2005年高考数学试卷
2005年高考数学试卷及答案
2005年高考理科数学全国卷Ⅲ试题及答案(四川陕西甘肃等地区用)源头学子小屋本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分. 共150分. 考试时间120分钟.第I 卷参考公式: 如果事件A 、B 互斥,那么P (A+B )=P (A )+P (B ) 如果事件A 、B 相互独立,那么P (A ·B )=P (A )·P (B )如果事件A 在一次试验中发生的概率是P ,那么 n 次独立重复试验中恰好发生k 次的概率P n (k)=C kn P k (1-P)n -k一、选择题:(本大题共12个小题,每小题5分,共60分1.已知α是第三象限的角,则2α是( ). A.第一或二象限的角 B.第二或三象限的角 C.第一或三象限的角 D.第二或四象限的角2. 已知过点A(-2,m)和B(m,4)的直线与直线2x+y-1=0平行,则m 的值为( ).A.0B.-8C.2D.10 3.在(x-1)(x+1)8的展开式中x 5的系数是( )A.-14B.14C.-28D.284.设三棱柱ABC-A 1B 1C 1的体积是V ,P.Q 分别是侧棱AA 1上的点,且PA=QC 1,则四棱锥B-APQC 的体积为( )A.V 61B.V 41C.V 31D.V 21 5.)3x 4x 22x 3x 1(lim 221x +--+-→=( )A.-21B.21C.-61D.61 6.若55ln ,33ln ,22ln ===c b a ,则( ) A.a<b<c B.c<b<a C.c<a<b D.b<a<c 7.设0≤x<2π,且x 2sin 1-=sinx-cosx, 则( )A.0≤x ≤πB.4π≤x ≤47π C.4π≤x ≤45π D.2π≤x ≤23π 8.=∙+xx x x 2cos cos 2cos 12sin 22( ) A.tanx B.tan2x C.1 D.219.已知双曲线1222=-y x 的焦点为F 1.F 2,点M 在双曲线上且021=∙MF ,则点M 到x 轴的距离为( )球的表面积公式S=42R π其中R 表示球的半径, 球的体积公式V=334R π, 其中R 表示球的半径A.34B.35C.332 D.3 10.设椭圆的两个焦点分别为F 1.F 2,过F 2作椭圆长轴的垂线交椭圆于点P ,若三角形F 1PF 2为等腰直角三角形,则椭圆的离心率为( )A.22 B.212- C.22- D.12- 11.不共面的四个定点到平面α的距离都相等,这样的平面α共有( )个 A.3 B.4 C.6 D.7 12.计算机中常用的十六进制是逢16进1的计数制,采用数字0~9和字母A~F 共16个计数符号这些符号与十进制的数的对应关系如下表:例如用十六进制表示:E+D=1B ,则A ×B=()A.6EB.72C.5FD.B0二、填空题: 本大题共4小题,每小题4分,共16分,把答案填在题中横线上 13.已知复数z 0=3+2i, 复数z 满足z ∙z 0=3z+z 0,则z=14.已知向量),10,k (OC ),5,4(OB ),12,k (OA -==,且A.B.C 三点共线,则k= . 15.设l 为平面上过点(0,1)的直线,l 的斜率等可能地取-22,-3,-25,0,25,3, 22, 用ξ表示坐标原点到l 的距离,则随机变量ξ的数学期望E ξ=16.已知在△ABC 中,∠ACB=90°,BC=3,AC=4,P 是AB 上的点,则P 到AC.BC 距离的的乘积的最大值是 三、解答题(共76分) 17.(本小题满分12分)甲.乙.丙三台机器是否需要照顾相互之间没有影响已知在某一个小时内,甲.乙都需要照顾的概率是0.05,甲.丙都需要照顾的概率是0.05,乙.丙都需要照顾的概率是0.1251)求甲.乙.丙三台机器在这一个小时内各自需要照顾的概率? 2)计算在这一个小时内至少有一台需要照顾的概率?18.(本小题满分12分)四棱锥V-ABCD 中,底面ABCD 是正方形,侧面V AD 是正三角形, 平面V AD ⊥底面ABCD 1)求证AB ⊥面V AD ;2)求面VAD 与面VDB 所成的二面角的大小.19.(本小题满分12分)ABC ∆中,内角A .B .C 的对边分别为a .b .c ,已知a .b .c 成等比数列,且B cos 4=(1)求C A cot cot +的值; (2)若23=⋅,求c a +的值20.(本小题满分12分)在等差数列{a n }中,公差d ≠0,且a 2是a 1和a 4的等比中项,已知a 1,a 3,,a ,a ,a ,a n321k k k k 成等比数列,求数列k 1,k 2,k 3,…,k n的通项k n21.(本小题满分14分)设()11,y x A .()22,y x B 两点在抛物线22x y =上,l 是AB 的垂直平分线1)当且仅当21x x +取何值时,直线l 经过抛物线的焦点F ?证明你的结论; 2)当直线l 的斜率为2时,求l 在y 轴上截距的取值范围22.(本小题满分12分)已知函数f(x)=],1,0[x ,x27x 42∈--(1)求函数f(x)的单调区间和值域;(2)设a ≥1, 函数g(x)=x 3-3a 2x-2a, x ∈[0,1], 若对于任意x 1∈[0,1], 总存在x 0∈[0,1], 使得g((x 0) =f(x 1)成立,求a 的取值范围2005年高考理科数学全国卷Ⅲ试题及答案(必修+选修Ⅱ) (四川陕西甘肃等地区用)参考答案13.12-14.315.716.317.(本小题满分12分)甲.乙.丙三台机器是否需要照顾相互之间没有影响已知在某一个小时内,甲.乙都需要照顾的概率是0.05,甲.丙都需要照顾的概率是0.05,乙.丙都需要照顾的概率是0.1251)求甲.乙.丙三台机器在这一个小时内各自需要照顾的概率? 2)计算在这一个小时内至少有一台需要照顾的概率?解:记“甲机器需要照顾”为事件A ,“乙机器需要照顾”为事件B ,“丙机器需要照顾”为事件C ,由题意三个事件互不影响,因而A ,B ,C 互相独立(1)由已知有:P (A ∙B )= P(A)∙P(B)=0.05,P (A ∙C )= P(A)∙P(C)=0.1P (C ∙B )= P(B)∙P(C)=0.125 解得P (A )=0.2, P(B)=0.25, P(C)=0.5,所以甲.乙.丙三台机器在这一个小时内各自需要照顾的概率分别为0.2;0.25;0.5.(2)记事件A 的对立事件为A ,事件B 的对立事件为B ,事件C 的对立事件为C , 则P(A )=0.8, P(B )=0.75, P(C )=0.5,于是P(A+B+C)=1-P(A ∙B ∙C )=1-P(A )∙P(B )∙P(C )=0.7. 故在这一个小时内至少有一台需要照顾的概率为0.7.18.(本小题满分12分)四棱锥V-ABCD 中,底面ABCD 是正方形,侧面VAD 是正三角形, 平面VAD ⊥底面ABCD 1)求证AB ⊥面VAD ;2)求面VAD 与面VDB 所成的二面角的大小.证法一:(1)由于面VAD 是正三角形,设AD 的中点为E ,则VE⊥AD ,而面VAD ⊥底面ABCD ,则VE ⊥AB又面ABCD 是正方形,则AB ⊥CD ,故AB ⊥面VAD (2)由AB ⊥面VAD ,则点B 在平面VAD 内的射影是A ,设VD 的中点为F ,连AF ,BF 由△VAD 是正△,则AF ⊥VD ,由三垂线定理知BF ⊥VD ,故∠AFB 是面VAD 与面VDB 所成的二面角的平面角设正方形ABCD 的边长为a ,则在Rt △ABF 中,,AB=a, AF=23a ,tan ∠AFB =33223==a a AF AB 故面VAD 与面VDB 所成的二面角的大小为arctan证明二:(Ⅰ)作AD 的中点O ,则VO ⊥底面ABCD .…………1分建立如图空间直角坐标系,并设正方形边长为1,………2分则A (12,0,0),B (12,1,0),C (-12,1,0),D (-12,0,0),V (0,0,∴1(0,1,0),(1,0,0),(,0,)22AB AD AV ===-……3分 由(0,1,0)(1,0,0)0AB AD AB AD ⋅=⋅=⇒⊥…………4分13(0,1,0)(,0,)02AB AV AB AV ⋅=⋅-=⇒⊥……5分又AB ∩AV=A ∴AB ⊥平面VAD …………………………6分(Ⅱ)由(Ⅰ)得(0,1,0)AB =是面VAD 的法向量……………………7分设(1,,)n y z =是面VDB 的法向量,则110(1,,)(,1,0(1,1,220(1,,)(1,1,0)03x n VB y zn z n BD y z=-⎧⎧⎧⋅=⋅--=⎪⎪⎪⇒⇒⇒=-⎨⎨⎨=-⋅=⎪⎪⎪⎩⋅--=⎩⎩……9分 ∴(0,1,0)(1,1,cos ,3AB n ⋅-<>==11分又由题意知,面VAD 与面VDB 所成的二面角,所以其大小为arccos7……12分 (II )证法三:由(Ⅰ)得(0,1,0)AB =是面VAD 的法向量…………………7分设平面VDB 的方程为mx+ny+pZ+q=0,将V.B.D 三点的坐标代入可得⎪⎪⎪⎩⎪⎪⎪⎨⎧=+=+-=++023021021q p q m q n m 解之可得⎪⎪⎪⎩⎪⎪⎪⎨⎧-=-==qp qn q m3222令q=,21则平面VDB 的方程为x-y+33Z+21=0 故平面VDB 的法向量是)33,1,1(-=………………………………9分 ∴(0,1,0)(1,1,cos ,3AB n ⋅-<>==11分又由题意知,面VAD 与面VDB 所成的二面角,所以其大小为arccos 7……12分19.(本小题满分12分)ABC ∆中,内角A .B .C 的对边分别为a .b .c ,已知a .b .c 成等比数列,且B cos 4=(1)求C A cot cot +的值; (2)若23=⋅,求c a +的值 解:(1)由B cos 43=得:47sin =B由ac b =2及正弦定理得:C A B sin sin sin 2= 于是:()BC A C A A C A C C C A A C A 2sin sin sin sin sin cos cos sin sin cos sin cos cot cot +=+=+=+ 774sin 1sin sin 2===BB B (2)由23=⋅得:23cos =⋅B ac ,因B cos 43=,所以:2=ac ,即:2=b 由余弦定理B ac c a b cos 2222⋅-+=得:5cos 2222=⋅+=+B ac b c a于是:()9452222=+=++=+ac c a c a故:c a +=20.(本小题满分12分)在等差数列{a n }中,公差d ≠0,且a 2是a 1和a 4的等比中项,已知a 1,a 3,,a ,a ,a ,a n321k k k k 成等比数列,求数列k 1,k 2,k 3,…,k n的通项k n解:由题意得:4122a a a =……………1分 即)3()(1121d a a d a +=+…………3分又0,d ≠d a =∴1…………4分 又 ,,,,,,2131n k k k a a a a a 成等比数列, ∴该数列的公比为3313===dda a q ,………6分 所以113+⋅=n k a a n ………8分又11)1(a k d k a a n n k n =-+=……………………………………10分13+=∴n n k 所以数列}{n k 的通项为13+=n n k ……………………………12分21.(本小题满分14分)设()11,y x A 、()22,y x B 两点在抛物线22x y =上,l 是AB 的垂直平分线(1)当且仅当21x x +取何值时,直线l 经过抛物线的焦点F ?证明你的结论; (2)当直线l 的斜率为2时,求l 在y 轴上截距的取值范围注:本小题主要考察直线与抛物线等基础知识,考察逻辑推理能力和综合分析、解决问题的能力解法一:(1)⇔=⇔∈FB FA l F A 、B 两点到抛物线的准线的距离相等 因为:抛物线的准线是x 轴的平行线,0≥i y ()2,1=i ,依题意1y 、2y 不同时为0 所以,上述条件等价于()()02121222121=-+⇔=⇔=x x x x x x y y ;注意到:21x x ≠,所以上述条件等价于021=+x x即:当且仅当021=+x x 时,直线l 经过抛物线的焦点F(2)设l 在y 轴上的截距为b ,依题意得l 的方程为b x y +=2;过点A 、B 的直线方程可写为m x y +-=21,所以1x 、2x 满足方程02122=-+m x x ,即4121-=+x x A 、B 为抛物线上不同的两点等价于上述方程的判别式0841>+=∆m ,也就是:32>m 设AB 的中点H 的坐标为为()00,y x ,则有:812210-=+=x x x ,m m x y +=+-=161200 由l H ∈得:b m +-=+41161,于是:32321165165=->+=m b 即:l 在y 轴上截距的取值范围是⎝⎛+∞,329 .解法二:(Ⅰ)∵抛物线22x y =,即41,22=∴=p y x , ∴焦点为1(0,)8F …………………………………………1分 (1)直线l 的斜率不存在时,显然有021=+x x ………………3分 (2)直线l 的斜率存在时,设为k ,截距为b即直线l :y=kx+b 由已知得:12121212221k bk y y x x y y x x ⎧++⎪=⋅+⎪⎨-⎪=-⎪-⎩……5分 2212122212122212222k b k x x x x x x x x ⎧++=⋅+⎪⎪⇒⎨-⎪=-⎪-⎩ 22121212212k b k x x x x x x +⎧+=⋅+⎪⎪⇒⎨⎪+=-⎪⎩………7分 2212104b x x ⇒+=-+≥14b ⇒≥ 即l 的斜率存在时,不可能经过焦点1(0,)8F ……………………8分 所以当且仅当12x x +=0时,直线l 经过抛物线的焦点F ……………9分(II)解:设直线l 的方程为:y=2x+b,故有过AB 的直线的方程为m x 21y +-=,代入抛物线方程有2x 2+m x 21-=0, 得x 1+x 2=-41.