中考数学计算题类型汇总与中考例题专项训练
中考数学中档题突破 专项训练五 实际应用与方案设计
解:(1)设 B 品牌消毒酒精每桶的价格为 x 元, A 品牌消毒酒精每桶的价 格为( x+20 )元,根据题意,得 3 000 1 800 x+20= x ,解得 x=30, 经检验:x=30 是原分式方程的解,且符合题意, ∴x+20=30+20=50. 答:A 品牌消毒酒精每桶的价格是 50 元, B 品牌消毒酒精每桶的价格是 30 元.
解:(1)设参加社会实践活动的老师有 m 人,学生有 n 人,则家长代表有
2m 人,根据题意得
95(3m+n)=6 175, 60×3m+60×0.75n=3 150,
m=5, 解得n=50. 答:参加社会实践活动的老师有 5 人,家长代表有 10 人,学生有 50 人.
(2)由(1)知,所有参与人员共有 65 人,其中学生有 50 人. ①当 50≤x<65 时,最经济的购票方案为 买二等座学生票 50 张,买二等座成人票(x-50)张,买一等座火车票(65 -x)张. ∴单程火车票的总费用 y 与 x 之间的函数关系式为 y=60×0.75×50+ 60(x-50)+95(65-x), 即 y=-35x+5 425(50≤x<65);
解:设每亩山田产粮相当于实田 x 亩,每亩场地产粮相当于实田 y 亩,
3x+6y=4.7, x=190, 根据题意得5x+3y=5.5,解得y=31.
9
1
答:每亩山田产粮相当于实田10亩,每亩场地产粮相当于实田3亩.
2.(2021·玉林)某市垃圾处理厂利用焚烧垃圾产生的热能发电.有 A,B 两个焚烧炉,每个焚烧炉每天焚烧垃圾均为 100 吨,每焚烧一吨垃圾,A 焚烧炉比 B 焚烧炉多发电 50 度,A,B 焚烧炉每天共发电 55 000 度. (1)求焚烧一吨垃圾,A 焚烧炉和 B 焚烧炉各发电多少度? (2)若经过改进工艺,与改进工艺之前相比每焚烧一吨垃圾,A 焚烧炉和 B 焚烧炉的发电量分别增加 a%和 2a%,则 A,B 焚烧炉每天共发电至少增 加(5+a)%,求 a 的最小值.
山西中考数学计算真题汇总(历年)
山西省中考数学计算真题汇总一.选择题(共1小题)1.分式方程的解为()A.x=﹣1 B.x=1 C.x=2 D.x=3二.填空题(共8小题)2.不等式组的解集是.3.化简的结果是.4.计算:=.5.计算:9x3÷(﹣3x2)=.6.方程=0的解为x=.7.方程的解是x=.8.分解因式:5x3﹣10x2+5x=.9.分解因式:ax4﹣9ay2=.三.解答题(共21小题)10.(1)计算:(﹣3)2﹣()﹣1﹣×+(﹣2)0(2)先化简,再求值:﹣,其中x=﹣2.11.解方程:2(x﹣3)2=x2﹣9.12.(1)计算:(﹣3﹣1)×﹣2﹣1÷.(2)解方程:=﹣.13.阅读与计算:请阅读以下材料,并完成相应的任务.斐波那契(约1170﹣1250)是意大利数学家,他研究了一列数,这列数非常奇妙,被称为斐波那契数列(按照一定顺序排列着的一列数称为数列).后来人们在研究它的过程中,发现了许多意想不到的结果,在实际生活中,很多花朵(如梅花、飞燕草、万寿菊等)的瓣数恰是斐波那契数列中的数.斐波那契数列还有很多有趣的性质,在实际生活中也有广泛的应用.斐波那契数列中的第n个数可以用[﹣]表示(其中,n≥1).这是用无理数表示有理数的一个范例.任务:请根据以上材料,通过计算求出斐波那契数列中的第1个数和第2个数.14.(1)计算:(﹣2)2•sin60°﹣()﹣1×;(2)分解因式:(x﹣1)(x﹣3)+1.15.解不等式组并求出它的正整数解:.16.(1)计算:sin45°﹣()0;(2)下面是小明化简分式的过程,请仔细阅读,并解答所提出的问题.解:﹣=﹣…第一步=2(x﹣2)﹣x+6…第二步=2x﹣4﹣x﹣6…第三步=x+2…第四步小明的解法从第步开始出现错误,正确的化简结果是.17.解方程:(2x﹣1)2=x(3x+2)﹣7.18.(1)计算:.(2)先化简,再求值.(2x+3)(2x﹣3)﹣4x(x﹣1)+(x﹣2)2,其中x=﹣.19.解方程:.20.(1)先化简.再求值:,其中.(2)解不等式组:,并把它的解集表示在数轴上.21.(1)计算:°+(2)先化简,再求值:•,其中x=﹣3.22.化简:23.(1)计算:(x+3)2﹣(x﹣1)(x﹣2)(2)化简:(3)解方程:x2﹣2x﹣3=024.计算:(3﹣π)0+4sin45°﹣+|1﹣|.25.解不等式组:.26.计算:()﹣2﹣(π﹣)0+|﹣2|+4sin60°.27.已知2a2+3a﹣6=0.求代数式3a(2a+1)﹣(2a+1)(2a﹣1)的值.28.解不等式组,并写出它的所有非负整数解.29.计算:(6﹣π)0+(﹣)﹣1﹣3tan30°+|﹣|30.已知x﹣y=,求代数式(x+1)2﹣2x+y(y﹣2x)的值.山西省中考数学计算真题汇总参考答案与试题解析一.选择题(共1小题)1.(2011•山西)分式方程的解为()A.x=﹣1 B.x=1 C.x=2 D.x=3【分析】观察可得最简公分母是2x(x+3),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.【解答】解:方程的两边同乘2x(x+3),得x+3=4x,解得x=1.检验:把x=1代入2x(x+3)=8≠0.∴原方程的解为:x=1.故选B.【点评】本题考查了分式方程的解法,注:(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.二.填空题(共8小题)2.(2012•山西)不等式组的解集是﹣1<x≤3.【分析】先求出两个不等式的解集,再求其公共解.【解答】解:,解不等式①得,x>﹣1,解不等式②得,x≤3,所以不等式组的解集是﹣1<x≤3.【点评】本题主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).3.(2012•山西)化简的结果是.【分析】将原式第一项的第一个因式分子利用平方差公式分解因式,分母利用完全平方公式分解因式,第二个因式的分母提取x分解因式,约分后将第一项化为最简分式,然后利用同分母分式的加法法则计算后,即可得到结果.【解答】解:•+=•+=+=.故答案为:.【点评】此题考查了分式的混合运算,分式的加减运算关键是通分,通分的关键是找最简公分母;分式的乘除运算关键是约分,约分的关键是找公因式,约分时分式的分子分母出现多项式,应先将多项式分解因式后再约分.4.(2011•山西)计算:=.【分析】根据负指数幂、二次根式化简、特殊角的三角函数3个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:原式=3+0.5﹣6×=,故答案为.【点评】本题是基础题,考查了实数的有关运算,还涉及了零指数幂、负指数幂、二次根式化简、绝对值等考点.5.(2010•山西)计算:9x3÷(﹣3x2)=﹣3x.【分析】根据单项式的除法和同底数幂相除,底数不变,指数相减,进行计算.【解答】解:9x3÷(﹣3x2)=﹣3x.【点评】本题主要考查单项式的除法,同底数幂的除法,熟练掌握运算法则和性质是解题的关键.6.(2010•山西)方程=0的解为x=5.【分析】观察可得最简公分母是(x+1)(x﹣2),方程两边乘以最简公分母,可以把分式方程化为整式方程,再求解.【解答】解:方程两边同乘以(x+1)(x﹣2),得2(x﹣2)﹣(x+1)=0,解得x=5.经检验:x=5是原方程的解.【点评】(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.7.(2009•太原)方程的解是x=5.【分析】本题最简公分母为2x(x﹣1),去分母,转化为整式方程求解.结果要检验.【解答】解:方程两边同乘2x(x﹣1),得4x=5(x﹣1),去括号得4x=5x﹣5,移项得5x﹣4x=5,合并同类项得x=5.经检验x=5是原分式方程的解.【点评】解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解,解分式方程一定注意要验根.8.(2015•北京)分解因式:5x3﹣10x2+5x=5x(x﹣1)2.【分析】先提取公因式5x,再根据完全平方公式进行二次分解.【解答】解:5x3﹣10x2+5x=5x(x2﹣2x+1)=5x(x﹣1)2.故答案为:5x(x﹣1)2.【点评】本题考查了提公因式法,公式法分解因式,提取公因式后利用完全平方公式进行二次分解,注意分解要彻底.9.(2014•北京)分解因式:ax4﹣9ay2=a(x2﹣3y)(x2+3y).【分析】首先提取公因式a,进而利用平方差公式进行分解即可.【解答】解:ax4﹣9ay2=a(x4﹣9y2)=a(x2﹣3y)(x2+3y).故答案为:a(x2﹣3y)(x2+3y).【点评】此题主要考查了提公因式法与公式法的综合运用,正确利用平方差公式是解题关键.三.解答题(共21小题)10.(2016•山西)(1)计算:(﹣3)2﹣()﹣1﹣×+(﹣2)0(2)先化简,再求值:﹣,其中x=﹣2.【分析】(1)根据实数的运算顺序,首先计算乘方和乘法,然后从左到右依次计算,求出算式(﹣3)2﹣()﹣1﹣×+(﹣2)0的值是多少即可.(2)先把﹣化简为最简分式,再把x=﹣2代入求值即可.【解答】解:(1)(﹣3)2﹣()﹣1﹣×+(﹣2)0=9﹣5﹣4+1=1(2)x=﹣2时,﹣=﹣=﹣===2【点评】(1)此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.(2)此题还考查了零指数幂的运算,要熟练掌握,解答此题的关键是要明确:①a0=1(a ≠0);②00≠1.(3)此题还考查了分式的化简求值,要熟练掌握,解答此题的关键是要明确:一般是先化简为最简分式或整式,再代入求值.化简时不能跨度太大,而缺少必要的步骤.(4)此题还考查了负整数指数幂的运算,要熟练掌握,解答此题的关键是要明确:①a﹣p=(a≠0,p为正整数);②计算负整数指数幂时,一定要根据负整数指数幂的意义计算;③当底数是分数时,只要把分子、分母颠倒,负指数就可变为正指数.11.(2016•山西)解方程:2(x﹣3)2=x2﹣9.【分析】方程移项后,提取公因式化为积的形式,然后利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程来求解.【解答】解:方程变形得:2(x﹣3)2﹣(x+3)(x﹣3)=0,分解因式得:(x﹣3)(2x﹣6﹣x﹣3)=0,解得:x1=3,x2=9.【点评】此题考查了解一元二次方程﹣因式分解法,熟练掌握因式分解法是解本题的关键.12.(2015•山西)(1)计算:(﹣3﹣1)×﹣2﹣1÷.(2)解方程:=﹣.【分析】(1)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)原式=﹣4×﹣÷(﹣)=﹣9+4=﹣5;(2)去分母得:2=2x﹣1﹣3,解得:x=3,经检验x=3是分式方程的解.【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.13.(2015•山西)阅读与计算:请阅读以下材料,并完成相应的任务.斐波那契(约1170﹣1250)是意大利数学家,他研究了一列数,这列数非常奇妙,被称为斐波那契数列(按照一定顺序排列着的一列数称为数列).后来人们在研究它的过程中,发现了许多意想不到的结果,在实际生活中,很多花朵(如梅花、飞燕草、万寿菊等)的瓣数恰是斐波那契数列中的数.斐波那契数列还有很多有趣的性质,在实际生活中也有广泛的应用.斐波那契数列中的第n个数可以用[﹣]表示(其中,n≥1).这是用无理数表示有理数的一个范例.任务:请根据以上材料,通过计算求出斐波那契数列中的第1个数和第2个数.【分析】分别把1、2代入式子化简求得答案即可.【解答】解:第1个数,当n=1时,[﹣]=(﹣)=×=1.第2个数,当n=2时,[﹣]=[()2﹣()2]=×(+)(﹣)=×1×=1.【点评】此题考查二次根式的混合运算与化简求值,理解题意,找出运算的方法是解决问题的关键.14.(2014•山西)(1)计算:(﹣2)2•sin60°﹣()﹣1×;(2)分解因式:(x﹣1)(x﹣3)+1.