向量法求空间角(高二数学,立体几何)

合集下载

立体几何中的向量方法求空间角

立体几何中的向量方法求空间角


PQห้องสมุดไป่ตู้ 为二面角 l 的平面角 .
Q
O
n


n


n
2、利用定义,在两个半平面内找垂直棱的向量
小结论:射影面积 cos
S射 S
m
n

求二面角
5 .在长方体中, A B 2 , AA
1

2 , AD 1,
P 是棱 AB 的中点 . (1)AB
1
平面 A1 PD 1, A 1 - D 1 P - B 1的平面角正切值。
四棱锥 P ABCD 中,
AB AC , PA 平面 ABCD ,且 PA AB , E 是 PD 的中点 . 求平面 EAC 与平面 ABCD 所成的角 .
2b
2
2a b
2
4 a 2b
线面角
定义法:找直线在平面内的射影(先找线面垂直) 也可利用等体积法求点到面的距离处理 向量法:求平面的法向量和直线的方向向量 l l n a
a,n


a
a,n
a,n

2
2


α
α
a,n
n
a n sin cos a , n a n
D
.
C B A
结果
22 11
二面角
定义法:在棱上一点分别在两个半平面内作垂直于棱的垂线, 转化为异面直线所成角或其补角. 三垂线法:利用三垂线定理和逆定理确定平面角
P
PO ,作 OQ 垂直交线,连结 PQ ,

向量法: 1、求两个半平面的法向量,则二面角的平面角为两法向量 夹角或其补角 补角 本角 m m m 补角

向量法求空间角(高二数学,立体几何)

向量法求空间角(高二数学,立体几何)

A BC DP Q向量法求空间角1.(本小题满分10分)在如图所示的多面体中,四边形ABCD 为正方形,四边形ADPQ 是直角梯形,DP AD ⊥,⊥CD 平面ADPQ ,DP AQ AB 21==. (1)求证:⊥PQ 平面DCQ ; (2)求平面BCQ 与平面ADPQ 所成的锐二面角的大小.2.(满分13分)如图所示,正四棱锥P -A BCD 中,O 为底面正方形的中心,侧棱PA 与底面AB CD所成的角的正切值为26.(1)求侧面PAD 与底面ABCD 所成的二面角的大小;(2)若E 是PB 的中点,求异面直线PD 与AE 所成角的正切值;(3)问在棱AD上是否存在一点F ,使EF ⊥侧面PBC ,若存在,试确定点F 的位置;若不存在,说明理由.B3.(本小题只理科做,满分14分)如图,已知AB⊥平面ACD,DE//AB,△ACD是正三角形,AD=DE=2AB,且F是CD的中点.(1)求证:AF//平面BCE;(2)求证:平面BCE⊥平面CDE;(3)求平面BCE与平面ACD所成锐二面角的大小.P-中,PD⊥底面ABCD,且底面4.(本小题满分12分)如图,在四棱锥ABCDABCD为正方形,GPD=分别为CBPC,,的中点.=PDF,2EAD,,AP平面EFG;(1)求证://(2)求平面GEF和平面DEF的夹角.HPGFE DCB 5.如图,在直三棱柱111ABC A B C -中,平面1A BC ⊥ 侧面11A ABB 且12AA AB ==.(Ⅰ)求证:AB BC ⊥;(Ⅱ)若直线AC 与平面1A BC 所成的角为6π,求锐二面角1A A C B --的大小.6.如图,四边形ABCD 是正方形,EA ⊥平面ABCD ,EA PD ,2AD PD EA ==,F ,G , H 分别为PB ,EB ,PC 的中点.(1)求证:FG 平面PED ;(2)求平面FGH 与平面PBC 所成锐二面角的大小.参考答案1.(1)详见解析;(2)4π 【解析】试题分析:(1)根据题中所给图形的特征,不难想到建立空间直角坐标,由已知,DA ,DP ,DC 两两垂直,可以D 为原点,DA 、DP 、DC 所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系.表示出图中各点的坐标:设a AB =,则)0,0,0(D ,),0,0(a C ,)0,,(a a Q ,)0,2,0(a P ,则可表示出),0,0(a DC =,)0,,(a a =,)0,,(a a -=,根据数量积为零与垂直的充要条件进行证明,由0=⋅,0=⋅,故⊥,⊥,即可证明;(2)首先求出两个平面的法向量,其中由于⊥DC 平面ADPQ ,所以可取平面ADPQ 的一个法向量为)1,0,0(1=n ;设平面BCQ 的一个法向量为),,(2z y x n = ,则02=⋅QB n ,02=⋅QC n ,故⎩⎨⎧=+--=+-,0,0az ay ax az ay 即⎩⎨⎧=+--=+-,0,0z y x z y 取1==z y ,则0=x ,故)1,1,0(2=n ,转化为两个法向量的夹角,设1n 与2n 的夹角为θ,则2221||||cos 2121==⋅=n n n n θ.即可求出平面BCQ 与平面ADPQ 所成的锐二面角的大小.试题解析:(1)由已知,DA ,DP ,DC 两两垂直,可以D 为原点,DA 、DP 、DC 所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系.设a AB =,则)0,0,0(D ,),0,0(a C ,)0,,(a a Q ,)0,2,0(a P , 故),0,0(a =,)0,,(a a =,)0,,(a a -=, 因为0=⋅,0=⋅,故⊥,⊥,即PQ DC ⊥,PQ DQ ⊥, 又DCDQ D = 所以,⊥PQ 平面DCQ .(2)因为⊥平面ADPQ ,所以可取平面ADPQ 的一个法向量为)1,0,0(1=n,点B 的坐标为),0,(a a ,则),,0(a a -=,),,(a a a --=,设平面BCQ 的一个法向量为),,(2z y x n = ,则02=⋅QB n ,02=⋅n ,故⎩⎨⎧=+--=+-,0,0az ay ax az ay 即⎩⎨⎧=+--=+-,0,0z y x z y 取1==z y ,则0=x ,故)1,1,0(2=n .设1n 与2n 的夹角为θ,则2221||||cos 2121==⋅=n n n n θ. 所以,平面BCQ 与平面ADPQ 所成的锐二面角的大小为4π 考点:1.空间向量的应用;2.二面角的计算;3.直线与平面的位置关系2.(1)60︒; (2)5102; (3)F 是A D的4等分点,靠近A点的位置. 【解析】试题分析:(1)取AD 中点M,连接M O,PM,由正四棱锥的性质知∠PMO 为所求二面角P-AD-O 的平面角,∠P AO 为侧棱P A与底面ABCD 所成的角∴tan ∠PAO =26,设AB =a ,则AO =22a,PO =23a,MO=12a , t an ∠PM O=3,∠PM O=60°; (2)依题意连结AE ,OE ,则OE ∥P D ,故∠O EA 为异面直线PD 与A E所成的角,由正四棱锥的性质易证OA ⊥平面POB,故AOE ∆为直角三角形,OE =21PD=2122DO PO +=45a ∴tan ∠AEO=EO AO =5102;(3)延长M O交BC 于N ,取PN 中点G,连BG,E G,MG,易得BC ⊥平面P MN ,故平面PMN ⊥平面PB C,而△PMN 为正三角形,易证MG ⊥平面P BC ,取MA 的中点F,连EF,则四边形M FE G为平行四边形,从而M G//FE,EF⊥平面PBC,F 是AD 的4等分点,靠近A 点的位置.试题解析:(1)取AD 中点M,连接M O,PM,依条件可知AD ⊥MO,AD ⊥PO,则∠PMO 为所求二面M DB A CO EP角P-A D-O 的平面角 (2分)∵PO ⊥面ABC D,∴∠PA O为侧棱PA 与底面A BCD 所成的角.∴t an ∠PAO =26设AB =a ,AO=22a ,∴PO=AO·tan∠P OA =23a,tan ∠PMO =MO PO =3.∴∠PMO =60°. (4分)(2)连接AE ,OE , ∵OE ∥PD,∴∠O EA 为异面直线PD 与AE 所成的角. (6分)∵AO ⊥BD ,AO ⊥P O,∴AO ⊥平面PBD.又OE ⊂平面P BD ,∴AO ⊥OE .∵OE=21PD =2122DO PO +=45a, ∴tan ∠AEO=EOAO =5102. (8分) (3)延长MO 交B C于N,取PN 中点G ,连BG,EG ,MG. M D BACOEP∵BC ⊥M N,BC ⊥PN,∴B C⊥平面PM N∴平面PMN ⊥平面PBC . (10分)又PM=PN,∠PMN=60°,∴△PMN 为正三角形.∴MG ⊥PN.又平面PM N∩平面PBC=PN,∴MG ⊥平面P BC. (12分)∴F 是AD 的4等分点,靠近A 点的位置 (13分)考点:立体几何的综合问题3.(1)见解析;(2)见解析;(3)45︒.【解析】试题分析:(1)取CE 中点P,连接FP 、BP ,根据中位线定理可知FP||D E,且且F P=.21DE ,而AB||D E,且AB =.21DE 则ABPF 为平行四边形,则AF ||BP,AF ⊄平面BCE,BP ⊂平面BCE,满足线面平行的判定定理,从而证得结论;(2)根据A B⊥平面ACD,DE||AB ,则DE ⊥平面ACD ,又A F⊂平面AC D,根据线面垂直的性质可知DE AF AF CD CD DE D ⊥⊥=.又,,满足线面垂直的判定定理,证得AF ⊥平面CDE ,又BP||AF,则BP ⊥平面CDE ,BP ⊂平面BCE,根据面面垂直的判定定理可证得结论;(3)由(2),以F 为坐标原点,FA,F D,F P所在的直线分别为x,y,z 轴建立空间直角坐标系F ﹣x yz .设AC=2,根据线面垂直求出平面BCE 的法向量n,而m=(0,0,1)为平面ACD 的法向量,设平面BCE 与平面ACD 所成锐二面角为α,根据||cos ||||m n m n α⋅=⋅可求出所求.试题解析:(1)解:取CE 中点P,连结FP 、BP,∵F 为CD 的中点,∴F P||DE ,且FP=.21DE 又AB ||DE ,且AB =.21DE ∴A B||FP,且AB=FP ,∴ABPF 为平行四边形,∴AF ||BP 又∵M D B A CO E PN GFAF ⊄平面B CE,BP ⊂平面BC E,∴AF||平面BCE(2)∵△A CD 为正三角形,∴AF CD ⊥.∵AB ⊥平面ACD,DE||A B,∴DE ⊥平面ACD ,又AF ⊂平面A CD ,∴DE ⊥AF.又AF ⊥C D,CD∩DE=D,∴AF ⊥平面CDE 又BP||A F,∴B P⊥平面CDE.又∵BP ⊂平面BCE,∴平面BCE ⊥平面CDE (3)法一、由(2),以F 为坐标原点,FA ,FD,FP 所在的直线分别为x ,y,z轴(如图),建立空间直角坐标系F —x yz.设A C=2,则C(0,—1,0),).2,1,0(,),1,0,3(E B - 设(,,)n x y z =为平面BCE 的法向量,300,0,220x y z n CB n CE y z ⎧++=⎪∴⋅=⋅=∴⎨+=⎪⎩,令n=1,则(0,1,1)n =-显然,)1,0,0(=m 为平面A CD的法向量.设面B CE 与面A CD 所成锐二面角为,α则||2cos ||||2m n m n α⋅===⋅∴ 45=α.即平面BCE 与平面A CD所成锐二面角为45︒法二、延长EB 、DA,设E B、DA 交于一点O,连结CO .则面EBC 面DAC CO =.由A B是EDO∆的中位线,则AD DO 2=.在OCD ∆中22OD AD AC ==,060=∠ODC .CD OC ⊥,又DE OC ⊥.OC ∴⊥ 面,ECD 而CE ⊂面E CD,ﻭ为所求二面角的平面角ECD CE OC ∠∴⊥∴, ﻭ在Rt EDC ∆中,ED CD =,045=∠∴ECD 即平面B CE 与平面ACD 所成锐二面角为45︒. 考点:与二面角有关的立体几何综合题;直线与平面平行的判定;平面与平面垂直的判定.4.证明见解析【解析】试题分析::(1)利用已知的线面垂直关系建立空间直角坐标系,准确写出相关点的坐标,从而将几何证明转化为向量运算.其中灵活建系是解题的关键.(2)证明线面平行,需证线线平行,只需要证明直线的方向向量与平面的法向量垂直;(3)把向量夹角的余弦值转化为两平面法向量夹角的余弦值;(4)空间向量将空间位置关系转化为向量运算,应用的核心是要充分认识形体特征,建立恰当的坐标系,实施几何问题代数化.同时注意两点:一是正确写出点、向量的坐标,准确运算;二是空间位置关系中判定定理与性质定理条件要完备.试题解析:(1)如图,以D 为原点,以,,DA DC DP 为方向向量建立空间直角坐标系,xyz D -则)0,0,2(),1,0,0(),1,1,0(),0,2,1(),0,2,0(),2,0,0(A F E G C P .)11,1(),0,1,0(),2,0,2(-=-=-=∴.设平面EFG 的法向量为(,,)n x y z =0,0,n EF n EG ⎧⋅=⎪∴⎨⋅=⎪⎩即⎩⎨⎧=-+=-.0,0z y x y ⎩⎨⎧==∴.0,y z x 令1=x 则(1,0,1)n =.1(2)00120,.n AP n AP ⋅=⨯-+⨯+⨯=∴⊥又⊄AP 平面//,AP EFG ∴平面.EFG(2) 底面ABCD 是正方形,,DC AD ⊥∴又⊥PD 平面ABCD.AD PD ⊥∴又D CD PD = ,AD ∴⊥平面PCD∴向量DA 是平面PCD 的一个法向量,)0,0,2(=DA 又由(1)知平面EFG 的法向量(1,0,1)n =.cos ,||||22DA n DA n DA n ⋅∴<>===⋅ ∴二面角D EF G --的平面角为045.考点:(1)证明直线与平面平行;(2)利用空间向量解决二面角问题.5.(Ⅰ)详见解析;(Ⅱ)3π. 【解析】试题分析:(Ⅰ)取1A B 的中点D,连接AD ,由已知条件推导出AD⊥平面1A BC ,从而AD BC ⊥,由线面垂直得1AA BC ⊥.由此能证明AB BC ⊥.(Ⅱ)方法一:连接CD,由已知条件得ACD ∠即为直线AC 与平面1A BC 所成的角,AED ∠即为二面角1A A C B --的一个平面角,由此能求出二面角1A A C B --的大小.解法二(向量法):由(1)知AB BC ⊥且1BB ABC ⊥底面,所以以点B 为原点,以1BC BA BB 、、所在直线分别为,,x y z 轴建立空间直角坐标系B xyz -,设BC a =,则(0,2,0)A ,(0,0,0)B ,(,0,0)C a ,1(0,2,2)A ,(,0,0)BC a =,1(0,2,2)BA =,(,2,0)AC a =-, 1(0,0,2)AA =,求出平面1A BC 的一个法向量1(,,)n x y z =,设直线AC 与平面1A BC 所成的角为θ,则6πθ=得12121sin6242AC n AC n a π-===+,解得2a =,即(2,2,0)AC =-,求出平面1A AC 的一个法向量为2(1,1,0)n =,设锐二面角1A A C B --的大小为α,则1212121cos cos ,2n n n n n n α=<>==,且(0,)2πα∈, 即可求出锐二面角1A A C B --的大小.试题解析:解(1)证明:如图,取1A B 的中点D ,连接AD ,因1AA AB =,则1AD A B ⊥ 由平面1A BC ⊥侧面11A ABB ,且平面1A BC侧面11A ABB 1A B =,得1AD A BC ⊥平面,又BC ⊂平面1A BC , 所以AD BC ⊥.因为三棱柱111ABC A B C —是直三棱柱,则1AA ABC ⊥底面,所以1AA BC ⊥. 又1=AA AD A ,从而BC ⊥侧面11A ABB ,又AB ⊂侧面11A ABB ,故AB BC ⊥. -------6分解法一:连接CD ,由(1)可知1AD A BC ⊥平面,则CD 是AC 在1A BC 平面内的射影 ∴ACD ∠即为直线AC 与1A BC 平面所成的角,则=6ACD π∠ 在等腰直角1A AB∆中,12AA AB ==,且点D 是1A B 中点,∴1122AD A B ==,且=2ADC π∠,=6ACD π∠ ∴22AC =过点A 作1AE A C ⊥于点E ,连DE ,由(1)知1AD A BC ⊥平面,则1AD A C ⊥,且AE AD A =∴AED ∠即为二面角1A A C B --的一个平面角且直角1A AC ∆中:11A A AC AE AC ⋅===,又AD ,=2ADE π∠∴sin =3AD AED AE ∠==且二面角1A A C B --为锐二面角 ∴=3AED π∠,即二面角1A A C B --的大小为3π----12分解法二(向量法):由(1)知AB BC ⊥且1BB ABC ⊥底面,所以以点B 为原点,以1BC BA BB 、、所在直线分别为,,x y z 轴建立空间直角坐标系B xyz -,如图所示,且设BC a =,则(0,2,0)A ,(0,0,0)B ,(,0,0)C a ,1(0,2,2)A ,(,0,0)BC a =,1(0,2,2)BA =,(,2,0)AC a =-,1(0,0,2)AA = 设平面1A BC 的一个法向量1(,,)n x y z =,由1BC n ⊥, 11BA n ⊥得:220xa y z =⎧⎨+=⎩令1y = ,得 0,1x z ==-,则1(0,1,1)n =- 设直线AC 与1A BC 平面所成的角为θ,则6πθ=得111sin624AC n AC n π⋅===,解得2a =,即(2,2,0)AC =- 又设平面1A AC 的一个法向量为2n ,同理可得2(1,1,0)n =,设锐二面角1A A C B --的大小为α,则1212121cos cos ,2n n n n n n α⋅=<>==,且(0,)2πα∈,得 3πα=∴ 锐二面角1A A C B --的大小为3π. 考点:1.用空间向量求平面间的夹角;2.空间中直线与直线之间的位置关系. 6.(1)证明见解析;(2)045【解析】试题分析:(1)利用已知的线面垂直关系建立空间直角坐标系,准确写出相关点的坐标,从而将几何证明转化为向量运算.其中灵活建系是解题的关键.(2)证明证线线垂直,只需要证明直线的方向向量垂直;(3)把向量夹角的余弦值转化为两平面法向量夹角的余弦值;(4)空间向量将空间位置关系转化为向量运算,应用的核心是要充分认识形体特征,建立恰当的坐标系,实施几何问题代数化.同时注意两点:一是正确写出点、向量的坐标,准确运算;二是空间位置关系中判定定理与性质定理条件要完备. 试题解析:(1)证明:F ,G 分别为PB ,BE 的中点,FG∴PE .又FG ⊄平面PED ,PE ⊂平面PED ,FG∴平面PED .(2)解:EA ⊥平面ABCD ,EA PD ,PD ∴⊥平面.ABCD,AD CD ⊂平面,ABCD PD AD ∴⊥,PD CD ⊥.四边形ABCD 是正方形,AD CD ∴⊥.以D 为原点,分别以直线,,DA DC DP 为x 轴, y 轴,z 轴 建立如图所示的空间直角坐标系,设 1.EA = 2AD PD EA ==,D ∴()0,0,0,P ()0,0,2,A ()2,0,0,C ()0,2,0,B ()2,2,0,(2,0,1)E , (2,2,2)PB =-,(0,2,2)PC =-.F ,G ,H 分别为PB ,EB ,PC 的中点,F ∴()1,1,1,G 1(2,1,)2,H (0,1,1),1(1,0,)2GF =-,1(2,0,).2GH =-(解法一)设1111(,,)x y z =n 为平面FGH 的一个法向量,则110GF GH ⎧⋅=⎪⎨⋅=⎪⎩n n ,即11111021202x z x z ⎧-+=⎪⎪⎨⎪-+=⎪⎩,令11y =,得1(0,1,0)=n .设2222(,,)x y z =n 为平面PBC 的一个法向量,则220PB PC ⎧⋅=⎪⎨⋅=⎪⎩n n ,即222222220220x y z y z +-=⎧⎨-=⎩,令21z =,得2(0,1,1)=n .所以12cos ,n n =1212⋅⋅n n n n=2.所以平面FGH 与平面PBC 所成锐二面角的大小为π4(或45︒) (解法二)(0,1,1)(2,0,0)0DH BC ⋅=⋅-=,(0,1,1)(0,2,2)0DH PC ⋅=⋅-=,DH ∴是平面PBC 一个法向量.(0,2,0)(1,0,0)0DC FH ⋅=⋅-=,1(0,2,0)(1,0,)02DC FG ⋅=⋅-=,DC ∴是平面平面FGH 一个法向量.cos ,2DH DC DH DC DH DC⋅===⋅ ∴平面FGH 与平面PBC 所成锐二面角的大小为π4(或45︒). (解法三)延长AE 到,Q 使得,AE EQ =连,.PQ BQQP HGFE D CBA2PD EA AQ ==,EA PD ,∴四边形ADPQ 是平行四边形,.PQAD四边形ABCD 是正方形,,.BCAD PQBC ∴F ,H分别为PB ,PC 的中点,,.FH BC FH PQ ∴FH ⊄平面PED ,PQ ⊂平面PED , FH ∴平面PED .,,FH FG F FH FG =⊂平面,ADPQ ∴平面FGH 平面.ADPQ故平面FGH 与平面PBC 所成锐二面角与二面角D PQ C --相等.,PQ CD PQ PD ⊥⊥,,,PD CD D PD DC =⊂平面,PDC PQ ∴⊥平面.PDCPC ⊂平面,,PDC PQ PC ∴⊥DPC ∠是二面角D PQ C --的平面角.,,45.AD PD AD PD DPC =⊥∴∠=︒∴平面FGH 与平面PBC 所成锐二面角的大小为π4(或45︒). 考点:1、直线与平面平行的判定;2、平面与平面所成的角.。

