上海高考数学真题及答案
2023年高考数学试卷(上海自主命题)(空白卷+答案解析)
2023年上海市高考数学试卷一、填空题(本大题共有12题,满分54分,第1-6题每题4分,第7-12题每题5分)1.(4分)不等式|x﹣2|<1的解集为.2.(4分)已知向量=(﹣2,3),=(1,2),则•= .3.(4分)已知首项为3,公比为2的等比数列,设等比数列的前n项和为S n,则S6= .4.(4分)已知tanα=3,则tan2α= .5.(4分)已知函数f(x)=,则函数f(x)的值域为.6.(4分)已知复数z=1﹣i(i为虚数单位),则|1+iz|= .7.(5分)已知圆x2+y2﹣4x﹣m=0的面积为π,则m= .8.(5分)已知△ABC中,角A,B,C所对的边a=4,b=5,c=6,则sin A = .9.(5分)现有某地一年四个季度的GDP(亿元),第一季度GDP为232(亿元),第四季度GDP为241(亿元),四个季度的GDP逐季度增长,且中位数与平均数相同,则该地一年的GDP为.10.(5分)已知(1+2023x)100+(2023﹣x)100=a0+a1x+a2x2+⋯+a99x99+a100x100,若存在k∈{0,1,2,⋯,100}使得a k<0,则k的最大值为.11.(5分)某公园欲建设一段斜坡,坡顶是一条直线,斜坡顶点距水平地面的高度为4米,坡面与水平面所成夹角为θ.行人每沿着斜坡向上走1m消耗的体力为(1.025﹣cosθ),欲使行人走上斜坡所消耗的总体力最小,则θ= .12.(5分)空间中有三个点A、B、C,且AB=BC=CA=1,在空间中任取2个不同的点D,E(不考虑这两个点的顺序),使得它们与A、B、C恰好成为一个正四棱锥的五个顶点,则不同的取法有种.二、选择题(本大题共有4题,满分18分,第13-14题每题4分,第15-16题每题5分)每题有且只有一个正确答案,考生应在答题纸的相应位置,将代表正确选项的小方格涂黑.13.(4分)已知P={1,2},Q={2,3},若M={x|x∈P,x∉Q},则M=( )A.{1}B.{2}C.{3}D.{1,2,3} 14.(4分)根据所示的散点图,下列说法正确的是( )A.身高越大,体重越大B.身高越大,体重越小C.身高和体重成正相关D.身高和体重成负相关15.(5分)已知a∈R,记y=sin x在[a,2a]的最小值为s a,在[2a,3a]的最小值为t a,则下列情况不可能的是( )A.s a>0,t a>0B.s a<0,t a<0C.s a>0,t a<0D.s a<0,t a>0 16.(5分)已知P,Q是曲线Γ上两点,若存在M点,使得曲线Γ上任意一点P都存在Q 使得|MP|•|MQ|=1,则称曲线Γ是“自相关曲线”.现有如下两个命题:①任意椭圆都是“自相关曲线”;②存在双曲线是“自相关曲线”,则( )A.①成立,②成立B.①成立,②不成立C.①不成立,②成立D.①不成立,②不成立三、解答题(本大题共有5题,满分78分)解答下列各题必须在答题纸的相应位置写出必要的步骤.17.(14分)已知直四棱柱ABCD﹣A1B1C1D1,AB⊥AD,AB∥CD,AB=2,AD=3,CD=4.(1)证明:直线A1B∥平面DCC1D1;(2)若该四棱柱的体积为36,求二面角A1﹣BD﹣A的大小.18.(14分)已知a,c∈R,函数f(x)=.(1)若a=0,求函数的定义域,并判断是否存在c使得f(x)是奇函数,说明理由;(2)若函数过点(1,3),且函数f(x)与x轴负半轴有两个不同交点,求此时c的值和a的取值范围.19.(14分)2023年6月7日,21世纪汽车博览会在上海举行,已知某汽车模型公司共有25个汽车模型,其外观和内饰的颜色分布如下表所示:红色外观蓝色外观棕色内饰128米色内饰23(1)若小明从这些模型中随机拿一个模型,记事件A为小明取到红色外观的模型,事件B为小明取到棕色内饰的模型,求P(B)和P(B|A),并判断事件A和事件B是否独立;(2)该公司举行了一个抽奖活动,规定在一次抽奖中,每人可以一次性从这些模型中拿两个汽车模型,给出以下假设:假设1:拿到的两个模型会出现三种结果,即外观和内饰均为同色、外观和内饰都异色、以及仅外观或仅内饰同色;假设2:按结果的可能性大小,概率越小奖项越高;假设3:该抽奖活动的奖金额为:一等奖600元,二等奖300元、三等奖150元;请你分析奖项对应的结果,设X为奖金额,写出X的分布列并求出X的数学期望.20.(18分)已知抛物线Γ:y2=4x,在Γ上有一点A位于第一象限,设A的纵坐标为a(a >0).(1)若A到抛物线Γ准线的距离为3,求a的值;(2)当a=4时,若x轴上存在一点B,使AB的中点在抛物线Γ上,求O到直线AB的距离;(3)直线l:x=﹣3,抛物线上有一异于点A的动点P,P在直线l上的投影为点H,直线AP与直线l的交点为Q.若在P的位置变化过程中,|HQ|>4恒成立,求a的取值范围.21.(18分)已知f(x)=lnx,在该函数图像Γ上取一点a1,过点(a1,f(a1))做函数f (x)的切线,该切线与y轴的交点记作(0,a2),若a2>0,则过点(a2,f(a2))做函数f(x)的切线,该切线与y轴的交点记作(0,a3),以此类推a3,a4,⋯,直至a m≤0停止,由这些项构成数列{a n}.(1)设a m(m≥2)属于数列{a n},证明:a m=lna m﹣1﹣1;(2)试比较a m与a m﹣1﹣2的大小关系;(3)若正整数k≥3,是否存在k使得a1、a2、a3、⋯、a k依次成等差数列?若存在,求出k的所有取值;若不存在,请说明理由.2023年上海市高考数学试卷参考答案与试题解析一、填空题(本大题共有12题,满分54分,第1-6题每题4分,第7-12题每题5分)1.(4分)不等式|x﹣2|<1的解集为(1,3) .【分析】原不等式可化为﹣1<x﹣2<1,从而求出x的范围.【解答】解:由|x﹣2|<1可得,﹣1<x﹣2<1,解得1<x<3,即不等式的解集为(1,3).故答案为:(1,3).【点评】本题主要考查了绝对值不等式的解法,属于基础题.2.(4分)已知向量=(﹣2,3),=(1,2),则•= 4.【分析】直接利用平面向量的坐标运算法则求解.【解答】解:∵向量=(﹣2,3),=(1,2),∴•=﹣2×1+3×2=4.故答案为:4.【点评】本题主要考查了平面向量的坐标运算,属于基础题.3.(4分)已知首项为3,公比为2的等比数列,设等比数列的前n项和为S n,则S6= 189.【分析】直接利用等比数列的前n项和公式求解.【解答】解:∵等比数列的首项为3,公比为2,∴S6==189.故答案为:189.【点评】本题主要考查了等比数列的前n项和公式,属于基础题.4.(4分)已知tanα=3,则tan2α= ﹣.【分析】直接利用正弦函数的二倍角公式求解.【解答】解:∵tanα=3,∴tan2α===﹣.故答案为:﹣.【点评】本题主要考查了二倍角公式的应用,属于基础题.5.(4分)已知函数f(x)=,则函数f(x)的值域为[1,+∞) .【分析】分段求出f(x)的值域,再取并集即可.【解答】解:当x≤0时,f(x)=1,当x>0时,f(x)=2x>1,所以函数f(x)的值域为[1,+∞).故答案为:[1,+∞).【点评】本题主要考查了求函数的值域,属于基础题.6.(4分)已知复数z=1﹣i(i为虚数单位),则|1+iz|= .【分析】根据复数的基本运算,即可求解.【解答】解:∵z=1﹣i,∴|1+iz|=|1+i(1﹣i)|=|2+i|=.故答案为:.【点评】本题考查复数的基本运算,属基础题.7.(5分)已知圆x2+y2﹣4x﹣m=0的面积为π,则m= ﹣3.【分析】先把圆的一般方程化为标准方程,再结合圆的半径为1求解即可.【解答】解:圆x2+y2﹣4x﹣m=0化为标准方程为:(x﹣2)2+y2=4+m,∵圆的面积为π,∴圆的半径为1,∴4+m=1,∴m=﹣3.故答案为:﹣3.【点评】本题主要考查了圆的标准方程,属于基础题.8.(5分)已知△ABC中,角A,B,C所对的边a=4,b=5,c=6,则sin A= .【分析】先利用余弦定理求出cos A,再利用同角三角函数间的基本关系求解.【解答】解:a=4,b=5,c=6,由余弦定理得,cos A===,又∵A∈(0,π),∴sin A>0,∴sin A===.故答案为:.【点评】本题主要考查了余弦定理的应用,考查了同角三角函数间的基本关系,属于基础题.9.(5分)现有某地一年四个季度的GDP(亿元),第一季度GDP为232(亿元),第四季度GDP为241(亿元),四个季度的GDP逐季度增长,且中位数与平均数相同,则该地一年的GDP为946(亿元) .【分析】设第二季度GDP为x亿元,第三季度GDP为y亿元,则232<x<y<241,由题意可得,可求出x+y的值,从而求出该地一年的GDP.【解答】解:设第二季度GDP为x亿元,第三季度GDP为y亿元,则232<x<y<241,∵中位数与平均数相同,∴,∴x+y=473,∴该地一年的GDP为232+x+y+241=946(亿元).故答案为:946(亿元).【点评】本题主要考查了中位数和平均数的定义,属于基础题.10.(5分)已知(1+2023x)100+(2023﹣x)100=a0+a1x+a2x2+⋯+a99x99+a100x100,若存在k∈{0,1,2,⋯,100}使得a k<0,则k的最大值为49.【分析】由二项展开式的通项可得a k=[2023k+2023100﹣k•(﹣1)k],若a k<0,则k 为奇数,所以a k=(2023k﹣2023100﹣k),即2023k﹣2023100﹣k<0,从而求出k的取值范围,得到k的最大值.【解答】解:二项式(1+2023x)100的通项为=•2023r•x r,r∈{0,1,2,…,100},二项式(2023﹣x)100的通项为=•2023100﹣r•(﹣1)r•x r,r∈{0,1,2,…,100},∴a k=+=[2023k+2023100﹣k•(﹣1)k],k∈{0,1,2,⋯,100},若a k<0,则k为奇数,此时a k=(2023k﹣2023100﹣k),∴2023k﹣2023100﹣k<0,∴k<100﹣k,∴k<50,又∵k为奇数,∴k的最大值为49.故答案为:49.【点评】本题主要考查了二项式定理的应用,属于中档题.11.(5分)某公园欲建设一段斜坡,坡顶是一条直线,斜坡顶点距水平地面的高度为4米,坡面与水平面所成夹角为θ.行人每沿着斜坡向上走1m消耗的体力为(1.025﹣cosθ),欲使行人走上斜坡所消耗的总体力最小,则θ= arccos.【分析】先求出斜坡的长度,求出上坡所消耗的总体力的函数关系,求出函数的导数,利用导数研究函数的最值即可.【解答】解:斜坡的长度为l=,上坡所消耗的总体力y=×(1.025﹣cosθ)=,函数的导数y′==,由y′=0,得4﹣4.1cosθ=0,得cosθ=,θ=arccos,由f′(x)>0时cosθ<,即arccos<θ<时,函数单调递增,由f′(x)<0时cosθ>,即0<θ<arccos时,函数单调递减,即θ=arccos,函数取得最小值,即此时所消耗的总体力最小.故答案为:θ=arccos.【点评】本题主要考查生活的应用问题,求函数的导数,利用导数研究函数的最值是解决本题的关键,是中档题.12.(5分)空间中有三个点A、B、C,且AB=BC=CA=1,在空间中任取2个不同的点D,E(不考虑这两个点的顺序),使得它们与A、B、C恰好成为一个正四棱锥的五个顶点,则不同的取法有9种.【分析】根据正四棱锥的性质,分类讨论,即可求解.【解答】解:如图所示,设任取2个不同的点为D、E,当△ABC为正四棱锥的侧面时,如图,平面ABC的两侧分别可以做ABDE作为圆锥的底面,有2种情况,同理以BCED、ACED为底面各有2种情况,所以共有6种情况;当△ABC为正四棱锥的截面时,如图,D、E位于AB两侧,ADBE为圆锥的底面,只有一种情况,同理以BDCE、ADCE为底面各有1种情况,所以共有3种情况;综上,共有6+3=9种情况.故答案为:9.【点评】本题考查正四棱锥的性质,分类讨论思想,属中档题.二、选择题(本大题共有4题,满分18分,第13-14题每题4分,第15-16题每题5分)每题有且只有一个正确答案,考生应在答题纸的相应位置,将代表正确选项的小方格涂黑.13.(4分)已知P={1,2},Q={2,3},若M={x|x∈P,x∉Q},则M=( )A.{1}B.{2}C.{3}D.{1,2,3}【分析】根据题意及集合的概念,即可得解.【解答】解:∵P={1,2},Q={2,3},M={x|x∈P,x∉Q},∴M={1}.故选:A.【点评】本题考查集合的基本概念,属基础题.14.(4分)根据所示的散点图,下列说法正确的是( )A.身高越大,体重越大B.身高越大,体重越小C.身高和体重成正相关D.身高和体重成负相关【分析】根据散点图的分布情况,即可得解.【解答】解:根据散点图的分布可得:身高和体重成正相关.故选:C.【点评】本题考查线性相关的概念,属基础题.15.(5分)已知a∈R,记y=sin x在[a,2a]的最小值为s a,在[2a,3a]的最小值为t a,则下列情况不可能的是( )A.s a>0,t a>0B.s a<0,t a<0C.s a>0,t a<0D.s a<0,t a>0【分析】由题意可知a>0,对a分别求值,排除ABC,即可得答案.【解答】解:由给定区间可知,a>0.区间[a,2a]与区间[2a,3a]相邻,且区间长度相同.取a=,则[a,2a]=[],区间[2a,3a]=[],可知s a>0,t a>0,故A可能;取a=,则[a,2a]=[,],区间[2a,3a]=[,],可知s a>0,t a <0,故C可能;取a=,则[a,2a]=[,],区间[2a,3a]=[,],可知s a<0,t a <0,故B可能.结合选项可得,不可能的是s a<0,t a>0.故选:D.【点评】本题考查正弦函数的图象与三角函数的最值,训练了排除法的应用,取特值是关键,是中档题.16.(5分)已知P,Q是曲线Γ上两点,若存在M点,使得曲线Γ上任意一点P都存在Q 使得|MP|•|MQ|=1,则称曲线Γ是“自相关曲线”.现有如下两个命题:①任意椭圆都是“自相关曲线”;②存在双曲线是“自相关曲线”,则( )A.①成立,②成立B.①成立,②不成立C.①不成立,②成立D.①不成立,②不成立【分析】根据定义结合图象,验证|MP|•|MQ|=1是否恒成立即可.【解答】解:∵椭圆是封闭的,总可以找到满足题意的M点,使得|MP|•|MQ|=1成立,故①正确,在双曲线中,|PM|max→+∞,而|QM|min是个固定值,则无法对任意的P∈C,都存在Q∈C,使得|PM||QM|=1,故②错误.故选:B.【点评】本题主要考查与曲线方程有关的新定义,根据条件结合图象验证|MP|•|MQ|=1是否成立是解决本题的关键,是中档题.三、解答题(本大题共有5题,满分78分)解答下列各题必须在答题纸的相应位置写出必要的步骤.17.(14分)已知直四棱柱ABCD﹣A1B1C1D1,AB⊥AD,AB∥CD,AB=2,AD=3,CD=4.(1)证明:直线A1B∥平面DCC1D1;(2)若该四棱柱的体积为36,求二面角A1﹣BD﹣A的大小.【分析】(1)先证明平面A1ABB1∥平面DCC1D1,再根据面面平行的性质,即可证明;(2)先根据体积建立方程求出A1A=4,再利用三垂线定理作出所求二面角的平面角,最后再解三角形,即可求解.【解答】解:(1)证明:根据题意可知AB∥DC,AA1∥DD1,且AB∩AA1=A,∴可得平面A1ABB1∥平面DCC1D1,又直线A1B⊂平面A1ABB1,∴直线A1B∥平面DCC1D1;(2)设AA1=h,则根据题意可得该四棱柱的体积为=36,∴h=4,∵A1A⊥底面ABCD,在底面ABCD内过A作AE⊥BD,垂足点为E,则A1E在底面ABCD内的射影为AE,∴根据三垂线定理可得BD⊥A1E,故∠A1EA即为所求,在Rt△ABD中,AB=2,AD=3,∴BD==,∴AE===,又A1A=h=4,∴tan∠A1EA===,∴二面角A1﹣BD﹣A的大小为arctan.【点评】本题考查线面平行的证明,面面平行的判定定理与性质,二面角的求解,三垂线定理作二面角,化归转化思想,属中档题.18.(14分)已知a,c∈R,函数f(x)=.(1)若a=0,求函数的定义域,并判断是否存在c使得f(x)是奇函数,说明理由;(2)若函数过点(1,3),且函数f(x)与x轴负半轴有两个不同交点,求此时c的值和a的取值范围.【分析】(1)a=0时,求出函数f(x)的解析式,根据函数的定义域和奇偶性进行求解判断即可.(2)根据函数过点(1,3),求出c的值,然后根据f(x)与x轴负半轴有两个不同交点,转化为一元二次方程根的分布进行求解即可.【解答】解:(1)若a=0,则f(x)==x++1,要使函数有意义,则x≠0,即f(x)的定义域为{x|x≠0},∵y=x+是奇函数,y=1是偶函数,∴函数f(x)=x++1为非奇非偶函数,不可能是奇函数,故不存在实数c,使得f(x)是奇函数.(2)若函数过点(1,3),则f(1)===3,得3a+2+c=3+3a,得c=3﹣2=1,此时f(x)=,若数f(x)与x轴负半轴有两个不同交点,即f(x)==0,得x2+(3a+1)x+1=0,当x<0时,有两个不同的交点,设g(x)=x2+(3a+1)x+1,则,得,得,即a>,若x+a=0即x=﹣a是方程x2+(3a+1)x+1=0的根,则a2﹣(3a+1)a+1=0,即2a2+a﹣1=0,得a=或a=﹣1,则实数a的取值范围是a>且a≠且a≠﹣1,即(,)∪(,+∞).【点评】本题主要考查函数奇偶性的判断,以及函数与方程的应用,根据条件建立方程,转化为一元二次方程根的分布是解决本题的关键,是中档题.19.(14分)2023年6月7日,21世纪汽车博览会在上海举行,已知某汽车模型公司共有25个汽车模型,其外观和内饰的颜色分布如下表所示:红色外观蓝色外观棕色内饰128米色内饰23(1)若小明从这些模型中随机拿一个模型,记事件A为小明取到红色外观的模型,事件B为小明取到棕色内饰的模型,求P(B)和P(B|A),并判断事件A和事件B是否独立;(2)该公司举行了一个抽奖活动,规定在一次抽奖中,每人可以一次性从这些模型中拿两个汽车模型,给出以下假设:假设1:拿到的两个模型会出现三种结果,即外观和内饰均为同色、外观和内饰都异色、以及仅外观或仅内饰同色;假设2:按结果的可能性大小,概率越小奖项越高;假设3:该抽奖活动的奖金额为:一等奖600元,二等奖300元、三等奖150元;请你分析奖项对应的结果,设X为奖金额,写出X的分布列并求出X的数学期望.【分析】(1)根据概率公式分别进行计算即可.(2)分别求出三种结果对应的概率,比较大小,确定X对应的概率,求出分布列,利用期望公式进行计算即可.【解答】解:(1)若红色外观的模型,则分棕色内饰12个,米色内饰2个,则对应的概率P(A)==,若小明取到棕色内饰,分红色外观12,蓝色外观8,则对应的概率P(B)===.取到红色外观的模型同时是棕色内饰的有12个,即P(AB)=,则P(B|A)====.∵P(A)P(B)==≠,∴P(A)P(B)≠P(AB),即事件A和事件B不独立.(2)由题意知X=600,300,150,则外观和内饰均为同色的概率P===,外观和内饰都异色的概率P==,仅外观或仅内饰同色的概率P=1﹣﹣=,∵>>,∴P(X=150)=,P(X=300)==,P(X=600)=,则X的分布列为:X150300600P则EX=150×+300×+600×=277(元).【点评】本题主要考查离散型随机变量的分布列和期望的计算,根据概率公式求出对应的概率是解决本题的关键,是中档题.20.(18分)已知抛物线Γ:y2=4x,在Γ上有一点A位于第一象限,设A的纵坐标为a(a>0).(1)若A到抛物线Γ准线的距离为3,求a的值;(2)当a=4时,若x轴上存在一点B,使AB的中点在抛物线Γ上,求O到直线AB的距离;(3)直线l:x=﹣3,抛物线上有一异于点A的动点P,P在直线l上的投影为点H,直线AP与直线l的交点为Q.若在P的位置变化过程中,|HQ|>4恒成立,求a的取值范围.【分析】(1)根据题意可得点A的横坐标为2,将其代入抛物线的方程,即可求得a的值;(2)易知A(4,4),设B(b,0),由AB的中点在抛物线上,可得b的值,进而得到直线AB的方程,再由点到直线的距离公式得解;(3)设,表示出直线AP的方程,进一步表示出点Q的坐标,再根据|HQ|>4恒成立,结合基本不等式即可得到a的范围.【解答】解:(1)抛物线Γ:y2=4x的准线为x=﹣1,由于A到抛物线Γ准线的距离为3,则点A的横坐标为2,则a2=4×2=8(a>0),解得;(2)当a=4时,点A的横坐标为,则A(4,4),设B(b,0),则AB的中点为,由题意可得,解得b=﹣2,所以B(﹣2,0),则,由点斜式可得,直线AB的方程为,即2x﹣3y+4=0,所以原点O到直线AB的距离为;(3)如图,设,则,故直线AP的方程为,令x=﹣3,可得,即,则,依题意,恒成立,又,则最小值为,即,即,则a2+12>a2+4a+4,解得0<a<2,又当a=2时,,当且仅当t=2时等号成立,而a≠t,即当a=2时,也符合题意.故实数a的取值范围为(0,2].【点评】本题考查抛物线的定义及其性质,考查直线与抛物线的综合运用,考查运算求解能力,属于中档题.21.(18分)已知f(x)=lnx,在该函数图像Γ上取一点a1,过点(a1,f(a1))做函数f (x)的切线,该切线与y轴的交点记作(0,a2),若a2>0,则过点(a2,f(a2))做函数f(x)的切线,该切线与y轴的交点记作(0,a3),以此类推a3,a4,⋯,直至a m≤0停止,由这些项构成数列{a n}.(1)设a m(m≥2)属于数列{a n},证明:a m=lna m﹣1﹣1;(2)试比较a m与a m﹣1﹣2的大小关系;(3)若正整数k≥3,是否存在k使得a1、a2、a3、⋯、a k依次成等差数列?若存在,求出k的所有取值;若不存在,请说明理由.【分析】(1)对函数f(x)求导,利用导数的几何意义,可得过点(a m﹣1,f(a m﹣1))的切线方程,再结合题意即可得证;(2)由不等式lnx≤x﹣1(x>0),结合(1)即可得出结论;(3)易知公差d=a n﹣a n﹣1=lna n﹣1﹣a n﹣1﹣1,2≤n≤k,考察函数g(x)=lnx﹣x﹣1,利用导数可知g(x)的单调性情况,进而得到至多存在两个a n﹣1,使得g(a n﹣1)=d,由此可知k=3,再验证即可.【解答】解:(1)证明:,则过点(a m﹣1,f(a m﹣1))的切线的斜率为,由点斜式可得,此时切线方程为,即,令x=0,可得y=lna m﹣1﹣1,根据题意可知,a m=lna m﹣1﹣1,即得证;(2)先证明不等式lnx≤x﹣1(x>0),设F(x)=lnx﹣x+1(x>0),则,易知当0<x<1时,F′(x)>0,F(x)单调递增,当x>1时,F′(x)<0,F(x)单调递减,则F(x)≤F(1)=0,即lnx≤x﹣1(x>0),结合(1)可知,a m=lna m﹣1﹣1≤a m﹣1﹣1﹣1=a m﹣1﹣2;(3)假设存在这样的k符合要求,由(2)可知,数列{a n}为严格的递减数列,n=1,2,3,…,k,由(1)可知,公差d=a n﹣a n﹣1=lna n﹣1﹣a n﹣1﹣1,2≤n≤k,先考察函数g(x)=lnx﹣x﹣1,则,易知当0<x<1时,g′(x)>0,g(x)单调递增,当x>1时,g′(x)<0,g(x)单调递减,则g(x)=d至多只有两个解,即至多存在两个a n﹣1,使得g(a n﹣1)=d,若k≥4,则g(a1)=g(a2)=g(a3)=d,矛盾,则k=3,当k=3时,设函数h(x)=ln(lnx﹣1)﹣2lnx+x+1,由于h(e1.1)=ln0.1﹣2.2+e1.1+1=e1.1﹣ln10﹣1.2<0,h(e2)=﹣3+e2>0,则存在,使得h(x0)=0,于是取a1=x0,a2=lna1﹣1,a3=lna2﹣1,它们构成等差数列.综上,k=3.【点评】本题考查数列与函数的综合运用,考查逻辑推理能力和运算求解能力,属于中档题.。
