运用公式法

合集下载

运用公式法

运用公式法

运用公式法篇一:运用公式法运用公式法平方差公式22(a+b)(a-b)=a-b公式中的字母可以表示任何数、单项式或多项式。

因此,计算时公式中的字母以可以表示任何数、单项式或多项式,只要符合公式特点,就可以运用平方差公式平方差公式多项式必须是两个数(或式)的平方差,能2够指明二项式中,哪一项相当于公式中的a,哪一项相当于222公式中的b。

并且把给出的多项式经过简单变形,写成a-b的形式,以便于分解,当公式中的字母表示多项式时,分解过程中需要加中括号,但结果中不能含有中括号,在添、去括号时都应注意是否需要变号。

有些题表面看不符合平方差公式的特点,但仔细观察,它们符合平方差公式的特点,可以应用公式计算。

再次鼓励与提倡解决问题策略的多样化,满足不同学生发展的需求,丰富学生的学习经验,提高思维水平,培养创新意识。

通过介绍同一问题的不同解决方法,让学生感受到分解因式中的一些技巧。

篇二:运用公式法数学微格教学教案科目:数学课题:分解因式——运用公式法执教:袁媛训练技能:设计理念:一、教学内容:北师大版初二下册第二章p54-58页内容。

二、教学目标:1、回固因式分解的概念和复习提公因式法;2、复习平方差公式与完全平方公式,并灵活运用到分解因式中;3、结合提公因式法进行分解因式;4、掌握分解因式与整式乘法的关系。

三、教学重点:本章内容是分解因式,分成了三小节。

前两节分别讲的是因式分解的概念和提公因式法进行分解因式。

本节要讲的是用公式法进行因式分解。

其重点是熟记乘法公式中的平方差公式与完全平方公式,并结合前两节知识进行因式分解。

四、教学难点:难点是用公式法结合前一节内容进行因式分解。

教学过程:训练技能执教者教学目标袁媛教学课题教学时间分解因式——运用公式法20XX-9-261、复习巩固因式分解定义和提公因式法;2、复习平方差公式与完全平方公式,并灵活运用到分解因式中;3、结合提公因式法进行分解因式;4、掌握分解因式与整式乘法的关系。

运用公式法教学反思

运用公式法教学反思

运用公式法教学反思运用公式法教学反思一:运用公式法分解因式的反思逆向思维是一种启发智力的方式,它有悖于人们通常的习惯,而正是这一特点,使得许多靠正向思维不能或是难于解决的问题迎刃而解.一些正向思维虽能解决的问题,在它的参与下,过程可以大大简化,效率可以成倍提高.正思与反思就象分析的一对翅膀,不可或缺.传统的课堂教学结果表明:许多学生之所以处于低层次的学习水平,有一个重要因素,即逆向思维能力薄弱,定性于顺向学习公式、定理等并加以死板套用,缺乏创造能力、观察能力、分析能力和开拓精神.因此,培养学生的逆向思维能力,不仅对提高解题能力有益,更重要的是改善学生学习数学的思维方式,有助于形成良好的思维习惯,激发学生的创新开拓精神,培养良好的思维习性,提高学习效果、学习兴趣,及思维能力和整体素质.存在的一些不足:1、本节课中,对学生学习过程中所体现出来的态度和情感关注不够,以至于不能很好地激发学生的好奇心和求知欲。

2、在小组讨论之前,没有留给学生充分的独立思考的时间,让一些思维活跃的学生的回答代替了其他学生的思考,掩盖了其他学生的疑问。

这是我们教学过程中都应该注意的一个问题。

运用公式法教学反思二:运用公式法分解因式的反思1、在备课的时候,我发现课本上出现判别式的时候没有提到这个判别式的表示符号,因此在授课过程中我还是告知给学生,并要求学生记住;判别式中只提到说当大于等于零时,方程有根,没有详细分情况讨论,在这里我在备课的时候也特别注意到了,在授课时也特别提醒学生;2、在教学过程中,要求学生先自主的用配方法求解一元二次方程,学生在开平方根的时候没有注意到应该要分情况讨论,即是否所有的数都能开平方运算呢?出现这个问题的主要原因是学生对于开平方的运算不够熟练,以及对于数学中应该分类讨论的思想也不够成熟。

因此在后面教师的讲解环节特别对学生强调,当遇到开平方运算的时候要考虑平方根里面的数值的特点,以及出现字母的运算或者没有固定情况的解答题中要分类讨论,这不是一朝一夕可以改变的情况,会在后面的授课以及复习课中再加强这方面的锻炼。

3.运用公式法(一)教学设计

3.运用公式法(一)教学设计

第二章分解因式3.运用公式法(一)学生知识状况分析学生的技能基础:学生在上几节课的基础上,已经基本了解整式乘法运算与因式分解之间的互逆关系,在七年级的整式的乘法运算的学习过程中,学生已经学习了平方差公式,这为今天的深入学习提供了必要的基础。

学生活动经验基础:通过前几节课的活动和探索,学生对类比思想、数学对象之间的对比、观察等活动形式有了一定的认识与基础,本节课采用的活动方法是学生较为熟悉的观察、对比、讨论等方法,学生有较好的活动经验。

教学任务分析学生在学习了用提取公因式法进行因式分解的基础上,本节课又安排了用公式法进行因式分解,旨在让学生能熟练地应对各种形式的多项式的因式分解,为下一章分式的运算以及今后的方程、函数等知识的学习奠定一个良好的基础。

教学目标:知识与技能:(1)使学生了解运用公式法分解因式的意义;(2)会用平方差公式进行因式分解;(3)使学生了解提公因式法是分解因式首先考虑的方法,再考虑用平方差公式分解因式。

过程与方法:(1)发展学生的观察能力和逆向思维能力;(2)培养学生对平方差公式的运用能力。

情感与态度:在引导学生逆用乘法公式的过程中,培养学生逆向思维的意识,同时让学生了解换元的思想方法。

教学过程分析第一环节练一练活动内容:填空:(1)(x+3)(x–3) = ;(2)(4x+y)(4x–y)= ;(3)(1+2x)(1–2x)= ;(4)(3m+2n)(3m–2n)= 。

根据上面式子填空:(1)9m2–4n2= ;(2)16x2–y2= ;(3)x2–9= ;(4)1–4x2= 。

活动目的:学生通过观察、对比,把整式乘法中的平方差公式进行逆向运用,发展学生的观察能力与逆向思维能力。

注意事项:由于学生对乘法公式中的平方差公式比较熟悉,学生通过观察与对比,能很快得出第一组式子与第二组式子之间的对应关系。

第二环节 想一想活动内容:观察上述第二组式子的左边有什么共同特征?把它们写成乘积形式以后又有什么共同特征?结论:a 2–b 2=(a+b )(a –b )活动目的:引导学生从第一环节的感性认识上升到理性认识,通过自己的归纳能找到因式分解中平方差公式的特征。