由A.B 是抛物线上不同的两点,于是上述方程的判别式0m 841>+=∆,即321m -> 由直线AB 的中点为)2,2(2121y y x x ++=)m 161,81()m x 21,81(0+-=+--, 则,b 41m 161+-=+ 于是.329321165m 165b =->+= 即得l 在y 轴上的截距的取值范围是,329(+∞22.(本小题满分12分)已知函数f(x)=],1,0[x ,x27x 42∈--(1)求函数f(x)的单调区间和值域;(2)设a ≥1, 函数g(x)=x 3-3a 2x-2a, x ∈[0,1], 若对于任意x 1∈[0,1], 总存在x 0∈[0,1], 使得g((x 0) =f(x 1)成立,求a 的取值范围解: (1)对函数f(x)=],1,0[x ,x 27x 42∈--求导,得f ’(x)=,)x 2()7x 2)(1x 2()x 2(716x 4222----=--+-,令f ’(x)=0解得x=21或x=27. 当x 变化时,f ’(x), f(x)的变化情况如下表所示:所以,当)21,0(x ∈时,f(x)是减函数;当)1,21(x ∈时,f(x)是增函数当]1,0[x ∈时,f(x)的值域是[-4,-3](II )对函数g(x)求导,则g ’(x)=3(x 2-a 2).因为1a ≥,当)1,0(x ∈时,g ’(x)<5(1-a 2)≤0, 因此当)1,0(x ∈时,g(x)为减函数,从而当x ∈[0,1]时有g(x)∈[g(1),g(0)],又g(1)=1-2a-3a 2,g(0)=-2a,即当x ∈[0,1]时有g(x)∈[1-2a-3a 2,-2a],任给x 1∈[0,1],f(x 1)∈[-4,-3],存在x 0∈[0,1]使得g(x 0)=f(x 1),则[1-2a-3a 2,-2a]]3,4[--⊃,即⎩⎨⎧-≥--≤--3a 24a 3a 212 ②①,解①式得a ≥1或a 35-≤,解②式得23a ≤, 又1a ≥,故a 的取值范围内是23a 1≤≤.。
2005年全国统一高考数学试卷及解析(理)
2005年全国统一高考数学试卷ⅰ(理)一、选择题(共12小题,每小题5分,满分60分)1.(5分)复数=()A.﹣i B.i C.2﹣i D.﹣2+i2.(5分)设I为全集,S1、S2、S3是I的三个非空子集,且S1∪S2∪S3=I,则下面论断正确的是()A.∁I S1∩(S2∪S3)=∅B.S1⊆(∁I S2∩∁I S3)C.∁I S1∩∁I S2∩∁I S3=∅ D.S1⊆(∁I S2∪∁I S3)3.(5分)用与球心距离为1的平面去截球,所得的截面面积为π,则球的体积为()A.B. C.D.4.(5分)已知直线l过点(﹣2,0),当直线l与圆x2+y2=2x有两个交点时,其斜率k的取值范围是()A.B.C.D.5.(5分)如图,在多面体ABCDEF中,已知ABCD是边长为1的正方形,且△ADE、△BCF均为正三角形,EF∥AB,EF=2,则该多面体的体积为()A. B. C.D.6.(5分)已知双曲线﹣y2=1(a>0)的一条准线与抛物线y2=﹣6x的准线重合,则该双曲线的离心率为()A. B.C. D.7.(5分)当0<x<时,函数的最小值为()A.2 B.C.4 D.8.(5分)设b>0,二次函数y=ax2+bx+a2﹣1的图象为下列之一,则a的值为()A.1 B.﹣1 C.D.9.(5分)设0<a<1,函数f(x)=log a(a2x﹣2a x﹣2),则使f(x)<0的x的取值范围是()A.(﹣∞,0)B.(0,+∞)C.(﹣∞,log a3)D.(log a3,+∞)10.(5分)在直角坐标平面上,不等式组所表示的平面区域面积为()A. B.C.D.311.(5分)在△ABC中,已知tan=sinC,给出以下四个论断:①tanA•cotB=1,②1<sinA+sinB≤,③sin2A+cos2B=1,④cos2A+cos2B=sin2C,其中正确的是()A.①③B.②④C.①④D.②③12.(5分)过三棱柱任意两个顶点的直线共15条,其中异面直线有()A.18对B.24对C.30对D.36对二、填空题(共4小题,每小题4分,满分16分)13.(4分)若正整数m满足10m﹣1<2512<10m,则m=.(lg2≈0.3010)14.(4分)的展开式中,常数项为.(用数字作答)15.(4分)如图,已知⊙O是△ABC的内切圆,且∠ABC=50°,∠ACB=80°,则∠BOC=度.16.(4分)在正方体ABCD﹣A′B′C′D′中,过对角线BD′的一个平面交AA′于E,交CC′于F,则:①四边形BFD′E一定是平行四边形;②四边形BFD′E有可能是正方形;③四边形BFD′E在底面ABCD内的投影一定是正方形;④平面BFD′E有可能垂直于平面BB′D.以上结论正确的为.(写出所有正确结论的编号)三、解答题(共6小题,17~20、22题每题12分,21题14分,满分74分)17.(12分)设函数f(x)=sin(2x+φ)(﹣π<φ<0),y=f(x)图象的一条对称轴是直线.(Ⅰ)求φ,并指出y=f(x)由y=sin2x作怎样变换所得.(Ⅱ)求函数y=f(x)的单调增区间;(Ⅲ)画出函数y=f(x)在区间[0,π]上的图象.18.(12分)已知四棱锥P﹣ABCD的底面为直角梯形,AB∥DC,∠DAB=90°,PA⊥底面ABCD,且PA=AD=DC=1,AB=2,M是PB的中点.(Ⅰ)证明:面PAD⊥面PCD;(Ⅱ)求AC与PB所成的角;(Ⅲ)求面AMC与面BMC所成二面角的大小.19.(12分)设等比数列{a n}的公比为q,前n项和S n>0(n=1,2,…).(Ⅰ)求q的取值范围;(Ⅱ)设,记{b n}的前n项和为T n,试比较S n与T n 的大小.20.(12分)9粒种子分种在3个坑内,每坑3粒,每粒种子发芽的概率为0.5,若一个坑内至少有1粒种子发芽,则这个坑不需要补种;若一个坑内的种子都没发芽,则这个坑需要补种.假定每个坑至多补种一次,每补种1个坑需10元,用ξ表示补种费用,写出ξ的分布列并求ξ的数学期望.(精确到0.01)21.(14分)已知椭圆的中心为坐标原点O,焦点在x轴上,斜率为1且过椭圆右焦点F的直线交椭圆于A、B两点,与=(3,﹣1)共线.(Ⅰ)求椭圆的离心率;(Ⅱ)设M为椭圆上任意一点,且=λ+μ(λ,μ∈R),证明λ2+μ2为定值.22.(12分)为了了解某校2000名学生参加环保知识竞赛的成绩,从中抽取了部分学生的竞赛成绩(均为整数),整理后绘制成如下的频数分布直方图(如图),请结合图形解答下列问题.(1)指出这个问题中的总体;(2)求竞赛成绩在79.5~89.5这一小组的频率;(3)如果竞赛成绩在90分以上(含90分)的同学可获得奖励,请估计全校约有多少人获得奖励.2005年河北省高考数学试卷Ⅰ(理)参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.(5分)(2005•安徽)复数=()A.﹣i B.i C.2﹣i D.﹣2+i【分析】两个复数相除,分子、分母同时乘以分母的共轭复数,复数的乘法按多项式乘以多项式的方法进行.【解答】解:复数====i,故选B.2.(5分)(2005•安徽)设I为全集,S1、S2、S3是I的三个非空子集,且S1∪S2∪S3=I,则下面论断正确的是()A.∁I S1∩(S2∪S3)=∅B.S1⊆(∁I S2∩∁I S3)C.∁I S1∩∁I S2∩∁I S3=∅ D.S1⊆(∁I S2∪∁I S3)【分析】根据公式C U(A∩B)=(C U A)∪(C U B),C U(A∪B)=(C U A)∩(C U B),容易判断.【解答】解:∵S1∪S2∪S3=I,∴C I S1∩C I S2∩C I S3)=C I(S1∪S2∪S3)=C I I=∅.故答案选C.3.(5分)(2008•湖北)用与球心距离为1的平面去截球,所得的截面面积为π,则球的体积为()A.B. C.D.【分析】做该题需要将球转换成圆,再利用圆的性质,获得球的半径,解出该题即可.【解答】解:截面面积为π⇒截面圆半径为1,又与球心距离为1⇒球的半径是,所以根据球的体积公式知,故选B.4.(5分)(2005•安徽)已知直线l过点(﹣2,0),当直线l与圆x2+y2=2x 有两个交点时,其斜率k的取值范围是()A.B.C.D.【分析】圆心到直线的距离小于半径即可求出k的范围.【解答】解:直线l为kx﹣y+2k=0,又直线l与圆x2+y2=2x有两个交点故∴故选C.5.(5分)(2005•安徽)如图,在多面体ABCDEF中,已知ABCD是边长为1的正方形,且△ADE、△BCF均为正三角形,EF∥AB,EF=2,则该多面体的体积为()A. B. C.D.【分析】该几何体是一个三棱柱截取两个四棱锥,体积相减即为该多面体的体积.【解答】解:一个完整的三棱柱的图象为:棱柱的高为2;底面三角形的底为1,高为:,其体积为:;割去的四棱锥体积为:,所以,几何体的体积为:,故选A.6.(5分)(2005•安徽)已知双曲线﹣y2=1(a>0)的一条准线与抛物线y2=﹣6x的准线重合,则该双曲线的离心率为()A. B.C. D.【分析】先根据抛物线和双曲线方程求出各自的准线方程,然后让二者相等即可求得a,进而根据c=求得c,双曲线的离心率可得.【解答】解:双曲线的准线为抛物线y2=﹣6x的准线为因为两准线重合,故=,a2=3,∴c==2∴该双曲线的离心率为=故选D7.(5分)(2005•安徽)当0<x<时,函数的最小值为()A.2 B.C.4 D.【分析】利用二倍角公式化简整理后,分子分母同时除以cosx,转化成关于tanx的函数解析式,进而利用x的范围确定tanx>0,最后利用均值不等式求得函数的最小值.【解答】解:=.∵0<x<,∴tanx>0.∴.当时,f(x)min=4.故选C.8.(5分)(2005•安徽)设b>0,二次函数y=ax2+bx+a2﹣1的图象为下列之一,则a的值为()A.1 B.﹣1 C.D.【分析】根据题中条件可先排除前两个图形,然后根据后两个图象都经过原点可求出a的两个值,再根据抛物线的开口方向就可确定a的值【解答】解:∵b>0∴抛物线对称轴不能为y轴,∴可排除掉前两个图象.∵剩下两个图象都经过原点,∴a2﹣1=0,∴a=±1.∵当a=1时,抛物线开口向上,对称轴在y轴左方,∴第四个图象也不对,∴a=﹣1,故选B.9.(5分)(2005•安徽)设0<a<1,函数f(x)=log a(a2x﹣2a x﹣2),则使f(x)<0的x的取值范围是()A.(﹣∞,0)B.(0,+∞)C.(﹣∞,log a3)D.(log a3,+∞)【分析】结合对数函数、指数函数的性质和复合函数的单调性可知:当0<a<1,log a(a2x﹣2a x﹣2)<0时,有a2x﹣2a x﹣2>1,解可得答案.【解答】解:设0<a<1,函数f(x)=log a(a2x﹣2a x﹣2),若f(x)<0则log a(a2x﹣2a x﹣2)<0,∴a2x﹣2a x﹣2>1∴(a x﹣3)(a x+1)>0∴a x﹣3>0,∴x<log a3,故选C.10.(5分)(2005•安徽)在直角坐标平面上,不等式组所表示的平面区域面积为()A. B.C.D.3【分析】先依据不等式组,结合二元一次不等式(组)与平面区域的关系画出其表示的平面区域,再利用三角形的面积公式计算即可.【解答】解:原不等式组可化为:或画出它们表示的可行域,如图所示.可解得A(,﹣),C(﹣1,﹣2),B(0,1)原不等式组表示的平面区域是一个三角形,其面积S△ABC=×(2×1+2×)=,故选C.11.(5分)(2005•安徽)在△ABC中,已知tan=sinC,给出以下四个论断:①tanA•cotB=1,②1<sinA+sinB≤,③sin2A+cos2B=1,④cos2A+cos2B=sin2C,其中正确的是()A.①③B.②④C.①④D.②③【分析】先利用同角三角函数的基本关系和二倍角公式化简整理题设等式求得cos=进而求得A+B=90°进而求得①tanA•cotB=tanA•tanA等式不一定成立,排除;②利用两角和公式化简,利用正弦函数的性质求得其范围符合,②正确;③sin2A+cos2B=2sin2A不一定等于1,排除③;④利用同角三角函数的基本关系可知cos2A+cos2B=cos2A+sin2A=1,进而根据C=90°可知sinC=1,进而可知二者相等.④正确.【解答】解:∵tan=sinC∴=2sin cos整理求得cos(A+B)=0∴A+B=90°.∴tanA•cotB=tanA•tanA不一定等于1,①不正确.∴sinA+sinB=sinA+cosA=sin(A+45°)45°<A+45°<135°,<sin(A+45°)≤1,∴1<sinA+sinB≤,所以②正确cos2A+cos2B=cos2A+sin2A=1,sin2C=sin290°=1,所以cos2A+cos2B=sin2C.所以④正确.sin2A+cos2B=sin2A+sin2A=2sin2A=1不一定成立,故③不正确.综上知②④正确故选B.12.(5分)(2005•安徽)过三棱柱任意两个顶点的直线共15条,其中异面直线有()A.18对B.24对C.30对D.36对【分析】直接解答,看下底面上的一条边的异面直线的条数,类推到上底面的边;再求侧面上的异面直线的对数;即可.【解答】解:三棱柱的底面三角形的一条边与侧面之间的线段有3条异面直线,这样3条底边一共有9对,上下底面共有18对.