利用向量方法求空间角 知识点+例题+练习

利用向量方法求空间角 知识点+例题+练习

教学内容利用向量方法求空间角教学目标1.掌握各种空间角的定义,弄清它们各自的取值范围.2.掌握异面直线所成的角,二面角的平面角,直线与平面所成的角的联系和区别,体会求空间角中的转化思想.重点1.掌握各种空间角的定义,弄清它们各自的取值范围.2.掌握异面直线所成的角,二面角的平面角,直线与平面所成的角的联系和区别,体会求空间角中的转化思想.难点1.掌握各种空间角的定义,弄清它们各自的取值范围.2.掌握异面直线所成的角,二面角的平面角,直线与平面所成的角的联系和区别,体会求空间角中的转化思想.教学准备教学过程自主梳理1.两条异面直线的夹角①定义:设a,b是两条异面直线,在直线a上任取一点作直线a′∥b,则a′与a的夹角叫做a与b的夹角.②范围:两异面直线夹角θ的取值范围是_____________________.③向量求法:设直线a,b的方向向量为a,b,其夹角为φ,则有cos θ=________=_______________.2.直线与平面的夹角①定义:直线和平面的夹角,是指直线与它在这个平面内的射影的夹角.②范围:直线和平面夹角θ的取值范围是________________________.③向量求法:设直线l的方向向量为a,平面的法向量为u,直线与平面所成的角为θ,a与u的夹角为φ,则有sin θ=|cos φ|或cos θ=sin φ.3.二面角(1)二面角的取值范围是____________.(2)二面角的向量求法:①若AB、CD分别是二面角α—l—β的两个面内与棱l垂直的异面直线,则二面角的大小就是向量AB→与CD→的夹角(如图①).②设n1,n2分别是二面角α—l—β的两个面α,β的法向量,则向量n1与n2的夹角(或其补角)的大小就是二面角的平面角的大小(如图②③).自我检测1.已知两平面的法向量分别为m=(0,1,0),n=(0,1,1),则两平面所成的二面角为________.2.若直线l1,l2的方向向量分别为a=(2,4,-4),b=(-6,9,6),则l1与l2所成的角等于________.3.若直线l的方向向量与平面α的法向量的夹角等于120°,则直线l与平面α所成的角等于________.4.二面角的棱上有A、B两点,直线AC、BD分别在这个二面角的两个半平面内,且都垂直于AB.已知AB=4,AC=6,BD=8,CD=217,则该二面角的大小为_______________________________________.5.(2010·铁岭一模)已知直线AB、CD是异面直线,AC⊥CD,BD⊥CD,且AB=2,CD=1,则异面直线AB与CD所成的角的大小为________.教学效果分析教学过程探究点一利用向量法求异面直线所成的角例1已知直三棱柱ABC—A1B1C1,∠ACB=90°,CA=CB=CC1,D为B1C1的中点,求异面直线BD和A1C所成角的余弦值.变式迁移1如图所示,在棱长为a的正方体ABCD—A1B1C1D1中,求异面直线BA1和AC所成的角.探究点二利用向量法求直线与平面所成的角例2如图,已知平面ABCD⊥平面DCEF,M,N分别为AB,DF的中点,求直线MN与平面DCEF所成的角的正弦值.变式迁移2如图所示,在几何体ABCDE中,△ABC是等腰直角三角形,∠ABC=90°,BE和CD都垂直于平面ABC,且BE=AB=2,CD=1,点F是AE的中点.求AB与平面BDF所成的角的正弦值.教学效果分析教学过程探究点三利用向量法求二面角例3如图,ABCD是直角梯形,∠BAD=90°,SA⊥平面ABCD,SA=BC=BA=1,AD=12,求面SCD与面SBA所成角的余弦值大小.变式迁移3如图,在三棱锥S—ABC中,侧面SAB与侧面SAC均为等边三角形,∠BAC=90°,O为BC中点.(1)证明:SO⊥平面ABC;(2)求二面角A—SC—B的余弦值.探究点四综合应用例4如图所示,在三棱锥A—BCD中,侧面ABD、ACD是全等的直角三角形,AD是公共的斜边,且AD=3,BD=CD=1,另一个侧面ABC是正三角形.(1)求证:AD⊥BC;(2)求二面角B-AC-D的余弦值;(3)在线段AC上是否存在一点E,使ED与面BCD成30°角?若存在,确定点E的位置;若不存在,说明理由.教学效果分析教学过程变式迁移4 (2011·山东,19)在如图所示的几何体中,四边形ABCD为平行四边形,∠ACB=90°,EA⊥平面ABCD,EF∥AB,FG∥BC,EG∥AC,AB=2EF.(1)若M是线段AD的中点,求证:GM∥平面ABFE;(2)若AC=BC=2AE,求二面角A-BF-C的大小.1.求两异面直线a、b的所成的角θ,需求出它们的方向向量a,b的夹角,则cos θ=|cos〈a,b〉|.2.求直线l与平面α所成的角θ.可先求出平面α的法向量n与直线l的方向向量a的夹角.则sin θ=|cos〈n,a〉|.3.求二面角α—l—β的大小θ,可先求出两个平面的法向量n1,n2所成的角.则θ=〈n1,n2〉或π-〈n1,n2〉.)一、填空题(每小题6分,共48分)1.在正方体ABCD—A1B1C1D1中,M是AB的中点,则sin〈DB1→,CM→〉的值等于________.2.已知长方体ABCD-A1B1C1D1中,AB=BC=1,AA1=2,E是侧棱BB1的中点,则直线AE与平面A1ED1所成的角的大小为________.3.如图,在正四面体ABCD中,E、F分别是BC和AD的中点,则AE与CF所成的角的余弦值为________.教学效果分析教学过程4.(2011·南通模拟) 如图所示,在长方体ABCD—A1B1C1D1中,已知B1C,C1D与上底面A1B1C1D1所成的角分别为60°和45°,则异面直线B1C和C1D所成的余弦值为________.5.P是二面角α—AB—β棱上的一点,分别在α、β平面上引射线PM、PN,如果∠BPM=∠BPN=45°,∠MPN=60°,那么二面角α—AB—β的大小为________.6.(2011·无锡模拟)已知正四棱锥P—ABCD的棱长都相等,侧棱PB、PD的中点分别为M、N,则截面AMN与底面ABCD所成的二面角的余弦值是________.7.如图,P A⊥平面ABC,∠ACB=90°且P A=AC=BC=a,则异面直线PB与AC所成角的正切值等于________.8.如图,已知正三棱柱ABC—A1B1C1的所有棱长都相等,D是A1C1的中点,则直线AD与平面B1DC所成的角的正弦值为________.二、解答题(共42分)9.(14分) 如图所示,AF、DE分别是⊙O、⊙O1的直径,AD与两圆所在的平面均垂直,AD=8.BC是⊙O的直径,AB=AC=6,OE∥AD.(1)求二面角B-AD-F的大小;(2)求直线BD与EF所成的角的余弦值.10.(14分)(2011·大纲全国,19)如图,四棱锥S-ABCD中,AB∥CD,BC⊥CD,侧面SAB为等边三角形,AB=BC=2,CD=SD=1.(1)证明:SD⊥平面SAB;(2)求AB与平面SBC所成角的正弦值.教学效果分析教学过程11.(14分)(2011·湖北,18)如图,已知正三棱柱ABC-A1B1C1各棱长都是4,E是BC的中点,动点F在侧棱CC1上,且不与点C重合.(1)当CF=1时,求证:EF⊥A1C;(2)设二面角C-AF-E的大小为θ,求tan θ的最小值.自主梳理1.②⎝⎛⎦⎤0,π2③|cos φ|⎪⎪⎪⎪a·b|a|·|b| 2.②⎣⎡⎦⎤0,π2 3.(1)[0,π]教学效果分析自我检测 1.45°或135° 2.90° 3.30° 4.60° 5.60° 课堂活动区例1 解题导引 (1)求异面直线所成的角,用向量法比较简单,若用基向量法求解,则必须选好空间的一组基向量,若用坐标求解,则一定要将每个点的坐标写正确.(2)用异面直线方向向量求两异面直线夹角时,应注意异面直线所成的角的范围是⎝⎛⎦⎤0,π2 解如图所示,以C 为原点,直线CA 、CB 、CC 1分别为x 轴、y 轴、z 轴建立空间直角坐标系.设CA =CB =CC 1=2,则A 1(2,0,2),C (0,0,0),B (0,2,0),D (0,1,2), ∴BD →=(0,-1,2),A 1C →=(-2,0,-2),∴cos 〈BD →,A 1C →〉=BD →·A 1C →|BD →||A 1C →|=-105.∴异面直线BD 与A 1C 所成角的余弦值为105.变式迁移1 解 ∵BA 1→=BA →+BB 1→,AC →=AB →+BC →, ∴BA 1→·AC →=(BA →+BB 1→)·(AB →+BC →) =BA →·AB →+BA →·BC →+BB 1→·AB →+BB 1→·BC →. ∵AB ⊥BC ,BB 1⊥AB ,BB 1⊥BC , ∴BA →·BC →=0,BB 1→·AB →=0, BB 1→·BC →=0,BA →·AB →=-a 2, ∴BA 1→·AC →=-a 2. 又BA 1→·AC →=|BA 1→|·|AC →|·cos 〈BA 1→,AC →〉,∴cos 〈BA 1→,AC →〉=-a 22a ×2a =-12.∴〈BA 1→,AC →〉=120°.∴异面直线BA 1与AC 所成的角为60°.例2 解题导引 在用向量法求直线OP 与α所成的角(O ∈α)时,一般有两种途径:一是直接求〈OP →,OP ′→〉,其中OP ′为斜线OP 在平面α内的射影;二是通过求〈n ,OP →〉进而转化求解,其中n 为平面α的法向量.解设正方形ABCD ,DCEF 的边长为2,以D 为坐标原点,分别以射线DC ,DF ,DA 为x ,y ,z 轴正半轴建立空间直角坐标系如图.则M (1,0,2),N (0,1,0),可得MN →=(-1,1,-2).又DA →=(0,0,2)为平面DCEF 的法向量,可得cos 〈MN →,DA →〉=MN →·DA →|MN →||DA →|=-63.所以MN 与平面DCEF 所成的角的正弦值为|cos 〈MN →,DA →〉|=63.变式迁移2 解 以点B 为原点,BA 、BC 、BE 所在的直线分别为x ,y ,z 轴,建立如图所示的空间直角坐标系,则B (0,0,0),A (2,0,0),C (0,2,0),D (0,2,1),E (0,0,2),F (1,0,1). ∴BD →=(0,2,1),DF →=(1,-2,0). 设平面BDF 的一个法向量为 n =(2,a ,b ),∵n ⊥DF →,n ⊥BD →, ∴⎩⎪⎨⎪⎧n ·DF →=0,n ·BD →=0.即⎩⎪⎨⎪⎧(2,a ,b )·(1,-2,0)=0,(2,a ,b )·(0,2,1)=0. 解得a =1,b =-2.∴n =(2,1,-2). 设AB 与平面BDF 所成的角为θ,则法向量n 与BA →的夹角为π2-θ,∴cos ⎝⎛⎭⎫π2-θ=BA →·n |BA →||n |=(2,0,0)·(2,1,-2)2×3=23, 即sin θ=23,故AB 与平面BDF 所成的角的正弦值为23.例3 解题导引 图中面SCD 与面SBA 所成的二面角没有明显的公共棱,考虑到易于建系,从而借助平面的法向量来求解.解建系如图,则A (0,0,0), D ⎝⎛⎭⎫12,0,0,C (1,1,0), B (0,1,0),S (0,0,1), ∴AS →=(0,0,1),SC →=(1,1,-1),SD →=⎝⎛⎭⎫12,0,-1,AB →=(0,1,0),AD →=⎝⎛⎭⎫12,0,0. ∴AD →·AS →=0,AD →·AB →=0. ∴AD →是面SAB 的法向量,设平面SCD 的法向量为n =(x ,y ,z ),则有n ·SC →=0且n ·SD →=0.即⎩⎪⎨⎪⎧x +y -z =0,12x -z =0.令z =1,则x =2,y =-1.∴n =(2,-1,1).∴cos 〈n ,AD →〉=n ·AD →|n ||AD →|=2×126×12=63.故面SCD 与面SBA 所成的二面角的余弦值为63. 变式迁移3 (1)证明 由题设AB =AC =SB =SC =SA . 连结OA ,△ABC 为等腰直角三角形,所以OA =OB =OC =22SA , 且AO ⊥BC .又△SBC 为等腰三角形,故SO ⊥BC ,且SO =22SA .从而OA 2+SO 2=SA 2,所以△SOA 为直角三角形,SO ⊥AO . 又AO ∩BC =O ,所以SO ⊥平面ABC . (2)解以O 为坐标原点,射线OB 、OA 、OS 分别为x 轴、y 轴、z 轴的正半轴,建立如图的空间直角坐标系O -xyz ,如图.设B (1,0,0),则C (-1,0,0), A (0,1,0),S (0,0,1).SC 的中点M ⎝⎛⎭⎫-12,0,12, MO →=⎝⎛⎭⎫12,0,-12,MA →=⎝⎛⎭⎫12,1,-12, SC →=(-1,0,-1), ∴MO →·SC →=0,MA →·SC →=0.故MO ⊥SC ,MA ⊥SC ,〈MO →,MA →〉等于二面角A —SC —B 的平面角.cos 〈MO →,MA →〉=MO →·MA →|MO →||MA →|=33,所以二面角A —SC —B 的余弦值为33.例4 解题导引 立体几何中开放性问题的解决方式往往是通过假设,借助空间向量建立方程,进行求解.(1)证明作AH ⊥面BCD 于H ,连结BH 、CH 、DH ,则四边形BHCD 是正方形,且AH =1,将其补形为如图所示正方体.以D 为原点,建立如图所示空间直角坐标系.则B (1,0,0),C (0,1,0),A (1,1,1). BC →=(-1,1,0),DA →=(1,1,1), ∴BC →·DA →=0,则BC ⊥AD .(2)解 设平面ABC 的法向量为n 1=(x ,y ,z ),则由n 1⊥BC →知:n 1·BC →=-x +y =0,同理由n 1⊥AC →知:n 1·AC →=-x -z =0, 可取n 1=(1,1,-1),同理,可求得平面ACD 的一个法向量为n 2=(1,0,-1). 由图可以看出,二面角B -AC -D 即为〈n 1,n 2〉,∴cos 〈n 1,n 2〉=n 1·n 2|n 1||n 2|=1+0+13×2=63.即二面角B -AC -D 的余弦值为63. (3)解 设E (x ,y ,z )是线段AC 上一点, 则x =z >0,y =1,平面BCD 的一个法向量为n =(0,0,1),DE →=(x,1,x ),要使ED 与平面BCD 成30°角,由图可知DE →与n 的夹角为60°,所以cos 〈DE →,n 〉=DE →·n |DE →||n |=x 1+2x 2 =cos 60°=12.则2x =1+2x 2,解得x =22,则CE =2x =1.故线段AC 上存在E 点,且CE =1时,ED 与面BCD 成30°. 变式迁移4(1)证明 方法一 因为EF ∥AB ,FG ∥BC ,EG ∥AC ,∠ACB =90°, 所以∠EGF =90°, △ABC ∽△EFG . 由于AB =2EF , 因此BC =2FG . 连结AF ,由于FG ∥BC ,FG =12BC ,在▱ABCD 中,M 是线段AD 的中点,则AM ∥BC ,且AM =12BC ,因此FG ∥AM 且FG =AM ,所以四边形AFGM 为平行四边形, 因此GM ∥F A .又F A ⊂平面ABFE ,GM ⊄平面ABFE ,方法二 因为EF ∥AB ,FG ∥BC ,EG ∥AC ,∠ACB =90°, 所以∠EGF =90°, △ABC ∽△EFG . 由于AB =2EF , 所以BC =2FG .取BC 的中点N ,连结GN ,因此四边形BNGF 为平行四边形, 所以GN ∥FB .在▱ABCD 中,M 是线段AD 的中点,连结MN , 则MN ∥AB .因为MN ∩GN =N , 所以平面GMN ∥平面ABFE .又GM ⊂平面GMN ,所以GM ∥平面ABFE .(2)解 方法一 因为∠ACB =90°,所以∠CAD =90°. 又EA ⊥平面ABCD ,所以AC ,AD ,AE 两两垂直.分别以AC ,AD ,AE 所在直线为x 轴,y 轴和z 轴,建立如图所示的空间直角坐标系,不妨设AC =BC =2AE =2,则由题意得A (0,0,0),B (2,-2,0),C (2,0,0),E (0,0,1),所以AB →=(2,-2,0),BC →=(0,2,0).又EF =12AB ,所以F (1,-1,1),BF →=(-1,1,1).设平面BFC 的法向量为m =(x 1,y 1,z 1),则m ·BC →=0,m ·BF →=0,所以⎩⎪⎨⎪⎧y 1=0,x 1=z 1,取z 1=1,得x 1=1,所以m =(1,0,1).设平面向量ABF 的法向量为n =(x 2,y 2,z 2),则n ·AB →=0,n ·BF →=0,所以⎩⎪⎨⎪⎧x 2=y 2,z 2=0,取y 2=1,得x 2=1.则n =(1,1,0).所以cos 〈m ,n 〉=m ·n |m |·|n |=12.因此二面角A -BF -C 的大小为60°.方法二 由题意知,平面ABFE ⊥平面ABCD . 取AB 的中点H ,连结CH . 因为AC =BC , 所以CH ⊥AB ,过H 向BF 引垂线交BF 于R ,连结CR ,则CR ⊥BF , 所以∠HRC 为二面角A -BF -C 的平面角. 由题意,不妨设AC =BC =2AE =2,在直角梯形ABFE 中,连结FH ,则FH ⊥AB . 又AB =22,所以HF =AE =1,BH =2,因此在Rt △BHF 中,HR =63.由于CH =12AB =2,所以在Rt △CHR 中,tan ∠HRC =263= 3.因此二面角A -BF -C 的大小为60°. 课后练习区 1.21015 2.90°解析 ∵E 是BB 1的中点且AA 1=2,AB =BC =1, ∴∠AEA 1=90°,又在长方体ABCD -A 1B 1C 1D 1中, A 1D 1⊥平面ABB 1A 1,∴A 1D 1⊥AE ,∴AE ⊥平面A 1ED 1. ∴AE 与面A 1ED 1所成的角为90°. 3.23解析 设四面体的棱长为a , AB →=p ,AC →=q ,AD →=r ,则AE →=12(p +q ),CF →=12(r -2q ).∴AE →·CF →=-12a 2.又|AE →|=|CF →|=32a ,∴cos 〈AE →,CF →〉=AE →,CF →|AE →|·|CF →|=-23.即AE 和CF 所成角的余弦值为23.4.64 5.90° 解析不妨设PM =a ,PN =b ,作ME ⊥AB 于E ,NF ⊥AB 于F , 如图:∵∠EPM =∠FPN =45°,∴PE =22a ,PF =22b ,∴EM →·FN →=(PM →-PE →)·(PN →-PF →) =PM →·PN →-PM →·PF →-PE →·PN →+PE →·PF →=ab cos 60°-a ×22b cos 45°-22ab cos 45°+22a ×22b=ab 2-ab 2-ab 2+ab2=0, ∴EM →⊥FN →,∴二面角α—AB —β的大小为90°. 6.255解析 如图建立空间直角坐标系,设正四棱锥的棱长为2,则PB =2,OB =1,OP =1. ∴B (1,0,0),D (-1,0,0), A (0,1,0),P (0,0,1), M ⎝⎛⎭⎫12,0,12, N ⎝⎛⎭⎫-12,0,12, AM →=⎝⎛⎭⎫12,-1,12, AN →=⎝⎛⎭⎫-12,-1,12, 设平面AMN 的法向量为n 1=(x ,y ,z ),由⎩⎨⎧n ·AM →=12x -y +12z =0,n ·AN →=-12x -y +12z =0,解得x =0,z =2y ,不妨令z =2,则y =1.∴n 1=(0,1,2),平面ABCD 的法向量n 2=(0,0,1),则cos 〈n 1,n 2〉=n 1·n 2|n 1|·|n 2|=25=255.7. 2解析 PB →=P A →+AB →,故PB →·AC →=(P A →+AB →)·AC →=P A →·AC →+AB →·AC →=0+a ×2a ×cos 45°=a 2.又|PB →|=3a ,|AC →|=a .∴cos 〈PB →,AC →〉=33,sin 〈PB →,AC →〉=63,∴tan 〈PB →,AC →〉= 2. 8.45解析 不妨设正三棱柱ABC —A 1B 1C 1的棱长为2,建立如图所示的空间直角坐标系,则C (0,0,0),A (3,-1,0),B 1(3,1,2),D ⎝⎛⎭⎫32,-12,2.则CD →=⎝⎛⎭⎫32,-12,2,CB 1→=(3,1,2),设平面B 1DC 的法向量为 n =(x ,y,1),由⎩⎪⎨⎪⎧n ·CD →=0,n ·CB 1→=0,解得n =(-3,1,1).又∵DA →=⎝⎛⎭⎫32,-12,-2,∴sin θ=|cos 〈DA →,n 〉|=45.9.解 (1)∵AD 与两圆所在的平面均垂直, ∴AD ⊥AB ,AD ⊥AF ,故∠BAF 是二面角B —AD —F 的平面角.(2分) 依题意可知,ABFC 是正方形,∴∠BAF =45°. 即二面角B —AD —F 的大小为45°.(5分)(2)以O 为原点,CB 、AF 、OE 所在直线为坐标轴,建立空间直角坐标系(如图所示),则O (0,0,0),A (0,-3 2,0),B (3 2,0,0),D (0,-3 2,8),E (0,0,8),F (0,3 2,0),(8分)∴BD →=(-3 2,-3 2,8), EF →=(0,3 2,-8).cos 〈BD →,EF →〉=BD →·EF →|BD →||EF →|=0-18-64100×82=-8210.(12分)设异面直线BD 与EF 所成角为α,则cos α=|cos 〈BD →,EF →〉|=8210.即直线BD 与EF 所成的角的余弦值为8210.(14分) 10.方法一 (1)证明 取AB 中点E ,连结DE ,则四边形BCDE 为矩形,DE =CB =2,连结SE ,则SE ⊥AB ,SE = 3.又SD =1,故ED 2=SE 2+SD 2,所以∠DSE 为直角,即SD ⊥SE .(4分) 由AB ⊥DE ,AB ⊥SE ,DE ∩SE =E , 得AB ⊥平面SDE , 所以AB ⊥SD .由SD 与两条相交直线AB 、SE 都垂直,所以SD ⊥平面SAB .(7分)(2)解 由AB ⊥平面SDE 知,平面ABCD ⊥平面SDE .(10分)作SF ⊥DE ,垂足为F ,则SF ⊥平面ABCD ,SF =SD ·SE DE =32.作FG ⊥BC ,垂足为G ,则FG =DC =1. 连结SG ,又BC ⊥FG ,BC ⊥SF ,SF ∩FG =F , 故BC ⊥平面SFG ,平面SBC ⊥平面SFG . 作FH ⊥SG ,H 为垂足,则FH ⊥平面SBC .FH =SF ·FG SG =37,则F 到平面SBC 的距离为217.由于ED ∥BC ,所以ED ∥平面SBC ,E 到平面SBC 的距离d 为217.(12分)设AB 与平面SBC 所成的角为α,则sin α=d EB =217,即AB 与平面SBC 所成的角的正弦值为217.(14分)方法二 以C 为坐标原点,射线CD 为x 轴正半轴,建立如图所示的空间直角坐标系C -xyz .设D (1,0,0),则A (2,2,0)、B (0,2,0).(2分) 又设S (x ,y ,z ),则x >0,y >0,z >0.(1)证明 AS →=(x -2,y -2,z ),BS →=(x ,y -2,z ), DS →=(x -1,y ,z ), 由|AS →|=|BS →|得(x -2)2+(y -2)2+z 2=x 2+(y -2)2+z 2, 故x =1. 由|DS →|=1得y 2+z 2=1.①又由|BS →|=2得x 2+(y -2)2+z 2=4, 即y 2+z 2-4y +1=0.②联立①②得⎩⎨⎧y =12,z =32.(4分)于是S (1,12,32),AS →=(-1,-32,32),BS →=(1,-32,32),DS →=(0,12,32).因为DS →·AS →=0,DS →·BS →=0, 故DS ⊥AS ,DS ⊥BS .又AS ∩BS =S ,所以SD ⊥平面SAB .(7分) (2)解 设平面SBC 的法向量a =(m ,n ,p ),则a ⊥BS →,a ⊥CB →,a ·BS →=0,a ·CB →=0.又BS →=(1,-32,32),CB →=(0,2,0),故⎩⎪⎨⎪⎧m -32n +32p =0,2n =0.取p =2得a =(-3,0,2).(10分) 又AB →=(-2,0,0),cos 〈AB →,a 〉=|AB →·a ||AB →||a |=217,所以AB 与平面SBC 所成角的正弦值为217.(14分) 11.(1)证明 建立如图所示的空间直角坐标系,则由已知可得A (0,0,0),B (23,2,0),C (0,4,0),A 1(0,0,4),E (3,3,0),F (0,4,1).(2分)于是CA 1→=(0,-4,4), EF →=(-3,1,1). 则CA 1→·EF →=(0,-4,4)·(-3,1,1)=0-4+4=0, 故EF ⊥A 1C .(8分)(2)解 设CF =λ(0<λ≤4),平面AEF 的一个法向量为m =(x ,y ,z ), 则由(1)得F (0,4,λ).(8分) AE →=(3,3,0),AF →=(0,4,λ),于是由m ⊥AE →,m ⊥AF →可得⎩⎪⎨⎪⎧m ·AE →=0,m ·AF →=0,即⎩⎨⎧3x +3y =0,4y +λz =0.取m =(3λ,-λ,4).又由直三棱柱的性质可取侧面AC 1的一个法向量为n =(1,0,0),于是由θ的锐角可得cos θ=|m ·n ||m |·|n |=3λ2λ2+4,sin θ=λ2+162λ2+4,所以tan θ=λ2+163λ=13+163λ2.(10分) 由0<λ≤4,得1λ≥14,即tan θ≥13+13=63. 故当λ=4,即点F 与点C 1重合时,tan θ取得最小值63.(14分)。