【分析】(1)本题涉及零指数幂、乘方、特殊角的三角函数值、二次根式化简四个考点.针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果;(2)根据整式的乘法,可得多项式,根据因式分解的方法,可得答案.【解答】解:(1)原式=2﹣2×=﹣2;(2)原式=x2﹣4x+3+1=(x﹣2)2.【点评】本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟记特殊角的三角函数值,熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.15.(2014•山西)解不等式组并求出它的正整数解:.【分析】先求出不等式组中每一个不等式的解集,再求出它们的公共部分就是不等式组的解集.【解答】解:解①得:x>﹣,解②得:x≤2,则不等式组的解集是:﹣<x≤2.则正整数解是:1,2【点评】本题考查的是一元一次不等式组的解,解此类题目常常要结合数轴来判断.还可以观察不等式的解,若x>较小的数、<较大的数,那么解集为x介于两数之间.16.(2013•山西)(1)计算:sin45°﹣()0;(2)下面是小明化简分式的过程,请仔细阅读,并解答所提出的问题.解:﹣=﹣…第一步=2(x﹣2)﹣x+6…第二步=2x﹣4﹣x﹣6…第三步=x+2…第四步小明的解法从第二步开始出现错误,正确的化简结果是.【分析】(1)根据特殊角的三角函数值,0指数幂的定义解答;(2)先通分,后加减,再约分.【解答】(1)解:原式=×﹣1=1﹣1=0.(2)解:﹣=﹣====.于是可得,小明的解法从第二步开始出现错误,正确的化简结果是.故答案为二,.【点评】(1)本题考查了特殊角的三角函数值,0指数幂,是一道简单的杂烩题;(2)本题考查了分式的加减,要注意,不能去分母.17.(2013•太原)解方程:(2x﹣1)2=x(3x+2)﹣7.【分析】根据配方法的步骤先把方程转化成标准形式,再进行配方即可求出答案.【解答】解:(2x﹣1)2=x(3x+2)﹣7,4x2﹣4x+1=3x2+2x﹣7,x2﹣6x=﹣8,(x﹣3)2=1,x﹣3=±1,x1=2,x2=4.【点评】此题考查了配方法解一元二次方程,掌握配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方是解题的关键,是一道基础题.18.(2012•山西)(1)计算:.(2)先化简,再求值.(2x+3)(2x﹣3)﹣4x(x﹣1)+(x﹣2)2,其中x=﹣.【分析】(1)分别根据0指数幂、负整数指数幂、特殊角的三角函数值计算出各数,再根据实数混合运算的法则进行解答即可;(2)先根据整式混合运算的法则把原式进行化简,再把x的值代入进行计算即可.【解答】解:(1)原式=1+2×﹣3=1+3﹣3=1;(2)原式=4x2﹣9﹣4x2+4x+x2﹣4x+4=x2﹣5.当x=﹣时,原式=(﹣)2﹣5=3﹣5=﹣2.【点评】本题考查的是实数的混合运算及整式的化简求值,熟记0指数幂、负整数指数幂、特殊角的三角函数值计算法则及整式混合运算的法则是解答此题的关键.19.(2012•山西)解方程:.【分析】先去分母把分式方程化为整式方程,求出整式方程中x的值,代入公分母进行检验即可.【解答】解:方程两边同时乘以2(3x﹣1),得4﹣2(3x﹣1)=3,化简,﹣6x=﹣3,解得x=.检验:x=时,2(3x﹣1)=2×(3×﹣1)≠0所以,x=是原方程的解.【点评】本题考查的是解分式方程.在解答此类题目时要注意验根,这是此类题目易忽略的地方.20.(2011•山西)(1)先化简.再求值:,其中.(2)解不等式组:,并把它的解集表示在数轴上.【分析】(1)将分式的分子、分母因式分解,约分,通分化简,再代值计算;(2)先分别解每一个不等式,再求解集的公共部分,用数轴表示出来.【解答】解:(1)原式=•﹣=﹣===,当a=﹣时,原式==﹣2;(2)由①得,x≥﹣1,由②得,x<2∴不等式组的解集为﹣1≤x<2.用数轴上表示如图所示.【点评】本题考查了分式的化简求值解一元一次不等式组.分式化简求值的关键是把分式化到最简,然后代值计算,解一元一次不等式组,就是先分别解每一个不等式,再求解集的公共部分.21.(2010•山西)(1)计算:°+(2)先化简,再求值:•,其中x=﹣3.【分析】(1)先把根式化成最简根式,把三角函数化为实数,再计算;(2)先对括号里的分式通分、对分解因式,再去括号化简求值.【解答】解:(1)原式=3+(﹣8)﹣+1 (4分)=3﹣8﹣1+1=﹣5.(5分)(2)原式=•(1分)=(2分)==(3分)=x+2.(4分)当x=﹣3时,原式=﹣3+2=﹣1.(5分)【点评】考查了实数的运算和分式的化简求值,熟练掌握和运用有关法则是关键.22.(2009•太原)化简:【分析】首先把括号里的式子进行通分,然后把除法运算转化成乘法运算,进行约分化简.【解答】解:原式===1.【点评】解决本题的关键是分式的通分和分式的乘法中的约分.要先化简后计算.23.(2009•山西)(1)计算:(x+3)2﹣(x﹣1)(x﹣2)(2)化简:(3)解方程:x2﹣2x﹣3=0【分析】(1)首先计算一次式的平方和两个一次式的积,然后进行减法计算即可;(2)首先把第一个分式进行化简转化为同分母的分式的加法,即可计算;(3)利用配方法,移项使方程的右边只有常数项,方程两边同时加上一次项系数的一半,则左边是完全平方式,右边是常数,即可利用直接开平方法求解.【解答】解:(1)(x+3)2﹣(x﹣1)(x﹣2)=x2+6x+9﹣(x2﹣3x+2)=x2+6x+9﹣x2+3x﹣2=9x+7.(2)===1.(3)移项,得x2﹣2x=3,配方,得(x﹣1)2=4,∴x﹣1=±2,∴x1=﹣1,x2=3.【点评】(1)解决本题的关键是掌握整式乘法法则;(2)本题主要考查分式运算的掌握情况;(3)本题主要考查了配方法解一元二次方程,正确理解解题步骤是解题关键.24.(2016•北京)计算:(3﹣π)0+4sin45°﹣+|1﹣|.【分析】根据实数的运算顺序,首先计算乘方、开方和乘法,然后从左向右依次计算,求出算式(3﹣π)0+4sin45°﹣+|1﹣|的值是多少即可.【解答】解:(3﹣π)0+4sin45°﹣+|1﹣|=1+4×﹣2﹣1=1﹣2+﹣1=【点评】(1)此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.(2)此题还考查了零指数幂的运算,要熟练掌握,解答此题的关键是要明确:①a0=1(a ≠0);②00≠1.(3)此题还考查了特殊角的三角函数值,要牢记30°、45°、60°角的各种三角函数值.25.(2016•北京)解不等式组:.【分析】根据不等式性质分别求出每一个不等式的解集,再根据口诀:大小小大中间找可得不等式组的解集.【解答】解:解不等式2x+5>3(x﹣1),得:x<8,解不等式4x>,得:x>1,∴不等式组的解集为:1<x<8.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.26.(2015•北京)计算:()﹣2﹣(π﹣)0+|﹣2|+4sin60°.【分析】原式第一项利用负整数指数幂法则计算,第二项利用零指数幂法则计算,第三项利用绝对值的代数意义化简,最后一项利用特殊角的三角函数值计算即可得到结果.【解答】解:原式=4﹣1+2﹣+4×=5+.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.27.(2015•北京)已知2a2+3a﹣6=0.求代数式3a(2a+1)﹣(2a+1)(2a﹣1)的值.【分析】原式第一项利用单项式乘以多项式法则计算,第二项利用平方差公式化简,去括号合并得到最简结果,把已知等式变形后代入计算即可求出值.【解答】解:∵2a2+3a﹣6=0,即2a2+3a=6,∴原式=6a2+3a﹣4a2+1=2a2+3a+1=6+1=7.【点评】此题考查了整式的混合运算﹣化简求值,熟练掌握运算法则是解本题的关键.28.(2015•北京)解不等式组,并写出它的所有非负整数解.【分析】分别求出不等式组中两不等式的解集,找出解集的公共部分确定出不等式组的解集,即可确定出所有非负整数解.【解答】解:,由①得:x≥﹣2;由②得:x<,∴不等式组的解集为﹣2≤x<,则不等式组的所有非负整数解为:0,1,2,3.【点评】此题考查了解一元一次不等式组,以及一元一次不等式组的整数解,熟练掌握运算法则是解本题的关键.29.(2014•北京)计算:(6﹣π)0+(﹣)﹣1﹣3tan30°+|﹣|【分析】本题涉及零指数幂、负整指数幂、特殊角的三角函数值、二次根式化简四个考点.针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:原式=1﹣5﹣+=﹣4.【点评】本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟记特殊角的三角函数值,熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.30.(2014•北京)已知x﹣y=,求代数式(x+1)2﹣2x+y(y﹣2x)的值.【分析】先把代数式计算,进一步化简,再整体代入x﹣y=,求得数值即可.【解答】解:∵x﹣y=,∴(x+1)2﹣2x+y(y﹣2x)=x2+2x+1﹣2x+y2﹣2xy=x2+y2﹣2xy+1=(x﹣y)2+1=()2+1=3+1=4.【点评】此题考查整式的混合运算与化简求值,注意先化简,再整体代入求值.。
中考数学计算题训练
中考数学计算题训练中考数学计算题专项训练一、训练一1.计算:1) sin45° - 1/2 + 3/8;2) 2×(-5) + 23 - 3÷4 + 2^2 + (-1)^4 + (5-2) - |-3|;3) -1-16+(-2)^2/(2×1) + 1001+12-33×tan30°;6) -2+(-2)+2sin30°;8) (-1)-16+(-2)^2/[(2×1)+(1×1)]。
2.计算:[-1/2 + 1/3×(-tan45°)] + 3/2.3.计算:1/3 - 2^-1 - (2010-2012+(-1)^-1)/(1001+12-33×tan30°)。
4.计算:18-[cos60°/(2-1-4sin30°)]+[(2-2)/(2-1)]。
5.计算:[cos60°/(-1)]-1^20+|2-8|-2^-1×(tan30°-1)。
二、训练二(分式化简)1.化简:2x/(x^2-4x-2) - 1/(x-2)。
2.化简:(1+1/(x-2))/(x^2-4)。
3.化简:(1-a)/(2a-1) ÷ [(a^2+2a+1)/(3-a^5)]。
4.化简:[(a-1)/(a^2-1)] ÷ [(a-1)/(2a-1)],其中a≠-1.5.化简:[2x/(x+1)(x-1)] + [1/2(x-1)]。
6.化简:[1/(x-2)^2] ÷ [1/(x^2-4x+1)],其中x≠1.7.化简:[1-(a-1)/(2a)] ÷ [(a^2+2a)/(a-1)],其中a≠a。
8.化简:[2/(a+2)-(a-2)/(a-1)] ÷ [2/(a+1)-2/(a-2)],其中a为整数且-3<a<2.9.化简:[(11/2)x+2]/(x-y) + [9/(x^2+2xy+y^2)],其中x=1,y=-2.10.化简:[(1/2)-(1/12)x]/[2/(x-4)-x/(x^2-4)],其中x=2(tan45°-cos30°)-1.三、训练三(求解方程)1.解方程x-4x+1=0.2.解分式方程(3x-2)/(x+1) + (2x+1)/(x-2) =3.3.解方程:x^3-2x^2+5x-6=0.4.解方程:(x-1)/(x+1) + (x+1)/(x-1) = 4.5.解方程:(x-2)/(x+1) + (x+1)/(x-2) = 2.四、解不等式1.解不等式 $x+2>1$,得 $x>-1$,整数解为 $x\in(-1,+\infty)$。
初中数学九年级专项训练中考数学试题分类汇编(一次函数的几何应用,一次函数的实际问题)
