2002年全国卷高考理科数学试题及答案

合集下载

2002年全国卷高考理科数学试题及标准答案

2002年全国卷高考理科数学试题及标准答案

2002年普通高等学校招生全国统一考试数学试卷(理科)及答案本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分.第I卷1至2页.第II卷3至9页.共150分.考试时间120分钟.第Ⅰ卷(选择题共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.本试卷分第I卷(选择题)和第II 卷(非选择题)两部分.第I卷1至2页.第II 卷3至9页.共150分.考试时间120分钟.(1)圆1)1(22=+-y x 的圆心到直线y x =的距离是 (A)21 (B )23 (C)1 (D )3 (2)复数3)2321(i +的值是 (A )i - (B)i (C )1- (D )1(3)不等式0|)|1)(1(>-+x x 的解集是(A)}10|{<≤x x (B )0|{<x x 且}1-≠x(C )}11|{<<-x x (D )1|{<x x 且}1-≠x(4)在)2,0(π内,使x x cos sin >成立的x 的取值范围是(A ))45,()2,4(ππππ (B)),4(ππ (C))45,4(ππ (D))23,45(),4(ππππ (5)设集合},412|{Z k k x x M ∈+==,},214|{Z k k x x N ∈+==,则 (A)N M = (B )N M ⊂ (C )N M ⊃ (D)∅=N M(6)点)0,1(P 到曲线⎩⎨⎧==ty t x 22(其中参数R t ∈)上的点的最短距离为(A)0 (B)1 (C )2 (D)2(7)一个圆锥和一个半球有公共底面,如果圆锥的体积恰好与半球的体积相等,那么这个圆锥轴截面顶角的余弦值是(A )43 (B )54 (C)53 (D)53- (8)正六棱柱111111F E D C B A ABCDEF -的底面边长为1,侧棱长为2,则这个棱柱侧面对角线D E 1与1BC 所成的角是(A)︒90 (B )︒60 (C)︒45 (D)︒30(9)函数c bx x y ++=2(),0[+∞∈)是单调函数的充要条件是(A )0≥b (B)0≤b (C)0>b (D)0<b(10)函数111--=x y 的图象是(11)从正方体的6个面中选取3个面,其中有2个面不相邻的选法共有(A )8种 (B)12种 (C)16种 (D )20种(12)据2002年3月5日九届人大五次会议《政府工作报告》:“2001年国内生产总值达到95933亿元,比上年增长7.3%”,如果“十•五”期间(2001年-2005年)每年的国内生产总值都按此年增长率增长,那么到“十•五”末我国国内年生产总值约为(A)115000亿元 (B)120000亿元 (C )127000亿元 (D)135000亿元第II 卷(非选择题共90分)二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线.(13)函数x a y =在]1,0[上的最大值与最小值这和为3,则a =(14)椭圆5522=+ky x 的一个焦点是)2,0(,那么=k(15)72)2)(1(-+x x 展开式中3x 的系数是。

2000年高考.全国卷.理科数学试题及答案

2000年高考.全国卷.理科数学试题及答案

2000年普通高等学校招生全国统一考试数学(理工农医类)本试卷分第I卷(选择题)和第II卷(非选择题)两部分.第I卷1至2页。

第II卷3至9页。

共150分。

考试时间120分钟。

第I卷(选择题共60分)注意事项:1.答第I卷前,考生务必将自己的姓名、准考证号、考试科目用铅笔涂写在答题卡上。

2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答,不能答在试题卷上。

3.考试结束,监考人将本试卷和答题卡一并收回。

参考公式:三角函数的积化和差公式正棱台、圆台的侧面积公式其中c′、c分别表示上、下底面周长,l表示斜高或母线长其中S′、S分别表示上、下底面积,h表示高一、选择题:本大题共12分,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

(1)设集合A和B都是自然数集合N,映射f:A→B把集合A中的元素n映射到集合B中的元素,则在映射f下,象20的原象是()(A)2 (B)3(C)4(D)5(2)在复平面内,把复数对应的向量按顺时针方向旋转,所得向量对应的复数是(A)(B)(C)(D)(3)一个长方体共一顶点的三个面的面积分别是,这个长方体对角线的长是(A)(B)(C)6(D)(4)已知sinα>sinβ,那么下列命题成立的是(A)若α、β是第一象限角,则cosα>cosβ(B)若α、β是第二象限角,则tgα〉tgβ(C)若α、β是第三象限角,则cosα〉cosβ(D)若α、β是第四象限角,则tgα>tgβ(5)函数y=-xcosx的部分图象是(6)《中华人民共和国个人所得税法》规定,公民全月工资、薪金所得不超过800元的部分不必纳税,超过800元的部分为全月应纳税所得额,此项税款按下表分希累进计算。

全月应纳税所得额税率不超过500元的部分5%超过500元至2000元的部分10%超过2000元至5000元的部分15%……某人一月份应交纳此项税款26。

2023年全国统一高考数学试卷(理科)(甲卷)(解析版)

2023年全国统一高考数学试卷(理科)(甲卷)(解析版)

2023年全国统一高考数学试卷(理科)(甲卷)参考答案与试题解析一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.(5分)设集合A={x|x=3k+1,k∈Z},B={x|x=3k+2,k∈Z},U为整数集,则∁U(A⋃B)=( )A.{x|x=3k,k∈Z}B.{x|x=3k﹣1,k∈Z}C.{x|x=3k﹣2,k∈Z}D.∅【答案】A【解答】解:∵A={x|x=3k+1,k∈Z},B={x|x=3k+2,k∈Z},∴A∪B={x|x=3k+1或x=3k+2,k∈Z},又U为整数集,∴∁U(A⋃B)={x|x=3k,k∈Z}.故选:A.2.(5分)若复数(a+i)(1﹣ai)=2,a∈R,则a=( )A.﹣1B.0C.1D.2【答案】C【解答】解:因为复数(a+i)(1﹣ai)=2,所以2a+(1﹣a2)i=2,即,解得a=1.故选:C.3.(5分)执行下面的程序框图,输出的B=( )A.21B.34C.55D.89【答案】B【解答】解:根据程序框图列表如下:A13821B251334n1234故输出的B=34.故选:B.4.(5分)向量||=||=1,||=,且+=,则cos〈﹣,﹣〉=( )【答案】D【解答】解:因为向量||=||=1,||=,且+=,所以﹣=+,即2=1+1+2×1×1×cos<,>,解得cos<,>=0,所以⊥,又﹣=2+,﹣=+2,所以(﹣)•(﹣)=(2+)•(+2)=2+2+5•=2+2+0=4,|﹣|=|﹣|===,所以cos〈﹣,﹣〉===.故选:D.5.(5分)已知正项等比数列{a n}中,a1=1,S n为{a n}前n项和,S5=5S3﹣4,则S4=( )A.7B.9C.15D.30【答案】C【解答】解:等比数列{a n}中,设公比为q,a1=1,S n为{a n}前n项和,S5=5S3﹣4,显然q≠1,(如果q=1,可得5=15﹣4矛盾),可得=5•﹣4,解得q2=4,即q=2,S4===15.故选:C.6.(5分)有50人报名足球俱乐部,60人报名乒乓球俱乐部,70人报名足球或乒乓球俱乐部,若已知某人报足球俱乐部,则其报乒乓球俱乐部的概率为( )A.0.8B.0.4C.0.2D.0.1【答案】A【解答】解:根据题意,在报名足球或乒乓球俱乐部的70人中,设某人报足球俱乐部为事件A,报乒乓球俱乐部为事件B,则P(A)==,由于有50人报名足球俱乐部,60人报名乒乓球俱乐部,则同时报名两个俱乐部的由50+60﹣70=40人,则P(AB)==,则P(B|A)===0.8.故选:A.7.(5分)“sin2α+sin2β=1”是“sinα+cosβ=0”的( )A.充分条件但不是必要条件B.必要条件但不是充分条件C.充要条件D.既不是充分条件也不是必要条件【答案】B【解答】解:sin2α+sin2β=1,可知sinα=±cosβ,可得sinα±cosβ=0,所以“sin2α+sin2β=1”是“sinα+cosβ=0”的必要不充分条件,故选:B.8.(5分)已知双曲线的离心率为,其中一条渐近线与圆(x﹣2)2+(y﹣3)2=1交于A,B两点,则|AB|=( )A.B.C.D.【答案】D【解答】解:双曲线C:﹣=1(a>0,b>0)的离心率为,可得c=a,所以b=2a,所以双曲线的渐近线方程为:y=±2x,一条渐近线与圆(x﹣2)2+(y﹣3)2=1交于A,B两点,圆的圆心(2,3),半径为1,圆的圆心到直线y=2x的距离为:=,所以|AB|=2=.故选:D.9.(5分)有五名志愿者参加社区服务,共服务星期六、星期天两天,每天从中任选两人参加服务,则两天中恰有1人连续参加两天服务的选择种数为( )A.120B.60C.40D.30【答案】B【解答】解:先从5人中选1人连续两天参加服务,共有=5种选法,然后从剩下4人中选1人参加星期六服务,剩下3人中选取1人参加星期日服务,共有=12种选法,根据分步乘法计数原理可得共有5×12=60种选法.故选:B.10.(5分)已知f(x)为函数向左平移个单位所得函数,则y=f(x)与的交点个数为( )A.1B.2C.3D.4【答案】C【解答】解:把函数向左平移个单位可得函数f(x)=cos(2x+)=﹣sin2x的图象,而直线=(x﹣1)经过点(1,0),且斜率为,且直线还经过点(,)、(﹣,﹣),0<<1,﹣1<﹣<0,如图,故y=f(x)与的交点个数为3.故选:C.11.(5分)在四棱锥P﹣ABCD中,底面ABCD为正方形,AB=4,PC=PD=3,∠PCA=45°,则△PBC的面积为( )A.B.C.D.【答案】C【解答】解:解法一:∵四棱锥P﹣ABCD中,底面ABCD为正方形,又PC=PD=3,∠PCA=45°,∴根据对称性易知∠PDB=∠PCA=45°,又底面正方形ABCD得边长为4,∴BD=,∴在△PBD中,根据余弦定理可得:=,又BC=4,PC=3,∴在△PBC中,由余弦定理可得:cos∠PCB==,∴sin∠PCB=,∴△PBC的面积为==.解法二:如图,设P在底面的射影为H,连接HC,设∠PCH=θ,∠ACH=α,且α∈(0,),则∠HCD=45°﹣α,或∠HCD=45°+α,易知cos∠PCD=,又∠PCA=45°,则根据最小角定理(三余弦定理)可得:,∴或,∴或,∴或,∴tanα=或tanα=,又α∈(0,),∴tanα=,∴cosα=,sinα=,∴,∴cosθ=,再根据最小角定理可得:cos∠PCB=cosθcos(45°+α)==,∴sin∠PCB=,又BC=4,PC=3,∴△PBC的面积为==.故选:C.12.(5分)已知椭圆=1,F1,F2为两个焦点,O为原点,P为椭圆上一点,cos∠F1PF2=,则|PO|=( )A.B.C.D.【答案】B【解答】解:椭圆,F1,F2为两个焦点,c=,O为原点,P为椭圆上一点,,设|PF1|=m,|PF2|=n,不妨m>n,可得m+n=6,4c2=m2+n2﹣2mn cos∠F1PF2,即12=m2+n2﹣mn,可得mn=,m2+n2=21,=(),可得|PO|2==(m2+n2+2mn cos∠F1PF2)=(m2+n2+mn)=(21+)=.可得|PO|=.故选:B.二、填空题:本题共4小题,每小题5分,共20分。

