新立春时节
2.0 聚合物分子相互作用
主价力:共价键金属键离子键 次价力(内聚力、余价力),包括范德华力 和氢键 ): 静电力 (没有方向性和饱合性) 诱导力 (没有方向性和饱合性) 色散力 (没有方向性和饱合性) 氢 键(有方向性和饱合性)
倒数:( 1/2, 0,0) 通分:(2.0.0) 晶面指数:(2,0,0) 平行X面
如截距:(3,2,1)
倒数:(1/3,1/2,1) 通分:(2/6,3/6,6/6) 晶面指数:(2,3,6)
如截距:(1,2,0)
倒数:(1,1/2,0) 通分:(2.1.0) 晶面指数:(2,1,0) 平行Z轴
晶胞和晶系
#2022
晶面和晶面指数 平行、等间距。 共面的质点构成晶面。用晶面指数来标记:晶面与a,b,c三晶轴的交点。 晶面指标 不同晶面的Miller指数
如截距:(2,3,6)
倒数:(1/2,1/3,1/6) 通分:(3/6.2/6.1/6) 晶面指数:(2,3,6)
如截距:(2,0,0)
由下图可以看出,等规立构PS既有清晰的衍射环,又有弥散环,而无规立构PS仅有弥散环;等规立构PS既有尖锐的衍射峰,又有很钝的衍射峰。通常,结晶聚合物是部分结晶的或半结晶的多晶体,既有结晶部分,又有非晶部分,个别例外。
等规立构聚苯乙烯的X射线衍射图像和衍射曲线 —衍射花样 (b)—衍射曲线
晶体结构和点阵的关系
球晶的黑十字消光现象
球晶的结构特点:圆球状晶体,尺寸较大。 小角激光散射法测定:球晶分子链总是垂直于径向。 电子显微镜研究:球晶是单晶片的变形聚集体。如:未拉伸前的等规PP等。
高分子物理简答题
第二章高分子的链结构1.聚合物的层次结构聚合物的结构包括高分子的链结构和聚合物的凝聚态结构,高分子的链结构包括近程结构一级结构和远程结构二级结构;一级结构包括化学组成,结构单元连接方式,构型,支化于交联;二级结构包括高分子链大小相对分子质量,均方末端距,均方半径和分子链形态构象,柔顺性;三级结构属于凝聚态结构,包括晶态结构,非晶态结构,取向态结构,液晶态结构和织态结构; 2.结构单元的键接方式,许多实验证明自由基或离子型聚合产物中大多数是头—尾键接的,链接方式对聚合物的性能有比较明显的影响;例1:纤维要求分子链中单体单元排列规整,结晶性能好,强度高,便于抽丝和拉伸例2:维尼纶纤维缩水性较大的根本原因:聚乙烯醇PVA做维尼纶只有头—尾键接才能使之与甲醛缩合生成聚乙烯醇缩甲醛;如果是头—头键接额,羟基就不易缩醛化,是产物中保留一部分羟基,羟基的数量太多会使纤维的强度下降;3.聚合物的空间构型概念:结构单元为—CH2—CHR—型的高分子,在每一个结构单元中都有一个手性碳原子,这样,每一个链节就有两种旋光异构体,高分子全部由一种旋光异构体键接而成称为全同立构,由两种旋光异构单元交替键接,称为间同立构,两种旋光异构单元完全无规键接时,则称为无规立构全同立构和间同立构的高聚物有时统称为等规高聚物高聚物中含有全同立构和间同立构的总的百分数是指等规度由于内双键的基团在双键两侧排列的方向不同而有顺式构型与反式构型之分,他们称为几何异构体例:几何构型对聚合物的影响聚丁二烯1,2-加成的全同立构或间同立构的聚丁二烯PB,由于结构规整,容易结晶,弹性很差,只能作为塑料使用;顺式1,4-聚丁二烯链的结构也比较规整,容易结晶,在室温下是一种弹性很好的橡胶,反式1,4-聚丁二烯分子链的结构也比较规整,容易结晶,在室温下是弹性很差的塑料;4. 高分子共聚物共聚物的序列结构常用参数平均序列长度L和嵌段数R;当R=100时表明是交替共聚,R=0时表明是嵌段共聚物例1:聚甲基丙烯酸甲酯PMMA分子带有极性酯基是分子间作用力比聚苯乙稀PS大,因此在高温的流动性差,不宜采取注塑成型法加工;需将PMMA和少量PS共聚可以改善树脂的高温流动性,适用于注塑成型ps. 