上下两个底边三角形就有6对;侧面之间的一条侧棱有6对,侧面面对角线之间有6对.加在一起就是36对.(其中棱对应的两条是体对角线和对面的面与其不平行的另一条对角线).故选D.二、填空题(共4小题,每小题4分,满分16分)13.(4分)(2005•安徽)若正整数m满足10m﹣1<2512<10m,则m= 155.(lg2≈0.3010)【分析】利用题中提示lg2≈0.3010,把不等式同时取以10为底的对数,再利用对数的运算性质,转化为关于m的不等式求解即可.【解答】解:∵10m﹣1<2512<10m,取以10为底的对数得lg10m﹣1<lg2512<lg10m,即m﹣1<512×lg2<m又∵lg2≈0.3010∴m﹣1<154.112<m,因为m是正整数,所以m=155故答案为155.14.(4分)(2005•安徽)的展开式中,常数项为672.(用数字作答)=C n r a n﹣r b r求出通项,进行指【分析】利用二项式定理的通项公式T r+1数幂运算后令x的指数幂为0解出r=6,由组合数运算即可求出答案.=C9r(2x)9﹣r=(﹣1)r29﹣r C9r x9【解答】解:由通项公式得T r+1﹣r=(﹣1)r29﹣r C9r,令9﹣=0得r=6,所以常数项为(﹣1)623C96=8C93=8×=672故答案为67215.(4分)(2005•山西)如图,已知⊙O是△ABC的内切圆,且∠ABC=50°,∠ACB=80°,则∠BOC=115度.【分析】由三角形内切定义可知:OB、OC是∠ABC、∠ACB的角平分线;再利用角平分线的定义可知∠OBC+∠OCB=(∠ABC+∠ACB),代入数值即可求答案.【解答】解:∵OB、OC是∠ABC、∠ACB的角平分线,∴∠OBC+∠OCB=(∠ABC+∠ACB)=(50°+80°)=65°,∴∠BOC=180°﹣65°=115°.故答案为:115°.16.(4分)(2005•安徽)在正方体ABCD﹣A′B′C′D′中,过对角线BD′的一个平面交AA′于E,交CC′于F,则:①四边形BFD′E一定是平行四边形;②四边形BFD′E有可能是正方形;③四边形B FD′E在底面ABCD内的投影一定是正方形;④平面BFD′E有可能垂直于平面BB′D.以上结论正确的为①③④.(写出所有正确结论的编号)【分析】由平行平面的性质可得①是正确的,当E、F为棱中点时,四边形为菱形,但不可能为正方形,故③④正确,②错误.【解答】解:①:∵平面AB′∥平面DC′,平面BFD′E∩平面AB′=EB,平面BFD′E∩平面DC′=D′F,∴EB∥D′F,同理可证:D′E∥FB,故四边形BFD′E一定是平行四边形,即①正确;②:当E、F为棱中点时,四边形为菱形,但不可能为正方形,故②错误;③:四边形BFD′E在底面ABCD内的投影为四边形ABCD,所以一定是正方形,即③正确;④:当E、F为棱中点时,EF⊥平面BB′D,又∵EF⊂平面BFD′E,∴此时:平面BFD′E⊥平面BB′D,即④正确.故答案为:①③④三、解答题(共6小题,17~20、22题每题12分,21题14分,满分74分)17.(12分)(2005•山西)设函数f(x)=sin(2x+φ)(﹣π<φ<0),y=f(x)图象的一条对称轴是直线.(Ⅰ)求φ,并指出y=f(x)由y=sin2x作怎样变换所得.(Ⅱ)求函数y=f(x)的单调增区间;(Ⅲ)画出函数y=f(x)在区间[0,π]上的图象.【分析】(I)由图象的一条对称轴是直线,从而可得,解的∅,根据平移法则判断平移量及平移方向(II)令,解x的范围即为所要找的单调增区间(III)利用“五点作图法”做出函数的图象【解答】解:(Ⅰ)∵x=是函数y=f(x)的图象的对称轴,∴,∴,k∈Z.∵.由y=sin2x向右平移得到.(4分)(Ⅱ)由(Ⅰ)知ϕ=﹣,因此y=.由题意得,k∈Z.所以函数的单调增区间为,k∈Z.(3分)(Ⅲ)由知x 0 πy ﹣﹣1 0 1 0 ﹣故函数y=f(x)在区间[0,π]上图象是(4分)18.(12分)(2005•安徽)已知四棱锥P﹣ABCD的底面为直角梯形,AB∥DC,∠DAB=90°,PA⊥底面ABCD,且PA=AD=DC=1,AB=2,M 是PB的中点.(Ⅰ)证明:面PAD⊥面PCD;(Ⅱ)求AC与PB所成的角;(Ⅲ)求面AMC与面BMC所成二面角的大小.【分析】法一:(Ⅰ)证明面PAD⊥面PCD,只需证明面PCD内的直线CD,垂直平面PAD内的两条相交直线AD、PD即可;(Ⅱ)过点B作BE∥CA,且BE=CA,∠PBE是AC与PB所成的角,解直角三角形PEB求AC与PB所成的角;(Ⅲ)作AN⊥CM,垂足为N,连接BN,说明∠ANB为所求二面角的平面角,在三角形AMC中,用余弦定理求面AMC与面BMC所成二面角的大小.法二:以A为坐标原点AD长为单位长度,建立空间直角坐标系,(Ⅰ)求出,计算,推出AP⊥DC.,然后证明CD垂直平面PAD,即可证明面PAD⊥面PCD;(Ⅱ),计算.即可求得结果.(Ⅲ)在MC上取一点N(x,y,z),则存在使,说明∠ANB 为所求二面角的平面角.求出,计算即可取得结果.【解答】法一:(Ⅰ)证明:∵PA⊥面ABCD,CD⊥AD,∴由三垂线定理得:CD⊥PD.因而,CD与面PAD内两条相交直线AD,PD都垂直,∴CD⊥面PAD.又CD⊂面PCD,∴面PAD⊥面PCD.(Ⅱ)解:过点B作BE∥CA,且BE=CA,则∠PBE是AC与PB所成的角.连接AE,可知AC=CB=BE=AE=,又AB=2,所以四边形ACBE为正方形.由PA⊥面ABCD得∠PEB=90°在Rt△PEB中BE=a2=3b2,PB=,∴.∴AC与PB所成的角为.(Ⅲ)解:作AN⊥CM,垂足为N,连接BN.在Rt△PAB中,AM=MB,又AC=CB,∴△AMC≌△BMC,∴BN⊥CM,故∠ANB为所求二面角的平面角∵CB⊥AC,由三垂线定理,得CB⊥PC,在Rt△PCB中,CM=MB,所以CM=AM.在等腰三角形AMC中,AN•MC=,∴.∴AB=2,∴故所求的二面角为.法二:因为PA⊥PD,PA⊥AB,AD⊥AB,以A为坐标原点AD长为单位长度,如图建立空间直角坐标系,则各点坐标为A(0,0,0)B(0,2,0),C(1,1,0),D(1,0,0),P(0,0,1),M(Ⅰ)证明:因为,故,所以AP⊥DC.又由题设知AD⊥DC,且AP与AD是平面PAD内的两条相交直线,由此得DC⊥面PAD.又DC在面PCD上,故面PAD⊥面PCD(Ⅱ)解:因,故=,所以由此得AC与PB所成的角为.(Ⅲ)解:在MC上取一点N(x,y,z),则存在使,,∴x=1﹣λ,y=1,z=λ.要使AN⊥MC,只需即,解得.可知当时,N点坐标为,能使.,有由得AN⊥MC,BN⊥MC.所以∠ANB为所求二面角的平面角.∵,∴.故所求的二面角为arccos.19.(12分)(2005•安徽)设等比数列{a n}的公比为q,前n项和S n >0(n=1,2,…).(Ⅰ)求q的取值范围;(Ⅱ)设,记{b n}的前n项和为T n,试比较S n与T n 的大小.【分析】(Ⅰ)设等比数列通式a n=a1q(n﹣1),根据S1>0可知a1大于零,当q不等于1时,根据等比数列前n项和公式,进而可推知1﹣q n>0且1﹣q>0,或1﹣q n<0且1﹣q<0,进而求得q的范围,当q=1时仍满足条件,进而得到答案.(Ⅱ)把a n的通项公式代入,可得a n和b n的关系,进而可知T n和S n的关系,再根据(1)中q的范围来判断S n与T n的大小.【解答】解:(Ⅰ)设等比数列通式a n=a1q(n﹣1)根据S n>0,显然a1>0,当q不等于1时,前n项和s n=所以>0 所以﹣1<q<0或0<q<1或q>1当q=1时仍满足条件综上q>0或﹣1<q<0(Ⅱ)∵∴b n==a n q2﹣a n q=a n(2q2﹣3q)∴T n=(2q2﹣3q)S n∴T n﹣S n=S n(2q2﹣3q﹣2)=S n(q﹣2)(2q+1)又因为S n>0,且﹣1<q<0或q>0,所以,当﹣1<q<﹣或q>2时,T n﹣S n>0,即T n>S n;当﹣<q<2且q≠0时,T n﹣S n<0,即T n<S n;当q=﹣,或q=2时,T n﹣S n=0,即T n=S n.20.(12分)(2005•安徽)9粒种子分种在3个坑内,每坑3粒,每粒种子发芽的概率为0.5,若一个坑内至少有1粒种子发芽,则这个坑不需要补种;若一个坑内的种子都没发芽,则这个坑需要补种.假定每个坑至多补种一次,每补种1个坑需10元,用ξ表示补种费用,写出ξ的分布列并求ξ的数学期望.(精确到0.01)【分析】首先根据独立重复试验的概率公式计算出一个坑不需要补种的概率,由题意知一共种了3个坑,每个坑至多补种一次,每补种1个坑需10元,得到变量ξ的可能取值是0,10,20,30,根据独立重复试验得到概率的分布列.【解答】解:首先根据独立重复试验的概率公式计算出一个坑不需要补种的概率p=1﹣C330.53=0.875由题意知一共种了3个坑,每个坑至多补种一次,每补种1个坑需10元得到变量ξ的可能取值是0,10,20,30,ξ=0,表示没有坑需要补种,根据独立重复试验得到概率P(ξ=0)=C330.8753=0.670P(ξ=10)=C320.8752×0.125=0.287P(ξ=20)=C31×0.875×0.1252=0.041P(ξ=30)=0.1253=0.002∴变量的分布列是ξ0 10 20 30P0.670 0.287 0.041 0.002∴ξ的数学期望为:Eξ=0×0.670+10×0.287+20×0.041+30×0.002=3.7521.(14分)(2005•安徽)已知椭圆的中心为坐标原点O,焦点在x 轴上,斜率为1且过椭圆右焦点F的直线交椭圆于A、B两点,与=(3,﹣1)共线.(Ⅰ)求椭圆的离心率;(Ⅱ)设M为椭圆上任意一点,且=λ+μ(λ,μ∈R),证明λ2+μ2为定值.【分析】(Ⅰ)直线与椭圆方程联立用未达定理的A、B两点坐标的关系,据向量共线的条件得椭圆中a,b,c的关系,从而求得椭圆的离心率(Ⅱ)用向量运算将λμ用坐标表示,再用坐标的关系求出λ2+μ2的值.【解答】解:(1)设椭圆方程为则直线AB的方程为y=x﹣c,代入,化简得(a2+b2)x2﹣2a2cx+a2c2﹣a2b2=0.令A(x1,y1),B(x2,y2),则.∵与共线,∴3(y1+y2)+(x1+x2)=0,又y1=x1﹣c,y2=x2﹣c,∴3(x1+x2﹣2c)+(x1+x2)=0,∴.即,所以a2=3b2.∴,故离心率.(II)证明:由(1)知a2=3b2,所以椭圆可化为x2+3y2=3b2.设M(x,y),由已知得(x,y)=λ(x1,y1)+μ(x2,y2),∴∵M(x,y)在椭圆上,∴(λx1+μx2)2+3(λy1+μy2)2=3b2.即λ2(x12+3y12)+μ2(x22+3y22)+2λμ(x1x2+3y1y2)=3b2.①由(1)知.∴,∴x1x2+3y1y2=x1x2+3(x1﹣c)(x2﹣c)=4x1x2﹣3(x1+x2)c+3c2==0.又x12+3y12=3b2,x22+3y22=3b2,代入①得λ2+μ2=1.故λ2+μ2为定值,定值为1.22.(12分)(2005•安徽)为了了解某校2000名学生参加环保知识竞赛的成绩,从中抽取了部分学生的竞赛成绩(均为整数),整理后绘制成如下的频数分布直方图(如图),请结合图形解答下列问题.(1)指出这个问题中的总体;(2)求竞赛成绩在79.5~89.5这一小组的频率;(3)如果竞赛成绩在90分以上(含90分)的同学可获得奖励,请估计全校约有多少人获得奖励.【分析】(1)根据总体的概念:所要考查的对象的全体即总体进行回答;(2)根据频率=频数÷总数进行计算;(3)首先计算样本中的频率,再进一步估计总体.【解答】解:(1)总体是某校2000名学生参加环保知识竞赛的成绩.(2),答:竞赛成绩在79.5~89.5这一小组的频率为0.25.(3),答:估计全校约有300人获得奖励.。
2005全国高考数学3试卷与答案
【正确解答】以 为原点, 为x轴, 为y轴建立直角坐标系, ,设 且 ,则 直线方程为 .
点P到AC、BC的距离乘积
所以最大值为3.
【解后反思】近年来高考题不再只是直接考查线性规划问题,而是需要考生通过对问题的分析整理,将原有问题转化为线性规划问题,并用数形结合的方法加以解决.数形结合是数学思想的重要手段之一,是连接代数和几何的重要方法.随着要求数学知识从书本到实际生活的呼声不断升高,线性规划这一类新型数学应用问题已成为高考数学考试的热点.要加强在这一方面的练习,此类问题还有一些,例如使用材料的最优化,部分概率应用题、数理统计题等等.
P(ξ)
故有 .
【解后反思】准确确定随机变量的所有可能取值及其概率是正确解题的关键.细心也是解决此类问题的决窍之一,平时应多进行数的复杂运算,少用计算器,以便在高考中争取时间,取得先机.
16.已知在△ABC中,∠ACB=90°,BC=3,AC=4,P是AB上的点,则点P到AC、BC
的距离乘积的最大值是
所以 ,即 所在的象限是第二或第四象限.选D
解法(2)用图象法类似角分线,由图象可以轻易得到答案.选D
解法(3)用特值法令 和 ,也可以得到答案D
【解后反思】熟悉角的终边在坐标系内的画法,可以求任意角简单分割后的终边所在象限.如何求任意角经复杂分割后的终边所在象限如 (1)先写出 范围(2)再求出除以 的范围(3)再分成 类情况讨论可完成.
【思路点拨】本题考查对数函数单调性和分数比较法则.
【正确解答】 , , .
选C
【解后反思】在数的比较大小过程中,要遵循这样的规律,异中求同即先将这些数的部分因式化成相同的部分,再去比较它们剩余部分,就会很轻易啦.一般在数的比较大小中有如下几种方法:(1)作差比较法和作商比较法,前者和零比较,后者和1比较大小;(2)找中间量,往往是1,在这些数中,有的比1大,有的比1小;,(3)计算所有数的值;(4)选用数形结合的方法,画出相应的图形;(5)利用函数的单调性等等.