一次函数的几何应用,一次函数的实际问题一、选择5、(陕西省)如图,直线对应的函数表达式是()答案: A9、( 江苏常州 ) 甲、乙两同学骑自行车从 A 地沿同一条路到 B 地, 已知乙比甲先出发 , 他们离出发地的距离 s(km) 和骑行时间 t(h) 之间的函数关系如图所示 , 给出下列说法 : 【】(1)他们都骑行了 20km;(2)乙在途中停留了 0.5h;(3)甲、乙两人同时到达目的地 ;(4)相遇后 , 甲的速度小于乙的速度 .根据图象信息 , 以上说法正确的有A.1 个B.2 个C.3 个D.4 个答案: B10、 ( 湖北仙桃等 ) 如图,三个大小相同的正方形拼成六边形,一动点从点出发沿着→→→→ 方向匀速运动,最后到达点. 运动过程中的面积()随时间( t )变化的图象大致是()答案: B11、( 黑龙江哈尔滨 )9 .小亮每天从家去学校上学行走的路程为900 米,某天他从家去上学时以每分 30 米的速度行走了 450 米,为了不迟到他加快了速度,以每分 45 米的速度行走完剩下的路程,那么小亮行走过的路程 S(米)与他行走的时间 t (分)之间的函数关系用图象表示正确的是().答案: D12、(黑龙江)5月23日8时40分,哈尔滨铁路局一列满载着2400 吨“爱心”大米的专列向四川灾区进发,途中除 3 次因更换车头等原因必须停车外,一路快速行驶,经过 80 小时到达成都.描述上述过程的大致图象是()答案: D13、(湖北天门)均匀地向一个容器注水,最后把容器注满,在注水过程中,水面高度 h 随时间 t 的变化规律如图所示 ( 图中 OABC为一折线 ) ,这个容器的形状是图中().答案: A14、( 湖南怀化 ) 如图 1,是张老师晚上出门散步时离家的距离与时间之间的函数图象,若用黑点表示张老师家的位置,则张老师散步行走的路线可能是()答案:D15、(山东济南)济南市某储运部紧急调拨一批物资,调进物资共用 4 小时,调进物资 2 小时后开始调出物资(调进物资与调出物资的速度均保持不变). 储运部库存物资 S(吨)与时间 t (小时)之间的函数关系如图所示,这批物资从开始调进到全部调出需要的时间是()A.4 小时 B.4.4小时 C.4.8小时D.5 小时答案: B16、( 重庆 ) 如图,在直角梯形 ABCD中,DC∥AB,∠A=90°,AB=28cm,DC=24cm,AD=4cm,点 M从点 D 出发,以 1cm/s 的速度向点 C 运动,点 N 从点 B 同时出发,以 2cm/s 的速度向点 A 运动,当其中一个动点到达端点停止运动时,另一个动点2也随之停止运动 . 则四边形 AMND的面积 y(cm)与两动点运动的时间 t (s)的函数图象大致答案: D二、填空1、(江苏省南通市)将点A(, 0)绕着原点顺时针方向旋转45°角得到点B,则点 B 的坐标是 ________.答案:( 4,- 4)2、(江苏省无锡市)已知平面上四点,,,,直线将四边形分成面积相等的两部分,则的值为答案:.3、(江苏省苏州市) 6 月 1 日起,某超市开始有偿提供可重复使用的三种环保..购物袋,每只售价分别为 1 元、 2 元和 3 元,这三种环保购物袋每只最多分别能装大米 3 公斤、 5 公斤和 8 公斤. 6 月 7 日,小星和爸爸在该超市选购了 3 只环保购物袋用来装刚买的 20 公斤散装大米,他们选购的 3 只环保购物袋至少应付..给超市元.答案: 8、湖北荆门 ) 如图,l 1反映了某公司的销售收入与销量的关系, l 24 (反映了该公司产品的销售成本与销量的关系,当该公司赢利 ( 收入大于成本 )时,销售量必须 ____________.答案:大于 45、(山东烟台)如图是某工程队在“村村通”工程中,修筑的公路长度(米)与时间(天)之间的关系图象. 根据图象提供的信息,可知该公路的长度是______米.答案: 504三、解答题1、(湖北襄樊)我国是世界上严重缺水的国家之一. 为了增强居民的节水意识,某市自来水公司对居民用水采用以户为单位分段计费办法收费 . 即一月用水 10 吨以内 ( 包括 10 吨 ) 用户 , 每吨收水费 a 元 ; 一月用水超过 10 吨的用户 ,10 吨水仍按每吨 a 元水费 , 超过的部分每吨按 b 元(b>a) 收费 . 设一户居民月用水 y 元 ,y 与 x 之间的函数关系如图所示 .(1) 求 a 的值 , 若某户居民上月用水8 吨 , 应收水费多少元 ?(2)求 b 的值 , 并写出当 x 大于 10 时 ,y 与 x 之间的函数关系 ;(3)已知居民甲上月比居民乙多用水 4 吨, 两家共收水费 46元 , 求他们上月分别用水多少吨 ?解:( 1)当 x≤ 10 时,有 y=ax.将x=10,y=15代入,得a=1.5用水 8 吨应收水费 8×1.5=12 (元)(2)当 x>10 时,有(3)将 x=20,y=35 代入,得 35=10b+15. b=2(4)故当 x>10 时, y=2x- 5(5)因 1.5 ×10+1.5 ×10+2×4<46.所以甲、乙两家上月用水均超过10 吨则解之,得故居民甲上月用水16 吨,居民乙上月用水12 吨2、(湖北孝感)某股份有限公司根据公司实际情况,对本公司职工实行内部医疗公积金制度,公司规定:(一)每位职工在年初需缴纳医疗公积金m元;(二)职工个人当年治病花费的医疗费年底按表 1 的办法分段处理:表 1分段方式处理办法不超过 150 元(含 150 元)全部由个人承担超过 150 元,不超过 10000 元(不含 150个人承担n%,剩余部分由公司承担元,含 10000 元)的部分超过 10000 元(不含 10000 元)的部分全部由公司承担设一职工当年治病花费的医疗费为x 元,他个人实际承担的费用(包括医疗费个人承担的部分和缴纳的医疗公积金m元)为 y 元( 1)由表 1 可知,当时,;那么,当时,y=;(用含 m、 n、x 的方式表示)(2)该公司职工小陈和大李 2007 年治病花费的医疗费和他们个人实际承担的费用如表 2:职工治病花费的医疗费 x(元)个人实际承担的费用 y(元)小陈300280大李500320请根据表 2 中的信息,求 m、n 的值,并求出当时, y 关于 x 函数解析式;(3)该公司职工个人一年因病实际承担费用最多只需要多少元?(直接写出结果)解: 1)(2)由表2 知,小陈和大李的医疗费超过150 元而小于10000 元,因此有:( 3)个人实际承担的费用最多只需2220 元。
2024陕西中考数学二轮专题训练 题型三 简单计算题 (含答案)
2024陕西中考数学二轮专题训练题型三简单计算题类型一实数的运算【类型解读】实数的运算近7年在解答题考查6次,仅2020年未考查,分值均为5分,考查点涉及:①去绝对值符号;②二次根式运算;③0次幂;④分数的负整数指数幂;⑤立方根.考查形式:含3个考查点的加减混合运算.1.计算:20-|2-5|+(-2)2.2.计算:2×6+|3-2|-(-2022)0.3.计算:4×(-8)-|3-22|-(-13)-1.4.计算:-2×28+|7-1|+(-1)2022.5.计算:(-3)2×3-64-|-23|+(12)-2.6.计算:3×12-|2-6|-2tan45°.7.计算:-13×24+|22-2|-(-77)0+(-1)3.8.计算:13×(-327)-|1-3|+(-12)-3-2sin60°.类型二整式的化简(求值)1.计算:x (x +2)+(1+x )(1-x ).2.化简:(m+1)(m-3)-(m-2)2.3.化简:(x-3y)2-(x+2y)(x-2y).4.化简:(x-1)2-x(x-2)+(-x-3)(x-3).5.先化简,再求值:2x(1-x)-(x-3)(x+5),其中x=2.6.已知5x2-x-1=0,求代数式(3x+2)(3x-2)+x(x-2)的值.7.先化简,再求值:(x+2y)2+(x-2y)(x+2y)-2x(x+4y),其中x=2,y= 3.8.下面是小颖化简整式x(x+2y)-(x+1)2+2x的过程,仔细阅读后解答所提出的问题.解:原式=x2+2xy-(x2+2x+1)+2x第一步=x2+2xy-x2+2x+1+2x第二步=2xy+4x+1.第三步(1)小颖的化简过程从第________步开始出现错误,错误的原因是__________________________;(2)写出正确的解题过程.类型三分式的化简(求值)与解分式方程【类型解读】分式化简(求值)近10年考查6次,其中选择题1次(2017.5),解答题5次.其中分式化简考查5次,均为三项,形式包含:(A+B)÷C、(A-B)÷C;分式化简求值考查1次,形式为A-B,所给值为负数.解分式方程近10年考查5次,分值均为5分.考查形式:分式方程均为三项,其中两项为分式,另一项为常数1或-1.分式化简与解分式方程对比练习:针对分式化简与解分式方程过程中容易混淆的步骤,特设对比练习,让学生掌握基本步骤,明确解题方法,避免失分.对比练习①化简:12-x÷(2-2x2+x).解分式方程:12-x+2=2x2+x.解题过程对比练习②化简:(1-xx+1)÷1x2-1.解分式方程:1-xx+1=1x2-1.解题过程对比练习③化简:4x2-9÷(2x-3-1x+3).解分式方程:4x2-9-2x-3=1x+3.解题过程注意事项 1.分式化简时,分母始终存在,分 1.解分式方程时,第1步是利用等式式的每一项属于恒等变形;2.分式化简时,若遇到异分母分式相加或者相减,要进行通分,通分是将几个异分母的分式分别化成与原来的分式相等的同分母的分式;3.在化简的过程中,分子或分母能因式分解的先因式分解,以便看能否约去公因式的基本性质,去分母,因此分母不存在;2.解分式方程时,去分母是给方程两边同乘最简公分母,从而将分式方程化为整式方程;3.分式方程要检验,即检验所求的解是否是该方程的根考向一分式的化简(求值)1.化简:(1+1m-1)÷mm2-1.2.化简:a-ba+b-a2-2ab+b2a2-b2÷a-ba.3.化简:(x-2x+2-8x4-x2)÷x2+2xx-2.4.计算:x2-9x2+2x+1÷(x+3-x2x+1).5.已知A=2x-1,B=x+1x2-2x+1,C=x+13x-3,将它们组合成A-B÷C或(A-B)÷C的形式,请你从中任选一种组合形式,先化简,再求值,其中x=-3.考向二解分式方程1.解分式方程:xx+1=x3x+3+1.2.解分式方程:xx-3-6x=1.3.解分式方程:xx-2-1=4x2-4x+4.4.下面是小颖同学解分式方程的过程,请认真阅读并完成相应任务.解方程:x+2x-2-1=84-x2.解:(x+2)2-(x2-4)=-8,·················第一步x2+4x+4-x2-4=-8,····················第二步4x=0,···································第三步x=0,····································第四步所以原分式方程的解是x=0.················第五步任务一:①以上解分式方程的过程中,缺少的一步是________;②第________步开始出现错误,这一步错误的原因是________________________;任务二:请直接写出该分式方程的解;任务三:除纠正上述错误外,请你根据平时的学习经验,就解分式方程时还需要注意的事项给其他同学提一条建议.类型四一次方程(组)(常在一次函数的实际应用、二次函数综合题中涉及)1.解方程:x-32+x-13=4.2.=2y -y=6.3.x-y=-4-2y=-3.4.x-4(x+2y)=5+2y=1.5.2y=3-2+y3=-12.6.x+y=7=y-1的解也是关于x、y的方程ax+y=4的一个解,求a的值.7.x+2y=5①x+2y=-3②时的部分过程:x+2y=5①x+2y=-3②,①-②,得-2x=8,…(1)上述解法中,使用的方法是____________;(填“代入消元法”或“加减消元法”)(2)解方程组的基本思想是________;(3)请选择不同于题中的方法求解该方程组.类型五一元二次方程(常在二次函数综合题中涉及)1.解方程:(x+1)2-4=0.2.解方程:2x2+6x-3=0.3.解方程:x(x-7)=8(7-x).4.解方程:(x+1)(x-3)=1.5.若x=-1是关于x的一元二次方程(m-1)x2-x-2=0的一个根,求m的值及另一个根.6.