上海市(新版)2024高考数学人教版真题(综合卷)完整试卷
上海市(新版)2024高考数学人教版真题(综合卷)完整试卷一、单选题:本题共8小题,每小题5分,共40分 (共8题)第(1)题在中,,且交于点,,则()A.B.C.D.第(2)题有一个容量为66的样本,数据的分组及各组的频数如下:[11.5,15.5) 2 [15.5,19.5) 4 [19.5,23.5) 9 [23.5,27.5) 18 [27.5,31.5) 1l [31.5,35.5) 12 [35.5.39.5) 7 [39.5,43.5) 3 根据样本的频率分布估计,数据落在[31.5,43.5)的概率约是A.B.C.D.第(3)题已知向量,,则()A.B.C.D.第(4)题将个和个随机排成一行,则个不相邻的概率为()A.0.3B.0.5C.0.6D.0.8第(5)题执行如图所示的程序框图,则输出s的值为()A.B.C.D.第(6)题已知直三棱柱A.B.C.D.第(7)题已知复数,则在复平面内对应的点的坐标为()A.B.C.D.第(8)题已知函数是定义在上的奇函数且在上可导,若恒成立,则()A.B.0C.1D.2二、多选题:本题共3小题,每小题6分,共18分 (共3题)第(1)题下列说法正确的是()A.命题“,”的否定是“,”B.用二分法求函数在内的零点近似解时,在运算过程中得到,,,则可以将看成零点的近似值,且此时误差小于C.甲、乙、丙、丁四人围在圆桌旁,有种不同的坐法D.已知为平面直角坐标系中一点,将向量绕原点逆时针方向旋转角到的位置,则点坐标为第(2)题《九章算术》中将底面为直角三角形且侧棱垂直于底面的三棱柱称为“堑堵”;底面为矩形,一条侧棱垂直于底面的四棱锥称之为“阳马”;四个面均为直角三角形的四面体称为“鳖臑”.如图在堑堵ABC−A1B1C1中,AC⊥BC,且AA1═AB═2.下列说法正确的是()A.四棱锥为“阳马”、四面体为“鳖臑”.B.若平面与平面的交线为,且与的中点分别为M、N,则直线、、相交于一点.C.四棱锥体积的最大值为.D.若是线段上一动点,则与所成角的最大值为.第(3)题下列函数中最小值为2的是()A.B.C.D.三、填空题:本题共3小题,每小题5分,共15分 (共3题)第(1)题设,若,则的最大值为____________第(2)题若将函数的图象向右平移个单位,所得图象关于轴对称,则的最小正值是_____________.第(3)题若函数的导函数为,且满足,则_________.四、解答题:本题共5小题,每小题15分,最后一题17分,共77分 (共5题)第(1)题已知双曲线C:,圆,其中.圆与双曲线有且仅有两个交点,线段的中点为.(1)记直线的斜率为,直线的斜率为,求.(2)当直线的斜率为3时,求点坐标.第(2)题某灯具厂分别在南方和北方地区各建一个工厂,生产同一种灯具(售价相同),为了了解北方与南方这两个工厂所生产得灯具质量状况,分别从这两个工厂个抽查了25件灯具进行测试,结果如下:(Ⅰ)根据频率分布直方图,请分别求出北方、南方两个工厂灯具的平均使用寿命;(Ⅱ)某学校欲采购灯具,同时试用了南北两工厂的灯具各两件,试用500小时后,若北方工厂生产的灯具还能正常使用的数量比南方工厂多,该学校就准备采购北方工厂的灯具,否则就采购南方工厂的灯具,试估计该学校采购北方工厂的灯具的概率.(视频率为概率)第(3)题已知函数.(1)讨论函数在上的单调性;(2)求证:.第(4)题已知函数.(1)若轴为曲线的切线,试求实数的值;(2)已知,若对任意实数,均有,求的取值范围.第(5)题将正奇数数列1,3,5,7,9…的各项按照上小下大、左小右大的原则写成如图的三角形数表.(1)设数表中每行的最后一个数依次构成数列,求数列的通项公式;(2)设,求数列的前n项和.。
2020年上海高考数学试卷(参考答案)
2020年普通高等学校招生全国统一考试数学卷(上海卷)一、填空题(本题共12小题,满分54分,其中1-6题每题4分,7-12题每题5分)1. 已知集合,,求_______2. ________3. 已知复数z 满足(为虚数单位),则_______4. 已知行列式,则行列式_______5.已知,则_______6.已知a 、b 、1、2的中位数为3,平均数为4,则ab=________7.已知,则的最大值为___________8.已知是公差不为零的等差数列,且,则___________9.从6人中挑选4人去值班,每人值班1天,第一天需要1人,第二天需要1人,第三天需要2人,则有____种排法。
10.椭圆,过右焦点F 作直线交椭圆于P 、Q 两点,P 在第二象限已知都在椭圆上,且,,则直线的方程为______11.设,若存在定义域的函数既满足“对于任意,的值为或”又满足“关于的方程无实数解”,则的取值范围为______12、已知是平面内两两互不平等的向量,满足,{}1,2,4A ={}2,3,4B =A B =1lim31n n n →∞+=-12z i =-i z =126300a cd b =a c d b=()3f x x =()1f x -=20230x y y x y +≥⎧⎪≥⎨⎪+-≤⎩2z y x =-{}n a 1109a a a +=12910a a a a ++⋅⋅⋅=22143x y +=l ()(),,'','Q Q Q Q Q x y Q x y y'0Q Q y +='FQ PQ ⊥l a R ∈R ()f x 0x R ∈()0f x 20x 0x x ()f x a =α且(其中),则K 的最大值为________二、选择题(本题共有4小题,每题5分,共计20分) 13、下列不等式恒成立的是() A 、 B 、 C 、 D 、14、已知直线的解析式为,则下列各式是的参数方程的是()A 、B 、C 、D 、15、在棱长为10的正方体.中,为左侧面上一点,已知点到的距离为3,点到的距离为2,则过点且与平行的直线交正方体于、1,21,2,...i j k ==,,222a b ab +≤22-2a b ab +≥2a b ab +≥-2a b ab +≤l 3410x y -+=l 4334x ty t=+⎧⎨=-⎩4334x t y t =+⎧⎨=+⎩1413x ty t =-⎧⎨=+⎩1413x ty t =+⎧⎨=+⎩1111ABCD A B C D -P 11ADD A P 11A D P 1AA P 1A C P两点,则点所在的平面是( )A. B. C. D.16.、若存在,对任意的,均有恒成立,则称函数具有性质,已知:单调递减,且恒成立;单调递增,存在使得,则是具有性质的充分条件是()A 、只有B 、只有C 、D 、都不是三、解答题(本题共5小题,共计76分) 综合题分割17、已知边长为1的正方形ABCD ,沿BC 旋转一周得到圆柱体。
2021年高考数学试卷(上海)(秋考)(解析卷)
2021年上海市夏季高考数学试卷参考答案与试题解析一、填空题(本大题共12题,满分54分,第1~6题每题4分,第7~12题每题5分)1.已知121i,23i z z =+=+(其中i 为虚数单位),则12z z += .【思路分析】复数实部和虚部分别相加【解析】:1234z z i+=+【归纳总结】本题主要考查了复数的加法运算,属于基础题.2、已知{}{}21,1,0,1,A x x B =≤=-则 I A B = 【思路分析】求出集合A ,再求出A B I【解析】:{}1212A x x x x ìü=≤=≤íýîþ,所以{}1,0I A B =-【归纳总结】本题主要考查了集合的交集运算,属于基础题.3、若22240x y x y +--=,则圆心坐标为【思路分析】将圆一般方程化为标准方程,直接读取圆心坐标【解析】:22240x y x y +--=可以化为22125x y -+-=()()所以圆心为(1,2)【归纳总结】本题主要考查了圆的方程,属于基础题.4、如图边长为3的正方形,ABCD 则u u u r u u u rAB AC ⋅= 【思路分析】利用向量投影转化到边上.【解析】方法一:2=9u u u r u u u r u u u r AB AC AB ⋅=方法二:由已知||3AB =u u u r ,||AC =u u u r ,,4AC AB p<>=u u u r u u u r ,则39AB AC ⋅=´=u u u r u u u r ;【归纳总结】本题考查了平面向量的数量积的定义、正方形的几何性质;基础题;5、已知3()2,f x x=+则1(1)f -= 【思路分析】利用反函数定义求解.【解析】由题意,得原函数的定义域为:(,0)(0,)-¥+¥U ,结合反函数的定义,得312x=+,解得3x =-,所以,1(1)3f -=-;【归纳总结】本题主要考查了反函数的定义的应用,属于基础题.6.已知二项式()5x a +的展开式中,2x 的系数为80,则a =________.【思路分析】利用二项式展开式通项公式求解.【解析】5331553,80,2r r r r T C a x r C a a -+=⇒===【归纳总结】本题考查了二项式定理的通项公式、组合数公式与指数幂运算;基础题。
高考数学试题上海题及答案
高考数学试题上海题及答案一、选择题(每题4分,共40分)1. 若函数f(x) = x^2 - 4x + 3的值域为[0, +∞),则该函数的零点个数为:A. 0B. 1C. 2D. 3答案:C解析:函数f(x) = x^2 - 4x + 3可以写成f(x) = (x - 2)^2 - 1,其最小值为-1,因此值域为[-1, +∞)。
由于值域为[0, +∞),所以函数的零点个数为2。
2. 若复数z = a + bi(a, b ∈ R)满足|z| = √2,且z的实部与虚部的和为0,则a和b的值分别为:A. a = 1, b = -1B. a = -1, b = 1C. a = 1, b = 1D. a = -1, b = -1答案:A解析:由|z| = √2,得√(a^2 + b^2) = √2,即a^2 + b^2 = 2。
又因为z的实部与虚部的和为0,即a + b = 0。
解得a = 1, b = -1。
3. 若直线l的倾斜角为45°,则直线l的斜率为:A. 0B. 1D. √2答案:B解析:直线的倾斜角为45°,根据斜率的定义,斜率k = tan(45°) = 1。
4. 若向量a = (3, -2),向量b = (-1, 2),则向量a与向量b的数量积为:A. 1B. -1C. 3D. -3答案:D解析:向量a与向量b的数量积为a·b = 3*(-1) + (-2)*2 = -3 - 4 = -7。
5. 若函数f(x) = ax^2 + bx + c(a ≠ 0)的图象是开口向上的抛物线,且f(1) = f(3),则该函数的对称轴为:A. x = 1B. x = 2C. x = 3D. x = 4答案:B解析:由于抛物线开口向上,且f(1) = f(3),根据抛物线的对称性,对称轴为x = (1 + 3) / 2 = 2。
6. 若等比数列{an}的前n项和为S_n,且S_3 = 7,S_6 = 28,则该数列的公比q为:B. 4C. 3D. 1/2答案:A解析:设等比数列的首项为a1,公比为q,则S_3 = a1(1 - q^3) / (1 - q) = 7,S_6 = a1(1 - q^6) / (1 - q) = 28。
2023上海高考数学试题及答案
2023上海高考数学试题及答案2023年上海高考数学试题及答案一、选择题(每题4分,共40分)1. 已知函数f(x) = 2x - 3,下列哪个选项是f(2)的值?A. 1B. -1C. 5D. 7答案:A2. 若向量a = (3, 4),向量b = (-1, 2),则向量a与向量b的数量积为?A. 2B. -2C. 10D. -10答案:A3. 已知等差数列{an}的首项a1 = 2,公差d = 3,求第5项a5的值?A. 17B. 14C. 11D. 8答案:A4. 若函数g(x) = x^2 - 4x + 3,求g(0)的值?A. 3B. 1C. -1D. 0答案:A5. 已知双曲线方程为x^2/a^2 - y^2/b^2 = 1,其中a = 2,b = 1,求双曲线的渐近线方程?A. y = ±x/2B. y = ±2xC. y = ±xD. y = ±1/2x答案:A6. 若复数z = (1 + i) / (1 - i),求z的共轭复数?A. 1 - iB. 1 + iC. -1 + iD. -1 - i答案:B7. 已知三角形ABC的内角A,B,C满足A + B = 2C,且sinA = 2sinBcosC,求角C的度数?A. 30°B. 45°C. 60°D. 90°答案:C8. 已知函数h(x) = ln(x),求h'(x)?A. 1/xB. xC. ln(x)D. 1答案:A9. 若直线l:y = 2x + 3与抛物线C:y^2 = 4x相切,求切点的横坐标?A. 1B. 3/2C. 3D. 9/4答案:D10. 已知函数f(x) = x^3 - 3x^2 + 2,求f'(x)?A. 3x^2 - 6xB. x^2 - 6x + 2C. 3x^2 - 6x + 2D. x^3 - 3x^2 + 2答案:A二、填空题(每题4分,共20分)11. 已知等比数列{bn}的首项b1 = 1,公比q = 2,求第4项b4的值?答案:1612. 若向量a = (1, -2),向量b = (2, 3),则向量a与向量b的夹角的余弦值为?答案:-1/√1713. 已知函数f(x) = x^2 - 6x + 8,求f(1)的值?答案:314. 已知圆的方程为(x - 2)^2 + (y - 3)^2 = 9,求圆心的坐标?答案:(2, 3)15. 已知函数f(x) = sin(x) + cos(x),求f'(x)?答案:cos(x) - sin(x)三、解答题(共40分)16. (10分)已知函数f(x) = x^3 - 3x^2 + 2x - 1,求f(x)的单调区间和极值点。
2024年上海市高考数学试卷
2024年上海市高考数学试卷一、选择题(本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项符合题目要求)1.(★)(5分)已知集合U={1,2,3,4,5,6,7,8,9},A={2,3,4,5},B={1,2,3,6,7},则B∩(∁U A)=()A.{1,6}B.{6,7}C.{6,7,8}D.{1,6,7}2.(★)(5分)函数f(x)=+的定义域为()A.[0,2)B.(2,+∞)C.[,2)∪(2,+∞)D.(-∞,2)∪(2,+∞)3.(★★)(5分)十六世纪中叶,英国数学家雷科德在《砺智石》一书中首先把“=”作为等号使用,后来英国数学家哈利奥特首次使用“<”和“>”符号,并逐渐被数学界接受,不等号的引入对不等式的发展影响深远.若a,b,c∈R且a>b,则下列不等式恒成立的是()A.<B.a2>b2C.a|c|>b|c|D.>4.(★)(5分)若x<0,M=5x2+x+2,N=4x(x+1),则M与N的大小关系为() A.M>N B.M=N C.M<N D.无法确定5.(★★)(5分)若不等式(a-2)x2+2(a-2)x-4<0的解集为R,则a的取值范围是()A.a≤2B.-2<a≤2C.-2<a<2D.a<26.(★)(5分)函数f(x)=x2+x在区间[-1,1]上的最小值是()A.B.0C.D.27.(★★)(5分)对于非空集合P,Q,定义集合间的一种运算“★”:P★Q={x|x∈P∪Q且x∉P∩Q}.如果P={x|-1≤x-1≤1},Q={x|y=},则P★Q=()A.{x|1≤x≤2}B.{x|0≤x≤1或x≥2}C.{x|0≤x≤1或x>2}D.{x|0≤x<1或x>2}8.(★★)(5分)中国南宋大数学家秦九韶提出了“三斜求积术“,即已知三角形三边长求三角形面积的公式:设三角形的三条边长分别为a、b、c,则三角形的面积S可由公式求得,其中p为三角形周长的一半,这个公式也被称为海伦-秦九韶公式,现有一个三角形的边长满足a=3,b+c=5,则此三角形面积的最大值为()A.B.3C.D.二、选择题(本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分)9.(★)(5分)下列四组函数中表示同一个函数的是()A.f(x)=x,g(x)=()2B.f(a)=3a2-2a+3,g(t)=3t2-2t+3C.f(x)=,g(x)=xD.f(x)=0,g(x)=+10.(★★)(5分)下列结论不正确的是()A.“x∈N”是“x∈Q”的充分不必要条件B.“∃x∈N*,x2-3<0”是假命题C.△ABC内角A,B,C的对边分别是a,b,c,则“a2+b2=c2”是“△ABC是直角三角形”的充要条件D.命题“∀x>0,x2-3>0”的否定是“∃x>0,x2-3≤0”11.(★★)(5分)下列说法正确的是()A.若a>b>0,则a>>>bB.当a>0,b>0时,++2≥4C.若a2+b2=2,则a+b的最大值为2D.y=+有最小值212.(★★)(5分)“双11”购物节中,某电商对顾客实行购物优惠活动,规定一次购物付款总额满一定额度,可以给予优惠:(1)如果购物总额不超过50元,则不给予优惠;(2)如果购物总额超过50元但不超过100元,可以使用一张5元优惠券;(3)如果购物总额超过100元但不超过300元,则按标价给予9折优惠;(4)如果购物总额超过300元,其中300元内的按第(3)条给予优惠,超过300元的部分给予8折优惠.某人购买了部分商品,则下列说法正确的是()A.如果购物总额为78元,则应付款为73元B.如果购物总额为228元,则应付款为205.2元C.如果购物总额为368元,则应付款为294.4元D.如果购物时一次性全部付款442.8元,则购物总额为516元三、填空题(本题共4小题,每小题5分,共20分)13.(★)(5分)若集合A={x|-3≤x<a},B={x|x≤b},且A∩B=∅,则实数b取值范围为(-∞,-3).14.(★★)(5分)已知f(+1)=2x+3,则f(x)的解析式为f(x)=2x2-4x+5(x≥1).15.(★)(5分)能够说明“若a,b,c是任意正实数,则”是假命题的一组整数a,b,c的值依次为1,1,1(答案不唯一).16.(★)(5分)一位少年能将圆周率π准确记忆到小数点后面200位,更神奇的是提问小数点后面的位数时,这位少年都能准确地说出该数位上的数字.记圆周率π小数点后第n位上的数字为y,则y是n的函数,设y=f(n),n∈N*.则(1)y=f(n)的值域为{0,1,2,3,4,5,6,7,8,9};(2)函数y=f(n)与函数y=n3的交点有1个.四、解答题(本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(★★)(10分)在①A=∅,②A恰有两个子集,③A∩{x|<x<2}≠∅这三个条件中任选一个,补充在下列横线上(要求把你选的条件先写到答题纸上),并求解下列问题.已知集合A={x∈R|mx2-2x+1=0}.(1)若1∈A,求实数m的值;(2)若集合A满足_____,求实数m的取值范围.18.(★★)(12分)已知集合A={x|2-a≤x≤2+a},B={x|x≤1或x≥4}.(1)当a=3时,求A∩B;(2)若“x∈A”是“x∈∁R B”的充分不必要条件,且A≠∅,求实数a的取值范围.19.(★)(12分)已知不等式ax2+5x-2>0的解集是M.(1)若2∈M且3∉M,求a的取值范围;(2)若,求不等式ax2-5x+a2-1>0的解集.20.(★★)(12分)已知x>0,y>0且+=2,若6x+y≥m2+6m恒成立,求实数m的取值范围.21.(★★)(12分)经调查,某产品在过去两周内的日销售量(单位:千克)与日销售单价(单位:元)均为时间t(天)的函数.其中日销售量为时间t的一次函数,且t=1时,日销售量为34千克,t=10时,日销售量为25千克.日销售单价满足函数.(1)写出该商品日销售额y关于时间t的函数(日销售额=日销售量×销售单价);(2)求过去两周内该商品日销售额的最大值.22.(★★)(12分)已知函数f(x)=ax2-(2a+1)x+c,且f(0)=2.(1)若f(x)<0的解集为{x|2<x<8},求函数的值域;(2)当a>0时,解不等式f(x)<0.。
2023年全国统一高考数学试卷(上海卷)(含答案与解析)