2005年高考浙江理科数学试题及答案
2005年普通高等学校招生全国统一考试(浙江卷)数学(理工类)第Ⅰ卷 (选择题共50分)一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.=++++∞→2321limnnn( )A .2B .1C .21 D .0 2.点(1,-1)到直线01=+-y x 的距离是( )A .21 B .23 C .22 D .2233.设=⎪⎩⎪⎨⎧>+≤--=)]21([,1||,11,1||,2|1|)(2f f x xx x x f 则( )A .21B .134C .59-D .41254.在复平面内,复数2)31(1i ii+++对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限5.在8765)1()1()1()1(x x x x -+-+-+-的展开式中,含3x 的项的系数是 ( )A .74B .121C .-74D .-1216.设α、β为两个不同的平面,l 、m 为两条不同的直线,且βα⊂⊂m l ,. 有如下两个命 题:①若m l //,//则βα;②若.,βα⊥⊥则m l 那么( )A .①是真命题,②是假命题B .①是假命题,②是真命题C .①②都是真命题D .①②都是假命题7.设集合y x y x y x A --=1,,|),{(是三角形的三边长},则A 所表示的平面区域(不含边 界的阴影部分)是( )A .B .C .D .8.已知4-<k ,则函数)1(cos 2cos -+=x k x y 的最小值是 ( )A .1B .-1C .12+kD .12+-k9.设})(|{}.7,6,5,4,3{},5,4,3,2,1{),(12)(P n f N n P Q P N n n n f ∈∈===∈+=记, P Q n f N n Q (},)(|{则∈∈=)Q Q ( =)P( )A .{0,3}B .{1,2}C .{3,4,5}D .{1,2,6,7}10.已知向量a ≠e ,|e |=1满足:对任意∈t R ,恒有|a -t e |≥|a -e |. 则 ( )A .a ⊥eB .a ⊥(a -e )C .e ⊥(a -e )D .(a +e )⊥(a -e )第Ⅱ卷(非选择题 共100分)二、填空题:本大题共4小题,每小题4分,共16分. 把答案填在题中横线上. 11.函数∈+=x x x y (2R ,且)2-≠x 的反函数是 .12.设M 、N 是直角梯形ABCD 两腰的中点,DE ⊥AB 于E(如图).现将△ADE 沿DE 折起,使二面角A —DE —B 为45°,此时点A 在平面BCDE 内的射影恰为点B , 则M 、N 的连线与AE 所成角的大小等于 . 13.过双曲线)0,0(12222>>=-b a by ax 的左焦点且垂直于x 轴的直线与双曲线相交于M 、N 两点,以MN 为直径的圆恰好过双曲线的右顶点,则双曲线的离心率等于 . 14.从集合{O ,P ,Q ,R ,S}与{0,1,2,3,4,5,6,7,8,9}中各任取2个元素排成一排(字母和数字均不能重复).每排中字母O 、Q 和数字0至多只出现一个的不同排法种 数是 (用数字作答).三、解答题:本大题共6小题,每小题14分,共84分. 解答应写出文字说明,证明过程或演算步骤.15.已知函数.cos sin sin 3)(2x x x x f +-=(Ⅰ)求)625(πf 的值;(Ⅱ)设ααπαsin ,2341)2(),,0(求-=∈f 的值.NDABC16.已知函数)xgf和的图象关于原点对称,且.(x()f+=x)2(2xx (Ⅰ)求函数)g的解析式;(x(Ⅱ)解不等式.|1fxg≥xx)|)((--17.如图,已知椭圆的中心在坐标原点,焦点F 1、F 2在x 轴上,长轴A 1A 2的长为4,左准线x l 与轴的交点为M ,|MA 1|∶|A 1F 1|=2∶1. (Ⅰ)求椭圆的方程;(Ⅱ)若直线11),1|(|:l P x m x l 为>=上的动点,使21PF F ∠最大的点P 记为Q ,求点Q的坐标(用m 表示).18.如图,在三棱锥P —ABC 中,,,kPA BC AB BC AB ==⊥点O 、D 分别是AC 、PC 的中点,OP ⊥底面ABC.(Ⅰ)求证OD//平面PAB ; (Ⅱ)当21=k 时,求直线PA 与平面PBC 所成角的大小;(Ⅲ)当k 取何值时,O 在平面PBC 内的射影恰好为△PBC 的重心?BCPDAo19.袋子A 和B 中装有若干个均匀的红球和白球, 从A 中摸出一个红球的概率是31,从B中摸出一个红球的概率为p .(Ⅰ)从A 中有放回地摸球, 每次摸出一个, 有3次摸到红球即停止. ( i ) 求恰好摸5次停止的概率; ( ii ) 记5次之内 (含5次) 摸到红球的次数为ξ, 求随机变量ξ的分布列及数学期望E ξ.(Ⅱ)若A 、B 两个袋子中的球数之比为1∶2,将A 、B 中的球装在一起后, 从中摸出一个红球的概率是52, 求p 的值.20.设点)2.(),0,(1-n n n n n x P x A 和抛物线),(:2*∈++=N n b x a x y C n n n 其中n n n x n a ,21421----=由以下方法得到:)2,(,1221x P x 点=在抛物线1121:b x a x y C ++=上,点A 1(x 1,0)到P 2的距离是A 1到C 1上的最短距离,……,点)2,(11n n n x P ++在抛物线上n n n b x a x y C ++=2:上,点1)0,(+n n n P x A 到的距离是A n到C n 上点的最短距离. (Ⅰ)求12C x 及的方程; (Ⅱ)证明}{n x 是等差数列.数学试题(理科)参考答案一.选择题:本题考查基本知识和基本运算。
2005年高考浙江文科数学试题及答案
2005年高考浙江文科数学试题第Ⅰ卷 (选择题 共60分)一、选择题:本大题共10小题,每小题5分,共50分在每小题给出的四个选项中,只有一项是符合题目要求的(1)函数sin(2)6y x π=+的最小正周期是A .2πB .πC .2πD .4π (2)设全集{}1,2,3,4,5,6,7U =,{}1,2,3,4,5P =,{}3,4,5,6,7Q =,则()U P Q u ð=A .{}1,2B .{}3,4,5C .{}1,2,6,7D .{}1,2,3,4,5 (3)点(1,-1)到直线10x y -+=的距离是( )(A)21 (B) 32(C) 2 (D)2(4)设()1f x x x =--,则1()2f f ⎡⎤=⎢⎥⎣⎦( )(A) 12- (B)0 (C)12(D) 1(5)在54(1)(1)x x +-+的展开式中,含3x 的项的系数是( )(A)5- (B) 5 (C) -10 (D) 10(6)从存放号码分别为1,2,…,10的卡片的盒子中,有放回地取100次,每次取一张卡片并记下号码统计结果如下:则取到号码为奇数的频率是 A .0.53 B .0.5 C .0.47 D .0.37(7)设α、β 为两个不同的平面,l 、m 为两条不同的直线,且l ⊂α,m ⊂β,有如下的两个命题:①若α∥β,则l ∥m ;②若l ⊥m ,则α⊥β. 那么(A) ①是真命题,②是假命题 (B) ①是假命题,②是真命题(C) ①②都是真命题 (D) ①②都是假命题(8)已知向量(5,3)a x =-,(2,)b x =,且a b ⊥,则由x 的值构成的集合是A .{}2,3B .{}1,6-C .{}2D .{}6 (9)函数31y ax =+的图象与直线y x =相切,则a =A .18B .14C .12D .1(10)设集合{}(,)|,,1A x y x y x y --=是三角形的三边长,则A 所表示的平面区域(不含边界的阴影部分)是( )(A) (B) (C) (D)第Ⅱ卷 (非选择题 共100分)二、填空题:本大题共4小题,每小题4分,共16分把答案填在答题卡的相应位置11.函数2xy x =+(x ∈R ,且x ≠-2)的反函数是_________. 12.设M 、N 是直角梯形ABCD 两腰的中点,DE ⊥AB 于E (如图).现将△ADE 沿DE 折起,使二面角A -DE -B 为45°,此时点A 在平面BCDE 内的射影恰为点B ,则M 、N 的连线与AE所成角的大小等于_________.13.过双曲线22221x y a b-=(a >0,b >0)的左焦点且垂直于x 轴的直线与双曲线相交于M 、N 两点,以MN 为直径的圆恰好过双曲线的右顶点,则双曲线的离心率等于_________.14.从集合{P ,Q ,R ,S }与{0,1,2,3,4,5,6,7,8,9}中各任取2个元素排成一排(字母和数字均不能重复).每排中字母Q 和数字0至多只能出现一个的不同排法种数是_________.(用数字作答).三、解答题:本大题共6小题,每小题14分,共84分解答应写出文字说明,证明过程或演算步骤15.已知函数()2sin cos cos 2f x x x x =+(Ⅰ) 求()4f π的值;(Ⅱ) 设α∈(0,π),()2f α=sin α的值.16.已知实数,,a b c 成等差数列,1,1,4a b c +++成等比数列,且15a b c ++=,求,,a b c17.袋子A 和B 中装有若干个均匀的红球和白球,从A 中摸出一个红球的概率是31,从B 中摸出一个红球的概率为p .(Ⅰ) 从A 中有放回地摸球,每次摸出一个,共摸5次求(i )恰好有3摸到红球的概率;(ii )第一次、第三次、第五次均摸到红球的概率. (Ⅱ) 若A 、B 两个袋子中的球数之比为1:2,将A 、B 中的球装在一起后,从中摸出一个红球的概率是25,求p 的值.18.如图,在三棱锥P -ABC 中,AB ⊥BC ,AB =BC =12PA ,点O 、D 分别是AC 、PC 的中点,OP ⊥底面ABC .(Ⅰ)求证OD ∥平面PAB(Ⅱ) 求直线OD 与平面PBC 所成角的大小;19.如图,已知椭圆的中心在坐标原点,焦点12,F F 在x 轴上,长轴A 1A 2的长为4,左准线l 与x 轴的交点为M ,|MA 1|∶|A 1F 1|=2∶1.(Ⅰ)求椭圆的方程;(Ⅱ)若点P 在直线l 上运动,求∠F 1PF 2的最大值.20.函数f (x )和g (x )的图象关于原点对称,且f (x )=x 2=2x .(Ⅰ)求函数g (x )的解析式; (Ⅱ)解不等式g (x )≥f (x )-|x -1|. (Ⅲ)若()()()1h x g x f x λ=-+在[]1,1-上是增函数,求实数λ的取值范围2005年高考浙江文科数学试题参考答案一、选择题:本题考查基本知识和基本运算每小题5分,满分50分(1)B (2)A (3)D (4)D (5)C (6)A (7)D (8)C (9)B (10)A二、填空题:本题考查基本知识和基本运算每小题4分,满分16分(11)()2,11xy x R x x=∈≠-且;(12)90︒;(13)2;(14)5832 三、解答题:(15)本题主要考查三角函数的倍角公式、两角和的公式等基础知识和基本的运算能力满分14分解:(Ⅰ)∵()sin 2cos 2f x x x =+∴sin cos 1422f πππ⎛⎫=+=⎪⎝⎭(Ⅱ) cos sin 22f ααα⎛⎫=+= ⎪⎝⎭∴1sin ,cos 424ππαα⎛⎫⎛⎫+=+= ⎪ ⎪⎝⎭⎝⎭ 13226sin sin 442ππαα⎛⎫=+-=⨯= ⎪⎝⎭∵()0απ∈,, ∴sin 0α>, 故sin α=(16)本题主要考查等差、等比数列的基本知识考查运算及推理能力14分解:由题意,得()()()()()()2151221413a b c a c b a c b ⎧++=⎪⎪+=⎨⎪++=+⎪⎩由(1)(2)两式,解得5b = 将10c a =-代入(3),整理得213220211,2,5,811,5, 1.a a a a a b c a b c -+=========-解得或故或经验算,上述两组数符合题意。
2005年高考全国卷1(文科数学)
2005年普通高等学校招生全国统一考试文科数学(全国卷Ⅰ)(适用:河北、河南、山西、安徽、海南)一、选择题 (本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求)1.2等于 A.i B.i -C.iD.i -2.设I 为全集,321S S S 、、是I 的三个非空子集,且123S S S I =,则下面论断正确的是A.123I C S S S =∅() B.122I I S C S C S ⊆() C.123(I I I C S C S C S =∅) D.122I I S C S C S ⊆() 3.一个与球心距离为1的平面截球所得的圆面面积为π,则球的表面积为 A.π28 B.π8 C.π24 D.π44.函数93)(23-++=x ax x x f ,已知)(x f 在3-=x 时取得极值,则a =A.2B.3C.4D.55.如图,在多面体ABCDEF 中,已知ABCD 是边长为1的正方形,且ADE ∆、 BCF ∆均为正三角形,EF ∥AB ,2EF =,则该多面体的体积为 A.32 B.33 C.34 D.236.已知双曲线2221x y a -=(0a >)的一条准线为23=x ,则该双曲线的离心率为 A.23 B.23 C.26 D.332 7.当20π<<x 时,函数x x x x f 2sin sin 82cos 1)(2++=的最小值为 A.2 B.32 C.4 D.34AB CD E F8.y =12x ≤≤)反函数是A.1y =11x -≤≤)B.1y =(01x ≤≤)C.1y =(11x -≤≤)D.1y =(01x ≤≤)9.设10<<a ,函数)22(log )(2--=x x a a a x f ,则使()0f x <的x 的取值范围是A.)0,(-∞B.),0(+∞C.)3log ,(a -∞D.),3(log +∞a10.在坐标平面上,不等式组131y x y x ≥-⎧⎪⎨≤-+⎪⎩所表示的平面区域的面积为 A.2 B.23 C.223 D.2 11.在ABC ∆中,已知C B A sin 2tan =+,给出以下四个论断: ①1cot tan =⋅B A ②2sin sin 0≤+<B A③1cos sin 22=+B A ④C B A 222sin cos cos =+其中正确的是A.①③B.②④C.①④D.②③12.点O 是ABC ∆所在平面内的一点,满足OA OB OB OC OC OA ⋅=⋅=⋅,则点O 是ABC ∆的A.三个内角的角平分线的交点B.三条边的垂直平分线的交点C.三条中线的交点D.三条高的交点二、本大题共4小题,每小题4分,共16分,把答案填在题中横线上.13.若正整数m 满足m m 102105121<<-,则m = .(lg 20.3010)≈ 14.81()x x-的展开式中,常数项为 .(用数字作答) 15.6名男生和4名女生中,选出3名代表,要求至少包含1名女生,则不同的选法有 种.16.在正方形1111ABCD A B C D -中,过对角线1BD 的一个平面交1AA 于E ,交1CC 于F ,则①四边形1BFD E 一定是平行四边形②四边形1BFD E 有可能是正方形③四边形1BFD E 在底面ABCD 内的投影一定是正方形④四边形1BFD E 有可能垂直于平面1BB D以上结论正确的为 .(写出所有正确结论的编号)三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤.17.(本大题满分12分)设函数)(),0( )2sin()(x f y x x f =<<-+=ϕπϕ图像的一条对称轴是直线8π=x . (Ⅰ)求ϕ;(Ⅱ)求函数)(x f y =的单调增区间;(Ⅲ)画出函数)(x f y =在区间[0,]π上的图像.18.(本大题满分12分)已知四棱锥P ABCD -的底面为直角梯形,AB ∥DC ,90DAB ∠=,PA ⊥底面ABCD ,且112PA AD AB ===,M 是PB 的中点。
2005年全国各地高考数学试题及解答分类大全(计数原理、二项式定理)
解法 2:共有 7 个,它们是由四个定点组成的四面体的三对异面直线间的公垂线的三个中垂面;
四面体的四条高的四个中垂面,选(D)
【解后反思】分步计数原理与分类计数原理是排列组合中解决问题的重要手段,也是基础方法,
在高中数学中,只有这两个原理,尤其是分类计数原理与分类讨论有很多相通之处,当遇到比较复杂的
5
放入④两种放法。综上所述:共有 A44 2 48 种放法.故选 B.