毕业论文中公式法

毕业论文中公式法

毕业论文中公式法公式法是毕业论文中常用的一种研究方法,用于解决问题、分析关系或验证理论。

本文将通过对公式法的介绍、应用实例以及一些注意事项的讨论,全面探讨毕业论文中公式法的使用。

一、公式法的介绍公式法是指通过建立数学模型,运用代数方程、差分方程、微分方程等数学工具,从而对问题进行定量分析和预测的方法。

在毕业论文中,公式法通常用于研究问题的量化关系、检验理论的合理性,为研究结论提供客观的数值支持。

二、公式法的应用实例1. 研究问题的量化关系假设我们的研究问题是探讨经济增长与科技投入之间的关系。

我们可以通过建立一个经济增长模型,其中包括科技投入作为自变量和经济增长率作为因变量,通过回归分析计算出两者之间的数值关系。

通过公式法,我们可以得到科技投入对经济增长的影响程度是正还是负,以及影响的程度有多大。

2. 验证理论的合理性假设我们的研究问题是验证某个理论对实际现象的适用性。

我们可以通过建立一个理论模型,并将现实数据代入模型中进行计算。

通过比较模型计算结果与实际观测值,我们可以得出结论,判断该理论在一定程度上是否能够解释实际现象。

公式法在这个过程中发挥着关键作用,帮助我们定量地验证理论的合理性。

三、公式法的注意事项1. 数据的准确性公式法的计算结果需要依赖于输入的数据,因此要确保数据的准确性和可靠性。

在使用公式法时,要注意选择合适的数据源,并对数据进行必要的清洗和校验,以确保计算的准确性。

2. 参数的选择在建立数学模型时,需要确定一些参数值。

这些参数值的选择应该基于理论依据、实证研究或者专家经验,并且要合理、具有代表性。

在应用公式法时,要对参数的选择进行充分的解释和论证,避免盲目地选择参数值。

3. 结果的解读在公式法的计算结果中,要对结果进行准确的解读和说明。

对于计算出的数值,要清晰地表达其含义,并对计算结果的可靠性和局限性进行评估和讨论。

在解读结果时,要注意给出理论或实证依据,以增强结果的可信度。

总结:毕业论文中公式法是一种重要的研究方法,可以用于解决问题、分析关系或验证理论。

解方程 公式法

解方程 公式法

解方程公式法公式法是解方程的一种重要方法,它是利用数学中的公式和等式关系来求解未知量的值。

在数学问题中,我们常常需要通过给定的条件来确定未知量的取值,而解方程就是一种有效的方法。

解方程涉及到很多数学概念和技巧,比如代数运算、方程的等价变形、解方程的基本步骤等。

下面,我们就来详细介绍一下使用公式法解方程的具体步骤。

首先,我们需要明确要解的是何种方程,方程的类型分为线性方程、二次方程、三次方程等等。

每种类型的方程都有其特定的解法,因此在解题之前首先要确定方程的类型。

接下来,我们需要对方程进行等式变形。

通过对方程的两边进行加减乘除等运算,可以将方程变形为更简单的形式。

这样做的目的是为了消去一些项,从而更方便地求解方程。

在进行等式变形时,我们需要特别注意保持等式的平衡。

这意味着我们对方程的两边进行的操作必须是相等的,以保证方程的等价性。

在进行等式变形后,我们可以开始求解方程。

求解方程的一般思路是将未知量移到一边,已知量移到另一边,最终得到未知量的值。

在此过程中,我们需要运用一系列的代数运算和公式,如分配律、因式分解、配方法等等。

解方程的最后一步是检验解是否正确。

我们将求得的未知量代入原方程中进行验证,如果方程两边结果相等,则说明解是正确的;反之,说明解存在错误。

需要注意的是,在解方程时有时会出现无解或无穷解的情况。

无解意味着方程中的已知量与未知量之间不存在满足条件的关系,而无穷解则意味着方程中的已知量与未知量有无限多个满足条件的取值。

总结起来,使用公式法解方程需要明确方程类型,进行等式变形,代入公式运用代数运算和技巧求解未知量的值,并最终验证解的正确性。

这种方法在数学问题中有着广泛的应用,不仅能培养我们的逻辑思维能力,还能加深对数学知识的理解和掌握。

因此,我们在解方程时可以灵活运用公式法,通过对方程的等式变形和代数运算,找到问题的解。

这种方法不仅可以帮助我们解决实际问题,还可以提高我们的数学素养,为今后的学习和工作打下坚实的基础。

《运用公式法》教学教案

《运用公式法》教学教案

《运用公式法》教学教案第一章:引言1.1 教学目标让学生理解公式法的基本概念和应用领域。

引导学生掌握公式法的原理和步骤。

培养学生运用公式法解决实际问题的能力。

1.2 教学内容公式法的定义和特点公式法的应用领域公式法的基本原理和步骤1.3 教学方法采用案例导入的方式,引导学生了解公式法的应用领域。

通过讲解和示例,让学生掌握公式法的基本原理和步骤。

提供实际问题,让学生运用公式法解决,并进行小组讨论和分享。

1.4 教学评估课堂参与度评估:学生参与小组讨论和分享的积极性。

练习题评估:学生完成练习题的正确率和理解程度。

第二章:公式法的基本原理2.1 教学目标让学生理解公式法的基本原理。

引导学生掌握公式的推导和应用。

2.2 教学内容公式法的基本原理公式的推导和应用示例2.3 教学方法通过讲解和示例,让学生掌握公式法的基本原理。

提供练习题,让学生巩固公式的推导和应用。

