51单片机与串口通信代码
51单片机实现的485通讯程序
标签:modbus8051源程序modbus协议--51端程序的实现RTU需要一个定时器来判断3.5个流逝时间。
#define ENABLE 1#define DISABLE 0#define TRUE 1#define FAULT 0#define RECEIVE_EN 0#define TRANSFER_EN 1#define MAX_RXBUF 0x20extern unsigned char emissivity;extern unsigned char tx_count,txbuf[15];extern unsigned char rx_count,rxbuf[15];extern unsigned char tx_number,rx_number;extern bit rx_ok;unsigned char rx_temp;void InitTimer1() //针对标准8051{TMOD=(TMOD|0xf0)&0x1f; //将T1设为16位定时器TF1=0;TH1=0x62; //设T1位3.5位的接收时间35bit/9600bit/s=3.646msTL1=0x80;//晶振为11.0592MHz,T=65535-3.646ms*11.0592MHz/12=0xf2df//0x6280是22.1184M下LPC9XX下的值。
ET1=1;//允许T1中断TR1=1;//T1开始计数}void timer1() interrupt 3 using 2 //定时器中断{TH1=0x62; //3.646ms interruptTL1=0x80;if(rx_count>=5) //超时后,若接收缓冲区有数则判断为收到一帧{rx_ok=TRUE;}}void scomm() interrupt 4 using 3 //modbus RTU模式{if(TI){TI = 0;if(tx_count < tx_number) //是否发送结束{SBUF = txbuf[tx_count];}tx_count++;}if(RI){rx_temp=SBUF;if(rx_ok==FAULT) //已接收到一帧数据,在未处理之前收到的数舍弃{if(rx_countrxbuf[rx_count]=rx_temp;rx_count++;}TH1=0x62; //timer1 reset,count againTL1=0x80;RI=0;}}在主循环中判断标志rx_ok来执行帧处理。
MCS-51单片机串口编程及应用介绍
起 始 位
数
据 位
校 验 位
停 止 位
异步通信的帧格式
二、同步通信传送方式
同步传送:以同步字符 同步传送:以同步字符SYN开始连续发 开始连续发 再以同步字符结束, 送,再以同步字符结束,时钟信号同时发 适用高速、大容量的数据传送。 送。适用高速、大容量的数据传送。
开始 同步字符 同步字符 数据段 同步字符 结束 同步字符
工作原理: 工作原理: 发送:CPU执行 执行MOV SBUF,A,将数据送入SBUF SBUF。 发送:CPU执行MOV SBUF,A,将数据送入SBUF。 发送控制器按波特率发生器(定时器构成) 发送控制器按波特率发生器(定时器构成)提供的时钟速 率将SBUF中的数据一位、一位从TXD输出,发送结束时, SBUF中的数据一位 TXD输出 率将SBUF中的数据一位、一位从TXD输出,发送结束时,置 TI=1。 TI=1。 接收:接收控制器按波特率发生器提供的时钟速率从RXD引 接收:接收控制器按波特率发生器提供的时钟速率从RXD引 RXD 脚一位一位接收数据,当收到一个完整字符时,装入SBUF 脚一位一位接收数据,当收到一个完整字符时,装入SBUF 中,同时置RI=1,通知CPU,CPU执行MOV A,SBUF,将数据读 同时置RI=1,通知CPU,CPU执行MOV A,SBUF, RI=1 CPU 执行 入累加器A 入累加器A。 注意:由于SBUF具有双缓冲作用,它可以在CPU读入之前 注意:由于SBUF具有双缓冲作用,它可以在CPU读入之前 SBUF具有双缓冲作用 CPU 开始接收下一数据, CPU应在下一数据接收完毕前读取 开始接收下一数据, CPU应在下一数据接收完毕前读取 SBUF内容 由于串口的接收、发送各自独立, 内容。 SBUF内容。由于串口的接收、发送各自独立,所以可同时发 送及接收,即可以实现全双工通讯。 送及接收,即可以实现全双工通讯。
51单片机串口通信程序。。含详细例子
4.//////////////// /////////////////////////////////////////////////////////
pw.fpReadSign(); SendData();//通知上位机,送出读出器件特征字 }
void Erase()//擦除器件 {
pw.fpErase(); SendData();//通知上位机,擦除了器件 }
void Write()//写器件 {
BYTE n; pw.fpInitPro();//编程前的准备工作 SendData();//回应上位机表示进入写器件状态,
{
unsigned char c;
TMOD = 0x20; // 定时器 1 工作于 8 位自动重载模式, 用于产生波特率
TH1=(unsigned char)(256 - (XTAL / (32L * 12L * baudrate)));
TL1=(unsigned char)(256 - (XTAL / (32L * 12L * baudrate))); SCON = 0x50; PCON = 0x00; TR1 = 1; IE = 0x00; // 禁止任何中断 while(1) {
///////////////////////////////////////////////////////////////////////////////// //所支持的 FID,请在这里继续添加
///////////////////////////////////////////////////////////////////////////// extern void PreparePro00();//FID=00:AT89C51 编程器 extern void PreparePro01();//FID=01:AT89C2051 编程器 extern void PreparePro02();//FID=02:AT89S51 编程器
Linux下 QT串口与51单片机通信实例
QT串口与51单片机通信通过这个小例子主要想说明QT怎样进行线程编程的思想,实例如图,好吧,下面是过程上一个例子我们采用的是手工编写代码的方法,这个例子我们来玩一下designer,其实Qt4己经把界面与功能分开了,用designer来进行界面设计,再手工编写一些功能,如信号与槽,这样开发效率会大大提高,呵呵,开一个终端,输入/usr/local/Trolltech/Qt-4.5.1/bin/designer,如果第一次打开出现字体不对,可以打开qtconfig进行一些相关配置,打开后我们新建一个Main Window,在右边的属性框中设置一下界面大小,1.我ARM板的LCD大小为320x240,所以我也设为320x240;2.左边是一些我们常用的窗口部件,这里我们用到一个lable标签来做显示,再放几个pushButton按钮,在属性objectName重新更改它的名字,改为我们记得的,这样在写功能时记得哪个按钮叫什么名字,对于一个初学QT的人来说,很想知道每一个部件到底有什么信号和槽,别急,我们可以这样来看,选中一个lable,按F4,再点击lable拖动出现接地符号时松开,弹出编辑信号与槽,这时左边列出的是信号,右边为槽,这里我们不用配置连接,等下我们再手工写,3最后我们用到一个lable标签和三个pushButton按钮,并命名为dis_label、writeButton、readButton、closeButton,然后保存为mainwindow.ui,这样designer就完工了,呵呵..4.