2003年高考全国卷.理科数学试题及答案

2003年高考全国卷.理科数学试题及答案

2003年普通高等学校招生全国统一考试(全国卷)数 学(理工农医类)注意事项:1. 答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目用铅笔涂写在答题卡上.2. 每小题选出答案后,用铅笔把答题卡上对应答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案,不能答在试题卷上.3. 考试结束,监考人将本试卷和答题卡一并收回. 参考公式:三角函数的积化和差公式: 正棱台、圆台的侧面积公式)]sin()[sin(21cos sin βαβαβα-++=⋅ l c c S )(21+'=台侧 其中c '、c 分别表示)]sin()[sin(21sin cos βαβαβα--+=⋅ 上、下底面周长,l 表示斜高或母线长.)]cos()[cos(21cos cos βαβαβα-++=⋅ 球体的体积公式:334R V π=球 ,其中R)]cos()[cos(21sin sin βαβαβα--+-=⋅ 表示球的半径.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分第Ⅰ卷(选择题共60分)一.选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合要求的 1.已知2(π-∈x ,0),54cos =x ,则2tg x = ( ) (A )247 (B )247- (C )724 (D )724-2.圆锥曲线θθρ2cos sin 8=的准线方程是 ( ) (A )2cos -=θρ (B )2cos =θρ (C )2sin =θρ (D )2sin -=θρ3.设函数⎪⎩⎪⎨⎧-=-2112)(xx f x 00>≤x x ,若1)(0>x f ,则0x 的取值范围是 ( )(A )(1-,1) (B )(1-,∞+)(C )(∞-,2-)⋃(0,∞+) (D )(∞-,1-)⋃(1,∞+) 4.函数)cos (sin sin 2x x x y +=的最大值为 ( ) (A )21+ (B )12- (C )2 (D )25.已知圆C :4)2()(22=-+-y a x (0>a )及直线l :03=+-y x ,当直线l 被C 截得的弦长为32时,则a ( ) (A )2 (B )22- (C )12- (D )12+6.已知圆锥的底面半径为R ,高为3R ,在它的所有内接圆柱中,全面积的最大值是( )(A )22R π (B )249R π (C )238R π (D )223R π7.已知方程0)2)(2(22=+-+-n x x m x x 的四个根组成一个首项为41的的等差数列,则=-||n m ( )(A )1 (B )43 (C )21 (D )838.已知双曲线中心在原点且一个焦点为F (7,0),直线1-=x y 与其相交于M 、N 两点,MN 中点的横坐标为32-,则此双曲线的方程是 ( ) (A )14322=-y x (B )13422=-y x (C )12522=-y x (D )15222=-y x 9.函数x x f sin )(=,]23,2[ππ∈x 的反函数=-)(1x f ( )(A )x arcsin - 1[-∈x ,1] (B )x arcsin --π 1[-∈x ,1] (C )x arcsin +π 1[-∈x ,1] (D )x arcsin -π 1[-∈x ,1]10.已知长方形的四个顶点A (0,0),B (2,0),C (2,1)和D (0,1),一质点从AB 的中点0P 沿与AB 的夹角θ的方向射到BC 上的点1P 后,依次反射到CD 、DA 和AB 上的点2P 、3P 和4P (入射角等于反射角),设4P 的坐标为(4x ,0),若214<<x ,则tg θ的取值范围是 ( ) (A )(31,1) (B )(31,32) (C )(52,21) (D )(52,32)11.=++++++++∞→)(lim 11413122242322nnn C C C C n C C C C ( )(A )3 (B )31 (C )61(D )6 12.一个四面体的所有棱长都为2,四个顶点在同一球面上,则些球的表面积为( ) (A )π3 (B )π4 (C )π33 (D )π62003年普通高等学校招生全国统一考试(全国卷)数 学(理工农医类)第Ⅱ卷(非选择题共90分)二.填空题:本大题共4小题,每小题4分,共16分把答案填在题中横线上13.92)21(xx -的展开式中9x 系数是14.使1)(log 2+<-x x 成立的x 的取值范围是 15.如图,一个地区分为5个行政区域,现给地图着色,要求相邻地区不得使用同一颜色,现有4种颜色可供选择,则不同的着色方法共有种(以数字作答)16.下列5个正方体图形中,l 是正方体的一条对角线,点M 、N 、P 分别为其所在棱的中点,能得出⊥l 面MNP 的图形的序号是 (写出所有符合要求的图形序号)① ② ③ ④ ⑤三、解答题:本大题共6小题,共74分,解答应写出文字说明,证明过程或或演算步骤 17.(本小题满分12分)已知复数z 的辐角为︒60,且|1|-z 是||z 和|2|-z 的等比中项,求||z18.(本小题满分12分)如图,在直三棱柱111C B A ABC -中,底面是等腰直角三角形,︒=∠90ACB ,侧棱21=AA ,D 、E 分别是1CC 与B A 1的中点,点E 在平面ABD 上的射影是△ABD 的重心G(I )求B A 1与平面ABD 所成角的大小(结果用反三角函数值表示)(II )求点1A 到平面AED 的距离19.(本小题满分12分) 已知0>c ,设P :函数x c y =在R 上单调递减 Q :不等式1|2|>-+c x x 的解集为R 如果P 和Q 有且仅有一个正确,求c 的取值范围20.(本小题满分12分)在某海滨城市附近海面有一台风,据监测,当前台风中心位于城市O (如图)的东偏南102arccos (=θθ)方向300km 的海面P 处,并以20km/h 的速度向西偏北︒45方向移动,台风侵袭的范围为圆形区域,当前半径为60km ,并以10km/h 的速度不断增大,问几小时后该城市开始受到台风的侵袭?D E KBCABAFC G东21.(本小题满分14分)已知常数0>a ,在矩形ABCD 中,4=AB ,a BC 4=,O 为AB 的中点,点E 、F 、G 分别在BC 、CD 、DA 上移动,且BE CF DG BC CD DA ==,P 为GE 与OF 的交点(如图),问是否存在两个定点,使P 到这两点的距离的和为定值?若存在,求出这两点的坐标及此定值;若不存在,请说明理由22.(本小题满分12分,附加题4 分)(I )设}{n a 是集合|22{ts + t s <≤0且Z t s ∈,}中所有的数从小到大排列成的数列,即31=a ,52=a ,63=a ,94=a ,105=a ,126=a ,…将数列}{n a 各项按照上小下大,左小右大的原则写成如下的三角形数表:3 569 10 12 — — — —…………⑴写出这个三角形数表的第四行、第五行各数;⑵求100a(II )(本小题为附加题,如果解答正确,加4 分,但全卷总分不超过150分)设}{n b 是集合t s r t s r <<≤++0|222{,且},,Z t s r ∈中所有的数从小到大排列成的数列,已知1160=k b ,求k.2003年普通高等学校招生全国统一考试(全国卷)数学(理工农医类)答案一、选择题:本题考查基本知识和基本运算. 每小题5分,满分60分.1.D 2.C 3.D 4.A 5.C 6.B 7.C 8.D 9.D 10.C 11.B 12.A 二、填空题:本题考查基本知识和基本运算.每小题4分,满分16分. 13.221-14.(-1,0) 15.72 16.①④⑤ 三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤. 17. 解:设)60sin 60cosr r z +=,则复数.2r z 的实部为2,r z z r z z ==-由题设 .12||).(12,12:.012,421,)2)(2(||)1)(1(:|2||||1|2222-=--=-==-++-=+-∴--=---⋅=-z r r r r r r r r r z z z z z z z z 即舍去解得整理得即 18.(Ⅰ)解:连结BG ,则BG 是BE 在ABD 的射影,即∠EBG 是A 1B 与平面ABD 所成的角. 设F 为AB 中点,连结EF 、FC ,.32arcsin.323136sin .3,32,22,2.36321,2)4(.3,1,31.,,,,,,112211所成的角是与平面于是分中在直角三角形的重心是连结为矩形平面又的中点分别是ABD B A EB EG EBG EB B A AB CD FC EG ED FD EF FD FD FG EF EFD DF G ADB G DE CDEF ABC DC B A CC E D ∴=⋅==∠∴===∴===⨯===∴==⋅=∈∴∆∴⊥(Ⅱ)解:,,,F AB EF EF ED AB ED =⋂⊥⊥又.36236232222,.,.,.,.,111111*********的距离为到平面中在的距离到平面是即平面垂足为作面且面平面平面面又面AED A AB B A A A K A AB A AED A K A AED K A K AE K A AE AB A AED AB A AED AED ED AB A ED ∴=⨯=⋅=∆⊥∴⊥=⋂⊥∴⊂⊥∴19.解:函数xc y =在R 上单调递减.10<<⇔c不等式.1|2|1|2|上恒大于在函数的解集为R c x x y R c x x -+=⇔>-+ 22,2,|2|2,2,|2|2.1|2|121.21,,0.21,, 1.(0,][1,).2x c x c x x c c x c y x x c R c x x c R c c P Q c P Q c c -≥⎧+-=⎨<⎩∴=+-∴+->⇔>⇔><≤≥⋃+∞函数在上的最小值为不等式的解集为如果正确且不正确则如果不正确且正确则所以的取值范围为20.解:如图建立坐标系以O 为原点,正东方向为x 轴正向.在时刻:(1)台风中心P (y x ,)的坐标为⎪⎪⎩⎪⎪⎨⎧⨯+⨯-=⨯-⨯=.22201027300,2220102300t y t x 此时台风侵袭的区域是,)]([)()(22t r y y x x ≤-+-其中,6010)(+=t t r 若在t 时刻城市O 受到台风的侵袭,则有.)6010()0()0(222+≤-+-t y x 即22)22201027300()2220102300(t t ⨯+⨯-+⨯-⨯2412,028836,)6010(22≤≤≤+-+≤t t t t 解得即答:12小时后该城市开始受到台风的侵袭.21.根据题设条件,首先求出点P 坐标满足的方程,据此再判断是否存在的两定点,使得点P 到两点距离的和为定值.按题意有A (-2,0),B (2,0),C (2,4a ),D (-2,4a )设(01)BE CF DGk k BC CD DA===≤≤ 由此有E (2,4a k ),F (2-4k ,4a ),G (-2,4a -4ak )直线OF 的方程为:0)12(2=-+y k ax ① 直线GE 的方程为:02)12(=-+--a y x k a ②从①,②消去参数k ,得点P (x,y )坐标满足方程022222=-+ay y x a整理得1)(21222=-+a a y x 当212=a 时,点P 的轨迹为圆弧,所以不存在符合题意的两点. 当212≠a 时,点P 轨迹为椭圆的一部分,点P 到该椭圆焦点的距离的和为定长 当212<a 时,点P 到椭圆两个焦点(),21(),,2122a a a a ---的距离之和为定值2当212>a 时,点P 到椭圆两个焦点(0,)21,0(),2122-+--a a a a 的距离之和为定值2a .22.(本小题满分12分,附加题4分) (Ⅰ)解:用(t,s)表示22ts+,下表的规律为3((0,1)=0122+)5(0,2) 6(1,2) 9(0,3) 10(1,3) 12(2,3) — — — —…………(i )第四行17(0,4) 18(1,4) 20(2,4) 24(3,4)第五行 33(0,5) 34(1,5) 36(2,5) 40(3,5) 48(4,5)(i i )解法一:因为100=(1+2+3+4+……+13)+9,所以100a =(8,14)=81422+=16640解法二:设0022100t s a +=,只须确定正整数.,00t s数列}{n a 中小于02t的项构成的子集为 },0|2{20t t t s s <<≤+ 其元素个数为.1002)1(,2)1(000020<--=t t t t C t 依题意满足等式的最大整数0t 为14,所以取.140=t因为100-.1664022,8s ,181410000214=+=∴=+=a s C 由此解得(Ⅱ)解:,22211603710++==k b令}0|22{2B ,(}1160|{r t s r C B c M t s <<≤++=<∈=其中因}.22222|{}222|{}2|{37107107101010++<<+∈⋃+<<∈⋃<∈=c B c c B c c B c M 现在求M 的元素个数:},100|222{}2|{10<<<≤++=<∈t s r c B c t s r其元素个数为310C : }.70|222{}222|{1071010<<≤++=+<<∈s r c B c r s某元素个数为}30|222{}22222|{:710371071027<≤++=++<<+∈r c B c C r某元素个数为.1451:2327310710=+++=C C C k C另法:规定222r t s++=(r,t,s ),10731160222k b ==++=(3,7,10)则0121222b =++= (0,1,2) 22C依次为 (0,1,3) (0,2,3) (1,2,3) 23C (0,1,4) (0,2,4)(1,2,4)(0,3,4) (1,3,4)(2,3,4) 24C…………(0,1,9) (0,2,9)………… ( 6,8,9 )(7,8,9) 29C(0,1,10)(0,2,10).........(0,7,10)( 1,7,10)(2,7,10)(3,7,10) (2)7C +422222397()4145.k C C C C =+++++=。

