人教版高中数学【选修2-3】[知识点整理及重点题型梳理] 分类加法计数原理和分步乘法计数原理(提高)

合集下载

人教版高中数学【选修2-3】[知识点整理及重点题型梳理] 组 合(提高)

人教版高中数学【选修2-3】[知识点整理及重点题型梳理]  组 合(提高)

人教版高中数学选修2-3知识点梳理重点题型(常考知识点)巩固练习组合【学习目标】1.理解组合的概念.2.能利用计数原理推导组合数公式.3.能解决简单的实际问题.4.理解组合与排列之间的联系与区别.【要点梳理】要点一:组合1.定义:≤)个元素并成一组,叫做从n个不同元素中取出m个元一般地,从n个不同元素中取出m(m n素的一个组合.要点诠释:①从排列与组合的定义可知,一是“取出元素”;二是“并成一组”,“并成一组”即表示与顺序无关.排列与元素的顺序有关,而组合与元素的顺序无关,这是它们的根本区别.②如果两个组合中的元素相同,那么不管元素的顺序怎样都是相同的组合;只有当两个组合中的元素不完全相同时,才是不同的组合.因此组合问题的本质是分组问题,它主要涉及元素被取到或未被取到.要点二:组合数及其公式1.组合数的定义:m≤)个元素的所有组合的个数,叫做从n个不同元素中取出m个元从n个不同元素中取出m(nC.素的组合数.记作mn要点诠释:“组合”与“组合数”是两个不同的概念:一个组合是指“从n个不同的元素中取出m(m≤n)个元素并成一组”,它不是一个数,而是具体的一件事;组合数是指“从n个不同元素中取出m(m≤n)个元素的所有组合的个数”,它是一个数.例如,从3个不同元素a,b,c中取出2个元素的组合为ab,ac,bc,其中每一种都叫做一个组合,而数字3就是组合数.2.组合数的公式及推导A,可以按以下两步来考虑:求从n个不同元素中取出m个元素的排列数mn第一步,先求出从这n 个不同元素中取出m 个元素的组合数m n C ;第二步,求每一个组合中m 个元素的全排列数mm A .根据分步计数原理,得到m m m n n m A C A =⋅. 因此这里n ,m ∈N +,且m ≤n ,这个公式叫做组合数公式.因为!()!m n n A n m =-,所以组合数公式还可表示为:!!()!m n n C m n m =-. 要点诠释:组合数公式的推导方法是一种重要的解题方法!在以后学习排列组合的混合问题时,一般都是按先取后排(先组合后排列)的顺序解决问题。

高中数学 选修2-3知识点(完整知识点梳理及经典例题答案详解)

高中数学 选修2-3知识点(完整知识点梳理及经典例题答案详解)

高中数学选修2-3知识点总结第一章 计数原理知识点:1、分类加法计数原理:做一件事情,完成它有N 类办法,在第一类办法中有M 1种不同的方法,在第二类办法中有M 2种不同的方法,……,在第N 类办法中有M N 种不同的方法,那么完成这件事情共有M 1+M 2+……+M N 种不同的方法。

2、分步乘法计数原理:做一件事,完成它需要分成N 个步骤,做第一 步有m1种不同的方法,做第二步有M 2不同的方法,……,做第N 步有M N 不同的方法.那么完成这件事共有 N=M 1M 2...M N 种不同的方法。

3、排列:从n 个不同的元素中任取m(m ≤n )个元素,按照一定顺序......排成一列,叫做从n 个不同元素中取出m 个元素的一个排列4、排列数: ),,()!(!)1()1(N m n n m m n n m n n n A m∈≤-=+--= 规定:0!1=5、组合:从n 个不同的元素中任取m (m ≤n )个元素并成一组,叫做从n 个不同元素中取出m 个元素的一个组合。

6、组合数:)!(!!!)1()1(m n m n C m m n n n A A C m nm mm n mn-=+--== )!(!!!)1()1(m n m n C m m n n n A A C m n m m m n m n -=+--==;mn n m n C C -= mn m n m n C C C 11+-=+7、解排列、组合题的基本策略 (1)两种思路:①直接法;②间接法:对有限制条件的问题,先从总体考虑,再把不符合条件的所有情况去掉。