下面我们编写一个线程,用于管理串口收发工作,它不涉及到任何界面,只做好它的本份工作就得了,编写一个thread.h文件gedit thread.h,#ifndef THREAD_H#define THREAD_H#include<QThread>class Thread:public QThread{Q_OBJECTpublic:Thread();char buf[128];volatile bool stopped;volatile bool write_rs;volatile bool read_rs;protected:virtual void run();};#endif我们定义一个Thread类,它继承于QThread,看到只设有一些变量和一个run函数,virtual表示为虚函数,你也可以去掉,加上去会增加一些内存开销,但提高了效率,对于这个小程序是看不出什么效果的,volatile这个大家都懂了吧,就是防止偷懒,呵呵,5.再看看thread.cpp#include"thread.h"#include <sys/types.h>#include <sys/stat.h>#include <fcntl.h>#include <termios.h> //串口用到的#include <stdio.h>#include <stdlib.h>#include <unistd.h>#include <strings.h>#define BAUDRATE B9600//#define RS_DEVICE "/dev/ttyS0" //串口1#define RS_DEVICE "/dev/ttySAC1" //串口1Thread::Thread(){} //析构void Thread::run() //这就是线程的具体工作了int fd,c=0,res;struct termios oldtio,newtio; //termios结构是用来保存波特率、字符大小等printf("start...\n");fd=open(RS_DEVICE,O_RDWR|O_NOCTTY); //以读写方式打开串口。
51单片机串口通信
一、串口通信原理串口通讯对单片机而言意义重大,不但可以实现将单片机的数据传输到计算机端,而且也能实现计算机对单片机的控制。
由于其所需电缆线少,接线简单,所以在较远距离传输中,得到了广泛的运用。
串口通信的工作原理请同学们参看教科书。
以下对串口通信中一些需要同学们注意的地方作一点说明:1、波特率选择波特率(Boud Rate)就是在串口通信中每秒能够发送的位数(bits/second)。
MSC-51串行端口在四种工作模式下有不同的波特率计算方法。
其中,模式0和模式2波特率计算很简单,请同学们参看教科书;模式1和模式3的波特率选择相同,故在此仅以工作模式1为例来说明串口通信波特率的选择。
在串行端口工作于模式1,其波特率将由计时/计数器1来产生,通常设置定时器工作于模式2(自动再加模式)。
在此模式下波特率计算公式为:波特率=(1+SMOD)*晶振频率/(384*(256-TH1))其中,SMOD——寄存器PCON的第7位,称为波特率倍增位;TH1——定时器的重载值。
在选择波特率的时候需要考虑两点:首先,系统需要的通信速率。
这要根据系统的运作特点,确定通信的频率范围。
然后考虑通信时钟误差。
使用同一晶振频率在选择不同的通信速率时通信时钟误差会有很大差别。
为了通信的稳定,我们应该尽量选择时钟误差最小的频率进行通信。
下面举例说明波特率选择过程:假设系统要求的通信频率在20000bit/s以下,晶振频率为12MHz,设置SMOD=1(即波特率倍增)。
则TH1=256-62500/波特率根据波特率取值表,我们知道可以选取的波特率有:1200,2400,4800,9600,19200。
列计数器重载值,通信误差如下表:因此,在通信中,最好选用波特率为1200,2400,4800中的一个。
2、通信协议的使用通信协议是通信设备在通信前的约定。
单片机、计算机有了协议这种约定,通信双方才能明白对方的意图,以进行下一步动作。
假定我们需要在PC机与单片机之间进行通信,在双方程式设计过程中,有如下约定:0xA1:单片机读取P0端口数据,并将读取数据返回PC机;0xA2:单片机从PC机接收一段控制数据;0xA3:单片机操作成功信息。
51单片机串口通信程序。。含详细例子
{ P3_4=0; P3_3=1;
} void RstPro()//编程器复位 {
pw.fpProOver();//直接编程结束 SendData();//通知上位机,表示编程器就绪,可以直接用此函数因为协议号(ComBuf[0])还没被修改,下同 }
void ReadSign()//读特征字 {
} void serial () interrupt 4 using 3 //串口接收中断函数 {
if (RI) { RI = 0 ; ch=SBUF; read_flag= 1 ; //就置位取数标志 }
} main()
{ init_serialcom(); //初始化串口 while ( 1 ) { if (read_flag) //如果取数标志已置位,就将读到的数从串口发出 { read_flag= 0 ; //取数标志清 0 send_char_com(ch); } }
while(RI == 0); RI = 0; c = SBUF; // 从缓冲区中把接收的字符放入 c 中 SBUF = c; // 要发送的字符放入缓冲区 while(TI == 0); TI = 0; } }
4.//////////////// /////////////////////////////////////////////////////////
SendData(); } else break;//等待回应失败 } pw.fpProOver();//操作结束设置为运行状态 ComBuf[0]=0;//通知上位机编程器进入就绪状态 SendData(); }
void Lock()//写锁定位
{
pw.fpLock();
SendData();
AT89C51单片机与PC机串行通信的接口实现
AT89C51单片机与PC机串行通信的接口实现[摘要] 本文介绍了AT89C51单片机与PC机采用RS232C标准进行串行通信的接口实现。
在接口中采用MAX232作电平转换电路,简单的通信协议,PC 机用VB编程,AT89C51单片机采用中断收发方式。
文章给出了相应通信接口电路与程序。
[关键词] 通信协议RS232C 通信接口电路通信接口程序AT89C51是一种带4K字节可编程可擦除只读存储器(FLASH FPEROM)和128字节的存取数据存储器(RAM)的低电压,高性能CMOS8位微处理器。
采用了ATMEL公司的高密度、不容易丢失存储技术,与MCS-51系列的单片机兼容。
具有集成程度高、系统结构简单、价格低廉等优点被广泛应用到控制领域中。
但是在复杂的数据处理、良好的人机交互等方面不能满足需要,常采用PC 机与AT89C51单片机进行通信,AT89C51单片机(下位机)实时采集数据传送给PC机(上位机)处理,然后接收PC机处理的结果,并进行相应的控制的方式来弥补。
本文介绍单片机与PC机进行串行通信的一种接口实现。
一、接口电路的设计(一)接口逻辑电平的转换在PC机系统大都装有异步通信适配器,为标准的RS-232C接口。
RS-232C 为负逻辑,用+3V~+15V表示逻辑“0”, 用-3V~-15V表示逻辑“1”。
AT89C51单片机采用正逻辑TTL电平0和+5V.所以AT89C51与PC机通信时必须进行电平转换。
转换的方法有多种。
常采用MAXIM公司生产的专用的双向电平转换集成电路MAX232。
MAX232引脚排列与外围电路如图1所示。
图1MAX引脚及外围接口图(二)通信接口电路本文采用可靠性高的MAX232作电平转换芯片,选择其中一对发送器与接收器,PC机的串行口与MAX232的电平端口相连,MAX232的逻辑电平端口与单片机的串行口相连,接口电路如图2所示。
图2PC机与AT89C51通信接口图二、通信接口程序(一)通信协议PC机与AT89C51进行通信必须有一定的通信协议,本文采用简单的通信协议。
51单片机与串口通信代码
51单片机与串口通信代码串口调试1. 发送:向总线上发命令2. 接收:从总线接收命令,并分析是地址还是数据。
3. 定时发送:从内存中取数并向主机发送.经过调试,以上功能基本实现,目前可以通过上位机对单片机进行实时控制。