2003年高考.全国卷.理科数学试题及答案

2003年高考.全国卷.理科数学试题及答案
4.函数 y 2 sin x(sin x cos x) 的最大值为
(B)( 1, ) (D)( , 1) (1, )
()
(A)1 2
(B) 2 1
(C) 2
(D)2
5.已知圆 C: (x a) 2 ( y 2) 2 4 ( a 0 )及直线 l : x y 3 0 ,当直线 l 被 C 截
得的弦长为 2 3 时,则 a
如果 P 和 Q 有且仅有一个正确,求 c 的取值范围
20.(本小题满分 12 分) 在某海滨城市附近海面有一台风,据监测,当前
台 风 中 心 位 于 城 市 O( 如 图 ) 的 东 偏 南
2 ) 方 向 300km 的 海 面 P 处 , 并 以 ( arccos 10
20km/h 的速度向西偏北 45 方向移动,台风侵袭的范
2 5

2 3

11.
lim
n
C 22
n(C
1 2
C32 C31
C 42 C 41
Cn C2n1 )
()
(A)3
(B) 1 3
(C) 1 6
(D)6
12.一个四面体的所有棱长都为 2 ,四个顶点在同一球面上,则些球的表面积为( )
(A) 3 (B) 4
(C) 3 3

(D)
6
2003年普通高等学校招生全国统一考试(全国卷)
()
(A) 2
(B) 2 2
(C) 2 1
(D) 2 1
6.已知圆锥的底面半径为 R,高为 3R,在它的所有内接圆柱中,全面积的最大值是
()
(A) 2 R 2
(B) 9 R 2 4
(C) 8 R 2 3

2022年全国卷Ⅰ高考数学理科模拟试题卷含答案(2)

2022年全国卷Ⅰ高考数学理科模拟试题卷含答案(2)

2022年全国卷Ⅰ高考数学理科模拟试题卷班级:_________________ 姓名:_________________ 座号:________________评卷人得分一、选择题(共12题,每题5分,共60分)1.若集合A={x||x|≤1,x∈R},B={y|y=x2,x∈R},则A∩B=A.{x|-1≤x≤1}B.{x|x≥0}C.{x|0≤x≤1}D.2.已知复数z=(a-3i)(3+2i)(a∈R)的实部与虚部的和为7,则a的值为A.1B.0C.2D.-23.函数y=log0.4(–x2+3x+4)的值域是A.(0,–2]B.[–2,+∞)C.(–∞,–2]D.[2,+∞)4.以AB为直径的半圆如图所示,其中||=8,O为其所在圆的圆心,OB的垂直平分线与圆弧交于点P,与AB交于点D,Q为PD上一点,若=0,则·=A.9B.15C.-9D.-155.已知lg a+lg b=0,函数f(x)=a x与函数g(x)=-log b x的图像可能是A BC D6.袋子中有四个小球,分别写有“和”“平”“世”“界”四个字,有放回地从中任取一个小球,直到“和”“平”两个字都取到才算完成.用随机模拟的方法估计恰好取三次便完成的概率.利用电脑随机产生0到3之间取整数值的随机数,0,1,2,3代表的字分别为“和”“平”“世”“界”,以每三个随机数为一组,表示取球三次的结果,随机模拟产生了以下24组随机数组:由此可以估计,恰好取三次便完成的概率为A. B. C. D.7.在直三棱柱ABC-A1B1C1中,AB=1,AC=2,BC=,D,E分别是AC1和BB1的中点,则直线DE 与平面BB1C1C所成的角为A.30°B.45°C.60°D.90°8.执行如图所示的程序框图,若输入的k=,则输出的S=A. B. C. D.9.已知等差数列的前项和分别为,若,则的值是A. B. C. D.10.若x1,x2∈R,则的最小值是A.1B.2C.3D.411.已知直线l过点(1,0),且倾斜角为直线l0:x-2y-2=0的倾斜角的2倍,则直线l的方程为A.4x-3y-3=0B.3x-4y-3=0C.3x-4y-4=0D.4x-3y-4=012.若a,b是两条不同的直线,α,β是两个不同的平面,则下列命题正确的是A.若a⊥b,b⊥α,α⊥β,则a⊥βB.若α⊥β,a⊥α,b∥β,则a⊥bC.若a∥α,a∥β,α∩β=b,则a∥bD.若a∥b,a⊥α,b∥β,则α∥β第II卷(非选择题)请点击修改第II卷的文字说明评卷人得分二、填空题(共4题,每题5分,共20分)13.曲线y=在点(-1,-3)处的切线方程为.14.已知{a n}是递增的等差数列,其前n项和为S n,且S2=S7,写出一个满足条件的数列{a n}的通项公式a n= .15.已知数列{a n}的前n项和为S n,a n+2S n=3n,数列{b n}满足(3a n+2-a n+1)(n∈N*),则数列{b n}的前10项和为.16.已知双曲线C:=1(a>0,b>0)的左、右焦点分别为F1,F2,点P在双曲线上.若△PF1F2为直角三角形,且tan∠PF1F2=,则双曲线的离心率为.评卷人得分三、解答题(共7题,共70分)17.在△ABC中,角A,B,C的对边分别为a,b,c,且sin(+C)=.(1)求角A;(2)若a=4,△ABC的周长为9,求△ABC的面积.18.如图,已知四棱柱ABCD-A1B1C1D1的底面是菱形,BB1⊥底面ABCD,E是棱CC1的中点.(1)求证:AC∥平面B1DE;(2)求证:平面BDD1B1⊥平面B1D E.19.2020年12月10日,首届全国职业技能大赛在广州广交会展馆拉开帷幕,活动为期4天,2 557名参赛选手围绕86个比赛项目展开激烈角逐.大赛组委会秘书长、人社部职业能力建设司司长张立新表示,这次大赛是新中国成立以来规格最高、项目最多、规模最大、水平最高的综合性国家职业技能赛事.为了准备下一届比赛,甲、乙两支代表队各自安排了10名选手参与选拔活动,他们在活动中取得的成绩(单位:分,满分100分)如下:甲代表队:95 95 79 93 86 94 97 88 81 89乙代表队:88 83 95 84 86 97 81 82 85 99(1)分别求甲、乙两支代表队成绩的平均值,并据此判断哪支代表队的成绩更好;(2)甲、乙两支代表队的总负责人计划从这两支队伍得分超过90分的选手中随机选择4名参加强化训练,记参加强化训练的选手来自甲代表队的人数为X,求X的分布列和数学期望.20.已知椭圆的右焦点为,过且与轴垂直的弦长为3.(1)求椭圆的标准方程;(2)过作直线与椭圆交于两点,问在轴上是否存在点,使为定值,若存在,请求出点坐标,若不存在,请说明理由.21.已知函数f(x)=(x-2)e x-x2+ax,a∈R.(1)讨论函数f(x)的单调性;(2)若不等式f(x)+(x+1)e x+x2-2ax+a>0恒成立,求a的取值范围.请考生在第 22、23 三题中任选二道做答,注意:只能做所选定的题目。

2000年高考.全国卷.理科数学试题及答案

2000年高考.全国卷.理科数学试题及答案

2000 年普通高等学校招生全国统一考试数学(理工农医类)本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分。

第I 卷 1 至2 页。

第II 卷 3 至9 页。

共150 分。

考试时间120 分钟。

第I 卷(选择题共60 分)注意事项:1.答第I 卷前,考生务必将自己的姓名、准考证号、考试科目用铅笔涂写在答题卡上。

2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答,不能答在试题卷上。

3.考试结束,监考人将本试卷和答题卡一并收回。

参考公式:三角函数的积化和差公式正棱台、圆台的侧面积公式其中c′、c 分别表示上、下底面周长,l 表示斜高或母线其中S′、S 分别表示上、下底面积,h 表示高一、选择题:本大题共12 分,每小题5 分,共60 分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

(1)设集合A 和B 都是自然数集合N,映射f:A→B 把集合A 中的元素n 映射到集合B 中的元素,则在映射f 下,象20 的原象是()(A)2 (B)3 (C)4 (D)5(2)在复平面内,把复数对应的向量按顺时针方向旋,所得向量对应的复数是(A)(B)(C)(D)(3)一个长方体共一顶点的三个面的面积分别是,这个长方体对角线的长是(A)(B)(C)6(4)已知sinα>sinβ,那么下列命题成立的是(A)若α、β是第一象限角,则cosα>cosβ(B)若α、β是第二象限角,则tgα>tgβ(C)若α、β是第三象限角,则cosα>cosβ(D)若α、β是第四象限角,则tgα>tgβ(5)函数y=-xcosx 的部分图象是(6)《中华人民共和国个人所得税法》规定,公民全月工资、薪金所得不超过800 元的部分不必纳税,超过800 元的部分为全月应纳税所得额,此项税款按下表分希累进计算。