已知关于x的一元二次方程x2-2x+1-k=0有两个不相等的实数根.(1)求k的取值范围;(2)请你给出一个k的值,并求出此时方程的根.7.已知关于x 的一元二次方程x 2-4mx +3m 2=0.(1)求证:该方程总有两个实数根;(2)若m >0,且该方程的两个实数根的差为2,求m 的值.类型六不等式(组)【类型解读】解不等式组近10年考查5次,其中解答题2次(近两年连续考查),选择题3次.1.-1≥2①x +3<13②.2.x <x +8(x +1)≤7x +10.3.x -1)≤1x -53.4.(x +1)≤7x +13-4<x -83.5.解不等式:3x +24≤x -13,并把解集在数轴上表示出来,同时写出它的最大整数解.第5题图6.6≤x+16,并把它的解集在数轴上表示出来.第6题图7.(1+x)>-1①1-x)>-2②的解答过程.解:由①,得2+x>-1,所以x>-3.由②,得1-x>2,所以-x>1,所以x>-1;所以原不等式组的解是x>-1.圆圆的解答过程是否有错误?如果有错误,写出正确的解答过程.参考答案类型一实数的运算1.解:原式=25-(5-2)+4=25-5+2+4=5+6.2.解:原式=2×6+(2-3)-1=23+2-3-1=3+1.3.解:原式=2×(-22)-(3-22)+3=-42-3+22+3=-2 2.4.解:原式=-2×27+(7-1)+1=-47+7-1+1=-37.5.解:原式=3×(-4)-23+4=-12-23+4=-8-2 3.6.解:原式=3×23-(6-2)-2=6-6+2-2=6- 6.7.解:原式=-13×24+(22-2)-1-1=-22+22-2-2=-4.8.解:原式=13×(-3)-(3-1)-8-2×32=-1-3+1-8-3=-23-8.类型二整式的化简(求值) 1.解:原式=x2+2x+1-x22.解:原式=m2+m-3m-3-(m2-4m+4)=m2-2m-3-m2+4m-4=2m-7.3.解:原式=x2-6xy+9y2-(x2-4y2)=x2-6xy+9y2-x2+4y2=-6xy+13y2.4.解:原式=x2-2x+1-x2+2x-(x+3)(x-3)=1-(x2-9)=1-x2+9=10-x2.5.解:原式=2x-2x2-(x2-3x+5x-15)=2x-2x2-x2+3x-5x+15=-3x2+15.当x=2时,原式=-3×22+15=3.6.解:原式=9x2-4+x2-2x=10x2-2x-4,∵5x2-x-1=0,∴5x2-x=1,∴原式=2(5x2-x)-4=-2.7.解:原式=x2+4xy+4y2+x2-4y2-(2x2+8xy)=x2+4xy+4y2+x2-4y2-2x2-8xy=-4xy.当x=2,y=3时,原式=-4×2×3=-4 6.8.解:(1)二;括号前是“-”号,去括号时里面的各项没有变号;(2)原式=x2+2xy-(x2+2x+1)+2x=x2+2xy-x2-2x-1+2x=2xy-1.类型三分式的化简(求值)与解分式方程解:原式=12-x ÷2(2+x )-2x 2+x=12-x ÷42+x=12-x ·2+x 4=2+x 8-4x.解:方程两边同乘(2+x )(2-x ),得2+x +2(2+x )(2-x )=2x (2-x ),2+x +8-2x 2=4x -2x 2,-3x =-10.解得x =103.检验:当x =103时,(2+x )(2-x )≠0,∴原分式方程的解是x =103.对比练习②解:原式=x +1-x x +1÷1(x +1)(x -1)=1x +1·(x +1)(x -1)=x -1.解:方程两边同乘(x +1)(x -1),得(x +1)(x -1)-x (x -1)=1,x 2-1-(x 2-x )=1,解得x =2.检验:当x =2时,(x +1)(x -1)≠0,∴原分式方程的解是x =2.对比练习③解:原式=4(x +3)(x -3)÷2(x +3)-(x -3)(x +3)(x -3)=4(x +3)(x -3)÷2x +6-x +3(x +3)(x -3)=4(x +3)(x -3)·(x +3)(x -3)x +9=4x +9.解:方程两边同乘(x +3)(x -3),得4-2(x +3)=x -3.4-(2x +6)=x -3.-3x =-1.解得x =13检验:当x =13时,(x +3)(x -3)≠0,∴原分式方程的解是x =13.考向一分式的化简(求值)1.解:原式=m -1+1m -1·(m +1)(m -1)m =m m -1·(m +1)(m -1)m=m +1.2.解:原式=a -b a +b -(a -b )2(a -b )(a +b )·a a -b=a -b a +b -a a +b=-b a +b.3.解:原式=(x -2x +2+8x x 2-4)÷x (x +2)x -2=x 2-4x +4+8x (x +2)(x -2)·(x -2)x (x +2)=x 2+4x +4(x +2)(x -2)·(x -2)x (x +2)=(x +2)2(x +2)(x -2)·(x -2)x (x +2)=1x.4.解:原式=(x +3)(x -3)(x +1)2÷x 2+x +3-x 2x +1=(x +3)(x -3)(x +1)2·x +1x +3=x -3x +1.5.解:A -B ÷C :2x -1-x +1x 2-2x +1÷x +13x -3原式=2x -1-x +1(x -1)2·3(x -1)x +1=2x -1-3x -1=-1x -1,当x =-3时,原式=-1-3-1=14;(A -B )÷C :(2x -1-x +1x 2-2x +1)÷x +13x -3原式=[2x -1-x +1(x -1)2]·3(x -1)x +1=[2x -2(x -1)2-x +1(x -1)2]·3(x -1)x +1=x -3(x -1)2·3(x -1)x +1=3x -9x 2-1,当x =-3时,原式=3×(-3)-9(-3)2-1=-94.考向二解分式方程1.解:方程两边同乘3(x +1),得3x =x +3x +3,解得x =-3.检验:当x =-3时,3(x +1)≠0,∴原分式方程的解为x =-3.2.解:方程两边同乘x (x -3),得x 2-6(x -3)=x (x -3).-3x =-18.解得x =6.检验:当x =6时,x (x -3)≠0,∴原分式方程的解为x =6.3.解:方程两边同乘(x -2)2,得x (x -2)-(x -2)2=4,2x=8.解得x=4.检验:当x=4时,(x-2)2≠0.∴原分式方程的解为x=4.4.解:任务一:①检验;②二,去括号时,括号前是“-”号,括号里面第二项没有变号;任务二:该分式方程的解为x=-4;【解法提示】x+2x-2-1=84-x2,(x+2)2-(x2-4)=-8,x2+4x+4-x2+4=-8,4x=-16,x=-4,检验:当x=-4时,x2-4≠0,∴原分式方程的解为x=-4.任务三:答案不唯一,如:去分母时,注意方程中的每项都要乘最简公分母;去括号时,注意正确运用去括号法则;解分式方程必须验根等.类型四一次方程(组)1.解:3(x-3)+2(x-1)=24,3x-9+2x-2=24,3x+2x=24+9+2,5x=35,x=7.∴原方程的解为x=7.2.解:=2y①-y=6②,把①代入②,得2y-y=6,解得y=6.把y=6代入①,得x=12.=12=6.3.解x-y=-4①-2y=-3②,①×2,得6x-2y=-8③,③-②,得5x=-5,解得x=-1,把x=-1代入①,得y=1.=-1=.4.解x-8y=5①+2y=1②,①+②得:-6y=6,解得y=-1,把y=-1代入②得:x-2=1,解得x=3,=3=-1.5.解:将原方程组整理,得:+2y=3①x-2y=1②,①+②,得4x=4,解得x=1,将x=1代入①,得1+2y=3,解得y=1,=1=1.6.解x+y=7=y-1②,把②代入①得:2(y-1)+y=7,解得y=3,代入①中,解得x=2,把x=2,y=3代入方程ax+y=4得,2a+3=4,解得a=12.7.解:(1)加减消元法;(2)消元;(3)由②得2y=-3-5x③.将③代入①得,3x+(-3-5x)=5,去括号,移项、合并同类项得-2x=8,解得x=-4,将x=-4代入①,得-12+2y=5,解得y=172,=-4=172.类型五一元二次方程1.解:(x+1)2=4,∴x+1=±2,解得x1=1,x2=-3.2.解:∵a=2,b=6,c=-3,∴b2-4ac=60>0,∴x=-b±b2-4ac2a=-6±602×2=-6±2154=-3±152.∴x1=-3+152,x2=-3-152.3.解:x(x-7)+8(x-7)=0,(x-7)(x+8)=0,解得x1=7,x2=-8.4.解:将方程整理为一般式为x2-2x-4=0,∵a=1,b=-2,c=-4,∴b2-4ac=(-2)2-4×1×(-4)=20>0,∴x=-b±b2-4ac2a=2±252=1±5,∴x1=1+5,x2=1-5.5.解:将x=-1代入原方程得m-1+1-2=0,解得m=2,当m=2时,原方程为x2-x-2=0,即(x+1)(x-2)=0,∴x1=-1,x2=2,∴方程的另一个根为x=2.6.解:(1)∵关于x的一元二次方程x2-2x+1-k=0有两个不相等的实数根.∴b2-4ac=(-2)2-4×1×(1-k)>0,∴4k>0,解得k>0;(2)由(1)知,实数k的取值范围为k>0,故取k=1,则x2-2x=0,即x(x-2)=0,解得x1=0,x2=2.7.(1)证明:∵b2-4ac=(-4m)2-4×1×3m2=4m2≥0,∴该方程总有两个实数根;(2)解:x2-4mx+3m2=0可化为(x-m)(x-3m)=0,解得x1=m,x2=3m.∵m>0,∴m<3m.∵该方程的两个实数根的差为2,∴x2-x1=3m-m=2m=2,解得m=1.类型六不等式(组) 1.解:解不等式①,得x≥3,解不等式②,得x<5,∴原不等式组的解集为3≤x<5.2.解x<x+8①(x+1)≤7x+10②,解不等式①,得x<4,解不等式②,得x≥-2,∴原不等式组的解集是-2≤x<4.3.解x-1)≤1①x-53②,解不等式①,得x≥1,解不等式②,得x<3.∴原不等式组的解集是1≤x<3.4.解(x +1)≤7x +13①-4<x -83②,解不等式①,得x ≥-3,解不等式②,得x <2.∴原不等式组的解集是-3≤x <2.5.解:去分母,得3(3x +2)≤4(x -1),去括号,得9x +6≤4x -4,移项、合并同类项,得5x ≤-10,解得x ≤-2.将不等式的解集在数轴上表示如解图,第5题解图∴不等式的最大整数解为x =-2.6.解6①≤x +16②,解不等式①,得x >-3,解不等式②,得x ≤2,∴这个不等式组的解集是-3<x ≤2.解集在数轴上表示如解图.第6题解图7.解:圆圆的解答过程有错误.正确的解答过程如下:由①,得2+2x >-1,∴2x >-3,∴x >-32,由②,得1-x <2,∴-x <1,∴x >-1.∴原不等式组的解集是x >-1.。
中考数学计算题专项训练
÷
x2-2x+1 x2-4
,其中
x=-5(2)(a﹣1+
(3) (1 1 ) a2 2a 1 ,其中 a = 2 -1.
a 1
a
)÷(a2+1),其中 a= ﹣
(5)
x x
1 1
2x x2 1
1 然后选取一个使原式有意义的
x2 1
x
的值代入求值
1/5
(6)
9、化简求值:
m2 2m 1 m2 1
x 2 6x 3 2.解不等式组 5x 1 6 4x 1
{ 3.解不等式组:
2x+3<9-x, 2x-5>3x.
25、先化简,再求值:
x2
x2 4 4x
4
x2 x
x 1
x
,其中
x=-3.
4.解不等式组
x x
2
2 1
1, 2.
5.解方程组
,并求
的值.
3/5
7.
x+2 解不等式组 3
<1,
并把解集在数轴上表示出来。
2(1-x)≤5,
3x 1 x 3
9.
解不等式组
1
x
2
≤1 2x 3
,并写出整数解.
1
中考数学计算题专项训练
1 x2 4
(2) 先化简,再求值. (1
)
,其中 x=3..
x3 x3
6.先化简,再求值:
1 a 1
a2
a
1 2a 1
a a
1 1
,其中
a
2.