程序如下://这是一个单片机C51串口接收(中断)和发送例程,可以用来测试51单片机的中断接收//和查询发送,另外我觉得发送没有必要用中断,因为程序的开销是一样的#i nclude <reg51.h>#i nclude<stdio.h>#i nclude <string.h>#define INBUF_LEN 4 //数据长度unsigned char inbuf1[INBUF_LEN];unsigned char checksum,count3 , flag,temp,ch;bit read_flag=0;sbit cp=P1^1;sbit DIR=P1^2;int i;unsigned int xdata *RAMDATA; /*定义RAM地址指针*/unsigned char a[6] ={0x11,0x22,0x33,0x44,0x55,0x66} ;void init_serialcomm(void){SCON=0x50; //在11.0592MHz下,设置串行口波特率为9600,方式1,并允许接收PCON=0x00;ES=1;TMOD=0x21; //定时器工作于方式2,自动装载方式 TH0=(65536-1000)%256;TL0=(65536-1000)/256;TL1=0xfd;TH1=0xfd;ET0=1;TR0=1;TR1=1;// TI=0;EA=1;// TI=1;RAMDATA=0x1F45;}void serial () interrupt 4 using 3{if(RI){ RI=0;ch=SBUF;TI=1; //置SBUF空switch(ch){case 0x01 :printf("A"); TI=0;break;case 0x02 :printf("B"); TI=0;break;case 0x03 :printf("C"); TI=0;break;case 0x04 :printf("D"); TI=0;break; default :printf("fg"); TI=0;break; }}}//向串口发送一个字符void timer0() interrupt 1 using 3{// char i;flag++;TH0=0x00;TL0=0x00;if(flag==10){// cp=!cp;// for(i=0;i<6;i++)P2=0x25;TI=1;temp=*RAMDATA;printf("%c",temp); TI=0;// RAMDATA--;flag=0;}}//主程序main(){init_serialcomm(); //初始化串口//向6264中送数据{*RAMDATA=0x33;}while(1){*RAMDATA=0x33;;}}调试过程中遇到的问题:1. 发送过程:在发送时必须保证TI=1:即发送缓冲器为空,否则将导致数据发不出去,如果想强制发送可以用:TI=1.具体发送数据:利用printf(“akjdfaklfj”);函数直接发送即可。
51单片机串口485通讯程序
/* 以下为单片机串口485通讯程序,从机程序(当然也适用于主机程序),主机发送可以先用串口帮手软件来调试,经过Keil uVision4实际测试,测试效果如结尾图片所示, 大部分来自网络,只是改了两个地方: len = sizeof(dbuf),if(i >=( __ERRLEN+1)) // 帧超长,错误,返回,就可以实现了,其中的原因自已体会吧*/#ifndef __485_C__#define __485_C__#include <reg51.h>#include <string.h>#include <stdio.h>#include <intrins.h>#define uchar unsigned char#define uint unsigned int/* 通信命令*/#define __ACTIVE_ 0x01 // 主机询问从机是否存在#define __GETDATA_ 0x02 // 主机发送读设备请求#define __OK_ 0x03 // 从机应答#define __STATUS_ 0x04 // 从机发送设备状态信息#define __MAXSIZE 0x08 // 缓冲区长度#define __ERRLEN 12 // 任何通信帧长度超过12则表示出错//uchar dbuf[__MAXSIZE]; // 该缓冲区用于保存设备状态信息uchar dbuf[__MAXSIZE];//={0,1,2,3,4,5,6,7}; // 该缓冲区用于保存设备状态信息uchar dev; // 该字节用于保存本机设备号sbit M_DE = P1^0; // 驱动器使能,1有效sbit M_RE = P1^1; // 接收器使能,0有效void get_status(); // 调用该函数获得设备状态信息,函数代码未给出void send_data(uchar type, uchar len, uchar *buf); // 发送数据帧bit recv_cmd(uchar *type); // 接收主机命令,主机请求仅包含命令信息void send_byte(uchar da); // 该函数发送一帧数据中的一个字节,由send_data()函数调用void main(){uchar type;uchar len;/* 系统初始化*/P1 = 0xff; // 读取本机设备号//dev = (P1>>2);dev = 0x01;TMOD = 0x20; // 定时器T1使用工作方式2TH1 = 250; // 设置初值TL1 = 250;TR1 = 1; // 开始计时PCON = 0x80; // SMOD = 1SCON = 0x50; // 工作方式1,波特率9600bps,允许接收ES = 0; // 关闭串口中断//IT0 = 0; // 外部中断0使用电平触发模式//EX0 = 1; // 开启外部中断0EA = 1; // 开启中断/* 主程序流程*/while(1) // 主循环{if(recv_cmd(&type) == 0) // 发生帧错误或帧地址与本机地址不符,丢弃当前帧后返回continue;switch(type){case __ACTIVE_: // 主机询问从机是否存在send_data(__OK_, 0, dbuf); // 发送应答信息,这里buf的内容并未用到break;case __GETDA TA_:// len = strlen(dbuf);//在C51中不能这个函数计算unsigned char型,这个函数只能计算char型len = sizeof(dbuf);// len =0x08;send_data(__STA TUS_, len, dbuf); // 发送设备状态信息break;default:break; // 命令类型错误,丢弃当前帧后返回}}}void READSTATUS() interrupt 0 using 1 // 产生外部中断0时表示设备状态发生改变,该函数使用寄存器组1{get_status(); // 获得设备状态信息,并将其存入dbuf指向的存储区,数据最后一字节置0表示数据结束}/* 该函数接收一帧数据并进行检测,无论该帧是否错误,函数均会返回* 函数参数type保存接收到的命令字* 当接收到数据帧错误或其地址位不为0时(非主机发送帧),函数返回0,反之返回1*/bit recv_cmd(uchar *type){bit db = 0; // 当接收到的上一个字节为0xdb时,该位置位bit c0 = 0; // 当接收到的上一个字节为0xc0时,该位置位uchar data_buf[__ERRLEN]; // 保存接收到的帧__ERRLEN=12;uchar tmp;uchar ecc = 0;uchar i;M_DE = 0; // 置发送禁止,接收允许M_RE = 0;/* 接收一帧数据*/i = 0;while(!c0) // 循环直至帧接收完毕{RI = 0;while(!RI);tmp = SBUF;RI = 0;if(db == 1) // 接收到的上一个字节为0xdb{switch(tmp){case 0xdd:data_buf[i] = 0xdb; // 0xdbdd表示0xdbecc = ecc^0xdb;db = 0;break;case 0xdc:data_buf[i] = 0xc0; // 0xdbdc表示0xc0ecc = ecc^0xc0;db = 0;break;default:return 0; // 帧错误,返回}i++;}switch(tmp) // 正常情况{case 0xc0: // 帧结束c0 = 1;break;case 0xdb: // 检测到转义字符db = 1;break;default: // 普通数据data_buf[i] = tmp; // 保存数据ecc = ecc^tmp; // 计算校验字节i++;}//if(i == __ERRLEN) // 