全月应纳税所得额税率不超过500 元的部分5%超过500 元至2000 元的部分10%超过2000 元至5000 元的部分15%……某人一月份应交纳此项税款26.78 元,则他的当月工资、薪金所得介于(A)800~900 元(B)900~1200 元(C)1200~1500 元(D)1500~2800 元(7)若,则(A)R<P<Q (B)P<Q<R (C)Q<P<R (D)P<R<Q (8)以极坐标中的点(1,1)为圆心,1 为半径的圆的方程是(A)(B)(C)(D)(9)一个圆柱的侧面展开图是一个正方形,这个圆柱的全面积与侧面积的比是(A)(B)(C)(D)(10)过原点的直线与圆相切,若切点在第三象限,则该直线的方程是(A)(B)(D)(11)过抛物线(a>0)的焦点F 作一直线交抛物线于P、Q 两点,若线段PF 与FQ 的长分别是p、q,则等于(A)2a (B)(C)4a (D)(12)如图,OA 是圆锥底面中心O 到母线的垂线,OA 绕轴旋转一周所得曲面将圆锥分成体积相等的两部分,则母线与轴的夹角为(A)(B)(C)(D)第II 卷(非选择题共90 分)注意事项:1.第II 卷共7 页,用钢笔或圆珠笔直接答在试题卷中。

2022年全国高考理科数学甲卷试题及参考答案

2022年全国高考理科数学甲卷试题及参考答案

2022年普通高等学校招生全国统一考试(全国甲卷)理科数学注意事项:1.答卷前,考生务必用黑色碳素笔将自己的姓名、准考证号、考场号、座位号填写在答题卡上,并认真核准条形码上的准考证号、姓名、考场号、座位号及科目,在规定的位置贴好条形码。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.若13i z =-+,则1zzz =-( )A .13i -+B .13i -C .133-+ D .133- 2.某社区通过公益讲座以普及社区居民的垃圾分类知识.为了解讲座效果,随机抽取10位社区居民,让他们在讲座前和讲座后各回答一份垃圾分类知识问卷,这10位社区居民在讲座前和讲座后问卷答题的正确率如下图:则( )A .讲座前问卷答题的正确率的中位数小于70%B .讲座后问卷答题的正确率的平均数大于85%C .讲座前问卷答题的正确率的标准差小于讲座后正确率的标准差D .讲座后问卷答题的正确率的极差大于讲座前正确率的极差3.设全集{2,1,0,1,2,3}U =--,集合{}2{1,2},430A B x x x =-=-+=∣,则()UA B =( )A .{1,3}B .{0,3}C .{2,1}-D .{2,0}-4.如图,网格纸上绘制的是一个多面体的三视图,网格小正方形的边长为1,则该多面体的体积为( )A .8B .12C .16D .20 5.函数()33cos x x y x -=-在区间ππ,22⎡⎤-⎢⎥⎣⎦的图像大致为( ) A . B .C .D .6.当1x =时,函数()ln bf x a x x=+取得最大值2-,则(2)f '=( ) A .1- B .12- C .12D .17.在长方体1111ABCD A B C D -中,已知1B D 与平面ABCD 和平面11AA B B 所成的角均为30︒,则( )A .2AB AD = B .AB 与平面11ABCD 所成的角为30︒C .1AC CB =D .1B D 与平面11BB C C 所成的角为45︒8.沈括的《梦溪笔谈》是中国古代科技史上的杰作,其中收录了计算圆弧长度的“会圆术”,如图,AB 是以O 为圆心,OA 为半径的圆弧,C 是AB 的中点,D 在AB 上,CD AB ⊥.“会圆术”给出AB 的弧长的近似值s 的计算公式:2CD s AB OA=+.当2,60OA AOB =∠=︒时,s =( )A .11332- B .1132- C .9332- D .932- 9.甲、乙两个圆锥的母线长相等,侧面展开图的圆心角之和为2π,侧面积分别为S 甲和S 乙,体积分别为V 甲和V 乙.若=2S S 甲乙,则=VV 甲乙( ) A 5 B .22 C 10 D 51010.椭圆2222:1(0)x y C a b a b+=>>的左顶点为A ,点P ,Q 均在C 上,且关于y 轴对称.若直线,AP AQ 的斜率之积为14,则C 的离心率为( )A .32 B .22 C .12 D .1311.设函数π()sin 3f x x ω⎛⎫=+ ⎪⎝⎭在区间(0,π)恰有三个极值点、两个零点,则ω的取值范围是( )A .513,36⎡⎫⎪⎢⎣⎭ B .519,36⎡⎫⎪⎢⎣⎭ C .138,63⎛⎤ ⎥⎝⎦ D .1319,66⎛⎤⎥⎝⎦12.已知3111,cos ,4sin 3244a b c ===,则( )A .c b a >>B .b a c >>C .a b c >>D .a c b >>二、填空题:本题共4小题,每小题5分,共20分。

全国2022年新高考I卷数学试题

全国2022年新高考I卷数学试题

全国2022年新高考I卷数学试题全国2022年新高考I卷数学试题及答案(图片版)考数学一定要小心,对于解答题中的容易题和中档题,要注意解题的规范化,关键步骤不能丢,以下是小编整理的全国2022年新高考I卷数学试题,希望可以提供给大家进行参考和借鉴。

全国2022年新高考I卷数学试题高考数学答题有什么策略1.调适心理,增强信心(1)合理设置考试目标,创设宽松的应考氛围,以平常心对待高考;(2)合理安排饮食,提高睡眠质量;(3)保持良好的备考状态,不断进行积极的心理暗示;(4)静能生慧,稳定情绪,净化心灵,满怀信心地迎接即将到来的考试。

2.悉心准备,不紊不乱(1)重点复习,查缺补漏。

对前几次模拟考试的试题分类梳理、整合,既可按知识分类,也可按数学思想方法分类。

强化联系,形成知识网络结构,以少胜多,以不变应万变。

(2)查找错题,分析病因,对症下药,这是重点工作。

(3)阅读《考试说明》和《试题分析》,确保没有知识盲点。

考场数学答题技巧1、进入考试先审题考试开始后,很多学生喜欢奋笔疾书;但切记:审题一定要仔细,一定要慢。

数学题经常在一个字、一个数据里边暗藏着解题的关键,这个字、这个数据没读懂,要么找不着解题的关键,要么你误读了这个题目。

你在误读的基础上来做的话,你可能感觉做得很轻松,但这个题一分不得。

所以审题一定要仔细,你只有把题意弄明白了,这个题目才有可能做对。

会做的题目是不耽误时间的,真正耽误时间的是在审题的过程中,在找思路的过程中,只要找到思路了,单纯地写那些步骤并不占用时间。

2、迅速摸透“题情”刚拿到试卷,一般心情比较紧张,不忙匆匆作答,可先从头到尾、正面反面通览全卷,尽量从卷面上获取最多的信息,为实施正确的解题策略作全面调查,一般可在十分钟之内做完三件事:1)顺利解答那些一眼看得出结论的简单选择或填空题(建议第一题做两遍,直至答案一致为止,一旦解出,情绪立即会稳定)。

2)对不能立即作答的题目,可一面通览,一面粗略分为甲、已两类:甲类指题型比较熟悉、估计上手比较容易的题目,乙类是题型比较陌生、自我感觉比较困难的题目。

2000年高考.全国卷.理科数学试题及答案

2000年高考.全国卷.理科数学试题及答案

2000年普通高等学校招生全国统一考试数学(理工农医类)本试卷分第I卷(选择题)和第II卷(非选择题)两部分。

第I卷1至2页。

第II卷3至9页。

共150分。

考试时间120分钟。

第I卷(选择题共60分)注意事项:1.答第I卷前,考生务必将自己的姓名、准考证号、考试科目用铅笔涂写在答题卡上。

2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答,不能答在试题卷上。

3.考试结束,监考人将本试卷和答题卡一并收回。

参考公式:三角函数的积化和差公式正棱台、圆台的侧面积公式其中c′、c分别表示上、下底面周长,l表示斜高或母线长其中S′、S分别表示上、下底面积,h表示高一、选择题:本大题共12分,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

(1)设集合A和B都是自然数集合N,映射f:A→B把集合A中的元素n映射到集合B中的元素,则在映射f下,象20的原象是()(A)2 (B)3 (C)4 (D)5(2)在复平面内,把复数对应的向量按顺时针方向旋转,所得向量对应的复数是(A)(B)(C)(D)(3)一个长方体共一顶点的三个面的面积分别是,这个长方体对角线的长是(A)(B)(C)6 (D)(4)已知sinα>sinβ,那么下列命题成立的是(A)若α、β是第一象限角,则cosα>cosβ(B)若α、β是第二象限角,则tgα>tgβ(C)若α、β是第三象限角,则cosα>cosβ(D)若α、β是第四象限角,则tgα>tgβ(5)函数y=-xcosx的部分图象是(6)《中华人民共和国个人所得税法》规定,公民全月工资、薪金所得不超过800元的部分不必纳税,超过800元的部分为全月应纳税所得额,此项税款按下表分希累进计算。

全月应纳税所得额税率不超过500元的部分5%超过500元至2000元的部分10%超过2000元至5000元的部分15%……某人一月份应交纳此项税款26.78元,则他的当月工资、薪金所得介于(A)800~900元(B)900~1200元(C)1200~1500元(D)1500~2800元(7)若a>b>1,,则(A)R<P<Q (B)P<Q<R (C)Q<P<R (D)P<R<Q(8)以极坐标中的点(1,1)为圆心,1为半径的圆的方程是(A)(B)(C)(D)(9)一个圆柱的侧面展开图是一个正方形,这个圆柱的全面积与侧面积的比是(A)(B)(C)(D)(10)过原点的直线与圆相切,若切点在第三象限,则该直线的方程是(A)(B)(C)(D)(11)过抛物线(a>0)的焦点F作一直线交抛物线于P、Q两点,若线段PF与FQ的长分别是p、q,则等于(A)2a (B)(C)4a(D)(12)如图,OA是圆锥底面中心O到母线的垂线,OA绕轴旋转一周所得曲面将圆锥分成体积相等的两部分,则母线与轴的夹角为(A)(B)(C)(D)第II卷(非选择题共90分)注意事项:1.第II卷共7页,用钢笔或圆珠笔直接答在试题卷中。