(1) Sin45 0 1 3 8
(2)
2
(3)2×(-5)+23-3÷12
(完整版)初三中考数学计算题训练及答案
1 23 8 3 ﹣ ﹣1.计算:22+|﹣1|﹣ 9.2 计算:( 13)0 -( 2 )-2 + tan45°13.计算:2×(-5)+23-3÷2.4. 计算:22+(-1)4+(5-2)0-|-3|;5.计算: Sin 450 -+ 6.计算: - 2 + (-2)0 + 2 s in 30︒ .( 1)0 + ∣2 3∣ + 2sin 60° 7.计算 ,8.计算:a(a-3)+(2-a)(2+a)∣﹣5∣ + 22﹣( + 1)00 39.计算:10. 计算: -- (-2011) + 4 ÷(-2)11.解方程 x 2﹣4x+1=0.12.解分式方程2 =x + 23x - 23 13.解方程:x=2x-1.14.已知|a﹣1|+ab + 2=0,求方裎x+bx=1 的解.x 315.解方程:x2+4x-2=0 16.解方程:x - 1 - 1 - x = 2.{2x+3<9-x,) 17.(2011.苏州)解不等式:3﹣2(x﹣1)<1.18.解不等式组:2x-5>3x.⎧x - 2 6(x + 3) ⎧⎪x + 2 > 1, 19.解不等式组⎨( -1)- 6 ≥ 4(x +1) 20.解不等式组⎨x +1 < 2.⎩5 x ⎩⎪ 2初中计算题训练2 12 1 2 1 21 2 1 2答案1.解: 原式=4+1﹣3=22.解:原式=1-4+1=-2.3.解:原式=-10+8-6=-84.解:原式=4+1+1-3=3。
1 5.解:原式= -2 + 2 = 2 . 6. 解:原式=2+1+2× =3+1=4.2 27. 解:原式=1+2﹣ 3+2× 2 =1+2﹣ 3+ 3=3.8.解: a (a - 3)+ (2 - a )(2 + a )= a 2 - 3a + 4 - a 2 =4 - 3a9. 解:原式=5+4-1=810. 解:原式= 3 -1- 1=0.2211. 解:(1)移项得,x 2﹣4x=﹣1,配方得,x 2﹣4x+4=﹣1+4,(x ﹣2)2=3,由此可得 x ﹣2=± 3,x =2+3,x =2﹣ 3;(2)a=1,b=﹣4,c=1.b 2﹣4ac=(﹣4)2﹣4×1×1=12>0.4 ± 12x=2 =2± 3, x =2+ 3,x =2﹣ 3.12.解:x=-10 13.解:x=314. 解:∵|a﹣1|+1b + 2=0,∴a﹣1=0,a=1;b+2=0,b=﹣2.1 ∴x ﹣2x=1,得 2x 2+x ﹣1=0,解得 x =﹣1,x =2. 1 1经检验:x =﹣1,x =2是原方程的解.∴原方程的解为:x =﹣1,x =2. 15.解: x =-4 ±16 + 8 = -4 ± 2 6 = - 2 ± 2 216. 解:去分母,得 x +3=2(x -1) . 解之,得 x =5. 经检验,x =5 是原方程的解. 17. 解:3﹣2x+2<1,得:﹣2x <﹣4,∴x>2. 18.解:x <-519.解: x ≥ 1520. 解:不等式①的解集为 x >-1;不等式②的解集为 x +1<4 x <3故原不等式组的解集为-1<x <3.2 36。
初中数学中考专项练习《一次函数》100道计算题包含与解析(中考冲刺)
初中数学中考专项练习《一次函数》100道计算题包含与解析(中考冲刺)(时间:60分钟满分:100分)班级:_________ 姓名:_________ 分数:_________一、计算题(共100题)1、如图所示的折线ABC•表示从甲地向乙地打长途电话所需的电话费y(元)与通话时间t(分钟)之间的函数关系的图象.(1)写出y与t•之间的函数关系式.(2)通话2分钟应付通话费多少元?(3)通话7分钟呢?2、如图所示的折线ABC•表示从甲地向乙地打长途电话所需的电话费y(元)与通话时间t(分钟)之间的函数关系的图象.(1)写出y与t•之间的函数关系式.(2)通话2分钟应付通话费多少元?(3)通话7分钟呢?3、如图,直线l是一次函数y=kx+b的图象,求l与两坐标轴所围成的三角形的面积.4、如图所示的折线ABC•表示从甲地向乙地打长途电话所需的电话费y(元)与通话时间t(分钟)之间的函数关系的图象.(1)写出y与t•之间的函数关系式.(2)通话2分钟应付通话费多少元?(3)通话7分钟呢?5、已知,与成正比例,与成正比例,且时,;时,,求y与x的解析式.6、一个正比例函数的图象经过点A(﹣2,3),B(a,﹣3),求a的值.7、设一次函数y=kx+b(k≠0)的图象经过A(1,3),B(0,-2)两点,试求k,b的值.8、如图,直线l是一次函数y=kx+b的图象,求l与两坐标轴所围成的三角形的面积.9、在中,当时,,当时,,求和的值.10、一个正比例函数的图象经过点A(﹣2,3),B(a,﹣3),求a的值.11、一次函数y =kx+b()的图象经过点,,求一次函数的表达式.12、在中,当时,,当时,,求和的值.13、已知,当时,;当时,. 求出k,b 的值;14、一次函数y =kx+b()的图象经过点,,求一次函数的表达式.15、已知y是x的一次函数,当x=3时,y=1;当x=﹣2时,y=﹣4,求这个一次函数的解析式.16、已知,与成正比例,与成正比例,且时,;时,,求y与x的解析式.17、如图,直线l是一次函数y=kx+b的图象,求l与两坐标轴所围成的三角形的面积.18、如图,直线l是一次函数y=kx+b的图象,求l与两坐标轴所围成的三角形的面积.19、已知y是x的一次函数,当x=3时,y=1;当x=﹣2时,y=﹣4,求这个一次函数的解析式.20、已知函数y=(2m+1)x+m-3(1)若函数图象经过原点,求m的值;(2)若这个函数是一次函数,且y随着x的增大而减小,求m的取值范围;(3)若这个函数是一次函数,且图象不经过第四象限, 求的取值范围.21、函数y=(k﹣1)x2|k|﹣3是正比例函数,且y随x增大而减小,求(k+3)2018的值.22、设一次函数y=kx+b(k≠0)的图象经过A(1,3),B(0,-2)两点,试求k,b的值.23、已知y=(k-3)x+k2-9是关于x的正比例函数,求当x=-4时,y的值.24、如图所示的折线ABC•表示从甲地向乙地打长途电话所需的电话费y(元)与通话时间t(分钟)之间的函数关系的图象.(1)写出y与t•之间的函数关系式.(2)通话2分钟应付通话费多少元?(3)通话7分钟呢?25、已知,与成正比例,与成正比例,且时,;时,,求y与x的解析式.26、在y=kx+b中,当x=1时y=4,当x=2时y=10.求k,b的值.27、已知函数y=(2m+1)x+m-3(1)若函数图象经过原点,求m的值;(2)若这个函数是一次函数,且y随着x的增大而减小,求m的取值范围;(3)若这个函数是一次函数,且图象不经过第四象限, 求的取值范围.28、如图所示的折线ABC•表示从甲地向乙地打长途电话所需的电话费y(元)与通话时间t(分钟)之间的函数关系的图象.(1)写出y与t•之间的函数关系式.(2)通话2分钟应付通话费多少元?(3)通话7分钟呢?29、已知,与成正比例,与成正比例,且时,;时,,求y与x的解析式.30、在y=kx+b中,当x=1时y=4,当x=2时y=10.求k,b的值.31、已知,与成正比例,与成正比例,且时,;时,,求y与x的解析式.32、在平面直角坐标系中,直线y=kx+3经过(2,7),求不等式kx﹣6≤0的解集.33、函数y=(k﹣1)x2|k|﹣3是正比例函数,且y随x增大而减小,求(k+3)2018的值.34、在中,当时,,当时,,求和的值.35、已知函数y=(2m+1)x+m-3(1)若函数图象经过原点,求m的值;(2)若这个函数是一次函数,且y随着x的增大而减小,求m的取值范围;(3)若这个函数是一次函数,且图象不经过第四象限, 求的取值范围.36、已知,当时,;当时,. 求出k,b 的值;37、一个正比例函数的图象经过点A(﹣2,3),B(a,﹣3),求a的值.38、函数y=(k﹣1)x2|k|﹣3是正比例函数,且y随x增大而减小,求(k+3)2018的值.39、在中,当时,,当时,,求和的值.40、已知y是x的一次函数,当x=3时,y=1;当x=﹣2时,y=﹣4,求这个一次函数的解析式.41、在平面直角坐标系中,直线y=kx+3经过(2,7),求不等式kx﹣6≤0的解集.42、设一次函数y=kx+b(k≠0)的图象经过A(1,3),B(0,-2)两点,试求k,b的值.43、如图,直线AB交x轴于点B,交y轴于点A(0,4),直线DM⊥x轴正半轴于点M,交线段AB于点C,DM=6,连接DA,∠DAC=90°,AD:AB=1:2.(1)求点D的坐标;(2)求经过O、D、B三点的抛物线的函数关系式.44、函数y=(k﹣1)x2|k|﹣3是正比例函数,且y随x增大而减小,求(k+3)2018的值.45、已知函数y=(2m+1)x+m-3(1)若函数图象经过原点,求m的值;(2)若这个函数是一次函数,且y随着x的增大而减小,求m的取值范围;(3)若这个函数是一次函数,且图象不经过第四象限, 求的取值范围.46、一个正比例函数的图象经过点A(﹣2,3),B(a,﹣3),求a的值.47、在平面直角坐标系中,直线y=kx+3经过(2,7),求不等式kx﹣6≤0的解集.48、函数y=(k﹣1)x2|k|﹣3是正比例函数,且y随x增大而减小,求(k+3)2018的值.49、已知y是x的一次函数,当x=3时,y=1;当x=﹣2时,y=﹣4,求这个一次函数的解析式.50、如图所示的折线ABC•表示从甲地向乙地打长途电话所需的电话费y(元)与通话时间t(分钟)之间的函数关系的图象.(1)写出y与t•之间的函数关系式.(2)通话2分钟应付通话费多少元?(3)通话7分钟呢?51、已知函数y=(2m+1)x+m-3(1)若函数图象经过原点,求m的值;(2)若这个函数是一次函数,且y随着x的增大而减小,求m的取值范围;(3)若这个函数是一次函数,且图象不经过第四象限, 求的取值范围.52、已知函数y=(2m+1)x+m-3(1)若函数图象经过原点,求m的值;(2)若这个函数是一次函数,且y随着x的增大而减小,求m的取值范围;(3)若这个函数是一次函数,且图象不经过第四象限, 求的取值范围.53、在直角坐标系中,用线段顺次连结点(-2,0),(0,3),(3,3),(0,4),(-2,0)。
2023年中考数学----《分式方程之分式方程的应用》知识总结与专项练习题(含答案解析)
2023年中考数学----《分式方程之分式方程的应用》知识总结与专项练习题(含答案解析)知识总结1. 列分式方程解实际应用题的步骤:①审题——仔细审题,找出题目中的等量关系。
②设未知数——根据问题与等量关系直接或间接设未知数。
③列方程:根据等量关系与未知数列出分式方程。
④解方程——按照解分式方程的步骤解方程。
④答——检验方程的解是否满足实际情况,然后作答。
练习题1、(2022•内蒙古)某班学生去距学校10km 的博物馆参观,一部分学生骑自行车先走,过了20min 后,其余学生乘汽车出发,结果他们同时到达.已知汽车的速度是骑车学生速度的2倍,设骑车学生的速度为x km /h ,下列方程正确的是( )A .2021010=−x x B .2010210=−x x C .3110210=−x xD .3121010=−x x【分析】根据汽车的速度和骑车学生速度之间的关系,可得出汽车的速度为2xkm /h ,利用时间=路程÷速度,结合汽车比骑车学生少用20min ,即可得出关于x 的分式方程,此题得解.【解答】解:∵骑车学生的速度为xkm /h ,且汽车的速度是骑车学生速度的2倍, ∴汽车的速度为2xkm /h . 依题意得:﹣=,即﹣=.2、(2022•淄博)为扎实推进“五育”并举工作,加强劳动教育,某校投入2万元购进了一批劳动工具.开展课后服务后,学生的劳动实践需求明显增强,需再次采购一批相同的劳动工具,已知采购数量与第一次相同,但采购单价比第一次降低10元,总费用降低了15%.设第二次采购单价为x 元,则下列方程中正确的是( )A .()10%1512000020000−−⨯=x x B .()x x %151200*********−⨯=− C .()10%1512000020000+−⨯=x x D .()xx %151200*********−⨯=+ 【分析】根据题目中的数据和两次购买的数量相同,可以列出相应的分式方程. 【解答】解:由题意可得,,故选:D .3、(2022•阜新)我市某区为30万人接种新冠疫苗,由于市民积极配合这项工作,实际每天接种人数是原计划的1.2倍,结果提前20天完成了这项工作.设原计划每天接种x 万人,根据题意,所列方程正确的是( )A .202.13030=−x xB .2.1203030=−−x x C .20302.130=−xxD .2.1302030=−−xx【分析】由实际接种人数与原计划接种人数间的关系,可得出实际每天接种1.2x 万人,再结合结果提前20天完成了这项工作,即可得出关于x 的分式方程,此题得解. 【解答】解:∵实际每天接种人数是原计划的1.2倍,且原计划每天接种x 万人, ∴实际每天接种1.2x 万人,又∵结果提前20天完成了这项工作, ∴﹣=20.4、(2022•襄阳)《九章算术》中有一道关于古代驿站送信的题目,其白话译文为:一份文件,若用慢马送到900里远的城市,所需时间比规定时间多1天;若改为快马派送,则所需时间比规定时间少3天,已知快马的速度是慢马的2倍,求规定时间,设规定时间为x 天,则可列出正确的方程为( )A .190023900+⨯=+x x B .190023900+⨯=−x xC .390021900+⨯=−x x D .390021900−⨯=+x x 【分析】根据快、慢马送到所需时间与规定时间之间的关系,可得出慢马送到所需时间为(x +1)天,快马送到所需时间为(x ﹣3)天,再利用速度=路程÷时间,结合快马的速度是慢马的2倍,即可得出关于x 的分式方程,此题得解. 