和少量的丙烯晴AN共聚后,其冲击强度,耐热性,耐化学腐蚀性都有所提高,可供制造耐油的机械零件例2:ABS树脂在结构组成制备工艺上可提高产品的力学性能的方法ABS树脂是丙烯晴,丁二烯和苯乙烯的三元共聚物;其中丙烯晴有CN基,能使聚合物耐化学腐蚀,提高制品的抗张强度和硬度;丁二烯使聚合物呈现橡胶状韧性,这是材料抗冲击强度增高的主要因素;苯乙烯的高分流动性能好,便与加工成型,而且可以改善制品表面光洁度.,ps. ABS是一类性能优良的热塑性塑料例3:SBS在结构和组成上的特点及加工方法概述用阴离子聚合法制得的苯乙烯与丁二烯的嵌段共聚物SBS树脂;丁二烯常温是一种橡胶,而聚苯乙烯是硬性塑料,两者不相容,因此SBS具有两项结构;聚丁二烯段形成连续的橡胶相,聚苯乙烯是热塑性的,聚苯乙烯起交联作用高温下可以破坏也可以重组,所以SBS是一种可以注塑方法进行加工而不需要硫化的橡胶;聚氨酯与其相似,统称热塑性弹性体;5.高分子链的支化例:为什么高压聚乙烯的冲击强度好于低压聚乙烯的冲击强度支化对物理性能的影响有时相当显著,高压聚乙烯低密度聚乙烯LDPE由于支化破坏了分子的规整性,使其结晶度大大降低,低压聚乙烯高密度聚乙烯HDPE是线型分子,易于结晶,故在密度,熔点,结晶度和硬度方面都高于强者;分子链支化程度增加,分子间的距离增加,分子间的作用力减小,因而使拉伸强度降低,但冲击强度会提高;6.高分子链的交联支化高分子能够溶解,交联高分子不熔不熔,只有交联度不大的时候能在溶剂中溶胀;热固性塑料和硫化橡胶都是交联高分子例:硫化橡胶未经硫化交联的橡胶分子之间容易滑动,受力后会产生永久变形,不能回复原状,经硫化的橡胶分子间不能滑移,才有大的可逆弹性变形,所以橡胶一定要经过硫化变成交联结构后才能使用;交联度小的橡胶含硫5%一下弹性较好,交联度大的橡胶含硫20%~30%弹性就差,交联度再增加,机械强度和硬度都将增加,最终失去弹性而变脆;7.高分子链的构象概念:构象:单间内旋转而产生的分子在空间的不同排列形态,由于热运动分子的构象在时刻改变,因此高分子的键的构象是统计性的,由此可知,这种构象是不固定的;构型:大分子链中由化学键所固定的原子在空间的几何排列,这种排列是稳定的要改变构型必经过化学键的断裂和重组;构型包括单体单元的键合顺序,空间构型的规整性,支化度,交联度以及共聚物的组成及序列结构;无规线团:单键内旋转是导致分子链呈蜷曲构象的原因,内旋转愈自由,蜷曲的趋势越大,我们称这种不规则的蜷曲高分子链的构象为无规线团;理想链理想柔性链,自由链接链:高分子键的一种理想化的简单模型,假定高分子的主链由足够多的不占体积的化学键自有链接而成,这些键的取向不受键角以及相邻旋转交的限制,没有位垒的障碍,在空间上的取向几率都相等;自由旋转链:每个链都能在键角限制范围内自由旋转,不考虑空间位阻影响,有足够多的不占体积的化学键自有链接而成,这些键的取向受键角及相邻旋转交的限制,没有位垒障碍;受阻旋转链:同自由旋转链,除不能自由旋转;末端距:对于线性高分子,分子链的一端至另一端的直线距离即为末端距;均方末端距:末端距的平方的平均值,通常用来表征高分子链的尺寸;高斯链:把真实的高分子末端距模型化的一种由n个长度为l的统计单元组成,他的末端距大小分布符合高斯统计函数,这种假想链叫做高斯链Ps.末端距的计算见附录例1. 自由连接链和高斯链的区别1.高斯链的统计单元为链段,自由链接链的链接单元为化学键2.高斯链可以产生链段的回转和取向,自有链接连不能产生化学链的旋转和取向3.高斯链是实际存在的,自有链接连是不存在的4.高斯链研究高分子链的共性,自有链接链是理想化的;例2.聚丙烯是否可以通过单键的内旋转由全同立构变成间同立构,为什么答:不可以;因为全同立构和间同立构是属于构型的范畴,构型是指分子中有化学键所固定的原子在空间的排列;单键的内旋转只会改变构象,而改变构型必须经过化学键的断裂才能实现;例3.为什么只有柔性高分子链才适合做橡胶答:橡胶具有高弹性,弹性模量很小,形变量很大的特点;只有处于蜷曲状态的长链分子才能在外力的作用下产生大形变,才能作为橡胶;蜷曲程度与柔性是相对应的,蜷曲程度越高,柔性越好,所以适合做香蕉的高分子必须具备相当程度的柔性;例4.