帧超长,错误,返回if(i >=( __ERRLEN+1)) // 帧超长,错误,返回return 0;}/* 判断帧是否错误*/if(i<4) // 帧过短,错误,返回return 0;if(ecc != 0) // 校验错误,返回return 0;if(data_buf[0] != dev) // 非访问本机命令,错误,返回return 0;*type = data_buf[1]; // 获得命令字return 1; // 函数成功返回}/* 该函数发送一帧数据帧,参数type为命令字、len为数据长度、buf为要发送的数据内容*/void send_data(uchar type, uchar len, uchar *buf){uchar i;uchar ecc = 0; // 该字节用于保存校验字节M_DE = 1; // 置发送允许,接收禁止M_RE = 1;send_byte(dev); // 发送本机地址ecc = dev;send_byte(type); // 发送命令字ecc = ecc^type;send_byte(len); // 发送长度ecc = ecc^len;for(i=0; i<len; i++) // 发送数据{send_byte(*buf);ecc = ecc^(*buf);buf++;}send_byte(ecc); // 发送校验字节TI = 0; // 发送帧结束标志SBUF = 0xc0;while(!TI);TI = 0;}/* 该函数发送一个数据字节,若该字节为0xdb,则发送0xdbdd,若该字节为0xc0则,发送0xdbdc */void send_byte(uchar da){switch(da){case 0xdb: // 字节为0xdb,发送0xdbdd TI = 0;SBUF = 0xdb;while(!TI);TI = 0;SBUF = 0xdd;while(!TI)TI = 0;break;case 0xc0: // 字节为0xc0,发送0xdbdcTI = 0;SBUF = 0xdb;while(!TI);TI = 0;SBUF = 0xdc;while(!TI)TI = 0;break;default: // 普通数据则直接发送TI = 0;SBUF = da;while(!TI);TI = 0;}}#endif/* 调试结果*/。
51单片机AD转换和串口收发子程序代码
}
单片机控制串口无线收发的子程序代码
/**************************************
SCON^7——SM0,与SM1一起构成串口通信方式选择;
SCON^6——SM1;
SCON^4——REN,允许接收位,1为允许接收;
D_IN=(bit)(port&0x80); //送控制字
CLOCK=1; //上升沿
delay(1);
Ct;<=1; //控制字左移一位(下一循环送控制字下一位)
SCON^1——TI,发送中断标志位,发送结束后由硬件自动置1,复位需软件;
SCON^0——RI,接收中断标志位,接收结束后由硬件自动置1,复位需软件;
PCON^7——SMOD,波特率增倍位,1为增倍,0为不增倍;
IE^7——EA,中断允许总控制位,1为CPU开放中断,0为屏蔽所有中断请求;
TR1=1; //启动定时器1
ES=0; //禁止串行中断
}
/**************************************
名称:send
功能:发送一个字节
输入参数:待发送的字节
输出参数:无
*************************************/
单片机控制A/D转换子程序代码
/**************************************
名称:read2543
功能:TLC2543驱动模块
输入参数:port通道号
输出参数:ad转换值
*************************************/
51单片机与串口通信代码
51单片机与串口通信代码在当今科技发展迅速的时代,嵌入式系统的应用越来越广泛。
而51单片机是一类常见的嵌入式控制器,它具有体积小巧、功耗低、价格便宜等特点,因此被广泛应用于各个领域。
而串口通信是实现单片机与计算机之间数据传输的常见方式,本文将介绍51单片机与串口通信的相关代码。
1. 串口通信概述串口通信是指通过串行接口,将数据一位一位地传输。
单片机通过串口与计算机或其他设备之间进行数据传输,实现信息的收发和控制指令的执行。
串口通信常用的协议包括RS232、RS485和UART等。
在51单片机中,一般选用UART协议。
2. 串口通信的硬件连接在使用51单片机与计算机进行串口通信时,需要进行相应的硬件连接。
首先,需要将单片机的串口引脚(一般是P3口)与计算机的串口(COM口)进行连接。
单片机的TXD引脚连接到计算机的RXD引脚,而单片机的RXD引脚连接到计算机的TXD引脚。
此外,还需要相连的地线进行电位的匹配。
3. 串口通信的软件设置在使用51单片机进行串口通信时,需要对单片机的串口进行相应的软件设置。
首先,需要设置波特率,波特率指每秒传送的位数,常见的波特率有9600、115200等。
通过设置相同的波特率,实现单片机与计算机之间的数据传输。
其次,还需要设置数据位、停止位和校验位等参数,以确保数据的正确传输。
4. 单片机发送数据的代码示例下面是一个简单的51单片机发送数据的代码示例:```c#include <reg51.h>void main() {TMOD = 0x20; // 配置定时器1为工作方式2TH1 = 0xFD; // 设置波特率为9600SCON = 0x50; // 允许串口工作TR1 = 1; // 启动定时器1while (1) {SBUF = 'A'; // 发送数据while (!TI); // 等待数据发送完毕TI = 0; // 清除发送标志位}}```5. 单片机接收数据的代码示例下面是一个简单的51单片机接收数据的代码示例:```c#include <reg51.h>void main() {TMOD = 0x20; // 配置定时器1为工作方式2TH1 = 0xFD; // 设置波特率为9600SCON = 0x50; // 允许串口工作TR1 = 1; // 启动定时器1while (1) {if (RI) { // 判断是否有数据接收P1 = SBUF; // 将接收到的数据存入P1口RI = 0; // 清除接收标志位}}}```6. 总结本文介绍了51单片机与串口通信代码的相关内容。
51单片机多机通信程序
51单片机多机通信程序(主机部分) /* multi_m.c *//* 多机通信的主机部分*/#ifndef __MULTI_M_C__#define __MULTI_M_C__#include <AT89X51.H>#include <STRING.H>#define __MAX_LEN_ 64 // 数据最大长度#define _MHZ_ 11 // 设置单片机使用的晶振频率(11.0592MHz) /* 以下为程序协议中使用的握手信号*/#define __SUCC_ 0x0f // 数据传送成功#define __ERR_ 0xf0 // 数据传送错误void init_serial(); // 串口初始化void send_data(unsigned char *buf); // 发送数据void delay10ms(unsigned int count); // 延时子程序(10ms) void main(){char buf[__MAX_LEN_];unsigned char i = 0;unsigned char tmp;unsigned char addr; // 该字节用于保存要通信的从机地址/* 为缓冲区赋初值*/P0 = 0xff;while(P1 != 0) // 每隔100ms从P0口读取,若读取到0则表明数据采集结束{*(buf+i) = P0;delay10ms(10); // 延时100msP0 = 0xff;i++;}*(buf+i) = 0; // 缓冲区最后一个字节为0表示数据结束/* 读要访问的分机地址*/P0 = 0xff;addr = P0;/* 串口初始化*/init_serial(); // 初始化串口EA = 0; // 关闭所有中断/* 发送地址帧并接收应答信息,如果接收的信号与发送的地址信息不同,则重新发送地址帧*/tmp = addr-1;while(tmp != addr){/* 发送从机地址*/TB8 = 1; // 发送地址帧SBUF = addr;while(!TI);TI = 0;/* 接收从机应答*/RI = 0;while(!RI);tmp = SBUF;RI = 0;}/* 发送数据并接收校验信息,如果接收的信号为0FH,表示从机接收成功,否则将重新发送该组数据*/tmp = __ERR_;while(tmp != __SUCC_){send_data(buf); // 发送数据RI = 0;while(!RI);tmp = SBUF;RI = 0;}while(1); // 程序结束,进入死循环}/* 初始化串口*/void init_serial(){TMOD = 0x20; //定时器T1使用工作方式2TH1 = 250; // 设置初值TL1 = 250;TR1 = 1; // 开始计时PCON = 0x80; // SMOD = 1SCON = 0xd0; //工作方式3,9位数据位,波特率9600bps,允许接收}/* 发送数据*/void send_data(unsigned char *buf){unsigned char len; // 保存数据长度unsigned char ecc; // 保存校验字节len = strlen(buf); // 计算要发送数据的长度ecc = len; // 开始进行校验字节计算/* 发送数据长度*/TB8 = 0; // 发送数据帧SBUF = len; // 发送长度while(!TI);TI = 0;/* 发送数据*/for(i=0; i<len; i++){ecc = ecc^(*buf); // 计算校验字节TB8 = 0; // 发送数据帧SBUF = *buf; // 发送数据buf++;while(!TI);TI = 0;}/* 发送校验字节*/TB8 = 0; // 发送数据帧SBUF = ecc; // 发送校验字节while(!TI);TI = 0;}/* 延时10ms,精度较低,参数count为延时时间*/ void delay10ms(unsigned int count){unsigned int i, k;unsigned char j;unsigned int tmp;tmp = (int)((100*_MHZ_)/12);for(i=0; i<count; i++)for(j=0; j<100; j++)for(k=0; k<tmp; k++);}#endif51单片机多机通信程序(从机部分)/* multi_s.c *//* 多机通信的从机部分*/#ifndef __MULTI_S_C__#define __MULTI_S_C__#include <AT89X51.H>#include <STRING.H>#define __MAX_LEN_ 64 // 数据最大长度#define _MHZ_ 11 // 设置单片机使用的晶振频率(11.0592MHz)/* 以下为程序协议中使用的握手信号*/#define __SUCC_ 0x0f // 数据传送成功#define __ERR_ 0xf0 // 数据传送错误void init_serial(); // 串口初始化unsigned char recv_data(unsigned char *buf); // 接收数据void Beep_ok(); // 蜂鸣表示数据接收ok,该函数代码未给出void main() {char buf[__MAX_LEN_];unsigned char i = 0;unsigned char tmp = 0xff;unsigned char addr; // 保存本机地址/* 从P1口读取本机地址*/P1 = 0xff;addr = P1;/* 串口初始化*/init_serial(); // 初始化串口EA = 0; // 关闭所有中断/* 进入设备应答阶段*/while(1){SM2 = 1; // 只接收地址帧/* 如果接收到的地址帧不是本机地址,则继续等待*/ tmp = addr-1;while(tmp != addr){RI = 0;while(!RI);tmp = SBUF;RI = 0;}/* 发送应答信号,并做好接收数据的准备*/TI = 0;TB8 = 0; // 主机不检测该位SBUF = addr;while(!TI);TI = 0;SM2 = 0; // 允许接收数据信息/* 数据接收*/tmp = 0xff;while(tmp == 0xff) // 如果数据校验失败则重新接收数据{tmp = recv_data(buf); // 校验失败返回0xff,检测到地址帧则返回0xfe,接收成功则返回0}if(tmp == 0xfe) // 在数据接收过程中,如果发现地址帧,则重新开始整个接收过程continue;Beep_ok(); // 蜂鸣表示数据接收成功}}/* 初始化串口*/void init_serial(){TMOD = 0x20; //定时器T1使用工作方式2TH1 = 250; // 设置初值TL1 = 250;TR1 = 1; // 开始计时PCON = 0x80; // SMOD = 1SCON = 0xd0; //工作方式3,9位数据位,波特率9600bps,允许接收}/* 接收数据,注意该函数使用buf指向的缓冲区保存数据,在数据末尾使用’\0’表示数据结束* 返回值为0,数据校验成功,返回值为0xfe,接受过程中接收到地址帧,返回值为0xff,数据校验失败*/unsigned char recv_data(unsigned char *buf){unsigned char len; // 该字节用于保存数据长度unsigned char ecc; // 该字节用于保存校验字节unsigned char i,tmp;/* 接收数据长度*/RI = 0;while(!RI);if(RB8 == 1) // 若当前接收为地址帧则返回0xfereturn 0xfe;len = SBUF;RI = 0;/* 使用len的值为校验字节ecc赋初值*/ecc = len;/* 接收数据*/for(i=0; i<len; i++){while(!RI);if(RB8 == 1) // 若当前接收为地址帧则返回0xfe return 0xfe; *buf = SBUF; // 接收数据ecc = ecc^(*buf); // 进行字节校验RI = 0;buf++;}*buf = 0; // 表示数据结束/* 接收校验字节*/while(!RI);if(RB8 == 1) // 若当前接收为地址帧则返回0xfe return 0xfe; tmp = SBUF;RI = 0;/* 进行数据校验*/ecc = tmp^ecc;if(ecc != 0) // 校验失败{*(buf-len) = 0; // 清空数据缓冲区TI = 0; // 发送校验失败信号TB8 = 0;SBUF = __ERR_;while(!TI);TI = 0;return 0xff; // 返回0xff表示校验错误} TI = 0; // 校验成功TB8 = 0;SBUF = __SUCC_;while(!TI);TI = 0;return 0; // 校验成功,返回0}#endif。
基于51单片机的串口通信proteus仿真电路及代码
1};
void delay(uchar n) {
uchar x,y; for(x=n;x>0;x--) for(y=110;y>0;y--); }
uchar key_putdown() {
P1=0xf0; if(P1!=0xf0) {
delay(5); if(P1!=0xf0) {
return 1; } } else return 0; }
基于 51 单片机的串口通信 proteus 仿真电路 及代码(2014.10.27)
本电路采用晶振为 11.0592MHz,采用串口工作方式 1,波特 率为 9600Bps,双机通信,U1 将 4*4 矩阵键盘送来的 0~f 字 符先用一位共阴数码管显示出来,再通过 P3.0 和 P3.1 两个 引脚送到 U2,U2 再用一位共阴数码管显示出来。
P0=0x00; P0=table[n]; }
void main() {
SCON = 0x50; TMOD = 0x20; TH1 = 0xFD; TL1 = 0xFD; TR1 = 1; ES = 1; EA = 1;
//串口方式 1, 8-n-1, 允许接收. //T1 方式 2
//开中断.