【解答】解:∵规定时间为x 天,∴慢马送到所需时间为(x +1)天,快马送到所需时间为(x ﹣3)天, 又∵快马的速度是慢马的2倍,两地间的路程为900里, ∴=2×.故选:B .5、(2022•朝阳)八年一班学生周末乘车去红色教育基地参观学习,基地距学校60km ,一部分学生乘慢车先行,出发30min 后,另一部分学生乘快车前往,结果同时到达.已知快车的速度是慢车速度的1.5倍,求慢车的速度.设慢车每小时行驶xkm ,根据题意,所列方程正确的是( )A .60305.16060=−x x B .6030605.160=−x x C .305.16060=−xx D .30605.160=−xx 【分析】设慢车每小时行驶xkm ,则快车每小时行驶1.5xkm ,根据基地距学校60km ,一部分学生乘慢车先行,出发30min 后,另一部分学生乘快车前往,结果同时到达,列方程即可.【解答】解:设慢车每小时行驶xkm ,则快车每小时行驶1.5xkm , 根据题意可得:﹣=.故选:A .6、(2022•黔西南州)某农户承包的36亩水田和30亩旱地需要耕作.每天平均耕作旱地的亩数比耕作水田的亩数多4亩.该农户耕作完旱地所用的时间是耕作完水田所用时间的一半,求平均每天耕作水田的亩数.设平均每天耕作水田x 亩,则可以得到的方程为( )A .x x 302436⨯=− B .x x 302436⨯=+ C .430236−⨯=x x D .430236+⨯=x x 【分析】根据该农户耕作完旱地所用的时间是耕作完水田所用时间的一半列出方程即可. 【解答】解:根据题意得:=2×.故选:D .7、(2022•济宁)一辆汽车开往距出发地420km 的目的地,若这辆汽车比原计划每小时多行10km ,则提前1小时到达目的地.设这辆汽车原计划的速度是xkm /h ,根据题意所列方程是( )A .110420420+−=x x B .10420420+=+x x C .110420420++=x xD .10420420−=+x x 【分析】根据提速后及原计划车速间的关系,可得出这辆汽车提速后的速度是(x +10)km /h ,利用时间=路程÷速度,结合提速后可提前1小时到达目的地,即可得出关于x的分式方程,此题得解.【解答】解:∵这辆汽车比原计划每小时多行10km ,且这辆汽车原计划的速度是xkm /h , ∴这辆汽车提速后的速度是(x +10)km /h . 依题意得:=+1,故选:C .8、(2022•辽宁)小明和小强两人在公路上匀速骑行,小强骑行28km 所用时间与小明骑行24km 所用时间相等,已知小强每小时比小明多骑行2km ,小强每小时骑行多少千米?设小强每小时骑行xkm ,所列方程正确的是( ) A .22428+=x x B .xx 24228=+ C .xx 24228=− D .22428−=x x 【分析】根据小强与小明骑行速度间的关系可得出小明每小时骑行(x ﹣2)km ,利用时间=路程÷速度,结合小强骑行28km 所用时间与小明骑行24km 所用时间相等,即可得出关于x 的分式方程,此题得解.【解答】解:∵小强每小时比小明多骑行2km ,小强每小时骑行xkm , ∴小明每小时骑行(x ﹣2)km . 依题意得:=.故选:D .9、(2022•恩施州)一艘轮船在静水中的速度为30km /h ,它沿江顺流航行144km 与逆流航行96km 所用时间相等,江水的流速为多少?设江水流速为v km /h ,则符合题意的方程是( )A .v v −=+309630144 B .v v 9630144=− C .vv +=−309630144 D .vv +=3096144 【分析】根据“顺流航行144km 与逆流航行96km 所用时间相等”列分式方程即可. 【解答】解:根据题意,可得,故选:A .10、(2022•绥化)有一个容积为24m 3的圆柱形的空油罐,用一根细油管向油罐内注油,当注油量达到该油罐容积的一半时,改用一根口径为细油管口径2倍的粗油管向油罐注油,直至注满,注满油的全过程共用30分钟.设细油管的注油速度为每分钟xm 3,由题意列方程,正确的是( )A .3041212=+x x B .2441515=+x x C .2423030=+xxD .3021212=+xx【分析】设细油管的注油速度为每分钟xm 3,则粗油管的注油速度为每分钟4xm 3,利用注油所需时间=注油总量÷注油速度,即可得出关于x 的分式方程,此题得解. 【解答】解:24÷2=12(m 3).设细油管的注油速度为每分钟xm 3,则粗油管的注油速度为每分钟4xm 3, 依题意得:+=30.故选:A .11、(2022•荆州)“爱劳动,劳动美.”甲、乙两同学同时从家里出发,分别到距家6km 和10km 的实践基地参加劳动.若甲、乙的速度比是3:4,结果甲比乙提前20min 到达基地,求甲、乙的速度.设甲的速度为3xkm /h ,则依题意可列方程为( )A .x x 4103136=+ B .x x 4102036=+ C .3141036=−x xD .2041036=−xx【分析】根据甲、乙的速度比是3:4,可以设出甲和乙的速度,然后根据甲比乙提前20min 到达基地,可以列出相应的方程.【解答】解:由题意可知,甲的速度为3xkm /h ,则乙的速度为4xkm /h ,+=,即+=,故选:A.12、(2022•鞍山)某加工厂接到一笔订单,甲、乙车间同时加工,已知乙车间每天加工的产品数量是甲车间每天加工的产品数量的1.5倍,甲车间加工4000件比乙车间加工4200件多用3天.设甲车间每天加工x件产品,根据题意可列方程为.【分析】根据两车间工作效率间的关系,可得出乙车间每天加工1.5x件产品,再根据甲车间加工4000件比乙车间加工4200件多用3天,即可得出关于x的分式方程,此题得解.【解答】解:∵甲车间每天加工x件产品,乙车间每天加工的产品数量是甲车间每天加工的产品数量的1.5倍,∴乙车间每天加工1.5x件产品,又∵甲车间加工4000件比乙车间加工4200件多用3天,∴﹣=3.故答案为:﹣=3.13、(2022•青岛)为落实青岛市中小学生“十个一”行动计划,学校举办以“强体质,炼意志”为主题的体育节,小亮报名参加3000米比赛项目,经过一段时间训练后,比赛时小亮的平均速度比训练前提高了25%,少用3分钟跑完全程,设小亮训练前的平均速度为x米/分,那么x满足的分式方程为.【分析】根据等量关系:原来参加3000米比赛时间﹣经过一段时间训练后参加3000米比赛时间=3分钟,依此列出方程即可求解.【解答】解:依题意有:﹣=3.故答案为:﹣=3.14、(2022•黑龙江)某玩具厂生产一种玩具,甲车间计划生产500个,乙车间计划生产400个,甲车间每天比乙车间多生产10个,两车间同时开始生产且同时完成任务.设乙车间每天生产x个,可列方程为.【分析】根据甲车间生产500个玩具所用的时间=乙车间生产400个玩具所用的时间,列出方程即可解答.【解答】解:设乙车间每天生产x个,则甲车间每天生产(x+10)个,由题意得:=,故答案为:=.15、(2022•江西)甲、乙两人在社区进行核酸采样,甲每小时比乙每小时多采样10人,甲采样160人所用时间与乙采样140人所用时间相等,甲、乙两人每小时分别采样多少人?设甲每小时采样x人,则可列分式方程为.【分析】由实际问题找到合适的等量关系即可抽象出分式方程.【解答】解:设甲每小时采样x人,则乙每小时采样(x﹣10)人,根据题意得:=.故答案为:=.。
中考数学计算题专项训练
中考数学计算题专项训练一、集训一(代数计算) 1.345tan 32312110-︒-⨯⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛--2.()()0112230sin 4260cos 18-+︒-÷︒---3.()()()︒⨯-+-+-+⎪⎭⎫ ⎝⎛-30tan 3312120122010311001024.1201002(60)(1)|28|(301)1cos tan -÷-+--⨯--二、集训二(分式化简求值)注意:此类要求的题目,如果没有化简,直接代入求值一分不得!考点:①分式的加减乘除运算 ②因式分解 ③二次根式的简单计算1.化简:x x x x x x x x x 416)44122(2222+-÷+----+, 其中22+=x2.先化简,再求值:13x-·32269122x x x xx x x-+----,其中x=-6.3.先化简,再求值:a-1a+2·a2+2aa2-2a+1÷1a2-1,其中a为整数且-3<a<2.4.先化简,再求值:222112()2442x x x x x x -÷--+-,其中2x =(tan45°-cos30°)5.先化简再求值:1112421222-÷+--•+-a a a a a a ,其中a 满足20a a -=.6.先化简:144)113(2++-÷+-+a a a a a ,并从0,1-,2中选一个合适的数作为a的值代入求值。
三、集训三(求解方程)1.解方程3x2+4x-2=0.2.解分式方程xx - 1-31- x= 2.四、集训四(解不等式组)1.解不等式组⎪⎩⎪⎨⎧-≤-〉-121312x x x x2. 解不等式组⎩⎪⎨⎪⎧x +23 <1,2(1-x )≤5,并把解集在数轴上表示出来。
3. 解不等式组:102(2)3 xx x-≥⎧⎨+>⎩4. 解不等式组313112123x x x x +<-⎧⎪++⎨+⎪⎩≤,并写出整数解.。
初中数学九年级专项训练中考数学试题分类汇编(平均数,中位数,众数,方差)
平均数,中位数,众数,方差一、选择题1.(浙江省衢州市)为参加电脑汉字输入比赛,甲和乙两位同学进行了 6 次测试,成绩如下表:甲和乙两位同学 6 次测试成绩 ( 每分钟输入汉字个数 ) 及部分统计数据表有四位同学在进一步算得乙测试成绩的方差后分别作出了以下判断,其中说法正确的是( )A、甲的方差大于乙的方差,所以甲的成绩比较稳定;B、甲的方差小于乙的方差,所以甲的成绩比较稳定;C、乙的方差小于甲的方差,所以乙的成绩比较稳定;D、乙的方差大于甲的方差,所以乙的成绩比较稳定;答案: C2.(淅江金华)金华火腿闻名遐迩。
某火腿公司有甲、乙、丙三台切割包装机,同时分别装质量为500 克的火腿心片。
现从它们分装的火腿心片中各随机抽取10盒,经称量并计算得到质量的方差如表所示,你认为包装质量最稳定的切割包装机是()A、甲B、乙C、丙 D 、不能确定答案: A3.(浙江义乌 )国家实行一系列惠农政策后,农村居民收入大幅度增加.下表是2003 年至 2007 年我市农村居民年人均收入情况(单位:元),则这几年我市农村居民年人均收入的中位数是()A.6969 元B.7735 元C.8810 元D.10255元答案: B4.(湖南益阳)某班第一小组 7 名同学的毕业升学体育测试成绩 (满分 30 分 )依次为: 25,23,25,23,27,30,25,这组数据的中位数和众数分别是A. 23,25B. 23,23C. 25,23D. 25,25答案: D5.(浙江省绍兴市 )在一次射击测试中,甲、乙、丙、丁的平均环数均相同,而方差分别为 8.7,6.5, 9.1, 7.7,则这四人中,射击成绩最稳定的是()A.甲B.乙C.丙D.丁答案: B6.(四川巴中市)下列命题是真命题的是()A.对于给定的一组数据,它的平均数一定只有一个B.对于给定的一组数据,它的中位数可以不只一个C.对于给定的一组数据,它的众数一定只有一个D.对于给定的一组数据,它的极差就等于方差答案: A7.(四川巴中市)用计算器计算数据13.49,13.53,14.07,13.51,13.84,13.98,14.67,14.80,14.61,14.60,14.41,14.31,14.38,14.02,14.17 的平均数约为 () A. 14.15B.14.16C.14.17D.14.20答案: B8.(陕西省)在“爱的奉献”抗震救灾大型募捐活动中,文艺工作者积极向灾区捐款.其中 8 位工作者的捐款分别是 5 万, 10 万, 10 万, 10 万, 20 万, 20 万,50 万, 100 万.这组数据的众数和中位数分别是()A.20 万, 15 万B.10 万,20 万C.10 万,15 万D.20万,10万答案: C9.(北京)众志成城,抗震救灾.某小组7 名同学积极捐出自己的零花钱支援灾区,他们捐款的数额分别是(单位:元):50,20,50,30, 50,25,135.这组数据的众数和中位数分别是()A.50,20B. 50,30C.50,50D.135,50答案: C10.(湖北鄂州)数据的众数为,则这组数据的方差是()A. 2B.C.D.答案: B11.(浙江省嘉兴市)已知甲、乙两组数据的平均数分别是,,方差分别是,,比较这两组数据,下列说法正确的是()A.甲组数据较好B.乙组数据较好C.甲组数据的极差较大D.乙组数据的波动较小答案:D12.(山东省枣庄市)小华五次跳远的成绩如下(单位:m): 3.9, 4.1, 3.9, 3.8, 4.2.关于这组数据,下列说法错误的是()A.极差是 0.4B.众数是 3.9C.中位数是 3.98D.平均数是 3.98答案: B13.(山东济南)“迎奥运,我为先” 联欢会上,班长准备了若干张相同的卡片,上面写的是联欢会上同学们要回答的问题 . 联欢会开始后,班长问小明:你能设计一个方案,估计联欢会共准备了多少张卡片?小明用20 张空白卡片(与写有问题的卡片相同),和全部写有问题的卡片洗匀,从中随机抽取10 张,发现有2 张空白卡片,马上正确估计出了写有问题卡片的数目,小明估计的数目是()A.60 张B.80 张C.90张D.110答案: B14.(湖北黄石)若一组数据2, 4,, 6,8 的平均数是 6,则这组数据的方差是()A.B.8C.D.40答案: B15.( 湖南益阳 )某班第一小组7名同学的毕业升学体育测试成绩(满分 30 分)依次为: 25,23,25,23,27,30,25,这组数据的中位数和众数分别是 ( )A. 23,25B. 23,23C. 25,23D. 25,25答案: D16.( 重庆 )数据2,1,0,3,4的平均数是()A、0B、1C、 2D、3答案: C17.( 08 厦门市)某鞋店试销一种新款女鞋,销售情况如下表所示:鞋店经理最关心的是,哪种型号的鞋销量最大.对他来说,下列统计量中最重要的是()A.平均数B.众数C.中位数D.方差答案: C18.(08 乌兰察布市)十名工人某天生产同一零件,生产的件数是15,17,14,10,15,17,17,16,14,12,设其平均数为,中位数为,众数为,则有()A.B.C.D.答案: B19.(08 绵阳市)某校初三·一班 6 名女生的体重(单位:kg)为:353638 404242 则这组数据的中位数等于().A.38B.39C.40D.42答案: B20.(浙江金华)金华火腿闻名遐迩。