试述近程相互作用和远程相互作用的含义以及它们对高分子链构象以及柔性的影响答:所谓“近程”和“远程”是根据沿大分子链的走向来区分的,并非为三维空间上的远和近;事实上,即使是沿高分子长链很远的枝节也会由于主链单间内旋转而在三维空间上相互靠的很近;近程相互排斥作用的存在使得实际高分子的内旋转受阻,是指在空间可能有的构象数远远小于自由内旋转的情况,受阻程度越大构象数就越少,高分子链的柔性就越小;远程相互作用可为斥力,也可称为引力;当大分子链中相距较远的原子或原子团由于单键的内旋转,可是其间的距离小于范德瓦尔斯半径而表现为斥力,大于范德瓦尔斯半径为引力,五轮哪种力都使单间内旋转受阻构象数减小,柔性下降,末端距变大;例5. 分子链柔顺性大小顺序聚乙烯PE,聚丙烯PP,聚丙烯晴PAN,聚氯乙烯PVC取代基极性越大,取代基之间的相互作用就越强,高分子链内旋转越困难,柔性越小;取代基的极性顺序为—CN>—CL—CH3—H,所以PE>PP>PVC>PAN例6.请排出分子间作用力的大小聚苯乙烯,聚对苯二甲酸乙二酯和尼龙66,聚乙烯尼龙66>据对苯甲酸乙二酯>聚苯乙烯>聚乙烯尼龙66分子间能形成氢键,因此分子间作用力最大;聚对苯二甲酸乙二酯含有强极性基团,分子间作用力比较大,聚苯乙烯含有侧基,连段运动较困难,分子间作用力较小,聚乙烯是非极性分子,又不含侧基,分子间作用力最小;例7. 请排出结晶难易程度的排序1聚对苯二甲酸乙二酯和聚间苯二甲酸乙二酯,聚乙二酸乙二酯2尼龙66,尼龙1010聚己二酸乙二酯>聚对苯二甲酸乙二酯>聚间苯二甲酸乙二酯,这是由于聚己二酸乙二酯的柔顺性好,聚间苯二甲酸乙二酯对称性不高,尼龙66>尼龙1010尼龙66中氢键密度大于尼龙1010第三章高分子溶液1.聚合物溶解过程和溶剂选择概念:内聚能密度:内聚能是将一摩尔液体或固体分子汽化时所需要的能量,单位体积的内聚能即为内聚能密度;δ溶度参数:溶度参数是内聚能密度的平方根;溶质与溶剂的溶度参数越接近越可能相互溶解;冻胶:是由范德瓦尓斯力交联而成的,加热可以拆散范德瓦尓斯力的交联,使冻胶溶解;凝胶:是高分子链之间以化学键形成的交联结构的溶胀体;例1.聚合物的溶解过程答:聚合物的溶解过程分为两个阶段,先是溶剂分子深入聚合物内部,是聚合物体积膨胀,称为溶胀,然后才是高分子均匀分散在溶剂中形成完全溶解的分子分散的均相体系,对于交联聚合物,在与溶剂接触时也会发生溶胀,但因有交联的化学键束缚,不能再进一步使交联分子拆散,只能停留在溶胀阶段,不会溶解;例2.聚合物的溶解度与分子量的关系:溶解度与聚合物的分子量有关,分子量大的溶解度小,分子量小的溶解度大,对交联聚合物来说,交联度大的溶胀度小,交联度小的溶胀度大;例3.非晶聚合物和结晶聚合物对溶解的影响非晶聚合物的分子堆砌比较松散,分子间的相互作用较弱,因此溶剂分子比较容易渗入聚合物内部使之溶胀和溶解;静态聚合物由于分析排列规整,堆砌紧密,分子间相互作用力很强,以致溶剂分子深入聚合物内部非常困难,因此晶态聚合物的溶解比非晶态聚合物困难得多;溶液的热力学性质溶解过程的自发需要满足△Fm=△Hm-T△Sm<0对于极性聚合物在极性溶剂中,由于高分子溶剂强烈相互作用,分子排列趋于混乱所以△Sm增加溶解时放热△Hm<0且使体系△Fm降低所以溶解过程能自发进行非极性聚合物,溶解过程一般是吸热的△Hm>0,故只有在升高温度T或者减小混合热△Hm才能使体系自发溶解;非极性溶液的混合热△Hm的大小取决于溶度参数,如果两种液体溶度参数接近,则混合热越小,两种液体越能互相溶解;Ps.聚丙烯腈不能溶解在溶度参数与他相接近的乙醇,甲醇,苯酚;乙二醇等溶剂中,这是因为这些溶剂的极性太弱了,只有二甲基甲酰胺,二甲基乙酰胺,乙腈,二甲基亚砜,丙二腈才能使其溶解;丙酮不能溶解聚苯乙烯是丙酮极性太强而聚苯乙烯是弱极性的;可以得出结论,极性聚合物,不但要求它与溶剂的溶度参数中的非极性部分接近,还要求极性部分也接近才能溶解;注:如果溶质与溶剂间能形成结晶性非极性聚合物的溶剂选择最困难,它的溶解包括两个过程:其一是结晶部分的熔融;其二是高分子与溶剂的混合,两者都是吸热的过程,所以要提高温度;除非生成氢键,因为氢键的生成是放热反应;例1.