2024年全国高考甲卷理科数学试题及答案

2024年全国高考甲卷理科数学试题及答案

绝密★启用前2024年普通高等学校招生全国统一考试全国甲卷理科数学使用范围:陕西、宁夏、青海、内蒙古、四川注意事项:1.答题前,务必将自己的姓名、考籍号填写在答题卡规定的位置上.2.答选择题时,必须使用2B 铅笔将答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦擦干净后,再选涂其它答案标号.3.答非选择题时,必须使用0.5毫米黑色签字笔,将答案书写在答题卡规定的位置上.4.所有题目必须在答题卡上作答,在试题卷上答题无效.5.考试结束后,只将答题卡交回.一、选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设5i z =+,则()i z z +=()A .10iB.2iC.10D.2-2.集合{}{}1,2,3,4,5,9,A B A ==,则()A A B ⋂=ð()A.{}1,4,9 B.{}3,4,9 C.{}1,2,3 D.{}2,3,53.若实数,x y 满足约束条件43302202690x y x y x y --≥⎧⎪--≤⎨⎪+-≤⎩,则5z x y =-的最小值为()A.5B.12C.2- D.72-4.等差数列{}n a 的前n 项和为n S ,若510S S =,51a =,则1a =()A.2- B.73C.1D.25.已知双曲线的两个焦点分别为(0,4),(0,4)-,点(6,4)-在该双曲线上,则该双曲线的离心率为()A.4B.3C.2D.6.设函数()2e 2sin 1x xf x x+=+,则曲线()y f x =在()0,1处的切线与两坐标轴围成的三角形的面积为()A.16B.13C.12D.237.函数()()2e esin xxf x x x -=-+-在区间[ 2.8,2.8]-的大致图像为()A.B.C. D.8.已知cos cos sin ααα=-πtan 4α⎛⎫+= ⎪⎝⎭()A.1+ B.1- C.2D.19.已知向量()()1,,,2a x x b x =+=,则()A.“3x =-”是“a b ⊥”的必要条件 B.“3x =-”是“//a b”的必要条件C.“0x =”是“a b ⊥ ”的充分条件D.“1x =-+”是“//a b”的充分条件10.设αβ、是两个平面,m n 、是两条直线,且m αβ= .下列四个命题:①若//m n ,则//n α或//n β②若m n ⊥,则,n n αβ⊥⊥③若//n α,且//n β,则//m n ④若n 与α和β所成的角相等,则m n⊥其中所有真命题的编号是()A.①③B.②④C.①②③D.①③④11.在ABC 中内角,,A B C 所对边分别为,,a b c ,若π3B =,294b ac =,则sin sin A C +=()A.32B.C.72D.3212.已知b 是,a c 的等差中项,直线0ax by c ++=与圆22410x y y ++-=交于,A B 两点,则AB 的最小值为()A.2B.3C.4D.二、填空题:本题共4小题,每小题5分,共20分.13.1013x ⎛⎫+ ⎪⎝⎭的展开式中,各项系数的最大值是______.14.已知甲、乙两个圆台上、下底面的半径均为1r 和2r ,母线长分别为()212r r -和()213r r -,则两个圆台的体积之比=V V 甲乙______.15.已知1a >,8115log log 42a a -=-,则=a ______.16.有6个相同的球,分别标有数字1、2、3、4、5、6,从中不放回地随机抽取3次,每次取1个球.记m 为前两次取出的球上数字的平均值,n 为取出的三个球上数字的平均值,则m 与n 差的绝对值不超过12的概率是______.三、解答题:共70分.解答应写出文字说明,证明过程或演算步骤.第17题~第21题为必考题,每个考题考生必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.某工厂进行生产线智能化升级改造,升级改造后,从该工厂甲、乙两个车间的产品中随机抽取150件进行检验,数据如下:优级品合格品不合格品总计甲车间2624050乙车间70282100总计96522150(1)填写如下列联表:优级品非优级品甲车间乙车间能否有95%的把握认为甲、乙两车间产品的优级品率存在差异?能否有99%的把握认为甲,乙两车间产品的优级品率存在差异?(2)已知升级改造前该工厂产品的优级品率0.5p=,设p为升级改造后抽取的n件产品的优级品率.如果p p>+150件产品的数据,能否认为12.247≈)附:22()()()()()n ad bcKa b c d a c b d-=++++()2P K k≥0.0500.0100.001k 3.841 6.63510.82818.记n S为数列{}n a的前n项和,且434n nS a=+.(1)求{}n a的通项公式;(2)设1(1)nn nb na-=-,求数列{}n b的前n项和为n T.19.如图,在以A,B,C,D,E,F为顶点的五面体中,四边形ABCD与四边形ADEF均为等腰梯形,//,//BC AD EF AD,4,2AD AB BC EF====,ED FB==M为AD的中点.(1)证明://BM平面CDE;(2)求二面角F BM E--的正弦值.20.设椭圆2222:1(0)x yC a ba b+=>>的右焦点为F,点31,2M⎛⎫⎪⎝⎭在C上,且MF x⊥轴.(1)求C的方程;(2)过点()4,0P的直线与C交于,A B两点,N为线段FP的中点,直线NB交直线MF于点Q,证明:AQ y⊥轴.21.已知函数()()()1ln 1f x ax x x =-+-.(1)当2a =-时,求()f x 的极值;(2)当0x ≥时,()0f x ≥恒成立,求a 的取值范围.(二)选考题:共10分,请考生在第22、23题中任选一题作答,并用2B 铅笔将所选题号涂黑,多涂、错涂、漏涂均不给分,如果多做,则按所做的第一题计分.[选修4-4:坐标系与参数方程]22.在平面直角坐标系xOy 中,以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为cos 1ρρθ=+.(1)写出C 的直角坐标方程;(2)设直线l :x ty t a=⎧⎨=+⎩(t 为参数),若C 与l 相交于A B 、两点,若2AB =,求a 的值.[选修4-5:不等式选讲]23.实数,a b 满足3a b +≥.(1)证明:2222a b a b +>+;(2)证明:22226a b b a -+-≥.绝密★启用前2024年普通高等学校招生全国统一考试全国甲卷理科数学使用范围:陕西、宁夏、青海、内蒙古、四川注意事项:1.答题前,务必将自己的姓名、考籍号填写在答题卡规定的位置上.2.答选择题时,必须使用2B 铅笔将答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦擦干净后,再选涂其它答案标号.3.答非选择题时,必须使用0.5毫米黑色签字笔,将答案书写在答题卡规定的位置上.4.所有题目必须在答题卡上作答,在试题卷上答题无效.5.考试结束后,只将答题卡交回.一、选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设5i z =+,则()i z z +=()A.10iB.2iC.10D.2-【答案】A 【解析】【分析】结合共轭复数与复数的基本运算直接求解.【详解】由5i 5i,10z z z z =+⇒=-+=,则()i 10i z z +=.故选:A2.集合{}{}1,2,3,4,5,9,A B A ==,则()A A B ⋂=ð()A.{}1,4,9 B.{}3,4,9 C.{}1,2,3 D.{}2,3,5【答案】D 【解析】【分析】由集合B 的定义求出B ,结合交集与补集运算即可求解.【详解】因为{}{}1,2,3,4,5,9,A B A ==,所以{}1,4,9,16,25,81B =,则{}1,4,9A B = ,(){}2,3,5A A B = ð故选:D3.若实数,x y满足约束条件43302202690x yx yx y--≥⎧⎪--≤⎨⎪+-≤⎩,则5z x y=-的最小值为()A.5B.12C.2-D.7 2-【答案】D【解析】【分析】画出可行域后,利用z的几何意义计算即可得.【详解】实数,x y满足43302202690x yx yx y--≥⎧⎪--≤⎨⎪+-≤⎩,作出可行域如图:由5z x y=-可得1155y x z=-,即z的几何意义为1155y x z=-的截距的15-,则该直线截距取最大值时,z有最小值,此时直线1155y x z=-过点A,联立43302690x yx y--=⎧⎨+-=⎩,解得321xy⎧=⎪⎨⎪=⎩,即3,12A⎛⎫⎪⎝⎭,则min375122z=-⨯=-.故选:D.4.等差数列{}n a的前n项和为n S,若510S S=,51a=,则1a=()A.2-B.73 C.1 D.2【答案】B【解析】【分析】由510S S=结合等差中项的性质可得8a=,即可计算出公差,即可得1a的值.【详解】由105678910850S S a a a a a a-=++++==,则8a=,则等差数列{}n a 的公差85133a a d -==-,故151741433a a d ⎛⎫=-=-⨯-= ⎪⎝⎭.故选:B.5.已知双曲线的两个焦点分别为(0,4),(0,4)-,点(6,4)-在该双曲线上,则该双曲线的离心率为()A.4B.3C.2D.【答案】C 【解析】【分析】由焦点坐标可得焦距2c ,结合双曲线定义计算可得2a ,即可得离心率.【详解】设()10,4F -、()20,4F 、()6,4-P ,则1228F F c ==,110PF ==,26PF ==,则1221064a PF PF =-=-=,则28224c e a ===.故选:C.6.设函数()2e 2sin 1x xf x x+=+,则曲线()y f x =在()0,1处的切线与两坐标轴围成的三角形的面积为()A.16B.13C.12D.23【答案】A 【解析】【分析】借助导数的几何意义计算可得其在点()0,1处的切线方程,即可得其与坐标轴交点坐标,即可得其面积.【详解】()()()()()222e 2cos 1e 2sin 21xx x x x xf x x ++-+⋅'=+,则()()()()()2e 2cos 010e 2sin 000310f ++-+⨯'==+,即该切线方程为13y x -=,即31y x =+,令0x =,则1y =,令0y =,则13x =-,故该切线与两坐标轴所围成的三角形面积1111236S =⨯⨯-=.故选:A.7.函数()()2e esin xxf x x x -=-+-在区间[ 2.8,2.8]-的大致图像为()A.B.C. D.【答案】B 【解析】【分析】利用函数的奇偶性可排除A 、C ,代入1x =可得()10f >,可排除D.【详解】()()()()()22ee sin e e sin xx x x f x x x x x f x ---=-+--=-+-=,又函数定义域为[]2.8,2.8-,故该函数为偶函数,可排除A 、C ,又()11πe 11111e sin11e sin 10e e 622e 42e f ⎛⎫⎛⎫=-+->-+-=-->-> ⎪ ⎪⎝⎭⎝⎭,故可排除D.故选:B.8.已知cos cos sin ααα=-πtan 4α⎛⎫+= ⎪⎝⎭()A.1+B.1- C.2D.1【答案】B 【解析】【分析】先将cos cos sin αα-α弦化切求得tan α,再根据两角和的正切公式即可求解.【详解】因为cos cos sin ααα=-,所以11tan =-α,3tan 13⇒α=-,所以tan 1tan 11tan 4α+π⎛⎫==α+ ⎪-α⎝⎭,故选:B .9.已知向量()()1,,,2a x x b x =+=,则()A.“3x =-”是“a b ⊥”的必要条件 B.“3x =-”是“//a b”的必要条件C.“0x =”是“a b ⊥”的充分条件D.“1x =-+”是“//a b”的充分条件【答案】C 【解析】【分析】根据向量垂直和平行的坐标表示即可得到方程,解出即可.【详解】对A ,当a b ⊥ 时,则0a b ⋅=,所以(1)20x x x ⋅++=,解得0x =或3-,即必要性不成立,故A 错误;对C ,当0x =时,()()1,0,0,2a b == ,故0a b ⋅=,所以a b ⊥,即充分性成立,故C 正确;对B ,当//a b时,则22(1)x x +=,解得1x =±,即必要性不成立,故B 错误;对D ,当1x =-+时,不满足22(1)x x +=,所以//a b不成立,即充分性不立,故D 错误.故选:C.10.设αβ、是两个平面,m n 、是两条直线,且m αβ= .下列四个命题:①若//m n ,则//n α或//n β②若m n ⊥,则,n n αβ⊥⊥③若//n α,且//n β,则//m n ④若n 与α和β所成的角相等,则m n⊥其中所有真命题的编号是()A.①③B.②④C.①②③D.①③④【答案】A 【解析】【分析】根据线面平行的判定定理即可判断①;举反例即可判断②④;根据线面平行的性质即可判断③.【详解】对①,当n ⊂α,因为//m n ,m β⊂,则//n β,当n β⊂,因为//m n ,m α⊂,则//n α,当n 既不在α也不在β内,因为//m n ,,m m αβ⊂⊂,则//n α且//n β,故①正确;对②,若m n ⊥,则n 与,αβ不一定垂直,故②错误;对③,过直线n 分别作两平面与,αβ分别相交于直线s 和直线t ,因为//n α,过直线n 的平面与平面α的交线为直线s ,则根据线面平行的性质定理知//n s ,同理可得//n t ,则//s t ,因为s ⊄平面β,t ⊂平面β,则//s 平面β,因为s ⊂平面α,m αβ= ,则//s m ,又因为//n s ,则//m n ,故③正确;对④,若,m n αβ⋂=与α和β所成的角相等,如果//,//αβn n ,则//m n ,故④错误;综上只有①③正确,故选:A.11.在ABC 中内角,,A B C 所对边分别为,,a b c ,若π3B =,294b ac =,则sin sin A C +=()A.32B.C.72D.32【答案】C 【解析】【分析】利用正弦定理得1sin sin 3A C =,再利用余弦定理有22134a c ac +=,再利用正弦定理得到22sin sin A C +的值,最后代入计算即可.【详解】因为29,34B b ac π==,则由正弦定理得241sin sin sin 93A CB ==.由余弦定理可得:22294b ac ac ac =+-=,即:22134a c ac +=,根据正弦定理得221313sin sin sin sin 412A C A C +==,所以2227(sin sin )sin sin 2sin sin 4A C A C A C +=++=,因为,A C 为三角形内角,则sin sin 0A C +>,则sin sin 2A C +=.故选:C.12.已知b 是,a c 的等差中项,直线0ax by c ++=与圆22410x y y ++-=交于,A B 两点,则AB 的最小值为()A.2B.3C.4D.【答案】C 【解析】【分析】结合等差数列性质将c 代换,求出直线恒过的定点,采用数形结合法即可求解.【详解】因为,,a b c 成等差数列,所以2b a c =+,2c b a =-,代入直线方程0ax by c ++=得20ax by b a ++-=,即()()120a x b y -++=,令1020x y -=⎧⎨+=⎩得12x y =⎧⎨=-⎩,故直线恒过()1,2-,设()1,2P -,圆化为标准方程得:()22:25C x y ++=,设圆心为C ,画出直线与圆的图形,由图可知,当PC AB ⊥时,AB 最小,1,PC AC r ===24AB AP ====.故选:C二、填空题:本题共4小题,每小题5分,共20分.13.1013x ⎛⎫+ ⎪⎝⎭的展开式中,各项系数的最大值是______.【答案】5【解析】【分析】先设展开式中第1r +项系数最大,则根据通项公式有1091101010111101011C C 3311C C 33r rr r r rr r --+---⎧⎛⎫⎛⎫≥⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎨⎛⎫⎛⎫⎪≥ ⎪ ⎪⎪⎝⎭⎝⎭⎩,进而求出r 即可求解.【详解】由题展开式通项公式为101101C 3rr r r T x -+⎛⎫= ⎪⎝⎭,010r ≤≤且r ∈Z ,设展开式中第1r +项系数最大,则1091101010111101011C C 3311C C 33rrr r r rr r --+---⎧⎛⎫⎛⎫≥⎪ ⎪⎪⎪⎝⎭⎝⎭⎨⎛⎫⎛⎫⎪≥ ⎪ ⎪⎪⎝⎭⎝⎭⎩,294334r r ⎧≥⎪⎪⇒⎨⎪≤⎪⎩,即293344r ≤≤,又r ∈Z ,故8r =,所以展开式中系数最大的项是第9项,且该项系数为28101C 53⎛⎫= ⎪⎝⎭.