P
1
4
A 5
23 8
D 7
B6 C
9.(2005 江西文)将 9 个(含甲、乙)平均分成三组,甲、乙分在同一组,则不同分组方法的种数
为
()
A.70
B.140
C.280
D.840
【思路点拨】本题涉及组合的平均分组问题.
【正确解答】要使甲、乙分在同一组,即将剩下的 7 人分成三组,其中两组有三个人,一组只有一
B.96
C.72
D.144
解:本题主要关键是抓连续编号的 2 张电影票的情况,可分四种情况:
情况一:连续的编号的电影票为 1,2;3,4;5,6,这时分法种数为 C42P32P22
情况二:连续的编号的电影票为 1,2;4,5,这时分法种数为 C42P22P22
情况三:连续的编号的电影票为 2,3;4,5;这时分法种数为 C42P22P22
D.1 项
【思路点拨】本题主要考查二项式展开通项公式的有关知识.
【正确解答】 (
x 3 x )12 的展开式为 C1t2 (
x )t ( 3
x )12t
Байду номын сангаас
C1t2
x
t 2
12t 3
C1t2
2005年高考数学试题
1、设集合A = {x | x是小于8的正整数},B = {x | x是3的倍数},则A ∩B =A. {3, 6}B. {1, 2, 3}C. {3, 6, 9}D. {2, 4, 6}(答案)A2、已知等差数列{an}的首项为a1,公差为d,若a3 + a5 = 10,则a1 + a7 =A. 10B. 12C. 14D. 16(答案)A3、若复数z满足(1 + i)z = 1 - i(i为虚数单位),则z =A. iB. -iC. 1 + iD. 1 - i(答案)B4、设f(x)是定义在R上的奇函数,且当x ≥0时,f(x) = x2 - 2x,则f(-1) =A. -1B. 0C. 1D. 3(答案)C5、已知向量a = (1, 2),b = (2, m),若a ⊥b,则m =A. -1B. 0C. 1D. 2(答案)A6、设三角形ABC的内角A、B、C所对的边分别为a、b、c,且cos(A - C) + cos(B) = 1,则三角形ABC的形状是A. 等腰三角形B. 等边三角形C. 直角三角形D. 等腰直角三角形(答案)D7、已知圆C的方程为x2 + y2 = 4,直线l的方程为x - y - 2 = 0,则圆心C到直线l的距离为A. √2B. 2C. 2√2D. 4(答案)C8、设等比数列{an}的公比为q,前n项和为Sn,若S3,S9,S6成等差数列,则q3 =A. -1或1/2B. 1或-1/2C. -1D. 1/2(答案)B9、已知函数f(x) = x2 + ax + b在x = 1处有极小值,则A. a2 - 4b > 0且a = -2B. a2 - 4b > 0且a = 2C. a2 - 4b ≤0且a = -2D. a2 - 4b ≤0且a = 2(答案)A10、设椭圆C的方程为x2/a2 + y2/b2 = 1(a > b > 0),点A(2, 0)是椭圆C的一个顶点,点B(0, 1)在椭圆C上,则A. a = 2,b = 1B. a = 2,b = √2C. a = 4,b = 2D. a = 4,b = √2(答案)A。
2005年高考全国卷3(文科数学)
2005年普通高等学校招生全国统一考试文科数学(全国卷Ⅲ)(陕西、甘肃、四川、云南、贵州等地区用)一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求.(本大题共12小题,每小题5分,共60分)1.已知α为第三象限角,则2α所在的象限是A.第一或第二象限B.第二或第三象限C.第一或第三象限D.第二或第四象限2.已知过点A (2,)m -和B (,4)m 的直线与直线210x y +-=平行,则m 的值为 A.0 B.-8 C.2 D.103.在8(1)(1)x x -+的展开式中5x 的系数是A.-14B.14C.-28D.284.设三棱柱111ABC A B C -的体积为V ,,P Q 分别是侧棱1AA 、1CC 上的点,且1PA QC =,则四棱锥B APQC -的体积为A.16VB.14VC.13VD.12V5.设37x =,则A.21x -<<-B.32x -<<-C.10x -<<D.01x <<6.若ln 2ln 3ln 5,,235a b c ===,则 A.a b c << B.c b a << C.c a b << D.b a c <<7.设02x π≤≤,sin cos x x =-,则 A.0x π≤≤ B.744x ππ≤≤C.544x ππ≤≤D.322x ππ≤≤ 8.22sin 2cos 1cos 2cos 2αααα⋅=+ A.tan α B.tan 2α C.1 D.129.已知双曲线2212y x -=的焦点为1F 、2F ,点M 在双曲线上且120MF MF ⋅=,则点M 到x 轴的距离为A.43B.53C.310.设椭圆的两个焦点分别为1F 、2F ,过2F 作椭圆长轴的垂线交椭圆于点P ,若12F PF ∆为等腰直角三角形,则椭圆的离心率是C.21 11.不共面的四个定点到平面α的距离都相等,这样的平面α共有 A.3个 B.4个 C.6个D.7个 12.计算机中常用十六进制是逢16进1的计数制,采用数字0~9和字母A ~F 共例如,用十六进制表示:1E D B +=,则A B ⨯=A.6EB.72C.5FD.0B 二、填空题:本大题共4小题,每小题4分,共16分.13.经问卷调查,某班学生对摄影分别执“喜欢”,“不喜欢”和“一般”三种态度,其中执“一般”态度的比执“不喜欢”的多12人.按分层抽样的方法从全班选出部分学生座谈摄影,如果选出的5位“喜欢”摄影的同学、1为“不喜欢”摄影的同学和3为执“一般”的同学,那么全班学生中“喜欢”摄影的同学比全班学生人数的一半多 人.14.已知向量(,12)OA k =,(4,5)OB =,(,10)OC k =-,且,,A B C 三点共线,则k = .15.曲线32y x x =-在点(1,1)的切线方程为 .16.已知在ABC ∆中,090ACB ∠=,3BC =,4AC =,P 是AB 上的点,则点P 到AC 、BC 的距离乘积的最大值是 .三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤.17.(本小题满分12分)已知函数2()2sin sin 2f x x x =+,[0,2]x π∈.求使()f x 为正值的x 的集合. 18.(本小题满分12分)设甲、乙、丙三台机器是否需要照顾相互之间没有影响。
2005年高考试题—数学(江苏卷)
2005年普通高等学校招生全国统一考试数 学(江苏卷)第一卷(选择题共60分)参考公式:三角函数的和差化积公式2cos2sin2sin sin βαβαβα−+=+ 2sin2cos2sin sin βαβαβα−+=−2cos2cos2cos cos βαβαβα−+=+ 2sin2sin2cos cos βαβαβα−+−=−若事件A 在一次试验中发生的概率是p ,则它在n 次独立重复试验中恰好发生k 次的概 率P n (k )=kn kkn p p C −−)1(一组数据n x x x ,,,21 的方差])()()[(1222212x x x x x x nS n −++−+−= 其中x 为这组数据的平均值一、选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题意要求的。
1.设集合A={1,2},B={1,2,3},C={2,3,4}则=C B A )( ( )A .{1,2,3}B .{1,2,4}C .{2,3,4}D .{1,2,3,4} 2.函数)(31R x x y x∈+=−的反函数的解析表达式为( )A .32log 2−=x y B .23log 2−=x yC .23log 2xy −= D .xy −=32log 23.在各项都为正数的等比数列}{n a 中,首项31=a ,前三项和为21,则=++543a a a ( )A .33B .72C .84D .1894.在正三棱柱中ABC —A 1B 1C 1,若AB=2,AA 1=1,则点A 到平面A 1BC 的距离为( )A .43B .23 C .433 D .35.ABC BC A ABC ∆==∆则中,3,3,π的周长为( )A .3)3sin(34++πB B .3)6sin(34++πBC .3)3sin(6++πB D .3)6sin(6++πB6.抛物线24x y =上的一点M 到焦点的距离为1,则点M 的纵坐标是 ( )A .1617B .1615 C .87 D .07.在一次歌手大奖赛上,七位评委为歌手打出的分数如下:9.4 8.4 9.4 9.9 9.6 9.4 9.7去掉一个最高分和一个最低分后,所剩数据的平均值和方差分别为 ( )A .9.4,0.484B .9.4,0.016C .9.5,0.04D .9.5,0.0168.设γβα,,为两两不重合的平面,n m l ,,为两两不重合的直线,给出下列四个命题: ①若βαγβγα//,,则⊥⊥;②若βαββαα//,//,//,,则n m n m ⊂⊂; ③若βαβα//,,//l l 则⊂;④若.//,//,,,n m l n m l 则γαγγββα=== 其中真命题的个数是 ( )A .1B .2C .3D .4 9.设5)2(,5,4,3,2,1+=x k 则的展开式中kx 的系数不可能是 ( )A .10B .40C .50D .80 10.若=+=−)232cos(,31)6sin(απαπ则( )A .97− B .31−C .31D .97 11.点P (-3,1)在椭圆)0(12222>>=+b a by a x 的左准线上. 过点P 且方向为a =(2,-5)的光线,经直线2−=y 反射后通过椭圆的左焦点,则这个椭圆的离心率为 ( )A .33B .31 C .22 D .21 12.四棱锥的8条棱代表8种不同的化工产品,有公共点的两条棱代表的化工产品放在同一仓库是危险的,没有公共顶点的两条棱多代表的化工产品放在同一仓库是安全的,现打 算用编号为①、②、③、④的4个仓库存放这8种化工产品,那么安全存放的不同方法 种数为 ( )A .96B .48C .24D .0第二卷(非选择题共90分)二、填空题:本大题共6小题,每小题4分,共24分. 把答案填在答题卡相应位置. 13.命题“若122,−>>bab a 则”的否命题为 . 14.曲线13++=x x y 在点(1,3)处的切线方程是 . 15.函数)34(log 25.0x x y −=的定义域为 .16.函数=+∈=k k k a a则),1,[,618.03 .17.已知a ,b 为常数,若=−++=+++=b a x x b ax f x x x f 5,2410)(,34)(22则 . 18.在△ABC 中,O 为中线AM 上的一个动点,若AM=2,则OA (OB +OC )的最小值是 .三、解答题:本大小题共5小题,共66分. 解答应写出文字说明、证明过程或演算步骤. 19.(本小题满分12分)如图,圆O 1与圆O 2的半径都是1,O 1O 2=4,过动点P 分别作圆O 1、圆O 2的切线PM 、PN (M 、N 为切点),使得PN PM 2=试建立适当的坐标系,并求动点 P 的轨迹方程.20.(本小题满分12分,每小问满分4分)甲、乙两人各射击一次,击中目标的概率分别是4332和.假设两人射击是否击中目 标,相互之间没有影响;每次射击是否击中目标,相互之间没有影响. (Ⅰ)求甲射击4次,至少1次未击中目标的概率;(Ⅱ)求两人各射击4次,甲恰好击中目标2次且乙恰好击中目标3次的概率;(Ⅲ)假设某人连续2次未击中目标,则停止射击.问:乙恰好射击5次后,被中止射击的概率是多少?21. (本小题满分14分,第一小问满分6分,第二、第三小问满分各4分) 如图,在五棱锥S—ABCDE中,SA⊥底面ABCDE,120.SA=AB=AE=2,BC=DE=3,∠BAE=∠BCD=∠CDE=(Ⅰ)求异面直线CD与SB所成的角(用反三角函数值表示);(Ⅱ)证明BC⊥平面SAB(Ⅲ)用反三角函数值表示二面角B-SC-D的大小(本小问不必写出解答过程)22. (本小题满分14分,第一小问满分4分,第二小问满分10分)已知R a ∈,函数.||)(2a x x x f −=(Ⅰ)当a =2时,求f(x)=x 使成立的x 的集合; (Ⅱ)求函数y=f(x)在区间[1,2]上的最小值.23. (本小题满分14分,第一小问满分2分, 第二、第三小问满分各6分)设数列{a n }的前n 项和为n S ,已知a 1=1, a 2=6, a 3=11,且n n S n S n )25()85(1+−−+,,3,2,1, =+=n B An 其中A ,B 为常数.(Ⅰ)求A 与B 的值;(Ⅱ)证明数列{a n }为等差数列;(Ⅲ)证明不等式15>−n m mn a a a 对任何正整数m 、n 都成立.数学试题参考答案一、选择题:本题考查基本概念和基本运算,每小题5分,满分60分。
05年高考数学试题及答案全国卷
2005年普通高等学校招生全国统一考试理科数学(全国卷Ⅱ)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷1至2页。
第Ⅱ卷3到10页。
考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷注意事项:1.答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目涂写在答题卡上。
2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
不能答在试题卷上。
3.本卷共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
参考公式:如果事件A 、B 互斥,那么 球是表面积公式)()()(B P A P B A P +=+ 24R S π=如果事件A 、相互独立,那么 其中R 表示球的半径)()()(B P A P B A P ⋅=⋅ 球的体积公式如果事件A 在一次试验中发生的概率是P ,那么334R V π=n 次独立重复试验中恰好发生k 次的概率 其中R 表示球的半径一 选择题(1)函数f (x) = | sin x +cos x |的最小正周期是 (A).4π (B)2π(C )π (D )2π(2) 正方体ABCD —A 1 B 1 C 1 D 1中,P 、Q 、R 、分别是AB 、AD 、B 1 C 1的中点。
那么正方体的过P 、Q 、R 的截面图形是(A )三角形 (B )四边形 (C )五边形 (D )六边形 (3)函数Y=32x -1(X≤0)的反函数是(A )Y=3)1(+x (X≥-1) (B)Y= -3)1(+x (X≥-1)(C) Y=3)1(+x (X≥0) (D)Y= -3)1(+x (X≥0)(4)已知函数Y=tan x ω 在(-2π,2π)内是减函数,则 (A )0 < ω ≤ 1 (B )-1 ≤ ω < 0 (C )ω≥ 1 (D )ω≤ -1(5)设a 、b 、c 、d ∈R,若dic bia ++为实数,则 (A )bc+ad ≠ 0 (B)bc-ad ≠ 0 (C) bc-ad = 0 (D)bc+ad = 0(6)已知双曲线 62x - 32y = 1的焦点为F 1、、F 2,点M 在双曲线上且MF 1 ⊥ x 轴,则F 1到直线F 2 M 的距离为 (A )563 (B )665 (C )56 (D )65(7)锐角三角形的内角A 、B 满足tan A -A2sin 1= tan B,则有(A )sin 2A –cos B = 0 (B)sin 2A + cos B = 0 (C)sin 2A – sin B = 0 (D) sin 2A+ sin B = 0(8)已知点A (3,1),B(0,0),C (3,0).设∠BAC 的平分线AE 与BC 相交于E ,那么有λ= ,其中 λ 等于(A )2 (B )21 (C )-3 (D ) - 31(9)已知集合M={x∣2x -3x -28 ≤0},N = {x|2x -x-6>0},则M∩N 为(A ){x|- 4≤x< -2或3<x≤7} (B ){x|- 4<x≤ -2或 3≤x<7 }(C ){x|x≤ - 2或 x> 3 } (D ){x|x<- 2或x≥3} (10)点P 在平面上作匀数直线运动,速度向量v =(4,- 3)(即点P 的运动方向与v 相同,且每秒移动的距离为|v |个单位).设开始时点P 的坐标为(- 10,10),则5秒后点P 的坐标为 (A )(- 2,4) (B )(- 30,25) (C )(10,- 5) (D )(5,- 10) (11)如果21,a a … ,8a 为各项都大于零的等差数列,公差d≠0,则(A>81,a a >54,a a (B) 81,a a < 54,a a (C> 5481a a a a +>+ (D) 81,a a = 54,a a(12)将半径都为1的4个钢球完全装入形状为正四面体的容器里,这个正四面体的高的最小值为 (A )3623+ (B )2+362 (C )4+362 (D )36234+第Ⅱ卷注意事项:1.用钢笔或圆珠笔直接答在试题卷上。
2005高考数学(湖北卷)(理、word版,附答案)
2005年普通高等学校招生全国统一考试(湖北卷)数学试题卷(理工农医类)本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分. 满分150分. 考试时间120分钟.第I 部分(选择题 共60分)注意事项: 1.答卷前,考生务必将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
答在试题卷上无效。
3.考试结束,监考人员将本试题卷和答题卡一并收回。
一、选择题:本大题共12小题,每小题5分,共60分. 在每小题给出的四个备选项中,只有一项是符合题目要求的.1.设P 、Q 为两个非空实数集合,定义集合P+Q=},5,2,0{},,|{=∈∈+P Q b P a b a 若}6,2,1{=Q ,则P+Q 中元素的个数是( )A .9B .8C .7D .62.对任意实数a ,b ,c ,给出下列命题: ①“b a =”是“bc ac =”充要条件; ②“5+a 是无理数”是“a 是无理数”的充要条件③“a >b ”是“a 2>b 2”的充分条件;④“a <5”是“a <3”的必要条件. 其中真命题的个数是 ( ) A .1 B .2 C .3 D .4 3.=++-ii i 1)21)(1(( )A .i --2B .i +-2C .i -2D .i +2 4.函数|1|||ln --=x e y x 的图象大致是( )5.双曲线)0(122≠=-mn ny m x 离心率为2,有一个焦点与抛物线x y 42=的焦点重合,则mn 的值为( )A .163 B .83 C .316 D .386.在x y x y x y y x 2c o s ,,lo g ,222====这四个函数中,当1021<<<x x 时,使2)()()2(2121x f x f x x f +>+恒成立的函数的个数是 ( )A .0B .1C .2D .3 7.若∈<<=+απαααα则),20(tan cos sin( )A .)6,0(πB .)4,6(ππC .)3,4(ππ D .)2,3(ππ 8.若1)11(lim 21=---→xbx a x ,则常数b a ,的值为( )A .4,2=-=b aB .4,2-==b aC .4,2-=-=b aD .4,2==b a9.若x x x sin 32,20与则π<<的大小关系( )A .x x sin 32>B .x x sin 32<C .x x sin 32=D .与x 的取值有关10.如图,在三棱柱ABC —A ′B ′C ′中,点E 、F 、H 、 K 分别为AC ′、CB ′、A ′B 、B ′C ′的中点,G 为△ABC 的 重心. 从K 、H 、G 、B ′中取一点作为P , 使得该棱柱恰有 2条棱与平面PEF 平行,则P 为 ( ) A .K B .HC .GD .B ′11.某初级中学有学生270人,其中一年级108人,二、三年级各81人,现要利用抽样方法抽取10人参加某项调查,考虑选用简单随机抽样、分层抽样和系统抽样三种方案,使用简单随机抽样和分层抽样时,将学生按一、二、三年级依次统一编号为1,2,…,270;使用系统抽样时,将学生统一随机编号1,2,…,270,并将整个编号依次分为10段。
2005年全国各地高考数学试题及解答分类大全(解析几何初步)
A.0
B.-8
C.2
D.10
【思路点拨】本题考查直线方程中系数与直线几何性质的关系.