溶剂的选择原则:1)极性相近,要求溶剂的极性和高聚物极性相近,极性高聚物选择极性相当的溶剂;2)溶度参数相近原则,参数越接近,溶解可能性越大,非晶态—非极性比较合适,对于晶态的非极性高聚物需加外界条件,对晶态极性不适用;3)溶剂化原则基团的相互作用溶剂分子与高分子链之间相互吸引作用是高分子链与链之间相互分离导致高分子溶解于溶剂形成溶液;理想溶液概念:理想溶液:是指溶液中溶质分子间溶剂分子间和溶质分子间的相互作用能都相等,溶解过程没有体积变化也没有焓的变化;Huggins参数:是表示高分子溶液混合时相互作用能的变化θ温度:是高分子溶液的一个参数,当T=θ时高分子溶液中的过量化学位为零,与理想溶液中溶剂的化学位没有偏差θ条件:通过选择溶剂和温度使高分子溶液中溶剂的过量化学位为零的条件,这种条件称为θ条件或θ状态;无扰状态:高分子在稀溶液中,一个高分子很难进入另一个高分子所占的区域,即每个高分子都有一个排斥体积;如果高分子链段和溶剂分子相互作用能大于高分子链段与高分子链段的相互作用能,则高分子被溶剂化而扩张,使高分子不能彼此接近,高分子的排斥体积就很大;如果高分子链段与溶剂分子相互作用能等于高分子链段与高分子链段的相互作用能;高分子与高分子可以与溶剂分子一样彼此接近,互相贯穿,这样排斥体积为零,相当于高分子处于无扰状态;这种状态的尺寸就称为无扰尺寸;扩张因子:高分子在良溶剂中,由于溶剂化的作用,是卷曲的高分子链伸展,高分子的均方末端距和均方旋转半径扩大;扩张因子α是指高分子链的均方末端距或均方旋转半径与高分子链在θ状态下的均方末端距或均方旋转半径之比,它表示高分子链的扩张程度;溶胀比:交联高聚物在溶胀平衡时的体积与溶胀前的体积之比例1. 根据高分子的混合自由能,推导出其中溶剂的化学位变化,并讨论在什么条件下高分子溶液中溶剂的化学位变化,等与理想溶液中溶剂的化学位变化答:见附录例2. 高分子溶液在什么情况下与理想溶液的一些热力学性质相近当T=θ时;高分子溶液中溶剂的过量化学位为零;χ1=1/2,高分子处于θ状态,此时高分子溶液与理想溶液的一些热力学性质相近;例3. 什么是θ温度当高于,低于或等于θ温度时,大分子的自然构象有何不同为什么θ温度是高分子溶液的一个参数;当T=θ时,高分子溶液中溶剂△μ=0与理想溶液中的溶剂化学位没有偏差;当T>θ时,溶剂为高分子良溶剂,在良溶剂中,高分子链由于溶剂化而扩张,高分子线团伸展,当T<θ时,溶剂为高分子的不良溶剂,在不良溶剂中,高分子链由于溶剂化作用很弱,高分子链紧缩;当T=θ时,溶剂为高分子的θ溶剂,在θ溶剂中,高分子链段与高分子链段的相互作用能等于高分子链段与溶剂的相互作用能,高分子与高分子可以与溶剂分子一样彼此接近,互相贯穿,这样高分子链的排斥体积为零,相当与高分子链处于无干扰的无规线团;例4.试举出可判定聚合物溶解性好坏的三种热力学参数,并讨论当它们分别为何值时,溶剂是良溶剂,θ溶剂,劣溶剂:过量化学位△μ₁,Huggins参数χ₁,第二维利系数A₂可以判定聚合物溶解性的好坏的三种热力学参数,△μ₁<0,χ₁<1/2,A₂>0时为良溶剂;△μ₁=0,χ₁=1/2,,A₂=0时为θ溶剂;μ₁>0,χ₁>1/2,A₂<0时为劣溶剂;Ps.θ状态与真正的理想溶液还是有区别的,真正的理想溶液没有热效应,任何温度下都呈现理想行为,而在θ温度时的高分子稀溶液只是过量化学位等于0而已;偏摩尔混合热和偏摩尔混合熵都不是理想值,只是两者的非理想效应近似相互抵消;例5.临界共溶温度:是聚合物溶解曲线极大处的温度就是Tc;溶质的分子量越大,溶液的临界共溶温度越高;当温度降至Tc一下某一定值时,就会分离成稀相和浓相,当体系分成两相最终达到相平衡时,每种组分在两相间扩散达到动态平衡,这就要求每种组分在两相间的化学未达到相等;相分离的起始点就是临界点,在临界点,两个相浓度相等;简述荣章法测定聚合物的δ的原理和方法溶胀法可以测定交联聚合物的平衡溶胀比,及交联聚合物达到溶胀平衡时的体积与溶胀前的体积之比;若交联聚合物与溶剂的溶度参数越接近,高分子与溶剂的相互作用愈大,及高分子溶剂化程度愈大,交联网链愈能充分伸展,是交联聚合物的平衡溶胀比增大,若用若干种不同溶度参数的溶剂溶胀聚合物,用溶胀法分别测定聚合物在这些溶剂中的平衡溶胀比,以平衡溶胀比对溶剂的溶度参数作图,找出平衡溶胀比极大值所对应的溶度参数,此溶度参数可作为交联聚合物的溶度参数;Ps.