汇总)初中数学中考计算题(最全)-含答案
汇总)初中数学中考计算题(最全)-含答案.doc1.解答题(共30小题)1.1 计算题:① 2+3=5;②解方程:x+5=10,解得x=5.1.2 计算:π+(π﹣2013)=2π-2013.1.3 计算:|1﹣|﹣2cos30°+(﹣)×(﹣1)2013|=|1-|-2cos30°+(-1)×(-1)2013||=|1-|-2×√3/2+1||=|1-√3+1|=|2-√3|。
1.4 计算:﹣(-2)+(-3)=1.1.5 计算:√(5+2√6)+√(5-2√6)=√2+√3.1.6 计算:(2+√3)(2-√3)=1.1.7 计算:(1+√2)²=3+2√2.1.8 计算:(1-√3)²=4-2√3.1.9 计算:(√2+1)²=3+2√2.1.10 计算:(√2-1)²=3-2√2.1.11 计算:(3+√5)(3-√5)=4.1.12 计算:(√3+1)(√3-1)=2.1.13 计算:(√2+√3)²=5+2√6.1.14 计算:﹣(π﹣3.14)+|﹣3|+(﹣1)2013+tan45°=0.1.15 计算:√3+√2-√6=√3-√2+√6.1.16 计算或化简:1)计算2﹣1﹣tan60°+(π﹣2013)+|﹣|=-tan60°-2011;2)(a﹣2)²+4(a﹣1)﹣(a+2)(a﹣2)=-3a²+10a-6.1.17 计算:1)(﹣1)2013﹣|﹣7|+(√2)﹣1=-√2-8;2)(2+√3)÷(√3-1)=1+√3.1.18 计算:(1+√2)(1-√2)=﹣1.1.19 解方程:x²+2x+1=0,解得x=-1.1.20 计算:1)tan45°+sin230°﹣cos30°•tan60°+cos245°=√2-1;2)(√2+1)²-(√2-1)²=4√2.1.211)|﹣3|+16÷(﹣2)³+(2013﹣)﹣tan60°=2010;2)解方程:(1-2x)²=3,解得x=√2﹣1.1.222)求不等式组:{x²-2x0},解得0<x<1.1.232)先化简,再求值:(√3+1)÷(√3-1)=2.1.241)计算:tan30°=√3/3;2)解方程:x²-2x+1=0,解得x=1.1.25 计算:1)√2-√3+√6=(√2-1)(√3-1);2)先化简,再求值:(√2+1)²+(√2-1)²=8.1.261)计算:(1-√2)÷(1+√2)=-1+√2;2)解方程:x²-2x+2=0,解得x=1-√3.1.27 计算:1)(√2+√3)²-(√2-√3)²=4√6;2)先化简,再求值:(x²+2x+1)÷(x²-1)=1+x。
中考数学计算题
中考数学计算题标题:中考数学计算题的解法与策略中考数学计算题是数学考试中的重要部分,也是学生普遍感到困难的一类问题。
解决计算题需要学生具备良好的计算能力、理解能力、推理能力和逻辑思维能力。
本文将介绍一些常见的计算题类型和解法,并提供一些解题策略,希望能对学生的数学学习和考试提供帮助。
一、常见的计算题类型和解法1、代数计算题代数计算题是中考数学中的常见题型,包括代数式的化简、求值、方程的解等。
解决这类问题需要学生掌握代数基础知识,如因式分解、公式变形、根式运算等。
2、三角函数计算题三角函数是初中数学的重要内容,三角函数计算题也是中考的常见题型。
解决这类问题需要学生掌握三角函数的定义、周期性、单调性等基础知识,并能够熟练运用三角函数公式进行计算。
3、平面几何计算题平面几何计算题是中考数学的必考题型,包括线段长度、角度、面积等计算。
解决这类问题需要学生掌握平面几何的基础知识,如三角形、四边形、圆等性质和定理,并能够运用几何软件进行辅助计算。
4、统计与概率计算题统计与概率计算题也是中考数学的常见题型,包括平均数、中位数、众数、概率等计算。
解决这类问题需要学生掌握统计与概率的基础知识,如样本统计量、概率分布、独立性等概念和公式。
二、解题策略1、理解题意在解题前,首先要认真阅读题目,理解题意,明确题目所给的条件和要求求解的问题。
在阅读过程中,可以标注出关键信息,以便后续解题时参考。
2、分析问题在理解题意后,需要认真分析问题,找出题目中的数学关系和解题思路。
对于一些复杂的问题,可以将其分解为若干个简单的问题,逐个解决。
3、选择方法根据问题的特点和所掌握的知识,选择合适的解题方法。
对于一些不确定的问题,可以先尝试一些方法,如果不行再尝试其他方法。
4、规范解答在求解问题时,需要注意按照规范解答,步骤清晰、过程完整。
在书写时,要注意语言的准确性和严谨性,避免出现歧义和误解。
5、检查答案在解答完成后,需要对答案进行检查和验证。
中考数学专题二常见代数式运算考查类型(原卷版全国适用)
常见代数式运算考查类型一、(实数)有理数运算例题1(2021·河北兴隆·二模)小明在解一道有理数混合运算时.一个有理数m 被污染了. 计算:()3312m ÷+⨯-.(1)若2m =.计算:()33212÷+⨯-. (2)若()33132m ÷+⨯-=.求m 的值.(3)若要使()3312m ÷+⨯-的结果为最小正整数.求m 值. 练习题1.(2021·陕西·西安市铁一中学模拟预测)计算:2202112cos608(1)2--︒-.2.(2021·广东·()21332cos30π20212-⎛⎫+︒---- ⎪⎝⎭.3.(2021·甘肃酒泉·()202184cos 451︒+-.法则等知识点.熟知上述各知识点是解题的关键.4.(2021·山东·济宁学院附属中学一模)计算:2021021(1)3cos30(2233)()2--︒-+-. 5.(2021·河南省淮滨县第一中学模拟预测)(1)如果6a =.5b =且a b <.求b a -的值. (2)已知a 、b 互为相反数.c 、d 互为倒数.m 的倒数等于它本身.则()cda b m m m++-的值是多少? (3)已知2142()025a b -++=.求ab 的值. 6.(2021·浙江余杭·三模)下面是圆圆同学计算一道题的过程:()()1111232233434⎡⎤⎛⎫⎛⎫÷-+⨯-=÷-+÷⨯- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦()()()23324318246=⨯-⨯-+⨯⨯-=-=.圆圆同学这样算正确吗?如果正确请解释理由.如果不正确.请你写出正确的计算过程. 7.(2020·河北·模拟预测)利用运算律有时能进行简便计算. 例1 98×12=(100-2)×12=1 200-24=1 176.例2 -16×233+17×233=(-16+17)×233=233. 请你参考黑板中老师的讲解.用运算律简便计算:(1)()99915⨯-.(2)41399911899999918555⎛⎫⨯+⨯--⨯ ⎪⎝⎭8.(2021·河北路北·二模)老师课下给同学们留了一个式子:39⨯+-.让同学自己出题.并写出答案.()1小光提出问题:若□代表1-.○代表5.则计算:()3195⨯-+-.()2小丽提出问题:若391⨯+-=.当□代表3-时.求○所代表的有理数.()3小亮提出问题:若391⨯+-<中.若□和○所代表的有理数互为相反数.直接写出□所代表的有理数的取值范围.9.(2021·河北邢台·二模)嘉淇准备完成题目:计算:22713233.发现有一个数“”印刷不清楚.(1)他把“”猜成18.请你计算:2227118333.(2)他妈说:“你猜错了.我看到该题标准答案的结果是32-.”通过计算说明原题中“”是几?10.(2021·安徽·合肥市第四十五中学一模)观察下列等式:①22416-=2+12.②22526-=3+12.③22636-=4+12.④22746-=5+12.…(1)请按以上规律写出第⑥个等式: .(2)猜想并写出第n 个等式: .并证明猜想的正确性. (3)利用上述规律.直接写出下列算式的结果:222222224135236331009736666--------+++⋯+= .二、整式运算与求值例题2(2021·上海·九年级专题练习)小刚在计算一个多项式A 减去多项式2235b b --的差时.因一时疏忽忘了把两个多项式用括号括起来.因此减式后面两项没有变号.结果得到的差是2232b b ++. (1)求这个多项式A .(2)求出这两个多项式运算的正确结果. (3)当2b =-时.求(2)中结果的值. 练习题 1.(2021·河南·二模)先化简.再求值:22222xyy x x y x x y.其中21x =.22y =.2.(2021·四川凉山·二模)先化简.再求值:2(23)(32)(3)2(4)a b b a a b b a b -++-+-+.其中22,2a b =3.(2021·浙江·杭州育才中学二模)已知多项式M =(2x 2+3xy+2y )﹣2(x 2+x+yx+1). (1)当x =1.y =2.求M 的值.(2)若多项式M 与字母x 的取值无关.求y 的值.4.(2021·浙江省杭州市上泗中学二模)已知多项式()()2223221M x xy y x x yx =++-+++.(1)化简M .(2)当1x =.2y =.求M 的值.5.(2021·上海·九年级专题练习)代数式2323(324)(3)a a a a a a +---里的“”是“+.-.×.÷”中某一种运算符号. (1)如果“”是“+”.化简:2323(324)(3)a a a a a a +---.(2)当1a =-时.2323(324)(3)a a a a a a +---2=-.请推算“”所代表的运算符号.6.(2021·河北·石家庄市第四十二中学一模)对于四个整式.A :2x 2.B :mx +5.C :﹣2x .D :n .无论x 取何值.B +C +D 的值都为0. (1)求m 、n 的值. (2)计算A ﹣B +C ﹣D . (3)若B DA C-的值是正数.直接写出x 的取值范围. 7.(2020·河北衡水·模拟预测)请阅读以下步骤.完成问题: ①任意写一个三位数.百位数字比个位数字大2. ②交换百位数字与个位数字.得到一个三位数.③用上述的较大的三位数减去较小的三位数.所得的差为三位数. ④交换这个差的百位数字与个位数字又得到一个三位数. ⑤把③④中的两个三位数相加.得到最后结果. 问题:(1)③中的三位数是 . ④中的三位数是 .⑤中的结果是 .(2)换一个数试试看.所得结果是否一样?如果一样.设这个三位数的百位数字为a 、十位数字为b .用代数式表示这个三位数.并结合你所学的知识解释其中的原因. 8.(2021·河北桥东·二模)甲、乙两人各持一张分别写有整式A 、B 的卡片.已知整式225C a a =--.下面是甲、乙二人的对话:甲:我的卡片上写着整式2410A a a =-+.加上整式C 后得到最简整式D .乙:我用最简整式B 加上整式C 后得到整式2628E a a =-+.(1)求整式D 和B .(2)请判断整式D 和整式E 的大小.并说明理由. 9.(2021·河北兴隆·二模)解方程组老师设计了一个数学游戏.给甲、乙、丙三名同学各一张写有最简代数式的卡片.规则是两位同学的代数式相减等于第三位同学的代数式.甲、乙、丙的卡片如图所示.其中丙同学卡片上的代数式未知.(1)若乙同学卡片上的代数式为一次二项式.求m 的值.(2)若甲同学卡片上的代数式减去乙同学卡片上的代数式等于丙同学卡片上的代数式. ①当丙同学卡片上的代数式为常数时.求m 的值.②当丙同学卡片上的代数式为非负数时.求m 的取值范围. 10.(2021·河北·三模)一般情况下2323ab a b ++=+不成立.但有些数可以使得它成立.例如: 0a b .我们称使得2323a b a b ++=+成立的一对数,a b 为“相伴数对”.记为(),a b . (1)填空:(4,9)-_________“相伴数对”(填是或否). (2)若()1,b 是“相伴数对”.求b 的值. (3)若(),m n 是“相伴数对”.求代数式22[42(31)]3m n m n ----的值.三、分式的计算与求值例题3(2021·广东英德·二模)先化简2211121x x x x x x +--÷--+.然后从0.1.1-.2中选取一个你认为合适的数作为x 的值带入求值. 练习题1.(2021·江苏·淮阴中学新城校区一模)先化简.再求值:221112---÷+a a a a a .其中2a =- 2.(2021·河南武陟·一模)先化简.再求值:2222(1)244a a aa a a +--÷--+.其中3a =3.(2021·广东连州·二模)先化简再求值22121()11x x x x x x x++-÷---.其中x 是一元二次方程x 2+2x ﹣3=0的根.4.(2021·广东·桂林华侨初级中学二模)已知12A x =-.224B x =-.2xC x =+.当x =3时.对式子(A -B )÷C 先化简.再求值.5.(2021·山东德城·二模)先化简.再求值:2443(1)11m m m m m -+÷----.请在﹣2≤m ≤1的范围内取一个自己喜欢的数代入求值. 6.(2021·山东惠民·二模)先化简.再求值211()122a a a a a a a a--÷-+++.其中a 82sin 45°-()02021-π7.(2021·湖北鹤峰·模拟预测)先化简.再求值:(1−1m+2)÷(m 2+4m+5m+2−2).其中m 为方程220m m +-=的一根.8.(2021·湖北宜城·模拟预测)先化简.