这是解决排列组合应用题时一种常用的解题方法。

(2)分类处理:当问题总体不好解决时,常分成若干类,再由分类计数原理得出结论。

注意:分类不重复不遗漏。

即:每两类的交集为空集,所有各类的并集为全集。

(3在处理排列组合问题时,常常既要分类,又要分步。

其原则是先分类,后分步。

(4)两种途径:①元素分析法;②位置分析法。

人教A版高中数学选修2-3讲义及题型归纳:分类加法计数原理和分步乘法原理

人教A版高中数学选修2-3讲义及题型归纳:分类加法计数原理和分步乘法原理

目录考点一:基本计数原理 (2)题型一、分布加法原理 (2)题型二、分布乘法原理 (4)题型三、基本计数原理的综合运用 (5)课后综合巩固练习 (6)考点一:基本计数原理加法原理分类计数原理:做一件事,完成它有n 类办法,在第一类办法中有1m 种不同的方法,在第二类办法中有2m 种方法,……,在第n 类办法中有n m 种不同的方法.那么完成这件事共有12nN m m m =+++种不同的方法.又称加法原理. 乘法原理分步计数原理:做一件事,完成它需要分成n 个子步骤,做第一个步骤有1m 种不同的方法,做第二个步骤有2m 种不同方法,……,做第n 个步骤有n m 种不同的方法.那么完成这件事共有12n N m m m =⨯⨯⨯种不同的方法.又称乘法原理.加法原理与乘法原理的综合运用如果完成一件事的各种方法是相互独立的,那么计算完成这件事的方法数时,使用分类计数原理.如果完成一件事的各个步骤是相互联系的,即各个步骤都必须完成,这件事才完成,那么计算完成这件事的方法数时,使用分步计数原理.分类计数原理、分步计数原理是推导排列数、组合数公式的理论基础,也是求解排列、组合问题的基本思想方法,这两个原理十分重要必须认真学好,并正确地灵活加以应用.题型一、分布加法原理1.用10元、5元和1元来支付20元钱的书款,不同的支付方法有( ) A .3B .5C .9D .12【分析】用列举法求解.【解答】解:用10元、5元和1元来支付20元钱的书款,有以下几类办法: ①用2张10元钱支付;②用1张10元钱和2张5元钱支付;③用1张10元钱、1张5元钱5张1元钱支付; ④用1张10元钱和10张1元钱支付; ⑤用1张5元钱和15张1元钱支付; ⑥用2张5元钱和10张1元钱支付;⑦用3张5元钱和5张1元钱支付; ⑧用4张5元钱支付; ⑨用20张1元钱支付. 故共有9种方法. 故选:C .【点评】本题考查不同的付款方式共有多少种的求法,是基础题,解题时要认真审题,注意列举法的合理运用.2.一个三层书架,分别放置语文书12本,数学书14本,英语书11本,从中取出一本,则不同的取法共有( ) A .3种B .1848种C .37种D .6种【分析】分情况讨论:选择拿语文书:有12种不同的拿法,数学书有14种不同的拿法,英语书有11种不同的拿法,然后把这三种情况的数量加在一起即可.【解答】解:由题意可知选择拿语文书:有12种不同的拿法,数学书有14种不同的拿法,英语书有11种不同的拿法, 共有:12141137++=. 故选:C .【点评】本题先确定拿哪种类型的书,考查分类计数原理的应用,考查两种原理的区别. 3.已知集合{1M=,2-,3},{4N =-,5,6,7}-,从两个集合中各选一个数作为点的坐标,则这样的坐标在直角坐标系中可表示第三、四象限内多少个不同点( ) A .18个B .10个C .16个D .14个【分析】根据第三、四象限内点的坐标的性质,分2种情况讨论,①取M 中的数作横坐标,取N 中的数作纵坐标坐标,②取N 中的数作横坐标,取M 中的数作纵坐标坐标,易得每种情况下的数目,进而由加法原理可得答案.【解答】解:第三、四象限内点的纵坐标为负值,横坐标无限制;分2种情况讨论,①取M 中的数作横坐标,取N 中的数作纵坐标坐标,有326⨯=种情况, ②取N 中的数作横坐标,取M 中的数作纵坐标坐标,有414⨯=种情况; 共有6410+=种情况, 故选:B .【点评】本题考查分类计数原理的运用,解题的切入点为四个象限的点的坐标的性质.题型二、分布乘法原理1.设函数:f N N ++→满足:对于任意大于3的正整数n ,()3f n n =-,且当3n 时,2()3f n ,则不同的函数()f x 的个数为()A .1B .3C .6D .8【分析】通过()3f n n =-,结合映射的定义,根据2()3f n ,确定函数的个数.【解答】解:3n ,2()3f n ,f∴(1)2=或3,且f(2)2=或3 且f(3)2=或3.根据分步计数原理,可得共2228⨯⨯=个不同的函数. 故选:D .【点评】本题主要考查映射的定义,以及分步计数原理的应用,比较基础. 2.将一枚骰子向桌面先后抛掷2次,一共有( )种不同结果. A .6B .12C .36D .216【分析】由分步计数原理知有66⨯种结果,问题得以解决 【解答】解:由分步计数原理知有6636⨯=种结果 故选:C .【点评】本题考查了分步计数原理,属于基础题3.古代“五行”学认为:“物质分金、木、土、水、火五种属性,金克木,木克土,土克水,水克火,火克金.”将五种不同属性的物质任意排成一列,但排列中属性相克的两种物质不相邻,则这样的排列方法有多少种(结果用数字表示).( ) A .5B .10C .20D .120【分析】由题意,可看作五个位置排列五种事物,由分步原理求解即可,本题需要考虑的因素:相克的两种物质不相邻,注意满足此规则,计算符合条件的排列方法种数【解答】解:由题意,可看作五个位置排列五种事物,第一位置有五种排列方法,不妨假设排上的是金,则第二步只能从土与水两者中选一种排放,故有两种选择不妨假设排上的是水, 第三步只能排上木,第四步只能排上火,第五步只能排上土, 故总的排列方法种数有5211110⨯⨯⨯⨯= 故选:B .【点评】本题考查排列排列组合及简单计数问题,解答本题关键是理解题设中的限制条件及“五行”学说的背景,利用分步原理正确计数,本题较抽象,计数时要考虑周详,本题以实际问题为背景,有着实际背景的题在现在的高考试卷上有逐步增多的趋势题型三、基本计数原理的综合运用1.将5种不同的花卉种植在如图所示的四个区域中,每个区域种植一种花卉,且相邻区域花卉不同,则不同的种植方法种数是( )A .420B .180C .64D .25【分析】由于规定一个区域只涂一种颜色,相邻的区域颜色不同,可分步进行,区域A 有5种涂法,B 有4种涂法,讨论A ,D 同色和异色,根据乘法原理可得结论.【解答】解:由题意,由于规定一个区域只涂一种颜色,相邻的区域颜色不同,可分步进行, 区域A 有5种涂法,B 有4种涂法,A ,D 不同色,D 有3种,C 有2种涂法,有5432120⨯⨯⨯=种, A ,D 同色,D 有4种涂法,C 有3种涂法,有54360⨯⨯=种,∴共有180种不同的涂色方案.故选:B .【点评】本题考查排列组合的应用,涉及分步计数原理的应用,注意分析图形中区域相邻的情况. 2.5名同学排成一列,某个同学不排排头的排法种数为 (用数字作答).【分析】先排不在排头的这个学生,方法有4种,其他学生任意排,有44A 种,根据分步计数原理,求得结果.【解答】解:先排不在排头的这个学生,方法有4种,其他学生任意排,有44A 种,根据分步计数原理,所有的排列方法共有44496A =种,故答案为:96.【点评】本题主要考查分步计数原理的应用,注意特殊元素优先排列,属于基础题.3.已知集合{1M ∈,2-,3},{4N ∈-,5,6,7}-,从两个集合中各取一个元素作为点的坐标,求这样的坐标在直角坐标系中可表示第一、二象限内不同的点的个数.【分析】本题首先分类在每一类中又分步,M中的元素作点的横坐标,N中的元素作点的纵坐标,N中的元素作点的横坐标,M中的元素作点的纵坐标,分别可以得到在第一和第二象限中点的个数,根据分类加法原理得到结果.【解答】解:由题意知本题是一个分类和分步的综合问题,⨯个,M中的元素作点的横坐标,N中的元素作点的纵坐标,在第一象限的点共有22在第二象限的点共有12⨯个.⨯个,N中的元素作点的横坐标,M中的元素作点的纵坐标,在第一象限的点共有22在第二象限的点共有22⨯个.∴所求不同的点的个数是2212222214⨯+⨯+⨯+⨯=(个).【点评】本题考查分步计数原理和分类计数原理,是一个综合题目,首先分类,每类方法并不都是一步完成的,必须在分类后又分步,综合利用两个原理解决.课后综合巩固练习1.某一数学问题可用综合法和分析法两种方法证明,有5位同学只会用综合法证明,有3位同学只会用分析法证明,现任选1名同学证明这个问题,不同的选法种数有()种.A.8B.15C.18D.30【分析】本题是一个分类计数问题,解决问题分成两个种类,一是可以用综合法证明,有5种方法,一是可以用分析法来证明,有3种方法,根据分类计数原理知共有358+=种结果.【解答】解:由题意知本题是一个分类计数问题,解决问题分成两个种类,一是可以用综合法证明,有5种方法,一是可以用分析法来证明,有3种方法,根据分类计数原理知共有358+=种结果,故选:A.【点评】本题看出分类计数问题,本题解题的关键是看清楚完成这个过程包含两种方法,看出每一种方法所包含的基本事件数,相加得到结果.2.将一张面值1元的人民币全部换成面值1角,2角和5角的硬币,则换法总数为.【分析】设1角硬币有x枚,2角硬币有y枚,5角硬币有z枚,构造三元一次方程,然后利用列举法得到所有可能的情况,可得答案.【解答】解:设1角硬币有x 枚,2角硬币有y 枚,5角硬币有z 枚 则2510x y z ++= 满足方程的解有:10x =,0y =,0z = 8x =,1y =,0z = 6x =,2y =,0z = 4x =,3y =,0z = 2x =,4y =,0z = 0x =,5y =,0z =5x =,0y =,1z = 0x =,0y =,2z = 3x =,1y =,1z = 1x =,2y =,1z =共十种不同情况 故答案为:10【点评】解决此类问题要用列举法,把所有的情况都一一排查,找出问题的答案. 3.乘积123123412345()()()a a a b b b b c c c c c +++++++++展开后共有 项.【分析】根据多项式的乘法法则,分析易得在123()a a a ++中取一项有3种取法,在1234()b b b b +++中取一项有4种取法,在12345()c c c c c ++++中取一项有5种取法,进而由分步计数原理计算可得答案.【解答】解:根据多项式的乘法法则,123123412345()()()a a a b b b b c c c c c +++++++++的结果中每一项都必须是在123()a a a ++、1234()b b b b +++、12345()c c c c c ++++三个式子中任取一项后相乘,得到的式子,而在123()a a a ++中有3种取法,在1234()b b b b +++中有4种取法,在12345()c c c c c ++++中有5种取法,由乘法原理,可得共有34560⨯⨯=种情况,则123123412345()()()a a a b b b b c c c c c +++++++++的展开式中有60项; 故答案为60.【点评】本题考查分步计数原理的运用,是常见的题目;平时要多加训练.4.在66⨯的表中停放3辆完全相同的红色车和3辆完全相同的黑色车,每一行、每一列都只有一辆车,每辆车占一格,共有 种停放方法.(用数字作答)【分析】利用分步计数原理,第一步先选车,第二种再排列,问题得以解决【解答】解:第一步先选车有36C 种,第二步因为每一行、每一列都只有一辆车,每辆车占一格,从中选取一辆车后,把这辆车所在的行列全划掉,依次进行,则有11111166543216C C C C C C A =种,根据分步计数原理得;366614400C A =种.故答案为:14400.【点评】本题考查了分步计数原理的应用,关键是如何求出每辆车所在行列的可能性5.对于各数互不相等的正数数组1(i ,2i ,⋯,)(n i n 是不小于2的正整数),如果在p q <时有p q i i <,则称“p i 与q i ”是该数组的一个“顺序”,一个数组中所有“顺序”的个数称为此数组的“顺序数”.例如,数组(2,4,3,1)中有顺序“2,4”、“2,3”,其“顺序数”等于2.若各数互不相等的正数数组1(a ,2a ,3a ,4a ,5)a 的“顺序数”是4,则5(a ,4a ,3a ,2a ,1)a 的“顺序数”是 . 【分析】根据题意,假设出一种情况,倒序后输出顺序数即可.【解答】解:根据题意,各数互不相等的正数数组1(a ,2a ,3a ,4a ,5)a 的“顺序数”是4,假设12a a <,13a a <,14a a <,15a a <,且后一项都比前一项小,因此可以判断出23a a >,34a a >,45a a >, 则5(a ,4a ,3a ,2a ,1)a 的“顺序数”是6, 故填:6.【点评】本题考查了新定义,理解好定义是解题的先决条件,另外,要大胆假设.本题属基础题.。