2.4 教学评估练习题评估:学生完成练习题的正确率和理解程度。

学生提问和解答评估:学生对公式法的基本原理的理解和应用能力。

第三章:公式法的步骤3.1 教学目标让学生掌握公式法的步骤。

引导学生运用公式法解决实际问题。

3.2 教学内容公式法的步骤实际问题解决示例3.3 教学方法通过讲解和示例,让学生掌握公式法的步骤。

提供实际问题,让学生运用公式法解决,并进行小组讨论和分享。

3.4 教学评估练习题评估:学生完成练习题的正确率和理解程度。

学生提问和解答评估:学生对公式法的步骤的理解和应用能力。

第四章:公式法的应用领域让学生了解公式法在不同领域的应用。

引导学生运用公式法解决实际问题。

4.2 教学内容公式法在不同领域的应用示例实际问题解决示例4.3 教学方法通过讲解和示例,让学生了解公式法在不同领域的应用。

提供实际问题,让学生运用公式法解决,并进行小组讨论和分享。

4.4 教学评估练习题评估:学生完成练习题的正确率和理解程度。

学生提问和解答评估:学生对公式法在不同领域的应用的理解和应用能力。

公式法解二元一次方程教案六篇

公式法解二元一次方程教案六篇

公式法解二元一次方程教案六篇教案一:用公式法解简单的二元一次方程一、教学目标1、理解并掌握二元一次方程的求根公式。

2、能够熟练运用公式法解二元一次方程。

二、教学重难点1、重点(1)求根公式的推导过程。

(2)运用求根公式解二元一次方程。

2、难点求根公式的推导。

三、教学方法讲授法、练习法四、教学过程1、复习导入(1)回顾一元二次方程的一般形式:$ax^2 + bx + c =0$($a≠0$)。

(2)提问一元二次方程的配方法。

2、公式推导(1)将一元二次方程$ax^2 + bx + c = 0$($a≠0$)进行配方:\\begin{align}ax^2 + bx + c &= 0\\ax^2 + bx &= c\\x^2 +\frac{b}{a}x &=\frac{c}{a}\\x^2 +\frac{b}{a}x +(\frac{b}{2a})^2 &=(\frac{b}{2a})^2 \frac{c}{a}\\(x +\frac{b}{2a})^2 &=\frac{b^2 4ac}{4a^2}\end{align}\(2)当$b^2 4ac≥0$时,开方得到求根公式:$x =\frac{b ±\sqrt{b^2 4ac}}{2a}$3、公式讲解(1)强调公式中$a$、$b$、$c$的含义。

(2)说明判别式$b^2 4ac$的作用:判断方程根的情况。

4、例题讲解例 1:用公式法解方程$x^2 4x 5 = 0$(1)分析:$a = 1$,$b =-4$,$c =-5$(2)计算判别式:$b^2 4ac =(-4)^2 4×1×(-5) = 36 > 0$,方程有两个不相等的实数根。

(3)代入求根公式:$x =\frac{4 ±\sqrt{36}}{2×1} =\frac{4 ± 6}{2}$,解得$x_1 = 5$,$x_2 =-1$5、课堂练习让学生练习用公式法解下列方程:(1)$x^2 + 2x 3 = 0$(2)$2x^2 5x + 1 = 0$6、课堂小结(1)总结公式法解二元一次方程的步骤。

2.3 运用公式法

2.3  运用公式法

重点、难点
考点及考试要求
教学内容
学习 过程 预 习 导 (3) (1+2x) (1–2x)= 学 学 习 研 讨 1、分解因式:7x2-21x 2、填空: (1) (x+3) (x–3) =
学习内容
; (2) (4x+y) (4x–y)= ; (4) (3m+2n) (3m–2n)=
; .
活动一 阅读课本 54 页上面部分内容并回答问题: 1、 观察式子 a2-b2,x2-25,9x2-y2 (1) 他们有没有相同的因式?他们能不能分解因式? (2) 小组讨论,它们有什么共同特征? (3) 你能按照(2)的特征再举几个例子吗? 2、结合预习导学 2,完成下列填空 (1)9m2–4n2= (3)x2–9= ; (2)16x2–y2= ; (4)1–4x2= . ;
(4)(m-a)2-(n+b)2 (5)–16x4+81y4 (6)3x3y–12xy
2、 如图, 在一块边长为 a 的正方形纸片的四角, 各 形.用 a 与 b 表示剩余部分的面积,并求当
剪去一个边长为 b 的正方 a=3.6,b=0.8 时的面积.
a b
延 伸 拓 展 总结 反思 作业 1.解: (1)a2-81=(a+9) (a-9); 2 (2)36-x =(6+x) (6-x); 2 (3)1-16b =1-(4b)2=(1+4b) (1-4b); 2 2 (4)m -9n =(m +3n) (m-3n); 2 2 (5)0.25q -121p =(0.5q+11p) (0.5q-11p); 2 (6)169x -4y2=(13x+2y) (13x-2y); 2 2 2 2 (7)9a p -b q =(3ap+bq) (3ap-bq); (8) 已知 a、b 为正整数,且 a2-b2=45,求符合要求的 a、b 的值。

2.3.2 运用公式法(二)

2.3.2  运用公式法(二)