再求值:(2−2xx+1+x −1)÷x 2−xx+1.从0.1-2中选择一个适当的数作为x 值代入.9.(2021·山东乐陵·二模)已知:A =2244(2)11x x x x x -+-÷--.(1)化简A .(2)若点(x ,-3)与点(-4,-3)关于y 轴对称.求A 的值. 10.(2021·广东·一模)先化简.再求值:(53m -+ 13m -)÷2469mm m -+.其中m =3四、与数轴有关的代数计算例题4(2020·河北·中考真题)如图.甲、乙两人(看成点)分别在数轴-3和5的位置上.沿数轴做移动游戏.每次移动游戏规则:裁判先捂住一枚硬币.再让两人猜向上一面是正是反.而后根据所猜结果进行移动.①若都对或都错.则甲向东移动1个单位.同时乙向西移动1个单位. ②若甲对乙错.则甲向东移动4个单位.同时乙向东移动2个单位. ③若甲错乙对.则甲向西移动2个单位.同时乙向西移动4个单位.(1)经过第一次移动游戏.求甲的位置停留在正半轴上的概率P .(2)从图的位置开始.若完成了10次移动游戏.发现甲、乙每次所猜结果均为一对一错.设乙猜对n 次.且他最终..停留的位置对应的数为m .试用含n 的代数式表示m .并求该位置距离原点O 最近时n 的值.(3)从图的位置开始.若进行了k 次移动游戏后.甲与乙的位置相距2个单位.直接..写出k 的值.练习题 1.(2021·江苏盐城·中考真题)如图.点A 是数轴上表示实数a 的点.(12P .(保留作图痕迹.不写作法) (22和a 的大小.并说明理由.2.(2021·河北迁安·二模)如图.数轴上有A 、B 、C 三个点.它们所表示的数分别为a 、b 、c 三个数.其中0b <.且b 的倒数是它本身.且a 、c 满足()2430c a -++=.(1)计算:22a a c -.(2)若将数轴折叠.使得点A 与点B 重合.求与点C 重合的点表示的数. 3.(2021·河北·九年级专题练习)已知有理数-3.1.(1)在下列数轴上.标出表示这两个数的点.并分别用A.B 表示.(2)若|m |=2.在数轴上表示数m 的点.介于点A.B 之间.在A 的右侧且到点B 距离为5的点表示为n . ①计算m+n -mn.②解关于x 的不等式mx+4<n.并把解集表示在下列数轴上.4.(2020·河北石家庄·一模)如图1.点A .B .C 是数轴上从左到右排列的三个点.分别对应的数为5-.b .4.某同学将刻度尺如图2放置.使刻度尺上的数字0对齐数轴上的点A .发现点B 对应刻度1.8cm .点C 对齐刻度5.4cm .(1)在图1的数轴上.AC =__________个长度单位.数轴上的一个长度单位对应刻度尺上的_______cm .(2)求数轴上点B 所对应的数b 为_________________.(3)在图1的数轴上.点Q 是直线AB 上一点.满足2AQ QB .求点Q 所表示的数. 5.(2021·上海·九年级专题练习)在单位长度为1的数轴上.点A 表示的数为﹣2.5.点B 表示的数为4. (1)求AB 的长度.(2)若把数轴的单位长度扩大30倍.点A 、点B 所表示的数也相应的发生变化: ①此时点A 表示的数为 .点B 表示的数为 . ②已知点M 是线段AB 的三等分点.求点M 所表示的数.6.(2021·河南省淮滨县第一中学三模)数轴上 A .B .C 三个点对应的数分别为 a .b .x .且 A .B 到-2 所对应的点的距离都等于 6.点 B 在点 A 的右侧. (1)请在数轴上表示点 A .B 位置.a= .b= . (2)请用含 x 的代数式表示 CB = .(3)若点 C 在点 B 的左侧.且 CB =8.点 A 以每秒 2 个单位长度的速度沿数轴向右运动.当 AC =2AB 时.求点 A 移动的时间.7.(2021·云南五华·一模)如图所示.甲、乙两人(看成点)分别在数轴-3和5的位置上.沿数轴做移动游戏.每次移动的游戏规则是:两人先猜裁判所抛硬币向上一面的正反.再根据所猜结果进行移动.①若都对或都错.则甲向东移动1个单位.同时乙向西移动1个单位. ②若甲对乙错.则甲向东移动4个单位.同时乙向东移动2个单位. ③若甲错乙对.则甲向西移动2个单位.同时乙向西移动4个单位.(1)用树状图(树状图也称树形图)或列表法中的一种方法.求每次移动游戏中甲猜对的概率P 的值.(2)直接写出经过第一次移动游戏后.甲乙两人相距6个单位的概率.8.(2020·河北邯郸·模拟预测)在数轴上有M 、N 两点.M 点表示的数分别为m .N 点表示的数是n (n >m ).则线段MN 的长(点M 到点N 的距离)可表示为MN =n ﹣m .请用上面材料中的知识解答下面的问题:一个点从数轴上的原点O 开始.先向左移动3cm 到达A 点.再向右移动2cm 到达B 点.然后向右移动4cm 到达C 点.用1cm 表示1个单位长度. (1)请你在数轴上表示出A 、B 、C 三点的位置.并直接写出线段AC 的长度. (2)若数轴上有一点D .且AD =4cm .则点D 表示的数是什么? (3)若将点A 向右移动xcm .请用代数式表示移动后的点所表示的数.(4)若点P 以从点A 向原点O 移动.同时点Q 以与点P 相同的速度从原点O 向点C 移动.试探索:PQ 的长是否会发生改变?如果不变.请求出PQ 的长.如果改变.请说明理由. 9.(2021·山东崂山·二模)【问题提出】1232021a a a a -+-+-+⋅⋅⋅+-的最小值是多少? 【阅读理解】为了解决这个问题.我们先从最简单的情况入手.a 的几何意义是a 这个数在数轴上对应的点到原点的距离.那么1a -可以看做a 这个数在数轴上对应的点到1的距离.12a a -+-就可以看作a 这个数在数轴上对应的点到1和2两个点的距离之和.下面我们结合数轴研究12a a -+-的最小值. 我们先看a 表示的点可能的3种情况.如图所示:(1)如图①.a 在1的左边.从图中很明显可以看出a 到1和2的距离之和大于1. (2)如图②.a 在1和2之间(包括在1.2上).可以看出a 到1和2的距离之和等于1. (3)如图③.a 在2的右边.从图中很明显可以看出a 到1和2的距离之和大于1.所以a 到1和2的距离之和最小值是1. 【问题解决】(1)36a a -+-的几何意义是______.请你结合数轴探究:36a a -+-的最小值是______.(2)请你结合图④探究:123a a a -+-+-的最小值是______.此时a 为______. (3)123456a a a a a a -+-+-+-+-+-的最小值为______. (4)1232021a a a a -+-+-+⋅⋅⋅+-的最小值为______. 【拓展应用】如图⑤.已知a 到-1.2的距离之和小于4.请写出a 的范围为______.10.(2020·江苏镇江·中考真题)【算一算】如图①.点A 、B 、C 在数轴上.B 为AC 的中点.点A 表示﹣3.点B 表示1.则点C 表示的数为.AC长等于.【找一找】如图②.点M、N、P、Q中的一点是数轴的原点.点A、B 2﹣1、2Q是AB的中点.则点是这个数轴的原点.【画一画】如图③.点A、B分别表示实数c﹣n、c+n.在这个数轴上作出表示实数n的点E(要求:尺规作图.不写作法.保留作图痕迹).【用一用】学校设置了若干个测温通道.学生进校都应测量体温.已知每个测温通道每分钟可检测a 个学生.凌老师提出了这样的问题:假设现在校门口有m个学生.每分钟又有b个学生到达校门口.如果开放3个通道.那么用4分钟可使校门口的学生全部进校.如果开放4个通道.那么用2分钟可使校门口的学生全部进校.在这些条件下.a、m、b会有怎样的数量关系呢?爱思考的小华想到了数轴.如图④.他将4分钟内需要进校的人数m+4b记作+(m+4b).用点A表示.将2分钟内由4个开放通道检测后进校的人数.即校门口减少的人数8a记作﹣8a.用点B表示.①用圆规在小华画的数轴上分别画出表示+(m+2b)、﹣12a的点F、G.并写出+(m+2b)的实际意义.②写出a、m的数量关系:.。
2020中考数学计算题专题训练(内部材料)
2020中考数学计算题专题训练(内部材料) 2020年中考数学计算题专项训练亲爱的同学们,没有一个冬天不会过去,没有一个春天不会来临。
如果这试卷是蔚蓝的天空,你就是那展翅翱翔的雄鹰;如果这试卷是碧绿的草原,你就是那驰骋万里的骏马。
只要你自信、沉着、放松、细心,相信你一定比雄鹰飞得更高,比骏马跑得更快!一、集训一(代数计算)1.计算:1)$\sin45^\circ-\frac{1}{2}+38$2)$2\times(-5)+23-3\div\frac{1}{2}$3)$22+(-1)^4+(5-2)-|{-3}|$4)$\frac{1}{3}-\frac{2}{1}-\tan45^\circ$5)$\frac{1}{2}-\frac{2}{1}+\tan45^\circ$2.计算:frac{-1}{2}+\frac{1}{3}\times\frac{2}{3}-\tan45^\circ-\frac{3}{-2}$3.计算:frac{1}{3}+\frac{2010-2012}{1}+(-1)^{1001}+\frac{12-33}{\tan30^\circ}$4.计算:18-\frac{\cos60^\circ}{2}-1-4\sin30^\circ+\frac{2-2}{3}$5.计算:32^{\frac{3}{2}}-8-(2\sin45^\circ-2005)+(\tan60^\circ-2)$6.计算:frac{1}{\cos60^\circ}-1\div(-1)^{2010}+|2-8|-2\sqrt{2}-\frac{\tan30^\circ-1}{2}$二、集训二(分式化简)1.$\frac{2x+1}{x^2-4}-\frac{1}{x-2}$2.$\frac{1-a^2}{a(a+1)}$3.$\frac{3-a}{2a-4}\div\frac{a+2-5}{a-2}$4.$\frac{a-1}{a}\div\frac{2a-1}{a}$,其中$a=-1$5.$\frac{x-1}{x+1}+\frac{1}{x^2-1}$,然后选取一个使原式有意义的$x$的值代入6.求$\frac{x^2-2x+11}{x^2-1}-\frac{x-1}{x-1}$的值,其中$x=\tan60^\circ-\tan45^\circ$7.化简:$\frac{x+2x-(x^2-2x)}{x^2-16}\div\frac{1}{x^2-4x+4}$,然后选取一个使原式有意义的$x$的值代入1.解方程$x^2-4x+1=0$,可以使用配方法或者求根公式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考数学计算题类型与中考典型例题专项训练
一、计算
1. (2011.常州)计算:30
82
145+-Sin 2.(计算)
22)145(sin 230tan 31
21-︒+︒--
3.(2011.淮安)计算:
4.(2011.连云港)计算:2×(-5)+23-3÷1
2 . 5.(2011.南通) 计算:22+(-1)4+(5-2)0-|-3|;
6.(2011。
苏州)计算:22
+|﹣1|﹣. 7. (2011.宿迁)计算:︒+-+-30sin 2)2(20.
8. (2011.泰州)计算,
9. (2011.无锡)计算:
(1)()()0
2
2161-+-- (2)a(a-3)+(2-a)(2+a)
10. (2011.盐城)计算:(
3
)0 - (
12 )-2 +
tan45° 11. 计算: 1
31-⎪⎭⎫ ⎝⎛+0
232006⎪⎪⎭
⎫ ⎝⎛-3-tan60°
二、分式化简 1. (2011.南京)计算
. 2. (2011.常州)化简:
2
1
422
---x x x
3.(2011.淮安)化简:(a+b )2
+b (a ﹣b ).
4. (2011.南通)先化简,再求值:(4ab 3-8a 2b 2)÷4ab +(2a +b )(2a -b ),其中a =2,b =1.
5. (2011.苏州)先化简,再求值:(a ﹣1+
)÷(a 2
+1),其中a=
﹣1.
6. (2011.宿迁)已知实数a 、b 满足ab =1,a +b =2,求代数式a 2b +ab 2的值.
7. (2011.泰州)化简.
8. (2011.无锡)a(a-3)+(2-a)(2+a)
9.(2011.徐州)化简:11
()a a a a
--÷;
10.(2011.扬州)化简2
11
1x x x -⎛⎫+÷ ⎪⎝⎭
三、解方程
1. (2011•南京)解方程x 2
﹣4x+1=0. 2. (2011.常州)解分式方程2
3
22-=
+x x
3.(2011.连云港)解方程:3x = 2
x -1 . 4. (2011.无锡)解方程:x 2+4x -2=0
5. (2011.苏州)已知|a ﹣1|+=0,求方裎+bx=1的解.
6.(2011.盐城)解方程:x x -1 - 3
1-
x
= 2.
四、解不等式
1.(2011.南京)解不等式组,并写出不等式组的整数解.
2.(2011.常州)解不等式组()()()
⎩⎨⎧+≥--+-14615362x x x x 3.(2011.连云港)解不等式组:⎩
⎨⎧2x +3<9-x ,2x -5>3x .
4.(2011.南通)求不等式组⎩⎨⎧3x -6≥x -4
2x +1>3(x -1)
的解集,并写出它的整数解.
5.(2011.苏州)解不等式:3﹣2(x ﹣1)<1.
6. (2011.宿迁)解不等式组⎪⎩⎪
⎨⎧<+>+.22
1,12x x
7. (2011.泰州)解方程组,并求
的值.
8.(2011.无锡)解不等式组⎪⎩
⎪
⎨⎧-≤-〉-121
312x x x x 9.解方程组 4143314312x y y x +=⎧⎪
-⎨--=⎪⎩
10. 解不等式组⎩⎪⎨⎪⎧x +23 <1,
2(1-x )≤5,
并把解集在数轴上表示出来。
11. 解不等式组31311212
3x x x x +<-⎧⎪
++⎨+⎪⎩≤,并写出它的所有整数解.。