2023年普通高等学校招生全国统一考试上海数学试卷考生注意:1.本试卷共5页,21道试题,满分150分,考试时间120分钟.2.本考试分设试卷和答题纸.试卷包括试题与答题要求.作答必须涂(选择题)或写(非选择题)在答题纸上,在试卷上作答一律不得分,3.答卷前,务必用钢笔或圆珠笔在答题纸正面清楚地填写姓名、准考证号,并将核对后的条形码贴在指定位置上,在答题纸反面清楚地填写姓名.一、填空题(本大题共有12题,第1~6题每题4分,第7~12题每题5分,满分54分)1.不等式21x 的解集为.2.若 2,3a r , 1,2b r ,则a br r .3.已知n S 为等比数列 n a 的前n 项和,且13a ,2q ,则6S .4.已知tan 3 ,则tan 2.5.若函数 2,01,0x x f x x ,则 f x 的值域为.6.已知复数1z i (其中i 为虚数单位),则1iz .7.已知圆2240x y y m 的面积为 ,则m.8.在ABC △中,角A 、B 、C 所对的三边长分别为a 、b 、c ,若4a ,5b ,6c ,则sin A.9.国内生产总值(GDP )是衡量地区经济状况的最佳指标,根据统计数据显示,某市在2020年间经济高质量增长,GDP 稳步增长,第一季度和第四季度的GDP 分别为231亿元和242亿元,且四个季度GDP 的中位数与平均数相等,则该市2020年GDP 总额为亿元.10.已知1001002100012100120232023x x a a x a x a x ,其中012100,,,,a a a a R L ,若0,100k 且k N ,则当0k a 时,k 的最大值为.11.某公园欲修建一段斜坡,假设斜坡底端在水平地面上且坡面笔直,斜坡顶端距水平地面的高度为4米,斜坡与水平地面的夹角为 .已知游客从坡底沿着斜坡每向上走1米,消耗的体力为1.025cos (),若要使游客从斜坡底端走到斜坡顶端所消耗的体力最少,则.12.已知空间中存在三点A 、B 、C ,且1AB AC BC .若从空间中再任取不同的两点(不计顺序),使得这两点与A 、B 、C 三点恰好能构成一个正四棱锥,则不同的取法共有种.二、选择题(本大题共有4题,第13、14题每题4分,第15、16题每题5分,满分18分)13.已知集合 1,2P , 2,3Q ,若M x x P x Q 且,则M ()A. 1;B. 2;C. 1,2;D. 1,2,3.14.如图,是某校随机抽取50名学生的身高与体重的散点图,则下列说法正确的是()A.身高越高,体重越重;B.身高越高,体重越轻;C.身高与体重成正相关;D.身高与体重成负相关.15.设0a ,函数sin y x 在 ,2a a 上的最小值a S ,在 2,3a a 上的最小值为a t ,当a 变化时,则下列选项不可能的是()A.0,0a a S t B.0,0a a S t C.0,0a a S t D.0,0a a S t 16.在平面上,若曲线 具有如下性质:存在点M ,使得对于任意点P ,都有Q 使得1PM QM ,则称这条曲线为“自相关曲线”,关于以下两个结论,正确的判断是()①所有椭圆都为“自相关曲线”;②存在双曲线是“自相关曲线”A.①成立,②成立; B.①成立,②不成立;C.①不成立,②成立;D.①不成立,②不成立.三、解答题(本大题共有5题,满分78分)【解答下列各题必须写出必要的步骤】17.(本题满分14分,第1小题满分6分,第2小题满分8分)如图,在直四棱柱1111ABCD A B C D 中,AB CD ∥,AB AD ,2AB ,3AD ,4DC .(1)求证:111A B DCC D 直线∥;(2)若直四棱柱1111ABCD A B C D 的体积为36,求二面角1A BD A 的大小.18.(本题满分14分,第1小题满分6分,第2小题满分8分)已知函数 231x a x cf x x a,其中,a c R .(1)当0a 时,求 f x 的定义域,并判断是否存在实数c ,使得f x ()是奇函数;(2)若函数 f x 的图象过点 1,3,且与x 轴的负半轴有两个焦点,求实数c 的值和实数a 的取值范围.19.(本题满分14分,第1小题满分6分,第2小题满分8分)第二十届上海国际汽车工业展览会于2023年4月18日在上海国家会展中心举行.某汽车企业准备了25个汽车模型,其外观和内饰的颜色分布如下表所示:(1)若小明从这些模型中随机拿一个模型,记事件A 为小明取到的模型为红色外观,事件B 为小明取到的模型有米色内饰.求P B ()与P B A (),并据此判断事件A 和事件B 是否独立;(2)为了回馈客户,该汽车企业举行了一个抽奖活动,规定在一次抽奖中,每人可以一次性抽取两个汽车模型.根据活动规则,现作出如下假设:该公司举行了一个抽奖活动,并规定在一次抽奖中,每人可以一次性从这25个汽车模型中抽取两个,现有如下假设:假设1:抽取所得的两个模型会出现三种结果,即外观和内饰均为同色、外观和内饰均为异色、只有外观或只有内饰同色;假设2:根据三种结果的可能性大小,概率越小的结果可获得的奖项越高;假设3:奖金额为一等奖600元,二等奖300元,三等奖150元.请你帮该汽车企业分析假设1中的三种结果分别对应什么奖项.设奖金额为X 元,写出X 的分布列,并求出X 的数学期望.20.(本题满分18分,第1小题满分4分,第2小题满分6分,第3小题满分8分)已知抛物线24y x :,A 为第一象限内曲线 上的点,设A 的纵坐标是a .(1)若点A 到抛物线 的准线距离为3,求a 的值;(2)若4a ,点B 在x 轴上,且AB 的中点在抛物线 上,求点B 的坐标和坐标原点O 到直线AB 的距离;(3)已知直线:3l x ,P 是第一象限内曲线 上异于点A 的点,直线PA 交l 于点Q ,且P 在直线上的投影为点 H .若对于任意点P ,4HQ 恒成立,求a 的取值范围.21.(本题满分18分,第1小题满分4分,第2小题满分6分,第3小题满分8分)已知函数 ln f x x ,过点11,a f a 作曲线 y f x 的切线交y 轴于点 20,a ,再过点22,a f a 作曲线 y f x 的切线交y 轴于 30,a ,若30a则停止.以此类推,得到数列 n a .(1)若正整数2m ,证明:1ln 1m m a a ;(2)若正整数2m ,试比较m a 与12m a 大小;(3)若正整数3k ,是否存在k 使得12,,,k a a a L 依次成等差数列?若存在,求出k 的所有取值;若不存在,请说明理由.【参考答案】1.【答案】|13x x 【解析】绝对值不等式的解法由21x 得121x ,即13x ,故不等式21x 的解集是13xx .2.【答案】4【解析】平面向量数量积的坐标运算21324a b .3.【答案】189【解析】等比数列的前n 项和66631232118912S.4.【答案】34【解析】22tan 3tan21tan 4.5.【答案】1, 【解析】当0x 时, 2xf x 单调递增, 1f x ;当0x 时, 1f x .故 f x 的值域为 1, .6.【解析】∵1z i ,∴ 111112i z i i i i ,∴12i z i 7.【答案】-3【解析】由2240x y y m 得22(2)4x y m ,故半径r ∴ 4m ,解得3m .8.【答案】74【解析】由余弦定理得222222564453cos 22562564b c a A bc ,∴sin 4A.9.【答案】946【解析】依题意,将2020年四个季度的GDP 数据分别记为1234,,,a a a a ,则1232a ,4241a ,四个季度GDP 数据的中位数为 2312a a ,平均数为 123414a a a a ,则2312341124a a a a a a ,∴2314473a a a a ,故该市2020年的GDP 总额为 1234142946a a a a a a (亿元).10.【答案】49【解析】k x 的系数为1001002100100100C 2023C 2023(1)C 202312023(1),0,1,2,,100k k k k k k k k kk a k ,要使0k a ,则k 必为奇数,且100220231k ,∴10020k 即50k ,∴k 的最大值为49.11.【答案】9arctan40(或40arccos 41或9arcsin 41)【解析】解法一:易求斜坡的长度为40sin 2,则从斜坡底走到斜坡顶端所消耗的总体能41.025cos sin T,即sin 4cos 4.1T4.1 ,其中锐角 满足4tan T,(提示:辅助角公式)4.1,得0.9T ,当且仅当2时取等号,此时,40tan 9,9tan 40 ,9arctan 40 .解法二:仿上得 4.14cos sin T,设tan 2t ,则2sin2sin 1cos 22sin cos 2sin cos 222,结合22sin cos 1 ,可得22sin 1t t ,221cos 1i t,则222411414.14cos 0.18.10.18.10.9sin 2222t t t t T t t t,当且仅当20.18.1t ,即19t时取等号,此时229tan 140t t ,9arctan 40.解法三:仿上得 4.14cos sin T ,则 2224sin 4.14cos cos 441cos sin sin T,令0T ,得40cos 41 ,40arccos 41,当40cos 41 ,即400,arccos 41时,'0T ,当40cos 41,即40arccos ,412时,0T ,故当T 最小时,40arccos41.12.【答案】9【解析】由题意得ABC 为正三角形,根据正四棱雉的定义知,正四棱锥的底面是正方形,顶点在底面的射影是正方形的中心,故所给正ABC 的任意一条边可以为底面正方形的一条边或对角线,将ABC 的一条边作为底面正方形的一条边,若将BC 作为底面正方形的一条边,可在ABC 的左侧取不同的两点,E F ,使得这两点与,,A B C 构成正四棱雉A BCEF ,在ABC 的右侧取不同的两点,E F ,使得这两点与,,A B C 构成正四棱雉A BCE F ,如图1,同样,,AB AC 也可作为底面正方形的一条边,所以方案数为326 ;将ABC 的一条边作为底面正方形的对角线时,若将BC 作为底而正方形的对角线,可构造一个正四棱锥,如图2,同样,AB AC 也可作为底面正方形的对角线,所以方案数为3.故不同的取法有639 (种).13.【答案】A【解析】由{}M xx P x Q ∣且知, 1M .故选A .14.【答案】C【解析】由题图可知,各数据分布呈线性,且从左向右看,呈现上升趋势,故身高与体重成正相关.故选C.15.【答案】D【解析】取8a ,则sin y x 在区间,84 上的最小值sin 08s ,在区间3,48上的最小值sin04t,选项A 可能成立;取38a ,则sin y x 在区间3384,上的最小值3sin04s ,在区间39,48上的最小值9sinsin 088t,选项C 可能成立;取98a,则sin y x 在区间9984,上的最小值10s ,在区间927,48上的最小值273sinsin 088,选项B 可能成立.故选D.16.【答案】B【解析】对于命题①,设椭圆2222:1(0)x y C a b a b的长轴为AB ,在AB 的延长线上能找到一点M ,使1MA MB .(注:设MB t ,则2MA t a , 21t t a ,2210t at (*),2Δ440a 恒成立,且易知方程(*)的两根异号,t 一定存在,即M 存在)不妨设 00,0M x x a ,则0maxPMa x ,0minPMx a即 00,PM x a x a ,易知QM 也在此范围内,不妨让PM 取最大值,QM 取最小值,假设1PM QM 成立,则 001x a x a ,得0x故存在M使假设成立,当0x PM 由0x a 逐渐减小为0x a ,则一定有 00,QM x a x a ,使得1PM QM ,故存在点M ,使得对于任意的点P C ,都有Q C 使得1PM QM ,∴椭圆C 是“自相关曲线”.由椭圆的性质知所有椭圆都是“自相关曲线”,故①为真命题.对于命题②,由题意,点P 的位置不固定且双曲线不封闭,PM 可取无穷大.如果M 在双曲线上,则会存在P 和M 重合的情况,不符合题意,故M 不在双曲线上.假设存在点M ,使得对于任意的ΓP ,都有ΓQ 使得1PM QM ,若PM 取无穷大,则0QM ,∵ΓQ ,ΓM ,∴QM 不会趋近于0,故假设不成立,不存在是“自相关曲线”的双曲线,故②为假命题.故选B.17.【答案】解:(1)解法一∵//AB DC ,11AB DCC D 平面平面,11CD DCC D 平面,∴11//AB DCC D 平面.∵11//AA DD ,111AA DCC D 平面,111DD DCC D 平面,∴111//AA DCC D 平面.又1AB AA A ,∴1111//ABB A DCC D 平面平面.又111A B ABB A 平面,∴111//A B DCC D 平面.解法二:如图a ,取CD 的中点E ,连接BE ,1D E ,则2DE ,∵//AB DC ,2AB ,AB DE P ,四边形ABED 为平行四边形,∴BE AD P.又11AD A D P,∴11BE A D P, 四边形11A D EB 为平行四边形,∴11//A B D E ,又111D E DCC D 平面,111A B DCC D 平面,∴111//A B DCC D 平面.(2)由题, 124392ABCD S梯形,又直四棱柱1111ABCD A B C D 的体积为36,∴1936AA ,∴14AA .(8分)解法一:如图b,过A 作AH BD 于H ,连接1A H .∵1AA ABCD 平面,BD ABCD 平面,∴1AA BD .AH BD ,1AA AH A ,1BD AA H 平面,∴1A H BD .1A HA 为二面角1A BD A 的平面角.在Rt ABD V 中,AB AD 2AB ,3AD ,可得613AH ,在1Rt A AH V 中,114213tan 6313AA A IIA AH ,∴1213arctan 3A HA ,即二面角1A BD A 的大小为213arctan3.(14分)解法二:由题,以D 为坐标原点,分别以1,,DA DC DD u u u r u u u r u u u r 的方向为,,x y z 轴的正方向建立如图c 所示的空间直角坐标系,则 0,0,0D , 3,2,0B ,13,0,4A ∴ 3,2,0DB u u u r , 13,0,4DA u u u r .(9分)显然平面ABD 的一个法向量为 0,0,1n .(10分)设平面1A BD 的法向量为 ,,m x y z ,则320340x y x z ,不妨取 4,6,3 m .设 为n与m的夹角, 为二面角1A BD A的平面角,由题意知 为锐角,则cos cos61,因此arccos61,二面角1A BD A的大小为arccos61.18.解:(1)当0a 时,2x x cf xx,(2分)∴ 12f c, 1f c显然11f f,(4分)当0a 时,f x不可能为奇函数,当0a 时,不存在c,使得f x为奇函数.(6分)(2)由题意得131131a cfa,∴3233a c a,1c,(8分)∴2311x a xf xx a.f xQ的图象与x䌷负半轴有两个不同交点,关于x的方程23110x a x有两个不同负实数根12,x x,且1x a,2x a,(10分)∴122122310311010Δ(31)40x x aa a ax xa,(易错警示:转化时应特别注意前后条件的等价性)(12分)得13a 且12a ,实数a的取值范围为111,,322.(14分)19.解:(1)由题意得,231255P B,(2分)822255P A , 225P AB ,则 2125255P AB P B A P A ∣.∵ P AB P A P B ,∴事件A 和事件B 独立.(2)记外观与内饰均同色为事件1A ,外观与内饰都异色为事件2A ,仅外观或仅内饰同色为事件3A ,则 22228122312259849300150C C C C P A C , 1111832122225C C C C 484C 30025P A ,(8分) 1111111182123812233225C C C C C C C C 15477C 300150P A ,(9分)∵ 213P A P A P A ,一等奖为两个汽车模型的外观与内饰都异色,二等奖为两个汽车模型的外观与内饰均同色,三等奖为两个汽车模型仅外观或内饰同色.(10分)X的分布列如表:7749415030060027115015025E X (14分)20.解:(1)由题意,Γ的准线方程为1x ,2,4a A a,则2134a ,得28a .(3分)又0a,∴a (2)由题意知, 4,4A ,设 ,0B b ,则AB 中点的坐标为4,22b,代入24y x ,得 424b ∴2b ,点B 的坐标为 2,0 .(6分)则直线AB 的斜率为 402423, 直线AB 的方程为 223y x ,即2340x y . 坐标原点O 到直线AB13 .(10分)(3)由题意知,2,4a A a,设 2000,04y P y y ,则 03,H y ,直线AP 的斜率02200444AP a y k y a a y 直线AP 的方程为2044a y x a a y,∴204343,a Q a a y(12分)∴222000000001212124a a ay ay y HQ y y a y a y a y 恒成立, 22200000121322444y y a y y y 即 200120,,4a y y a a 恒成立.当2a 吋,由0y a 得02y ,则 201224a y恒成立;当20a ,即2a 时, 201224a y 恒成立.综上,a 的取值范围是 ,2 .(16分)21.解:(1)由题得, 1f x x,当正整数2m 时,曲线 y f x 在点 11,m m a f a 处的切线方程为1111m m m yf a x a a ,即 1111ln m m m y a x a a .又此切线交y 轴于点 0,m a ,∴1ln 1,m m a a ∴1ln 1m m a a .(2)当正整数2m 时, 111112ln 12ln 1m m m m m m a a a a a a .ln 1,g x x x 令则 111xg x x x ,当01x 时, 0g x , g x 单调递增,当1x 时, 0g x , g x 单调递减,∴ 10g x g ,则11ln 10m n a a ,即 120m m a a ,∴12m m a a .(3)假设存在正整数3k ,使得12,,,k a a a 依次成等差数列,设其公差为d ,则111ln 12t s t t d a a a a t k 令 ln 1h x x x ,则 11h x x ,当01x 时, 0h x , h x 单调递增,当1x 吋, 0,h x h x 单调递减,∴ max ()12h x h ,即 2h x ,此时2d ,当0x 时, h x ,当x 时, h x ,因此直线y d 与 h x 的图象最多有两个交点,即最多三项成等差数列,(15分)故存在3k ,使得123,,a a a 成等差数列.下面证明3k 时,123,,a a a 成等在数列,即1322a a a .由(1)知,21ln 1a a ,32ln 1a a ,则211e a a ,∴3122e ln 12a a a (16分)记函数 1e ln 12x H x x x ,则 11e 2x H x x,易知 0H x 在 0, 恒成立,∴ H x 在 0, 单调递增.易得 0.10H , 10H , H x 在 0.1,1上有唯一零点2a .故假设成立,存在3k ,使得123,,a a a 成等差数列.。
2024年上海高考真题数学(含解析)
2024年上海市高考数学试卷注意:试题来自网络,请自行参考(含解析)一、填空题(本大题共有12题,满分54分.其中第1-6题每题4分,第7-12题每题满分5分)考生应在答题纸相应编号的空格内直接填写结果.1.设全集,集合,则______.【答案】【解析】【分析】根据补集的定义可求.【详解】由题设有,故答案为:2.已知则______.【答案】【解析】【分析】利用分段函数的形式可求.【详解】因故,故答案为:.3.已知则不等式的解集为______.【答案】【解析】【分析】求出方程的解后可求不等式的解集.【详解】方程的解为或,故不等式的解集为,故答案为:.4.已知,,且是奇函数,则______.【答案】【解析】【分析】根据奇函数的性质可求参数.【详解】因为是奇函数,故即,故,故答案为:.5.已知,且,则的值为______.【答案】15【解析】【分析】根据向量平行的坐标表示得到方程,解出即可.【详解】,,解得.故答案为:15.6.在的二项展开式中,若各项系数和为32,则项的系数为______.【答案】10【解析】【分析】令,解出,再利用二项式的展开式的通项合理赋值即可.【详解】令,,即,解得,所以的展开式通项公式为,令,则,.故答案为:10.7.已知抛物线上有一点到准线的距离为9,那么点到轴的距离为______.【答案】【解析】【分析】根据抛物线的定义知,将其再代入抛物线方程即可.【详解】由知抛物线的准线方程为,设点,由题意得,解得,代入抛物线方程,得,解得,则点到轴的距离为.故答案为:.8.某校举办科学竞技比赛,有3种题库,题库有5000道题,题库有4000道题,题库有3000道题.小申已完成所有题,他题库的正确率是0.92,题库的正确率是0.86,题库的正确率是0.72.现他从所有的题中随机选一题,正确率是______.【答案】0.85【解析】【分析】求出各题库所占比,根据全概率公式即可得到答案.【详解】由题意知,题库的比例为:,各占比分别为,则根据全概率公式知所求正确率.故答案为:0.85.9.已知虚数,其实部为1,且,则实数为______.【答案】2【解析】【分析】设,直接根据复数的除法运算,再根据复数分类即可得到答案.【详解】设,且.则,,,解得,故答案为:2.10.设集合中的元素皆为无重复数字的三位正整数,且元素中任意两者之积皆为偶数,求集合中元素个数的最大值______.【答案】329【解析】【分析】三位数中的偶数分个位是0和个位不是0讨论即可.【详解】由题意知集合中且至多只有一个奇数,其余均是偶数.首先讨论三位数中的偶数,①当个位为0时,则百位和十位在剩余的9个数字中选择两个进行排列,则这样的偶数有个;②当个位不为0时,则个位有个数字可选,百位有个数字可选,十位有个数字可选,根据分步乘法这样的偶数共有,最后再加上单独的奇数,所以集合中元素个数的最大值为个.故答案为:329.11.已知点B在点C正北方向,点D在点C的正东方向,,存在点A满足,则______(精确到0.1度)【答案】【解析】【分析】设,在和中分别利用正弦定理得到,,两式相除即可得到答案.【详解】设,在中,由正弦定理得,即’即①在中,由正弦定理得,即,即,②因为,得,利用计算器即可得,故答案为:.12.无穷等比数列满足首项,记,若对任意正整数集合是闭区间,则的取值范围是______.【答案】【解析】【分析】当时,不妨设,则,结合为闭区间可得对任意的恒成立,故可求的取值范围.【详解】由题设有,因为,故,故,当时,,故,此时为闭区间,当时,不妨设,若,则,若,则,若,则,综上,,又为闭区间等价于为闭区间,而,故对任意恒成立,故即,故,故对任意的恒成立,因,故当时,,故即.故答案为:.【点睛】思路点睛:与等比数列性质有关的不等式恒成立,可利用基本量法把恒成立为转为关于与公比有关的不等式恒成立,必要时可利用参变分离来处理.二、选择题(本大题共有4题,满分18分,其中第13-14题每题满分4分,第15-16题每题满分5分)每题有且只有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得满分,否则一律得零分.13.已知气候温度和海水表层温度相关,且相关系数为正数,对此描述正确的是()A气候温度高,海水表层温度就高B.