一、)请你任意写出一个..三项式,使它们的公因式是-)用简便方法计算,并写出运算过程:二、2+b2-2ab-1ma-mb+2a-2b3-aax2+ay2-2axy-ab2三、好好想一想n是正整数时,两个连续奇数的平方差一定是)一条水渠,其横断面为梯形,根据图时的面积.图2—3—1,在半径为r的圆形土地周围有一条宽为a的路,这条路的面积用作业导航了解平方差公式、完全平方公式的特点,掌握运用公式法分解因式的方法,会利用分解因式进行简便计算与化简.一、选择题1.-(2a-b)(2a+b)是下列哪一个多项式的分解结果( )A.4a2-b2B.4a2+b2C.-4a2-b2D.-4a2+b22.多项式(3a+2b)2-(a-b)2分解因式的结果是( )A.(4a+b)(2a+b)B.(4a+b)(2a+3b)C.(2a+3b)2D.(2a+b)23.下列多项式,能用完全平方公式分解因式的是( )A.x2+xy+y2B.x2-2x-1C.-x2-2x-1D.x2+4y24.多项式4a2+ma+25是完全平方式,那么m的值是( )A.10B.20C.-20D.±205.在一个边长为12.75 cm的正方形纸板内,割去一个边长为7.25 cm的正方形,剩下部分的面积等于( )A.100 cm2B.105 cm2C.108 cm2D.110 cm2二、填空题6.多项式a2-2ab+b2,a2-b2,a2b-ab2的公因式是________.7.-x2+2xy-y2的一个因式是x-y,则另一个因式是________.8.若x2-4xy+4y2=0,则x∶y的值为________.9.若x2+2(a+4)x+25是完全平方式,则a的值是________.10.已知a+b=1,ab=-12,则a2+b2的值为________.三、解答题11.分解因式(1)3x4-12x2(2)9(x-y)2-4(x+y)2(3)1-6mn+9m2n2(4)a2-14ab+49b2(5)9(a +b )2+12(a +b )+4 (6)(a -b )2+4ab12.(1)已知x -y =1,xy =2,求x 3y -2x 2y 2+xy 3的值. (2)已知a (a -1)-(a 2-b )=1,求21(a 2+b 2)-ab 的值. 13.利用简便方法计算: (1)2001×1999(2)8002-2×800×799+799214.如图1,在一块边长为a 厘米的正方形纸板的四角,各剪去一个边长为b (b <2a)厘米的正方形,利用因式分解计算当a =13.2,b =3.4时剩余部分的面积.图115.对于任意整数,(n +11)2-n 2能被11整除吗?为什么?参考答案一、1.D 2.B 3.C 4.D 5.D二、6.a-b7.y-x8.2 9.1或-9 10.25三、11.(1)3x2(x+2)(x-2) (2)(5x-y)(x-5y) (3)(3mn-1)2(4)(a-7b)2(5)(3a+3b+2)2(6)(a+b)2112.(1)2 (2)213.(1)3999999 (2)114.128平方厘米15.略2.3 运用公式法同步练习1.填空:(1)多项式各项的公因式是___________;(2)多项式各项的公因式是_________;(3)如果是一个完全平方式,那么k的值是__________;(4)().2.把下列各式分解因式:(1);(2);(3);(4);(5);(6);(7);(8).3.利用分解因式计算:(1);(2);(3);(4);(5);(6);(7);(8).4.先分解因式,再求值:(1),其中;(2),其中.5.对于任意自然数是否能被24整除?为什么?参考答案1.(1) ;(2);(3)9;(4) .2.(1) ;(2) ;(3) ;(4);(5);(6);(7);(8).3.(1)27.6;(2)125;(3)10100;(4)0.0395;(5)9801;(6)7;(7)6.32;(8)5000.4.(1) ,当 时,原式=9216;(2) ,当时,原式=100.5.,能被24整除.2.3 运用公式法 同步练习一、选择题1,下列各式中不能用平方差公式分解的是( )A.-a 2+b 2B.-x 2-y 2C.49x 2y 2-z 2D.16m 4-25n 2 2.下列各式中能用完全平方公式分解的是( )①x 2-4x+4; ②6x 2+3x+1; ③ 4x 2-4x+1; ④ x 2+4xy+2y 2 ; ⑤9x 2-20xy+16y 2A.①②B.①③C.②③D.①⑤3.在多项式:①16x 5-x;②(x-1)2-4(x-1)+4; ③(x+1)4-4x(x+1)2+4x 2;④-4x 2-1+4x 中,分解因式的结果中含有相同因式的是( )A.①②B.③④C.①④D.②③ 4.分解因式3x 2-3x 4的结果是( )A.3(x+y 2)(x-y 2)B.3(x+y 2)(x+y)(x-y)C.3(x-y 2)2D.3(x-y )2(x+y) 25.若k-12xy+9x 2是一个完全平方式,那么k 应为( )A.2B.4C.2y 2D.4y 26.若x 2+2(m-3)x+16, 是一个完全平方式,那么m 应为( )A.-5B.3C.7D.7或-1 7.若n 为正整数,(n+11)2-n 2 的值总可以被k 整除,则k 等于( ) A.11 B.22 C.11或22 D.11的倍数. 二、填空题8.( )2+20pq+25q 2= ( )29.分解因式x 2-4y 2= ___________ ; 10.分解因式ma 2+2ma+m= _______ ;11.分解因式2x 3y+8x 2y 2+8xy 3 __________ .12.运用平方差公式可以可到:两个偶数的平方差一定能被 _____ 整除。

数学运用公式法一

数学运用公式法一
教学
(反)

逸夫初级中学“三导三学五环节”导学案
年级:八年级科目:数学
课题
2.3运用公式法(一)
主备人
李驰
审核人
李驰
授课人
编号
04
授课
时间
班级
姓名
学习
目标
1、经历通过整式乘法的平方差的逆向得出公式法分解因式的方法的过程,发展学生的逆向思维。
2、:平方差公式分解因式.
难点:观察平方差特点并利用平方差公式分解因式
预习展示
分解下列因式(平方差公式):
(1)、1-4x2;(2)、m2-4;(3)、x2-4y2;
(4)、3x3-12x;(5)、 。




引领探究
1、a2-b2= (a+b)(a-b)中a,b都表示单项式吗?它们可以是多项式吗?
2、(1)9(m+n)2-(m-n)2;(2)4(m+n)2-(m-n)2
有效检测
把下列各式分解因式
(1)-(x+y)2+z2
(2)9(a+b)2-4(a-b)2
(3)m4-16m4
(4)x2-(a+b-c)2
(5)
梳理拓展
1、对于任意的自然数 , 能被24整除吗?为什么?
2、如图,在边长为a的正方形中挖去一个边长为b的小正方形(a>b),把余下的部分拼成一个矩形,通过计算两个阴影部分的面积,可以得到一个矩形,通过计算两个阴影部分的面积,可以得到一个分解因式的公式,这个公式是怎样的?




学 案
导 案
导学预习
1、什么是因式分解?我们已经学过的因式分解的方法有什么?

因式分解技巧讲解002

因式分解技巧讲解002

七、综合运用及技巧
1、换元(即整体法)
因式分解时可以用一个字母代替一个整式,也可以将原式中的某个部分变形后的式子用
一个字母代替,(一般都是既约多项式),分解完后再将其带入。
2、主次分清
我们在处理一个项数多的多项式的时候,可以按照一个主要字母(任选)的降幂整理后,
然后分解。
十字相乘法解决。
[例]分解因式:6x2-7x+2
解:采用类似的办法:把6分解成2×3,写在第一列;把2分解成(-1)×(-2),写在第二
列;然后交叉相乘,把积相加,最后把得到的和写在横线下面。如下:
2 -1
3 -2
-7
这个和恰好是一次项的系数,于是有:
上面的算式称之为长十字相乘,式子中的三个十字,就是上面所说的三个十字相乘,我
们省略了横线及其底下的数。
如果二次式中的缺少一项或几项,长十字相乘仍然可用。
[例]分解因式:x2-y2+5x+3y+4[缺少含有字母的项]
解:由如下算式
(x) (y) (1)
1 1 1
=2a2b(x+y)(b+c)[(x+y)+3a3b3(b+c)]
=2a2b(x+y)(b+c)(x+y+3a3b4+3a3b3c)
其实这是一种整体的思想,在因式分解中应用广泛。
3、切勿漏1
4、注意符号
在提出的公因式为负的时候,注意各项符号的改变。
5、化“分”为整
数学论文——因式巧分解
史虓
◎综述
所谓多项式的因式分解,是把一个多项式写成几个整式的积的形式。因式分解并不复杂,

整式乘除法的运算技巧

整式乘除法的运算技巧

(一)运用公式法:我们知道整式乘法与因式分解互为逆变形。

如果把乘法公式反过来就是把多项式分解因式。

于是有:a^2-b^2=(a+b)(a-b)a^2+2ab+b^2=(a+b)^2a^2-2ab+b^2=(a-b)^2如果把乘法公式反过来,就可以用来把某些多项式分解因式。