利用向量法求空间角

利用向量法求空间角
与 和 m
的夹角n
与 和 的夹角
m
n
互补
相等
a
m
a
m


o


o







n
cos =
b
b

cos ,
n
cos =
−cos ,
用向量法求异面直线所成角
设两异面直线a、b的方向向量分别为 m 和 n ,
所以,异面直线a、b所成的角的余弦
值为
cos cos m, n
⋅ AB = 0, ⋅ SA = 0
− + = 0
∴ቊ
2 − = 0
取x=1,则y=1,z=2; 故
∴ sin =
(3)由(2)知面SAB的法向量1
又∵OC⊥平面AOS,

则有
=(1,1,2)
∴ OC
是平面AOS的法向量,
2 = OC = (0,1,0)
cos < 1 , 2 >=
于是我们有 SA=(2,0,-1);
OS=(0,0,1);
(1).cos < SA, OB>=
OB=(1,1,0);
y
O
AB=(-1,1,0);
SA ⋅ OB
=
SA ⋅ OB
=
A
2
5⋅
10
5
C
2
B
x
所以异面直线SA与OB所成的角的余弦值为
10
5
(2)设平面SAB的法向量
显然有
= (, , )
二、知识讲解与典例分析
例1:在Rt△AOB中,∠AOB=90°,现将△AOB沿着平面AOB的法