气候温度高,海水表层温度就低C.随着气候温度由低到高,海水表层温度呈上升趋势D.随着气候温度由低到高,海水表层温度呈下降趋势【答案】C【解析】【分析】根据相关系数的性质可得正确的选项.【详解】对于AB,当气候温度高,海水表层温度变高变低不确定,故AB错误.对于CD,因为相关系数为正,故随着气候温度由低到高时,海水表层温度呈上升趋势,故C正确,D错误.故选:C.14.下列函数的最小正周期是的是()A. B.C. D.【答案】A【解析】【分析】根据辅助角公式、二倍角公式以及同角三角函数关系并结合三角函数的性质一一判断即可.【详解】对A,,周期,故A正确;对B,,周期,故B错误;对于选项C,,是常值函数,不存在最小正周期,故C错误;对于选项D,,周期,故D错误,故选:A.15.定义一个集合,集合中的元素是空间内的点集,任取,存在不全为0的实数,使得.已知,则的充分条件是()A. B.C. D.【答案】C【解析】【分析】首先分析出三个向量共面,显然当时,三个向量构成空间的一个基底,则即可分析出正确答案.【详解】由题意知这三个向量共面,即这三个向量不能构成空间的一个基底,对A,由空间直角坐标系易知三个向量共面,则当无法推出,故A错误;对B,由空间直角坐标系易知三个向量共面,则当无法推出,故A错误;对C,由空间直角坐标系易知三个向量不共面,可构成空间的一个基底,则由能推出,对D,由空间直角坐标系易知三个向量共面,则当无法推出,故D错误.故选:C.16.已知函数的定义域为R,定义集合,在使得的所有中,下列成立的是()A.存在是偶函数B.存在在处取最大值C.存在是严格增函数D.存在在处取到极小值【答案】B【解析】【分析】对于ACD利用反证法并结合函数奇偶性、单调性以及极小值的概念即可判断,对于B,构造函数即可判断.【详解】对于A,若存在是偶函数,取,则对于任意,而,矛盾,故A错误;对于B,可构造函数满足集合,当时,则,当时,,当时,,则该函数的最大值是,则B正确;对C,假设存在,使得严格递增,则,与已知矛盾,则C错误;对D,假设存在,使得在处取极小值,则在的左侧附近存在,使得,这与已知集合的定义矛盾,故D错误;故选:B.三、解答题(本大题共有5题,满分78分)解下列各题必须在答题纸相应编号的规定区域内写出必要的步骤17.如图为正四棱锥为底面的中心.(1)若,求绕旋转一周形成的几何体的体积;(2)若为的中点,求直线与平面所成角的大小.【答案】(1)(2)【解析】【分析】(1)根据正四棱锥的数据,先算出直角三角形的边长,然后求圆锥的体积;(2)连接,可先证平面,根据线面角的定义得出所求角为,然后结合题目数量关系求解.【小问1详解】正四棱锥满足且平面,由平面,则,又正四棱锥底面是正方形,由可得,,故,根据圆锥的定义,绕旋转一周形成的几何体是以为轴,为底面半径的圆锥,即圆锥的高为,底面半径为,根据圆锥的体积公式,所得圆锥的体积是【小问2详解】连接,由题意结合正四棱锥的性质可知,每个侧面都是等边三角形,由是中点,则,又平面,故平面,即平面,又平面,于是直线与平面所成角的大小即为,不妨设,则,,又线面角的范围是,故.即为所求.18.若.(1)过,求的解集;(2)存在使得成等差数列,求的取值范围.【答案】(1)(2)【解析】【分析】(1)求出底数,再根据对数函数的单调性可求不等式的解;(2)存在使得成等差数列等价于在上有解,利用换元法结合二次函数的性质可求的取值范围.【小问1详解】因为的图象过,故,故即(负的舍去),而在上为增函数,故,故即,故的解集为.小问2详解】因为存在使得成等差数列,故有解,故,因为,故,故在上有解,由在上有解,令,而在上的值域为,故即.19.为了解某地初中学生体育锻炼时长与学业成绩的关系,从该地区29000名学生中抽取580人,得到日均体育锻炼时长与学业成绩的数据如下表所示:时间范围学业成绩优秀5444231不优秀1341471374027(1)该地区29000名学生中体育锻炼时长不少于1小时人数约为多少?(2)估计该地区初中学生日均体育锻炼的时长(精确到0.1)(3)是否有的把握认为学业成绩优秀与日均体育锻炼时长不小于1小时且小于2小时有关?(附:其中,.)【答案】(1)(2)(3)有【解析】【分析】(1)求出相关占比,乘以总人数即可;(2)根据平均数的计算公式即可得到答案;(3)作出列联表,再提出零假设,计算卡方值和临界值比较大小即可得到结论.【小问1详解】由表可知锻炼时长不少于1小时的人数为占比,则估计该地区29000名学生中体育锻炼时长不少于1小时的人数为.【小问2详解】估计该地区初中生的日均体育锻炼时长约为.则估计该地区初中学生日均体育锻炼的时长为0.9小时.【小问3详解】由题列联表如下:其他合计优秀455095不优秀177308485合计222358580提出零假设:该地区成绩优秀与日均锻炼时长不少于1小时但少于2小时无关.其中..则零假设不成立,即有的把握认为学业成绩优秀与日均锻炼时长不小于1小时且小于2小时有关.20.已知双曲线左右顶点分别为,过点的直线交双曲线于两点.(1)若离心率时,求的值.(2)若为等腰三角形时,且点在第一象限,求点的坐标.(3)连接并延长,交双曲线于点,若,求取值范围.【答案】(1)(2)(3)【解析】【分析】(1)根据离心率公式计算即可;(2)分三角形三边分别为底讨论即可;(3)设直线,联立双曲线方程得到韦达定理式,再代入计算向量数量积的等式计算即可.【小问1详解】由题意得,则,.【小问2详解】当时,双曲线,其中,,因为为等腰三角形,则①当以为底时,显然点在直线上,这与点在第一象限矛盾,故舍去;②当以为底时,,设,则,联立解得或或,因为点在第一象限,显然以上均不合题意,舍去;(或者由双曲线性质知,矛盾,舍去);③当以为底时,,设,其中,则有,解得,即.综上所述:.小问3详解】由题知,当直线的斜率为0时,此时,不合题意,则,则设直线,设点,根据延长线交双曲线于点,根据双曲线对称性知,联立有,显然二次项系数,其中,①,②,,则,因为在直线上,则,,即,即,将①②代入有,即化简得,所以,代入到,得,所以,且,解得,又因为,则,综上知,,.【点睛】关键点点睛:本题第三问的关键是采用设线法,为了方便运算可设,将其与双曲线方程联立得到韦达定理式,再写出相关向量,代入计算,要注意排除联立后的方程得二次项系数不为0.21.对于一个函数和一个点,令,若是取到最小值的点,则称是在的“最近点”.(1)对于,求证:对于点,存在点,使得点是在的“最近点”;(2)对于,请判断是否存在一个点,它是在的“最近点”,且直线与在点处的切线垂直;(3)已知在定义域R上存在导函数,且函数在定义域R上恒正,设点,.若对任意的,存在点同时是在的“最近点”,试判断的单调性.【答案】(1)证明见解析(2)存在,(3)严格单调递减【解析】【分析】(1)代入,利用基本不等式即可;(2)由题得,利用导函数得到其最小值,则得到,再证明直线与切线垂直即可;(3)根据题意得到,对两等式化简得,再利用“最近点”的定义得到不等式组,即可证明,最后得到函数单调性.【小问1详解】当时,,当且仅当即时取等号,故对于点,存在点,使得该点是在的“最近点”.【小问2详解】由题设可得,则,因为均为上单调递增函数,则在上为严格增函数,而,故当时,,当时,,故,此时,而,故在点处的切线方程为.而,故,故直线与在点处的切线垂直.【小问3详解】设,,而,,若对任意的,存在点同时是在的“最近点”,设,则既是的最小值点,也是的最小值点,因为两函数的定义域均为,则也是两函数的极小值点,则存在,使得,即①②由①②相等得,即,即,又因为函数在定义域R上恒正,则恒成立,接下来证明,因为既是的最小值点,也是的最小值点,则,即,③,④③④得即,因为则,解得,则恒成立,因为的任意性,则严格单调递减.【点睛】关键点点睛:本题第三问的关键是结合最值点和极小值的定义得到,再利用最值点定义得到即可.。
上海高考数学试题及答案
上海高考数学试题及答案一、选择题1. 若函数f(x) = 2x^2 - 4x + 1,则f(1)的值为:A. 2B. 1C. -1D. -2答案:B2. 已知数列{an}是等差数列,且a1 = 3,公差d = 2,则a5的值为:A. 11B. 13C. 15D. 17答案:C3. 若三角形ABC的内角A、B、C满足A + B = 120°,则角C的大小为:A. 30°B. 45°C. 60°D. 90°答案:C4. 已知直线l的方程为y = 2x + 3,若点(1, 5)在直线l上,则该点与直线l的位置关系为:A. 在直线l上B. 在直线l外C. 与直线l垂直D. 与直线l平行答案:A5. 若复数z = 1 + i,则|z|的值为:A. √2B. 2C. √3D. 3答案:A二、填空题6. 已知函数g(x) = x^3 - 3x^2 + 2,求g(2)的值为______。
答案:-27. 计算定积分∫₀¹ (2x - 1) dx的值为______。
答案:1/28. 若向量a = (3, -1),向量b = (2, 4),则向量a与向量b的数量积为______。
答案:59. 已知双曲线的方程为x^2/9 - y^2/16 = 1,求其渐近线方程为______。
答案:y = ±(4/3)x10. 若圆的方程为(x - 2)^2 + (y + 1)^2 = 9,求圆心坐标为______。
答案:(2, -1)三、解答题11. 已知函数f(x) = x^2 - 4x + 3,求f(x)的最小值。
答案:f(x)的最小值为f(2) = -1。
12. 已知椭圆的方程为x^2/25 + y^2/9 = 1,求椭圆的离心率。
答案:椭圆的离心率为√6/5。
13. 已知三角形ABC的三边长分别为a = 7,b = 8,c = 9,求三角形ABC的面积。
2023年上海市高考数学试卷(解析版)
2023年上海市高考数学试卷参考答案与试题解析一、填空题(本大题共有12题,满分54分,第1-6题每题4分,第7-12题每题5分)1.(4分)不等式|x﹣2|<1的解集为 (1,3) .【答案】(1,3).【解答】解:由|x﹣2|<1可得,﹣1<x﹣2<1,解得1<x<3,即不等式的解集为(1,3).故答案为:(1,3).2.(4分)已知向量=(﹣2,3),=(1,2),则•= 4 .【答案】4.【解答】解:∵向量=(﹣2,3),=(1,2),∴•=﹣2×1+3×2=4.故答案为:4.3.(4分)已知首项为3,公比为2的等比数列,设等比数列的前n项和为S n,则S6= 189 .【答案】189.【解答】解:∵等比数列的首项为3,公比为2,∴S6==189.故答案为:189.4.(4分)已知tanα=3,则tan2α= ﹣ .【答案】﹣.【解答】解:∵tanα=3,∴tan2α===﹣.故答案为:﹣.5.(4分)已知函数f(x)=,则函数f(x)的值域为 [1,+∞) .【答案】[1,+∞).【解答】解:当x≤0时,f(x)=1,当x>0时,f(x)=2x>1,所以函数f(x)的值域为[1,+∞).故答案为:[1,+∞).6.(4分)已知复数z=1﹣i(i为虚数单位),则|1+iz|= .【答案】.【解答】解:∵z=1﹣i,∴|1+iz|=|1+i(1﹣i)|=|2+i|=.故答案为:.7.(5分)已知圆x2+y2﹣4x﹣m=0的面积为π,则m= ﹣3 .【答案】﹣3.【解答】解:圆x2+y2﹣4x﹣m=0化为标准方程为:(x﹣2)2+y2=4+m,∵圆的面积为π,∴圆的半径为1,∴4+m=1,∴m=﹣3.故答案为:﹣3.8.(5分)已知△ABC中,角A,B,C所对的边a=4,b=5,c=6,则sin A= .【答案】.【解答】解:a=4,b=5,c=6,由余弦定理得,cos A===,又∵A∈(0,π),∴sin A>0,∴sin A===.故答案为:.9.(5分)现有某地一年四个季度的GDP(亿元),第一季度GDP为232(亿元),第四季度GDP为241(亿元),四个季度的GDP逐季度增长,且中位数与平均数相同,则该地一年的GDP为 946(亿元) .【答案】946(亿元).【解答】解:设第二季度GDP为x亿元,第三季度GDP为y亿元,则232<x<y<241,∵中位数与平均数相同,∴,∴x+y=473,∴该地一年的GDP为232+x+y+241=946(亿元).故答案为:946(亿元).10.(5分)已知(1+2023x)100+(2023﹣x)100=a0+a1x+a2x2+⋯+a99x99+a100x100,若存在k∈{0,1,2,⋯,100}使得a k<0,则k的最大值为 49 .【答案】49.【解答】解:二项式(1+2023x)100的通项为=•2023r•x r,r∈{0,1,2,…,100},二项式(2023﹣x)100的通项为=•2023100﹣r•(﹣1)r•x r,r∈{0,1,2,…,100},∴a k=+=[2023k+2023100﹣k•(﹣1)k],k∈{0,1,2,⋯,100},若a k<0,则k为奇数,此时a k=(2023k﹣2023100﹣k),∴2023k﹣2023100﹣k<0,∴k<100﹣k,∴k<50,又∵k为奇数,∴k的最大值为49.故答案为:49.11.(5分)某公园欲建设一段斜坡,坡顶是一条直线,斜坡顶点距水平地面的高度为4米,坡面与水平面所成夹角为θ.行人每沿着斜坡向上走1m消耗的体力为(1.025﹣cosθ),欲使行人走上斜坡所消耗的总体力最小,则θ= arccos .【答案】arccos.【解答】解:斜坡的长度为l=,上坡所消耗的总体力y=×(1.025﹣cosθ)=,函数的导数y′==,由y′=0,得4﹣4.1cosθ=0,得cosθ=,θ=arccos,由f′(x)>0时cosθ<,即arccos<θ<时,函数单调递增,由f′(x)<0时cosθ>,即0<θ<arccos时,函数单调递减,即θ=arccos,函数取得最小值,即此时所消耗的总体力最小.故答案为:θ=arccos.12.(5分)空间中有三个点A、B、C,且AB=BC=CA=1,在空间中任取2个不同的点D,E(不考虑这两个点的顺序),使得它们与A、B、C恰好成为一个正四棱锥的五个顶点,则不同的取法有 9 种.【答案】9.【解答】解:如图所示,设任取2个不同的点为D、E,当△ABC为正四棱锥的侧面时,如图,平面ABC的两侧分别可以做ABDE作为圆锥的底面,有2种情况,同理以BCED、ACED为底面各有2种情况,所以共有6种情况;当△ABC为正四棱锥的截面时,如图,D、E位于AB两侧,ADBE为圆锥的底面,只有一种情况,同理以BDCE、ADCE为底面各有1种情况,所以共有3种情况;综上,共有6+3=9种情况.故答案为:9.二、选择题(本大题共有4题,满分18分,第13-14题每题4分,第15-16题每题5分)每题有且只有一个正确答案,考生应在答题纸的相应位置,将代表正确选项的小方格涂黑.13.(4分)已知P={1,2},Q={2,3},若M={x|x∈P,x∉Q},则M=( )A.{1}B.{2}C.{3}D.{1,2,3}【答案】A【解答】解:∵P={1,2},Q={2,3},M={x|x∈P,x∉Q},∴M={1}.故选:A.14.(4分)根据所示的散点图,下列说法正确的是( )A.身高越大,体重越大B.身高越大,体重越小C.身高和体重成正相关D.身高和体重成负相关【答案】C【解答】解:根据散点图的分布可得:身高和体重成正相关.故选:C.15.(5分)已知a∈R,记y=sin x在[a,2a]的最小值为s a,在[2a,3a]的最小值为t a,则下列情况不可能的是( )A.s a>0,t a>0B.s a<0,t a<0C.s a>0,t a<0D.s a<0,t a>0【答案】D【解答】解:由给定区间可知,a>0.区间[a,2a]与区间[2a,3a]相邻,且区间长度相同.取a=,则[a,2a]=[],区间[2a,3a]=[],可知s a>0,t a>0,故A可能;取a=,则[a,2a]=[,],区间[2a,3a]=[,],可知s a>0,t a<0,故C可能;取a=,则[a,2a]=[,],区间[2a,3a]=[,],可知s a<0,t a<0,故B可能.结合选项可得,不可能的是s a<0,t a>0.故选:D.16.(5分)已知P,Q是曲线Γ上两点,若存在M点,使得曲线Γ上任意一点P都存在Q 使得|MP|•|MQ|=1,则称曲线Γ是“自相关曲线”.现有如下两个命题:①任意椭圆都是“自相关曲线”;②存在双曲线是“自相关曲线”,则( )A.①成立,②成立B.①成立,②不成立C.①不成立,②成立D.①不成立,②不成立【答案】B【解答】解:∵椭圆是封闭的,总可以找到满足题意的M点,使得|MP|•|MQ|=1成立,故①正确,在双曲线中,|PM|max→+∞,而|QM|min是个固定值,则无法对任意的P∈C,都存在Q∈C,使得|PM||QM|=1,故②错误.故选:B.三、解答题(本大题共有5题,满分78分)解答下列各题必须在答题纸的相应位置写出必要的步骤.17.(14分)已知直四棱柱ABCD﹣A1B1C1D1,AB⊥AD,AB∥CD,AB=2,AD=3,CD=4.(1)证明:直线A1B∥平面DCC1D1;(2)若该四棱柱的体积为36,求二面角A1﹣BD﹣A的大小.【答案】(1)证明见解答;(2)arctan.【解答】解:(1)证明:根据题意可知AB∥DC,AA1∥DD1,且AB∩AA1=A,∴可得平面A1ABB1∥平面DCC1D1,又直线A1B⊂平面A1ABB1,∴直线A1B∥平面DCC1D1;(2)设AA1=h,则根据题意可得该四棱柱的体积为=36,∴h=4,∵A1A⊥底面ABCD,在底面ABCD内过A作AE⊥BD,垂足点为E,则A1E在底面ABCD内的射影为AE,∴根据三垂线定理可得BD⊥A1E,故∠A1EA即为所求,在Rt△ABD中,AB=2,AD=3,∴BD==,∴AE===,又A1A=h=4,∴tan∠A1EA===,∴二面角A1﹣BD﹣A的大小为arctan.18.(14分)已知a,c∈R,函数f(x)=.(1)若a=0,求函数的定义域,并判断是否存在c使得f(x)是奇函数,说明理由;(2)若函数过点(1,3),且函数f(x)与x轴负半轴有两个不同交点,求此时c的值和a的取值范围.【答案】(1)a=0时,f(x)的定义域为{x|x≠0},不存在c使得f(x)是奇函数.(2)(,)∪(,+∞).【解答】解:(1)若a=0,则f(x)==x++1,要使函数有意义,则x≠0,即f(x)的定义域为{x|x≠0},∵y=x+是奇函数,y=1是偶函数,∴函数f(x)=x++1为非奇非偶函数,不可能是奇函数,故不存在实数c,使得f(x)是奇函数.(2)若函数过点(1,3),则f(1)===3,得3a+2+c=3+3a,得c=3﹣2=1,此时f(x)=,若数f(x)与x轴负半轴有两个不同交点,即f(x)==0,得x2+(3a+1)x+1=0,当x<0时,有两个不同的交点,设g(x)=x2+(3a+1)x+1,则,得,得,即a>,若x+a=0即x=﹣a是方程x2+(3a+1)x+1=0的根,则a2﹣(3a+1)a+1=0,即2a2+a﹣1=0,得a=或a=﹣1,则实数a的取值范围是a>且a≠且a≠﹣1,即(,)∪(,+∞).19.(14分)2023年6月7日,21世纪汽车博览会在上海举行,已知某汽车模型公司共有25个汽车模型,其外观和内饰的颜色分布如下表所示:红色外观蓝色外观棕色内饰128米色内饰23(1)若小明从这些模型中随机拿一个模型,记事件A为小明取到红色外观的模型,事件B为小明取到棕色内饰的模型,求P(B)和P(B|A),并判断事件A和事件B是否独立;(2)该公司举行了一个抽奖活动,规定在一次抽奖中,每人可以一次性从这些模型中拿两个汽车模型,给出以下假设:假设1:拿到的两个模型会出现三种结果,即外观和内饰均为同色、外观和内饰都异色、以及仅外观或仅内饰同色;假设2:按结果的可能性大小,概率越小奖项越高;假设3:该抽奖活动的奖金额为:一等奖600元,二等奖300元、三等奖150元;请你分析奖项对应的结果,设X为奖金额,写出X的分布列并求出X的数学期望.【答案】(1)P(A)=,P(B)=.P(B|A)=.事件A和事件B不独立.(2)EX=277(元).【解答】解:(1)若红色外观的模型,则分棕色内饰12个,米色内饰2个,则对应的概率P(A)==,若小明取到棕色内饰,分红色外观12,蓝色外观8,则对应的概率P(B)===.取到红色外观的模型同时是棕色内饰的有12个,即P(AB)=,则P(B|A)====.∵P(A)P(B)==≠,∴P(A)P(B)≠P(AB),即事件A和事件B不独立.(2)由题意知X=600,300,150,则外观和内饰均为同色的概率P===,外观和内饰都异色的概率P==,仅外观或仅内饰同色的概率P=1﹣﹣=,∵>>,∴P(X=150)=,P(X=300)==,P(X=600)=,则X的分布列为:X150300600P则EX=150×+300×+600×=277(元).20.(18分)已知抛物线Γ:y2=4x,在Γ上有一点A位于第一象限,设A的纵坐标为a(a >0).(1)若A到抛物线Γ准线的距离为3,求a的值;(2)当a=4时,若x轴上存在一点B,使AB的中点在抛物线Γ上,求O到直线AB的距离;(3)直线l:x=﹣3,P是第一象限内Γ上异于A的动点,P在直线l上的投影为点H,直线AP与直线l的交点为Q.若在P的位置变化过程中,|HQ|>4恒成立,求a的取值范围.【答案】(1);(2);(3)(0,2].【解答】解:(1)抛物线Γ:y2=4x的准线为x=﹣1,由于A到抛物线Γ准线的距离为3,则点A的横坐标为2,则a2=4×2=8(a>0),解得;(2)当a=4时,点A的横坐标为,则A(4,4),设B(b,0),则AB的中点为,由题意可得,解得b=﹣2,所以B(﹣2,0),则,由点斜式可得,直线AB的方程为,即2x﹣3y+4=0,所以原点O到直线AB的距离为;(3)如图,设,则,故直线AP的方程为,令x=﹣3,可得,即,则,依题意,恒成立,又,则最小值为,即,即,则a2+12>a2+4a+4,解得0<a<2,又当a=2时,,当且仅当t=2时等号成立,而a≠t,即当a=2时,也符合题意.故实数a的取值范围为(0,2].21.(18分)已知f(x)=lnx,在该函数图像Γ上取一点a1,过点(a1,f(a1))做函数f (x)的切线,该切线与y轴的交点记作(0,a2),若a2>0,则过点(a2,f(a2))做函数f(x)的切线,该切线与y轴的交点记作(0,a3),以此类推a3,a4,⋯,直至a m≤0停止,由这些项构成数列{a n}.(1)设a m(m≥2)属于数列{a n},证明:a m=lna m﹣1﹣1;(2)试比较a m与a m﹣1﹣2的大小关系;(3)若正整数k≥3,是否存在k使得a1、a2、a3、⋯、a k依次成等差数列?若存在,求出k的所有取值;若不存在,请说明理由.【答案】(1)证明过程见解答;(2)a m≤a m﹣1﹣2;(3)k=3.【解答】解:(1)证明:,则过点(a m﹣1,f(a m﹣1))的切线的斜率为,由点斜式可得,此时切线方程为,即,令x=0,可得y=lna m﹣1﹣1,根据题意可知,a m=lna m﹣1﹣1,即得证;(2)先证明不等式lnx≤x﹣1(x>0),设F(x)=lnx﹣x+1(x>0),则,易知当0<x<1时,F′(x)>0,F(x)单调递增,当x>1时,F′(x)<0,F(x)单调递减,则F(x)≤F(1)=0,即lnx≤x﹣1(x>0),结合(1)可知,a m=lna m﹣1﹣1≤a m﹣1﹣1﹣1=a m﹣1﹣2;(3)假设存在这样的k符合要求,由(2)可知,数列{a n}为严格的递减数列,n=1,2,3,…,k,由(1)可知,公差d=a n﹣a n﹣1=lna n﹣1﹣a n﹣1﹣1,2≤n≤k,先考察函数g(x)=lnx﹣x﹣1,则,易知当0<x<1时,g′(x)>0,g(x)单调递增,当x>1时,g′(x)<0,g(x)单调递减,则g(x)=d至多只有两个解,即至多存在两个a n﹣1,使得g(a n﹣1)=d,若k≥4,则g(a1)=g(a2)=g(a3)=d,矛盾,则k=3,当k=3时,设函数h(x)=ln(lnx﹣1)﹣2lnx+x+1,由于h(e1.1)=ln0.1﹣2.2+e1.1+1=e1.1﹣ln10﹣1.2<0,h(e2)=﹣3+e2>0,则存在,使得h(x0)=0,于是取a1=x0,a2=lna1﹣1,a3=lna2﹣1,它们构成等差数列.综上,k=3.。