P0=0x3f; while(1) {
if(key_putdown()) {
key_scan(); led_disp(key); send();
} } }
这是从机 U2 接收使用的代码:
#include<reg51.h> #define uchar unsigned #define uint unsigned
uchar
code
table[16]={0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7d,0x07,0x7f,0x6f,0x77,0x7c,0x39,0x5e,0x79,0x7 1};//7 段共阴数码管 0~f
51单片机串口通信连续发送接收字节
51单片机串口通信连续发送接收字节当使用单片机串口通信,连续发送字节时,如何处理呢?使用串口中断接收发送字节,中断内的程序尽可能简单,因为考虑到占用时间。
本文以连续发送4个字节为例,给出例程如下所示:本例程使用的单片机型号为:IAP15W4K58S//工作频率为11.0592MHz#include "reg51.h"#include "intrins.h"typedef unsigned char BYTE;typedef unsigned int WORD;#define FOSC 11059200L //系统频率//#define BAUD 115200 //#define BAUD 9600 //定义串口波特率#define Num_byte 4 //接收数据4个字节BYTE Data_temp[Num_byte]={0,0,0,0};sfr P0M1 = 0x93;sfr P0M0 = 0x94;sfr P1M1 = 0x91;sfr P1M0 = 0x92;sfr P2M1 = 0x95;sfr P2M0 = 0x96;sfr P3M1 = 0xb1;sfr P3M0 = 0xb2;sfr P4M1 = 0xb3;sfr P4M0 = 0xb4;sfr P5M1 = 0xC9;sfr P5M0 = 0xCA;sfr P6M1 = 0xCB;sfr P6M0 = 0xCC;sfr P7M0 = 0xE2;sfr AUXR = 0x8e; //辅助寄存器sfr T2H = 0xd6; //定时器2高8位sfr T2L = 0xd7; //定时器2低8位sfr P_SW1 = 0xA2; //外设功能切换寄存器1sbit LED1=P1^1;sbit LED2=P1^2;bit busy=0; //定义是否接收完4个字节BYTE num=0; //记录4个字节的数据void SendData(BYTE dat);void SendString(char *s);BYTE read_Byte();void delay();void main(){P0M0 = 0x00;P0M1 = 0x00;P1M0 = 0x00;P1M1 = 0x00;P2M0 = 0x00;P2M1 = 0x00;P3M0 = 0x00;P3M1 = 0x00;P4M0 = 0x00;P4M1 = 0x00;P5M0 = 0x00;P5M1 = 0x00;P6M0 = 0x00;P7M0 = 0x00;P7M1 = 0x00;P_SW1 &= 0x3F; //(P3.0/RxD, P3.1/TxD)SCON = 0x50; //8位可变波特率,允许接收T2L = (65536 - (FOSC/4/BAUD)); //设置波特率重装值T2H = (65536 - (FOSC/4/BAUD))>>8;AUXR = 0x15; //T2为1T模式, 并启动定时器2,选择定时器2为串口1的波特率发生器ES = 1; //使能串口1中断EA = 1;//SendString("STC15F2K60S2\r\nUart Test !\r\n");while(1){if(busy){ES=0;for(num=0;num<Num_byte;num++){SBUF= Data_temp[num]+0x05;while(!TI);TI=0;}num=0;ES=1;busy=0;}//SendData(3);//delay();//delay();;}/*----------------------------UART 中断服务程序-----------------------------*/void Uart() interrupt 4 using 1{ES=0;RI = 0; //清除RI位Data_temp[num++]= SBUF;if(num==Num_byte)busy=1;ES=1;}/*----------------------------发送串口数据----------------------------*/void SendData(BYTE dat){while (busy); //等待前面的数据发送完成SBUF = dat; //写数据到SBUF寄存器busy = 1;}/*----------------------------发送字符串----------------------------*/void SendString(char *s){while (*s) //检测字符串结束标志{SendData(*s); //发送当前字符s++;}//接收1个字节BYTE read_Byte(){ BYTE character;character = SBUF;return character;}void delay(){ BYTE i,j;for(i=220;i--;i>0)for(j=220;j--;j>0); }。
51单片机的2个串口分别通信的方法
51单片机的2个串口资源分别通信的方法当使用51单片机的2个串口资源进行通信时,比如用一个串口与PLC的串口使用RS485协议通信,一个串口通过蓝牙模块和另一个单片机无线通信时,该如何处理呢?传统的51单片机只有1个串口资源,只能采用分时复用的方法。
STC的15系列增强版51单片机具有多个串口资源,本文将描述如何使用IAP15W4K58S单片机用一个串口资源与PLC的RS485有线通信,另一个串口资源与Arduino单片机通过蓝牙模块无线通信,该通讯连接过程中PLC作为主机,IAP15W4K58S作为中间机,Arduino单片机作为最低层级。
工作过程是按下启动按键,PLC发信息给IAP15W4K58S单片机发高速脉冲控制步进电机驱动的机械臂运动取走货物,当货物取走后,IAP15W4K58S单片机通过蓝牙模块通知Arduino单片机控制的小车将新货物运送过来。
连接结构示意图如下图所示。
本例程使用的单片机型号为:IAP15W4K58S,该单片机有4个采用UART 工作方式的全双工异步串行通信接口(分别为串口1、串口2、串口3和串口4),每个串行口由2个数据缓冲器、1个移位寄存器、1个串行控制寄存器和1个波特率发生器等组成。
本项目使用串行口1和串行口2。
串行口1的两个缓冲器共用寄存器SBUF (99H),串行口2的两个缓冲器共用寄存器S2BUF(9BH)。
10位(1起始位,8位数据位,1停止位)可变波特率(9600)。
串口1对应的硬件部分是TxD和RxD,串行口2对应硬件部分是TxD2和RxD2。
串口1选择引脚P3.0(RxD)和P3.1(TxD),串口2选择引脚P1.0(RxD)和P1.1(TxD)。
串口1既可以选择T1作为波特率发生器,也可以选择T2作为波特率发生器。
本文串口1提供2个选择(T1和T2),串口2只能选择T2作波特率发生器。
但是当串口1和串口2的波特率相同时,可以共用T2作为波特率发器,当T2工作在1T模式时,串行口1的波特率=SYSclk/(65536-[RL_TH2,RL_TL2])/4,SYSclk表示系统时钟频率,[RL_TH2,RL_TL2]表示T2H,T2L的定时初值设置值。
proteus仿真51单片机串口双机通讯
51单片机的串口双机通讯一、什么是串口串口是串行发送数据的接口,是相对于并口来说的,是一个广泛的定义。
本期我们说的串口指的是指UART或是RS232。
二、什么是波特率波特率是指串行端口每秒内可以传输的波特位数。
这里所指的波特率,如标准9600不是每秒种可以传送9600个字节,而是指每秒可以传送9600个二进位。
一个字节需要8个二进位,如用串口模式1来传输,那么加上起始位和停止位,每个数据字节就要占用10个二进位。
9600bps用模式1传输时,每秒传输的字节数是9600÷10=960个字节,发送一个字节大概需要1ms时间。
三、51单片机串口相关寄存器1、SCON串口控制寄存器(1)SM0和SM1:方式选择寄存器SM0 SM1 工作方式功能波特率0 0 方式0 8位同步移位寄存器晶振频率/ 120 1 方式1 10位UART 可变1 0 方式2 11位UART 晶振频率/32或晶振频率/64 1 1 方式3 11位UART 可变多机通信是工作在方式2和方式3的,所以SM2主要用于方式2和方式3,多级通信时,SM2=1,当SM2=1时,只有当接收到的数据帧第9位(RB8)为1时,单片机才把前八位数据放入自己的SBUF中,否则,将丢弃数据帧。
当SM2=0时,不论RB8的值是什么,都会把串口收到的数据放到SBUF中。
(3)REN:允许接收位REN用于控制是否允许接收数据,REN=1时,允许接收数据,REN=0时,拒绝接收数据。