高中数学选修2-3计数原理概率知识点总结

高中数学选修2-3计数原理概率知识点总结

⾼中数学选修2-3计数原理概率知识点总结选修2-3定理概念及公式总结第⼀章基数原理1.分类计数原理:做⼀件事情,完成它可以有n类办法,在第⼀类办法中有种不同的⽅法,在第⼆类办法中有种不同的⽅法,……,在第n类办法中有种不同的⽅法那么完成这件事共有N=m1+m2+……+m n种不同的⽅法2.分步计数原理:做⼀件事情,完成它需要分成n个步骤,做第⼀步有m1种不同的⽅法,做第⼆步有m2种不同的⽅法,……,做第n步有m n种不同的⽅法,那么完成这件事有N=m1×m2×……m n种不同的⽅法分类要做到“不重不漏”,分步要做到“步骤完整”3.两个计数原理的区别:如果完成⼀件事,有n类办法,不论哪⼀类办法中的哪⼀种⽅法,都能独⽴完成这件事,⽤分类计数原理,如果完成⼀件事需要分成⼏个步骤,各步骤都不可缺少,需要完成所有步骤才能完成这件事,是分步问题,⽤分步计数原理.4.排列:从n个不同的元素中取出m个(m≤n)元素并按⼀定的顺序排成⼀列,叫做从n个不同元素中取出m个元素的⼀个排列.(1)排列数: 从n个不同的元素中取出m个(m≤n)元素的所有排列的个数.⽤符号表⽰(2)排列数公式:⽤于计算,或⽤于证明。

===n(n-1)! 规定0!=15.组合:⼀般地,从个不同元素中取出个元素并成⼀组,叫做从个不同元素中取出个元素的⼀个组合(1)组合数: 从个不同元素中取出个元素的所有组合的个数,⽤表⽰(2)组合数公式: ⽤于计算,或⽤于证明。

(3)组合数的性质:①.规定:;②=+ .③④6.⼆项式定理及其特例:(1)⼆项式定理展开式共有n+1项,其中各项的系数叫做⼆项式系数。

(2)特例:.7.⼆项展开式的通项公式:(为展开式的第r+1项)8.⼆项式系数的性质:(1)对称性:在展开式中,与⾸末两端“等距”的两个⼆项式系数相等,即,直线是图象的对称轴.(2)增减性与最⼤值:当时,⼆项式系数逐渐增⼤,由对称性知它的后半部分是逐渐减⼩的,且在中间取得最⼤值。