上海高考数学真题及答案
精心整理2018年上海市高考数学试卷参考答案与试题解析一、填空题(本大题共有12题,满分54分,第1~6题每题4分,第7~12题每题5分)考生应在答题纸的相应位置直接填写结果.1. (4分)(2018?上海)行列式° 1的值为18 .2 5【考点】OM :二阶行列式的定义.【专题】11:计算题;49:综合法;5R:矩阵和变换.【分析】直接利用行列式的定义,计算求解即可.【解答】解:行列式*】=4X 5 -2X仁18.2 5 ;故答案为:18.【点评】本题考查行列式的定义,运算法则的应用,是基本知识的考查.2. (4分)(2018?上海)双曲线二;--y2 3 4 5 6=1的渐近线方程为土一工.【考点】KC :双曲线的性质.【专题】11:计算题.【分析】先确定双曲线的焦点所在坐标轴,再确定双曲线的实轴长和虚轴长,最后确定双曲线的渐近线方程.I 2 n【解答】解:•••双曲线’.■- |的a=2,b=1,焦点在x轴上2 2 ■| i u而双曲线------- 的渐近线方程为y=±二丁精心整理【分析】利用二项式展开式的通项公式求得展开式中x2的系数.2 I 1I——双曲线1的渐近线方程为y= ±寺芷故答案为:y=±—工【点评】本题考察了双曲线的标准方程,双曲线的几何意义,特别是双曲线的渐近线方程,解题时要注意先定位,再定量的解题思想3. (4分)(2018?上海)在(1+x)7的二项展开式中,x2项的系数为21 (结果用数值表示).【考点】DA :二项式定理.【解答】解:二项式(1+X)7展开式的通项公式为T r+1= :?X「,令r=2,得展开式中x2的系数为c铲21.故答案为:21.【点评】本题考查了二项展开式的通项公式的应用问题,是基础题.4. (4分)(2018?上海)设常数a€ R,函数f (x)=1og2 (x+a).若f (x)的反函数的图象经过点(3, 1),则a= 7 .【考点】4R:反函数.【专题】11:计算题;33:函数思想;40:定义法;51:函数的性质及应用.【分析】由反函数的性质得函数f (x)=1og2 (x+a)的图象经过点(1, 3),由此能求出a.【解答】解:•常数a€ R,函数 f (x)=1og2 (x+a). 「f (x)的反函数的图象经过点(3, 1),•••函数f (x)=1og2 (x+a)的图象经过点(1, 3),•••Iog2 (1+a)=3,解得a=7.故答案为:7.【点评】本题考查实数值的求法,考查函数的性质等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.5. (4分)(2018?上海)已知复数z满足(1+i)z=1 - 7i (i是虚数单位),则| z| = 5 .【考点】A8 :复数的模.I\ I ;【专题】38:对应思想;4A:数学模型法;5N :数系的扩充和复数.【分析】把已知等式变形,然后利用复数代数形式的乘除运算化简,再由复数求模公式计算得答案. 【解答】解:由(1+i)z=1 - 7i,得1-五-6-8i 戸得二(1+i )(17〕,则|z|= 」二 ..故答案为:5.【点评】本题考查了复数代数形式的乘除运算,考查了复数模的求法,是基础题.6. (4分)(2018?上海)记等差数列{a n}的前n项和为S n,若a3=0, a s+a z=14,则S7= 14 . 【考点】85:等差数列的前n项和.精心整理【专题】11:计算题;34:方程思想;40:定义法;54:等差数列与等比数列.【分析】利用等差数列通项公式列出方程组,求出a i=- 4, d=2,由此能求出S7.【解答】解:•••等差数列{a n}的前n项和为S n, a3=0, a6+a7=14.If ai+2d=0・・< a i+5a i+6d=l 4解得a i= - 4, d=2,••• S7=7a i+^^ 尸-28+42=14.故答案为:14.【点评】本题考查等差数列的前7项和的求法,考查等差数列的性质等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.7. (5分)(2018?上海)已知a€ { - 2,- 1,-一. 一,1, 2, 3},若幕函数f (x) =x a为奇函数,■1—1且在(0, +x)上递减,则a= - 1 .【考点】4U :幕函数的概念、解析式、定义域、值域.【专题】11:计算题;34:方程思想;4O:定义法;51:函数的性质及应用.【分析】由幕函数f (x) =x a为奇函数,且在(0, +x)上递减,得到a是奇数,且a v0,由此能求出a的值.【解答】解: T a€ { - 2,- 1, 1, 1, 2, 3},幕函数f (x) =x a为奇函数,且在(0, +X)上递减,• a是奇数,且a v0,•••a=- 1.故答案为:-1.【点评】本题考查实数值的求法,考查幕函数的性质等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.8. (5分)(2018?上海)在平面直角坐标系中,已知点 A (- 1, 0)、B (2, 0), E、F是y轴上的两个动点,且|卩|=2,则二,匸的最小值为 -3 .【考点】9O:平面向量数量积的性质及其运算.【专题】11:计算题;35:转化思想;41:向量法;5A :平面向量及应用.【分析】据题意可设E (0, a), F (0, b),从而得出| a- b| =2,即a=b+2,或b=a+2,并可求得1|■ ■ - •,将a=b+2带入上式即可求出‘I的最小值,同理将b=a+2带入,也可求出.1 'I的最小值.精心整理【解答】解:根据题意,设E (0, a), F (0, b);二丨丨--:;•••a=b+2,或b=a+2 ;且|三站・• •「:;.••両■丽二一2十命;当a=b+2时,…丨.:「— | < | :;••• b2+2b- 2的最小值为;4 ■;• < -1 ;的最小值为-3,同理求出b=a+2时,Z-I卜的最小值为-3.故答案为:-3.【点评】考查根据点的坐标求两点间的距离,根据点的坐标求向量的坐标,以及向量坐标的数量积运算,二次函数求最值的公式.9. (5分)(2018?上海)有编号互不相同的五个砝码,其中5克、3克、1克砝码各一个,2克砝码两个,从中随机选取三个,则这三个砝码的总质量为9克的概率是丄(结果用最简分数表示).—冬—【考点】CB :古典概型及其概率计算公式.【专题】11:计算题;34:方程思想;49 :综合法;51:概率与统计.【分析】求出所有事件的总数,求出三个砝码的总质量为9克的事件总数,然后求解概率即可.【解答】解:编号互不相同的五个砝码,其中5克、3克、1克砝码各一个,2克砝码两个,从中随机选取三个,3个数中含有1个2;2个2,没有2,3种情况,所有的事件总数为:心訂10,这三个砝码的总质量为9克的事件只有:5, 3, 1或5, 2, 2两个,所以:这三个砝码的总质量为9克的概率是:亠4,故答案为:亍.【点评】本题考查古典概型的概率的求法,是基本知识的考查.10. (5分)(2018?上海)设等比数列{a n}的通项公式为a n=q n_ 1(n€ N*),前n项和为S n.若lim-—=^,贝卩q=—.n—K a n+i z【考点】8J:数列的极限.【专题】11:计算题;34:方程思想;35:转化思想;49:综合法;55:点列、递归数列与数学归纳法.【分析】禾I 」用等比数列的通项公式求出首项,通过数列的极限,列出方程,求解公比即可. 【解答】解:等比数列{an }的通项公式为a =q"1 (n € N*),可得a i =1, 因为 r 八‘=丄,所以数列的公比不是1,n+s a n+l 乂【点评】本题考查数列的极限的运算法则的应用,等比数列求和以及等比数列的简单性质的应用, 是基本知识的考查.11. (5分)(2018?上海)已知常数a >0,函数f(x )=' 的图象经过点P(p,\),Q(q ,)•若2z +ax552p+q =36pq ,则 a= 6.【考点】3A :函数的图象与图象的变换. 【专题】35:转化思想;51:函数的性质及应用.【分析】直接利用函数的关系式,利用恒等变换求出相应的 a 值. 【解答】解:函数f (x ) =_-——的图象经过点P (p , ¥), Q (q ,丄).严十" 同 I 5 则:一二丄,2p +ap 2q faq 55整理得:「=1,2p+n + 2p aQ+2q ap+解得:2p+q =a 2pq , 由于:2p+q =36pq , 所以:a 2=36, 由于a >0, 故:a=6.口1 -Qna n +i =q .可得 lim “n -*-00 (l _q) q1」1可得q=3.故答案为:3.故答案为:6【点评】本题考查的知识要点:函数的性质的应用,代数式的变换问题的应用.12'( 5分)(2018?上海)已知实数"心 y1、y2 满足:Xl2+yi2=1, X22处1, X1X2+y1y2「则"I —"的最大值为一+亠【考点】7F :基本不等式及其应用;IT :点到直线的距离公式. 【专题】35:转化思想;48 :分析法;59 :不等式的解法及应用.【分析】设A (x i , y i ), B (x 2, y 2), OA = (x i , y i ), OB = (x 2, y 2),由圆的方程和向量数量积的为点A , B 两点到直线x+y - 1=0的距离d i 与d 2之和,由两平行线的距离可得所求最大值. 【解答】解:设 A (x i , y i ) , B (x 2, y 2),'■= (x i , y i ), l-= (X 2 , y 2),由 x i 2+y i 2=1, x 22+y 22=1 , x i x 2+y i y 2= 2可得A , B 两点在圆x 2+y 2=1上, 且玉鉅=1 X 1 x cos / AOB=L ,2 [- 即有/ AOB=6° ,即三角形OAB 为等边三角形, AB=1 ,弱'5弱"的几何意义为点A ,B 两点 到直线x+y - 1=0的距离d i 与d 2之和,显然A , B 在第三象限,AB 所在直线与直线x+y=1平行, 可设 AB : x+y+t=0 , (t > 0), 由圆心O 到直线AB 的距离精心整理即h 、川+丨丄「: 1的最大值为:-:+ ■;,V2 V2故答案为:.〕+「::.【点评】本题考查向量数量积的坐标表示和定义,以及圆的方程和运用,考查点与圆的位置关系, 运=■: 1 -苗2即有两平行线的距离为 定义、坐标表示,可得三角形 OAB 为等边三角形,AB=1,I xj+yI -11 J的几何意义可得2 :二1=1,解得t=.,用点到直线的距离公式是解题的关键,属于难题.二、选择题(本大题共有4题,满分20分,每题5分)每题有且只有一个正确选项•考生应在答题纸的相应位置,将代表正确选项的小方格涂黑.2 2|13. (5分)(2018?上海)设P是椭圆=1上的动点,贝U P到该椭圆的两个焦点的距离之和为5 3()A. 2B. 2 :;C. 2 !.D. 4 '::」[\ \ : J J ;'【考点】K4 :椭圆的性质.【专题】11:计算题;49:综合法;5D :圆锥曲线的定义、性质与方程.【分析】判断椭圆长轴(焦点坐标)所在的轴,求出a,接利用椭圆的定义,转化求解即可.2 2【解答】解:椭圆'=1的焦点坐标在x轴,a=",5 32 2 -P是椭圆I厂=1上的动点,由椭圆的定义可知:则P到该椭圆的两个焦点的距离之和为2a=2 J 5 3故选:C.【点评】本题考查椭圆的简单性质的应用,椭圆的定义的应用,是基本知识的考查.14. (5分)(2018?上海)已知a€ R,贝U “A1”是1”的()A .充分非必要条件B .必要非充分条件C•充要条件D.既非充分又非必要条件【考点】29 :充分条件、必要条件、充要条件.【专题】11:计算题;34:方程思想;40:定义法;5L :简易逻辑.【分析】“A 1”?“丈1”,丄V1”?“A 1或a v 0”,由此能求出结果.a a【解答】解:a€ R,贝U “A1”?“V1”,a丄J .”?“a 1 或a v0”,a... “A 1”是丄"的充分非必要条件.a故选:A.精心整理【点评】本题考查充分条件、必要条件的判断,考查不等式的性质等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.15. (5分)(2018?上海)《九章算术》中,称底面为矩形而有一侧棱垂直于底面的四棱锥为阳马,设AA i是正六棱柱的一条侧棱,如图,若阳马以该正六棱柱的顶点为顶点、以AA1为底面矩形的一边,则这样的阳马的个数是()A. 4B. 8C. 12D. 16【考点】D8:排列、组合的实际应用.【专题】11:计算题;38:对应思想;4R:转化法;5O:排列组合.【分析】根据新定义和正六边形的性质可得答案.【解答】解:根据正六边形的性质,则D1- A1ABB1, D1 - A1AFF1满足题意,而C1,E1,C,D,E,和D1 一样,有2X6=12,丿I J '当A1ACC1为底面矩形,有2个满足题意,当A1AEE1为底面矩形,有2个满足题意,故有12+2+2=16故选:D.【点评】本题考查了新定义,以及排除组合的问题,考查了棱柱的特征,属于中档题.16. (5分)(2018?上海)设D是含数1的有限实数集,f (x)是定义在D上的函数,若f (x)的图象绕原点逆时针旋转一后与原图象重合,则在以下各项中,f (1)的可能取值只能是()6A. .「;B.C. _D. 0【考点】3A :函数的图象与图象的变换.【专题】35:转化思想;51:函数的性质及应用;56:三角函数的求值.I ■-.. I .【分析】直接利用定义函数的应用求出结果.【解答】解:由题意得到:问题相当于圆上由12个点为一组,每次绕原点逆时针旋转——个单位后6与下一个点会重合.我们可以通过代入和赋值的方法当 f (1)=亠一,0时,此时得到的圆心角为0,然而此时x=0或者x=1时,都有2个y与之对应,而我们知道函数的定义就是要求一个x只能对应一个y,因此只有当x=—,此时旋转,此时满足一个x只会对应一个y,因此答案就选:B.2 b故选:B .【点评】本题考查的知识要点:定义性函数的应用.三、解答题(本大题共有5题,满分76分)解答下列各题必须在答题纸的相应位置写出必要的步骤.17. (14分)(2018?上海)已知圆锥的顶点为 P ,底面圆心为O ,半径为2. (1) 设圆锥的母线长为4,求圆锥的体积;(2) 设PO=4, OA 、OB 是底面半径,且/ AOB=9° , M 为线段AB 的中点,如图•求异面直线 PM 与OB 所成的角的大小.【考点】LM :异面直线及其所成的角;L5 :旋转体(圆柱、圆锥、圆台);LF :棱柱、棱锥、棱 台的体积.【专题】11:计算题;31:数形结合;41 :向量法;5F :空间位置关系与距离;5G :空间角. 【分析】(1)由圆锥的顶点为P ,底面圆心为O ,半径为2,圆锥的母线长为4能求出圆锥的体积. (2)以O 为原点,OA 为x 轴,OB 为y 轴,OP 为z 轴,建立空间直角坐标系,利用向量法能求 出异面直线PM 与OB 所成的角.I' ;: a | !【解答】解:(1) •••圆锥的顶点为P ,底面圆心为O ,半径为2,圆锥的母线长为4, •••圆锥的体积 v=£ X 71 心2 x h=7" X IT X 22 X^/7^-22J J =師兀■.(2) T PO=4, OA , OB 是底面半径,且 / AOB=9° , M 为线段AB 的中点,•••以O 为原点,OA 为x 轴,OB 为y 轴,OP 为z 轴, 建立空间直角坐标系,P (0, 0, 4), A (2, 0, 0), B (0, 2, 0), M (1, 1, 0), O (0, 0, 0),「二(1 , 1 , - 4) , ' = (0 , 2 , 0), 设异面直线PM 与OB 所成的角为9,• 9 =arcc飞'【点评】本题考查圆锥的体积的求法,考查异面直线所成角的正切值的求法,考查空间中线线、 面、面面间的位置关系等基础知识,考查运算求解能力,考查函数与方程思想,是基础题. 18. (14分)(2018?上海)设常数 a € R ,函数 f (x ) =asin2x+2cos 2x . (1) 若f (x )为偶函数,求a 的值;=I M -O E I =::.|wi | - |0B |6则 cos 9•异面直线PM 与OB 所成的角的为arccos —19. (14分)(2018?上海)某群体的人均通勤时间,是指单日内该群体中成员从居住地到工作地的 平均用时.某地上班族S 中的成员仅以自驾或公交方式通勤.分析显示:当 S 中X% (0v x v 100)的成员自驾时,自驾群体的人均通勤时间为(2)若 f (K 7【考点】GP :两角和与差的三角函数;GS :二倍角的三角函数. 计算题;38:对应思想;4R :转化法;58:解三角形. )=丘+1,求方程f (x ) =1 -血在区间[-n n 上的解.【专题】11:【分析】(1)根据函数的奇偶性和三角形的函数的性质即可求出, (2)先求出 a 的值,再根据三角形函数的性质即可求出.(1) v f (x ) =asin2x+2co$x , • f (- x ) = - asin2x+2co$x ,v f (x )为偶函数,【解答】解:• f (- x ) =f (x ),• - asin2x+2co$x=asin2x+2coSx , 二 2asi n2x=0, • a=0;(2) v f (丄)=-;+1 ,4• asin ——+2cos (日=a+1=",• f (x ) = :;si n2x+2coVx= :;si n2x+cos2x+1= 2sin (2x+—) +1 ,••• f (x ) =1 - :■:, • 2sin (2x+二)+1=1-近,6••• sin (2x • 2x^—=-66 4n +2k n, k € Z ,n +k n,或 x= 13 24n +k n, k € Z ,v x € [ -n n ,"24"13K ~24~【点评】本题考查了三角函数的化简和求值,以及三角函数的性质,属于基础题.或x=或x=- 或x=-IT+2kn,或精心整理IpO, 0<x<30f ( X )= 30< .<100 (单位:分钟),I H 而公交群体的人均通勤时间不受 x 影响,恒为40分钟,试根据上述分析结果回答下列问题:(1) 当x 在什么范围内时,公交群体的人均通勤时间少于自驾群体的人均通勤时间?(2) 求该地上班族S 的人均通勤时间g(x )的表达式;讨论g( x )的单调性,并说明其实际意义.【考点】5B :分段函数的应用.【专题】12:应用题;33:函数思想;4C :分类法;51:函数的性质及应用.【分析】(1)由题意知求出f (x ) >40时x 的取值范围即可;(2) 分段求出g (x )的解析式,判断g (x )的单调性,再说明其实际意义.【解答】解;(1)由题意知,当30v x V 100时,即 x 2- 65x+900>0,解得x V 20或x > 45,•I x € (45, 100)时,公交群体的人均通勤时间少于自驾群体的人均通勤时间;(2) 当 0v x <30 时,g (x ) =30?x%+40 (1-x%) =40-希;丄LJ当 30v x V 100 时, 当0V x v 32.5时,g (x )单调递减; 当32.5V x v 100时,g (x )单调递增;说明该地上班族S 中有小于32.5%的人自驾时,人均通勤时间是递减的;有大于32.5%的人自驾时,人均通勤时间是递增的;当自驾人数为32.5%时,人均通勤时间最少.【点评】本题考查了分段函数的应用问题,也考查了分类讨论与分析问题、解决问题的能力.20. (16分)(2018?上海)设常数t >2•在平面直角坐标系xOy 中,已知点F (2, 0),直线I : x=t , 曲线r y 2=8x (0< x < t , y >0). I 与x 轴交于点A 、与r 交于点B . P 、Q 分别是曲线r 与线段 AB 上的动点.(1) 用t 表示点B 到点F 的距离;f (x ) =2x+1800 -90>40, (2x+^^To一 2 23 "102 90) ?x%+40 (1 - x%) 奇-托x+58; 13 10 g (x )= 二 g(x )(2) 设t=3, |FQ|=2,线段0Q 的中点在直线FP 上,求△ AQP 的面积;(3) 设t=8,是否存在以FP 、FQ 为邻边的矩形FPEQ ,使得点E 在r 上?若存在,求点P 的坐标; 若不存在,说明理由.【考点】KN :直线与抛物线的位置关系.【专题】35:转化思想;4R :转化法;5D :圆锥曲线的定义、性质与方程.