法向量解立体几何专题训练

法向量解立体几何专题训练

法向量解立体几何专题训练一、运用法向量求空间角1、向量法求空间两条异面直线a, b 所成角θ,只要在两条异面直线a, b 上各任取一个向量''AA BB 和,则角<','AA BB >=θ或π-θ,因为θ是锐角,所以cos θ=''''AA BB AA BB ⋅⋅, 不需要用法向量;2、设平面α的法向量为n =x, y, 1,则直线AB 和平面α所成的角θ的正弦值为sin θ=cos2π-θ = |cos<AB , n >| = AB AB n n•• 3、 设二面角的两个面的法向量为12,n n ,则<12,n n >或π-<12,n n >是所求角;这时要借助图形来判断所求角为锐角还是钝角,来决定<12,n n >是所求,还是π-<12,n n >是所求角; 二、运用法向量求空间距离 1、求两条异面直线间的距离设异面直线a 、b 的公共法向量为(,,)n x y z =,在a 、b 上任取一点 A 、B,则异面直线a 、b 的距离d =AB ·cos ∠BAA '=||||AB n n • 2、求点到面的距离求A 点到平面α的距离,设平面α的法向量法为(,,1)n x y =,在α内任取一点B,则A 点到平面α的距离为d =||||AB n n •,n 的坐标由n 与平面α内的两个不共线向量的垂直关系,得到方程组类似于前面所述, 若方程组无解,则法向量与XOY 平面平行,此时可改设(1,,0)n y =三、证明线面、面面的平行、垂直关系设平面外的直线a 和平面α、β,两个面α、β的法向量为12,n n ,则1a//a n α⇔⊥ 1a a//n α⊥⇔12////n n αβ⇔ 12n n αβ⊥⇔⊥四、应用举例:例1:如右下图,在长方体ABCD —A 1B 1C 1D 1中,已知AB= 4, AD =3, AA 1= 2. E 、F 分别是线段AB 、BC 上的点,且EB= FB=1. 1 求二面角C —DE —C 1的正切值; 2 求直线EC 1与FD 1所成的余弦值.解:I 以A 为原点,1,,AB AD AA 分别为x 轴,y 轴,z 轴的正向建立空间直角坐标系,则D0,3,0、D 10,3,2、E3,0,0、F4,1,0、C 14,3,2 于是,11(3,3,0),(1,3,2),(4,2,2)DE EC FD =-==- 设法向量(,,2)n x y =与平面C 1DE 垂直,则有13301320n DE x y x y x y z n EC ⊥-=⇒⇒==-++=⊥⎫⎫⎪⎬⎬⎭⎪⎭11111(1,1,2),(0,0,2),cos 3||||1tan 2n AA CDE n AA C DE C n AAn AA θθθ∴=--=∴--•-===⨯∴=向量与平面垂直与所成的角为二面角的平面角 II 设EC 1与FD 1所成角为β,则1111cos 14||||1EC FD EC FD β•===⨯例2:高考辽宁卷17如图,已知四棱锥P-ABCD,底面ABCD 是菱形,∠DAB=600,PD⊥平面ABCD,PD=AD,点E 为AB 中点,点F 为PD 中点;1证明平面PED ⊥平面PAB ; 2求二面角P-AB-F 的平面角的余弦值 证明:1∵面ABCD 是菱形,∠DAB=600,∴△ABD 是等边三角形,又E 是AB 中点,连结BD ∴∠EDB=300,∠BDC=600,∴∠EDC=900, 如图建立坐标系D-ECP,设AD=AB=1,则PF=FD=12∴P0,0,1,E2,0,0,B2,12,0∴PB=32,12,-1,PE=2,0,-1,平面PED的一个法向量为DC=0,1,0 ,设平面PAB的法向量为n=x, y, 1由11(,,1),1)01022(,,1)1)010x y x y xn PBn PE yx y x⎧⎧•-=--=⎪⎧=⊥⎪⎪⎪⇒⇒⇒⎨⎨⎨⊥⎪⎪⎪⎩=•-=-=⎩⎪⎩∴n∵DC·n=0 即DC⊥n∴平面PED⊥平面PAB2解:由1知:平面PAB的法向量为n0, 1, 设平面FAB的法向量为n1=x, y, -1, 由1知:F0,0,12,FB,12,-12,FE,0,-12,由111111(,,1)(,)00222222110(,,1))0022x y x y xn FBn FE yx y x⎧⎧-•-=-+=⎪⎧=⊥⎪⎪⎪⎪⇒⇒⇒⎨⎨⎨⊥⎪⎪⎪⎩=-•-=+=⎩⎪⎩∴n1∴二面角P-AB-F的平面角的余弦值cosθ= |cos<n, n1>| =11n5714nnn•=•例3:在棱长为4的正方体ABCD-A1B1C1D1中,O是正方形A1B1C1D1的中心,点P在棱CC1上,且CC1=4CP.Ⅰ求直线AP与平面BCC1B1所成的角的大小结果用反三角函数值表示;Ⅱ设O点在平面D1AP上的射影是H,求证:D1H⊥AP;Ⅲ求点P到平面ABD1的距离.解: Ⅰ如图建立坐标系D-ACD1, ∵棱长为4 ∴A4,0,0,B4,4,0,P0,4,1∴AP = -4, 4, 1 , 显然DC=0,4,0为平面BCC1B1的一个法向量,∴直线AP与平面BCC1B1所成的角θ的正弦值sinθ= |cos<AP,DC >|=22216433334414=++• ∵θ为锐角,∴直线AP 与平面BCC 1B 1所成的角θ为arcsin 43333Ⅲ 设平面ABD 1的法向量为n =x, y, 1,∵AB =0,4,0,1AD =-4,0,4由n ⊥AB ,n ⊥1AD 得0440y x =⎧⎨-+=⎩ ∴ n =1, 0,1,∴点P 到平面ABD 1的距离 d =322AP n n•=例4:在长、宽、高分别为2,2,3的长方体ABCD-A 1B 1C 1D 1中,O 是底面中心,求A 1O 与B 1C 的距离;解:如图,建立坐标系D-ACD 1,则O1,1,0,A 12,2,3,C0,2,0∴1(1,1,3)AO =-- 1(2,0,3)B C =-- 11(0,2,0)A B = 设A 1O 与B 1C 的公共法向量为(,,1)n x y =,则113(,,1)(1,1,3)0302(,,1)(2,0,3)023032x n AO x y x y x y x n B C y ⎧=-⎧⎪⊥•--=-+-=⎧⎧⎪⎪⇒⇒⇒⎨⎨⎨⎨•--=--=⊥⎩⎩⎪⎪⎩=⎪⎩ ∴ 33(,,1)22n =-∴ A 1O 与B 1C 的距离为d =()1122330,2,0,,122||332211||11331222A B n n ⎛⎫•-⎪•⎝⎭===⎛⎫⎛⎫-++ ⎪ ⎪⎝⎭⎝⎭例5:在棱长为1的正方体ABCD-A 1B 1C 1D 1中,E 、F 分别是B 1C 1、C 1D 1的中点,求A 1到面BDFEABCDA 1B 1D 1C 1O的距离;解:如图,建立坐标系D-ACD 1,则B1,1,0,A 11,0,1,E12,1,1 ∴(1,1,0)BD =-- 1(,0,1)2BE =- 1(0,1,1)A B =-设面BDFE 的法向量为(,,1)n x y =,则(,,1)(1,1,0)002112(,,1)(,0,1)01022x y x y n BD x y x y x n BE •--=--=⎧⎧⎧⊥=⎧⎪⎪⎪⇒⇒⇒⎨⎨⎨⎨=-•-=-+=⊥⎩⎪⎪⎪⎩⎩⎩ ∴ (2,2,1)n =-∴ A 1到面BDFE 的距离为d =()()()1220,1,12,2,1|||3|13||221A B n n -•-•-===+-+新课标高二数学空间向量与立体几何测试题1一、选择题1.在正三棱柱ABC —A 1B 1C 1中,若AB =2BB 1,则AB 1与C 1B 所成的角的大小为A .60°B .90°C .105°D .75°2.如图,ABCD —A 1B 1C 1D 1是正方体,B 1E 1=D 1F 1=411B A ,则BE 1与DF 1所成角的余弦值是A .1715 B .21 C .178 D .23 3.如图,A 1B 1C 1—ABC 是直三棱柱,∠BCA=90°,点D 1、F 1分别是A 1B 1、A 1C 1的中点,若BC=CA=CC 1,则BD 1与AF 1所成角的余弦值是A .1030 B .21 C .1530 D .1015 4.正四棱锥S ABCD -的高2SO =,底边长2AB =,则异面直线BD 和SC 之间的距离图图FEA BCDA 1B 1D 1C 1AA 1DCB B 1C 1图A .515 B .55 C .552 D .105 5.已知111ABC A B C -是各条棱长均等于a 的正三棱柱,D 是侧棱1CC 的中点.点1C 到平面1AB D 的距离A .a 42B .a 82C .a 423D .a 226.在棱长为1的正方体1111ABCD A B C D -中,则平面1AB C 与平面11A C D 间的距离A .63 B .33 C .332 D .23 7.在三棱锥P -ABC 中,AB ⊥BC,AB =BC =21PA,点O 、D 分别是AC 、PC 的中点,OP ⊥底面ABC,则直线OD 与平面PBC 所成角的正弦值A .621B .338 C .60210D .302108.在直三棱柱111C B A ABC -中,底面是等腰直角三角形, 90=∠ACB ,侧棱21=AA ,D,E分别是1CC 与B A 1的中点,点E 在平面ABD 上的射影是ABD ∆的重心G .则B A 1与平面ABD 所成角的余弦值A .32 B .37C .23 D .73 9.正三棱柱111C B A ABC -的底面边长为3,侧棱3231=AA ,D 是CB 延长线上一点,且BC BD =,则二面角B AD B --1的大小A .3π B .6πC .65πD .32π10.正四棱柱1111D C B A ABCD -中,底面边长为22,侧棱长为4,E,F 分别为棱AB,CD 的中点,G BD EF =⋂.则三棱锥11EFD B -的体积VA .66B .3316 C .316D .16二、填空题11.在正方体1111ABCD A B C D -中,E 为11A B 的中点,则异面直线1D E 和1BC 间的距离 . 12. 在棱长为1的正方体1111ABCD A B C D -中,E 、F 分别是11A B 、CD 的中点,求点B 到截面1AEC F 的距离 .13.已知棱长为1的正方体ABCD -A 1B 1C 1D 1中,E 、F 分别是B 1C 1和C 1D 1的中点,点A 1到平面DBEF 的距离 .14.已知棱长为1的正方体ABCD -A 1B 1C 1D 1中,E 是A 1B 1的中点,求直线AE 与平面ABC 1D 1所成角的正弦值 . 三、解答题 15.已知棱长为1的正方体ABCD -A 1B 1C 1D 1,求平面A 1BC 1与平面ABCD 所成的二面角的大小16.已知棱长为1的正方体ABCD -A 1B 1C 1D 1中,E 、F 、M 分别是A 1C 1、A 1D 和B 1A 上任一点,求证:平面A 1EF ∥平面B 1MC .17.在四棱锥P —ABCD 中,底面ABCD 是一直角梯形,∠BAD=90°,AD ∥BC,AB=BC=a,AD=2a,且PA ⊥底面ABCD,PD 与底面成30°角. 1若AE ⊥PD,E 为垂足,求证:BE ⊥PD ; 2求异面直线AE 与CD 所成角的余弦值.18.已知棱长为1的正方体AC 1,E 、F 分别是B 1C 1、C 1D 的中点. 1求证:E 、F 、D 、B 共面;2求点A 1到平面的BDEF 的距离; 3求直线A 1D 与平面BDEF 所成的角.19.已知正方体ABCD-A1B1C1D1的棱长为2,点E为棱AB的中点,求:ⅠD1E与平面BC1D所成角的大小;Ⅱ二面角D-BC1-C的大小;Ⅲ异面直线B1D1与BC1之间的距离.高二数学空间向量与立体几何专题训练2一、选择题1.向量a=2x,1,3,b=1,-2y,9,若a与b共线,则A.x=1,y=1 B.x=错误!,y=-错误!C.x=错误!,y=-错误! D.x=-错误!,y=错误! 2.已知a=-3,2,5,b=1,x,-1,且a·b=2,则x的值是A.6 B.5 C.4 D.33.设l1的方向向量为a=1,2,-2,l2的方向向量为b=-2,3,m,若l1⊥l2,则实数m的值为A.3 B.2 C.14.若a,b均为非零向量,则a·b=|a||b|是a与b共线的A.必要不充分条件 B.充分不必要条件C.充分必要条件 D.既不充分也不必要条件5.在△ABC中,错误!=c,错误!=b.若点D满足错误!=2错误!,则错误!=b+错误!c 错误!c-错误!b 错误!b-错误!c 错误!b+错误!c6.已知a,b,c是空间的一个基底,设p=a+b,q=a-b,则下列向量中可以与p,q一起构成空间的另一个基底的是A.a B.b C.c D.以上都不对7.已知△ABC的三个顶点A3,3,2,B4,-3,7,C0,5,1,则BC边上的中线长为A.2 B.3 C.错误!错误!8.与向量a=2,3,6共线的单位向量是A.错误!,错误!,错误! B.-错误!,-错误!,-错误!C.错误!,-错误!,-错误!和-错误!,错误!,错误! D.错误!,错误!,错误!和-错误!,-错误!,-错误!9.已知向量a=2,4,x,b=2,y,2,若|a|=6且a⊥b,则x+y为A.-3或1 B.3或-1 C.-3 D.110.已知a=x,2,0,b=3,2-x,x2,且a与b的夹角为钝角,则实数x的取值范围是A.x>4 B.x<-4 C.0<x<4 D.-4<x<0.11.已知空间四个点A1,1,1,B-4,0,2,C-3,-1,0,D-1,0,4,则直线AD与平面ABC所成的角为A.30° B.45° C.60° D.90°12.已知二面角α-l-β的大小为50°,P为空间中任意一点,则过点P且与平面α和平面β所成的角都是25°的直线的条数为A.2 B.3 C.4 D.5二、填空题13.已知{i,j,k}为单位正交基底,且a=-i+j+3k,b=2i-3j-2k,则向量a+b与向量a-2b的坐标分别是________;________.14.在△ABC中,已知错误!=2,4,0,错误!=-1,3,0,则∠ABC=________.15.正方体ABCD-A1B1C1D1中,面ABD1与面B1BD1所夹角的大小为________.16.在下列命题中:①若a,b共线,则a,b所在的直线平行;②若a,b所在的直线是异面直线,则a,b一定不共面;③若a,b,c三向量两两共面,则a,b,c三向量一定也共面;④已知三向量a,b,c,则空间任意一个向量p总可以唯一表示为p=xa+yb+zc,其中不正确的命题为________.三、解答题17.如图所示,PD垂直于正方形ABCD所在的平面,AB=2,PC与平面ABCD所成角是45°,F 是AD的中点,M是PC的中点.求证:DM∥平面PFB.18.如图,正四棱柱ABCD—A1B1C1D1中,AA1=2AB=4,点E在C1C上,且C1E=3EC.1证明A1C⊥平面BED;2求二面角A1-DE-B的余弦值.19.正方体ABCD-A1B1C1D1中,E,F分别是BB1,CD的中点.1证明:平面AED⊥平面A1FD1;2在AE上求一点M,使得A1M⊥平面DAE.高考真题能力提升1.如图,平面PAC⊥平面ABC,ABC∆是以AC为斜边的等腰直角三角形,,,E F O分别为PA,PB,AC的中点,16AC=,10PA PC==.I设G是OC的中点,证明://FG平面BOE;II证明:在ABO∆内存在一点M,使FM⊥平面BOE,并求点M到OA,OB的距离.2.如图,在三棱锥P ABC -中,PA ⊥底面,,60,90ABC PA AB ABC BCA ︒︒=∠=∠=, 点D ,E 分别在棱,PB PC 上,且//DE BCⅠ求证:BC ⊥平面PAC ;Ⅱ当D 为PB 的中点时,求AD 与平面PAC 所成的角的大小; Ⅲ是否存在点E 使得二面角A DE P --为直二面角 并说明理由.3.如图,四棱锥P ABCD -的底面是正方形,PD ABCD ⊥底面,点E 在棱PB 上.Ⅰ求证:平面AEC PDB ⊥平面;Ⅱ当2PD AB =且E 为PB 的中点时,求AE 与平面PDB 所成的角的大小.4.在四棱锥P ABCD -中,底面ABCD 是矩形,PA ⊥平面ABCD ,4PA AD ==,2AB =. 以AC 的中点O 为球心、AC 为直径的球面交PD 于点M ,交PC 于点N . 1求证:平面ABM ⊥平面PCD ; 2求直线CD 与平面ACM 所成的角的大小; 3求点N 到平面ACM 的距离.yz DMCB PA NONMA BDCO5. 如图,在四棱锥O ABCD -中,底面ABCD 四边长为1的菱形,4ABC π∠=,OA ABCD ⊥底面, 2OA =,M 为OA 的中点,N 为BC 的中点Ⅰ证明:直线MN OCD 平面‖;Ⅱ求异面直线AB 与MD 所成角的大小; Ⅲ求点B 到平面OCD 的距离;6. 如图,正三棱柱ABC -A 1B 1C 1的所有棱长都为2,D 为CC 1中点; Ⅰ求证:AB 1⊥面A 1BD ;Ⅱ求二面角A -A 1D -B 的大小; Ⅲ求点C 到平面A 1BD 的距离;7.如图所示,AF 、DE 分别是⊙O 、⊙O 1的直径.AD 与两圆所在的平面均垂直,AD =8,BC 是⊙O 的直径,AB =AC =6,OE Ⅰ求二面角B —AD —F 的大小;Ⅱ求直线BD 与EF 所成的角.8.如图,在长方体ABCD —A 1B 1C 1D 1中,AD=AA 1=1,AB=2,点E 在棱AB 上移动.1证明:D 1E ⊥A 1D ;2当E 为AB 的中点时,求点E 到面ACD 1的距离;3AE 等于何值时,二面角D 1—EC —D 的大小为4π.9. 如图,边长为2的等边△PCD 所在的平面垂直于矩形ABCD 所在的平面,BC =22, M 为BC 的中点Ⅰ证明:AM ⊥PM ;Ⅱ求二面角P -AM -D 的大小; Ⅲ求点D 到平面AMP 的距离;10.如图,已知AB ⊥平面ACD ,DE ⊥平面ACD ,△ACD 为等边三角形,2AD DE AB ==,F 为CD 的中点. 1 求证://AF 平面BCE ; 2 求证:平面BCE ⊥平面CDE ; 3 求直线BF 和平面BCE 所成角的正弦值.1A C M PD C B A A BCD EF11. 如图,已知等腰直角三角形RBC ,其中∠RBC =90º,2==BC RB .点A 、D 分别是RB 、RC 的中点,现将△RAD 沿着边AD 折起到△PAD 位置,使PA ⊥AB ,连结PB 、PC . 1求证:BC ⊥PB ;2求二面角P CD A --的平面角的余弦值.12. 如图,正三棱柱ABC -111C B A 的底面边长是2,D 是侧棱C 1C 的中点,直线AD 与侧面C C BB 11所成的角为45°.1 求二面角A-BD-C 的大小; 2求点C 到平面ABD 的距离.13. 如图,P 、O 分别是正四棱柱1111ABCD A B C D -上、下底面的中心,E 是AB 的中点,1AB kAA =. Ⅰ求证:1A E ∥平面PBC ;Ⅱ当k =,求直线PA 与平面PBC 所成角的大小;Ⅲ 当k 取何值时,O 在平面PBC 内的射影恰好为PBC ∆ABCD1A 1B 1C A 1C14. 如图,在正四棱锥P ABCD -中,PA AB a ==,点E 在棱PC 上.Ⅰ问点E 在何处时,//PA EBD 平面,并加以证明; Ⅱ当//PA EBD 平面时,求点A 到平面EBD 的距离; Ⅲ求二面角C PA B --的大小.15.如图所示,在长方体1111ABCD A B C D -中,AB=AD=1,AA 1=2,M 是棱CC 1的中点 Ⅰ求异面直线A 1M 和C 1D 1所成的角的正切值; Ⅱ证明:平面ABM ⊥平面A 1B 1M 116.已知三棱锥P -ABC 中,PA ⊥ABC,AB ⊥AC,PA=AC=½AB,N 为AB 上一点,AB=4AN,M,S 分别为PB,BC 的中点. Ⅰ证明:CM ⊥SN ;Ⅱ求SN 与平面CMN 所成角的大小.EPDCBA17.如图,四棱锥S-ABCD 中,SD ⊥底面ABCD,AB ⊥⊥Ⅰ证明:SE=2EB ; Ⅱ求二面角A-DE-C 的大小 .18.如图,在多面体ABCDEF 中,四边形ABCD 是正方形,EF ∥AB ,EF FB ⊥,2AB EF =,90BFC ∠=︒,BF FC =,H 为BC 的中点;ABCDEFHⅠ求证:FH ∥平面EDB ;Ⅱ求证:AC ⊥平面EDB ; Ⅲ求二面角B DE C --的大小;19.如图,在直三棱柱111ABC A B C -中,13,4,5,4AC BC AB AA ==== 1求证1;AC BC ⊥2在AB 上是否存在点D 使得1?AC CD ⊥ 3在AB 上是否存在点D 使得11//A C CDB 平面A1C BCD1A 1B20、如图,在四棱锥P —ABCD 中,PD ⊥底面ABCD,底面ABCD 为正方形,PD=DC,E 、F 分别是AB 、PB 的中点. Ⅰ求证:EF ⊥CD ;Ⅱ在平面PAD 内求一点G,使GF ⊥平面PCB,并证明你的结论; Ⅲ求DB 与平面DEF 所成角的大小.21、如图, 在直三棱柱ABC -A 1B 1C 1中,∠ACB=90°,CB=1,CA=3, AA 1=6,M 为侧棱CC 1上一点, 1AM BA ⊥. 1求证: AM ⊥平面1A BC ; 2求二面角B -AM -C 的大小; 3求点C 到平面ABM 的距离.ABCABCM22、如图,在直三棱柱ABC—A1B1C1中,∠ACB=90°,AC=BC=CC1=2.I证明:AB1⊥BC1;II求点B到平面AB1C1的距离.III求二面角C1—AB1—A1的大小。

利用向量法求空间角教案

利用向量法求空间角教案

利用向量法求空间角-经典教案教案章节:一、向量法求空间角的概念教学目标:1. 了解向量法求空间角的概念。

2. 掌握向量法求空间角的基本方法。

教学内容:1. 向量法求空间角的概念介绍。

2. 向量法求空间角的计算方法。

教学步骤:1. 引入向量法求空间角的概念,解释空间角的概念。

2. 讲解向量法求空间角的计算方法,通过示例进行演示。

3. 进行练习,让学生巩固向量法求空间角的方法。

教学评估:1. 通过课堂提问,检查学生对向量法求空间角概念的理解。

2. 通过练习题,检查学生对向量法求空间角计算方法的掌握。

二、向量法求空间角的计算方法教学目标:1. 掌握向量法求空间角的计算方法。

2. 能够应用向量法求解空间角的问题。

教学内容:1. 向量法求空间角的计算方法介绍。

2. 向量法求空间角的计算实例。

教学步骤:1. 复习向量法求空间角的概念,引入计算方法。

2. 讲解向量法求空间角的计算步骤,通过示例进行演示。

3. 进行练习,让学生巩固向量法求空间角的计算方法。

教学评估:1. 通过课堂提问,检查学生对向量法求空间角计算方法的理解。

2. 通过练习题,检查学生对向量法求解空间角问题的能力。

三、向量法求空间角的练习题教学目标:1. 巩固向量法求空间角的计算方法。

2. 提高学生应用向量法求解空间角问题的能力。

教学内容:1. 向量法求空间角的练习题。

教学步骤:1. 给出向量法求空间角的练习题,让学生独立完成。

2. 对学生的答案进行讲解和指导,解决学生在解题过程中遇到的问题。

3. 进行练习,让学生进一步巩固向量法求空间角的计算方法。

教学评估:1. 通过练习题,检查学生对向量法求解空间角问题的能力。

2. 通过学生的解题过程,了解学生对向量法求空间角计算方法的掌握情况。

四、向量法求空间角的拓展与应用教学目标:1. 了解向量法求空间角的拓展与应用。

2. 能够应用向量法解决实际问题中的空间角问题。

教学内容:1. 向量法求空间角的拓展与应用介绍。

高中数学_立体几何中的向量方法—空间角的计算教学设计学情分析教材分析课后反思

高中数学_立体几何中的向量方法—空间角的计算教学设计学情分析教材分析课后反思

,a b>;θ=<>;n)所成的角sin cos,a n⑶二面角:锐二面角θ:cos cos ,m n θ=<>,其中,m n 为两个面的法向量。

活动三:合作学习、探究新知(18分钟)利用向量知识求线线角,线面角,二面角的大小。

一、异面线所成角:例1、如图所示的正方体中,已知与为四等分点,求异面直线与的夹角的余弦值?方法小结:1、异面直线a 、b 所成的角:在空间中任取一点O ,过点O 分别引/a ∥a ,/b ∥b ,则/a ,/b 所成的锐角(或直角)叫做两条异面直线所成的角。

两条异面直线所成角的范围:(0,]2π。

2、求法:①传统法:把两条异面直线中的一条放入一个平面,另一条与这个平面有交点,过这个交点在平面内作第一条的平行线,则这两条直线所成的角为两条异面直线所成的角。

然后解三角形得到。

②向量法:在直线a 上取两点A 、B ,在直线b 上取两点C 、D ,若直线a 与b 的夹角为θ,则cos |cos ,|AB CD θ=<>。

3、利用向量求异面直线所成的角的步骤为:(1)确定空间两条直线的方向向量;(2)求两个向量夹角的余弦值;(3)确定线线角与向量夹角的关系;当向量夹角为锐角时,即为两直线的夹角;当向量夹角为钝角时,两直线的夹角为向量夹角的补角。

练习:中,,现将沿着平面的法向量平移到的位置,已知BC=CA=C,取、的中点、,求B与A所成的角的余弦值。

二、直线与平面所成的角:例2:如图,在正方体ABCD-中,求与平面所成的角。

方法小结:1、直线a 与平面α所成角:斜线与平面所成的角就是斜线与它在平面内的射影所成的锐角。

直线与平面所成角的范围为:[0,]2π。

2、求法:①求斜线与平面所成的角关键是找到斜线在平面内的射影,即确定过斜线上一点向平面所作垂线的垂足,这时经常要用面面垂直来确定垂足的位置。

若垂足的位置难以确定,可考虑用三棱锥体积等量来求出斜线上一点到平面的距离。

高中数学选修2-1第三章3.2立体几何的向量方法(3)——空间角

高中数学选修2-1第三章3.2立体几何的向量方法(3)——空间角

C
D CA, DB
进行向量运算
d2

2
AB

( AC

CD

DB)2
A
图3
2
2
2
AB CD BD 2(AC CD AC DB CD DB)
a2 c2 b2 2AC DB
a2 c2 b2 2CA DB
于是,得 2CA DB a2 b2 c2 d 2
3.2立体几何的向量方法(3)
• 空间向量与空间角
例 1、如图,在正方体 ABCD A1B1C1D1中,M、N 分别是
棱 CD、CC1的中点,则异面直线 A1M 与 DN 所成的角
的大小是
.
法二 以 D 为原点,DA、DC、DD1所在直线为坐标轴建立 空间直角坐标系,设 AB=1,
则 D(0,0,0),N0,1, 1 ,
15
例2:如图3,甲站在水库底面上的点A处,乙站在水坝斜面上的点B
处。从A,B到直线 l(库底与水坝的交线)的距离AC和BD分别为
a 和 b ,CD的长为 c, AB的长为d。求库底与水坝所成二面角的余弦值。
解:如图,AC a,BD b,CD c,AB d.
化为向量问题