人教版高中数学选修2-3 第一章 1-1-1分类加法计数原理与分步乘法计数原理

人教版高中数学选修2-3 第一章 1-1-1分类加法计数原理与分步乘法计数原理

栏目导引
知识梳理
一、分类加法计数原理 1.完成一件事有两类不同的方案,在第一类方案中有 m种不同的方法,在第二类方案中有n种不同的方法,那么完 成这件事共有N= m+n 种不同的方法. 2.如果完成一件事情有n类不同方案,在第一类方案中 有m1种不同的方法,在第二类方案中有m2种不同的方法,… 在第n类方法中有mn种不同的方法,则完成这件事情共有N= m1+m2+…+mn 种不同的方法.
工具
人教A版数学选修2-3 第一章 计数原理
栏目导引
【错因】 错解一忽视数字0不能在首位的约束,按此 排法有可能为“0134”这种不符合要求的情况.
错解二忽视了题目“无重复数字的四位数”的约束,按 此排法有可能为“2032”,不符合条件.
若先排首位,应考虑排的是1,3,5还是2,4,6,因它直接关 系到第2步排个位的选取;
方法二(枚举法):因为只取一人,这样设三个年级的优 秀 班 干 部 分 别 为 A1 , A2 , A3 , A4 , A5 ; B1 , B2 , B3 , B4 , B5,B6,B7;C1,C2,C3,C4,C5,C6,C7,C8,从以上20 种情况中选一人有20种选法.
工具
人教A版数学选修2-3 第一章 计数原理
工具
人教A版数学选修2-3 第一章 计数原理
栏目导引
[问题] 此委员这一天从济南到北京共有多少种快捷途 径?
[提示] 3+4=7.此委员这一天从济南到北京共有7种快 捷途径.
工具
人教A版数学选修2-3 第一章 计数原理
栏目导引
2.现有6名同学去听同时进行的5个课外知识讲座,每 名同学可自由选择其中的一个讲座.
栏目导引
解析: 方法一(定义法):由于要从三个年级的优秀班 干部中选出一人,故可分为三类:第一类从高一的5名优秀 班干部中选取一人,有5种选法;第二类从高二的7名优秀班 干部中选取一人,有7种选法;第三类从高三的8名优秀班干 部中选取一人,有8种选法.又根据分类加法计数原理知, 共有5+7+8=20种不同的选法.

数学选修2-3知识点总结

数学选修2-3知识点总结

数学选修2-3知识点总结
计数原理:这部分主要讲解分类加法计数原理与分步乘法计数原理。

分类加法计数原理指的是,如果完成一件事情有N类方法,每类方法中有不同的方法数,那么完成这件事情的总方法数就是各类方法数之和。

而分步乘法计数原理则是说,如果完成一件事情需要分成N 个步骤,每个步骤中有不同的方法数,那么完成这件事情的总方法数就是各步骤方法数之积。

二项式定理:这部分主要讲解二项式定理及其通项公式,以及二项式系数的性质。

二项式定理给出了(a+b)^n的展开式,而二项式通项公式则给出了展开式中每一项的具体形式。

二项式系数的性质包括对称性、增减性与最大值以及各二项式系数和等。

概率论初步:这部分主要讲解随机事件、概率等基本概念,以及概率的基本性质。

随机事件是指在一次试验中可能出现的结果,而概率则是衡量随机事件发生的可能性的数值。

随机变量及其分布:这部分主要讲解随机变量的概念及其分布。

随机变量是随机试验可能出现的结果的数值表示,常见的随机变量分布有离散型分布和连续型分布。

以上就是数学选修2-3的主要知识点,通过学习这些内容,学生可以掌握基本的计数原理、二项式定理、概率论以及随机变量及其分布等数学知识,为进一步学习数学或其他相关学科打下基础。

人教版高中数学选修2-3知识点汇总

人教版高中数学选修2-3知识点汇总

人教版高中数学必修2-3知识点第一章计数原理1.1分类加法计数与分步乘法计数分类加法计数原理:完成一件事有两类不同方案,在第1类方案中有m种不同的方法,在第2类方案中有n种不同的方法,那么完成这件事共有N=m+n种不同的方法。

分类要做到“不重不漏”。

分步乘法计数原理:完成一件事需要两个步骤。

做第1步有m种不同的方法,做第2步有n种不同的方法,那么完成这件事共有N=m×n种不同的方法。

分步要做到“步骤完整”。

n元集合A={a1,a2⋯,a n}的不同子集有2n个。

1.2排列与组合1.2.1排列一般地,从n个不同元素中取出m(m≤n)个元素,按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列(arrangement)。

从n个不同元素中取出m(m≤n)个元素的所有不同排列的个数叫做从n个不同元素中取出m个元素的排列数,用符号表示。

排列数公式:n个元素的全排列数规定:0!=11.2.2组合一般地,从n个不同元素中取出m(m≤n)个元素合成一组,叫做从n个不同元素中取出m个元素的一个组合(combination)。

从n个不同元素中取出m(m≤n)个元素的所有不同组合的个数,叫做从n个不同元素中取出m个元素的组合数,用符号或表示。

组合数公式:∴规定:组合数的性质:(“构建组合意义”——“殊途同归”)1.3二项式定理1.3.1二项式定理(binomial theorem)*注意二项展开式某一项的系数与这一项的二项式系数是两个不同的概念。

1.3.2“杨辉三角”与二项式系数的性质*表现形式的变化有时能帮助我们发现某些规律!(1)对称性(2)当n 是偶数时,共有奇数项,中间的一项取得最大值;当n 是奇数时,共有偶数项,中间的两项,同时取得最大值。

(3)各二项式系数的和为(4)二项式展开式中,奇数项二项式系数之和等于偶数项二项式系数之和:(5)一般地,第二章随机变量及其分布2.1离散型随机变量及其分布(n ∈N *)其中各项的系数(k ∈{0,1,2,⋯,n})叫做二项式系数(binomial coefficient);2.1.1离散型随机变量随着试验结果变化而变化的变量称为随机变量(random variable)。

高中数学选修2-3知识点

高中数学选修2-3知识点

高中数学选修2-3知识点-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN111--++=⋅+=m nm n m n m m m n m n mA A C A A A 高中数学 选修2-3知识点第一章 计数原理1、分类加法计数原理:做一件事情,完成它有N 类办法,在第一类办法中有M 1种不同的方法,在第二类办法中有M 2种不同的方法,……,在第N 类办法中有M N 种不同的方法,那么完成这件事情共有M 1+M 2+……+M N 种不同的方法。

2、分步乘法计数原理:做一件事,完成它需要分成N 个步骤,做第一 步有m1种不同的方法,做第二步有M 2不同的方法,……,做第N 步有M N 不同的方法.那么完成这件事共有 N=M 1M 2...M N 种不同的方法。

3、排列:从n 个不同的元素中任取m(m ≤n )个元素,按照一定顺序......排成一列,叫做从n 个不同元素中取出m 个元素的一个排列4、排列数:从n 个不同元素中取出m (m≤n )个元素排成一列,称为从n 个不同元素中取出m 个元素的一个排列. 从n 个不同元素中取出m 个元素的一个排列数,用符号m n A 表示。

),,()!(!)1()1(N m n n m m n n m n n n A m∈≤-=+--=5、公式:,11--=m n m n nA A6、组合:从n 个不同的元素中任取m (m ≤n )个元素并成一组,叫做从n 个不同元素中取出m 个元素的一个组合。