【分析】(1)方法一:设B 点坐标,根据两点之间的距离公式,即可求得| BF| ;方法二:根据抛物线的定义,即可求得| BF| ;(2) 根据抛物线的性质,求得 Q 点坐标,即可求得0D 的中点坐标,即可求得直线 PF 的方程, 代入抛物线方程,即可求得 P 点坐标,即可求得△ AQP 的面积;(3) 设P 及E 点坐标,根据直线k PF ?k FQ = - 1,求得直线QF 的方程,求得Q 点坐标,根据「+卩」=-,求得E 点坐标,贝则(牝+F ) 2=8 (「+6),即可求得P 点坐标. ;'| I 知 I m :/【解答】解:(1)方法一:由题意可知:设 B (t ,2逅t ),则 |BF|=. •=+2, •••I BF|=t+2;方法二:由题意可知:设 B (t , 2血t ),由抛物线的性质可知:| BF| =t^-=t+2, • | BF| =t+2;(2) F (2, 0), |FQ|=2, t=3,则 | FA| =1,• |AQ|=庚,• Q (3,旧,设OQ 的中点D ,解得:x==, x=6 (舍去),• △ AQP 的面积S 〒x 體X 丄斗3 ;(3)存在,设 P (牛,y ), E (弓m ),则 k PF =^^= J , k FQ 芈H 3 8 匚―y -16 8V8),D ( V3严 k QF = =-屈,则直线PF 方程:y=-犯(x - 2),,整理得: 3x 2- 20x+12=0,2 2 2 2直线QF 方程为卡(x -2),「y Q 嚮(8-2)咛,Q (8,气 j 根据丨•+ |.'=「.,则 E C +6,’亠丁),8 4y2 2...(耳J )2=8 (红+6),解得:y 2半,4y 8 5.存在以FP 、FQ 为邻边的矩形FPEQ ,使得点E 在r 上,且P (二,)【点评】本题考查抛物线的性质,直线与抛物线的位置关系,考查转化思想,计算能力,属于中档 题.21. (18分)(2018?上海)给定无穷数列{an },若无穷数列{b n }满足:对任意n € N *,都有|b n -a n | w 1,则称{ b n }与{a n }接近”.(1) 设{a n }是首项为1,公比为丄的等比数列,b n =a n +1 + 1, n € N ,判断数列{b n }是否与{a n }接近, 并说明理由;(2) 设数列{a n }的前四项为:a 1=1, a 2=2, a 3=4, a 4=8,{b n }是一个与{a n }接近的数列,记集合 M={x|x=b i , i=1, 2, 3, 4},求 M 中元素的个数 m ;(3) 已知{a n }是公差为d 的等差数列,若存在数列{b n }满足:{b n }与{a n }接近,且在b 2 - b 1,b 3- b 2,…,b 201 - b 200中至少有100个为正数,求d 的取值范围.【考点】8M :等差数列与等比数列的综合.【专题】34:方程思想;48 :分析法;54:等差数列与等比数列.【分析】(1)运用等比数列的通项公式和新定义 接近”,即可判断;(2) 由新定义可得 1 w b n <a n +1,求得b i ,i=1,2,3,4的范围,即可得到所求个数;(3) 运用等差数列的通项公式可得 an ,讨论公差d >0, d=0,- 2v d v 0, d w - 2,结合新定义 接 近”,推理和运算,即可得到所求范围.【解答】解:(1)数列{b n }与{a n }接近.可得 a n - 1 w b n W an+1 ,理由:{an }是首项为1,公比为寺的等比数列,,b n =a n +1 +1=丄2n |=1- 可得a n = +1,2n_1 可得数列{b n }与{an }接近;(2) {b n }是一个与{an }接近的数列, v 1, n € N *,则 | b n - a n | =|1数列{a n}的前四项为:a i=1, a2=2, 33=4, a4=8,可得b i€ [0, 2] , b2€ [ 1, 3] , b3€ [3, 5] , b4€ [7, 9],可能b i与b2相等,b2与b3相等,但b i与b3不相等,b4与b3不相等,集合M={x|x=b i, i=1, 2, 3, 4},M中元素的个数m=3或4;(3){a n}是公差为d的等差数列,若存在数列{b n}满足:{b n}与{a n}接近,可得a n=a1 + (n - 1) d ,①若d>0 ,取b n=a n ,可得b n+1 - b n=a n+1 - a n=d> 0 ,则b2 - b1 , b3 - b2 ,…,b201 - b200中有200个正数,符合题意;②若d=0 ,取b n=a1 -丄,则|b n- a n|=|a1-丄-a1| —v 1 , n€ N ,n n nI ------------- 1 j ”产/ ' I可得b n+1 - b n=—- > 0 ,n n+1则b2 - b1 , b3 - b2 ,…,b201 - b200中有200个正数,符合题意;③若-2v d v 0 ,可令b2n- 1=a2n-1 - 1 , b2n=a2n+1 ,贝U b2n —b2n-1=a2n+1 -( 92nT — 1 ) =2+d > 0 ,则b2 - b1 , b3 - b2 ,…,b201 - b200中恰有100个正数,符合题意;④若d< - 2,若存在数列{b n}满足:{b n}与{a n}接近,即为a n —1W b n W cl n+1 , a n+1 —1W b n+1 9n+1 +1 ,可得b n+1 - b n< a n+1 + 1 -(a n - 1) =2+d< 0 ,b2 - b1 , b3 - b2 ,…,b201 - b200中无正数,不符合题意.综上可得,d的范围是(-2 , +x).【点评】本题考查新定义接近”的理解和运用,考查等差数列和等比数列的定义和通项公式的运用,I . i :考查分类讨论思想方法,以及运算能力和推理能力,属于难题.感恩和爱是亲姐妹。
2020年上海高考数学试题及答案
2020年上海高考数学试题及答案一、填空题(本题共12小题,满分54分,其中1-6题每题4分,7-12题每题5分)1. 已知集合{}1,2,4A =,{}2,3,4B =,求A B =_______【分值】4分 【答案】{}2,42. 1lim31n n n →∞+=-________【分值】4分【答案】133. 已知复数z 满足12z i =-(i 为虚数单位),则z =_______【分值】4分4. 已知行列式126300a cd b =,则行列式a c d b=_______【分值】4分 【答案】25. 已知()3f x x =,则()1f x -=_______【分值】4分 【答案】()13xx R ∈6.已知a 、b 、1、2的中位数为3,平均数为4,则ab= 【分值】4分 【答案】367.已知20230x y y x y +≥⎧⎪≥⎨⎪+-≤⎩,则2z y x =-的最大值为【分值】5分【答案】-18.已知{}n a 是公差不为零的等差数列,且1109a a a +=,则12910a a a a ++⋅⋅⋅=【分值】5分 【答案】2789.从6人中挑选4人去值班,每人值班1天,第一天需要1人,第二天需要1人,第三天需要2人,则有种排法。
【分值】5分 【答案】18010.椭圆22143x y +=,过右焦点F 作直线l 交椭圆于P 、Q 两点,P 在第二象限已知()(),,'','Q Q Q Q Q x y Q x y 都在椭圆上,且y'0Q Q y +=,'FQ PQ ⊥,则直线l 的方程为【分值】5分【答案】10x y +-=11、设a R ∈,若存在定义域R 的函数()f x 既满足“对于任意0x R ∈,()0f x 的值为20x 或0x ”又满足“关于x 的方程()f x a =无实数解”,则α的取值范围为【分值】5分【答案】()()(),00,11,-∞⋃⋃+∞【解析】题目转换为是否为实数a ,使得存在函数()f x满足“对于任意0x R ∈,()0f x 的值为20x 或0x ”,又满足“关于的方程()f x a =无实数解”构造函数;()2,,x x af x x x a≠⎧=⎨=⎩,则方程()f x a =只有0,1两个实数解。
2020年上海卷数学高考真题(解析版)
2020年普通高等学校招生全国统一考试数学卷(上海卷)一、填空题(本题共12小题,满分54分,其中1-6题每题4分,7-12题每题5分)1. 已知集合{}1,2,4A =,{}2,3,4B =,求A B =_______【答案】{}2,42. 1lim31n n n →∞+=-________【答案】133. 已知复数z 满足12z i =-(i 为虚数单位),则z =_______4. 已知行列式126300a cd b =,则行列式a cd b=_______【答案】25. 已知()3f x x =,则()1f x -=_______【答案】()13xx R ∈6.已知a 、b 、1、2的中位数为3,平均数为4,则ab= 【答案】367.已知20230x y y x y +≥⎧⎪≥⎨⎪+-≤⎩,则2z y x =-的最大值为【答案】-18.已知{}n a 是公差不为零的等差数列,且1109a a a +=,则12910a a a a ++⋅⋅⋅=【答案】2789.从6人中挑选4人去值班,每人值班1天,第一天需要1人,第二天需要1人,第三天需要2人,则有种排法。
【答案】18010.椭圆22143x y +=,过右焦点F 作直线l 交椭圆于P 、Q 两点,P 在第二象限已知()(),,'','Q Q Q Q Q x y Q x y 都在椭圆上,且y'0Q Q y +=,'FQ PQ ⊥,则直线l 的方程为 【答案】10x y +-=11、设a R ∈,若存在定义域R 的函数()f x 既满足“对于任意0x R ∈,()0f x 的值为20x 或0x ”又满足“关于x 的方程()f x a =无实数解”,则α的取值范围为【答案】()()(),00,11,-∞⋃⋃+∞【解析】题目转换为是否为实数a ,使得存在函数()f x满足“对于任意0x R ∈,()0f x 的值为20x 或0x ”,又满足“关于的方程()f x a =无实数解”构造函数;()2,,x x af x x x a ≠⎧=⎨=⎩,则方程()f x a =只有0,1两个实数解。
2023年上海市高考数学试卷含答案解析
绝密★启用前2023年上海市高考数学试卷学校:___________姓名:___________班级:___________考号:___________注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上,写在试卷上无效。
3.考试结束后,本试卷和答题卡一并交回。
第I卷(选择题)一、单选题:本题共4小题,共18分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.已知P={1,2},Q={2,3},若M={x|x∈P,x∉Q},则M=( )A. {1}B. {2}C. {3}D. {1,2,3}2.根据所示的散点图,下列说法正确的是( )A. 身高越大,体重越大B. 身高越大,体重越小C. 身高和体重成正相关D. 身高和体重成负相关3.已知a∈R,记y=sinx在[a,2a]的最小值为s a,在[2a,3a]的最小值为t a,则下列情况不可能的是( )A. s a>0,t a>0B. s a<0,t a<0C. s a>0,t a<0D. s a<0,t a>04.已知P,Q是曲线Γ上两点,若存在M点,使得曲线Γ上任意一点P都存在Q使得|MP|⋅|MQ|=1,则称曲线Γ是“自相关曲线”.现有如下两个命题:①任意椭圆都是“自相关曲线”;②存在双曲线是“自相关曲线”,则( )A. ①成立,②成立B. ①成立,②不成立C. ①不成立,②成立D. ①不成立,②不成立第II卷(非选择题)二、填空题:本题共12小题,共54分。
5.不等式|x −2|<1的解集为______ .6.已知向量a ⃗=(−2,3),b ⃗⃗=(1,2),则a ⃗⋅b⃗⃗= ______ . 7.已知首项为3,公比为2的等比数列,设等比数列的前n 项和为S n ,则S 6= ______ .8.已知tanα=3,则tan2α= ______ .9.已知函数f(x)={1,x ≤0,2x ,x >0,则函数f(x)的值域为______ . 10.已知复数z =1−i(i 为虚数单位),则|1+iz|= ______ .11.已知圆x 2+y 2−4x −m =0的面积为π,则m = ______ .12.已知△ABC 中,角A ,B ,C 所对的边a =4,b =5,c =6,则sinA = ______ .13.现有某地一年四个季度的GDP(亿元),第一季度GDP 为232(亿元),第四季度GDP 为241(亿元),四个季度的GDP 逐季度增长,且中位数与平均数相同,则该地一年的GDP 为______ .14.已知(1+2023x)100+(2023−x)100=a 0+a 1x +a 2x 2+⋯+a 99x 99+a 100x 100,若存在k ∈{0,1,2,⋯,100}使得a k <0,则k 的最大值为______ .15.某公园欲建设一段斜坡,坡顶是一条直线,斜坡顶点距水平地面的高度为4米,坡面与水平面所成夹角为θ.行人每沿着斜坡向上走1m 消耗的体力为(1.025−cosθ),欲使行人走上斜坡所消耗的总体力最小,则θ= ______ .16.空间中有三个点A 、B 、C ,且AB =BC =CA =1,在空间中任取2个不同的点,使得它们与A 、B 、C 恰好成为一个正四棱锥的五个顶点,则不同的取法有______ 种.三、解答题:本题共5小题,共78分。
2020年高考数学上海卷附答案解析版
.
x 2 y 3≤0
a a a
答
8.已知an是公差不为零的等差数列,且 a 1 a10 a ,9 则 1
2
a10
9
.
9.从 6 人中挑选 4 人去值班,每人值班 1 天,第一天需要 1 人,第二天需要 1 人,第三
天需要 2 人,则有
种排法.
题
10.椭圆 x2 y2 1 ,过右焦点F 作直线 l 交椭圆于P 、 Q 两点, P 在第二象限已知 43
性质 p . (1)判断数列 3,2,5,1 和 4,3,2,5,1 是否具有性质 p ,请说明理由. (2)若 a1 1 ,公比为q 的等比数列,项数为 10,具有性质 p ,求 q 的取值范围.
(3)若 an 是 1,2,…, m 的一个排列m≥4, bk ak1 k 1, 2 m 1 ,an, bn,都具有性质 p ,求所有满足条件的an .
PF1 8 ,求∠F1PF2 ;
(3)过点 S
0, 2
b2 2
且斜率为
b的直线l 2
交曲线 于 M
、N
两点,用 b
的代数式
表示OM ON,并求出OM ON的取值范围。
21.有限数列an,若满足 a1 a2 ≤ a1 a3 ≤≤ a1 an , m 是项数,则称an满足
数学试卷 第 3 页(共 4 页)
2 /6
18.【答案】(1)
1, 2
x
x∣x
3
4k或x
5
3
4k
,
k
Z;
(2)
1 2
,
0
19.【答案】(1)
x
0,
80 3
;
(2)
x
2022年上海市高考数学试卷和答案
2022年上海市高考数学试卷和答案一、填空题(本大题共有12题,满分54分,第1~6题每题4分,第7~12题每题5分)1.(4分)已知z=1+i(其中i为虚数单位),则2=.2.(4分)双曲线﹣y2=1的实轴长为.3.(4分)函数f(x)=cos2x﹣sin2x+1的周期为.4.(4分)已知a∈R,行列式的值与行列式的值相等,则a =.5.(4分)已知圆柱的高为4,底面积为9π,则圆柱的侧面积为.6.(4分)x﹣y≤0,x+y﹣1≥0,求z=x+2y的最小值.7.(5分)二项式(3+x)n的展开式中,x2项的系数是常数项的5倍,则n=.8.(5分)若函数f(x)=,为奇函数,求参数a的值为.9.(5分)为了检测学生的身体素质指标,从游泳类1项,球类3项,田径类4项共8项项目中随机抽取4项进行检测,则每一类都被抽到的概率为.10.(5分)已知等差数列{a n}的公差不为零,S n为其前n项和,若S5=0,则S i(i=0,1,2,⋯,100)中不同的数值有个.11.(5分)若平面向量||=||=||=λ,且满足•=0,•=2,•=1,则λ=.12.(5分)设函数f(x)满足f(x)=f(),定义域为D=[0,+∞),值域为A,若集合{y|y=f(x),x∈[0,a]}可取得A中所有值,则参数a的取值范围为.二、选择题(本题共有4题,满分20分,每题5分)每题有且只有一个正确选项.13.(5分)若集合A=[﹣1,2),B=Z,则A∩B=()A.{﹣2,﹣1,0,1}B.{﹣1,0,1}C.{﹣1,0}D.{﹣1}14.(5分)若实数a、b满足a>b>0,下列不等式中恒成立的是()A.a+b>2B.a+b<2C.+2b>2D.+2b<215.(5分)如图正方体ABCD﹣AB1C1D1中,P、Q、R、S分别为棱AB、BC、BB1、CD的中点,联结A1S,B1D.空间任意两点M、N,若线段MN上不存在点在线段A1S、B1D上,则称MN 两点可视,则下列选项中与点D1可视的为()A.点P B.点B C.点R D.点Q16.(5分)设集合Ω={(x,y)|(x﹣k)2+(y﹣k2)2=4|k|,k∈Z}①存在直线l,使得集合Ω中不存在点在l上,而存在点在l两侧;②存在直线l,使得集合Ω中存在无数点在l上;()A.①成立②成立B.①成立②不成立C.①不成立②成立D.①不成立②不成立三、答案题(本大题共有5题,满分76分).17.(14分)如图所示三棱锥,底面为等边△ABC,O为AC边中点,且PO⊥底面ABC,AP=AC=2.;(1)求三棱锥体积V P﹣ABC(2)若M为BC中点,求PM与面PAC所成角大小.18.(14分)f(x)=log3(a+x)+log3(6﹣x).(1)若将函数f(x)图像向下移m(m>0)后,图像经过(3,0),(5,0),求实数a,m的值.(2)若a>﹣3且a≠0,求解不等式f(x)≤f(6﹣x).19.(14分)在如图所示的五边形中,AD=BC=6,AB=20,O为AB中点,曲线CD上任一点到O距离相等,角∠DAB=∠ABC =120°,P,Q关于OM对称;(1)若点P与点C重合,求∠POB的大小;(2)P在何位置,求五边形面积S的最大值.20.(16分)设有椭圆方程Γ:+=1(a>b>0),直线l:x+y ﹣4=0,Γ下端点为A,M在l上,左、右焦点分别为F1(﹣,0)、F2(,0).(1)a=2,AM中点在x轴上,求点M的坐标;(2)直线l与y轴交于B,直线AM经过右焦点F2,在△ABM中有一内角余弦值为,求b;(3)在椭圆Γ上存在一点P到l距离为d,使|PF1|+|PF2|+d=6,随a的变化,求d的最小值.21.(18分)数列{a n}对任意n∈N*且n≥2,均存在正整数i∈[1,n﹣1],满足a n+1=2a n﹣a i,a1=1,a2=3.(1)求a4可能值;(2)命题p:若a1,a2,⋯,a8成等差数列,则a9<30,证明p为真,同时写出p逆命题q,并判断命题q是真是假,说明理由;(3)若a2m=3m,(m∈N*)成立,求数列{a n}的通项公式.答案一、填空题(本大题共有12题,满分54分,第1~6题每题4分,第7~12题每题5分)1.【知识点】复数的运算.【答案】解:z=1+i,则=1﹣i,所以2=2﹣2i.故答案为:2﹣2i.2.【知识点】双曲线的性质.【答案】解:由双曲线﹣y2=1,可知:a=3,所以双曲线的实轴长2a=6.故答案为:6.3.【知识点】三角函数的周期性.【答案】解:f(x)=cos2x﹣sin2x+1=cos2x﹣sin2x+cos2x+sin2x=2cos2x=cos2x+1,T==π.故答案为:π.4.【知识点】行列式.【答案】解:因为=2a﹣3,=a,所以2a﹣3=a,解得a=3.故答案为:3.5.【知识点】旋转体(圆柱、圆锥、圆台);棱柱、棱锥、棱台的侧面积和表面积.【答案】解:因为圆柱的底面积为9π,即πR2=9π,所以R=3,所以S侧=2πRh=24π.故答案为:24π.6.【知识点】简单线性规划.【答案】解:如图所示:由x﹣y≤0,x+y﹣1≥0,可知行域为直线x﹣y=0的左上方和x+y ﹣1=0的右上方的公共部分,联立,可得,即图中点A(,),当目标函数z=x+2y沿着与正方向向量=(1,2)的相反向量平移时,离开区间时取最小值,即目标函数z=x+2y过点A(,)时,取最小值:+2×=.故答案为:.7.【知识点】二项式定理.【答案】解:∵二项式(3+x)n的展开式中,x2项的系数是常数项的5倍,即×3n﹣2=5×3n,即=5×9,∴n=10,故答案为:10.8.【知识点】分段函数的应用.【答案】解:∵函数f(x)=,为奇函数,∴f(﹣x)=﹣f(x),∴f(﹣1)=﹣f(1),∴﹣a2﹣1=﹣(a+1),即a(a﹣1)=0,求得a=0或a=1.当a=0时,f(x)=,不是奇函数,故a≠0;当a=1时,f(x)=,是奇函数,故满足条件,综上,a=1,故答案为:1.9.【知识点】古典概型及其概率计算公式.【答案】解:从游泳类1项,球类3项,田径类4项共8项项目中随机抽取4项进行检测,则每一类都被抽到的方法共有+种,而所有的抽取方法共有种,故每一类都被抽到的概率为==,故答案为:.10.【知识点】等差数列的前n项和.【答案】解:∵等差数列{a n}的公差不为零,S n为其前n项和,S5=0,∴=0,解得a1=﹣2d,∴S n=na1+=﹣2nd+=(n2﹣5n),∵d≠0,∴S i(i=0,1,2⋯,100)中S0=S5=0,S2=S3=﹣3d,S1=S4=﹣2d,其余各项均不相等,∴S i(i=0,1,2⋯,100)中不同的数值有:101﹣3=98.故答案为:98.11.【知识点】平面向量数量积的性质及其运算.【答案】解:由题意,有•=0,则,设<>=θ,⇒则得,tanθ=,由同角三角函数的基本关系得:cosθ=,则=||||cosθ==2,λ2=,则.故答案为:.12.【知识点】函数的值域;函数的定义域及其求法.【答案】解:令x=得,x=或x=(舍去);当x≥时,≤=,故对任意x≥,都存在x0∈[0,],=x0,故f(x)=f(x0),而当0≤x<时,>=,故A={y|y=f(x),x∈[0,]},故当A={y|y=f(x),x∈[0,a]}时,[0,]⊆[0,a],故参数a的最小值为,故参数a的取值范围为[,+∞),故答案为:[,+∞).二、选择题(本题共有4题,满分20分,每题5分)每题有且只有一个正确选项.13.【知识点】交集及其运算.【答案】解:∵A=[﹣1,2),B=Z,∴A∩B={﹣1,0,1},故选:B.14.【知识点】基本不等式及其应用.【答案】解:因为a>b>0,所以a+b≥2,当且仅当a=b时取等号,又a>b>0,所以a+b,故A正确,B错误,=2,当且仅当,即a=4b时取等号,故CD错误,故选:A.15.【知识点】空间中直线与直线之间的位置关系.【答案】解:线段MN上不存在点在线段A1S、B1D上,即直线MN与线段A1S、B1D不相交,因此所求与D1可视的点,即求哪条线段不与线段A1S、B1D相交,对A选项,如图,连接A1P、PS、D1S,因为P、S分别为AB、CD的中点,∴易证A1D1∥PS,故A1、D1、P、S四点共面,∴D1P与A1S相交,∴A错误;对B、C选项,如图,连接D1B、DB,易证D1、B1、B、D四点共面,故D1B、D1R都与B1D相交,∴B、C错误;对D选项,连接D1Q,由A选项分析知A1、D1、P、S四点共面记为平面A1D1PS,∵D1∈平面A1D1PS,Q∉平面A1D1PS,且A1S⊂平面A1D1PS,点D1∉A1S,∴D1Q与A1S为异面直线,同理由B,C选项的分析知D1、B1、B、D四点共面记为平面D1B1BD,∵D1∈平面D1B1BD,Q∉平面D1B1BD,且B1D⊂平面D1B1BD,点D1∉B1D,∴D1Q与B1D为异面直线,故D1Q与A1S,B1D都没有公共点,∴D选项正确.