B
根据向量的加法法则 AB AC CD DB
a, b), 1 a2 b2
2

0
C1(0, 0, b),
z C1
2
∵ CC1B在坐标平面yoz中
C
∴ 可取 n=(1,0,0)为面CC1B的法向量 x
D
设面 C1BD 的一个法向量为 m ( x, y, z)

向量法求空间角(含解析)

向量法求空间角(含解析)

高中数学 ︵ 向量法求空间角︶培优篇考点1:异面直线所成的角若异面直线l 1,l 2所成的角为θ,其方向向量分别是u ,v ,则cos θ=|cos 〈u ,v 〉|=|u·v||u||v|.考点2:直线与平面所成的角如图,直线AB 与平面α相交于点B ,设直线AB 与平面α所成的角为θ,直线AB 的方向向高中数学 ︵ 向量法求空间角︶培优篇量为u ,平面α的法向量为n ,则sin θ=|cos 〈u ,n 〉|= u ·n |u ||n |=|u·n||u||n|.考点3:平面与平面的夹角如图,平面α与平面β相交,形成四个二面角,我们把这四个二面角中不大于90°的二面角称为平面α与平面β的夹角.若平面α,β的法向量分别是n 1和n 2,则平面α与平面β的夹角即为向量n 1和n 2的夹角或其补角.设平面α与平面β的夹角为θ,则cos θ=|cos 〈n 1,n 2〉|=|n 1·n 2||n 1||n 2|.【常用结论总结】1.线面角θ的正弦值等于直线的方向向量a 与平面的法向量n 所成角的余弦值的绝对值,即sin θ=|cos 〈a ,n 〉|,不要误记为cos θ=|cos 〈a ,n 〉|. 2.二面角的范围是[0,π],两个平面夹角的范围是0,2.【例1】 直三棱柱ABC -A 1B 1C 1如图所示,AB =4,BC=3,AC =5,D 为棱AB 的中点,三棱柱的各顶点在同一球面上,且球的表面积为61π,则异面直线A 1D 和B 1C 所成的角的余弦值为( )高中数学 ︵ 向量法求空间角︶培优篇A .5B .25C .5D .25【例2】 如图,四棱锥P −ABCD 中,底面ABCD 为正方形,△PAD 是正三角形,AB =2,平面PAD ⊥平面ABCD ,则PC 与BD 所成角的余弦值为( )A .14B .4C .13D 【例3】 如图四棱锥P -ABCD 中,底面ABCD 为正方形,各棱长均相等,E 是PB 的中点,则异面直线AE 与PC 所成角的余弦值为()A 6B C .13D .12学霸笔记用向量法求异面直线所成的角的一般步骤(1)建立空间直角坐标系;(2)用坐标表示两异面直线的方向向量; (3)利用向量的夹角公式求出向量夹角的余弦值;(4)注意两异面直线所成角的范围是(0,],即两异面直线所成角的余弦值等于两向量夹角的余弦值的绝对值.高中数学 ︵ 向量法求空间角︶培优篇【对点训练1】 如图,在三棱柱ABC -A 1B 1C 1中,底面边长和侧棱长均相等,∠BAA 1=∠CAA 1=60°,则异面直线AB 1与BC 1所成角的余弦值为()AB .13C .4D 【对点训练2】 “曲池”是《九章算术》记载的一种几何体,该几何体是上、下底面均为扇环形的柱体(扇环是指圆环被扇形截得的部分).现有一个如图所示的曲池,AA ⊥面ABCD ,AA 1=4,底面扇环所对的圆心角为π2,AD 的长度是BC 长度的2倍,CD =1,则异面直线A 1D 1与BC 1所成角的正弦值为()A .3B .13C .3D .4【对点训练3】 如图,在直三棱柱ABC -A 1B 1C 1中,AA 1=AC=AB=2,BC =2√2,Q 为A 1B 1的中点,E 为AQ 的中点,F 为BC 1的中点,则异面直线BE 与AF所成角的余弦值为( )A. BC .D高中数学 ︵ 向量法求空间角︶培优篇【例4】 在正方体ABCD −A B C D 中,如图E 、F 分别是BB 1、CD 的中点. (1)求证:平面AD F ⊥平面ADE ; (2)求直线EF 与AD F 所成角的正弦值.【例5】 如图,在四棱锥P -ABCD 中,底面ABCD 是平行四边形,P A ⊥平面ABCD ,P A=AD=2AB=8,点M 在棱PD 上,且PA =PM ⋅PD ,AM ⊥MC.(1)求证:CD ⊥平面P AD ;(2)求BM 与平面ACM 所成角的余弦值.高中数学 ︵ 向量法求空间角︶培优篇 学霸笔记利用空间向量求线面角的解题步骤【对点训练4】 如图,正方体ABCD -A 1B 1C 1D 1中,E 、F 分别为棱BC 、CD 的中点. (1)求证:D 1 F ∥平面A 1EC1;(2)求直线AC 1与平面A 1EC 1所成角的正弦值.高中数学 ︵ 向量法求空间角︶培优篇 【对点训练5】 如图所示,在直四棱柱ABCD -A 1B 1C 1D 1中,底面ABCD 为菱形,∠ABC =60°,AB =2,AA 1=2√3,E 为线段DD 1上一点.(1)求证:AC ⊥B 1D ;(2)若平面AB 1E 与平面ABCD 的夹角的余弦值为25,求直线BE与平面AB 1E 所成角的正弦值.高中数学 ︵ 向量法求空间角︶培优篇【例6】 在如图所示的空间几何体中,△ACD 与△ACB 均是等边三角形,直线ED ⊥平面ACD ,直线EB ⊥平面ABC ,DE ⊥BE . (1)求证:平面ABC ⊥平面ADC ;(2)求平面ACE 与平面BCE 夹角的余弦值.【例7】 如图,三棱锥A −BCD 中,DA =DB =DC ,BD ⊥CD ,∠ADB =∠ADC =60∘,E 为BC 的中点. (1)证明:BC ⊥DA ;(2)点F满足EF⃗=DA ⃗,求二面角D −AB −F 的正弦值.高中数学 ︵ 向量法求空间角︶培优篇学霸笔记利用空间向量求平面与平面夹角的解题步骤【对点训练6】 直三棱柱ABC −A B C 中,AA =AB =AC =2,AA ⊥AB,AC ⊥AB ,D 为A B 的中点,E 为AA 的中点,F 为CD 的中点. (1)求证:EF ∥平面ABC ;(2)求直线BE 与平面CCD所成角的正弦值; (3)求平面A CD 与平面CC D 夹角的余弦值.高中数学 ︵ 向量法求空间角︶培优篇 【对点训练7】 如图,在棱长为2的正方体ABCD −A B C D 中,E 为棱BC 的中点,F 为棱CD 的中点.(1)求证:D 1F ∥平面A EC ;(2)求直线AC 与平面A EC 所成角的正弦值. (3)求二面角A −A C −E 的正弦值.【对点训练8】 如图,PO 是三棱锥P −ABC 的高,PA =PB ,AB ⊥AC ,E 是PB 的中点. (1)证明:OE ∥平面PAC ;(2)若∠ABO=∠CBO =30°,PO =3,PA =5,求二面角C −AE −B 的正弦值.。