故答案为:5.14.已知甲、乙两个圆台上、下底面的半径均为1r 和2r ,母线长分别为()212r r -和()213r r-,则两个圆台的体积之比=V V 甲乙______.【答案】4【解析】【分析】先根据已知条件和圆台结构特征分别求出两圆台的高,再根据圆台的体积公式直接代入计算即可得解.【详解】由题可得两个圆台的高分别为)12h r r ==-甲,)12h r r ==-乙,所以((2121163143S S h V h V h S S h ++-===++甲甲甲乙乙乙.故答案为:64.15.已知1a >,8115log log 42a a -=-,则=a ______.【答案】64【解析】【分析】将8log ,log 4a a 利用换底公式转化成2log a 来表示即可求解.【详解】由题28211315log log log 4log 22a a a a -=-=-,整理得()2225log 60log a a --=,2log 1a ⇒=-或2log 6a =,又1a >,所以622log 6log 2a ==,故6264a ==故答案为:64.16.有6个相同的球,分别标有数字1、2、3、4、5、6,从中不放回地随机抽取3次,每次取1个球.记m 为前两次取出的球上数字的平均值,n 为取出的三个球上数字的平均值,则m 与n 差的绝对值不超过12的概率是______.【答案】715【解析】【分析】根据排列可求基本事件的总数,设前两个球的号码为,a b ,第三个球的号码为c ,则323a b c a b +-≤≤++,就c 的不同取值分类讨论后可求随机事件的概率.【详解】从6个不同的球中不放回地抽取3次,共有36A 120=种,设前两个球的号码为,a b ,第三个球的号码为c ,则1322a b c a b +++-≤,故2()3c a b -+≤,故32()3c a b -≤-+≤,故323a b c a b +-≤≤++,若1c =,则5a b +≤,则(),a b 为:()()2,3,3,2,故有2种,若2c =,则17a b ≤+≤,则(),a b 为:()()()()()1,3,1,4,1,5,1,6,3,4,()()()()()3,1,4,1,5,1,6,1,4,3,故有10种,当3c =,则39a b ≤+≤,则(),a b 为:()()()()()()()()1,2,1,4,1,5,1,6,2,4,2,5,2,6,4,5,()()()()()()()()2,1,4,1,5,1,6,1,4,2,5,2,6,2,5,4,故有16种,当4c =,则511a b ≤+≤,同理有16种,当5c =,则713a b ≤+≤,同理有10种,当6c =,则915a b ≤+≤,同理有2种,共m 与n 的差的绝对值不超过12时不同的抽取方法总数为()22101656++=,故所求概率为56712015=.故答案为:715三、解答题:共70分.解答应写出文字说明,证明过程或演算步骤.第17题~第21题为必考题,每个考题考生必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.某工厂进行生产线智能化升级改造,升级改造后,从该工厂甲、乙两个车间的产品中随机抽取150件进行检验,数据如下:优级品合格品不合格品总计甲车间2624050乙车间70282100总计96522150(1)填写如下列联表:优级品非优级品甲车间乙车间能否有95%的把握认为甲、乙两车间产品的优级品率存在差异?能否有99%的把握认为甲,乙两车间产品的优级品率存在差异?(2)已知升级改造前该工厂产品的优级品率0.5p=,设p为升级改造后抽取的n件产品的优级品率.如果p p>+150件产品的数据,能否认为12.247≈)附:22()()()()()n ad bcKa b c d a c b d-=++++()2P K k≥0.0500.0100.001k 3.841 6.63510.828【答案】(1)答案见详解(2)答案见详解【解析】【分析】(1)根据题中数据完善列联表,计算2K,并与临界值对比分析;(2)用频率估计概率可得0.64p=,根据题意计算p+,结合题意分析判断.【小问1详解】根据题意可得列联表:优级品非优级品甲车间2624乙车间7030可得()2215026302470754.687550100965416K⨯-⨯===⨯⨯⨯,因为3.841 4.6875 6.635<<,所以有95%的把握认为甲、乙两车间产品的优级品率存在差异,没有99%的把握认为甲,乙两车间产品的优级品率存在差异.【小问2详解】由题意可知:生产线智能化升级改造后,该工厂产品的优级品的频率为960.64150=,用频率估计概率可得0.64p =,又因为升级改造前该工厂产品的优级品率0.5p =,则0.50.50.5 1.650.56812.247p +=+≈+⨯≈,可知p p >+,所以可以认为生产线智能化升级改造后,该工厂产品的优级品率提高了.18.记n S 为数列{}n a 的前n 项和,且434n n S a =+.(1)求{}n a 的通项公式;(2)设1(1)n n n b na -=-,求数列{}n b 的前n 项和为n T .【答案】(1)14(3)n n a -=⋅-(2)(21)31nn T n =-⋅+【解析】【分析】(1)利用退位法可求{}n a 的通项公式.(2)利用错位相减法可求n T .【小问1详解】当1n =时,1114434S a a ==+,解得14a =.当2n ≥时,11434n n S a --=+,所以1144433n n n n n S S a a a ---==-即13n n a a -=-,而140a =≠,故0n a ≠,故13nn a a -=-,∴数列{}n a 是以4为首项,3-为公比的等比数列,所以()143n n a -=⋅-.【小问2详解】111(1)4(3)43n n n n b n n ---=-⋅⋅⋅-=⋅,所以123n n T b b b b =++++ 0211438312343n n -=⋅+⋅+⋅++⋅ 故1233438312343nn T n =⋅+⋅+⋅++⋅ 所以1212443434343n nn T n --=+⋅+⋅++⋅-⋅ ()1313444313n nn --=+⋅-⋅-()14233143n nn -=+⋅⋅--⋅(24)32n n =-⋅-,(21)31n n T n ∴=-⋅+.19.如图,在以A ,B ,C ,D ,E ,F 为顶点的五面体中,四边形ABCD 与四边形ADEF 均为等腰梯形,//,//BC AD EF AD,4,2AD AB BC EF ====,ED FB ==M 为AD 的中点.(1)证明://BM 平面CDE ;(2)求二面角F BM E --的正弦值.【答案】(1)证明见详解;(2)4313【解析】【分析】(1)结合已知易证四边形BCDM 为平行四边形,可证//BM CD ,进而得证;(2)作BO AD ⊥交AD 于O ,连接OF ,易证,,OB OD OF 三垂直,采用建系法结合二面角夹角余弦公式即可求解.【小问1详解】因为//,2,4,BC AD EF AD M ==为AD 的中点,所以//,BC MD BC MD =,四边形BCDM 为平行四边形,所以//BM CD ,又因为BM ⊄平面CDE ,CD ⊂平面CDE ,所以//BM 平面CDE ;【小问2详解】如图所示,作BO AD ⊥交AD 于O ,连接OF ,因为四边形ABCD 为等腰梯形,//,4,BC AD AD =2AB BC ==,所以2CD =,结合(1)BCDM 为平行四边形,可得2BM CD ==,又2AM =,所以ABM 为等边三角形,O 为AM中点,所以OB =,又因为四边形ADEF 为等腰梯形,M 为AD 中点,所以,//EF MD EF MD =,四边形EFMD 为平行四边形,FM ED AF ==,所以AFM △为等腰三角形,ABM 与AFM △底边上中点O 重合,OF AM ⊥,3OF =,因为222OB OF BF +=,所以OB OF ⊥,所以,,OB OD OF 互相垂直,以OB 方向为x 轴,OD 方向为y 轴,OF 方向为z 轴,建立O xyz -空间直角坐标系,()0,0,3F,)()(),0,1,0,0,2,3BM E,()(),BM BF ==,()2,3BE = ,设平面BFM 的法向量为()111,,m x y z =,平面EMB 的法向量为()222,,n x y z =,则00m BM m BF ⎧⋅=⎪⎨⋅=⎪⎩,即1111030y z ⎧+=⎪⎨+=⎪⎩,令1x =113,1y z ==,即)m =,则00n BM n BE ⎧⋅=⎪⎨⋅=⎪⎩,即222220230y y z ⎧+=⎪⎨++=⎪⎩,令2x =,得223,1y z ==-,即)1n =-,11cos ,13m n m n m n ⋅===⋅,则sin ,13m n =,故二面角F BM E --的正弦值为4313.20.设椭圆2222:1(0)x y C a b a b+=>>的右焦点为F ,点31,2M ⎛⎫ ⎪⎝⎭在C 上,且MF x ⊥轴.(1)求C 的方程;(2)过点()4,0P 的直线与C 交于,A B 两点,N 为线段FP 的中点,直线NB 交直线MF 于点Q ,证明:AQ y ⊥轴.【答案】(1)22143x y +=(2)证明见解析【解析】【分析】(1)设(),0F c ,根据M 的坐标及MF ⊥x 轴可求基本量,故可求椭圆方程.(2)设:(4)AB y k x =-,()11,A x y ,()22,B x y ,联立直线方程和椭圆方程,用,A B 的坐标表示1Q y y -,结合韦达定理化简前者可得10Q y y -=,故可证AQ y ⊥轴.【小问1详解】设(),0F c ,由题设有1c =且232b a =,故2132a a -=,故2a =,故b =,故椭圆方程为22143x y +=.【小问2详解】直线AB 的斜率必定存在,设:(4)AB y k x =-,()11,A x y ,()22,B x y,由223412(4)x y y k x ⎧+=⎨=-⎩可得()2222343264120k x k x k +-+-=,故()()422Δ102443464120k kk =-+->,故1122k -<<,又22121222326412,3434k k x x x x k k -+==++,而5,02N ⎛⎫ ⎪⎝⎭,故直线225:522y BN y x x ⎛⎫=-⎪⎝⎭-,故22223325252Qy y y x x --==--,所以()1222112225332525Q y x y y y y y x x ⨯-+-=+=--()()()12224253425k x x k x x -⨯-+-=-()222212122264123225825834342525k k x x x x k k k k x x -⨯-⨯+-++++==--2222212824160243234025k k k k k x --+++==-,故1Q y y =,即AQ y ⊥轴.【点睛】方法点睛:利用韦达定理法解决直线与圆锥曲线相交问题的基本步骤如下:(1)设直线方程,设交点坐标为()()1122,,,x y x y ;(2)联立直线与圆锥曲线的方程,得到关于x (或y )的一元二次方程,注意∆的判断;(3)列出韦达定理;(4)将所求问题或题中的关系转化为12x x +、12x x (或12y y +、12y y )的形式;(5)代入韦达定理求解.21.已知函数()()()1ln 1f x ax x x =-+-.(1)当2a =-时,求()f x 的极值;(2)当0x ≥时,()0f x ≥恒成立,求a 的取值范围.【答案】(1)极小值为0,无极大值.(2)12a ≤-【解析】【分析】(1)求出函数的导数,根据导数的单调性和零点可求函数的极值.(2)求出函数的二阶导数,就12a ≤-、102a -<<、0a ≥分类讨论后可得参数的取值范围.【小问1详解】当2a =-时,()(12)ln(1)f x x x x =++-,故121()2ln(1)12ln(1)111x f x x x x x+'=++-=+-+++,因为12ln(1),11y x y x=+=-++在()1,∞-+上为增函数,故()f x '在()1,∞-+上为增函数,而(0)0f '=,故当10x -<<时,()0f x '<,当0x >时,()0f x '>,故()f x 在0x =处取极小值且极小值为()00f =,无极大值.【小问2详解】()()()()11ln 11ln 1,011a x ax f x a x a x x x x+-=-+'+-=-+->++,设()()()1ln 101a xs x a x x x +=-+->+,则()()()()()()222111211111a a x a a ax a s x x x x x ++++-++=-=-=-+++'+,当12a ≤-时,()0s x '>,故()s x 在()0,∞+上为增函数,故()()00s x s >=,即()0f x '>,所以()f x 在[)0,∞+上为增函数,故()()00f x f ≥=.当102a -<<时,当210a x a+<<-时,()0s x '<,故()s x 在210,a a +⎛⎫- ⎪⎝⎭上为减函数,故在210,a a +⎛⎫- ⎪⎝⎭上()()0s x s <,即在210,a a +⎛⎫- ⎪⎝⎭上()0f x '<即()f x 为减函数,故在210,a a +⎛⎫-⎪⎝⎭上()()00f x f <=,不合题意,舍.当0a ≥,此时()0s x '<在()0,∞+上恒成立,同理可得在()0,∞+上()()00f x f <=恒成立,不合题意,舍;综上,12a ≤-.【点睛】思路点睛:导数背景下不等式恒成立问题,往往需要利用导数判断函数单调性,有时还需要对导数进一步利用导数研究其符号特征,处理此类问题时注意利用范围端点的性质来确定如何分类.(二)选考题:共10分,请考生在第22、23题中任选一题作答,并用2B 铅笔将所选题号涂黑,多涂、错涂、漏涂均不给分,如果多做,则按所做的第一题计分.[选修4-4:坐标系与参数方程]22.在平面直角坐标系xOy 中,以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为cos 1ρρθ=+.(1)写出C 的直角坐标方程;(2)设直线l :x t y t a =⎧⎨=+⎩(t 为参数),若C 与l 相交于A B 、两点,若2AB =,求a 的值.【答案】(1)221y x =+(2)34a =【解析】【分析】(1)根据ρρθ⎧⎪=⎨=⎪⎩可得C 的直角方程.(2)将直线的新的参数方程代入C 的直角方程,法1:结合参数s 的几何意义可得关于a 的方程,从而可求参数a 的值;法2:将直线的直角方程与曲线的直角方程联立,结合弦长公式可求a 的值.【小问1详解】由cos 1ρρθ=+,将xρρθ⎧⎪=⎨=⎪⎩cos 1ρρθ=+,1x =+,两边平方后可得曲线的直角坐标方程为221y x =+.【小问2详解】对于直线l 的参数方程消去参数t ,得直线的普通方程为y x a =+.法1:直线l 的斜率为1,故倾斜角为π4,故直线的参数方程可设为22x s y a s ⎧=⎪⎪⎨⎪=+⎪⎩,s ∈R .将其代入221y x =+中得()221)210s a s a +-+-=设,A B 两点对应的参数分别为12,s s,则)()212121,21s s a s s a +=--=-,且()()22Δ818116160a a a =---=->,故1a <,12AB s s ∴=-=2==,解得34a =.法2:联立221y x a y x =+⎧⎨=+⎩,得22(22)10x a x a +-+-=,()22Δ(22)41880a a a =---=-+>,解得1a <,设()()1122,,,A x y B x y ,2121222,1x x a x x a ∴+=-=-,则AB ==2=,解得34a =[选修4-5:不等式选讲]23.实数,a b 满足3a b +≥.(1)证明:2222a b a b +>+;(2)证明:22226a b b a -+-≥.【答案】(1)证明见解析(2)证明见解析【解析】【分析】(1)直接利用22222()a b a b +≥+即可证明.(2)根据绝对值不等式并结合(1)中结论即可证明.【小问1详解】因为()()2222222022a b a ab b a b b a -+=--++=≥,当a b =时等号成立,则22222()a b a b +≥+,因为3a b +≥,所以22222()a b a b a b +≥+>+;【小问2详解】222222222222()a b b a a b b a a b a b -+-≥-+-=+-+22222()()()()(1)326a b a b a b a b a b a b =+-+≥+-+=++-≥⨯=。