7、公式:)!(!!!)1()1(m n m n C m m n n n A A C m n m m m n m n -=+--== )!(!!!)1()1(m n m n C m m n n n A A C m n m mm n mn-=+--==;m n n m n C C -=m n m n m n C C C 11+-=+8、二项式定理:()a b C a C a b C a b C a b C b n n n n n n n n r n r r n n n+=++++++---011222…… 9、二项式通项公式展开式的通项公式:,……T C a b r n r n r n r r+-==101() 10、二项式系数C nr为二项式系数(区别于该项的系数) 11、杨辉三角:()()对称性:,,,……,1012C C r n n r n n r==- ()系数和:…2C C C n n nn n012+++=(3)最值:n 为偶数时,n +1为奇数,中间一项的二项式系数最大且为第 n C n n nn2112+⎛⎝ ⎫⎭⎪+项,二项式系数为;为奇数时,为偶数,中间两项的二项式() 系数最大即第项及第项,其二项式系数为n n C C n n nn +++=-+121211212第二章 随机变量及其分布1、随机变量:如果随机试验可能出现的结果可以用一个变量X 来表示,并且X 是随着试验的结果的不同而变化,那么这样的变量叫做随机变量. 随机变量常用大写字母X 、Y 等或希腊字母 ξ、η等表示。

高中数学 知识、题型总结 新人教A版选修2-3

高中数学 知识、题型总结 新人教A版选修2-3

高中数学选修2-3基础知识一.基本原理1.加法原理:做一件事有n 类办法,则完成这件事的方法数等于各类方法数相加。

2.乘法原理:做一件事分n 步完成,则完成这件事的方法数等于各步方法数相乘。

注:做一件事时,元素或位置允许重复使用,求方法数时常用基本原理求解。

二.排列:从n 个不同元素中,任取m (m ≤n )个元素,按照一定的顺序排成一.m n mn A 有排列的个数记为个元素的一个排列,所个不同元素中取出列,叫做从1.公式:1.()()()()!!121m n n m n n n n A m n -=+---=……2.规定:0!1=(1)!(1)!,(1)!(1)!n n n n n n =⨯-+⨯=+(2) ![(1)1]!(1)!!(1)!!n n n n n n n n n ⨯=+-⨯=+⨯-=+-;(3)111111(1)!(1)!(1)!(1)!!(1)!n n n n n n n n n +-+==-=-+++++ 三.组合:从n 个不同元素中任取m (m ≤n )个元素并组成一组,叫做从n 个不1. 公式: ()()()C A A n n n m m n m n m nmn m mm ==--+=-11……!!!!10=n C 规定:组合数性质:.2 n n n n n m n m n m n m n n m n C C C C C C C C 21011=+++=+=+--……,, ①;②;③;④11112111212211r r r r r r r rr r r rr r r r r r n n r r r n n r r n n n C C C C C C C C C C C C C C C +++++-+++-++-+++++=++++=+++=注:若12mm1212m =m m +m n n n C C ==则或四.处理排列组合应用题1.①明确要完成的是一件什么事(审题) ②有序还是无序 ③分步还是分类。

人教版高中数学【选修2-3】[知识点整理及重点题型梳理] 排列(理)(基础)

人教版高中数学【选修2-3】[知识点整理及重点题型梳理] 排列(理)(基础)

;人教版高中数学选修 2-3知识点梳理重点题型(常考知识点)巩固练习排 列【学习目标】1.理解排列的概念.2.能利用计数原理推导排列数公式.3.能利用排列数公式解决简单的实际问题. 【要点梳理】要点一、排列的概念1. 排列的定义一般地,从 n 个不同的元素中取出 m (m≤n )个元素,按照一定的顺序排成一列,叫做从n 个不同元素中取出 m 个元素的一个排列.要点诠释:(1)排列的定义中包括两个基本内容,一是“取出元素”,二是“按照一定的顺序排列”.(2)从定义知,只有当元素完全相同,并且元素排列的顺序也完全相同时,才是同一个排列.(3)如何判断一个具体问题是不是排列问题,就要看从 n 个不同元素中取出 m 个元素后,再安排这 m 个元素时是有顺序还是无顺序,有顺序就是排列,无顺序就不是排列.要点二:排列数1.排列数的定义从 n 个不同元素中,任取 m ( m ≤ n )个元素的所有排列的个数叫做从 n 个元素中取出 m 元素的排列数,用符号 A m 表示.n要点诠释:(1)“排列”和“排列数”是两个不同的概念,一个排列是指“从 n 个不同的元素中,任取 m (m≤n )个元素,按照一定的顺序排成一列”,它不是一个数,而是具体的一个排列(也就是具体的一件事)(2)排列数是指“从 n 个不同元素中取出 m (m≤n )个元素的所有不同排列的个数”,它是一个数.比如从 3 个元素 a 、b 、c 中每次取出 2 个元素,按照一定的顺序排成一列,有如下几种:ab ,ac ,ba ,bc ,ca ,cb ,每一种都是一个排列,共有 6 种,而数字 6 就是排列数,符号 A m 表示排列数,在此n题中 A 2 = 6 .32.排列数公式A m = n (n - 1)(n - 2) (n - m + 1) ,其中 n ,m ∈N +,且 m≤n .要点诠释:(1)公式特征:第一个因数是n,后面每一个因数比它前面一个少1,最后一个因数是n-m+1,共有m个因数。

高中数学选修2-3 第一章计数原理 章末高效整合

高中数学选修2-3 第一章计数原理 章末高效整合
答案: 4 246
6.C16+C26+C36+C46+C56的值为________.
解析: ∵C06+C16+C26+C36+C46+C56+C66=26=64, ∴C16+C26+C36+C46+C56=64-2=62. 答案: 62
7.某校高中部,高一有6个班,高二有7个班,高三有 8个班,学校利用星期六组织学生到某厂进行社会实践活 动.
A.2
B.3
C.4
D.5
解析: ∵a0=a8=C80=1,a1=a7=C18=8, ∴a2=a6=C82=28,a3=a5=C38=56,a4=C48=70,∴奇 数个数为 2,故选 A. 答案: A
5.(1+3 x)61+41x10 展开式中的常数项为________. 解析: 先求(1+3 x)6 的展开式的通项. Tr+1=Cr6(x13)r=Cr6x3r,r=0,1,2,3,4,5,6. 再求1+41x10 的展开式的通项.
1 . 从 0,1,2,3,4,5 这 六 个 数 字 中 任 取 两 个 奇 数 和 两 个 偶
数,组成没有重复数字的四位数的个数为( )
A.300
B.216
C.180
D.162
解析: 分两类:第 1 类,含 0,有 C12C23C13A33=108 个 数;
第 2 类,不含 0,有 C23A44=72 个数. 共有 108+72=180(个),故选 C. 答案: C
④直接计数困难的问题,采用间接法,即从方法总数中 减去不符合条件的方法数.
⑤排列和组合的综合题,采用“先组后排”,即先选出 元素,再排序.
4.二项式定理及二项式系数的性质
(1)二项式定理:公式(a+b)n=C
0 n
an+C
1 n