增塑剂为了改善聚合物材料的成型加工性能和使用性能,通常在聚合物树脂中加入高沸点,低挥发性的小分子液体或低沸点固体,以降低玻璃化转变温度和粘流温度,改善树脂流动性,降低粘度石制品有较好的柔韧性,和耐寒性;第四章高分子的多组分体系高分子的相容性概念高温临界共溶温度UCST:高温互容低温分相;低温临界共溶温度LCST:低温互容高温分相;曲线分析见附录临界胶束浓度:将嵌段共聚物溶解在小分子溶剂中,如果溶剂溶解共聚物前段时没有很强的选择性,那么嵌段共聚物的溶液性质与一般均聚物的溶液性质没有和大的差别;但如果溶剂对其中的某一嵌段具有很强的相互吸引作用,在固定温度改变浓度或固定浓度改变温度两种条件下,嵌段共聚物类似于小分子的表面活性剂,与溶剂作用强的嵌段倾向于与溶剂混合,而另一嵌段就倾向于与其它链的相似嵌段聚集在一起,形成胶束,形成胶束的临界条件被称为临界胶束浓度,和临界胶束温度;进一步增加浓度,这些胶束逐渐发生交叠,形成物理凝胶几乎不能流动,形成凝胶的临界浓度称为临界胶束浓度静态光散射通过测定溶液中形成结构的平均分子量来估算是否形成了胶束Ps.UCST,LCST曲线见附录第五章聚合物的非晶态非晶态聚合物的结构模型概念无规线团模型:在非晶态聚合物本体中,分子链的构象与在溶液中的一样,成无规线团状,线团的尺寸在θ状态下高分子的尺寸相当,线团分子之间是任意相互贯穿和无规缠结的,前端的堆砌不存在任何有序的结构,因而非晶态聚合物在凝聚态结构上是均相的;玻璃化转变:玻璃态和高弹态之间的转变称为玻璃化转变,对应的转变温度即玻璃化转变温度;玻璃态:当非晶聚合物在较低的温度下受外力时,有与链段运动被冻结,只能使主链的键长和键角有微小的改变,因此从宏观上来说,聚合物形变是很小的,形变与受力的大小成正比,当外力除去后,形变能立刻回复;这种力学性质称虎克型弹性体,又称普弹体,非晶态聚合物处于具有普弹性的状态,称为玻璃态;玻璃化温度:高聚物分子链开始运动或冻结的温度;它是非晶态高聚物作为塑料使用的最高温度,橡胶使用的最低温度;高弹态:在聚合物受到外力时,分子链可以通过单键的内旋转和链段的改变构象以适应外力的作用,由于这种变形是外力作用促使聚合物主链发生内旋转的过程,它需要的外力显然比聚合物在玻璃态时变形所需外力要小得多,而变形量却大得多,这种性质叫做高弹性,它是非晶态聚合物处在高弹态下特有的力学特征;粘流态:整个分子链运动,松弛时间缩短,在外力作用下发生粘性流动,它是整个分子链互相滑动的宏观表现;形变不可逆外力除去后,形变不能再自发回复自由体积理论:Fox和Flory提出,认为液体或固体物质,其体积由两部分组成:一部分是被分子占据的体积;另一部分是未被占据的自由体积;后者以“孔穴”的形式分散于整个物质之中,正是由于自由体积的存在,分子链才可能发生运动;自由体积理论认为,当聚合物冷却时,起先自由体积逐渐减少,到某一温度时,自由体积达到一最低值,这是聚合物进入玻璃态;在玻璃态下,有与链段运动被冻结,自由体积也被冻结,并保持一恒定值,自由体积“孔穴”的大小及分布也将基本上维持固定;因此对任何聚合物,玻璃化温度就是自由体积达到某一临界值的温度,在这临界值一下,已经没有足够的空间进行分子链构象的调整了;因而聚合物的玻璃态可视为等自由体积状态;不管什么聚合物,发生玻璃化转变时,自由体积分数都等于2.5%;Ps. WLF方程见附录例1::无规线团模型的实验证据1.橡胶的弹性理论完全是建立在无规线团模型基础上的,而且实验证明,橡胶的弹性模量和应力-温度系数关系并不随稀释剂的加入而有反常的改变,说明在非晶态下,分子链是完全无序的,并不存在可被进一步溶解或拆散的局部有序结构2.