立体几何中垂直的证明
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
全方位教学辅导教案
线面垂直的判定及其性质 ●知识要点 1.线面垂直 (1)定义: 如果直线l 与平面α内的任意一条直线都垂直,则直线l 与平面α互相垂直,记作l α⊥. l -平面α的垂线,α-直线l 的垂面,它们的唯一公共点P 叫做垂足. (2)判定定理:(线线垂直→线面垂直) 一条直线与一个平面内的两条相交直线都垂直,则这条直线与该平面垂直. ☆ 符号语言:若l ⊥m ,l ⊥n ,m ∩n =B ,m α,n α,则l ⊥α. (3)性质定理:(线面垂直→线线平行) 垂直于同一个平面的两条直线平行. 2.二面角 (1)定义: 从一条直线出发的两个半平面所组成的图形叫二面角. 这条直线叫做二面角的棱,这两个半平面叫做二面角的面. 记作二面角AB αβ--. (简记P AB Q --) (2)二面角的平面角: 在二面角αβ-l -的棱l 上任取一点O ,以点O 为垂足,在半平面,αβ内分别作垂直于棱l 的射线OA 和OB ,则射线OA 和OB 构成的AOB ∠叫做二面角的平面角. 范围:000180θ<<. 3.面面垂直 (1)定义:两个平面相交,如果它们所成的二面角是直二面角,就说这两个平面互相垂直. 记作αβ⊥. (2)判定定理:(线面垂直→面面垂直)
一个平面过另一个平面的垂线,则这两个平面垂直. (3)性质定理:(面面垂直→线面垂直)
两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直.
“垂直关系”常见证明方法
(一)直线与直线垂直的证明
4.在正方体''''ABCD A B C D -中,求直线'A B 和平面''''A B C D 所成的角.
题型一、线面垂直的判定与性质
1、已知:如图,P 是棱形ABCD 所在平面外一点,且PA=PC
求证:AC PBD ⊥平面
2、已知,如图,四面体A-BCD 中,
,,AB CD AD BC H BCD ⊥⊥V 为的垂心。
求证:AH BCD ⊥平面
3、如图,,,PA ABCD ABCD M N AB PC ⊥平面,是矩形,点分别为的中点, 求证:MN AB ⊥
4、如图,在多面体ABCDE 中,AE ⊥面ABC ,BD ∥AE ,且AC =AB =BC =BD =2,AE =1,F 为
CD 中点.
(1)求证:EF ⊥面BCD ;
A
D
C
B
P
H B
C
D
A
5、如图,在底面为平行四边形的四棱锥P ABCD -中,,AB AC PA ABCD ⊥⊥平面,且
PA AB =,点E 是PD 的中点。
⑴求证:AC PB ⊥; ⑵求证:PB AEC ∥平面;
6、 如图,在四棱锥P -ABCD 中, PA ⊥底面ABCD ,AB ⊥AD ,AC ⊥CD , ∠ABC =60°,PA
=AB =BC ,E 是PC 的中点.
(1)求证:CD ⊥AE ;(2)求证:PD ⊥面ABE.
题型二、面面垂直的判定与性质
1、如图AB 是圆O 的直径,PA 垂直于圆O 所在的平面,C 是圆周上不同于A 、B 的任意一点,求证:平面PAC 垂直平
面PBC。
2、如图,棱柱111
ABC A B C
-
的侧面11
BCC B
是菱形,
11
B C A B
⊥
证明:平面
1
AB C⊥平面
11
A BC;
3、已知:如图,将矩形ABCD沿对角线BD将BCD
V折起,使点C移到点
1
C,且1
C AB
D O AB
在平面上的射影恰好在上。
1
1
(2).
BDC
⊥
⊥
1
1
()求证:AD BC
求证:面ADC面
4、如图所示,在长方体
1111
ABCD A B C D
-中,AB=AD=1,AA1=2,M是棱CC1的中点(Ⅰ)求异面直线A1M和C1D1所成的角的正切值;
O
B
C1
A
D
C
(Ⅱ)证明:平面ABM⊥平面A1B1M1
5、已知四面体ABCD中,CD
BD
AC
AB=
=,,平面⊥
ABC平面BCD,E为棱BC的中点。(1)求证:⊥
AE平面BCD;
(2)求证:BC
AD⊥;
6、S是△ABC所在平面外一点,SA⊥平面ABC,平面SAB⊥平面SBC,求证AB⊥BC.
7、在四棱锥中,底面ABCD是正方形,侧面VAD是正三角形,平面VAD⊥底面ABCD
证明:AB⊥平面VAD
S
A
C
B
8、如图所示,在四棱锥P —ABCD 中,底面ABCD 是∠DAB=60°且边长为a 的菱形,侧面PAD 为正三角形,其所在平面垂直于底面ABCD ,若G 为AD 边的中点, (1)求证:BG ⊥平面PAD ; (2)求证:AD ⊥PB ;
(3)若E 为BC 边的中点,能否在棱PC 上找到一点F ,使平面DEF ⊥平面ABCD ,并证明你
的结论.
题型三、平行与垂直的综合题
V
D C
B
A
(2)PDA=45.
PA ABCD
CD
MN PCD
⊥
⊥
∠⊥
。
1、已知矩形所在的平面,M,N分别是AB,PC的中点。
(1)求证:MN
若,求证:平面
2、如图所示,直三棱柱ABC—A1B1C1中,B1C1=A1C1,AC1⊥A1B,M、N分别是A1B1、AB的中点.
(1)求证:C1M⊥平面A1ABB1;
(2)求证:A1B⊥AM;
(3)求证:平面AMC1∥平面NB1C;
3、如图,在四棱锥ABCD
P-中,平面PAD⊥平面ABCD,