(名师精编)高中数学选修2-3知识点清单

(名师精编)高中数学选修2-3知识点清单

一般地,设 A,B 为两个事件,且 P(A)>0,称
P(B|A)
=
P(AB) P(A)
为在事件 A 发生的条件下,事件 B 发生的条件概率(conditional probability)。
如果 B 和 C 是两个互斥事件,则
P(B ∪ C|A) = P(B|A) + P(C|A)
2.2.2 事件的相互独立性
(4) 二项式展开式中,奇数项二项式系数之和等于偶数项二项式系数之和:
(5) 一般地,
Cn0 + Cn2 + Cn4 + ⋯ = Cn1 + Cn3 + Cn5 + ⋯
Crr + Crr+1 + Crr+2 + ⋯ + Cnr−1 = Cnr+1 (n > ������)
第二章 随机变量及其分布
2.1 离散型随机变量及其分布
另一方面,b̂和â为斜率和截距的估计值,它们与真实值 a 和 b 之间也存在误 差,这种误差是引起预报值ŷ与真实值 y 之间存在误差的另一个原因。
由于随机误差 e = y − (bx + a),所以ê = y − ŷ是 e 的估计量。 对于样本点
它们的随机误差为
(x1,y1),(x2,y2), ⋯ ,(xn,yn)
1.3.2 “杨辉三角”与二项式系数的性质 *表现形式的变化有时能帮助我们发现某些规律! (1) 对称性
(2) 当 n 是偶数时,共有奇数项,中间的一项Cnn2+1取得最大值;
n−1
n+1
当 n 是奇数时,共有偶数项,中间的两项Cn2 ,Cn2 同时取得最大值。
(3) 各二项式系数的和为 2n = Cn0 + Cn1 + Cn2 + ⋯ + Cnk + ⋯ + Cnn

高中数学选修2-3知识点汇编

高中数学选修2-3知识点汇编

数学选修2-3第一章计数原理知识点必记1. 什么是分类加法计数原理?答:做一件事情,完成它有n 类办法,在第一类办法中有1m 种不同的方法,在第二类办法中有2m 种不同的方法…在第n 类办法中有n m 种不同的方法。

那么完成这件事情共有n m m m N +++= 21种不同的方法。

2. 什么是分步乘法计数原理?答:做一件事情,完成它需要n 个步骤,做第一个步骤有1m 种不同的方法,做第二个步骤有2m 种不同的方法……做第n 个步骤有n m 种不同的方法。

那么完成这件事情共有n m m m N ⨯⨯⨯= 21种不同的方法。

3. 排列的定义是什么?答:一般地,从n 个不同的元素中任取()n m m ≤个元素,按照一定的顺序排成一列,叫做从n 个不同的元素中任取m 个元素的一个排列。

4. 组合的定义是什么?答:一般地,从n 个不同的元素中任取()n m m ≤个元素并成一组,叫做从n 个不同的元素中任取m 个元素的一个组合。

5. 什么是排列数?答:从n 个不同的元素中任取()n m m ≤个元素的所有排列的个数,叫做从n 个不同的元素中任取m 个元素的排列数,记作m n A 。

6. 什么是组合数?答:从n 个不同的元素中任取()n m m ≤个元素的所有组合的个数,叫做从n 个不同的元素中任取m 个元素的组合数,记作m n C 。

7.排列数公式有哪些?答:(1)()()()121+---=m n n n n A m n或()!m n n A mn -=!;(2)!n A nn =,规定1!0=。

8.组合数公式有哪些?答:(1)()()()!121m m n n n n C mn+---= 或()!!m n m n C mn -=!; (2)m n n m n C C -=,规定10=n C 。

9.排列与组合的区别是什么?答:排列有顺序,组合无顺序。

10.排列与组合的联系是什么?答:m m m n m n A C A ⋅=,即排列就是先组合再全排列。

高中数学选修23知识点

高中数学选修23知识点

111--++=⋅+=m nm n m n m m m n m n mA A C A A A 高中数学 选修2-3知识点第一章 计数原理1、分类加法计数原理:做一件事情,完成它有N 类办法,在第一类办法中有M 1种不同的方法,在第二类办法中有M 2种不同的方法,……,在第N 类办法中有M N 种不同的方法,那么完成这件事情共有M 1+M 2+……+M N 种不同的方法。

2、分步乘法计数原理:做一件事,完成它需要分成N 个步骤,做第一 步有m1种不同的方法,做第二步有M 2不同的方法,……,做第N 步有M N 不同的方法.那么完成这件事共有 N=M 1M 2...M N 种不同的方法。

3、排列:从n 个不同的元素中任取m(m ≤n )个元素,按照一定顺序......排成一列,叫做从n 个不同元素中取出m 个元素的一个排列4、排列数:从n 个不同元素中取出m (m≤n )个元素排成一列,称为从n 个不同元素中取出m 个元素的一个排列. 从n 个不同元素中取出m 个元素的一个排列数,用符号m n A 表示。

),,()!(!)1()1(N m n n m m n n m n n n A m ∈≤-=+--=5、公式:,11--=m n m n nA A6、组合:从n 个不同的元素中任取m (m ≤n )个元素并成一组,叫做从n 个不同元素中取出m 个元素的一个组合。

7、公式:)!(!!!)1()1(m n m n C m m n n n A A C m nm mm n m n-=+--== )!(!!!)1()1(m n m n C m m n n n A A C m n m m m n m n -=+--==;mn n m n C C -=m n m n m n C C C 11+-=+8、二项式定理:()a b C a C a b C a b C a b C b n n n n n n n n r n r r n n n+=++++++---011222…… 9、二项式通项公式展开式的通项公式:,……T C a b r n r nr n r r+-==101() 10、二项式系数C nr为二项式系数(区别于该项的系数) 11、杨辉三角:()()对称性:,,,……,1012C C r n n r n n r==- ()系数和:…2C C C n n nn n012+++=(3)最值:n 为偶数时,n +1为奇数,中间一项的二项式系数最大且为第n C n n nn2112+⎛⎝ ⎫⎭⎪+项,二项式系数为;为奇数时,为偶数,中间两项的二项式() 系数最大即第项及第项,其二项式系数为n n C C n n nn +++=-+121211212第二章 随机变量及其分布1、随机变量:如果随机试验可能出现的结果可以用一个变量X 来表示,并且X 是随着试验的结果的不同而变化,那么这样的变量叫做随机变量. 随机变量常用大写字母X 、Y 等或希腊字母 ξ、η等表示。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人教版高中数学选修2-3知识点梳理重点题型(常考知识点)巩固练习分类加法计数原理和分步乘法计数原理【学习目标】1.理解分类加法计数原理和分步乘法计数原理.2.理解分类加法计数原理和分步乘法计数原理的区别.3.会用分类加法计数原理或分步乘法计数原理分析和解决一些简单的实际问题.【要点梳理】要点一:分类加法计数原理(也称加法原理)1.分类加法计数原理:完成一件事,有n类办法.在第1类办法中有m种不同方法,在第2类办法中有m种不同的方法,……,12在第n类办法中有m种不同方法,那么完成这件事共有N=m+m++m种不同的方法.n12n2.加法原理的特点是:①完成一件事有若干不同方法,这些方法可以分成n类;②用每一类中的每一种方法都可以完成这件事;③把每一类的方法数相加,就可以得到完成这件事的所有方法数.要点诠释:使用分类加法计数原理计算完成某件事的方法数,第一步是对这件事确定一个标准进行分类,第二步是确定各类的方法数,第三步是取和。