在非晶聚合物的本体和溶液中,分别用高能辐射是高分子发生交联,实验结果并未发现本体体系中发生分子内教练的倾向比溶液中更大,说明本体中并不存在诸如紧缩的线团或折叠连那些局部有序的结构;3用X光小角散射的实验结果,提别有力的支持了无规线团;.对于分子量相同的聚甲基丙烯酸甲酯试样,用不同的方法光散射,X光散射和中子散射,不同条件下本体或溶液中,测得分子的回转半径相近;并且本体的数据与θ溶剂氯代正丁烷的数据以及所得指向的斜率更为一致,证明非晶态本体中,分子的形态与它在θ溶剂中一样,它们的尺寸都是无扰尺寸例2.两相球粒模型1模型包含了一个无序的粒间相,从而能为橡胶弹性变形的回缩力提供必要的构象熵,因而可以解释橡胶的弹性回缩力;2实验测得许多聚合物的非晶和结晶密度比按分子链成无规线团形态的完全无序的模型计算的密度高,说明有序的粒子相与无序的粒间相并存,两相中由于嵌段的堆砌情况有差别,导致了密度的差别;3模型例子中嵌段的有序堆砌,为洁净的迅速发展准备了条件,这就不难解释许多聚合物结晶速度很快的事实;4某些非晶态聚合物缓慢冷却或热处理后密度增加,电镜下还观察到球粒的增大,这可以用粒子相有序程度的增加和粒子相的扩大来解释;例3.非晶态聚合物形变-温度曲线如果取一块非晶聚合物试样,对它施加一恒定的力,观察试样发生的形变与温度的关系,我们将所得到的曲线称为形变-温度曲线或热机械曲线;当温度较低时,试样呈刚性固体状,在外力作用下只发生非常小的形变;温度升到某一范围后,式样的形变明显的增加,并随后,并在随后的温度区间达到一相对稳定的形变,在这一个区域中,试样变成柔软的弹性体,温度继续升高,形变基本上保持不变;温度再进一步升高,则形变量又逐渐加大,试样最后完全变成粘性流体; Ps.形变温度曲线见附录例4.试用分子运动的观点说明非晶聚合物的三种力学状态和两种转变在玻璃态下,由于温度较低,分子运动的能量很低,不足以克服主链内旋转的位垒,因此不足以激发起链段的运动,链段处于被冻结的状态,只有那些较小的运动单元,如侧基,支链和小链节能运动,当收到外力时,由于链段处于冻结状态,只能使主链的键长和键角有微小的改变,形变很小,当外力除去后形变能立刻回复;随着温度的升高,分子热运动的能量增加,当达到某一温度Tg时,链段运动被激发,聚合物进入高弹态,在高弹态下,链段可以通过单键的内旋转和链段的运动不断地改变构象,但整个分子仍然不能运动;当受到外力时,分子链可以从蜷曲状态变为伸直状态,因而可发生较大形变;温度继续升高,整个分子链也开始运动,聚合物进入粘流态,这时高聚物在外力作用下便发生粘性流动,它是整个分子链互相滑动的宏观表现,外力去除后,形变不能自发回复;玻璃化转变就是链段有运动到冻结的转变,流动转变使整个分子链由冻结到运动的转变;例5.为什么聚合物通常有一份相对确定的玻璃化温度,却没有一个确定的粘流温度随着相对分子量的增加,玻璃化温度会升高,特别是在较低的相对分子质量范围内,这种影响较为明显,但是当相对分子质量增加到一定程度后,玻璃化温度随着相对分子质量的变化很小;而聚合物的粘流温度是整个分子链开始运动的温度,相对分子质量对粘流温度的影响比较明。
聚合物的凝聚态结构习题解答
第2章聚合物的凝聚态结构1. 名词解释凝聚态:物质的物理状态,是根据物质的分子运动在宏观力学性能上的表现来区分的,通常包括固体、液体和气体。
高分子的凝聚态是指高分子链之间的几何排列和堆砌状态,包括固体和液体。
内聚能密度:单位体积的内聚能,CED = ∆E/V m。
内聚能是克服分子间作用力,把1mol 液体或固体分子移至分子引力范围之外所需的能量。
结晶度:试样中结晶部分所占的质量分数(质量结晶度x c m)或者体积分数(体积结晶度x c v)。
取向:聚合物取向是指在某种外力作用下,分子链或其他结构单元沿着外力作用方向择优排列。
高分子合金的相容性:高分子共混物中分子间分子水平的互容程度。
2. 什么叫内聚能密度?它与分子间作用力的关系如何?如何测定聚合物的内聚能密度?答:内聚能密度是指单位体积的内聚能;CED = ∆E/V m。