(4)TB8:要发送的第9位数据位在方式2和方式3中,TB8是要作为数据帧第9位被发送出去的,在多机通信中,可用于判断当前数据帧的数据是地址还是数据,TB8=0为数据,TB8=1为地址。
(5)RB8:接收到的第9位数据位当单片机已经接收一帧数据帧时,会把数据帧中的第9位放到RB8中。
方式0不使用RB8,在方式2和方式3中,RB8为接收到的数据帧的第9位数据位。
(6)TI:发送中断标志位方式0中,不用管他。
51单片机实现RS485
default: // 普通数据则直接发送TI = 0;SBUF = da;while(!TI);TI = 0;}}#endifRS-232接口实现计算机和单片机通信程序作者:佚名来源:本站原创点击数:…更新时间:2008年07月10日【字体:大中小】//此程序通过RS-232接口来完成计算机和单片机通信(程序已用p1 8f458试验板上调试通过)//程序的调试可以用"串口调试助手V2.1"辅助完成,此程序可在htt p:// 下载//此程序首先发送测试数据55H,再通过中断实现数据的接收和发送#include "p18f458.h"void InterruptHandlerHigh(void);//初始化程序void initial(){SPBRG=0X19; //选择传输波特率为9600bpsTXSTA=0X04; //选择异步高速方式传输8位数据RCSTA=0X80; //允许同步串行口工作TRISC=0X80; //将RC7,RC6设置为输入,断绝与外接电路的连接 TXSTAbits.TXEN=1; //发送允许RCSTAbits.CREN=1; //接受数据允许PIE1bits.RCIE=1; //接收中断使能INTCON=0XC0; //总中断和外围中断允许}//高优先级中断向量#pragma code InterruptVectorHigh=0x08void InterruptVectorHigh (void){_asmgoto InterruptHandlerHigh //跳到中断程_endasm}//高优先级中断服务程序#pragma code#pragma interrupt InterruptHandlerHighvoid InterruptHandlerHigh (){while(PIR1bits.RCIF==1) //若接收中断标志不为1,则为误操作,返回{TXREG=RCREG; //将接收到的数据放入发送寄存器,并启动发送 }}//主程序main(){initial(); //系统初始化TXREG=0X55; //发送数据55H进行测试for(;;);}------------------------------------------汇编语言版本的RS-232接口实现计算机和单片机通信程序------------;此程序通过RS-232接口来完成计算机和单片机通讯(程序以在p18 f458试验板上调通);本单片机程序由提供;此程序首先发送测试数据55H,再通过中断实现数据的接收和发送;程序的调试可以用"串口调试助手V2.1"辅助完成LIST P=18f458INCLUDE "P18f458.INC"ORG 0x00GOTO MAINORG 0x08GOTO INTSERVEORG 0X30;**************中断服务子程序***************INTSERVEBTFSS PIR1,RCIF ;接收中断标志为1?GOTO ERR_RE ;误操作,返回MOVF RCREG,0 ;否则,将接收到的数据通过W寄存器MOVWF TXREG ;放入发送寄存器,并启动发送ERR_RE NOPRETFIE;****************初始化程序***************INITIAL NOPMOVLW 0X19 ;选择传输波特率为9600bpsMOVWF SPBRGMOVLW 0X04 ;选择异步高速方式传输8位数据MOVWF TXSTAMOVLW 0X80 ;允许同步串行口工作MOVWF RCSTAMOVLW 0X80 ;将RC7,RC6设置为输入,断绝与外接电路的连接MOVWF TRISCBSF TXSTA,TXEN ;发送允许BSF RCSTA,CREN ;接受数据允许BSF PIE1,RCIE ;接收中断使能MOVLW 0XC0 ;总中断和外围中断允许MOVWF INTCONRETURN;**********************主程序********************* MAIN NOPCLRWDTCALL INITIALMOVLW 0X55 ;发送数据55H进行测试MOVWF TXREGLOOPGOTO LOOPEND两片51单片机互相通信的串行通信程序(一个发送程序,一个接收程序)2007-05-27 08:27;系统晶振是 11.0592 MHz;51单片机发送单片机程序;此程序用Proteus仿真通过;此程序在硬件上测试通过;2007-05-27;附有简化电路图;为了使初学者能看懂,程序与图尽可能的简单扼要;实验现象为,发送端的P1口的哪个键被接下,接收端的哪个灯对应着亮;如果把两个单片机的T和R通过无线模块(如基于MCP2120芯片的模块)来扩充,便可做成无线通信ORG0000HAJMPSTARTORG0040HSTART:MOVSP,#60HMOVSCON,#50H;串口方式 1MOVTMOD,#20H;T1 方式2MOVTL1,#0FDH;波特率 9600 的常数MOVTH1,#0FDHSETBTR1movr5,#00hWAIT:movp1,#0ffhmova ,p1movr5,alcalldelay ;读键盘,这里去抖动,还要加几句话mova ,p1nopCJNEA,5,WAIT ;是否有键输入MOVSBUF,a;串口输出键盘输入的值NOPSS: JBCTI,WAIT;是否发送完毕SJMPSSDELAY:;延时子程序PUSH;保存现场PUSH1MOV0,#06HDELAY1: MOV 1,#0HDJNZ1,$DJNZ0,DELAY1POP1;恢复现场POPRETEND;系统晶振是 11.0592 MHz;51单片机接收单片机程序;此程序用Proteus仿真通过;此程序在硬件上测试通过;2007-05-27;附有简化电路图;为了使初学者能看懂,程序与图尽可能的简单扼要;实验现象为,发送端的P1口的哪个键被接下,接收端的哪个灯对应着亮;如果把两个单片机的T和R通过无线模块(如基于MCP2120芯片的模块)来扩充,便可做成无线通信ORG0000HAJMPSTARTORG0040HSTART:MOVSCON,#50H;串口方式 1MOVTMOD,#20H;T1 方式 2MOVTL1,#0FDH;波特率 9600 的常数MOVTH1,#0FDHSETBTR1WAIT:JBCRI,DIS_REC;是否接收到数据sjmpwaitDIS_REC:MOVA,SBUF;读串口接收到的数据movp1,aSJMPwaitend51单片机串行口通信程序设计例子时间:2009-03-06 17:13来源:未知作者:牛牛点击: 768次串行口方式0应用编程 8051单片机串行口方式0为移位寄存器方式,外接一个串入并出的移位寄存器,就能扩展一个并行口。
51单片机C语言应用开发实例精讲8结构实例6:单片机的串口通信
8. 结构实例6:单片机串口通信虽然那个流水灯游戏的可玩性和按键手感问题还值得再好好提升一下,但小月更希望调剂一下,转而开始了对手头烧写板上关于RS-232转换部分的学习。
小月的做法并不难以理解,毕竟与RS-232转换的相关电路在原理图中还是相当显眼的,甚至于他手头编程器的别名就是RS-232转换器。
图8.1 单片机中负责RS-232通讯的电路在烧写器一端与电脑连接的两个接头中,9针的RS-232接口就是串口通信线,而另一个USB口仅接通了+5V和GND,只有给烧写器供电的作用。
这样就可以知道,电脑可以通过RS-232对单片机的内部程序进行改写。
那么,这就意味着单片机与电脑间必然可以进行数据的交换,这种交换,就叫做通信。
所谓串口通信,就是指这种基于RS-232串口的通信方式。
RS-232(ANSI/EIA-232标准)是IBM-PC及其兼容机上的串行连接标准。
最早是为使电脑通过电话线系统相互通信的调制解调器上而是设计的。
后来发展到连接鼠标或打印机上,目前已经被支持设备的即插即用和热插拔功能的USB所替代,但仍广泛的用于工业仪器仪表中,同时也是单片机最基础和最常见的通信方式。
不过要把“最基础和最常见”这两个最拆开来说,就要在后面加上“之一”了。
虽然目前的通信技术日新月异,但这种说法在今后很长一段时期内都是成立的,也正因为这样的特点,STC的51系列单片机都是默认通过RS-232方式进行烧写的。
作为两台设备之间进行的通信,必然需要共同遵守某种规定或规则,包括交流什么、怎样交流及何时交流。
这个规则就是通信协议。
RS-232通信中通信协议的原则就是串口按位(bit)发送和接收数据。
线路上,RS-232通信使用3根线完成,分别是地线、发送、接收。
端口能够在一根线上发送数据的同时在另一根线上接收数据,即全双工传输。
全双工传输是传输制式的一种分类方式中的一类,除此还有单工传输和半双工传输。
单工传输,是指消息只能单方向传输的工作方式。
C51单片机和电脑串口通信电路图
C51单片机和电脑串口通信电路图与源码51单片机有一个全双工的串行通讯口,所以单片机和电脑之间可以方便地进行串口通讯。