2023年高考数学真题-(全国乙卷)理科数学(含答案及详细解析

2023年高考数学真题-(全国乙卷)理科数学(含答案及详细解析

2023年高考数学真题-(全国乙卷)理科数学一、选择题1.设,则()A.B.C.D.2.设集合,集合,,则()A.B.C.D.3.如图,网格纸上绘制的一个零件的三视图,网格小正方形的边长为1,则该零件的表面积为()A.24B.26C.28D.304.已知是偶函数,则()A.B.C.1D.25.设O为平面坐标系的坐标原点,在区域内随机取一点,记该点为A,则直线OA的倾斜角不大于的概率为()A.B.C.D.6.已知函数在区间单调递增,直线和为函数的图像的两条对称轴,则()A.B.C.D.7.甲乙两位同学从6种课外读物中各自选读2种,则这两人选读的课外读物中恰有1种相同的选法共有()A.30种B.60种C.120种D.240种8.已知圆锥PO的底面半径为,O为底面圆心,PA,PB为圆锥的母线,,若的面积等于,则该圆锥的体积为()A.B.C.D.9.已知为等腰直角三角形,AB为斜边,为等边三角形,若二面角为,则直线CD与平面ABC所成角的正切值为()A.B.C.D.10.已知等差数列的公差为,集合,若,则()A.-1B.C.0D.11.设A,B为双曲线上两点,下列四个点中,可为线段AB中点的是()A.B.C.D.12.已知的半径为1,直线PA与相切于点A,直线PB与交于B,C两点,D为BC的中点,若,则的最大值为()A.B.C.D.二、填空题13.已知点在抛物线C:上,则A到C的准线的距离为.14.若x,y满足约束条件,则的最大值为.15.已知为等比数列,,,则.16.设,若函数在上单调递增,则a的取值范围是.三、解答题17.某厂为比较甲乙两种工艺对橡胶产品伸缩率的处理效应,进行10次配对试验,每次配对试验选用材质相同的两个橡胶产品,随机地选其中一个用甲工艺处理,另一个用乙工艺处理,测量处理后的橡胶产品的伸缩率,甲、乙两种工艺处理后的橡胶产品的伸缩率分别记为,(),试验结果如下试验序号i12345678910伸缩率545533551522575544541568596548伸缩率536527543530560533522550576536记,记,,…,的样本平均数为,样本方差为,(1)求,;(2)判断甲工艺处理后的橡胶产品的伸缩率较乙工艺处理后的橡胶产品的伸缩率是否有显著提高(如果,则认为甲工艺处理后的橡胶产品的伸缩率较乙工艺处理后的橡胶产品的伸缩率有显著提高,否则不认为有显著提高).18.在中,已知,,.(1)求;(2)若D为BC上一点,且,求的面积.19.如图,在三棱锥中,,,,,BP,AP,BC的中点分别为D,E,O,,点F在AC上,.(1)证明:平面;(2)证明:平面平面BEF;(3)求二面角的正弦值.20.已知椭圆C:的离心率为,点在C上.(1)求C的方程;(2)过点的直线交C于点P,Q两点,直线AP,AQ与y轴的交点分别为M,N,证明:线段MN的中点为定点.21.已知函数.(1)当时,求曲线在点处的切线方程;(2)是否存在a,b,使得曲线关于直线对称,若存在,求a,b的值,若不存在,说明理由.(3)若在存在极值,求a的取值范围.四、选做题22.在直角坐标系中,以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为,曲线:(为参数,).(1)写出的直角坐标方程;(2)若直线既与没有公共点,也与没有公共点,求的取值范围.23.已知(1)求不等式的解集;(2)在直角坐标系中,求不等式组所确定的平面区域的面积.答案解析部分1.【答案】B【解析】【解答】∵,∴∴故选:B.【分析】由虚数i的性质化简,依据复数除法运算计算z及其共轭复数得出答案. 2.【答案】A【解析】【解答】根据题意对A,,则,符合题意,对B,,则,不符合题意,对C,,则,不符合题意,对D,,则,不符合题意,故选:A.【分析】由交、并、补集的定义及运算,逐项判断可得答案.3.【答案】D【解析】【解答】如图该几何体是由边长为2的正方体和边长为1,2,2的长方体组成:表面积为:故选:D【分析】先将三视图还原空间几何体,再求解表面积。