内聚能是克服分子间作用力,把1mol液体或固体分子移至分子引力范围之外所需的能量,CED<290J/cm3的高聚物,都是非极性高聚物,由于它们的分子链上都不含极性基因,分子间作用力主要是色散力,分子间相互作用力较弱,加上分子链的柔性较好,使这些高聚物材料易于变形,富有弹性,可作橡胶,但聚乙烯是个例外,由于它的结构对称规整易于结晶而失去弹性,只能作塑料使用。
CED>420 J/cm3的高聚物,由于分子链上有强极性基因,或者分子间能形成氢键,分子间作用力大,因而有较好的机械强度和耐热性,再加上分子结构比较规整,易于结晶,取向,使强度更高,可成为优良的纤维材料或工程塑料。
CED∈290~420 J/cm3的高聚物,分子间作用力居中,适合于作塑料使用。
内聚能密度的测试方法主要有:最大溶胀比法、最大特性粘数法。
3. 聚合物在不同条件下结晶时,可能得到哪几种主要的结晶形态?各种结晶形态的特征是什么?单晶:形成条件:0.01%~0.1%PE溶液中极缓慢冷却结晶或较高压力下100MP)熔体结晶而成。
高分子物理金日光课后习题答案
⾼分⼦物理⾦⽇光课后习题答案第1章⾼分⼦链的结构1. 写出聚氯丁⼆烯的各种可能构型。
略2. 构型与构象有何区别聚丙烯分⼦链中碳-碳单键是可以旋转的,通过单建的内旋转是否可以使全同⽴构的聚丙烯变为间同⽴构的聚丙烯为什么答:构型:是指分⼦中由化学键所固定的原⼦在空间的⼏何排列。
构象:由于分⼦中的单键内旋转⽽产⽣的分⼦在空间的不同形态。
全同⽴构聚丙烯与间同⽴聚丙烯是两种不同构型,必须有化学键的断裂和重排。
3. 为什么等规⽴构聚苯⼄烯分⼦链在晶体中呈31螺旋构象,⽽间规⽴构聚氯⼄稀分⼦链在晶体中呈平⾯锯齿构象答:因为等规PS 上的苯基基团体积较⼤,为了使体积较⼤的侧基互不⼲扰,必须通过C -C 键的旋转加⼤苯基之间的距离,才能满⾜晶体中分⼦链构象能量最低原则;对于间规PVC ⽽⾔,由于氢原⼦体积⼩,原⼦间⼆级近程排斥⼒⼩,所以,晶体中分⼦链呈全反式平⾯锯齿构象时能量最低。
4. 哪些参数可以表征⾼分⼦链的柔顺性如何表征答:空间位阻参数δ212,2=r f h h δδ越⼤,柔顺性越差;δ越⼩,柔顺性越好;特征⽐C n 220nl h c n =对于⾃由连接链 c n =1对于完全伸直链c n =n ,当n→∞时,c n 可定义为c ∞,c ∞越⼩,柔顺性越好。
链段长度b :链段逾短,柔顺性逾好。
5. 聚⼄烯分⼦链上没有侧基,内旋转位能不⼤,柔顺型好。
该聚合物为什么室温下为塑料⽽不是橡胶答:因为聚⼄烯结构规整,易结晶,故具备了塑料的性质,室温下聚⼄烯为塑料⽽不是橡胶。
6. 从结构出发,简述下列各组聚合物的性能差异: (1) 聚丙烯腈与碳纤维;线性⾼分⼦梯形⾼分⼦(2)⽆规⽴构聚丙烯与等规⽴构聚丙烯;⾮晶⾼分⼦结晶性⾼分⼦(3)顺式聚1,4-异戊⼆烯(天然橡胶)与反式聚1,4-异戊⼆烯; 柔性(4)⾼密度聚⼄烯、低密度聚⼄烯与交联聚⼄烯。
⾼密度聚⼄烯为平⾯锯齿状链,为线型分⼦,模量⾼,渗透性⼩,结晶度⾼,具有好的拉伸强度、劲度、耐久性、韧性;低密度聚⼄烯⽀化度⾼于⾼密度聚⼄烯(每1000个主链C 原⼦中约含15~35个短⽀链),结晶度较低,具有⼀定的韧性,放⽔和隔热性能较好;交联聚⼄烯形成了⽴体⽹状的结构,因此在韧性、强度、耐热性等⽅⾯都较⾼密度聚⼄烯和低密度聚⼄烯要好。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
晶格缺陷
其他在结晶中分子链取平面锯齿形构象的聚合物还有脂 肪族聚酯、聚酰胺、聚乙烯醇等。
实验证明,等规PP的分子链呈螺旋状结构,
2.1.2 聚合物的晶体结构和研究方法
(2)晶胞密度的计算
M是结构单元分子量; Z为单位晶胞中单体(即链结构单元)的数目; V为晶胞体积; NA为阿佛加德罗常数
2.1.2 聚合物的晶体结构和研究方法
液体 固体
晶态
非晶态 液晶态 取向态 织态结构
物质为什么会形成凝聚态?