这种分解因式的方法叫做运用公式法。

(二)平方差公式1.平方差公式(1)式子:a^2-b^2=(a+b)(a-b)(2)语言:两个数的平方差,等于这两个数的和与这两个数的差的积。

这个公式就是平方差公式。

(三)因式分解1.因式分解时,各项如果有公因式应先提公因式,再进一步分解。

2.因式分解,必须进行到每一个多项式因式不能再分解为止。

(四)完全平方公式(1)把乘法公式(a+b)^2=a^2+2ab+b^2 和(a-b)^2=a^2-2ab+b^2反过来,就可以得到:a^2+2ab+b^2 =(a+b)^2a^2-2ab+b^2 =(a-b)^2这就是说,两个数的平方和,加上(或者减去)这两个数的积的2倍,等于这两个数的和(或者差)的平方。

把a^2+2ab+b^2和a^2-2ab+b^2这样的式子叫完全平方式。

上面两个公式叫完全平方公式。

(2)完全平方式的形式和特点①项数:三项②有两项是两个数的的平方和,这两项的符号相同。

③有一项是这两个数的积的两倍。

(3)当多项式中有公因式时,应该先提出公因式,再用公式分解。

(4)完全平方公式中的a、b可表示单项式,也可以表示多项式。

这里只要将多项式看成一个整体就可以了。

(5)分解因式,必须分解到每一个多项式因式都不能再分解为止。

(五)分组分解法我们看多项式am+ an+ bm+ bn,这四项中没有公因式,所以不能用提取公因式法,再看它又不能用公式法分解因式.如果我们把它分成两组(am+ an)和(bm+ bn),这两组能分别用提取公因式的方法分别分解因式.- 2 -原式=(am +an)+(bm+ bn)=a(m+ n)+b(m +n)做到这一步不叫把多项式分解因式,因为它不符合因式分解的意义.但不难看出这两项还有公因式(m+n),因此还能继续分解,所以原式=(am +an)+(bm+ bn)=a(m+ n)+b(m+ n)=(m +n)•(a +b).这种利用分组来分解因式的方法叫做分组分解法.从上面的例子可以看出,如果把一个多项式的项分组并提取公因式后它们的另一个因式正好相同,那么这个多项式就可以用分组分解法来分解因式.(六)提公因式法1.在运用提取公因式法把一个多项式因式分解时,首先观察多项式的结构特点,确定多项式的公因式.当多项式各项的公因式是一个多项式时,可以用设辅助元的方法把它转化为单项式,也可以把这个多项式因式看作一个整体,直接提取公因式;当多项式各项的公因式是隐含的时候,要把多项式进行适当的变形,或改变符号,直到可确定多项式的公因式.2. 运用公式x^2 +(p+q)x+pq=(x+q)(x+p)进行因式分解要注意:1.必须先将常数项分解成两个因数的积,且这两个因数的- 3 -代数和等于一次项的系数.2.将常数项分解成满足要求的两个因数积的多次尝试,一般步骤:①列出常数项分解成两个因数的积各种可能情况;②尝试其中的哪两个因数的和恰好等于一次项系数.3.将原多项式分解成(x+q)(x+p)的形式.(七)分式的乘除法1.把一个分式的分子与分母的公因式约去,叫做分式的约分.2.分式进行约分的目的是要把这个分式化为最简分式.3.如果分式的分子或分母是多项式,可先考虑把它分别分解因式,得到因式乘积形式,再约去分子与分母的公因式.如果分子或分母中的多项式不能分解因式,此时就不能把分子、分母中的某些项单独约分.4.分式约分中注意正确运用乘方的符号法则,如x-y=-(y-x),(x-y)^2=(y-x)^2,(x-y)^3=-(y-x)^3.5.分式的分子或分母带符号的n次方,可按分式符号法则,变成整个分式的符号,然后再按-1的偶次方为正、奇次方为负来处理.当然,简单的分式之分子分母可直接乘方.6.注意混合运算中应先算括号,再算乘方,然后乘除,最后算加减.- 4 -(八)分数的加减法1.通分与约分虽都是针对分式而言,但却是两种相反的变形.约分是针对一个分式而言,而通分是针对多个分式而言;约分是把分式化简,而通分是把分式化繁,从而把各分式的分母统一起来.2.通分和约分都是依据分式的基本性质进行变形,其共同点是保持分式的值不变.3.一般地,通分结果中,分母不展开而写成连乘积的形式,分子则乘出来写成多项式,为进一步运算作准备.4.通分的依据:分式的基本性质.5.通分的关键:确定几个分式的公分母.通常取各分母的所有因式的最高次幂的积作公分母,这样的公分母叫做最简公分母.6.类比分数的通分得到分式的通分:把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分.7.同分母分式的加减法的法则是:同分母分式相加减,分母不变,把分子相加减。

因式分解的常用方法

因式分解的常用方法

因式分解的常用方法一、提公因式法.:ma+mb+mc=m(a+b+c)二、运用公式法.在整式的乘、除中,我们学过若干个乘法公式,现将其反向使用,即为因式分解中常用的公式,例如:(1)(a+b)(a-b) = a 2-b 2 ---------a 2-b 2=(a+b)(a-b);(2) (a ±b)2 = a 2±2ab+b 2 ——— a 2±2ab+b 2=(a ±b)2;(3) (a+b)(a 2-ab+b 2) =a 3+b 3------ a 3+b 3=(a+b)(a 2-ab+b 2);(4) (a-b)(a 2+ab+b 2) = a 3-b 2 ------a 3-b 3=(a-b)(a 2+ab+b 2).下面再补充两个常用的公式:(5)a 2+b 2+c 2+2ab+2bc+2ca=(a+b+c)2;(6)a 2+b 2+c 2-3abc=(a+b+c)(a 2+b 2+c 2-ab-bc-ca);例.已知a b c ,,是ABC ∆的三边,且222a b c ab bc ca ++=++,则ABC ∆的形状是()A.直角三角形 B 等腰三角形 C 等边三角形 D 等腰直角三角形三、分组分解法.(一)分组后能直接提公因式例1、分解因式:bn bm an am +++例2、分解因式:bx by ay ax -+-5102练习:分解因式1、bc ac ab a -+-2 2、1+--y x xy(二)分组后能直接运用公式例3、分解因式:ay ax y x ++-22例4、分解因式:2222c b ab a -+-练习:分解因式3、y y x x 3922--- 4、yz z y x 2222---四、十字相乘法.(一)二次项系数为1的二次三项式直接利用公式))(()(2q x p x pq x q p x ++=+++进行分解。