高中数学空间向量与立体几何立体几何中的向量方法利用空间向量求空间角空间距离问题数学.doc

高中数学空间向量与立体几何立体几何中的向量方法利用空间向量求空间角空间距离问题数学.doc

3.2.3 利用空间向量求空间角、空间距离问题1.空间角及向量求法(1)两异面直线所成的角与两直线的方向向量所成的角相等.( )(2)直线l∥平面α,则直线l到平面α的距离就是直线l上的点到平面α的距离.( )(3)若平面α∥β,则两平面α,β的距离可转化为平面α内某条直线到平面β的距离,也可转化为平面α内某点到平面β的距离.( )答案 (1)× (2)√ (3)√2.做一做(请把正确的答案写在横线上)(1)已知两平面的法向量分别为m =(0,1,0),n =(0,1,1),则两平面所成的二面角的大小为________.(2)(教材改编P 111A 组T 11)如图,在正方体ABCD -A 1B 1C 1D 1中,M 是C 1C 的中点,O 是底面ABCD 的中点,P 是A 1B 1上的任意点,则直线BM 与OP 所成的角为________.(3)已知平面α的一个法向量为n =(-2,-2,1),点A (-1,3,0)在平面α内,则点P (-2,1,4)到平面α的距离为________.答案 (1)45°或135° (2)π2 (3)103解析 (2)建立如图所示的空间直角坐标系,设正方体棱长为2 ,则O (1,1,0),P (2,x,2),B (2,2,0),M (0,2,1),则OP→=(1,x -1,2),BM →=(-2,0,1).所以OP →·BM →=0,所以直线BM 与OP 所成角为π2. 探究1 利用空间向量求线线角例1 如图1,已知两个正四棱锥P -ABCD 与Q -ABCD 的高分别为1和2,AB =4.求异面直线AQ 与PB 所成角的余弦值.[解] 由题设知,ABCD 是正方形,连接AC ,BD ,交于点O ,则AC ⊥BD .连接PQ ,则PQ 过点O .由正四棱锥的性质知PQ ⊥平面ABCD ,故以O 为坐标原点,以直线CA,DB,QP分别为x轴、y轴、z轴建立空间直角坐标系(如图2),则P(0,0,1),A(22,0,0),Q(0,0,-2),B(0,22,0),∴AQ→=(-22,0,-2),PB→=(0,22,-1).于是cos〈AQ→,PB→〉=AQ→·PB→|AQ→||PB→|=39,∴异面直线AQ与PB所成角的余弦值为3 9 .拓展提升两异面直线所成角的求法(1)平移法:即通过平移其中一条(也可两条同时平移),使它们转化为两条相交直线,然后通过解三角形获解.(2)取定基底法:在一些不适合建立坐标系的题型中,我们经常采用取定基底的方法,这是小技巧.在由公式cos〈a,b〉=a·b|a||b|求向量a、b的夹角时,关键是求出a·b及|a|与|b|,一般是把a、b用一组基底表示出来,再求有关的量.(3)用坐标法求异面直线的夹角的方法①建立恰当的空间直角坐标系;②找到两条异面直线的方向向量的坐标形式;③利用向量的夹角公式计算两直线的方向向量的夹角;④结合异面直线所成角的范围得到异面直线所成的角.【跟踪训练1】如图,在三棱锥V-ABC中,顶点C在空间直角坐标系的原点处,顶点A,B,V分别在x,y,z轴上,D是线段AB 的中点,且AC =BC =2,∠VDC =θ.当θ=π3时,求异面直线AC 与VD 所成角的余弦值.解 由于AC =BC =2,D 是AB 的中点,所以C (0,0,0),A (2,0,0),B (0,2,0),D (1,1,0).当θ=π3时,在Rt △VCD 中,CD =2,故有V (0,0,6).所以AC →=(-2,0,0),VD →=(1,1,-6).所以cos 〈AC →,VD →〉=AC →·VD→|AC →||VD →|=-22×22=-24.所以异面直线AC 与VD 所成角的余弦值为24.探究2 利用空间向量求线面角例2 正三棱柱ABC -A 1B 1C 1的底面边长为a ,侧棱长为2a ,求AC 1与侧面ABB 1A 1所成的角.[解] 建立如下图所示的空间直角坐标系,则A (0,0,0),B (0,a,0),A 1(0,0, 2a ),C 1⎝⎛⎭⎪⎪⎫-32a ,a2, 2a , 取A 1B 1的中点M ,则M ⎝⎛⎭⎪⎫0,a2,2a ,连接AM ,MC 1,有MC 1→=⎝ ⎛⎭⎪⎪⎫-32a ,0,0, AB →=(0,a,0),AA1→=(0,0,2a ).∴MC 1→·AB →=0,MC 1→·AA 1→=0, ∴MC 1→⊥AB →,MC1→⊥AA 1→, 即MC 1⊥AB ,MC 1⊥AA 1,又AB ∩AA 1=A , ∴MC 1⊥平面ABB 1A 1 .∴∠C 1AM 是AC 1与侧面A 1ABB 1所成的角.由于AC 1→=⎝ ⎛⎭⎪⎪⎫-32a ,a 2,2a ,AM →=⎝ ⎛⎭⎪⎫0,a 2,2a ,∴AC 1→·AM →=0+a 24+2a 2=9a 24,|AC 1→|=3a 24+a 24+2a 2=3a , |AM →|=a 24+2a 2=32a , ∴cos 〈AC1→,AM →〉=9a 243a ×3a 2=32. ∴〈AC 1→,AM →〉=30°,即AC 1与侧面ABB 1A 1所成的角为30°. [解法探究] 此题有没有其他解法?解 与原解建立相同的空间直角坐标系,则AB →=(0,a,0),AA1→=(0,0,2a ),AC 1→=⎝ ⎛⎭⎪⎪⎫-32a ,a 2,2a . 设侧面ABB 1A 1的法向量n =(λ,x ,y ),∴n ·AB →=0且n ·AA1→=0.∴ax =0且2ay =0.∴x =y =0.故n =(λ,0,0).∵AC 1→=⎝ ⎛⎭⎪⎪⎫-32a ,a 2,2a , ∴cos 〈AC 1→,n 〉=n ·AC1→|n ||AC 1→|=-λ2|λ|.∴|cos 〈AC 1→,n 〉|=12. ∴AC 1与侧面ABB 1A 1所成的角为30°.[条件探究] 此题中增加条件“E ,F ,G 为AB ,AA 1,A 1C 1的中点”,求B 1F 与平面GEF 所成角的正弦值.解 建立如图所示的空间直角坐标系,则B 1(0,a ,2a ),E ⎝ ⎛⎭⎪⎫0,a 2,0,F ⎝ ⎛⎭⎪⎪⎫0,0,22a ,G ⎝⎛⎭⎪⎪⎫-34a ,a 4,2a , 于是B 1F →=⎝ ⎛⎭⎪⎪⎫0,-a ,-22a ,EF →=⎝ ⎛⎭⎪⎪⎫0,-a 2,22a , EG →=⎝ ⎛⎭⎪⎪⎫-34a ,-a 4,2a . 设平面GEF 的法向量n =(x ,y ,z ),则⎩⎨⎧n ·EF →=0,n ·EG →=0,即⎩⎪⎨⎪⎧-a 2y +22az =0,-34ax -a 4y +2az =0,所以⎩⎪⎨⎪⎧y =2z ,x =6z ,令z =1,得x =6,y =2,所以平面GEF 的一个法向量为n =(6,2,1), 所以|cos 〈B 1F →,n 〉|=|n ·B 1F →||n ||B 1F →|=⎪⎪⎪⎪⎪⎪⎪⎪-2a -22a 9×a 2+a 22=33. 所以B 1F 与平面GEF 所成角的正弦值为33.拓展提升求直线与平面的夹角的方法与步骤思路一:找直线在平面内的射影,充分利用面与面垂直的性质及解三角形知识可求得夹角(或夹角的某一三角函数值).思路二:用向量法求直线与平面的夹角可利用向量夹角公式或法向量.利用法向量求直线与平面的夹角的基本步骤:(1)建立空间直角坐标系; (2)求直线的方向向量AB →; (3)求平面的法向量n ;(4)计算:设线面角为θ,则sin θ=|n ·AB→||n ||AB→|.【跟踪训练2】 如图,四棱锥P -ABCD 中,PA ⊥底面ABCD ,AD ∥BC ,AB =AD =AC =3,PA =BC =4,M 为线段AD 上一点,AM =2MD ,N 为PC 的中点.(1)证明:MN ∥平面PAB ;(2)求直线AN 与平面PMN 所成角的正弦值.解 (1)证明:由已知得AM =23AD =2.取BP 的中点T ,连接AT ,TN .由N 为PC 的中点知TN ∥BC ,TN =12BC =2.又AD ∥BC ,故TN 綊AM ,四边形AMNT 为平行四边形,于是MN ∥AT .因为AT ⊂平面PAB ,MN ⊄平面PAB ,所以MN ∥平面PAB .(2)取BC 的中点E ,连接AE .由AB =AC 得AE ⊥BC ,从而AE ⊥AD ,且AE =AB 2-BE 2=AB2-⎝ ⎛⎭⎪⎫BC 22= 5.以A 为坐标原点,AE →的方向为x 轴正方向,建立如图所示的空间直角坐标系Axyz .由题意知,P (0,0,4),M (0,2,0),C (5,2,0),N ⎝⎛⎭⎪⎪⎫52,1,2, PM →=(0,2,-4),PN →=⎝ ⎛⎭⎪⎪⎫52,1,-2,AN →=⎝ ⎛⎭⎪⎪⎫52,1,2. 设n =(x ,y ,z )为平面PMN 的法向量,则⎩⎨⎧n ·PM →=0,n ·PN →=0,即⎩⎪⎨⎪⎧2y -4z =0,52x +y -2z =0,可取n =(0,2,1).于是|cos 〈n ,AN →〉|=|n ·AN →||n ||AN →|=8525,则直线AN 与平面PMN所成角的正弦值为8525.探究3 利用空间向量求二面角例3 如图,在以A ,B ,C ,D ,E ,F 为顶点的五面体中,面ABEF 为正方形,AF =2FD ,∠AFD =90°,且二面角D -AF -E 与二面角C -BE -F 都是60°.(1)证明:平面ABEF⊥平面EFDC;(2)求二面角E-BC-A的余弦值.[解] (1)证明:由已知可得AF⊥DF,AF⊥FE,所以AF⊥平面EFDC.又AF⊂平面ABEF,故平面ABEF⊥平面EFDC.(2)过D作DG⊥EF,垂足为G,由(1)知DG⊥平面ABEF.以G为坐标原点,GF→的方向为x轴正方向,|GF→|为单位长,建立如图所示的空间直角坐标系Gxyz.由(1)知∠DFE为二面角D-AF-E的平面角,故∠DFE=60°,则DF=2,DG=3,可得A(1,4,0),B(-3,4,0),E(-3,0,0),D(0,0,3).由已知,AB∥EF,AB⊄平面EFDC,EF⊂平面EFDC,所以AB∥平面EFDC.又平面ABCD∩平面EFDC=CD,故AB∥CD,CD∥EF.由BE∥AF,可得BE⊥平面EFDC,所以∠CEF为二面角C-BE -F的平面角,∠CEF=60°.从而可得C(-2,0,3).连接AC,则EC→=(1,0,3),EB→=(0,4,0),AC→=(-3,-4,3),AB→=(-4,0,0).设n=(x,y,z)是平面BCE的法向量,则⎩⎨⎧n ·EC →=0,n ·EB →=0,即⎩⎪⎨⎪⎧x +3z =0,4y =0,所以可取n =(3,0,-3).设m 是平面ABCD 的法向量,则⎩⎨⎧m ·AC →=0,m ·AB →=0,同理可取m =(0,3,4).则cos 〈n ,m 〉=n ·m |n ||m |=-21919.故二面角E -BC -A 的余弦值为-21919.拓展提升二面角的向量求法(1)若AB ,CD 分别是二面角α-l -β的两个半平面内与棱l 垂直的异面直线,则二面角的大小就是向量AB →与CD →的夹角(如图①).(2)利用坐标法求二面角的步骤设n 1,n 2分别是平面α,β的法向量,则向量n 1与n 2的夹角(或其补角)就是两个平面夹角的大小,如图②.用坐标法的解题步骤如下:①建系:依据几何条件建立适当的空间直角坐标系. ②求法向量:在建立的坐标系下求两个面的法向量n 1,n 2.③计算:求n1与n2所成锐角θ,cosθ=|n1·n2| |n1||n2|.④定值:若二面角为锐角,则为θ;若二面角为钝角,则为π-θ.【跟踪训练3】若PA⊥平面ABC,AC⊥BC,PA=AC=1,BC =2,求二面角A-PB-C的余弦值.解 解法一:如下图所示,取PB 的中点D ,连接CD .∵PC =BC =2,∴CD ⊥PB .∴作AE ⊥PB 于E ,那么二面角A -PB -C 的大小就等于异面直线DC 与EA 所成的角θ的大小.∵PD =1,PE =PA 2PB =12,∴DE =PD -PE =12,又∵AE =AP ·AB PB =32,CD =1,AC =1,AC →=AE →+ED →+DC →,且AE →⊥ED →,ED →⊥DC→,∴|AC →|2=|AE →|2+|ED →|2+|DC →|2+2|AE →|·|DC →|·cos(π-θ), 即1=34+14+1-2×32×1×cos θ,解得cos θ=33.故二面角A -PB -C 的余弦值为33.解法二:由解法一可知,向量DC →与EA →的夹角的大小就是二面角A -PB -C 的大小,如图,建立空间直角坐标系Cxyz ,则A (1,0,0),B (0,2,0),C (0,0,0),P (1,0,1),D 为PB的中点,D ⎝⎛⎭⎪⎪⎫12,22,12. ∵PE EB =AP 2AB 2=13,即E 分PB →的比为13,∴E ⎝⎛⎭⎪⎪⎫34,24,34,EA →=⎝ ⎛⎭⎪⎪⎫14,-24,-34, DC →=⎝ ⎛⎭⎪⎪⎫-12,-22,-12,|EA →|=32,|DC →|=1,EA →·DC →=14×⎝ ⎛⎭⎪⎫-12+⎝ ⎛⎭⎪⎪⎫-24×⎝ ⎛⎭⎪⎪⎫-22+⎝ ⎛⎭⎪⎫-34×⎝ ⎛⎭⎪⎫-12=12.∴cos 〈EA →,DC →〉=EA →·DC →|EA →||DC →|=33. 故二面角A -PB -C 的余弦值为33.解法三:如右图所示,建立空间直角坐标系,则A (0,0,0),B (2,1,0),C (0,1,0),P (0,0,1),AP →=(0,0,1),AB →=(2,1,0),CB →=(2,0,0),CP →=(0,-1,1),设平面PAB 的法向量为m =(x ,y ,z ),则⎩⎨⎧m ·AP →=0,m ·AB →=0⇒⎩⎪⎨⎪⎧x ,y ,z ·0,0,1=0,x ,y ,z ·2,1,0=0⇒⎩⎪⎨⎪⎧y =-2x ,z =0,令x =1,则m =(1,-2,0),设平面PBC 的法向量为n =(x ′,y ′,z ′),则⎩⎨⎧n ·CB →=0,n ·CP →=0⇒⎩⎪⎨⎪⎧x ′,y ′,z ′·2,0,0=0,x ′,y ′,z ′·0,-1,1=0⇒⎩⎪⎨⎪⎧x ′=0,y ′=z ′.令y ′=-1,则n =(0,-1,-1),∴cos 〈m ,n 〉=m ·n |m ||n |=33.∴二面角A -PB -C 的余弦值为33.探究4 利用空间向量求距离例4 已知正方形ABCD 的边长为1,PD ⊥平面ABCD ,且PD =1,E ,F 分别为AB ,BC 的中点.(1)求点D 到平面PEF 的距离; (2)求直线AC 到平面PEF 的距离.[解] 解法一:(1)建立如图所示的空间直角坐标系,则D (0,0,0),P (0,0,1),A (1,0,0),C (0,1,0),E ⎝ ⎛⎭⎪⎫1,12,0,F ⎝ ⎛⎭⎪⎫12,1,0.设DH ⊥平面PEF ,垂足为H ,则DH →=xDE →+yDF →+zDP →=⎝ ⎛⎭⎪⎫x +12y ,12x +y ,z ·(x +y +z =1),PE →=⎝ ⎛⎭⎪⎫1,12,-1,PF →=⎝ ⎛⎭⎪⎫12,1,-1.∴DH →·PE →=x +12y +12⎝ ⎛⎭⎪⎫12x +y -z =54x +y -z =0.同理,DH →·PF →=x +54y -z =0,又x +y +z =1,∴可解得x =y =417,z =917.∴DH →=317(2,2,3).∴|DH →|=31717.因此,点D 到平面PEF 的距离为31717.(2)设AH ′⊥平面PEF ,垂足为H ′,则AH ′→∥DH →,设AH ′→=λ(2,2,3)=(2λ,2λ,3λ)(λ≠0),则EH ′→=EA →+AH ′→=⎝ ⎛⎭⎪⎫0,-12,0+(2λ,2λ,3λ)=⎝ ⎛⎭⎪⎫2λ,2λ-12,3λ.∴AH ′→·EH ′→=4λ2+4λ2-λ+9λ2=0,即λ=117.∴AH ′→=117(2,2,3),|AH ′→|=1717, 又AC ∥平面PEF ,∴AC 到平面PEF 的距离为1717.解法二:(1)由解法一建立的空间直角坐标系知EF →=⎝ ⎛⎭⎪⎫-12,12,0,PE →=⎝ ⎛⎭⎪⎫1,12,-1,DE →=⎝ ⎛⎭⎪⎫1,12,0,设平面PEF 的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧-12x +12y =0,x +12y -z =0,解得⎩⎪⎨⎪⎧y =x ,z =32x ,令x =2,则n =(2,2,3), ∴点D 到平面PEF 的距离d =|DE →·n ||n |=|2+1|4+4+9=31717.(2)∵AC ∥EF ,∴直线AC 到平面PEF 的距离也即是点A 到平面PEF 的距离.又AE →=⎝ ⎛⎭⎪⎫0,12,0,∴点A 到平面PEF 的距离为 d =|AE →·n ||n |=117=1717.拓展提升1.向量法求点到直线的距离的两种思路(1)将求点到直线的距离问题转化为求向量模的问题,即利用待定系数法求出垂足的坐标,然后求出向量的模,这是求各种距离的通法.(2)直接套用点线距公式求解,其步骤为直线的方向向量a →所求点到直线上一点的向量PP ′→及其在直线的方向向量a 上的投影→代入公式.注意平行直线间的距离与点到直线的距离之间的转化. 2.点面距、线面距、面面距的求解方法线面距、面面距实质上都是求点面距,求直线到平面、平面到平面的距离的前提是线面、面面平行.点面距的求解步骤:(1)求出该平面的一个法向量;(2)找出从该点出发的平面的任一条斜线段对应的向量; (3)求出法向量与斜线段对应向量的数量积的绝对值,再除以法向量的模,即可求出点到平面的距离.【跟踪训练4】 正方体ABCD -A 1B 1C 1D 1的棱长为2,E ,F ,G 分别是C 1C ,D 1A 1,AB 的中点,求点A 到平面EFG 的距离.解 如图,建立空间直角坐标系,则A (2,0,0),E (0,2,1),F (1,0,2),G (2,1,0),∴EF →=(1,-2,1),EG →=(2,-1,-1),GA →=(0,-1,0). 设n =(x ,y ,z )是平面EFG 的法向量,则⎩⎨⎧n ·EF →=0,n ·EG →=0,∴⎩⎪⎨⎪⎧x -2y +z =0,2x -y -z =0,∴x =y =z ,可取n =(1,1,1), ∴d =|GA →·n ||n |=13=33,即点A 到平面EFG 的距离为33.探究5 与空间有关的探索性问题例5 如图,矩形ABCD 和梯形BEFC 所成的平面互相垂直,BE ∥CF ,∠BCF =∠CEF =90°,AD =3,EF =2.(1)求证:AE ∥平面DCF ;(2)当AB 的长为何值时,二面角A -EF -C 的大小为60°?[解] 如图,以点C 为坐标原点,以CB ,CF 和CD 所在直线分别作为x 轴、y 轴和z 轴,建立空间直角坐标系Cxyz .设AB =a ,BE =b ,CF =c ,则C (0,0,0),A (3,0,a ),B (3,0,0),E (3,b,0),F (0,c,0).(1)证明:AE →=(0,b ,-a ),CB →=(3,0,0),BE →=(0,b,0),∴CB →·AE →=0,CB →·BE →=0, 从而CB ⊥AE ,CB ⊥BE . 又AE ∩BE =E , ∴CB ⊥平面ABE . ∵CB ⊥平面DCF ,∴平面ABE ∥平面DCF .又AE ⊂平面ABE , 故AE ∥平面DCF .(2)∵EF →=(-3,c -b,0),CE →=(3,b,0), 且EF →·CE →=0,|EF→|=2, ∴⎩⎪⎨⎪⎧-3+b c -b =0,3+c -b2=2,解得b =3,c =4.∴E (3,3,0),F (0,4,0).设n =(1,y ,z )与平面AEF 垂直, 则n ·AE →=0,n ·EF →=0,即⎩⎪⎨⎪⎧1,y ,z ·0,3,-a =0,1,y ,z ·-3,1,0=0,解得n =⎝⎛⎭⎪⎪⎫1,3,33a.又∵BA ⊥平面BEFC ,BA →=(0,0,a ),∴|cos 〈n ,BA →〉|=|n ·BA →||n ||BA →|=334a 2+27=12, 解得a =92或a =-92(舍去).∴当AB =92时,二面角A -EF -C 的大小为60°.拓展提升利用向量解决存在性问题的方法策略求解存在性问题的基本策略是:首先,假定题中的数学对象存在;其次,构建空间直角坐标系;再次,利用空间向量法把存在性问题转化为求参数是否有解问题;最后,解方程,下结论.利用上述思维策略,可使此类存在性难题变为常规问题.【跟踪训练5】 在长方体ABCD -A 1B 1C 1D 1中,AD =AA 1=12AB ,点E 是棱AB 上一点,且AEEB=λ. (1)证明:D 1E ⊥A 1D ;(2)是否存在λ,使得二面角D 1-EC -D 的平面角为π4?并说明理由.解 (1)证明:以D 为原点,DA 为x 轴,DC 为y 轴,DD 1为z 轴建立空间直角坐标系,如图所示.不妨设AD =AA 1=1,AB =2,则D (0,0,0),A (1,0,0),B (1,2,0),C (0,2,0),A 1(1,0,1),B 1(1,2,1),C 1(0,2,1),D 1(0,0,1).因为AEEB =λ,所以E ⎝⎛⎭⎪⎫1,2λ1+λ,0, 于是D 1E →=⎝ ⎛⎭⎪⎫1,2λ1+λ,-1,A 1D →=(-1,0,-1),所以D 1E →·A 1D →=⎝ ⎛⎭⎪⎫1,2λ1+λ,-1·(-1,0,-1)=-1+0+1=0,故D 1E ⊥A 1D .(2)因为DD 1⊥平面ABCD ,所以平面DEC 的一个法向量为n =(0,0,1),设平面D 1EC 的法向量为n 1=(x ,y ,z ),又CE →=⎝ ⎛⎭⎪⎫1,2λ1+λ-2,0,CD 1→=(0,-2,1), 则⎩⎨⎧n 1·CE →=0,n 1·CD 1→=0,即⎩⎪⎨⎪⎧n 1·⎝ ⎛⎭⎪⎫1,2λ1+λ-2,0=0,n 1·0,-2,1=0,整理得⎩⎪⎨⎪⎧x -y ·21+λ=0,-2y +z =0,取y =1,则n 1=⎝ ⎛⎭⎪⎫21+λ,1,2. 因为二面角D 1-EC -D 的平面角为π4,所以22=|n ·n 1||n ||n 1|,即22=21+4+⎝⎛⎭⎪⎫21+λ2,解得λ=233-1. 故存在λ=233-1,使得二面角D 1-EC -D 的平面角为π4.1.用空间向量解决立体几何问题的“三步曲”(1)建立立体图形与空间向量的联系,用空间向量表示问题中涉及的点、直线,把立体几何问题转化为向量问题.(2)通过向量运算,研究点、直线、平面之间的位置关系以及相应的距离和夹角等问题.(3)把向量的运算结果“翻译”成相应的几何意义. 2.利用法向量求直线AB 与平面α所成的角θ的步骤 (1)求平面α的法向量n .(2)利用公式sin θ=|cos 〈AB →,n 〉|=|AB →·n ||AB →||n |,注意直线和平面所成角的取值范围为⎣⎢⎡⎦⎥⎤0,π2.3.利用法向量求二面角的余弦值的步骤 (1)求两平面的法向量.(2)求两法向量的夹角的余弦值.(3)由图判断所求的二面角是锐角、直角,还是钝角,从而下结论.在用法向量求二面角的大小时应注意:平面的法向量有两个相反的方向,取的方向不同求出来的角度当然就不同,所以最后还应该根据这个二面角的实际形态确定其大小.4.点面距的求解步骤(1)求出该平面的一个法向量.(2)找出从该点出发的平面的任一条斜线段对应的向量. (3)求出法向量与斜线段对应向量的数量积的绝对值,再除以法向量的模,即可求出点到平面的距离.1.若两异面直线l 1与l 2的方向向量分别为a =(0,4,-3),b =(1,2,0),则直线l 1与l 2的夹角的余弦值为( )A.32B.8525C.4315D.33答案 B解析 设l 1,l 2的夹角为θ,则cos θ=|cos 〈a ,b 〉|=0×1+4×2+-3×05×5=8525.2.直角△ABC 的两条直角边BC =3,AC =4,PC ⊥平面ABC ,PC =95,则点P 到斜边AB 的距离是( )A .5B .3C .3 2 D.125答案 B解析 以C 为坐标原点,CA ,CB ,CP 所在直线为x 轴、y 轴、z 轴,建立如图所示的空间直角坐标系.则A (4,0,0),B (0,3,0),P ⎝ ⎛⎭⎪⎫0,0,95,所以AB →=(-4,3,0),AP →=⎝⎛⎭⎪⎫-4,0,95, 所以AP →在AB →上的投影长为|AP →·AB →||AB →|=165,所以点P 到AB 的距离为d =|AP →|2-⎝ ⎛⎭⎪⎫1652=16+8125-25625=3.故选B.3.把正方形ABCD 沿对角线AC 折起成直二面角,点E ,F 分别是AD ,BC 的中点,O 是正方形中心,则折起后,∠EOF 的大小为( )A .(0°,90°)B .90°C .120°D .(60°,120°)答案 C解析 OE →=12(OA →+OD →),OF →=12(OB →+OC →),∴OE →·OF →=14(OA →·OB →+OA →·OC →+OD →·OB →+OD →·OC →)=-14|OA →|2.又|OE →|=|OF →|=22|OA →|,∴cos 〈OE →,OF →〉=-14|OA →|212|OA →|2=-12.∴∠EOF =120°.故选C. 4.平面α的法向量n 1=(1,0,-1),平面β的法向量n 2=(0,-1,1),则平面α与β所成二面角的大小为________.答案π3或2π3解析 设二面角的大小为θ,则cos 〈n 1,n 2〉=1×0+0×-1+-1×12·2=-12,所以cos θ=12或-12,∴θ=π3或2π3.5.如图,在长方体AC 1中,AB =BC =2,AA 1=2,点E ,F 分别是平面A 1B 1C 1D 1、平面BCC 1B 1的中心.以D 为坐标原点,DA ,DC ,DD 1所在直线分别为x ,y ,z 轴建立空间直角坐标系.试用向量方法解决下列问题:(1)求异面直线AF 和BE 所成的角;(2)求直线AF 和平面BEC 所成角的正弦值.解 (1)由题意得A (2,0,0),F ⎝ ⎛⎭⎪⎪⎫1,2,22,B (2,2,0),E (1,1,2),C (0,2,0).∴AF →=⎝⎛⎭⎪⎪⎫-1,2,22,BE →=(-1,-1,2), ∴AF →·BE →=1-2+1=0.∴直线AF 和BE 所成的角为90°.(2)设平面BEC 的法向量为n =(x ,y ,z ),又BC→=(-2,0,0),BE →=(-1,-1,2),则n ·BC →=-2x =0,n ·BE →=-x -y +2z =0,∴x =0,取z =1,则y =2,∴平面BEC 的一个法向量为n =(0,2,1).∴cos 〈AF →,n 〉=AF →·n|AF →||n |=522222×3=53333.设直线AF 和平面BEC 所成的角为θ,则sin θ=53333,即直线AF 和平面BEC 所成角的正弦值为53333.。

立体几何中---向量法求空间角

立体几何中---向量法求空间角

y
uuur AP
=(0,0,1),
uuur AB
(
2,1mu,r0方), 向Cuu朝Bur面 内( ,2nru,r0方x, 0向u)u,朝urCuu面Pur (0, 1,1) ,
设平面 PAB 的法向量为 mur外 情=, 况(x属 ,,y于 二,z)“ 面,则一 角进 等mu一 于r出 法 uA” 向uPur的量 0
(I)求证:AO⊥平面BCD; (II)求异面直线AB与CD所成角的大小; (III)求点E到平面ACD的距离。
A
D O
B
E
C
解:(I)提示;数量积为零 (II)解:以O为原点,如图建立空间直角坐标系,
则B(1, 0, 0), D(1, 0, 0),
C(0,
3, 0), A(0, 0,1), E(1 ,
S
解:由(2)知平面SAB的一个法向量为nr (1,1,2),
uuur 又由OC 平面SAO知OC是平面SAO的法向量 O
uuur 且OC (0,1,0)
A
Cy
B
cos nr,OuuCur 0 1 0 6
x
6 1 6
所以二面角B-AS-O的余弦值为 6 6
(2)求EB与底面ABCD所成的角的正切值。 uuur
解:因为PD 平面ABCD,所以PD是平面ABCD的法向量。
由(1)知D(0,0,0),P(0,0,1),
z P
B(1,1,0),E(0,1 ,1) 22
E
y
uuur PD
uuur (0,0,1),EB
(1,1

1
)
C
B
22
x
G
cos
uuur uuur PD,EB

高考数学总复习 第7讲 立体几何中的向量方法(二)-求空间角

高考数学总复习 第7讲 立体几何中的向量方法(二)-求空间角

2.两种关系 一是异面直线所成的角与其方向向量的夹角:当异面直线的 方向向量的夹角为锐角或直角时,就是该异面直线的夹角; 否则向量夹角的补角是异面直线所成的角,如(2). 二是二面角与法向量的夹角:利用平面的法向量求二面角的 大小时,当求出两半平面α,β的法向量n1,n2时,要根据向 量坐标在图形中观察法向量的方向,从而确定பைடு நூலகம்面角与向量 n1,n2的夹角是相等,还是互补,如(6).
(1)证明:AC⊥B1D; (2)求直线B1C1与平面ACD1所成角的正弦值.
审题路线 由于在直棱柱 ABCD-A1B1C1D1 中,∠BAD=90°, 易于建立空间坐标系,可利用向量法求解.第(1)问 AC⊥B1D 转 化为判定A→C·B→1D=0;第(2)问可利用直线 B1C1 的方向向量与平 面 ACD1 的法向量的夹角求解.
(2)法一 如图 1,取 PB 中点 F,连接 EF,AF,则 EF∥BC,从 而∠AEF(或其补角)是异面直线 BC 与 AE 所成的角. 在△AEF 中,由于 EF= 2,AF= 2,AE=12PC=2. 则△AEF 是等腰直角三角形, 所以∠AEF=4π.
图1 因此,异面直线 BC 与 AE 所成的角的大小是π4.
(×)
(7)(2013·上海卷改编)在如图所示的正方体 ABCD-A1B1C1D1 中,
异面直线 A1B 与 B1C 所成角的大小为 60°.
(√)
[感悟·提升] 1.利用空间向量求空间角,避免了寻找平面角和垂线段等诸多麻
烦,使空间点线面的位置关系的判定和计算程序化、简单 化.主要是建系、设点、计算向量的坐标、利用数量积的夹角 公式计算.
(1)证明 法一 因为BB1⊥平面ABCD,AC⊂平面ABCD.∴AC⊥BB1, 又AC⊥BD, ∴AC⊥平面BB1D, 又B1D⊂平面BB1D,从而AC⊥B1D. 法二 易知,AB,AD,AA1 两两垂直.如图,以 A 为坐标原点, AB,AD,AA1 所在直线分别为 x 轴、y 轴、z 轴建立空间直角坐 标系.