【正确解答】解法(1)两直线平行,则斜率相等,因此有
4m m2
2
,得
m
8
.选
B.
解法 2:直线 2x+y-1=0 的一个方向向量为 a =(1,-2), AB (m 2, 4 m) ,由 AB ∥ a
即(m+2)×(-2)-1×(4-m)=0,m=-8,选(B)
2005 年全国各地高考数学试题及解答分类大全
(解析几何初步)
一、选择题:
1、(2005 春招北京文)直线 x 3y 2 0 被圆 (x 1)2 y2 1 所截得的线段的长为( C )
A.1
B. 2
C. 3
D.2
2. (2005 北京文)从原点向圆 x2+y2-12y+27=0 作两条切线,则这两条切
0 x 3, 0 y 4 ,则 AB 直线方程为 4x 3y 12 0 .
点 P 到 AC、BC 的距离乘积 xy x( 4 x 4) 4 (x 3) 2 3 3
3
32
所以最大值为 3.
解法 2:P 到 BC 的距离为 d1,P 到 AC 的距离为 d2,则三角形的面积得 3d1+4d2=12,∴3d1 4d2≤
【名师指津】
以数形结合的思想解决此类题,抓图中直角三角形中边角关系.
3.(2005 北京理)从原点向圆 x 2 y 2 12 y 27 0 作两条切线,则该圆夹在两条切线间的劣弧长为
()
A.π B.2π C.4π D.6π 【答案】B 【详解】
将圆的方程配方得: x2 ( y 6)2 9 圆心在 (0, 6) 半径为 3,如图: 在图中 RtPAO 中, OP 6 2PA ,从而得到 AOP 30o , 即 AOB 60o. 可求 BPA 120o. P 的周长为 2 3 6 劣弧长为周长的 1 ,可求得劣弧长为 2 .
2005年高考卷
2005年普通高等学校招生全国统一考试(北京卷)文史数学一、本大题共8小题.(1)设集合M ={x | x >1,P ={x | x 2>1},则下列关系中正确的是(A )M =P (B )P ÜM (C )M ÜP ( D )M P R = (2)为了得到函数321x y -=-的图象,只需把函数2x y =上所有点 (A )向右平移3个单位长度,再向下平移1个单位长度 (B )向左平移3个单位长度,再向下平移1个单位长度 (C )向右平移3个单位长度,再向上平移1个单位长度 (D )向左平移3个单位长度,再向上平移1个单位长度 (3)“m =21”是“直线(m +2)x +3my +1=0与直线(m -2)x +(m +2)y -3=0相互垂直”的 (A )充分必要条件 (B )充分而不必要条件(C )必要而不充分条件 (D )既不充分也不必要条件 (4)若||1,||2,a b c a b ===+,且c a ⊥,则向量a 与b 的夹角为(A )30° (B )60° (C )120° (D )150°(5)从原点向圆 x 2+y 2-12y +27=0作两条切线,则这两条切线的夹角的大小为 (A )6π (B )3π (C )2π(D )32π (6)对任意的锐角α,β,下列不等关系中正确的是(A )sin(α+β)>sin α+sin β (B )sin(α+β)>cos α+cos β (C )cos(α+β)<sinα+sinβ (D )cos(α+β)<cosα+cosβ(7)在正四面体P -ABC 中,D ,E ,F 分别是AB ,BC ,CA 的中点,不成立...的是 (A )BC //平面PDF (B )DF ⊥平面PA E(C )平面PDF ⊥平面ABC (D )平面PAE ⊥平面 ABC(8)五个工程队承建某项工程的五个不同的子项目,每个工程队承建1项,其中甲工程队不能承建1号子项目,则不同的承建方案共有(A )1444C C 种 (B )1444C A 种 (C )44C 种 (D )44A 种二、填空题:(9)抛物线y 2=4x 的准线方程是 ;焦点坐标是 . (10)61()x x-的展开式中的常数项是 (用数字作答)(11)函数1()2f x x=-的定义域为 . (12)在△ABC 中,AC =3,∠A =45°,∠C =75°,则BC 的长为 .(13)对于函数f (x )定义域中任意的x 1,x 2(x 1≠x 2),有如下结论: ①f (x 1+x 2)=f (x 1)·f (x 2);② f (x 1·x 2)=f (x 1)+f (x 2); ③1212()()f x f x x x -->0;④1212()()()22x x f x f x f ++<.当f (x )=lg x 时,上述结论中正确结论的序号是 .(14)已知n 次多项式1011()n n n n n P x a x a x a x a --=++++,如果在一种算法中,计算0k x (k =2,3,4,…,n )的值需要k -1次乘法,计算30()P x 的值共需要9次运算(6次乘法,3次加法),那么计算100()P x 的值共需要 次运算.下面给出一种减少运算次数的算法:0011(),()()k k k P x a P x xP x a ++==+(k =0, 1,2,…,n -1).利用该算法,计算30()P x 的值共需要6次运算,计算100()P x 的值共需要 次运算.三、解答题: (15)已知tan2α=2,求(I )tan()4πα+的值; (II )6sin cos 3sin 2cos αααα+-的值.(16)如图, 在直三棱柱ABC -A 1B 1C 1中,AC =3,BC =4,AA 1=4,点D 是AB 的中点,(I )求证:AC ⊥BC 1;(II )求证:AC 1//平面CDB 1; (III )求异面直线 AC 1与 B 1C 所成角的余弦值.(17)数列{a n }的前n 项和为S n ,且a 1=1,113n n a S +=,n =1,2,3,……,求(I )a 2,a 3,a 4值及{a n }的通项公式;(II )2462n a a a a ++++的值.(18)甲、乙两人各进行3次射击,甲每次击中目标的概率为21,乙每次击中目标的概率32,(I )甲恰好击中目标的2次的概率;(II )乙至少击中目标2次的概率;(III )求乙恰好比甲多击中目标2次的概率.(19)已知函数f (x )=-x 3+3x 2+9x +a , (I )求f (x )的单调递减区间;(II )若f (x )在区间[-2,2]上的最大值为20,求它在该区间上的最小值.(20)如图,直线 l 1:y =kx (k >0)与直线l 2:y =-kx 之间的阴影区域(不含边界)记为W ,其左半部分记为W 1,右半部分记为W 2. (I )分别用不等式组表示W 1和W 2;(II )若区域W 中的动点P (x ,y )到l 1,l 2的距离之积等于d 2,求点P 的轨迹C 的方程; (III )设不过原点O 的直线l 与(II )中的曲线C 相交于M 1,M 2两点,且与l 1,l 2分别交于M 3,M 4两点.求证△OM 1M 2的重心与△OM 3M 4的重心重合.2005年普通高等学校招生全国统一考试(广东卷)数 学第Ⅰ卷(选择题,共50分)一、选择题:1.若集合}03|{},2|||{2=-=≤=x x x N x x M ,则M ∩N=A .{3}B .{0}C .{0,2}D .{0,3}2.若i b i i a -=-)2(,其中a 、b ∈R ,i 是虚数单位,则22b a +=A .0B .2C .25 D .5 3.93lim 23-+-→x x x =A .61-B .0C .61 D .314.已知高为3的直棱柱ABC —A ′B ′C ′的底面是边长为1的正三 角形(如图1所示),则三棱锥B ′—ABC 的体积为A .41B .21 C .63D .435.若焦点在x 轴上的椭圆1222=+my x 的离心率为21,则m= A .3 B .23 C .38D .326.函数13)(23+-=x x x f 是减函数的区间为A .),2(+∞B .)2,(-∞C .)0,(-∞D .(0,2)7.给出下列关于互不相同的直线m 、l 、n 和平面α、β的四个命题:①若不共面与则点m l m A A l m ,,,∉=⋂⊂αα;②若m 、l 是异面直线,ααα⊥⊥⊥n m n l n m l 则且,,,//,//; ③若m l m l //,//,//,//则βαβα;④若.//,//,//,,,βαββαα则点m l A m l m l =⋂⊂⊂ 其中为假命题的是 A .①B .②C .③D .④8.先后抛掷两枚均匀的正方体骰子(它们的六个面分别标有点数1、2、3、4、5、6),骰子朝上的面的点数分别为X 、Y ,则1log 2=Y X 的概率为A .61 B .365 C .121 D .21 9.在同一平面直角坐标系中,函数)(x f y =和)(x g y =的 图象关于直线x y =对称. 现将)(x g y =的图象沿x 轴向左 平移2个单位,再沿y 轴向上平移1个单位,所得的图象是由两条线段组成的折线(如图2所示),则函数)(x f 的表达式为A .⎪⎩⎪⎨⎧≤<+≤≤-+=20,2201,22)(x x x x x fB .⎪⎩⎪⎨⎧≤<-≤≤--=20,221,22)(x x x x x fC .⎪⎩⎪⎨⎧≤<+≤≤-=42,1221,22)(x x x x x fD .⎪⎩⎪⎨⎧≤<-≤≤-=42,3221,62)(x x x x x f10.已知数列===+==∞→--12112,2lim .,4,3),(21,2}{x x n x x x x x x n n n n n n 则若满足A .23B .3C .4D .5第Ⅱ卷(非选择题 共100分)二、填空题: 11.函数xex f -=11)(的定义域是 .12.已知向量,//),6,(),3,2(x 且==则x = . 13.已知5)1cos (+θx 展开式中2x 的系数与4)45(+x 的展开式中x 3的系数相等,则θcos = 14.设平面内有n 条直线(n ≥3),其中有且仅有两条直线互相平行,任意三条直线不过同一点.若用)(n f 表示这n 条直线交点的个数,则)4(f = ;当n>4时, )(n f = .(用n 表示)三、解答题: 15.化简),,)(23sin(32)2316cos()2316cos()(Z k R x x x k x k x f ∈∈++--+++=πππ并求函数)(x f 的值域和最小正周期.16.如图3所示,在四面体P —ABC 中,已知PA=BC=6,PC=AB=10,AC=8,PB=342.F 是线段PB 上一点,341715=CF ,点E 在线段AB 上,且EF ⊥PB. (Ⅰ)证明:PB ⊥平面CEF ; (Ⅱ)求二面角B —CE —F 的大小.17.在平面直角坐标系x Oy 中,抛物线y=x 2上异于 坐标原点O 的两不同动点A 、B 满足AO ⊥BO (如 图4所示).(Ⅰ)求△AOB 的重心G (即三角形三 条中线的交点)的轨迹方程;(Ⅱ)△AOB 的面积是否存在最小值?若存在, 请求出最小值;若不存在,请说明理由.18.箱中装有大小相同的黄、白两种颜色的乒乓球, 黄、白乒乓球的数量比为s:t.现从箱中每次任意取出一个 球,若取出的是黄球则结束,若取出的是白球,则将其放 回箱中,并继续从箱中任意取出一个球,但取球的次数最 多不超过n 次,以ξ表示取球结束时已取到白球的次数. (Ⅰ)求ξ的分布列;(Ⅱ)求ξ的数学期望.19.设函数)7()7(),2()2(),()(x f x f x f x f x f +=-+=-+∞-∞上满足在,且在闭区间[0,7]上,只有.0)3()1(==f f (Ⅰ)试判断函数)(x f y =的奇偶性;(Ⅱ)试求方程0)(=x f 在闭区间[-2005,2005]上的根的个数,并证明你的结论. 20.在平面直角坐标系中,已知矩形ABCD 的长为2,宽为1,AB 、AD 边分别在x 轴、y 轴的正半轴上,A 点与坐标原点重合(如图5所示).将矩形折叠,使A 点落在线段DC 上. (Ⅰ)若折痕所在直线的斜率为k ,试写出折痕所在直线的方程; (Ⅱ)求折痕的长的最大值.2005年普通高等学校招生全国统一考试理科数学(广西)第一卷 一选择题(1)函数f (x) = | sin x +cos x |的最小正周期是 (A).4π (B)2π(C )π (D )2π (2) 正方体ABCD —A 1 B 1 C 1 D 1中,P 、Q 、R 、分别是AB 、AD 、B 1 C 1的中点。
2005年全国高考数学试题全集
目录
2005 年普通高等学校招生全国统一考试(辽宁卷)......................................................2 2005 年普通高等学校招生全国统一考试理科数学(山东卷)....................................15 2005 年普通高等学校招生全国统一考试文科数学(山东卷)....................................25 2005 年普通高等学校招生全国统一考试数学(理工农医类)(重庆卷)..................35 2005 年普通高等学校招生全国统一考试数学试题(文史类)(重庆卷)..................46 2005 年普通高等学校招生全国统一考试数学(理工农医类)(浙江卷)..................58 2005 年普通高等学校招生全国统一考试数学(文史类)(浙江卷)..........................69 2005 年普通高等学校春季招生考试数学(理工农医类)(北京卷)..........................77 2005 年普通高等学校春季招生考试数学(文史类)(北京卷)..................................87 2005 年上海市普通高等学校春季招生考试....................................................................95
第 1 页 共 103 页
2005 年普通高等学校招生全国统一考试(辽宁卷)
数学
本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择)题两部分,满分 150 分.考试用时 120 分钟.