例.已知0<a ≤5,且a 为整数,若223x x a ++能用十字相乘法分解因式,求符合条件的a .例5、分解因式:652++x x例6、分解因式:672+-x x练习5、分解因式(1)24142++x x (2)36152+-a a (3)542-+x x练习6、分解因式(1)22-+x x (2)1522--y y (3)24102--x x(二)二次项系数不为1的二次三项式c bx ax ++2条件:(1)21a a a = 1a 1c(2)21c c c = 2a 2c(3)1221c a c a b += 1221c a c a b +=分解结果:c bx ax ++2=))((2211c x a c x a ++例7、分解因式:101132+-x x练习7、分解因式:(1)6752-+x x (2)2732+-x x(3)317102+-x x (4)101162++-y y(三)二次项系数为1的齐次多项式例8、分解因式:221288b ab a --练习8、分解因式(1)2223y xy x +- (2)2286n mn m +-(四)二次项系数不为1的齐次多项式例9、22672y xy x +- 例10、2322+-xy y x练习9、分解因式:(1)224715y xy x -+ (2)8622+-ax x a思考:分解因式:abc x c b a abcx +++)(2222五、换元法。

人教版数学九年级上册(新)教案:21.2《公式法》

人教版数学九年级上册(新)教案:21.2《公式法》
举例:如何判断x²+4x+4和x²+4x+3哪个可以运用完全平方公式。
(2)平方差公式的适用范围:学生需要理解平方差公式仅适用于形如a²-b²的差平方形式,而不仅仅是数字,也可以是含有变量的表达式。
举例:解释为什么x²-y²可以因式分解为(x+y)(x-y),而x²+y²则不能。
(3)立方和与立方差公式的复杂性:这些公式相对复杂,学生需要克服对立方项分解的恐惧,理解并掌握公式的结构。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解公式法的基本概念。公式法是指利用已知的数学公式来简化代数表达式或解决方程问题。它是数学中非常重要的一环,可以帮助我们快速准确地解决各种数学问题。
2.案例分析:接下来,我们来看一个具体的案例。比如,利用完全平方公式将x²+6x+9分解为(x+3)²。这个案例展示了公式法在实际中的应用,以及它如何帮助我们解决问题。
举例:如x²+6x+9的因式分解,应能迅速识别为(x+3)²。
(2)平方差公式的应用:关键是掌握a²-b²=(a+b)(a-b)公式的适用条件,能够解决形如x²-4、9x²-16等类型的因式分解问题。
举例:如x²-9的因式分解,应能迅速得到(x+3)(x-3)。
(3)立方和与立方差公式的理解:重点在于掌握a³+b³=(a+b)(a²-ab+b²)和a³-b³=(a-b)(a²+ab+b²)两个公式的推导和应用,能够处理相应的因式分解问题。
学生小组讨论的部分,我尝试让每个小组记录并分享他们的讨论成果,这样的方式既能促进学生之间的交流,也能让全班同学从中受益。但我也发现,部分学生在表达自己的观点时还不够自信,可能是因为他们对知识的掌握还不够扎实。因此,我计划在接下来的课程中,多给予学生表达的机会,鼓励他们大胆地说出自己的想法。

45、运用公式法因式分解

45、运用公式法因式分解
3-b3= (a-b)(a2+ab+b2) a
例1、分解因式: 、分解因式:
2+2b2 1、- 、-1/2a 、- 4-y4 2、x 、 2-1 3、9(x-1) 、 -
2+2b2 1、- 、-1/2a 、- 2-4b2) =-1/2(a - (
=-1/2(a+2b)(a-2b) -
4-y4 2、x 、 2)2-(y2)2 =(x 2+y2)(x2-y2) =(x 2+y2)(x+y)(x-y) =(x
2-1 3、9(x-1) 、 - 2-1 =[3(x-1)]
=[3(x-1)+1][3(x-1)-1] =(3x-2)(3x-4)
总经验
通过例1的计算 你了解 通过例 的计算,你了解 的计算 到了什么?? 到了什么
总结经验
1、先提公因式 、 2、 、 创造条件运用公式3、 创造条件运用公式3、 公式中a、 的广义性 公式中 、b的广义性
家庭作业
2-1 1、(ax+by) 、
2、 、 2-25(x+3)2 3、 9(x+2) 、 2-1)-(a+1)2 4、 (a+1)(a 、 2-(a-b-c)2 (a+b+c) 5、用简便方法计算 、 2+1998×4+4 2、 1、1998 、 × 、 2-6.98×492 6.98×51 × ×
4-2a2+1 3、a 、 2-1)2 =(a 2 =[(a+1)(a-1)]
=
2(a-1)2 (a+1)
你能这样做吗? 你能这样做吗? 运用公式法分解因式 时,先看要分解的多项式的 项数,如果是二项式, 项数,如果是二项式,则考虑 平方差公式,如果是三项式, 平方差公式,如果是三项式, 则考虑完全平方式. 则考虑完全平方式.

《运用公式法⑴》教学设计 优质课评选教案

《运用公式法⑴》教学设计 优质课评选教案

课题:《运用公式法》⑴授课教师:揭东县炮台镇竞智初级中学吴晓霞教材:北师大版数学八年级下册教材的地位和作用:分解因式是后续学习分式的化简与运算、解一元二次方程等的重要基础。

《运用公式法(1)》这节课在本章中起着承前启后的作用。

它通过探究分解因式与整式乘法的关系来寻求因式分解的原理,这一思想贯穿后继学习的其他分解因式方法。

而且公式的推导是初中代数中运用推理方法进行代数式恒等变形的开端,公式的发现与验证过程可培养学生的逆向思维和严密的逻辑推理能力。

本节课主要是让学生经历观察、类比、归纳、总结、反思的过程,感受整式乘法与分解因式之间的互逆关系,发展学生有条理的思考与语言表达能力。

学情分析:在本节课的学习中,学生要经历探索平方差公式的过程,学生已有的整式乘法等知识使他们有了进一步学习的基础。

因此,在教学过程中,教师要给学生提供丰富有趣的问题情境,并给他们留有充分探索与交流的时间和空间,引导学生在活动中运用类比思想进行思考,并自觉用语言说明变形过程。

发展学生分析问题的能力和推理能力,并体会类比的数学思想和事物之间相互转化的辨证思想。

目标分析1.知识目标:⑴.使学生进一步了解分解因式的意义,了解乘法公式和分解因式的区别与联系。

⑵.使学生掌握平方差公式的特点,并能熟练地运用公式将多项式进行因式分解。

2.能力目标:⑴.通过对平方差公式特点的辨析,培养学生的观察能力、求简意识和应用意识。

⑵.培养学生动手操作、分工合作的能力,发展学生的语言表达能力及逻辑推理能力。

3.情感目标:⑴.培养学生积极主动参与的意识,使学生形成良好的学习习惯。

⑵.让学生体验数学活动充满着探索性和创造性,并在合作学习中获得成功的喜悦。

⑶.培养学生逆向思考问题的习惯,体会事物之间互相转化的辨证思想,初步接受对立统一的观点。

教学重点、难点教学重点:公式的发现和推导过程;理解用公式分解因式的意义。

教学难点:掌握平方差公式的结构特征;对公式结构特点的辨析、理解和实际综合应用。

北师大版八年级下《运用公式法》

北师大版八年级下《运用公式法》
蔡庆超
1
运用公式法分解因式
2
运用公式法分解因式
• 平方差公式:
• 两个数的和与两个数的差的积等于这两 个的平方差:
(a+b)(a-b)=a2-b2 反过来,就得到:
a2-b2=(a+b)(a-b)
3
平方差公式:
什么样的多项式能用平方 差公式分解因式呢?
整式乘法
两个数的平方 差,等于这两 个数的和与这 两个数的差的 积
6
例题讲解
• 例1 把下列各式分解因式:

(1) 25
—16x2
(2)
9a2—
1 2 b 4
• 解:(1)25 -16x2=52 -(4x)2=(5+4x)(5-4x) • (2)9a2-
1 2 1 2 1 1 2 b =(3a) -( b) =(3a+ b)(3a- b) 2 2 4 2

确定多项式中的a和b是利用平方差公式分 解因式的关键.
7
练习:把下列各式分解因式:
(1)16a² -1
解:1)16a² -1=(4a)² -1
=(4a+1)(4a-1)
( 2 ) 4x² - m² n²
解:2) 4x² - m² n²
=(2x)² - (mn)²
=(2x+mn)(2x-mn)
8
(m n) 9 2 2 (m n) 3 (m n 3)(m n 3)
2
9(m n) 2 (m n)
2
2
注意:将分解进行到底!
10
合作学习:
如何把下式因式分解?
a a b
4
提示:
2 2
哪种方法好?

运用公式法(共10篇)

运用公式法(共10篇)

运用公式法(共10篇)运用公式法(一): 求初中因式分解公式越多越好2楼的,拿这些简单的公式糊弄谁呢一.运用公式法在整式的乘、除中,我们学过若干个乘法公式,现将其反向使用,即为因式分解中常用的公式,例如:1.a^+2ab+b^=(a+b)^2.a^-b^=(a+b)(a-b)3.x^-3x+2=(x-1)(x-2)4.(a1+a2+.+an)^2=(a1^2+a2^2+a3^2+.+an^2)+(2a1*a2*a3*.an)+(2a2*a3*a4*. an)+(2a3*a4*a5.an)+.+2an-1*an5.a^n-b^n=(a-b)[(a^(n-1)+a^(n-2)*b+...+a*b^(n-2)+b^(n-1)],n是整数6.a^n+b^n=(a+b)[(a^(n-1)-a^(n-2)*b+...+(-1)^(n-2)*a*b^(n-2)+(-1)^(n-1)*b^(n-1)],n是奇数二.拆项、添项法因式分解是多项式乘法的逆运算.在多项式乘法运算时,整理、化简常将几个同类项合并为一项,或将两个仅符号相反的同类项相互抵消为零.在对某些多项式分解因式时,需要恢复那些被合并或相互抵消的项,即把多项式中的某一项拆成两项或多项,或者在多项式中添上两个仅符合相反的项,前者称为拆项,后者称为添项.拆项、添项的目的是使多项式能用分组分解法进行因式分解.1)x9+x6+x3-3;(2)(m2-1)(n2-1)+4mn;(3)(x+1)4+(x2-1)2+(x-1)4;(4)a3b-ab3+a2+b2+1.解 (1)将-3拆成-1-1-1.原式=x9+x6+x3-1-1-1=(x9-1)+(x6-1)+(x3-1)=(x3-1)(x6+x3+1)+(x3-1)(x3+1)+(x3-1)=(x3-1)(x6+2x3+3)=(x-1)(x2+x+1)(x6+2x3+3).(2)将4mn拆成2mn+2mn.原式=(m2-1)(n2-1)+2mn+2mn=m2n2-m2-n2+1+2mn+2mn=(m2n2+2mn+1)-(m2-2mn+n2)=(mn+1)2-(m-n)2=(mn+m-n+1)(mn-m+n+1).(3)将(x2-1)2拆成2(x2-1)2-(x2-1)2.原式=(x+1)4+2(x2-1)2-(x2-1)2+(x-1)4=〔(x+1)4+2(x+1)2(x-1)2+(x-1)4]-(x2-1)2=〔(x+1)2+(x-1)2]2-(x2-1)2=(2x2+2)2-(x2-1)2=(3x2+1)(x2+3).(4)添加两项+ab-ab.原式=a3b-ab3+a2+b2+1+ab-ab=(a3b-ab3)+(a2-ab)+(ab+b2+1)=ab(a+b)(a-b)+a(a-b)+(ab+b2+1)=a(a-b)〔b(a+b)+1]+(ab+b2+1)=[a(a-b)+1](ab+b2+1)=(a2-ab+1)(b2+ab+1).三.换元法换元法指的是将一个较复杂的代数式中的某一部分看作一个整体,并用一个新的字母替代这个整体来运算,从而使运算过程简明清晰.分解因式:(x2+x+1)(x2+x+2)-12.分析将原式展开,是关于x的四次多项式,分解因式较困难.我们不妨将x2+x看作一个整体,并用字母y来替代,于是原题转化为关于y的二次三项式的因式分解问题了.解设x2+x=y,则原式=(y+1)(y+2)-12=y2+3y-10=(y-2)(y+5)=(x2+x-2)(x2+x+5)=(x-1)(x+2)(x2+x+5)运用公式法(二): 运用公式法(1-1/2 )(1-1/3 )(1-1/4 ) (1)1/n )(n+1)/2n1-1/n =(1+1/n)(1-1/n)【运用公式法】运用公式法(三): 如何应用公式法来分解因式【运用公式法】1.熟悉公式,主要是:平方差、立方差、立方和、和平方、差平方、和立方、差立方等.2.灵活掌握,配合拆项、添项、去项,创造条件,向公式靠拢.3.与提取公因式、分组等分解因式方法相配合.4.多做多想、积累经验.运用公式法(四): 在运用中,怎样来区别分解因式“提公因式法” 和运用公式法“平方差公式” …我总是搞混乱了,提公因式法:一般地,如果多项式的各项有公因式,可以把这个公因式提到括号外面,将多项式写成因式乘积的形式,这种分解因式的方法叫做提公因式法.具体方法:当各项系数都是整数时,公因式的系数应取各项系数的最大公约数;字母取各项的相同的字母,而且各字母的指数取次数最低的;取相同的多项式,多项式的次数取最低的.运用公式法:就是利用解方程的方法进行因式分解.平方差公式:(a+b)=a+2ab+b或者(a-b)=a-2ab+b运用公式法(五): 解方程(1)2(x-3)2=8(直接开平方法)(2)4x2-6x-3=0(运用公式法)(3)(2x-3)2=5(2x-3)(运用分解因式法)(4)(x+8)(x+1)=-12(运用适当的方法)(1)(x-3)2=4x-3=2或x-3=-2,解得,x1=1或x2=5;(2)a=4,b=-6,c=-3,b2-4ac=(-6)2-4×4×(-3)=84,x=6±842×4=3±214,x1=3+214,x2=3−214;(3)移项得,(2x-3)2-5(2x-3)=0,因式分解得,(2x-3)(2x-3-5)=0,x1=32,x2=4;(4)化简得,x2+9x+20=0,(x+4)(x+5)=0,解得,x1=-4,x2=-5.运用公式法(六): 举出一个既能用提公因式法,又能运用公式法进行因式分解的多项式:______.xy(x-y)2=x3y-2x2y2+xy3.故既能用提公因式法,又能运用公式法进行因式分解的多项式为x3y-2x2y2+xy3.运用公式法(七): 运用公式法的题目问题49(a-b)的平方-16(a+b)的平方(2x+y)的平方-(x+2y)的平方(x的平方+y的平方)的平方-x的平方Y的平方3ax的平方-3ay的四次方P的四次方-149(a-b)" -16(a+b)"=[7(a-b)+4(a+b)][7(a-b)-4(a+b)]=(11a-3b)(3a-11b)(2x+y)" - (x+2y)"=(2x+y-x-2y)(2x+y+x+2y)=(x-y)(3x+3y)=3(x-y)(x+y)(x"+y")" -x"y"=(x"+y"+xy)(x"+y"-xy)3ax"-3ay""=3a(x"-y"")=3a(x-y")(x+y")P""-1=(P"-1)(P"+1)=(P-1)(P+1)(P"+1)运用公式法(八): 问一道初二题,是关于运用公式法的李明今天买了一些圆珠笔和铅笔,妈妈问他买了多少笔,他说:“我买了x支圆珠笔,y支铅笔,刚好符合‘4x^2-9y^2=19’”,你知道李明买了多少支圆珠笔多少支铅笔吗运用平方差公式,得4x^2-9y^2=19(2x+3y)(2x-3y)=19×1可知2x+3y>2x-3y,所以必有2x+3y=192x-3y=1以上两式相加,得4x=20x=5,将x=5代入2x-3y=1得y=3答:李明买了5支圆珠笔,3支铅笔.运用公式法(九): 9X +10X-4=0运用公式法9X +10X-4=0a=9 b=10 c=-4代入求根公式得x=[-10±√(100+144)]/18=(-10±2√61)/18 x1=(-5+√61)/9 x2=(-5-√61)/9运用公式法(十): a-a^5运用公式法分解因式 a(1-a)(1+a)(1+a^2)运用公式法分解因式剩余法公式运用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