3.图示分类加法计数原理:由A到B算作完成一件事.直线型流程线表示第1类方案中包括的方法数,折线型流程线表示第2类方案中包括的方法数。

从图中可以看出,完成由A到B这件事,共有方法m+n种。

要点诠释:用分类加法计数原理计算完成某件事的方法数,“类”要一竿到底,它的起点、终点就是完成这件事的开始与结束,图示分类加法计数原理,用意就在其中。

要点二、分步乘法计数原理1.分步乘法计数原理“做一件事,完成它需要分成n个步骤”,就是说完成这件事的任何一种方法,都要分成n个步骤,要完成这件事必须并且只需连续完成这n个步骤后,这件事才算完成.2.乘法原理的特点:①完成一件事需要经过n个步骤,缺一不可;②完成每一步有若干种方法;③把每一步的方法数相乘,就可以得到完成这件事的所有方法数.要点诠释:使用分步乘法计数原理计算完成某件事的方法数,第一步是对完成这件事进行分步,第二步是确定各步的方法数,第三步是求积。

3.图示分步乘法计数原理:由A到C算作完成一件事.设完成这件事的两个步骤为从A到B、从B到C。

要点诠释:从A到C算作完成一件事,A是起点,C是终点,点B是中间单元,从A到B是第1步,从B到C是第2步。

用分步乘法计数原理解题,按着这个模式施行就可以了,可简单地理解为:A→B,有m种方法;B→C,有n种方法;A→C,有mn种方法。

要点三、分类计数原理和分步计数原理的区别:1.分类计数原理和分步计数原理的区别:两个原理的区别在于一个和分类有关,一个和分步有关.完成一件事的方法种数若需“分类”思考,则这n类办法是相互独立的,且无论哪一类办法中的哪一种方法都能单独完成这件事,则用加法原理;若完成某件事需分n个步骤,这n个步骤相互依存,具有连续性,当且仅当这n个步骤依次都完成后,这件事才算完成,则完成这件事的方法的种数需用乘法原理计算.2.应用两个原理的分别要注意:若用分类计数原理,要做到“不重不漏”,分类后再分别对每一类进行计数,最后用分类计数原理,即加法原理求和得到总数;若用分步计数原理,要做到步骤“完整”——完成了所有步骤,恰好完成所有任务,当然步与步之间要相互独立.分步后再计算每一步的方法数,最后根据分步计数原理,即乘法原理把完成每一步的方法数相乘得到总数.要点四、分类计数原理和分步计数原理的应用1.利用两个基本原理解决具体问题时的思考程序:(1)首先明确要完成的事件是什么,条件有哪些?(2)然后考虑如何完成?主要有三种类型①分类或分步。

②先分类,再在每一类里再分步。

③先分步,再在每一步里再分类,等等。

(3)最后考虑每一类或每一步的不同方法数是多少?2.利用两个基本原理解决具体问题时的注意事项: (1)应用分类计数原理,应注意:①分类时,要按一个标准来分,最忌采用双重或多重标准分类;②每一类中的每一种方法都可以独立地完成此任务;它的起点、终点就是完成这件事情的开始和结束; ③两类不同办法中的具体方法,互不相同(即分类不重); ④完成此任务的任何一种方法,都属于某一类(即分类不漏).(2)应用分步计数原理,应注意:①任何一步的一种方法都不能完成此任务,必须且只须连续完成这 n 步才能完成此任务;②各步计数相互独立;③只要有一步中所采取的方法不同,则对应的完成此事的方法也不同.3.利用两个基本原理解决具体问题时的方法技巧:利用两个基本原理解决具体问题,关键环节是分类或者分步。

类与步的关系式辩证的。

有些问题需要先分类,再在每一类里再分步;有些问题需要先分步,再在每一步里再分类,等等。

到底采用何种顺序分类与分步,要看类的趋势和步的趋势谁大谁小。

下面用用流程图直观描述。

(1)类中有步情形从 A 到 B 算作一件事的完成。

完成这件事有两类办法,在第 1 类办法中有 3 步,在第 2 类办法中有 2步,每步的方法数见箭线下面的 m i ,i=1,2,3,4,5。

完成 A →B 这件事,共有方法数为 m 1m 2m 3+m 4m 5。

(2)步中有类情形从 A 到 D 算作完成一件事,简单地记为 A →D 。

完成 A →D 这件事,需要经历三步,即 A →B ,B →C ,C→D 。

其中 B →C 这步又分为三类,这就是步中有类。

箭线下面的 m i (i=1,2,3,4,5)表示相应步的方 法数。

完成 A →D 这件事,共有方法数为 m 1(m 2+m 3+m 4)m 5。

要点诠释:① 对“类”与“步”的理解,要再上一个层次,可进一步地理解为: 类”用“+”号连结,“步”用“×”号连结,“类”独立,“步”连续,“类”标志一件事的完成,“步”缺一不可。

②使用计数原理解题,大部分离不开分类。

分类时,要按一个标准来分,最忌采用双重或多重标准分类。

【典型例题】类型一、分类加法计数原理例1.(2015秋鞍山校级期末)已知集合A={1,2,3,4},B={5,6,7,},C={8,9}.现在从这三个集合中取出两个集合,再从这两个集合中各取出一个元素,组成一个含有两个元素的集合,则一共可以组成多少个集合()A.24个B.36个C.26个D.27个【答案】C【思路点拨】从三个集合中取出两个集合,有3种情况,利用分步计数原理分别计算每种情况下各取出一个元素,组成一个含有两个元素的集合的个数,再相加。

【解析】从三个集合中取出两个集合,有3种取法,分别是集合A、B;集合A、C,集合B、C。

当取出集合A、B时,从这两个集合中各取出一个元素,组成一个含有两个元素的集合有4⨯3=12个;当取出集合A、C时,从这两个集合中各取出一个元素,组成一个含有两个元素的集合有4⨯2=8个;当取出集合B、C时,从这两个集合中各取出一个元素,组成一个含有两个元素的集合有3⨯2=6个;所以,一共可以组成12+8+6=26个集合。

【总结升华】应用分类计数原理,应注意:①分类时,要按一个标准来分,最忌采用双重或多重标准分类;②每一类中的每一种方法都可以独立地完成此任务;它的起点、终点就是完成这件事情的开始和结束;举一反三:【变式1】用数字1,2,3可写出多少个小于1000的正整数?(各位上的数字允许重复)【答案】分三类情况:①一位整数,有3个;②二位整数,有3⨯3=32个;③三位整数,有3⨯3⨯3=33个;故共有3+32+33=39个。