2005年高考文科数学(全国)卷(Ⅱ)
2005年高考文科数学(全国)卷(Ⅱ)一、选择题:1. 函数f (x )=|sin x +cos x |的最小正周期是 ( )A.4π B. 2π C. π D. 2π 2. 正方体ABCD —A 1B 1C 1D 1中,P 、Q 、R 分别是AB 、AD 、B 1C 1的中点. 那么,正方体的过P 、Q 、R 的截面图形是 ( )A. 三角形B. 四边形C. 五边形D. 六边形3. 函数)0(12≤-=x x y 的反函数是 ( )A. )1(1-≥+=x x yB. )1(1-≥+-=x x yC. )0(1≥+=x x yD. )0(1≥+-=x x y 4. 已知函数)2,2(tan ππω-=在x y 内是减函数,则 ( ) A. 0<ω≤1B. -1≤ω<0C. ω≥1D. ω≤-15. 抛物线y x 42=上一点A 的纵坐标为4,则点A 与抛物线焦点的距离为( )A. 2B. 3C. 4D. 56. 双曲线19422=-y x 的渐近线方程是 ( )A. x y 32±=B. x y 94±=C. x y 23±=D. x y 49±=7. 如果数列}{n a 是等差数列,则 ( )A. 5481a a a a +<+B. 5481a a a a +=+C. 5481a a a a +>+D. 5481a a a a =8. 10)2(y x -的展开式中46y x 项的系数是 ( )A. 840B. -840C. 210D. -2109. 已知点A (3,1),B (0,0)C (3,0).设∠BAC 的平分线AE 与BC相交于E ,那么有λλ其中,→=→CE BC 等于 ( )A. 2B.21 C. -3D. -3110. 已知集合为则N M x x x N x x M ⋂>--=≤≤-=},06|{|},74|{2( )A. }7324|{≤<-<≤-x x x 或B. }7324|{<≤-≤<-x x x 或C. D.11. 点P 在平面上作匀速直线运动,速度向量)3,4(-=v (即点P 的运动方向与v 相同,且每秒移动的距离为|v |个单位)。
2005年全国Ⅱ高考试题(理)
2005年普通高等数学招生全国统一考试(全国Ⅱ)理科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分. 参考公式: 如果事件A 、B 互斥,那么球是表面积公式)()()(B P A P B A P +=+ 24R S π=如果事件A 、B 相互独立,那么其中R 表示球的半径)()()(B P A P B A P ⋅=⋅球的体积公式 如果事件A 在一次试验中发生的概率是P ,那么334R V π=n 次独立重复试验中恰好发生k 次的概率:其中R 表示球的半径()(1)k k n kn n P k C P P -=- 第Ⅰ卷(选择题共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知α为第三象限角,则2α所在的象限是A .第一或第二象限B .第二或第三象限C .第一或第三象限D .第二或第四象限2.已知过点(2,)A m -和(,4)B m 的直线与直线210x y +-=平行,则m 的值为A .0B .-8C .2D .103.在8(1)(1)x x -+的展开式中5x 的系数是A .-14B .14C .-28D .284.设三棱柱111ABC A B C -的体积为V ,P 、Q 分别是侧棱1AA 、1CC 上的点,且1PA QC =,则四棱锥B APQC -的体积为A .16VB .14VC .13VD .12V5.22112lim()3243x x x x x →--+-+=A .12-B .12C .16-D .166.若ln 22a =,ln 33b =,ln 55c =,则A .a b c <<B .c b a <<C .c a b <<D .b a c <<7.设02x π≤≤sin cos x x =-,则A .0x π≤≤B .744x ππ≤≤C .544x ππ≤≤D .322x ππ≤≤ 8.22sin 2cos 1cos 2cos 2αααα⋅+=A .tan αB .tan 2αC .1D .129.已知双曲线2212y x -=的焦点为1F 、2F ,点M 在双曲线上且120MF MF ⋅= ,则点M 到x 轴的距离为A .43B .53C D 10.设椭圆的两个焦点分别为1F 、2F ,过2F 作椭圆长轴的垂线交椭圆于点P ,若△12F PF 为等腰直角三角形,则椭圆的离心率是A .2B .12C .2D 111.不共面的四个定点到平面α的距离都相等,这样的平面共有A .3个B .4个C .6个D .7个12.计算机中常用十六进制是逢16进1的计数制,采用数字0~9和字母A ~F 共16个计数符号,这些符号与十进制的数的对应关系如下表:例如,用十六进制表示:1E D B +=,则A B ⨯= A .6EB .72C .5FD .0B第Ⅱ卷(非选择题共90分)注意事项:用钢笔或圆珠笔直接答在答题卡上.二、填空题:本大题共4小题,每小题4分,共16分,把答案填在题中横线上.13.已知复数032Z i =+,复数Z 满足03Z Z Z =+,则复数Z = .14.已知向量(,12)OA k = ,(4,5)OB = ,(,10)OC k =-,且A 、B 、C 三点共线,则k =15.高l 为平面上过(0,1)的直线,l的斜率可能地取-,用ξ表示坐标原点到l 的距离,则随机变量ξ的数学期望E ξ= .16.已知在△ABC 中,90ACB ∠=,3BC =,4AC =,P 是AB 上的点,则点P 到AC 、BC 的距离乘积的最大值是 .三、解答题:本大题共6小题,共74分,解答应写出文字说明,证明过程或演算步骤.17.(本小题满分12分)设甲、乙、丙三台机器是否需要照顾相互之间没有影响.已知在某一小时内,甲、乙都需要照顾的概率为0.05,甲、丙都需要照顾的概率为0.1,乙、丙都需要照顾的概率为0.125.(1)求甲、乙、丙每台机器在这个小时内需要照顾的概率分别是多少; (2)计算这个小时内至少有一台需要照顾的概率.18.(本小题满分12分)在四棱锥V ABCD -中,底面ABCD 是正方形,侧面VAD 是正三角形,平面VAD ⊥底面ABCD . (1)证明AB ⊥平面VAD ;(2)求面VAD 与面VDB 所成的二面角的大小.V DABC19.(本小题满分12分)在△ABC 中,内角A 、B 、C 的对边分别为a 、b 、c ,已知a 、b 、c 成等比数列,且3cos 4B =. (1)求cot cot A B +的值;(2)设32BA BC ⋅= ,求a c +的值.20.(本小题满分12分)在等差数列{}n a 中,公差0d ≠,2a 是1a 与4a 的等比中项,已知数列1a ,3a ,1k a ,2k a ,……,n k a ,……成等比数列,求数列{}n k 的通项n k .21.(本小题满分12分)设()11A x y ,,()22B x y ,两点在抛物线22y x =上,l 是AB 的垂直平分线.(1)当且仅当12x x +取何值时,直线l 经过抛物线的焦点F ?证明你的结论; (2)当直线l 的斜率为2时,求l 在y 轴上截距的取值范围.22.(本小题满分14分)已知函数()2472x f x x-=-,[]01x ∈,. (1)求()f x 的单调区间和值域;(2)设1a ≥,函数()[]223201g x x a x a x =--∈,,,若对于任意[]101x ∈,,总存在[]001x ∈,,使得()()01g x f x =成立,求a 的取值范围.数学试题参考答案一、选择题,本题考查基础知识,基本概念和基本运算能力二、填空题.本题考查基础知识,基本概念和基本运算技巧 13. 14. 15. 16. 三、解答题 17.2005年全国高考数学试卷三(四川理)(必修+选修II)第一卷(选择题,共60分)一、选择题:本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1、 已知α为第三象限的角,则2α所在的象限是( ) A 第一或第二象限 B 第二或第三象限 C 第一或第三象限 D 第二或第四象限 解:α第三象限,即3222k k k Z πππαπ+<<+∈,∴3224k k k Z παπππ+<<+∈,可知2α在第二象限或第四象限,选(D) 2、已知过点()2A m -,和()4B m ,的直线与直线210x y +-=平行,则的值为 ( ) A 0 B 8- C 2 D 10解:直线2x+y-1=0的一个方向向量为a =(1,-2),(2,4)AB m m =+- ,由AB a即(m+2)×(-2)-1×(4-m)=0,m=-8,选(B)3、若()()811x x -+的展开式中5x 的系数是( )A 14-B 14C 28-D 28解:(x+1)8展开式中x 4,x 5的系数分别为48C ,58C ,∴(x-1)(x+1)8展开式中x 5的系数为 458814C C -=,选(B)4、设三棱柱111ABC A B C -的体积为V ,P Q 、分别是侧棱1AA 、1CC 上的点,且1PA QC =,则四棱锥B APQC -的体积为( )A16V B 14V C 13V D 12V解:如图,1111111113A ABCB A BC B AC Q ABC A B C V V V V ----===111B PCQA B CQA B PCA V V V ---=+,∵AF=QC 1,∴APQC 1,APQC 都是平行四边形, ∴111B PCQA B CQA B PCA V V V ---=+=12(11B CQA B PCA V V --+) =1111223ABC A B C V -⋅=11113ABC A B C V -,选(C) 5、22112lim 3243x x x x x →⎛⎫-=⎪-+-+⎝⎭ ( )A 12-B 12C 16-D 16解:22112lim 3243x x x x x →⎛⎫-=⎪-+-+⎝⎭112lim (1)(2)(1)(3)x x x x x →⎛⎫-= ⎪----⎝⎭11(1)11limlim (1)(2)(3)(2)(3)2x x x x x x x x →→---==------,选(A)6、若ln 2ln 3ln 5235a b c ===,,,则( ) A a b c << B c b a << C c a b << D b a c <<解:由题意得a=ln,b=ln ,c=ln ∵62353153525105(5)(2)2(2)(3)3=<==<=,∴c<a<b,选(C)7、设02x π≤<sin cos x x =-,则( )A 0x π≤≤ B744x ππ≤≤C 544x ππ≤≤D 322x ππ≤≤sin cos x x -得|sinx-cosx|=sinx-cosx,又02x π≤<, ∴544x ππ≤≤,选(C) 8、22sin 2cos 1cos 2cos 2αααα⋅=+ ( )A tan αB tan 2αC 1 D12解:22sin 2cos 1cos 2cos 2αααα⋅=+222sin 2cos tan 22cos cos 2ααααα⋅=,选(B) 9、已知双曲线2212y x -=的焦点为12F F 、,点M 在双曲线上且120MF MF ⋅= ,则点M 到x 轴的距离为( )A43 B 53 C D 解:由120MF MF ⋅= ,得MF 1⊥MF 2,不妨设M(x,y)上在双曲线右支上,且在x 轴上方,则有(ex-a)2+(ex+a)2=4c 2,即(ex)2+a 2=2c 2,∵得x 2=53,y 2=23,由此可知M 点到x选(C) 10、设椭圆的两个焦点分别为12F F 、,过1F 作椭圆长轴的垂线交椭圆于点P ,若12F PF ∆为等腰直角三角形,则椭圆的离心率为( )AB C 2 D 1解:由题意可得22b c a=,∵b 2=a 2-c 2e=c a ,得e 2+2e-1=0,∵e>1,解得1,选(D) 11、不共面的四个定点到平面α的距离都相等,这样的平面α共有( )A 3个B 4个C 6个D 7个解:共有7个,它们是由四个定点组成的四面体的三对异面直线间的公垂线的三个中垂面;四面体的四条高的四个中垂面,选(D) 12、计算机中常用的十六进制是逢16进1的记数制,采用数字0-9和字母A-F 共16个记数符号;这些符号与十进制的数的对应关系如下表:例如,用十六进制表示:E+D=1B ,则( )A 6EB 72C 5FD B0解:∵A=10,B=11,又A ×B=10×11=110=16×6+14,∴在16进制中A ×B=6E,∴选(A) 二、填空题:本大题共4 个小题,每小题4分,共16分,把正确答案填在题中横线上. 13、已知复数:032z i =+,复数z 满足003z z z z ⋅=+,则复数z =解:设z=a+bi,由(3+2i)(a+bi)=3(a+bi)+3+2i,得3a-2b=3a+3,2a+3b=3b+2,∴a=1,b=32-, ∴z=1-32i 14、已知向量()12OA k = ,,()45OB = ,,()10OC k =-,,且A 、B 、C 三点共线,则k = 解:(4,7),(2,2)AB k AC k =--=-- ,由题意得(4-k)(-2)-2k ×7=0,解得k=23-15、设l 为平面上过点()01,的直线,l 的斜率等可能地取022--,用ξ表示坐标原点到l 的距离,则随机变量ξ的数学期望E ξ= .解:随机变量可能的取值为x 1=13,x 2=12,x 3=23,x 4=1,它们的概率分别为p 1=27,p 2=27,p 3=27, p 4=17,∴随机变量ζ的数学期望E ζ=211122117372737⋅+⋅+⋅+⋅=4716、已知在ABC ∆中,09034ACB BC AC ∠===,,,P 是AB 上的点,则点P 到AC BC 、的距离乘积的最大值是解:P 到BC 的距离为d 1,P 到AC 的距离为d 2,则三角形的面积得3d 1+4d 2=12,∴3d 1⋅4d 2≤2212()6362==,∴d 1d 2的最大值为3,这时3d 1+4d 2=12, 3d 1=4d 2得d 1=2,d 2=32三、解答题:本大题共6个小题,共74分. 17、(本小题满分12分)设甲、乙、丙三台机器是否需要照顾相互没有影响,已知在某一小时内,甲、乙都需要照顾的概率为0.05,甲、丙都需要照顾的概率为0.1,乙、丙都需要照顾的概率为0.125 (Ⅰ)求甲、乙、丙每台机器在这个小时内需要照顾的概率分别为多少; (Ⅱ)计算这个小时内至少有一台机器需要照顾的概率 18、(本小题满分12分)如图,在四棱锥V-ABCD 中,底面ABCD 是正方形,侧面V AD 是正三角形,平面V AD ⊥底面ABCD (Ⅰ)证明AB ⊥平面V AD(Ⅱ)求面VAD 与面VDB 所成的二面角的大小 19、(本小题满分12分)ABC ∆中,内角A B C 、、的对边分别是a b c 、、,已知a b c 、、成等比数列,且3cos 4B =(Ⅰ)求cot cot A C +的值(Ⅱ)设32BA BC ⋅= ,求a c +的值.20(本小题满分12分)在等差数列{}n a 中,公差0d ≠,2a 是1a 与4a 的等比中项,已知数列13a a 、、1k a 、2......n k k a a 、、成等比数列,求数列{}n a 的通项n k21、(本小题满分12分)设()11A x y ,,()22B x y ,两点在抛物线22y x =上,l 是AB 的垂直平分线. (Ⅰ)当且仅当12x x +取何值时,直线l 经过抛物线的焦点F ?