运用公式法
教学设计示例――完全平方公式(1)
教学目标1.使学生会分析和判断一个多项式是否为完全平方式,初步掌握运用完全平方式把多项式分解因式的方法;2.理解完全平方式的意义和特点,培养学生的判断能力.3.进一步培养学生全面地观察问题、分析问题和逆向思维的能力.4.通过分解因式的教学,使学生进一步体会“把一个代数式看作一个字母”的换元思想。

教学重点和难点重点:运用完全平方式分解因式. 难点:灵活运用完全平方公式公解因式.教学过程设计一、复习1.问:什么叫把一个多项式因式分解?我们已经学习了哪些因式分解的方法? 答:把一个多项式化成几个整式乘积形式,叫做把这个多项式因式分解.我们学过的因式分解的方法有提取公因式法及运用平方差公式法. 2.把下列各式分解因式:(1)ax4-ax2 (2)16m4-n4. 解(1) ax4-ax2=ax2(x2-1)=ax2(x+1)(x-1)(2) 16m4-n4=(4m2)2-(n2)2=(4m2+n2)(4m2-n2)=(4m2+n2)(2m+n)(2m-n).问:我们学过的乘法公式除了平方差公式之外,还有哪些公式? 答:有完全平方公式.请写出完全平方公式. 完全平方公式是:(a+b)2=a2+2ab+b2, (a-b)2=a2-2ab+b2. 这节1
————来源网络整理,仅供供参考
课我们就来讨论如何运用完全平方公式把多项式因式分解. 二、新课和讨论运用平方差公式把多项式因式分解的思路一样,把完全平方公式反过来,就得到a2+2ab+b2=(a+b)2;a2-2ab+b2=(a-b)2. 这就是说,两个数的平方和,加上(或者减去)这两个数的积的2倍,等于这两个数的和(或者差)的平方.式子a2+2ab+b2及a2-2ab+b2叫做完全平方式,上面的两个公式就是完全平方公式.运用这两个式子,可以把形式是完全平方式的多项式分解因式. 问:具备什么特征的多项是完全平方式? 答:一个多项式如果是由三部分组成,其中的两部分是两个式子(或数)的平方,并且这两部分的符号都是正号,第三部分是上面两个式子(或数)的乘积的二倍,符号可正可负,像这样的式子就是完全平方式. 问:下列多项式是否为完全平方式?为什么?
(1)x2+6x+9;(2)x2+xy+y2;(3)25x4-10x2+1;(4)16a2+1. 答:(1)式是完全平方式.因为x2与9分别是x的平方与3的平方,6x=2·x·3,所以x2+6x+9=(x+3) . (2)不是完全平方式.因为第三部分必须是2xy. (3)是完全平方式.25x =(5x ) ,1=1 ,10x =2·5x ·1,所以25x -10x +1=(5x-1) . (4)不是完全平方式.因为缺第三部分. 请同学们用箭头表示完全平方公式中的a,b与多项式9x2+6xy+y2中的对应项,其中a=?b=?2ab=? 答:完全平方公式为:其中a=3x,b=y,2ab=2·(3x)·y.
————来源网络整理,仅供供参考 2
例1 把25x4+10x2+1分解因式. 分析:这个多项式是由三部分组成,第一项“25x4”是(5x2)的平方,第三项“1”是1的平方,第二项“10x2”是5x2与1的积的2倍.所以多项式25x4+10x2+1是完全平方式,可以运用完全平方公式分解因式. 解25x4+10x2+1=(5x2)2+2·5x2·1+12=(5x2+1)2. 例2 把1-m+ 分解因式. 问:请同学分析这个多项式的特点,是否可以用完全平方公式分解因式?有几种解法? 答:这个多项式由三部分组成,第一项“1”是1的平方,第三项“”是的平方,第二项“-m”是1与m/4的积的2倍的相反数,因此这个多项式是完全平方式,可以用完全平方公式分解因式. 解法1 1-m+ =1-2·1·+()2=(1-)2. 解法2 先提出,则1-m+ = (16-8m+m2) = (42-2·4·m+m2) = (4-m)2.
第1 2 页
3
————来源网络整理,仅供供参考。

相关文档
最新文档