故选:D.16.【知识点】直线与圆的位置关系.【答案】解:当k=0时,集合Ω={(x,y)|(x﹣k)2+(y﹣k2)2=4|k|,k∈Z}={(0,0)},当k>0时,集合Ω={(x,y)|(x﹣k)2+(y﹣k2)2=4|k|,k∈Z},表示圆心为(k,k2),半径为r=2的圆,圆的圆心在直线y=x2上,半径r=f(k)=2单调递增,相邻两个圆的圆心距d==,相邻两个圆的半径之和为l=2+2,因为d>l有解,故相邻两个圆之间的位置关系可能相离,当k<0时,同k>0的情况,故存在直线l,使得集合Ω中不存在点在l上,而存在点在l两侧,故①正确,若直线l斜率不存在,显然不成立,设直线l:y=mx+n,若考虑直线l与圆(x﹣k)2+(y﹣k2)2=4|k|的焦点个数,d=,r=,给定m,n,当k足够大时,均有d>r,故直线l只与有限个圆相交,②错误.故选:B.三、答案题(本大题共有5题,满分76分).17.【知识点】棱柱、棱锥、棱台的体积;直线与平面所成的角.【答案】解:(1)在三棱锥P﹣ABC中,因为PO⊥底面ABC,所以PO⊥AC,又O为AC边中点,所以△PAC为等腰三角形,又AP=AC=2.所以△PAC是边长为2的为等边三角形,∴PO=,三棱锥体积V P===﹣ABC1,(2)以O为坐标原点,OB为x轴,OC为y轴,OP为z轴,建立空间直角坐标系,则P(0,0,),B(,0,0),C(0,1,0),M(,,0),=(,,﹣),平面PAC的法向量=(,0,0),设直线PM与平面PAC所成角为θ,则直线PM与平面PAC所成角的正弦值为sinθ=||==,所以PM与面PAC所成角大小为arcsin.18.【知识点】不等式恒成立的问题;对数函数的图象与性质.【答案】解:(1)因为函数f(x)=log3(a+x)+log3(6﹣x),将函数f(x)图像向下移m(m>0)后,得y=f(x)﹣m=log3(a+x)+log3(6﹣x)﹣m的图像,由函数图像经过点(3,0)和(5,0),所以,解得a=﹣2,m=1.(2)a>﹣3且a≠0时,不等式f(x)≤f(6﹣x)可化为log3(a+x)+log3(6﹣x)≤log3(a+6﹣x)+log3x,等价于,解得,当﹣3<a<0时,0<﹣a<3,3<a+6<6,解不等式得﹣a<x≤3,当a>0时,﹣a<0,a+6>6,解不等式得3≤x<6;综上知,﹣3<a<0时,不等式f(x)≤f(6﹣x)的解集是(﹣a,3],a>0时,不等式f(x)≤f(6﹣x)的解集是[3,6).19.【知识点】三角形中的几何计算.【答案】解:(1)点P与点C重合,由题意可得OB=10,BC=6,∠ABC=120°,由余弦定理可得OP2=OB2+BC2﹣2OB•BCcos∠ABC=36+100﹣2×6×10×(﹣)=196,所以OP=14,在△OBP中,由正弦定理得=,所以=,解得sin∠POB=,所以∠POB的大小为arcsin;(2)如图,设CD与MO相交于点N,由题意知五边形CDQMP 关于MN对称,所以S五边形CDQMP=2S四边形CPMN=2(S四边形OCPM﹣S△ONC),设∠COM=θ,结合(1)可知cosθ=,所以sinθ=,且θ为锐角,因为OC=OP=OM=14,所以CM2=OC2+OM2﹣2OC•OM•cosθ=,故,显然,△CMP的底边CM为定值,则P在劣弧CM中点位置时,CM边上的高最大,此时OP⊥CM,故S四边形OCPM===,而S△ONC===,故S的最大值为=,同理,当P在劣弧DM中点时,S也取得相同的最大值,故P点在劣弧CM中点或劣弧DM的中点位置时,五边形CDQMP 的面积最大,且为.20.【知识点】直线与圆锥曲线的综合;椭圆的性质.【答案】解:(1)由题意可得,,∵AM的中点在x轴上,∴M的纵坐标为,代入得.(2)由直线方程可知,①若,则,即,∴,∴.②若,则,∵,∴,∴,∴tan∠BAM=7.即tan∠OAF2=7,∴,∴,综上或.(3)设P(acosθ,bsinθ),由点到直线距离公式可得,很明显椭圆在直线的左下方,则,即,∵a2=b2+2,∴,据此可得,,整理可得(a﹣1)(3a﹣5)≤0,即,从而.即d的最小值为.21.【知识点】数列递推式.【答案】解:(1)a3=2a2﹣a1=5,a4=2a3﹣a2=7或a4=2a3﹣a1=9.(2)∵a1,a2,a3,a4,a5,a6,a7,a8为等差数列,∴,a9=2a8﹣a i=30﹣a i<30.逆命题q:若a9<30,则a1,a2,a3,a4,a5,a6,a7,a8为等差数列是假命题,举例:a1=1,a2=3,a3=5,a4=7,a5=9,a6=11,a7=13,a8=2a7﹣a5=17,a9=2a8﹣a7=21.(3)因为,∴,a2m+1=2a2m﹣a j(j≤2m﹣1),∴a2m+2=4a2m﹣2a j﹣a i,∴,以下用数学归纳法证明数列单调递增,即证明a n+1>a n恒成立:当n=1,a2>a1明显成立,假设n=k时命题成立,即a k>a k﹣1>a k﹣1⋯>>a2>a1>0,则a k+1﹣a k=2a k﹣a i﹣a k=a k﹣a i>0,则a k+1>a k,命题得证.回到原题,分类讨论求解数列的通项公式:1.若j=2 m﹣1,则a2m=2a j+a i=2a2m﹣1+a i>a2m﹣1﹣a i矛盾,2.若j=2 m﹣2,则,∴,∴i=2m﹣2,此时,∴,3.若j<2 m﹣2,则,∴,∴j=2m﹣1,∴a2m+2=2a2m+1﹣a2m﹣1(由(2)知对任意m成立),a6=2a5﹣a3,事实上:a6=2a5﹣a2矛盾.综上可得.。
2024年上海卷高考数学真题(含部分解析)
2024年普通高等学校招生全国统一考试 上海卷数学试卷1.设全集,集合,则_________.2.已知,_________.3.已知,的解集为_________.4.已知,若是奇函数,,_________.5.已知,,,,则k 的值为_________.6.在的二项展开式中,若各项系数和为32,则项的系数为_________.7.已知抛物线上有一点P 到准线的距离为9,那么P 到x 轴的距离为_________.8.某校举办科学竞技比赛,有A 、B 、C 3种题库,A 题库有5000道题,B 题库有4000道题,C 题库有3000道题.小申已完成所有题,他A 题库的正确率是0.92,B 题库的正确率是0.86,C 题库的正确率是0.72,现他从所有的题中随机选一题,正确率是_________.9.已知虚数z ,其实部为1,且,则实数m 为_________.10.设集合A 中的元素皆为无重复数字的三位正整数,且元素中任意两者之积皆为偶数,求集合中元素个数的最大值_________.11.已知A 在O 正东方向,B 在O 的正北方向,O 到A 、B 距离相等,,,则_________.(精确到0.1度)12.等比数列首项,,记,若对任意正整数n ,是闭区间,则q 的范围是_________.13.已知气候温度和海水表层温度相关,且相关系数为正数,对此描述正确的是(){1,2,3,4,5}U ={2,4}A =A=0()1,0x f x x >=≤⎪⎩(3)f =x ∈R 2230x x --<3()f x x a =+()f x x ∈R a =k ∈R (2,5)a =(6,)b k = //a b (1)n x +2x 24y x =2()z m m z+=∈R 16.5BTO ∠=︒37ATO ∠=︒BOT ∠={}n a 10a >1q >[][]{}121ln ,,,n n x y x y a a a a +=-∈ ∣lnA.气候温度高,海水表层温度就高B.气候温度高,海水表层温度就低C.随着气候温度由低到高,海水表层温度呈上升趋势D.随着气候温度由低到高,海水表层温度呈下降趋势14.下列函数的最小正周期是的是( )A. B. C. D.15.定义一个集合,集合中的元素是空间内的点集,任取,存在不全为0的实数,,,使得.已知,则的充分条件是( )A. B. C. D.16.定义集合,在使得的所有中,下列成立的是( )A.是偶函数 B.在处取最大值C.严格增D.在处取到极小值17.如图为正四棱锥,O 为底面ABCD 的中心.(1)若,绕PO 旋转一周形成的几何体的体积;(2)若,E 为PB 的中点,求直线BD 与平面AEC 所成角的大小.18.若(,).(1)过,求的解集;(2)存在x 使得、、成等差数列,求a 的取值范围.19.为了解某地初中学生体育锻炼时长与学业成绩的关系,从该地区29000名学生中抽取580()f x 2πsin cos x x+sin cos x x22sin cos x x+22sin cos x x-Ω123,,P P P ∈Ω1λ2λ3λ1122330OP OP OP λλλ++= (1,0,0)∈Ω(0,0,1)∉Ω(0,0,0)(1,0,0)-(0,1,0)(0,0,1)-()(){}0000,,,()M x x x x f x f x =∈∈-∞<R ∣[1,1]M =-()f x ()f x ()f x 2x =()f x ()f x 1x =-P ABCD -5AP =AD =POA △AP AD =()log a f x x =0a >1a ≠()y f x =(4,2)(22)()f x f x -<(1)f x +()f ax (2)f x +人,得到日均体育锻炼时长与学业成绩的数据如下表所示:优秀5444231不优秀1341471374027(1)该地区29000名学生中体育锻炼时长大于1小时人数约为多少?(2)估计该地区初中学生日均体育锻炼的时长(精确到0.1)(3)是否有的把握认为学业成绩优秀与日均体育锻炼时长不小于1小时且小于2小时有关?附:,.20.双曲线,,,为左右顶点,过点的直线l 交双曲线于两点P 、Q ,且点P 在第一象限.(1)若时,求b .(2)若为等腰三角形时,求点P 的坐标.(3)过点Q 作OQ 延长线交于点R ,若,求b 取值范围.21.对于一个函数和一个点,令,若是取到最小值的点,则称P 是M 在的“最近点”.(1)对于,,求证,对于点,存在点P ,使得P 是M 在的“最近点”;(2)对于,,,请判断是否存在一个点P ,它是M 在最近点,且直线MP 与在点P 处的切线垂直;(3)设存在导函数,且在定义域R 上恒正,设点,.若对任意的,都存在点P ,满足P 是的最近点,也是的最近点,试求的单调性.[0,0.5)[0.5,1)[1,1.5)[1.5,2)[2,2.5)95%22()()()()()n ad bc a b c d a c b d χ-=++++()2 3.8410.05P χ≥≈222:1y x bΓ-=(0)b >1A 2A (2,0)M -Γe 2=b =2MA P △Γ121A R A P ⋅=()f x (,)M a b 22()()(())s x x a f x b =-+-()()00,P x f x ()s x ()f x 1()f x x=(0,)D =+∞(1,0)M ()f x ()e x f x =D =R (1,0)M ()f x ()f x ()f x ()g x 1(1,()())M t f t g t --2(1,()())M t f t g t ++t ∈R 1M 2M ()f x参考答案3.答案:4.答案:0解析:由题可知,,则.5.答案:15解析:由题可知,,则.6.答案:10解析:由题可知,展开式中各项系数的和是,所以,该二项式的通项公式是,令,,得.7.答案:解析:设P 坐标为,P 到准线的距离为9,即,,代入抛物线方程,可得,则P 到x 轴的距离为解析:由题可知,A 题库占比为,B 题库占比为,C 题库占比为,.9.答案:2解析:设,所以,因为,所以,解得,所以.10.答案:329解析:由题可知,集合A 中每个元素都互异的,且元素中最多有一个奇数,剩余全是偶数,先研究集合中(0)0F =256k =⨯(1)32nx +=515C 1rr r r T x -+=⋅⋅3r =2201b b b -=+2211121m b =+=+=+(1,3)-0a =15k =5n =52r -=35C 10=()00,x y 019x +=08x =0y =±5121314511170.920.860.72123420P =⨯+⨯+⨯=1i(0)z b b =+≠222222(1i)221i 1i 1i 1i 111b b z b b b z b b b b ⋅-⎛⎫+=++=++=++- ⎪++++⎝⎭m ∈R 1b =±无重复数字的三位偶数:(1)若个位为0,这样的偶数有种;(2)若个位不为0,这样的偶数有种;所以集合元素个数最大值为种.11.答案:解析:不妨设,,,则所以在中,①在中,②在中,③①②③联立.12.答案:解析:由题不妨设,若x ,y 均在,则有,若x ,y 均在,则有,若x ,y 分別在两个区间,则,又因为,总有ln 是闭区间,则恒成立即可,化简得,所以有恒成立.13.答案:C解析:成对数据相关分析中,若相关系数为正数,当x 的值由小变大,y 的值具有由小变大的变化趋垫,故A ,B ,D 选项错误,答案选C.14.答案:A解析:对于A ,,则,满足条件,故A 正确;对于B ,,则,不满足条件,故B 错误;对于C ,,为常值函数,则不存在最小正周期,不满足条件,故C 错误;对于D ,,则,不满足条件,故D 错误;故答案选A.15.答案:C111488C C C 256⋅⋅=7.8︒BT b =AB =222)2cos53.5b c bc =+-︒sin16.5sin a bBOT=︒∠()sin 37sin 90a bBOT =︒︒-∠1(2)0nq q q --+≥2πT=2ππ2T==22sin cos cos 2x x x -=-2972P =256721329++=OA OB a ==AT c =ABT △OBT △OAT △7.8BOT ∠≈︒[2,)+∞x y >[]12,a a []210,x y a a -∈-[]1,n n a a +[]10,n n x y a a +-∈-[]211,n n x y a a a a +-∈--1q >21n n n a a a a +-≤-2q ≥πsin cos 4x x x x x ⎫⎛⎫+=+=+⎪ ⎪⎪⎝⎭⎭1sin cos sin 22x x x =22sin cos 1x x +=2ππ2T ==解析:因为,,不全为0,,所以三个向量无法构成三维空间坐标系的一组基,又因为,所以对于A ,三者可以构成一组基,故不能推出,故A 错误;对于B ,若,均属于,且,共线,所以可以属于,此时三者不共面,故B 错误;对于C ,显然,三者可以构成一组基,与条件不符合,故可以推出,故C 正确;对于D ,三者无法构成一组基,故不能推出,故D 错误.故答案选C.16.答案:D解析:时,,又因为,所以,当且时,恒成立,说明在上,函数单调递增,故A 错误;对于B ,且在上,函数单调递增,故函数在上最大值为,若函数在时,,则M 的集合不会是,所以在1处取到极大值,在2处不一定取最大值,故B 错误;对于C ,在时,若函数严格增,则集合M 的取值不会是,而是全体定义域,故C 错误.对于D ,因为当时,,所以左侧不是单调递减,若左侧单调递增,或者在某一段单调递增,则M 的集合不会是,所以在左侧相邻一段是常函数,又因为在上,函数单调递增,故D 正确.17.答案:(1)(2)解析:(1)因为是正四棱锥,所以底面ABCD 是正方形,且底面ABCD ,因为,因为,所以,所以绕OP 旋转一周形成的几何体是以3为底面半径,4为高的圆锥,所以.1λ(1,0,0)-(1,0,0)(0,0,1)(0,0,1)∈Ω0x x <[1,1]M =-0[1,1]x ∈-()0()f x f x <()(1)f x f <-()(1)f x f <-[1,1]-[1,1]-π4OP ⊥3AO OD OB OC ====4PO ==211π3412π33V Sh ==⨯⨯=圆锥2λ3λ1122330OP OP OP λλλ++=(1,0,0)∈Ω(0,0,1)∈Ω(1,0,0)Ω(1,0,0)-Ω(0,0,1)Ω∉()0()f x f x <()(1)f x f <-[1,1)x ∈-[1,1]-[1,1]-(,1]-∞(1)f ()f x 1x >()(1)f x f >[1,1]-1x <-()f x [1,1]-1x <-1-1-12πP ABCD -AD =5AP =POA △(2)如图建立空间直角坐标系,因为,由题知是正四棱锥,所以该四棱锥各棱长相等,设,则,,则可得,,,,,,,故,,设为平面AEC 的法向量,则,令,则,,所以,则,设直线BD 与面AEC 所成角为,因为,,所以.18.答案:(1)(2)解析:(1)由过可得,则,又,故,AP AD =P ABCD-AB =AO OD OB OC a ====PO a ==(0,0,0)O (0,0,)P a (0,,0)A a -(,0,0)B a (0,,0)C a (,0,0)D a -,0,22aa E ⎛⎫⎪⎝⎭(2,0,0)BD a =- (0,2,0)AC a = ,,22a a AE a ⎛⎫⎪⎝⎭ ()111,,n x y z =11112000022a y n AC a ax a y z n AE ⎧⋅=⎧⋅=⎪⎪⇒⎨⎨⋅+⋅+⋅=⋅=⎪⎪⎩⎩11x =10y =11z =-(1,01)n =-cos ,||||n BD n BD n BD ⋅〈〉===⋅θsin |cos ,|n BD θ=〈〉= π0,2θ⎡⎤∈⎢⎥⎣⎦π4θ=(1,2)1a >()y f x =(4,2)log 42a =242a a =⇒=±0a >2a =因为在上是严格增函数,,所以解集为.(2)因为、、成等差数列,所以,即有解,化简可得,得且,则在上有解,又,故在上,,即或,又,所以.19.答案:(1)12500人(2)(3)学业成绩与锻炼时长不小于1小时且小于2小时有关解析:(1)580人中体育锻炼时长不小于1小时人数占比该地区29000名初中学生中体育锻炼时长不小于1小时的人数约为人;(2)该地区初中学生锻炼平均时长约为:;(3)[1,2)其他总数优秀455095不优秀177308485①提出原假设:成绩优秀与日均体育锻炼时长不小于1小时且小于2小时无关.log (1)log (2)2log ()a a a x x ax +++=2(1)(2)()x x ax ++=22(1)(2)x x a x ++=222(1)(2)231311248x x x x x x ++⎛⎫=++=+- ⎪⎝⎭22(1)(2)3120148x x x ++⎛⎫>+-= ⎪⎝⎭1a >1a >423113740272558058P +++++==10.50.511 1.5 1.522 2.5(5134)(44147)(42137)(340)(127)58022222++++⎡⎤⨯++⨯++⨯++⨯++⨯+⎢⎥⎣⎦2()log f x x =(0,)+∞(22)()02212f x f x x x x -<⇒<-<⇒<<(1,2)(1)f x +()f ax (2)f x +(1)(2)2()f x f x f ax +++=()2log (1)(2)log a a x x ax ++=1020000,1x x x ax a a +>⎧⎪+>⎪⇒>⎨>⎪⎪>≠⎩(0,)+∞(0,)+∞211a a >⇒<-0a >0.9h25290001250058⨯=270.9h 29=≈0H②确定显著性水平,③④否定原假设,即学业成绩优秀与日均体育锻炼时长不小于1小时且小于2小时有关.20.答案:(1)(2)(3)解析:(1)因为,即,所以.因为,所以.因为,所以,所以.(2)因为为等腰三角形,①若为底,则点P 在直线时,与P 在第一象限矛盾,故舍去.②若为底,则,与矛盾,故舍去.③若MP 为底,则,设,,.,即,又因为,得,很,得,.(3)由,设,,则,设直线0.05α=22580(4530817750) 3.976 3.841(4550)(177308)(45177)(50308)χ⨯⨯-⨯=≈>+⨯+⨯+⨯+(2,P 2e =224c a =24c =23b =2MA P △12x =-2MP MA =22MA PA =00x >3=()2 3.8410.05P χ≥≈b =b ∈2ca=21a =222a b c +=b =2MA 2A P 2MP MA >()00,P x y 00y >()220019x y -+=2200183y x -=()()220081193x x -+-⨯=200116320x x --=02x =0y =(2,P 1(1,0)A -()11,P x y ()22,Q x y ()22,R x y --1:2l x my m b ⎛⎫=->⎪⎝⎭联立得,则,,,又由,得即,即化简后可得到再由韦达定理得,化简:所以得,又,得.21.答案:(1)见解析(2)存在点使直线MP 于在点P 处的切线垂直(3)略解析:(1)证明:,当且仅当即时取到最小值,所以对于点存在点使得P 是M 在的最近点.(2),0负0正严格减极小值严格增所以当时,取到最小值,此时点,,,222121x my m b y x b ⎧⎛⎫=-> ⎪⎪⎪⎝⎭⎨⎪-=⎪⎩()222221430b m y b my b --+=21222212224131b m y y b m b y y b m ⎧+=⎪⎪-⎨⎪⋅=⎪-⎩()1221,A R x y =-+- ()2111,A P x y =- 121A R A P ⋅=()()2112111x x y y -+--=()()2112111x x y y --+=-()()2112331my my y y --+=-()()2121213100m y y m y y +-++=()()22222231121010b m m b b m +-+-=2223100b m b +-=22221031b m b b-=>23b <0b >b ∈(0,1)P ()f x 222211()(0)02s x x x x x ⎛⎫=-+-=+≥= ⎪⎝⎭221x x=1x =(0,0)M (1,1)P ()f x ()2222()(1)e 0(1)e xx s x x x =-+-=-+2()2(1)2e xs x x '=-+(,0)-∞(0,)+∞()s x '()s x 0x =()s x (0,1)P ()e xf x '=0e 1k ==在点P 处的切线为,,此时,所以存在点使直线MP 于在点P 处的切线垂直.