证明你的结论; (Ⅱ)当直线l 的斜率为2时,求l 在y 轴上截距的取值范围. 22、(本小题满分14分)已知函数()2472x f x x-=-,[]01x ∈, (Ⅰ)求()f x 的单调区间和值域;(Ⅱ)设1a ≥,函数()[]223201g x x a x a x =--∈,,,若对于任意[]101x ∈,,总存在[]001x ∈,,使得()()01g x f x =成立,求a 的取值范围2005年全国高考数学试卷三(四川理) 参考答案一、选择题:本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.二、填空题:本大题共4 个小题,每小题4分,共16分,把正确答案填在题中横线上.13.312i -14.23- 15.4716.3 三、解答题:本大题共6个小题,共74分.17.解:(Ⅰ)求已知得()()()0.05P A B P A P B ⋅=⋅= ()()()0.1P A C P A P C ⋅=⋅= ()()()0.125P B C P B P C ⋅=⋅=解得:()0.2P A =,()0.25P B =,()0.5P C =所以甲、乙、丙每台机器在这个小时内需要照顾的概率分别为0.2,0.25,0.5(Ⅱ)记A 的对立事件为A ,B 的对立事件为B ,C 的对立事件为C ,则:()0.8P A =,()0.75P B =,()0.5P C =于是()()()()()110.7P A B C P A B C P A P B P C ++=-⋅⋅=-⋅⋅= 所以这个小时内至少有一台机器需要照顾的概率为0.718.方法一:(Ⅰ)证明:AB ADAB AB ABCD AD VAD ABCD ⊥⎫⎪⊥⎪⇒⊥⎬⊂⎪⎪=⋂⎭平面VAD 平面ABCD平面VAD 平面平面平面(Ⅱ)解:取VD 的中点E ,连结AE ,BE ∵V AD 是正三角形 ∴AE ⊥VD ,AF=2AD ∵AB ⊥平面VAD ∴AB ⊥AE 又由三垂线定理知BE ⊥VD因此,AEB ∠是所求二面角的平面角于是,tan AB AEB AE ∠==即得所求二面角的大小为arctan3方法二:以D 为坐标原点,建立如图所示的坐标系. (Ⅰ)证明:不妨设()100A ,,,则()110B ,,,102V ⎛ ⎝⎭()101002AB VA ⎛==- ⎝⎭ ,,,,, 由0AB VA ⋅=,得AB VA ⊥又AB AD ⊥,因而AB 与平面VAD 内两条相交直线VA VD ,都垂直.∴AB ⊥平面VAD (Ⅱ)解:设E 为DV中点,则104E ⎛ ⎝⎭331010442EA EB DV ⎛⎛⎛=== ⎝⎭⎝⎭⎝⎭,,,, 由0EB DV ⋅=,得EB DV ⊥,又EA DV ⊥因此,AEB ∠是所求二面角的平面角.∵cos 7EA EB EA EB EA EB⋅==⋅,∴解得所求二面角的大小为arc19.解:(Ⅰ)由3cos 4B =得sin B ==由2b ac =及正弦定理得2sin sin sin B A C =于是11cot cot tan tan A C A C +=+ cos cos sin sin A CA C=+ cos sin cos sin sin sin A C C AA C+=()2sin sin A C B+=2sin sin BB =1sin B==(Ⅱ)由32BA BC ⋅= 得3cos 2ca B ⋅=,由3cos 4B =可得2ca =,即22b =由余弦定理 2222cos b a c ac B =+-⋅得2222cos 5a c b ac B +=+⋅=()2222549a c a c ac +=++=+=∴ 3a c +=20.解:依题设得()11n a a n d =+-,2214a a a =∴()()21113a d a a d +=+,整理得21d a d = ∵0d ≠ ∴1d a = 得n a nd =所以,由已知得123n d d k d k d k d ,,,,...,...是等比数列由0d ≠,所以数列1,123n k k k ,,,...,...也是等比数列,首项为1,公比为331q ==,由此得19k = 等比数列{}n a 的首项19k =,公比3q =,所以()1193123....n n n k q n -+=⨯==,,,即得到数列{}n a 的通项为13n n k +=21.解:(Ⅰ)F l FA FB A B ∈⇔=⇔、两点到抛物线的准线的距离相等, ∵抛物线的准线是x 轴的平行线,1200y y ≥≥,,依题意12y y ,不同时为0∴上述条件等价于()()22121212120y y x x x x x x =⇔=⇔+-=∵12x x ≠∴上述条件等价于120x x +=即当且仅当120x x +=时,l 经过抛物线的焦点F .(Ⅱ)设l 在y 轴上的截距为b ,依题意得l 的方程为2y x b =+;过点A B 、的直线方程可写为12y x m =-+,所以12x x 、满足方程21202x x m +-=得1214x x +=-A B 、为抛物线上不同的两点等价于上述方程的判别式1804m ∆=+ ,即132m -设AB 的中点N 的坐标为()00x y ,,则()0121128x x x =+=-,0011216y x m m =-+=+ 由N l ∈,得11164m b +=-+,于是551916163232b m =+-= 即得l 在y 轴上截距的取值范围为932⎛⎫+∞ ⎪⎝⎭,22.解:对函数()f x 求导,得()()2241672x x fx x -+-=-,()()()221272x x x --=-- 令()0fx =,解得112x =或272x = 当x 变化时,()fx ,、()f x 的变化情况如下表:所以,当102x ⎛⎫∈ ⎪⎝⎭,时,()f x 是减函数;当112x ⎛⎫∈ ⎪⎝⎭,时,()f x 是增函数; 当()01x ∈,时,()f x 的值域为[]43--,(Ⅱ)对函数()g x 求导,得()()223g x x a =-,因此1a ≥,当()01x ∈,时, ()()2310g x a -≤ , 因此当()01x ∈,时,()g x 为减函数,从而当[]01x ∈,时有 ()()()10g x g g ∈⎡⎤⎣⎦,又()21123g a a =--,()02g a =-,即当[]1x ∈0,时有()21232g x a a a ⎡⎤∈---⎣⎦,任给[]11x ∈0,,()[]143f x ∈--,,存在[]001x ∈,使得()()01g x f x =,则[]2123243a a a ⎡⎤---⊃--⎣⎦,,即212341232a a a ⎧--≤-⎨-≥-⎩()()解1()式得 1a ≥或53a ≤- 解2()式得 32a ≤又1a ≥,故:a 的取值范围为312a ≤≤。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2005年普通高等学校招生全国统一考试 理科数学(全国卷Ⅰ)无答案解析
本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷1至2页。
第Ⅱ卷3到10页。
考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷
注意事项:
1.答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目涂写在答题卡上。
2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
不能答在试题卷上。
3.本卷共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
参考公式:
如果事件A 、B 互斥,那么 球是表面积公式
)()()(B P A P B A P +=+ 24R S π=
如果事件A 、B 相互独立,那么
其中R 表示球的半径
)()()(B P A P B A P ⋅=⋅ 球的体积公式
如果事件A 在一次试验中发生的概率是P ,那么
3
3
4R V π=
n 次独立重复试验中恰好发生k 次的概率 其中R 表示球的半径
k n k k
n n P P C k P --=)1()(
一.选择题
(1)设I 为全集,321S S S 、、是I 的三个非空子集,且I S S S =⋃⋃321,则下面论断正确的是
(A )Φ=⋃⋂
)(321S S S C I (B )123I I S C S C S ⊆⋂() (C )Φ=⋂⋂)
321S C S C S C I I I
(D )123I I S C S C S ⊆⋃()
(2)一个与球心距离为1的平面截球所得的圆面面积为π,则球的表面积为
(A )π28
(B )π8
(C )π24
(D )π4
(3)已知直线l 过点),(02-,当直线l 与圆x y x 22
2
=+有两个交点时,其斜率k 的取值范围是
(A )),(2222-
(B )),(22-
(C )
),(4
242- (D ))
,(8
1
81- (4)如图,在多面体ABCDEF 中,已知ABCD 是边长为1的正方形,且BCF ADE ∆∆、均为正三角形,EF ∥AB ,EF=2,则该多面体的体积为
(A )
3
2
(B )
3
3 (C )
3
4 (D )
2
3 (5)已知双曲线)0( 1222>=-a y a
x 的一条准线与抛物线x y 62
-=的准线重合,则该双
曲线的离心率为
(A )
2
3
(B )
2
3 (C )
2
6
(D )
3
3
2 (6)当2
0π
<<x 时,函数x x
x x f 2sin sin 82cos 1)(2++=的最小值为
(A )2
(B )32
(C )4
(D )34
(7)设0>b ,二次函数12
2
-++=a bx ax y 的图像为下列之一
则a 的值为 (A )1
(B )1-
(C )
2
5
1-- (D )
2
5
1+- (8)设10<<a ,函数)22(log )(2--=x
x a a a x f ,则使0)(<x f 的x 的取值范围是
(A ))0,(-∞ (B )),0(+∞
(C ))3log ,(a -∞ (D )),3(log +∞a
(9)在坐标平面上,不等式组⎩
⎨
⎧+-≤-≥131
x y x y 所表示的平面区域的面积为
(A )2
(B )
2
3
(C )
2
2
3 (D )2
(10)在ABC ∆中,已知C B
A sin 2
tan
=+,给出以下四个论断: ①1cot tan =⋅B A
②2sin sin 0≤
+<B A
③1cos sin 22=+B A
④C B A 222sin cos cos =+
其中正确的是
(A )①③ (B )②④ (C )①④ (D )②③ (11)过三棱柱任意两个顶点的直线共15条,其中异面直线有
(A )18对 (B )24对 (C )30对
(D )36对
(12)复数
i
i 2123--=
(A )i
(B )i -
(C )i -22
(D )i +-22
第Ⅱ卷
注意事项:
1.用钢笔或圆珠笔直接答在试题卷上。
2.答卷前将密封线内的项目填写清楚。
二.本大题共4小题,每小题4分,共16分,把答案填在题中横线上。
(13)若正整数m 满足m m 102105121
<<-,则m = 。
)3010.02(lg ≈
(14)9)12(x
x -
的展开式中,常数项为 。
(用数字作答)
(15)ABC ∆的外接圆的圆心为O ,两条边上的高的交点为H ,)(m ++=,
则实数m =
(16)在正方形''''D C B A ABCD -中,过对角线'BD 的一个平面交'
AA 于E ,交'
CC 于F ,
则
① 四边形E BFD '一定是平行四边形 ② 四边形E BFD '有可能是正方形
③ 四边形E BFD '在底面ABCD 内的投影一定是正方形 ④ 四边形E BFD '有可能垂直于平面D BB '
以上结论正确的为 。
(写出所有正确结论的编号)
三.解答题:本大题共6小题,共74分。
解答应写出文字说明,证明过程或演算步骤。
(17)(本大题满分12分) 设函数)(),0( )2sin()(x f y x x f =<<-+=ϕπϕ图像的一条对称轴是直线8
π
=x 。
(Ⅰ)求ϕ;
(Ⅱ)求函数)(x f y =的单调增区间;
(Ⅲ)证明直线025=+-c y x 与函数)(x f y =的图像不相切。
已知四棱锥P-ABCD 的底面为直角梯形,AB ∥DC ,⊥=∠PA DAB ,90 底面ABCD ,且PA=AD=DC=
2
1
AB=1,M 是PB 的中点。
(Ⅰ)证明:面PAD ⊥面PCD ; (Ⅱ)求AC 与PB 所成的角;
(Ⅲ)求面AMC 与面BMC 所成二面角的大小。
设等比数列{}n a 的公比为q ,前n 项和),2,1( 0 =>n S n 。
(Ⅰ)求q 的取值范围; (Ⅱ)设122
3
++-=n n n a a b ,记{}n b 的前n 项和为n T ,试比较n S 与n T 的大小。
9粒种子分种在3个坑内,每坑3粒,每粒种子发芽的概率为5.0,若一个坑内至少有1粒种子发芽,则这个坑不需要补种,若一个坑内的种子都没发芽,则这个坑需要补种。
假定每个坑至多补种一次,每补种1个坑需10元,用ξ表示补种费用,写出ξ的分布列并求ξ的数学期望。
(精确到01.0)
(21)(本大题满分14分)
已知椭圆的中心为坐标原点O ,焦点在x 轴上,斜率为1且过椭圆右焦点F 的直线交椭圆于A 、B 两点,OB OA +与(3,1)a =-共线。
(Ⅰ)求椭圆的离心率;
(Ⅱ)设M 为椭圆上任意一点,且 (,)OM OA OB R λμλμ=+∈,证明2
2μλ+为定值。
(22)(本大题满分12分)
(Ⅰ)设函数)10( )1(log )1(log )(22<<--+=x x x x x x f ,求)(x f 的最小值; (Ⅱ)设正数n p p p p 2321,,,, 满足12331n p p p p ++++=,证明
n p p p p p p p p n n -≥++++222323222121log log log log。