分子间作用力 范德华力和氢键 静电力 诱导力 色散力 表征分子间作用力大小的物理量——内聚能或 内聚能密度
聚合物内聚能:克服分子间作用力,1mol凝聚体汽化时 所需要的能量E。
E HV RT
HV 摩尔蒸发热
RT 汽化时所做的膨胀功
2.1 晶态聚合物结构
结晶聚合物 的重要实验
证据
X射线衍射花样
Intensity (cps)
X射线衍射曲线
1000
500
0
10
20
30
40
50
Polar angle (degree)
2.1 晶态聚合物结构
多晶样品的衍射花样
衍射线
照 相
入射线
底 片
试样
上 的德照相来自拜底片环
2.1 晶态聚合物结构
完善晶体
2.1.1 晶体结构的基本概念
四方晶系
简单四方
体心四方
c
c
a a
a a
a = b c, a = b = g = 90
2.1.1 晶体结构的基本概念
斜方晶系
简单斜方
底心斜方
面心斜方
体心斜方
c
a b
a b c, a = b = g = 90
2.1.1 晶体结构的基本概念
三方(菱形)晶系
a a
a a
a a = b = c, a b g 90
2.1.1 晶体结构的基本概念
单斜晶系
简单单斜
底心单斜
c
a
a
c
a
a
b
b
a b c, b = g = 90 a
2.1.1 晶体结构的基本概念
三斜晶系
c ba
g
b
a
a b c, a b g 90
2.1.1 晶体结构的基本概念
在高分子晶系中,由于长链造成各向异性而不出现 立方晶系,而且属于高级晶系(六方、立方)的也 很少,多数属于初级(三斜,单斜)、中级晶系 (四方,斜方)。
2.1.1 晶体结构的基本概念
(3)晶面和晶面指数
• 晶面:结晶格子内所有的格子点全部集中在相互 平行的等间距的平面群上,这些平面叫做晶面。
• 晶面间距:晶面与晶面之间的距离。
• 晶面指数:一般常以Miller指数来标记某个晶面。
2.1.1 晶体结构的基本概念
晶面指数( h k l )
c
c/2
a/3
结晶聚合物
无定形物质
2.1.1 晶体结构的基本概念
(1)空间点阵
将晶体中重复出现的最小单元作为结构基元(各结 构基元相互之间必须是化学组成相同、空间结构相 同、排列取向相同、周围环境相同),用一个数学 上的点来代表,称为点阵点。整个晶体被抽象成一 组点,称为点阵。
晶体结构= 点阵+结构基元
2.1.1 晶体结构的基本概念
c
三晶轴的长度 三边长度的夹角
ba
g
b
a
7个晶系:立方、六方、四方、三方、斜方、单斜、三斜
2.1.1 晶体结构的基本概念
立方晶系 简单立方
面心立方
体心立方
a
a
a
a a
a a
a a
a = b = c, a = b = g = 90
2.1.1 晶体结构的基本概念
六方晶系
c
a a = b c, a = b = 90, g 120
第2章 高分子的凝聚态结构
分子的聚集状态
凝聚态为物质的物理状态
根据物质的分子运 动在宏观力学性能 上的表现来区分的
固体 液体 气体
玻璃例外,过冷液体
相态为物质的 热力学状态
晶态(固态) 液态
根据物质的结构 特征和热力学性 质来区别的
气态 液晶态
高分子凝聚态
是指高分子链之 间的几何排列和 堆砌状态
小分子晶体与高分子晶体质点不同 • 小分子晶体的质点:分子、原子、离子 • 高分子晶体的质点:大分子链中的结构单元链节
2.1.1 晶体结构的基本概念
2.1.1 晶体结构的基本概念
(2)晶胞与晶系 晶格的最小单位均为平行六面体,称为晶胞.
2.1.1 晶体结构的基本概念
描述晶胞结构的六个参数
a、b、c、 α、β、γ。
平面锯齿或螺旋构象。
聚乙烯的构象
PE的晶胞结构
通过实验和计算PE的等 同周期c=0.253nm,即每个 等同周期中含有一个结构 单元(排入到格子中的质 点就是单体的重复单元)
每一个晶胞中含有单 体单元的数目是2
正交晶系
2.1.2 聚合物的晶体结构和研究方法
注意
由于结晶条件的变化,引起分子链构象的变化或者链堆 积方式的改变,则一种聚合物可以形成几种不同的晶体。 聚乙烯的稳定晶型是正交晶系,拉伸时则可形成三斜或 单斜晶系。
• E>400Jcm-3 :分子链上有强的极性基团或分子间能 形成氢键,相互作用强,有较好的力学强度和耐热性, 易于结晶和取向,可作为合成纤维使用
2.1 晶态聚合物结构
条件?
高分子链本身具有 必要的规整结构
适宜的温度,外力 等条件
熔体结晶 方法?
高分子链规整 堆砌形成结晶
玻璃体结晶
溶液结晶
晶态聚合物结构和X射线衍射(第2版),莫志深等,科 学出版社。
a
2b/3
b
(1) 晶面在三晶轴上的截距 1 a, 2 b, 1 c 332
(2) 去单位向量,求倒数并通分
3, 3, 2 6, 3, 4
121
222
(3) 除分母,用圆括号括起来
6, 3, 4 6 3 4
2.1.2 聚合物的晶体结构和研究方法
1. 能量最低原则 2. 周期最短原则
等同周期(或称纤维周期):高分子晶体中,在c轴方向化学结 构和几何结构重复单元的距离。一般将分子链的方向定义为c 轴, 又称为主轴
聚合物内聚能密度(CED):单位体积凝聚体汽化时所需
要的能量
CED E Vm
Vm 摩尔体积
聚合物内聚能测定方法
最大溶胀比法 根据聚合物在不同溶剂 中的溶解能力间接估计 最大特性粘数法
• E<300Jcm-3 :非极性聚合物,分子间作用力弱,分 子链属于柔性链,具有高弹性,可作橡胶使用
• 300<E<400Jcm-3 :作为塑料使用