【变式2】在所有的两位数中,个位数字大于十位数字的两位数共有多少个?【答案】根据题意,将十位上的数字分别是1,2,3,4,5,6,7,8的情况分成8类,在每一类中满足题目条件的两位数分别有8个,7个,6个,5个,4个,3个,2个,1个.由分类计数原理知,符合题意的两位数的个数共有8+7+6+5+4+3+2+1=36(个).【变式3】从1,2,3,…,10中选出3个不同的数,使这三个数构成等差数列,则这样的数列共有多少个?【答案】根据构成的等差数列的公差,分为公差为±1、±2、±3、±4四类.公差为±1时,有8×2=16个;公差为±2时,满足要求的数列共6×2=12个;公差为±3时,有4×2=8个;公差为±4时,只有2×2=4个.由分类计数原理可知,共构成了不同的等差数列16+12+8+4=40个.类型二、分步乘法计数原理例2.体育场南侧有4个大门,北侧有3个大门,某学生到该体育场练跑步,则他进出门的方案有()A.12种B.7种C.24种D.49种【思路点拨】首先弄明白完成一次进出门需分两步走,先进再出。

【解析】错解:学生进出体育场大门需分两类,一类从北边的4个门进,一类从南侧的3个门进,由分类计数原理,共有7种方案.∴选B错因:没有审清题意.本题不仅要考虑从哪个门进,还需考虑从哪个门出,应该用分步计数原理去解题.正解:学生进门有7种选择,同样出门也有7种选择,由分步计数原理,该学生的进出门方案有7×7=49种.∴应选D.【总结升华】解决这类问题的关键是搞清分类还是分步.用分步乘法计数原理解决问题时,首先要根据问题的特点,确定一个分步的可行标准;其次还要注意完成这件事情必须且只需连续完成这n个步骤后,这件事情才算圆满完成,这时才能使用分步乘法计数原理.同时,要弄清每一步骤中完成本步骤的方法种数.举一反三:【变式1】从甲地到乙地,一天中有火车2班,从乙地到丙地,一天中有汽车3班,那么从甲地经乙地到丙地共有种不同的走法。

【答案】6;完成这件事,分两个步骤:第一步是乘火车,有2种不同方法;第二步是乘汽车,有3种不同方法。

则完成这件事,由分步计数原理,共有N=2×3=6种不同方法。

【变式2】(2014金山区一模)由数字1,2,3,4,5组成没有重复数字的五位数,其中偶数共有()A.60个B.48个C.36个D.24个【答案】偶数即个位数字只能是2或4,其他位置任意排放共有4⨯3⨯2⨯1⨯2=48个,故选B。

【变式3】从6人中选4人分别到巴黎、伦敦、悉尼、莫斯科四个城市游览,要求每个城市有一人游览,每人只游览一个城市,且这6人中甲、乙两人不去巴黎游览,则不同的选择方案共有().A.300种B.240种C.144种D.96种【答案】四个游览城市中只有巴黎有限制要求,甲、乙不去,因而可以先安排去巴黎的人,再依次安排去其他城市的人,整个事件的安排可以分为四步,每一步安排一个城市,因而按分步乘法计数原理计算.去巴黎的人为除甲、乙两个人外的其余四人,只能有一人去,所以有4种选择.再安排一人去剩下的三个城市中的一个,比如伦敦,剩余有五人,因而有5种选择.再从剩下的四人中选一人去剩下的两个城市中的一个,所以有4种选择.最后一个城市只能从剩余的三人中选一人,所以有3种选择.所以4×5×4×3=240(种).【变式4】甲、乙两人从4门课程中各选修2门,则甲、乙所选的课程中恰有1门相同的选法有().A.6种B.12种C.24种D.30种【答案】C类型三、两个原理的对比应用例3.一个口袋内装有5个小球,另一个口袋内装有4个小球,所有这些小球的颜色互不相同.(1)从两个口袋内任取一个小球,有多少种不同的取法?(2)从两个口袋内各取一个小球,有多少种不同的取法?【思路点拨】欲完成从两个口袋内任取一个小球这件事,可有两类办法:从第一个口袋内取,或从第二个口袋内取,都能完成这件事,所以第(1)题可用分类加法计数原理来解.欲完成从两个口袋内各取一个小球,需分两个步骤:第一步,在第一个口袋内任取1个小球;第二步,在第二个口袋内任取1个小球,两个步骤都完成了这件事就完成了,因此第(2)题用分步乘法计数原理.【解析】(1)从两个口袋内i任取1个小球,有两类办法:第一类办法是从第一个口袋内任取1个小球,可以从5个小球中任取1个,有5种方法;第二类办法是从第二个口袋内任取1个小球,可以从4个小球中任取1个,有4种方激根据分类加法计数原理,不同的取法有N=5+4=9(种).(2)从两个口袋内各取1个小球,可以分成两个步骤来完成:第一步,从第一个口袋内取1个小球,有5种方法;第二步,从第二个口袋内取1个小球,有4种方法.根据分步乘法计数原理,不同的取法有N=5×4=20(种).【总结升华】在用两个原理解决问题时,一定要分清完成这件事,是有,l类办法还是需分成n个步骤.应用分类加法计数原理必须要求各类中的每一种方法都保证完成这件事.应用分步乘法计数原理则是需各步均是完成这件事必须经由的若干彼此独立的步骤.举一反三:【变式】现有一分硬币3枚,两角纸币6张,十元纸币4张,则它们共可以组成多少种非零的币值?【答案】方法一:利用分类计数原理.以使用钱币的种类去分类,共可以分为:(1)第一类:只使用一种钱币.若只使用一分硬币,可以取出1枚,2枚或3枚硬币,共可组成3种非零币值.同理,若只用两角纸币,共可以组成6种非零币值.只用十元纸币,共可以组成4种非零币值.因此,只使用一种钱币,可以组成非零币值数为3+6+4=13种.(2)第二类:使用两种钱币.若用一分硬币和两角纸币,共可组成币值3×6=18种;若用一分硬币和十元纸币,共可组成币值3×4=12种;若用两角纸币和十元纸币,共可组成币值6×4=24种.因此,使用两种钱币可以组成非零币值数为18+12+24=54种.(3)第三类:使用三种钱币.使用三种钱币组成的非零币值数为3×6×4=72种.根据分类计数原理,共可组成非零币值总数为13+54+72=139种.方法二:利用分步计数原理.第一步,取一分硬币,可以不取,取l枚,2枚或3枚硬币,共有4种取法;第二步取两角纸币,共有7种取法;第三步取十元纸币,共有5种取法.根据分步计数原理,总共的币值数为4×7×5=140种.除去其中一种零币值,非零币值的方法数为139种.类型四、两个原理的综合应用例4.用数字0,1,2,3,4组成数字允许重复的三位数,其中有几个偶数?【思路点拨】组成的偶数可以有3类情况:个位数字为0、2、4,而在每一类情况中又需分二个步骤才能完成。

相关文档
最新文档