(整理)323立体几何中的向量方法-利用空间向量求空间角.

(整理)323立体几何中的向量方法-利用空间向量求空间角.

§3.2.3立体几何中的向量方法——利用空间向量求空间角教学目标1、使学生学会求异面直线所成的角、直线与平面所成的角、二面角的向量方法;2、使学生能够应用向量方法解决一些简单的立体几何问题;3、使学生的分析与推理能力和空间想象能力得到提高.教学重点求解二面角的向量方法教学难点二面角的大小与两平面法向量夹角的大小的关系教学过程一、复习引入1、用空间向量解决立体几何问题的“三步曲”(1)建立立体图形与空间向量的联系,用空间向量表示问题中涉及的点、直线、平面,把立体几何问题转化为向量问题;(化为向量问题)(2)通过向量运算,研究点、直线、平面之间的位置关系以及它们之间距离和夹角等问题;(进行向量运算)(3)把向量的运算结果“翻译”成相应的几何意义。

(回到图形)2、向量的有关知识: (1)两向量数量积的定义:(2)两向量夹角公式:(3)平面的法向量:与平面垂直的向量二、知识讲解与典例分析知识点1、异面直线所成的角(范围: )(1)定义:过空间任意一点o 分别作异面直线a 与b 的平行线a´与b´,那么直线a´与b´ 所成的不大于90°的角 ,叫做异面直线a 与b 所成的角。

(2)用向量法求异面直线所成角⋅⋅=,cos ⎥⎦⎤ ⎝⎛∈2,0πθb a ⋅⋅=⋅a ´b ´ •oθ设两异面直线a 、b 的方向向量分别为m 和 ,问题1 当与的夹角不大于90°时,异面直线a 、b 所成的角与m 和 的夹角的关系? 相等问题 2 当与的夹角大于90°时,异面直线a 、b 所成的角与和 的夹角的关系? 互补所以,异面直线a 、b 所成的角的余弦值为典型例题1:在Rt △AOB 中,∠AOB=90°,现将△AOB 沿着平面AOB 的法向量方向平移到△A 1O 1B 1的位置,已知OA=OB=OO 1,取A 1B 1 、A 1O 1的中点D 1 、F 1,求异面直线BD 1与AF 1所成的角的余弦值。

高考数学专题—立体几何(空间向量求空间角与空间距离)

高考数学专题—立体几何(空间向量求空间角与空间距离)

高考数学专题——立体几何(空间向量求角与距离)一、空间向量常考形式与计算方法设直线l,m 的方向向量分别为l ⃗,m ⃗⃗⃗⃗,平面α,β的法向量分别为n ⃗⃗1,n 2⃗⃗⃗⃗⃗. (1)线线角:(正负问题):用向量算取绝对值(因为线线角只能是锐角)直线l,m 所成的角为θ,则0≤θ≤π2,计算方法:cos θ=l⃗⋅m ⃗⃗⃗⃗|l⃗|⋅|m ⃗⃗⃗⃗|; (2)线面角:正常考你正弦值,因为算出来的是角的余角的余弦值 非正常考你余弦值,需要再算一步。

直线l 与平面α所成的角为θ,则0≤θ≤π2,计算方法:sin θ=|l ⃗⋅n 1⃗⃗⃗⃗⃗⃗||l⃗|⋅|n ⃗⃗|; (3)二面角:同进同出为补角;一进一出为原角。

注意:考试从图中观察,若为钝角就取负值,若为锐角就取正值。

平面α,β所成的二面角为θ,则0≤θ≤π,如图①,AB ,CD 是二面角α-l -β的两个面内与棱l 垂直的直线,则二面角的大小θ=⟨AB⃗⃗⃗⃗⃗⃗,CD ⃗⃗⃗⃗⃗⃗⟩.如图②③,n ⃗⃗1,n 2⃗⃗⃗⃗⃗分别是二面角α-l -β的两个半平面α,β的法向量,则二面角的大小θ满足|cos θ|=|n⃗⃗1⋅n 2⃗⃗⃗⃗⃗⃗|n⃗⃗1|⋅|n2⃗⃗⃗⃗⃗⃗||,二面角的平面角大小是向量n 1与n 2的夹角(或其补角). (4)空间距离额计算:通常包含点到平面距离,异面直线间距离。

二、空间向量基本步骤空间向量求余弦值或正弦值四步法(1)建系:三垂直,尽量多点在轴上;左右下建系,建成墙角系;锥体顶点在轴上;对称面建系。

一定要注明怎样建成的坐标系(2)写点坐标(3)写向量:向量最好在面上或者轴上(可简化计算量) (4)法向量的简化计算直线的方向向量和平面的法向量(1)直线的方向向量就是指和这条直线平行(或共线)的向量,记作,显然一条直线的方向向量可以有无数个.(2)若直线l ⊥α,则该直线的方向向量即为该平面的法向量,平面的法向量记作,有无数多个,任意两个都是共线向量.平面法向量的求法:设平面的法向量为α⃗=(x,y,z ).在平面内找出(或求出)两个不共线的向量a ⃗=(x 1,y 1,z 1),b ⃗⃗=(x 2,y 2,z 2),根据定义建立方程组,得到{α⃗×a ⃗=0α⃗×b ⃗⃗=0,通过赋值,取其中一组解,得到平面的法向量.三、空间向量求距离向量方法求异面直线距离:先求两异面直线的公共法向量,再求两异面直线上任意两点的连结线段在公共法向量上的射影长。

考点41 立体几何的向量方法-----空间角问题

考点41  立体几何的向量方法-----空间角问题

考点41 立体几何的向量方法-----空间角问题从近三年高考情况来看,本讲一直是空间立体几何的基础,一般不单独命题.预测2021年会与多面体相结合进行考查,题型为解答题,解题时利用空间向量法解决问题,试题难度不会太大,属中档题.一、求异面直线所成的角;二、斜线与平面所成的角;三、求二面角的大小。

【规律总结】利用向量求空间角的步骤第一步:建立空间直角坐标系.第二步:确定点的坐标.第三步:求向量(直线的方向向量、平面的法向量)坐标.第四步:计算向量的夹角(或函数值).第五步:将向量夹角转化为所求的空间角.第六步:反思回顾.查看关键点、易错点和答题规范.求异面直线所成的角(1)异面直线所成角的求法:设a,b分别是两异面直线l1,l2的方向向量,则:l1与l2所成的角为〈a,b〉或π-〈a,b〉,则cos θ=|a·b||a||b|【3】.(2)斜线与平面所成的角φ求法:用斜线的方向向量e与平面的法向量n,φ=π2-〈e,n〉或φ=〈e,n〉-π2,则sin φ=|cos〈a,n〉|=|a·n||a||n|利用向量求线线角的解题策略(1)向量法求异面直线所成的角的方法有两种 ①基向量法:利用线性运算. ②坐标法:利用坐标运算.(2)注意向量的夹角与异面直线所成的角的区别当异面直线的方向向量的夹角为锐角或直角时,就是此异面直线所成的角;当异面直线的方向向量的夹角为钝角时,其补角才是异面直线所成的角.a 与b 的夹角为βl 1与l 2所成的角为θ范围 [0,π] ⎝⎛⎦⎤0,π2 求法cos β=a ·b|a ||b |cos θ=|cos β|=|a ·b ||a ||b |【典例】例1 [一题多解]直三棱柱ABC -A 1B 1C 1中,∠BCA =90°,M ,N 分别是A 1B 1,A 1C 1的中点,BC =CA =CC 1,则BM 与AN 所成的角的余弦值为( )A .110B .25C .3010D .22解析:选C .解法一:以C 点为原点,直线CA 为x 轴,直线CB 为y 轴,直线CC 1为z 轴建立空间直角坐标系,如图,设CA =1,则B (0,1,0),M ⎝⎛⎭⎫12,12,1,A (1,0,0),N (12,0,1),故BM →=⎝⎛⎭⎫12,-12,1,AN →=(-12,0,1),所以cos 〈BM →,AN →〉=BM →·AN →|BM →|·|AN →|=3462×52=3010.解法二:不妨设三棱柱的侧棱为2,将三棱柱补成如图所示的正方体,取BC 的中点G ,连接NG ,MN ,由N 为A 1C 1中点,则NG ∥BM ,所以∠ANG 为BM 与AN 所成的角,可知AN =AG =5,NG =6,则cos ∠ANG =AN 2+NG 2-AG 22AN ·NG =(5)2+(6)2-(5)22×5×6=3010.[思维创新]将例1中的条件“BC =CA =CC 1”改为“BC =CA =2CC 1”,其余条件不变.则BM 与AN 所成的角为( )A .π2B .π4C .π3D .π6解析:选A .建系如例1解析图,设BC =CA =2CC 1=2,则A (2,0,0),B (0,2,0),M (1,1,1),N (1,0,1),AN →=(-1,0,1),BM →=(1,-1,1),记BM 与AN 所成的角为θ,cos θ=0,BM 与AN 所成的角为π2.斜线与平面所成的角向量法求线面角的两大途径(1)分别求出斜线和它所在平面内的射影直线的方向向量,转化为求两个方向向量的夹角(或其补角). (2)通过平面的法向量来求,即求出斜线的方向向量与平面的法向量所夹的锐角,取其余角就是斜线和平面所成的角.如图所示,设直线l 的方向向量为e ,平面α的法向量为n ,直线l 与平面α所成的角为φ, 两向量e 与n 的夹角为θ,则有sin φ=|cos θ|=|e ·n ||e ||n |.【典例】例2 (2018·全国卷Ⅰ)如图,四边形ABCD 为正方形,E ,F 分别为AD ,BC 的中点,以DF 为折痕把△DFC 折起,使点C 到达点P 的位置,且PF ⊥BF .(1)证明:平面PEF ⊥平面ABFD ; (2)求DP 与平面ABFD 所成角的正弦值.解:(1)证明:由已知可得,BF ⊥PF ,BF ⊥EF ,EF ∩PF =F ,PF ⊂平面PEF ,EF ⊂平面PEF ,所以BF ⊥平面PEF .又BF ⊂平面ABFD ,所以平面PEF ⊥平面ABFD .(2)如图,作PH ⊥EF ,垂足为H .由(1)得,PH ⊥平面ABFD .以H 为坐标原点,HF →的方向为y 轴正方向,|BF →|为单位长,建立如图所示的空间直角坐标系H -xyz . 由(1)可得,DE ⊥PE .又DP =2,DE =1,所以PE = 3.又PF =1,EF =2,故PE ⊥PF . 可得PH =32,EH =32. 则H (0,0,0),P ⎝⎛⎭⎫0,0,32,D (-1,-32,0),DP →=⎝⎛⎭⎫1,32,32,HP →=⎝⎛⎭⎫0,0,32.又HP →为平面ABFD的法向量.设DP 与平面ABFD 所成角为θ,则sin θ=⎪⎪⎪⎪⎪⎪HP →·DP →|HP →||DP →|=343=34. 所以DP 与平面ABFD 所成角的正弦值为34. [考题新作]若本例条件不变,求EP 与面ABFD 所成角.解:由例2可知,平面PEF ⊥平面ABFD ,且平面PEF ∩平面ABFD =EF ,建立如图所示的空间直角坐标系H -xyz ,则P ⎝⎛⎭⎫0,0,32,E ⎝⎛⎭⎫0,-32,0,平面ABFD 的法向量为HP →=⎝⎛⎭⎫0,0,32,EP →=⎝⎛⎭⎫0,32,32.设EP 与平面ABFD 所成的角为α, ∴sin α=⎪⎪⎪⎪⎪⎪EP →·HP →|HP →|·|EP →|=3432×3=12. ∴α=30°,即EP 与面ABFD 所成的角为30°.求二面角的大小如果二面角α-l -β的大小为θ,α,β的法向量分别为m ,n ,则θ=〈m ,n 〉或θ=π-〈m ,n 〉.1.建系时,首先确定图形中有建系的条件;否则要先寻找并证明,如本题先证明DE ⊥DA . 2.建立空间直角坐标系后,写出各点坐标,正确求解平面的法向量是解决本题的关键.3.完整认识二面角的棱与半平面,如本题面AMA 1实质是棱柱侧面ABB 1A 1,可用AB →与AA 1→待定其法向量,面MA 1N 实质是面MA 1D ,直接可用DA 1→、DM →求法向量简单. 4.求解时要区分向量夹角与二面角大小的关系.(1)如图①,AB ,CD 是二面角α-l -β两个半平面内与棱l 垂直的直线,则二面角的大小为θ=〈AB →,CD →〉.(2)如图②③,n 1,n 2分别是二面角α-l -β的两个半平面α,β的法向量,则二面角的大小θ满足cos θ=cos 〈n 1,n 2〉或-cos 〈n 1,n 2〉. 【典例】命题点1 | 用向量法求二面角的大小或函数值例3 (2019·全国卷Ⅰ改编)如图,直四棱柱ABCD -A 1B 1C 1D 1的底面是菱形,AA 1=4,AB =2,∠BAD =60°,M ,N 分别是BB 1,A 1D 的中点.求二面角A -MA 1­N 的正弦值.解:取BC 的中点为E ,则DE ⊥DA ,以D 为坐标原点.DA →的方向为x 轴正方向,建立如图所示的空间直角坐标系D -xyz ,则A (2,0,0),A 1(2,0,4),M (1,3,2),N (1,0,2),A 1A →=(0,0,-4),A 1M →=(-1,3,-2),A 1N →=(-1,0,-2),MN →=(0,-3,0).设m =(x ,y ,z )为平面A 1MA 的法向量, 则⎩⎪⎨⎪⎧m ·A 1M →=0,m ·A 1A →=0.所以⎩⎨⎧-x +3y -2z =0,-4z =0.可取m =(3,1,0).设n =(p ,q ,r )为平面A 1MN 的法向量,则⎩⎪⎨⎪⎧n ·MN →=0,n ·A 1N →=0.所以⎩⎨⎧-3q =0,-p -2r =0.可取n =(2,0,-1).于是cos 〈m ,n 〉=m ·n |m ||n |=232×5=155,所以二面角A -MA 1­N 的正弦值为105. [考题新作]若将本例的底面改为“正方形”,其它条件不变,求二面角A ­MA 1­N 的余弦值.解:由题意可知,以D 为坐标原点,DC →为y 轴,DA →为x 轴,DD 1→为z 轴,建立空间直角坐标系, ∴A (2,0,0),B (2,2,0),M (2,2,2),A 1(2,0,4),面AMA 1的法向量即是平面ABB 1A 1的法向量,DA →=(2,0,0),设平面MA 1D 的法向量n =(x ,y ,z ),则⎩⎪⎨⎪⎧n ·DA 1→=0,n ·DM →=0,即⎩⎪⎨⎪⎧(x ,y ,z )·(2,0,4)=0,(x ,y ,z )·(2,2,2)=0,∴⎩⎪⎨⎪⎧2x +4z =0,2x +2y +2z =0.令x =2,则z =-1,y =-1, ∴n =(2,-1,-1),二面角A -MA 1­N 为锐二面角,设为θ, ∴cos θ=(2,0,0)·(2,-1,-1)2×4+1+1=63,故二面角A -MA 1-N 的余弦值为63. 命题点2 | 由二面角求参数或求几何体的量例4 如图,在三棱锥A -BCD 中,∠ABC =∠BCD =∠CDA =90°,AC =63,BC =CD =6,E 点在平面BCD 内,EC =BD ,EC ⊥BD .(1)求证:AE ⊥平面BCDE ;(2)设点G 在棱AC 上,若二面角C ­EG ­D 的余弦值为105,试求CG GA 的值.解:(1)证明:连接BE ,设BD 交CE 于点O ,因为△BCD 是等腰直角三角形,CO ⊥BD ,所以CO =12BD ,又EC =BD ,所以O 是BD 和CE 的中点.已知EC ⊥BD ,所以四边形BCDE 是正方形.则CD ⊥ED ,又CD ⊥AD ,AD ∩ED =D ,所以CD ⊥平面ADE ,CD ⊥AE ,同理BC ⊥AE ,BC ∩CD =C ,所以AE ⊥平面BCDE .(2)由(1)的证明过程知BCDE 为正方形,如图建立空间直角坐标系,则E (0,0,0),D (0,6,0),A (0,0,6),B (6,0,0),C (6,6,0),设CG GA =t (t >0),G (x ,y ,z ),由CG →=tGA →可得G (61+t ,61+t ,6t 1+t), 则ED →=(0,6,0),EG →=⎝⎛⎭⎫61+t ,61+t ,6t 1+t ,易知平面CEG 的一个法向量为DB →=(6,-6,0),设平面DEG 的一个法向量为n =(x 0,y 0,z 0), 则⎩⎪⎨⎪⎧n ·ED →=0,n ·EG →=0得⎩⎪⎨⎪⎧6y 0=0,61+t x 0+61+t y 0+6t 1+t z 0=0, 令x 0=1得z 0=-1t,n =⎝⎛⎭⎫1,0,-1t ,所以DB →·n |DB →|·|n |=105,即662× 1+1t 2=105.解得t =2,所以CGGA =2.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