()f x 1y x =+01110MP k -==--1MP k k ⋅=-(0,1)P ()f x。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018年上海市高考数学试卷参考答案与试题解析一、填空题(本大题共有12题,满分54分,第1~6题每题4分,第7~12题每题5分)考生应在答题纸的相应位置直接填写结果.1.(4分)(2018?上海)行列式的值为18 .【考点】OM:二阶行列式的定义.【专题】11 :计算题;49 :综合法;5R :矩阵和变换.【分析】直接利用行列式的定义,计算求解即可.【解答】解:行列式=4×5﹣2×1=18.故答案为:18.【点评】本题考查行列式的定义,运算法则的应用,是基本知识的考查.2.(4分)(2018?上海)双曲线﹣y2=1的渐近线方程为±.【考点】KC:双曲线的性质.【专题】11 :计算题.【分析】先确定双曲线的焦点所在坐标轴,再确定双曲线的实轴长和虚轴长,最后确定双曲线的渐近线方程.【解答】解:∵双曲线的a=2,b=1,焦点在x轴上而双曲线的渐近线方程为y=±∴双曲线的渐近线方程为y=±故答案为:y=±【点评】本题考察了双曲线的标准方程,双曲线的几何意义,特别是双曲线的渐近线方程,解题时要注意先定位,再定量的解题思想3.(4分)(2018?上海)在(1+x)7的二项展开式中,x2项的系数为21 (结果用数值表示).【考点】DA:二项式定理.【专题】38 :对应思想;4O:定义法;5P :二项式定理.【分析】利用二项式展开式的通项公式求得展开式中x2的系数.【解答】解:二项式(1+x)7展开式的通项公式为=?x r,Tr+1令r=2,得展开式中x2的系数为=21.故答案为:21.【点评】本题考查了二项展开式的通项公式的应用问题,是基础题.(x+a).若f(x)的反函数的图4.(4分)(2018?上海)设常数a∈R,函数f(x)=1og2象经过点(3,1),则a= 7 .【考点】4R:反函数.【专题】11 :计算题;33 :函数思想;4O:定义法;51 :函数的性质及应用.(x+a)的图象经过点(1,3),由此能求出a.【分析】由反函数的性质得函数f(x)=1og2【解答】解:∵常数a∈R,函数f(x)=1og(x+a).2f(x)的反函数的图象经过点(3,1),∴函数f(x)=1og(x+a)的图象经过点(1,3),2∴log(1+a)=3,2解得a=7.故答案为:7.【点评】本题考查实数值的求法,考查函数的性质等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.5.(4分)(2018?上海)已知复数z满足(1+i)z=1﹣7i(i是虚数单位),则|z|= 5 .【考点】A8:复数的模.【专题】38 :对应思想;4A :数学模型法;5N :数系的扩充和复数.【分析】把已知等式变形,然后利用复数代数形式的乘除运算化简,再由复数求模公式计算得答案.【解答】解:由(1+i)z=1﹣7i,得,则|z|=.故答案为:5.【点评】本题考查了复数代数形式的乘除运算,考查了复数模的求法,是基础题.6.(4分)(2018?上海)记等差数列{an }的前n项和为Sn,若a3=0,a6+a7=14,则S7= 14 .【考点】85:等差数列的前n项和.【专题】11 :计算题;34 :方程思想;4O:定义法;54 :等差数列与等比数列.【分析】利用等差数列通项公式列出方程组,求出a1=﹣4,d=2,由此能求出S7.【解答】解:∵等差数列{an }的前n项和为Sn,a3=0,a6+a7=14,∴,解得a1=﹣4,d=2,∴S7=7a1+=﹣28+42=14.故答案为:14.【点评】本题考查等差数列的前7项和的求法,考查等差数列的性质等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.7.(5分)(2018?上海)已知α∈{﹣2,﹣1,﹣,1,2,3},若幂函数f(x)=xα为奇函数,且在(0,+∞)上递减,则α=﹣1 .【考点】4U:幂函数的概念、解析式、定义域、值域.【专题】11 :计算题;34 :方程思想;4O:定义法;51 :函数的性质及应用.【分析】由幂函数f(x)=xα为奇函数,且在(0,+∞)上递减,得到a是奇数,且a<0,由此能求出a的值.【解答】解:∵α∈{﹣2,﹣1,,1,2,3},幂函数f(x)=xα为奇函数,且在(0,+∞)上递减,∴a是奇数,且a<0,∴a=﹣1.故答案为:﹣1.【点评】本题考查实数值的求法,考查幂函数的性质等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.8.(5分)(2018?上海)在平面直角坐标系中,已知点A(﹣1,0)、B(2,0),E、F是y轴上的两个动点,且||=2,则的最小值为﹣3 .【考点】9O:平面向量数量积的性质及其运算.【专题】11 :计算题;35 :转化思想;41 :向量法;5A :平面向量及应用.【分析】据题意可设E(0,a),F(0,b),从而得出|a﹣b|=2,即a=b+2,或b=a+2,并可求得,将a=b+2带入上式即可求出的最小值,同理将b=a+2带入,也可求出的最小值.【解答】解:根据题意,设E(0,a),F(0,b);∴;∴a=b+2,或b=a+2;且;∴;当a=b+2时,;∵b2+2b﹣2的最小值为;∴的最小值为﹣3,同理求出b=a+2时,的最小值为﹣3.故答案为:﹣3.【点评】考查根据点的坐标求两点间的距离,根据点的坐标求向量的坐标,以及向量坐标的数量积运算,二次函数求最值的公式.9.(5分)(2018?上海)有编号互不相同的五个砝码,其中5克、3克、1克砝码各一个,2克砝码两个,从中随机选取三个,则这三个砝码的总质量为9克的概率是(结果用最简分数表示).【考点】CB:古典概型及其概率计算公式.【专题】11 :计算题;34 :方程思想;49 :综合法;5I :概率与统计.【分析】求出所有事件的总数,求出三个砝码的总质量为9克的事件总数,然后求解概率即可.【解答】解:编号互不相同的五个砝码,其中5克、3克、1克砝码各一个,2克砝码两个,从中随机选取三个,3个数中含有1个2;2个2,没有2,3种情况,所有的事件总数为:=10,这三个砝码的总质量为9克的事件只有:5,3,1或5,2,2两个,所以:这三个砝码的总质量为9克的概率是:=,故答案为:.【点评】本题考查古典概型的概率的求法,是基本知识的考查.10.(5分)(2018?上海)设等比数列{an }的通项公式为an=q n﹣1(n∈N*),前n项和为Sn.若=,则q= 3 .【考点】8J:数列的极限.【专题】11 :计算题;34 :方程思想;35 :转化思想;49 :综合法;55 :点列、递归数列与数学归纳法.【分析】利用等比数列的通项公式求出首项,通过数列的极限,列出方程,求解公比即可.【解答】解:等比数列{an }的通项公式为a=q n﹣1(n∈N*),可得a1=1,因为=,所以数列的公比不是1,,an+1=q n.可得====,可得q=3.故答案为:3.【点评】本题考查数列的极限的运算法则的应用,等比数列求和以及等比数列的简单性质的应用,是基本知识的考查.11.(5分)(2018?上海)已知常数a>0,函数f(x)=的图象经过点P(p,),Q(q,).若2p+q=36pq,则a= 6 .【考点】3A:函数的图象与图象的变换.【专题】35 :转化思想;51 :函数的性质及应用.【分析】直接利用函数的关系式,利用恒等变换求出相应的a值.【解答】解:函数f(x)=的图象经过点P(p,),Q(q,).则:,整理得:=1,解得:2p+q =a 2pq , 由于:2p+q =36pq , 所以:a 2=36, 由于a >0, 故:a=6. 故答案为:6【点评】本题考查的知识要点:函数的性质的应用,代数式的变换问题的应用.12.(5分)(2018?上海)已知实数x 1、x 2、y 1、y 2满足:x 12+y 12=1,x 22+y 22=1,x 1x 2+y 1y 2=,则+的最大值为+.【考点】7F :基本不等式及其应用;IT :点到直线的距离公式. 【专题】35 :转化思想;48 :分析法;59 :不等式的解法及应用. 【分析】设A (x 1,y 1),B (x 2,y 2),=(x 1,y 1),=(x 2,y 2),由圆的方程和向量数量积的定义、坐标表示,可得三角形OAB 为等边三角形,AB=1,+的几何意义为点A ,B 两点到直线x+y ﹣1=0的距离d 1与d 2之和,由两平行线的距离可得所求最大值. 【解答】解:设A (x 1,y 1),B (x 2,y 2), =(x 1,y 1),=(x 2,y 2),由x 12+y 12=1,x 22+y 22=1,x 1x 2+y 1y 2=, 可得A ,B 两点在圆x 2+y 2=1上, 且?=1×1×cos ∠AOB=,即有∠AOB=60°,即三角形OAB 为等边三角形, AB=1,+的几何意义为点A,B两点到直线x+y﹣1=0的距离d1与d2之和,显然A,B在第三象限,AB所在直线与直线x+y=1平行,可设AB:x+y+t=0,(t>0),由圆心O到直线AB的距离d=,可得2=1,解得t=,即有两平行线的距离为=,即+的最大值为+,故答案为:+.【点评】本题考查向量数量积的坐标表示和定义,以及圆的方程和运用,考查点与圆的位置关系,运用点到直线的距离公式是解题的关键,属于难题.二、选择题(本大题共有4题,满分20分,每题5分)每题有且只有一个正确选项.考生应在答题纸的相应位置,将代表正确选项的小方格涂黑.13.(5分)(2018?上海)设P是椭圆=1上的动点,则P到该椭圆的两个焦点的距离之和为()A.2B.2C.2D.4【考点】K4:椭圆的性质.【专题】11 :计算题;49 :综合法;5D :圆锥曲线的定义、性质与方程.【分析】判断椭圆长轴(焦点坐标)所在的轴,求出a,接利用椭圆的定义,转化求解即可.【解答】解:椭圆=1的焦点坐标在x轴,a=,P是椭圆=1上的动点,由椭圆的定义可知:则P到该椭圆的两个焦点的距离之和为2a=2.故选:C.【点评】本题考查椭圆的简单性质的应用,椭圆的定义的应用,是基本知识的考查.14.(5分)(2018?上海)已知a∈R,则“a>1”是“<1”的()A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分又非必要条件【考点】29:充分条件、必要条件、充要条件.【专题】11 :计算题;34 :方程思想;4O:定义法;5L :简易逻辑.【分析】“a>1”?“”,“”?“a>1或a<0”,由此能求出结果.【解答】解:a∈R,则“a>1”?“”,“”?“a>1或a<0”,∴“a>1”是“”的充分非必要条件.故选:A.【点评】本题考查充分条件、必要条件的判断,考查不等式的性质等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.15.(5分)(2018?上海)《九章算术》中,称底面为矩形而有一侧棱垂直于底面的四棱锥为阳马,设AA1是正六棱柱的一条侧棱,如图,若阳马以该正六棱柱的顶点为顶点、以AA1为底面矩形的一边,则这样的阳马的个数是()A.4 B.8 C.12 D.16【考点】D8:排列、组合的实际应用.【专题】11 :计算题;38 :对应思想;4R:转化法;5O :排列组合.【分析】根据新定义和正六边形的性质可得答案.【解答】解:根据正六边形的性质,则D1﹣A1ABB1,D1﹣A1AFF1满足题意,而C1,E1,C,D,E,和D1一样,有2×6=12,当A1ACC1为底面矩形,有2个满足题意,当A1AEE1为底面矩形,有2个满足题意,故有12+2+2=16故选:D.【点评】本题考查了新定义,以及排除组合的问题,考查了棱柱的特征,属于中档题.16.(5分)(2018?上海)设D是含数1的有限实数集,f(x)是定义在D上的函数,若f(x)的图象绕原点逆时针旋转后与原图象重合,则在以下各项中,f(1)的可能取值只能是()A.B. C. D.0【考点】3A:函数的图象与图象的变换.【专题】35 :转化思想;51 :函数的性质及应用;56 :三角函数的求值.【分析】直接利用定义函数的应用求出结果.【解答】解:由题意得到:问题相当于圆上由12个点为一组,每次绕原点逆时针旋转个单位后与下一个点会重合.我们可以通过代入和赋值的方法当f(1)=,,0时,此时得到的圆心角为,,0,然而此时x=0或者x=1时,都有2个y与之对应,而我们知道函数的定义就是要求一个x只能对应一个y,因此只有当x=,此时旋转,此时满足一个x只会对应一个y,因此答案就选:B.故选:B.【点评】本题考查的知识要点:定义性函数的应用.三、解答题(本大题共有5题,满分76分)解答下列各题必须在答题纸的相应位置写出必要的步骤.17.(14分)(2018?上海)已知圆锥的顶点为P,底面圆心为O,半径为2.(1)设圆锥的母线长为4,求圆锥的体积;(2)设PO=4,OA、OB是底面半径,且∠AOB=90°,M为线段AB的中点,如图.求异面直线PM与OB所成的角的大小.【考点】LM:异面直线及其所成的角;L5:旋转体(圆柱、圆锥、圆台);LF:棱柱、棱锥、棱台的体积.【专题】11 :计算题;31 :数形结合;41 :向量法;5F :空间位置关系与距离;5G :空间角.【分析】(1)由圆锥的顶点为P,底面圆心为O,半径为2,圆锥的母线长为4能求出圆锥的体积.(2)以O为原点,OA为x轴,OB为y轴,OP为z轴,建立空间直角坐标系,利用向量法能求出异面直线PM与OB所成的角.【解答】解:(1)∵圆锥的顶点为P,底面圆心为O,半径为2,圆锥的母线长为4,∴圆锥的体积V===.(2)∵PO=4,OA,OB是底面半径,且∠AOB=90°,M为线段AB的中点,∴以O为原点,OA为x轴,OB为y轴,OP为z轴,建立空间直角坐标系,P(0,0,4),A(2,0,0),B(0,2,0),M(1,1,0),O(0,0,0),=(1,1,﹣4),=(0,2,0),设异面直线PM与OB所成的角为θ,则cosθ===.∴θ=arccos.∴异面直线PM与OB所成的角的为arccos.【点评】本题考查圆锥的体积的求法,考查异面直线所成角的正切值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.18.(14分)(2018?上海)设常数a∈R,函数f(x)=asin2x+2cos2x.(1)若f(x)为偶函数,求a的值;(2)若f()=+1,求方程f(x)=1﹣在区间[﹣π,π]上的解.【考点】GP:两角和与差的三角函数;GS:二倍角的三角函数.【专题】11 :计算题;38 :对应思想;4R:转化法;58 :解三角形.【分析】(1)根据函数的奇偶性和三角形的函数的性质即可求出,(2)先求出a的值,再根据三角形函数的性质即可求出.【解答】解:(1)∵f(x)=asin2x+2cos2x,∴f(﹣x)=﹣asin2x+2cos2x,∵f(x)为偶函数,∴f(﹣x)=f(x),∴﹣asin2x+2cos2x=asin2x+2cos2x,∴2asin2x=0,∴a=0;(2)∵f()=+1,∴asin+2cos2()=a+1=+1,∴a=,∴f(x)=sin2x+2cos2x=sin2x+cos2x+1=2sin(2x+)+1,∵f(x)=1﹣,∴2sin(2x+)+1=1﹣,∴sin(2x+)=﹣,∴2x+=﹣+2kπ,或2x+=π+2kπ,k∈Z,∴x=﹣π+kπ,或x=π+kπ,k∈Z,∵x∈[﹣π,π],∴x=或x=或x=﹣或x=﹣【点评】本题考查了三角函数的化简和求值,以及三角函数的性质,属于基础题.19.(14分)(2018?上海)某群体的人均通勤时间,是指单日内该群体中成员从居住地到工作地的平均用时.某地上班族S中的成员仅以自驾或公交方式通勤.分析显示:当S中x%(0<x<100)的成员自驾时,自驾群体的人均通勤时间为f(x)=(单位:分钟),而公交群体的人均通勤时间不受x影响,恒为40分钟,试根据上述分析结果回答下列问题:(1)当x在什么范围内时,公交群体的人均通勤时间少于自驾群体的人均通勤时间?(2)求该地上班族S的人均通勤时间g(x)的表达式;讨论g(x)的单调性,并说明其实际意义.【考点】5B:分段函数的应用.【专题】12 :应用题;33 :函数思想;4C :分类法;51 :函数的性质及应用.【分析】(1)由题意知求出f(x)>40时x的取值范围即可;(2)分段求出g(x)的解析式,判断g(x)的单调性,再说明其实际意义.【解答】解;(1)由题意知,当30<x<100时,f(x)=2x+﹣90>40,即x2﹣65x+900>0,解得x<20或x>45,∴x∈(45,100)时,公交群体的人均通勤时间少于自驾群体的人均通勤时间;(2)当0<x≤30时,g(x)=30?x%+40(1﹣x%)=40﹣;当30<x<100时,g(x)=(2x+﹣90)?x%+40(1﹣x%)=﹣x+58;∴g(x)=;当0<x<32.5时,g(x)单调递减;当32.5<x<100时,g(x)单调递增;说明该地上班族S中有小于32.5%的人自驾时,人均通勤时间是递减的;有大于32.5%的人自驾时,人均通勤时间是递增的;当自驾人数为32.5%时,人均通勤时间最少.【点评】本题考查了分段函数的应用问题,也考查了分类讨论与分析问题、解决问题的能力.20.(16分)(2018?上海)设常数t>2.在平面直角坐标系xOy中,已知点F(2,0),直线l:x=t,曲线Γ:y2=8x(0≤x≤t,y≥0).l与x轴交于点A、与Γ交于点B.P、Q 分别是曲线Γ与线段AB上的动点.(1)用t表示点B到点F的距离;(2)设t=3,|FQ|=2,线段OQ的中点在直线FP上,求△AQP的面积;(3)设t=8,是否存在以FP、FQ为邻边的矩形FPEQ,使得点E在Γ上?若存在,求点P 的坐标;若不存在,说明理由.【考点】KN:直线与抛物线的位置关系.【专题】35 :转化思想;4R:转化法;5D :圆锥曲线的定义、性质与方程.【分析】(1)方法一:设B点坐标,根据两点之间的距离公式,即可求得|BF|;方法二:根据抛物线的定义,即可求得|BF|;(2)根据抛物线的性质,求得Q点坐标,即可求得OD的中点坐标,即可求得直线PF的方程,代入抛物线方程,即可求得P点坐标,即可求得△AQP的面积;(3)设P及E点坐标,根据直线kPF ?kFQ=﹣1,求得直线QF的方程,求得Q点坐标,根据+=,求得E点坐标,则()2=8(+6),即可求得P点坐标.【解答】解:(1)方法一:由题意可知:设B(t,2t),则|BF|==t+2,∴|BF|=t+2;方法二:由题意可知:设B(t,2t),由抛物线的性质可知:|BF|=t+=t+2,∴|BF|=t+2;(2)F(2,0),|FQ|=2,t=3,则|FA|=1,∴|AQ|=,∴Q(3,),设OQ的中点D,D(,),kQF==﹣,则直线PF方程:y=﹣(x﹣2),联立,整理得:3x2﹣20x+12=0,解得:x=,x=6(舍去),∴△AQP的面积S=××=;(3)存在,设P(,y),E(,m),则kPF ==,kFQ=,直线QF方程为y=(x﹣2),∴yQ=(8﹣2)=,Q(8,),根据+=,则E(+6,),∴()2=8(+6),解得:y2=,∴存在以FP、FQ为邻边的矩形FPEQ,使得点E在Γ上,且P(,).【点评】本题考查抛物线的性质,直线与抛物线的位置关系,考查转化思想,计算能力,属于中档题.21.(18分)(2018?上海)给定无穷数列{an },若无穷数列{bn}满足:对任意n∈N*,都有|bn ﹣an|≤1,则称{bn}与{an}“接近”.(1)设{an }是首项为1,公比为的等比数列,bn=an+1+1,n∈N*,判断数列{bn}是否与{an}接近,并说明理由;(2)设数列{an }的前四项为:a1=1,a2=2,a3=4,a4=8,{bn}是一个与{an}接近的数列,记集合M={x|x=bi,i=1,2,3,4},求M中元素的个数m;(3)已知{an }是公差为d的等差数列,若存在数列{bn}满足:{bn}与{an}接近,且在b2﹣b1,b3﹣b2,…,b201﹣b200中至少有100个为正数,求d的取值范围.【考点】8M:等差数列与等比数列的综合.【专题】34 :方程思想;48 :分析法;54 :等差数列与等比数列.【分析】(1)运用等比数列的通项公式和新定义“接近”,即可判断;(2)由新定义可得an ﹣1≤bn≤an+1,求得bi,i=1,2,3,4的范围,即可得到所求个数;(3)运用等差数列的通项公式可得an,讨论公差d>0,d=0,﹣2<d<0,d≤﹣2,结合新定义“接近”,推理和运算,即可得到所求范围.【解答】解:(1)数列{bn }与{an}接近.理由:{an}是首项为1,公比为的等比数列,可得an =,bn=an+1+1=+1,则|bn ﹣an|=|+1﹣|=1﹣<1,n∈N*,可得数列{bn }与{an}接近;(2){bn }是一个与{an}接近的数列,可得an ﹣1≤bn≤an+1,数列{an }的前四项为:a1=1,a2=2,a3=4,a4=8,可得b1∈[0,2],b2∈[1,3],b3∈[3,5],b4∈[7,9],可能b1与b2相等,b2与b3相等,但b1与b3不相等,b4与b3不相等,集合M={x|x=bi,i=1,2,3,4},M中元素的个数m=3或4;(3){a n }是公差为d 的等差数列,若存在数列{b n }满足:{b n }与{a n }接近, 可得a n =a 1+(n ﹣1)d ,①若d >0,取b n =a n ,可得b n+1﹣b n =a n+1﹣a n =d >0,则b 2﹣b 1,b 3﹣b 2,…,b 201﹣b 200中有200个正数,符合题意; ②若d=0,取b n =a 1﹣,则|b n ﹣a n |=|a 1﹣﹣a 1|=<1,n ∈N *, 可得b n+1﹣b n =﹣>0,则b 2﹣b 1,b 3﹣b 2,…,b 201﹣b 200中有200个正数,符合题意; ③若﹣2<d <0,可令b 2n ﹣1=a 2n ﹣1﹣1,b 2n =a 2n +1, 则b 2n ﹣b 2n ﹣1=a 2n +1﹣(a 2n ﹣1﹣1)=2+d >0,则b 2﹣b 1,b 3﹣b 2,…,b 201﹣b 200中恰有100个正数,符合题意; ④若d ≤﹣2,若存在数列{b n }满足:{b n }与{a n }接近, 即为a n ﹣1≤b n ≤a n +1,a n+1﹣1≤b n+1≤a n+1+1, 可得b n+1﹣b n ≤a n+1+1﹣(a n ﹣1)=2+d ≤0,b 2﹣b 1,b 3﹣b 2,…,b 201﹣b 200中无正数,不符合题意. 综上可得,d 的范围是(﹣2,+∞).【点评】本题考查新定义“接近”的理解和运用,考查等差数列和等比数列的定义和通项公式的运用,考查分类讨论思想方法,以及运算能力和推理能力,属于难题.。