进行串行通讯时要满足一定的条件,比如电脑的串口是RS232电平的,而单片机的串口是TTL电平的,两者之间必须有一个电平转换电路,我们采用了专用芯片MAX232进行转换,虽然也可以用几个三极管进行模拟转换,但是还是用专用芯片更简单可靠。
我们采用了三线制连接串口,也就是说和电脑的9针串口只连接其中的3根线:第5脚的GND、第2脚的RXD、第3脚的TXD。
这是最简单的连接方法,但是对我们来说已经足够使用了,电路如下图所示,MAX232的第10脚和单片机的11脚连接,第9脚和单片机的10脚连接,第15脚和单片机的20脚连接.串口通讯的硬件电路如上图所示在制作电路前我们先来看看要用的MAX232,这里我们不去具体讨论它,只要知道它是TTL和RS232电平相互转换的芯片和基本的引脚接线功能就行了。
通常我会用两个小功率晶体管加少量的电路去替换MAX232,可以省一点,效果也不错,下图就是MAX232的基本接线图。
按图7-3加上MAX232就可以了。
这大热天的拿烙铁焊焊,还真的是热气迫人来呀:P串口座用DB9的母头,这样就可以用买来的PC串口延长线进行和电脑相连接,也可以直接接到电脑com口上。
为了能够在电脑端看到单片机发出的数据,我们必须借助一个WINDOWS软件进行观察,这里我们利用一个免费的电脑串口调试软件。
本串口软件在本网站可以找到软件界面如上图,我们先要设置一下串口通讯的参数,将波特率调整为4800,勾选十六进制显示。
串口选择为COM1,当然将网站提供的51单片机实验板的串口也要和电脑的COM1连接,将烧写有以下程序的单片机插入单片机实验板的万能插座中,并接通51单片机实验板的电源。
#include <reg51。
h〉#define BUFFERLEGTH 10//-—---———-—-——————--——-----—--——--——------—-—--—-—--—--——-———-—--—void UART_init();//串口初始化函数void COM_send(void);//串口发送函数char str[20];char j;//——-----————---——-—--—--—-—-—-———-———-—-——-—--—-—-——————--———-—--———void main(void){unsigned char i;UART_init();j=0; //初始化串口for(i = 0;i < 10 ;i++){COM_send(); //首先发送一次数据作为测试用};while(1);}//-——-——-——---------———-——-—-—-——--—---—---—--—-—--——---—---—--//——-——--——--—-—-—--———————---—-——-——-———-—-----——--—---——————-—-—-—-—————-—--—-—---—--———-——---——-- // 函数名称:UART_init()串口初始化函数// 函数功能: 在系统时钟为11.059MHZ时,设定串口波特率为9600bit/s// 串口接收中断允许,发送中断禁止//—-——--—-----———---—-——-—-——————-————-—-————---——-———————--———-———----—-—--—---——-—---—-————-———---void UART_init(){//初始化串行口和波特率发生器SCON =0x50; //选择串口工作方式1,打开接收允许TMOD =0x20; //定时器1工作在方式2,定时器0工作在方式1TH1 =0xfA; //实现波特率9600(系统时钟11。
我的51单片机之 MAX485的 C语言与汇编的编程
//与自制软件 ComTest 通信,设好通信口,按下软件中相应按钮,数码管显示相应值
//made by luqichao
//************************************************************************
#include <reg51.h>
;
{ 0 , 1, 2 , 3 , 4 , 5, 6, 7, 8, 9 }
MAIN:
MOV SCON,#50H; 串口工作于方式 1,充许接收
MOV PCON,#0H;
波特率不倍增
MOV TMOD,#20H; 定时器计数器 1 工作于方式 2;
MOV TH1,#0FDH;
MOV TL1,#0FDH; 波特率为 9600;
LEDCODE EQU P1 ComData EQU 40H; LED1 EQU P0.6; LED2 EQU P0.7; M485 EQU P0.5;
//作为收发数据的使能短,1 为发数据 0 为收数据
;字形码:0--f 及小数点
AscLed:DB 0C0H,0F9H,0A4H,0B0H,99H,92H,82H,0F8H,80H,90H;
四、汇编程序: ;************************************************************************** ;与自制软件 ComTest 通信,设好通信口,按下软件中相应按钮,数码管显示相应值 ;made by luqichao ;************************************************************************** ORG 0000H AJMP MAIN ORG 001BH AJMP T1P ORG 0023H AJMP COMM ORG 0030H
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
51单片机与串口通信代码
2011年04月22日 17:18 本站整理作者:佚名用户评论(0)
关键字:串口通信(35)
串口调试
1. 发送:向总线上发命令
2. 接收:从总线接收命令,并分析是地址还是数据。
3. 定时发送:从内存中取数并向主机发送.
经过调试,以上功能基本实现,目前可以通过上位机对单片机进行实时控制。
程序如下:
//这是一个单片机C51串口接收(中断)和发送例程,可以用来测试51单片机的中断接收
//和查询发送,另外我觉得发送没有必要用中断,因为程序的开销是一样的
#i nclude <reg51.h>
#i nclude<stdio.h>
#i nclude <string.h>
#define INBUF_LEN 4 //数据长度
unsigned char inbuf1[INBUF_LEN];
unsigned char checksum,count3 , flag,temp,ch;
bit read_flag=0;
sbit cp=P1^1;
sbit DIR=P1^2;
int i;
unsigned int xdata *RAMDATA; /*定义RAM地址指针*/
unsigned char a[6] ={0x11,0x22,0x33,0x44,0x55,0x66} ;
void init_serialcomm(void)
{
SCON=0x50; //在11.0592MHz下,设置串行口波特率为9600,方式1,并允许接收
PCON=0x00;
ES=1;
TMOD=0x21; //定时器工作于方式2,自动装载方式 TH0=(65536-1000)%256;
TL0=(65536-1000)/256;
TL1=0xfd;
TH1=0xfd;
ET0=1;
TR0=1;
TR1=1;
// TI=0;
EA=1;
// TI=1;
RAMDATA=0x1F45;
}
void serial () interrupt 4 using 3
{
if(RI)
{ RI=0;
ch=SBUF;
TI=1; //置SBUF空
switch(ch)
{
case 0x01 :printf("A"); TI=0;break;
case 0x02 :printf("B"); TI=0;break;
case 0x03 :printf("C"); TI=0;break;
case 0x04 :printf("D"); TI=0;break; default :printf("fg"); TI=0;break; }
}
}
//向串口发送一个字符
void timer0() interrupt 1 using 3{
// char i;
flag++;
TH0=0x00;
TL0=0x00;
if(flag==10)
{// cp=!cp;
// for(i=0;i<6;i++)
P2=0x25;
TI=1;
temp=*RAMDATA;
printf("%c",temp); TI=0;
// RAMDATA--;
flag=0;
}
}
//主程序
main()
{
init_serialcomm(); //初始化串口
//向6264中送数据
{
*RAMDATA=0x33;
}
while(1)
{
*RAMDATA=0x33;;
}
}
调试过程中遇到的问题:
1. 发送过程:在发送时必须保证TI=1:即发送缓冲器为空,否则将导致数据发不出去,如果想强制发送可以用:TI=1.具体发送数据:利用printf(“akjdfaklfj”);函数直接发送即可。
2. 接收过程:在接收时多选用中断方式,这样可以节约CPU的时间,提高效率。