A B CD PQ 向量法求空间角1.(本小题满分10分)在如图所示的多面体中,四边形ABCD 为正方形,四边形ADPQ 是直角梯形,DP AD ⊥,⊥CD 平面ADPQ ,DP AQ AB 21==.(1)求证:⊥PQ 平面DCQ ; (2)求平面BCQ 与平面ADPQ 所成的锐二面角的大小.2.(满分13分)如图所示,正四棱锥P -ABCD 中,O 为底面正方形的中心,侧棱PA 与底面ABCD 所成的角的正切值为26.(1)求侧面PAD 与底面ABCD 所成的二面角的大小;(2)若E 是PB 的中点,求异面直线PD 与AE 所成角的正切值;(3)问在棱AD 上是否存在一点F ,使EF ⊥侧面PBC ,若存在,试确定点F 的位置;若不存在,说明理由.B3.(本小题只理科做,满分14分)如图,已知AB⊥平面ACD,DE//AB,△ACD是正三角形,AD=DE=2AB,且F是CD的中点.(1)求证:AF//平面BCE;(2)求证:平面BCE⊥平面CDE;(3)求平面BCE与平面ACD所成锐二面角的大小.P-中,PD⊥底面ABCD,且底面4.(本小题满分12分)如图,在四棱锥ABCDABCD为正方形,GPD=分别为CBPC,,的中点.=PDF,2EAD,,AP平面EFG;(1)求证://(2)求平面GEF和平面DEF的夹角.HPGFE DCB 5.如图,在直三棱柱111ABC A B C -中,平面1A BC ⊥ 侧面11A ABB 且12AA AB ==.(Ⅰ)求证:AB BC ⊥;(Ⅱ)若直线AC 与平面1A BC 所成的角为6π,求锐二面角1A A C B --的大小.6.如图,四边形ABCD 是正方形,EA ⊥平面ABCD ,EA PD ,2AD PD EA ==,F ,G , H 分别为PB ,EB ,PC 的中点.(1)求证:FG 平面PED ;(2)求平面FGH 与平面PBC 所成锐二面角的大小.参考答案1.(1)详见解析;(2)4π 【解析】试题分析:(1)根据题中所给图形的特征,不难想到建立空间直角坐标,由已知,DA ,DP ,DC 两两垂直,可以D 为原点,DA 、DP 、DC 所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系.表示出图中各点的坐标:设a AB =,则)0,0,0(D ,),0,0(a C ,)0,,(a a Q ,)0,2,0(a P ,则可表示出),0,0(a DC =,)0,,(a a DQ =,)0,,(a a -=,根据数量积为零与垂直的充要条件进行证明,由0=⋅,0=⋅,故⊥,⊥,即可证明;(2)首先求出两个平面的法向量,其中由于⊥DC 平面ADPQ ,所以可取平面ADPQ 的一个法向量为)1,0,0(1=n ;设平面BCQ 的一个法向量为),,(2z y x n = ,则02=⋅QB n ,02=⋅QC n,故⎩⎨⎧=+--=+-,0,0az ay ax az ay 即⎩⎨⎧=+--=+-,0,0z y x z y 取1==z y ,则0=x ,故)1,1,0(2=n ,转化为两个法向量的夹角,设1n 与2n 的夹角为θ,则2221||||cos 2121==⋅=n n n n θ.即可求出平面BCQ 与平面ADPQ 所成的锐二面角的大小.试题解析:(1)由已知,DA ,DP ,DC 两两垂直,可以D 为原点,DA 、DP 、DC 所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系.设a AB =,则)0,0,0(D ,),0,0(a C ,)0,,(a a Q ,)0,2,0(a P , 故),0,0(a =,)0,,(a a =,)0,,(a a -=, 因为0=⋅,0=⋅,故⊥,⊥,即PQ DC ⊥,PQ DQ ⊥, 又DCDQ D = 所以,⊥PQ 平面DCQ .(2)因为⊥平面ADPQ ,所以可取平面ADPQ 的一个法向量为)1,0,0(1=n,点B 的坐标为),0,(a a ,则),,0(a a -=,),,(a a a --=,设平面BCQ 的一个法向量为),,(2z y x n = ,则02=⋅QB n ,02=⋅n ,故⎩⎨⎧=+--=+-,0,0az ay ax az ay 即⎩⎨⎧=+--=+-,0,0z y x z y 取1==z y ,则0=x ,故)1,1,0(2=n .设1n 与2n 的夹角为θ,则2221||||cos 2121==⋅=n n n n θ. 所以,平面BCQ 与平面ADPQ 所成的锐二面角的大小为4π 考点:1.空间向量的应用;2.二面角的计算;3.直线与平面的位置关系2.(1)60︒; (2)5102; (3)F 是AD 的4等分点,靠近A 点的位置. 【解析】试题分析:(1)取AD 中点M ,连接MO ,PM ,由正四棱锥的性质知∠PMO 为所求二面角P -AD-O 的平面角,∠PAO 为侧棱PA 与底面ABCD 所成的角∴tan ∠PAO =26,设AB =a ,则AO =22a ,PO =23a ,MO=12a , tan ∠PMO =3,∠PMO =60°; (2)依题意连结AE ,OE ,则OE ∥PD ,故∠OEA 为异面直线PD 与AE 所成的角,由正四棱锥的性质易证OA ⊥平面POB,故AOE ∆为直角三角形,OE =21PD =2122DO PO +=45a ∴tan ∠AEO =EO AO =5102;(3)延长MO 交BC 于N ,取PN 中点G ,连BG ,EG ,MG ,易得BC ⊥平面PMN ,故平面PMN ⊥平面PBC ,而△PMN 为正三角形,易证MG ⊥平面PBC ,取MA 的中点F,连EF,则四边形MFEG 为平行四边形,从而MG//FE,EF ⊥平面PBC,F 是AD 的4等分点,靠近A 点的位置.试题解析:(1)取AD 中点M ,连接MO ,PM ,依条件可知AD ⊥MO ,AD ⊥PO ,则∠PMO 为所求二面角P -AD -O 的平面角 (2分) M DB A CO EP∵PO ⊥面ABCD ,∴∠PAO 为侧棱PA 与底面ABCD 所成的角.∴tan ∠PAO =26设AB =a ,AO =22a ,∴PO =AO·tan∠POA =23a ,tan ∠PMO =MO PO =3.∴∠PMO =60°. (4分)(2)连接AE ,OE , ∵OE ∥PD ,∴∠OEA 为异面直线PD 与AE 所成的角. (6分)∵AO ⊥BD ,AO ⊥PO ,∴AO ⊥平面PBD .又OE ⊂平面PBD ,∴AO ⊥OE .∵OE =21PD =2122DO PO +=45a , ∴tan ∠AEO =EOAO =5102. (8分) (3)延长MO 交BC 于N ,取PN 中点G ,连BG ,EG ,MG . M D BACOEPM D B ACO E PN GF∵BC ⊥MN ,BC ⊥PN ,∴BC ⊥平面PMN∴平面PMN ⊥平面PBC . (10分)又PM =PN ,∠PMN =60°,∴△PMN 为正三角形.∴MG ⊥PN .又平面PMN∩平面PBC =PN ,∴MG ⊥平面PBC . (12分)∴F 是AD 的4等分点,靠近A 点的位置 (13分)考点:立体几何的综合问题3.(1)见解析;(2)见解析;(3)45︒.【解析】试题分析:(1)取CE 中点P ,连接FP 、BP ,根据中位线定理可知FP||DE ,且且FP=.21DE ,而AB||DE ,且AB=.21DE 则ABPF 为平行四边形,则AF||BP ,AF ⊄平面BCE ,BP ⊂平面BCE ,满足线面平行的判定定理,从而证得结论;(2)根据AB ⊥平面ACD ,DE||AB ,则DE ⊥平面ACD ,又AF ⊂平面ACD ,根据线面垂直的性质可知DE AF AF CD CD DE D ⊥⊥=.又,,满足线面垂直的判定定理,证得AF ⊥平面CDE ,又BP||AF ,则BP ⊥平面CDE ,BP ⊂平面BCE ,根据面面垂直的判定定理可证得结论;(3)由(2),以F 为坐标原点,FA ,FD ,FP 所在的直线分别为x ,y ,z 轴建立空间直角坐标系F ﹣xyz .设AC=2,根据线面垂直求出平面BCE 的法向量n ,而m=(0,0,1)为平面ACD 的法向量,设平面BCE 与平面ACD 所成锐二面角为α,根据||cos ||||m n m n α⋅=⋅可求出所求.试题解析:(1)解:取CE 中点P,连结FP 、BP,∵F 为CD 的中点,∴FP||DE,且FP=.21DE 又AB||DE,且AB=.21DE ∴AB||FP,且AB=FP,∴ABPF 为平行四边形,∴AF||BP 又∵AF ⊄平面BCE,BP ⊂平面BCE,∴AF||平面BCE (2)∵△ACD 为正三角形,∴AF CD ⊥.∵AB ⊥平面ACD,DE||AB,∴DE ⊥平面ACD,又AF ⊂平面ACD,∴DE ⊥AF.又AF ⊥CD,CD∩DE=D,∴AF ⊥平面CDE 又BP||AF,∴BP ⊥平面CDE.又∵BP ⊂平面BCE,∴平面BCE ⊥平面CDE (3)法一、由(2),以F 为坐标原点,FA,FD,FP 所在的直线分别为x,y,z 轴(如图),建立空间直角坐标系F —xyz.设AC=2,则C (0,—1,0),).2,1,0(,),1,0,3(E B -设(,,)n x y z =为平面BCE 的法向量,300,0,220x y z n CB n CE y z ⎧++=⎪∴⋅=⋅=∴⎨+=⎪⎩,令n=1,则(0,1,1)n =-显然,)1,0,0(=m 为平面ACD 的法向量.设面BCE 与面ACD 所成锐二面角为,α则||2cos ||||2m n m n α⋅===⋅∴ 45=α.即平面BCE 与平面ACD 所成锐二面角为45︒法二、延长EB 、DA,设EB 、DA 交于一点O,连结CO.则面EBC面DAC CO =.由AB 是EDO ∆的中位线,则AD DO 2=.在OCD ∆中22OD AD AC ==, 060=∠ODC .CD OC ⊥,又DE OC ⊥.OC ∴⊥ 面,ECD 而CE ⊂面ECD,为所求二面角的平面角ECD CE OC ∠∴⊥∴,在Rt EDC ∆中,ED CD =,045=∠∴ECD 即平面BCE 与平面ACD 所成锐二面角为45︒.考点:与二面角有关的立体几何综合题;直线与平面平行的判定;平面与平面垂直的判定.4.证明见解析【解析】试题分析::(1)利用已知的线面垂直关系建立空间直角坐标系,准确写出相关点的坐标,从而将几何证明转化为向量运算.其中灵活建系是解题的关键.(2)证明线面平行,需证线线平行,只需要证明直线的方向向量与平面的法向量垂直;(3)把向量夹角的余弦值转化为两平面法向量夹角的余弦值;(4)空间向量将空间位置关系转化为向量运算,应用的核心是要充分认识形体特征,建立恰当的坐标系,实施几何问题代数化.同时注意两点:一是正确写出点、向量的坐标,准确运算;二是空间位置关系中判定定理与性质定理条件要完备. 试题解析:(1)如图,以D 为原点,以,,DA DC DP 为方向向量建立空间直角坐标系,xyz D -则)0,0,2(),1,0,0(),1,1,0(),0,2,1(),0,2,0(),2,0,0(A F E G C P .)11,1(),0,1,0(),2,0,2(-=-=-=∴EG EF AP .设平面EFG 的法向量为(,,)n x y z =0,0,n EF n EG ⎧⋅=⎪∴⎨⋅=⎪⎩即⎩⎨⎧=-+=-.0,0z y x y ⎩⎨⎧==∴.0,y z x 令1=x 则(1,0,1)n =.1(2)00120,.n AP n AP ⋅=⨯-+⨯+⨯=∴⊥又⊄AP 平面//,AP EFG ∴平面.EFG(2) 底面ABCD 是正方形,,DC AD ⊥∴又⊥PD 平面ABCD.AD PD ⊥∴又D CD PD = ,AD ∴⊥平面PCD∴向量是平面PCD 的一个法向量,)0,0,2(=又由(1)知平面EFG 的法向量(1,0,1)n =.cos ,2||||22DA n DA n DA n ⋅∴<>===⋅ ∴二面角D EF G --的平面角为045.考点:(1)证明直线与平面平行;(2)利用空间向量解决二面角问题.5.(Ⅰ)详见解析;(Ⅱ)3π. 【解析】试题分析:(Ⅰ)取1A B 的中点D ,连接AD ,由已知条件推导出AD ⊥平面1A BC ,从而AD BC ⊥,由线面垂直得1AA BC ⊥.由此能证明AB BC ⊥.(Ⅱ)方法一:连接CD ,由已知条件得ACD ∠即为直线AC 与平面1A BC 所成的角,AED ∠即为二面角1A A C B --的一个平面角,由此能求出二面角1A A C B --的大小.解法二(向量法):由(1)知AB BC ⊥且1BB ABC ⊥底面,所以以点B 为原点,以1BC BA BB 、、所在直线分别为,,x y z 轴建立空间直角坐标系B xyz -,设BC a =,则(0,2,0)A ,(0,0,0)B ,(,0,0)C a ,1(0,2,2)A ,(,0,0)BC a =,1(0,2,2)BA =,(,2,0)AC a =-, 1(0,0,2)AA =,求出平面1A BC 的一个法向量1(,,)n x y z =,设直线AC 与平面1A BC 所成的角为θ,则6πθ=得12121sin6242AC n AC n a π-===+,解得2a =,即(2,2,0)AC =-,求出平面1A AC 的一个法向量为2(1,1,0)n =,设锐二面角1A A C B --的大小为α,则1212121cos cos ,2n n n n n n α=<>==,且(0,)2πα∈, 即可求出锐二面角1A A C B --的大小.试题解析:解(1)证明:如图,取1A B 的中点D ,连接AD ,因1AA AB =,则1AD A B ⊥ 由平面1A BC ⊥侧面11A ABB ,且平面1A BC侧面11A ABB 1A B =,得1AD A BC ⊥平面,又BC ⊂平面1A BC , 所以AD BC ⊥.因为三棱柱111ABC A B C —是直三棱柱,则1AA ABC ⊥底面,所以1AA BC ⊥. 又1=AA AD A ,从而BC ⊥侧面11A ABB ,又AB ⊂侧面11A ABB ,故AB BC ⊥.-------6分解法一:连接CD ,由(1)可知1AD A BC ⊥平面,则CD 是AC 在1A BC 平面内的射影 ∴ACD ∠即为直线AC 与1A BC 平面所成的角,则=6ACD π∠ 在等腰直角1A AB ∆中,12AA AB ==,且点D 是1A B 中点,∴1122AD A B ==,且=2ADC π∠,=6ACD π∠ ∴22AC =过点A 作1AE A C ⊥于点E ,连DE ,由(1)知1AD A BC ⊥平面,则1AD A C ⊥,且AE AD A =∴AED ∠即为二面角1A A C B --的一个平面角且直角1A AC ∆中:113A A ACAEAC⋅===,又AD,=2ADEπ∠∴sin=ADAEDAE∠==且二面角1A A C B--为锐二面角∴=3AEDπ∠,即二面角1A A C B--的大小为3π----12分解法二(向量法):由(1)知AB BC⊥且1BB ABC⊥底面,所以以点B为原点,以1BC BA BB、、所在直线分别为,,x y z轴建立空间直角坐标系B xyz-,如图所示,且设BC a=,则(0,2,0)A,(0,0,0)B,(,0,0)C a,1(0,2,2)A,(,0,0)BC a=,1(0,2,2)BA =,(,2,0)AC a=-,1(0,0,2)AA =设平面1A BC的一个法向量1(,,)n x y z=,由1BC n⊥,11BA n⊥得:0220xay z=⎧⎨+=⎩令1y=,得0,1x z==-,则1(0,1,1)n=-设直线AC与1A BC平面所成的角为θ,则6πθ=得111sin624AC nAC nπ⋅===,解得2a=,即(2,2,0)AC=-又设平面1A AC的一个法向量为2n,同理可得2(1,1,0)n=,设锐二面角1A A C B--的大小为α,则1212121cos cos,2n nn nn nα⋅=<>==,且(0,)2πα∈,得3πα=∴锐二面角1A A C B--的大小为3π.考点:1.用空间向量求平面间的夹角;2.空间中直线与直线之间的位置关系.6.(1)证明见解析;(2)045【解析】试题分析:(1)利用已知的线面垂直关系建立空间直角坐标系,准确写出相关点的坐标,从而将几何证明转化为向量运算.其中灵活建系是解题的关键.(2)证明证线线垂直,只需要证明直线的方向向量垂直;(3)把向量夹角的余弦值转化为两平面法向量夹角的余弦值;(4)空间向量将空间位置关系转化为向量运算,应用的核心是要充分认识形体特征,建立恰当的坐标系,实施几何问题代数化.同时注意两点:一是正确写出点、向量的坐标,准确运算;二是空间位置关系中判定定理与性质定理条件要完备. 试题解析:(1)证明:F ,G 分别为PB ,BE 的中点,FG∴PE .又FG ⊄平面PED ,PE ⊂平面PED ,FG∴平面PED .(2)解:EA ⊥平面ABCD ,EA PD ,PD ∴⊥平面.ABCD,AD CD ⊂平面,ABCD PD AD ∴⊥,PD CD ⊥.四边形ABCD 是正方形,AD CD ∴⊥.以D 为原点,分别以直线,,DA DC DP 为x 轴, y 轴,z 轴 建立如图所示的空间直角坐标系,设 1.EA = 2AD PD EA ==,D ∴()0,0,0,P ()0,0,2,A ()2,0,0,C ()0,2,0,B ()2,2,0,(2,0,1)E , (2,2,2)PB =-,(0,2,2)PC =-.F ,G ,H 分别为PB ,EB ,PC 的中点,F ∴()1,1,1,G 1(2,1,)2,H (0,1,1),1(1,0,)2GF =-,1(2,0,).2GH =-(解法一)设1111(,,)x y z =n 为平面FGH 的一个法向量,则110GF GH ⎧⋅=⎪⎨⋅=⎪⎩n n ,即11111021202x z x z ⎧-+=⎪⎪⎨⎪-+=⎪⎩,令11y =,得1(0,1,0)=n . 设2222(,,)x y z =n 为平面PBC 的一个法向量,则2200PB PC ⎧⋅=⎪⎨⋅=⎪⎩n n ,即222222220220x y z y z +-=⎧⎨-=⎩,令21z =,得2(0,1,1)=n .所以12cos ,n n =1212⋅⋅n n n n=2. 所以平面FGH 与平面PBC 所成锐二面角的大小为π4(或45︒) (解法二)(0,1,1)(2,0,0)0DH BC ⋅=⋅-=,(0,1,1)(0,2,2)0DH PC ⋅=⋅-=,DH ∴是平面PBC 一个法向量.(0,2,0)(1,0,0)0DC FH ⋅=⋅-=,1(0,2,0)(1,0,)02DC FG ⋅=⋅-=,DC ∴是平面平面FGH 一个法向量.cos ,,22DH DC DH DC DH DC⋅===⋅ ∴平面FGH 与平面PBC 所成锐二面角的大小为π4(或45︒). (解法三)延长AE 到,Q 使得,AE EQ =连,.PQ BQQP HGFE D CBA2PD EA AQ ==,EA PD ,∴四边形ADPQ 是平行四边形,.PQAD 四边形ABCD 是正方形,,.BCAD PQBC ∴F ,H 分别为PB ,PC 的中点,,.FH BC FH PQ ∴FH ⊄平面PED ,PQ ⊂平面PED , FH ∴平面PED .,,FHFG F FH FG =⊂平面,ADPQ ∴平面FGH平面.ADPQ故平面FGH 与平面PBC 所成锐二面角与二面角D PQ C --相等.,PQ CD PQ PD ⊥⊥,,,PD CD D PD DC =⊂平面,PDC PQ ∴⊥平面.PDCPC ⊂平面,,PDC PQ PC ∴⊥DPC ∠是二面角D PQ C --的平面角.,,45.AD PD AD PD DPC =⊥∴∠=︒∴平面FGH 与平面PBC 所成锐二面角的大小为π4(或45︒). 考点:1、直线与平面平行的判定;2、平面与平面所成的角.。

相关文档
最新文档