2000年高考.全国卷.理科数学试题及答案

2000年高考.全国卷.理科数学试题及答案

2000年普通高等学校招生全国统一考试数学(理工农医类)本试卷分第I卷(选择题)和第II卷(非选择题)两部分。

第I卷1至2页。

第II卷3至9页。

共150分。

考试时间120分钟。

第I卷(选择题共60分)注意事项:1.答第I卷前,考生务必将自己的姓名、准考证号、考试科目用铅笔涂写在答题卡上。

2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答,不能答在试题卷上。

3.考试结束,监考人将本试卷和答题卡一并收回。

参考公式:三角函数的积化和差公式正棱台、圆台的侧面积公式其中c′、c分别表示上、下底面周长,l表示斜高或母线长其中S′、S分别表示上、下底面积,h表示高一、选择题:本大题共12分,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

(1)设集合A和B都是自然数集合N,映射f:A→B把集合A中的元素n映射到集合B中的元素,则在映射f下,象20的原象是()(A)2 (B)3(C)4(D)5(2)在复平面内,把复数对应的向量按顺时针方向旋转,所得向量对应的复数是(A)(B)(C)(D)(3)一个长方体共一顶点的三个面的面积分别是,这个长方体对角线的长是(A)(B)(C)6(D)(4)已知sinα>sinβ,那么下列命题成立的是(A)若α、β是第一象限角,则cosα>cosβ(B)若α、β是第二象限角,则tgα>tgβ(C)若α、β是第三象限角,则cosα>cosβ(D)若α、β是第四象限角,则tgα>tgβ(5)函数y=-xcosx的部分图象是(6)《中华人民共和国个人所得税法》规定,公民全月工资、薪金所得不超过800元的部分不必纳税,超过800元的部分为全月应纳税所得额,此项税款按下表分希累进计算。

全月应纳税所得额税率不超过500元的部分5%超过500元至2000元的部分10%超过2000元至5000元的部分15%……某人一月份应交纳此项税款26.78元,则他的当月工资、薪金所得介于(A)800~900元(B)900~1200元(C)1200~1500元(D)1500~2800元(7)若a>b>1,,则(A)R<P<Q(B)P<Q<R(C)Q<P<R(D)P<R<Q (8)以极坐标中的点(1,1)为圆心,1为半径的圆的方程是(A)(B)(C)(D)(9)一个圆柱的侧面展开图是一个正方形,这个圆柱的全面积与侧面积的比是(A)(B)(C)(D)(10)过原点的直线与圆相切,若切点在第三象限,则该直线的方程是(A)(B)(C)(D)(11)过抛物线(a>0)的焦点F作一直线交抛物线于P、Q两点,若线段PF与FQ 的长分别是p、q,则等于(A)2a(B)(C)4a(D)(12)如图,OA是圆锥底面中心O到母线的垂线,OA绕轴旋转一周所得曲面将圆锥分成体积相等的两部分,则母线与轴的夹角为(A)(B)(C)(D)第II卷(非选择题共90分)注意事项:1.第II卷共7页,用钢笔或圆珠笔直接答在试题卷中。

2003年高考全国卷.理科数学试题及答案

2003年高考全国卷.理科数学试题及答案

2003年普通高等学校招生全国统一考试(全国卷)数 学(理工农医类)注意事项:1. 答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目用铅笔涂写在答题卡上.2. 每小题选出答案后,用铅笔把答题卡上对应答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案,不能答在试题卷上.3. 考试结束,监考人将本试卷和答题卡一并收回. 参考公式:三角函数的积化和差公式: 正棱台、圆台的侧面积公式)]sin()[sin(21cos sin βαβαβα-++=⋅ l c c S )(21+'=台侧 其中c '、c 分别表示)]sin()[sin(21sin cos βαβαβα--+=⋅ 上、下底面周长,l 表示斜高或母线长.)]cos()[cos(21cos cos βαβαβα-++=⋅ 球体的体积公式:334R V π=球 ,其中R)]cos()[cos(21sin sin βαβαβα--+-=⋅ 表示球的半径.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分第Ⅰ卷(选择题共60分)一.选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合要求的 1.已知2(π-∈x ,0),54cos =x ,则2tg x = ( ) (A )247 (B )247- (C )724 (D )724-2.圆锥曲线θθρ2cos sin 8=的准线方程是 ( ) (A )2cos -=θρ (B )2cos =θρ (C )2sin =θρ (D )2sin -=θρ 3.设函数⎪⎩⎪⎨⎧-=-2112)(xx f x 00>≤x x ,若1)(0>x f ,则0x 的取值范围是 ( )(A )(1-,1) (B )(1-,∞+) (C )(∞-,2-)⋃(0,∞+) (D )(∞-,1-)⋃(1,∞+) 4.函数)cos (sin sin 2x x x y +=的最大值为 ( ) (A )21+ (B )12- (C )2 (D )25.已知圆C :4)2()(22=-+-y a x (0>a )及直线l :03=+-y x ,当直线l 被C 截得的弦长为32时,则a ( ) (A )2 (B )22- (C )12- (D )12+6.已知圆锥的底面半径为R ,高为3R ,在它的所有内接圆柱中,全面积的最大值是( )(A )22R π (B )249R π (C )238R π (D )223R π7.已知方程0)2)(2(22=+-+-n x x m x x 的四个根组成一个首项为41的的等差数列,则=-||n m ( )(A )1 (B )43 (C )21 (D )838.已知双曲线中心在原点且一个焦点为F (7,0),直线1-=x y 与其相交于M 、N 两点,MN 中点的横坐标为32-,则此双曲线的方程是 ( ) (A )14322=-y x (B )13422=-y x (C )12522=-y x (D )15222=-y x 9.函数x x f sin )(=,]23,2[ππ∈x 的反函数=-)(1x f ( )(A )x arcsin - 1[-∈x ,1] (B )x arcsin --π 1[-∈x ,1] (C )x arcsin +π 1[-∈x ,1] (D )x arcsin -π 1[-∈x ,1]10.已知长方形的四个顶点A (0,0),B (2,0),C (2,1)和D (0,1),一质点从AB 的中点0P 沿与AB 的夹角θ的方向射到BC 上的点1P 后,依次反射到CD 、DA 和AB 上的点2P 、3P 和4P (入射角等于反射角),设4P 的坐标为(4x ,0),若214<<x ,则tg θ的取值范围是 ( )(A )(31,1) (B )(31,32) (C )(52,21) (D )(52,32)11.=++++++++∞→)(lim 11413122242322nnn C C C C n C C C C ( )(A )3 (B )31 (C )61(D )6 12.一个四面体的所有棱长都为2,四个顶点在同一球面上,则些球的表面积为( ) (A )π3 (B )π4 (C )π33 (D )π62003年普通高等学校招生全国统一考试(全国卷)数 学(理工农医类)第Ⅱ卷(非选择题共90分)二.填空题:本大题共4小题,每小题4分,共16分把答案填在题中横线上13.92)21(xx -的展开式中9x 系数是14.使1)(log 2+<-x x 成立的x 的取值范围是15.如图,一个地区分为5个行政区域,现给地图着色,要求相邻地区不得使用同一颜色,现有4种颜色可供选择,则不同的着色方法共有种(以数字作答)16.下列5个正方体图形中,l 是正方体的一条对角线,点M 、N 、P 分别为其所在棱的中点,能得出⊥l 面MNP 的图形的序号是 (写出所有符合要求的图形序号)① ② ③ ④ ⑤三、解答题:本大题共6小题,共74分,解答应写出文字说明,证明过程或或演算步骤17.(本小题满分12分)已知复数z 的辐角为︒60,且|1|-z 是||z 和|2|-z 的等比中项,求||z 18.(本小题满分12分)如图,在直三棱柱111C B A ABC -中,底面是等腰直角三角形,︒=∠90ACB ,侧棱21=AA ,D 、E 分别是1CC 与B A 1的中点,点E 在平面ABD 上的射影是△ABD 的重心G(I )求B A 1与平面ABD 所成角的大小(结果用反三角函数值表示)(II )求点1A 到平面AED 的距离 19.(本小题满分12分) 已知0>c ,设P :函数x c y =在R 上单调递减 Q :不等式1|2|>-+c x x 的解集为R 如果P 和Q 有且仅有一个正确,求c 的取值范围 20.(本小题满分12分)在某海滨城市附近海面有一台风,据监测,当前台风中心位于城市O (如图)的东偏南102arccos (=θθ)方向300km 的海面P 处,并以20km/h 的速度向西偏北︒45方向移动,台风侵袭的范围为圆形区域,当前半径为60km ,并以10km/h 的速度不断增大,问几小时后该城市开始受到台风的侵袭? 21.(本小题满分14分)D E KBCABAFCG东已知常数0>a ,在矩形ABCD 中,4=AB ,a BC 4=,O 为AB 的中点,点E 、F 、G 分别在BC 、CD 、DA 上移动,且BE CF DG BC CD DA ==,P 为GE 与OF 的交点(如图),问是否存在两个定点,使P 到这两点的距离的和为定值?若存在,求出这两点的坐标及此定值;若不存在,请说明理由 22.(本小题满分12分,附加题4 分)(I )设}{n a 是集合|22{ts + t s <≤0且Z t s ∈,}中所有的数从小到大排列成的数列,即31=a ,52=a ,63=a ,94=a ,105=a ,126=a ,…将数列}{n a 各项按照上小下大,左小右大的原则写成如下的三角形数表:35 69 10 12 — — — —…………⑴写出这个三角形数表的第四行、第五行各数;⑵求100a(II )(本小题为附加题,如果解答正确,加4 分,但全卷总分不超过150分)设}{n b 是集合t s r t s r <<≤++0|222{,且},,Z t s r ∈中所有的数从小到大排列成的数列,已知1160=k b ,求k .2003年普通高等学校招生全国统一考试(全国卷)数学(理工农医类)答案一、选择题:本题考查基本知识和基本运算. 每小题5分,满分60分.1.D 2.C 3.D 4.A 5.C 6.B 7.C 8.D 9.D 10.C 11.B 12.A 二、填空题:本题考查基本知识和基本运算.每小题4分,满分16分. 13.221-14.(-1,0) 15.72 16.①④⑤ 三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤. 17. 解:设)60sin 60cosr r z +=,则复数.2r z 的实部为2,r z z r z z ==-由题设 .12||).(12,12:.012,421,)2)(2(||)1)(1(:|2||||1|2222-=--=-==-++-=+-∴--=---⋅=-z r r r r r r r r r z z z z z z z z 即舍去解得整理得即 18.(Ⅰ)解:连结BG ,则BG 是BE 在ABD 的射影,即∠EBG 是A 1B 与平面ABD 所成的角. 设F 为AB 中点,连结EF 、FC ,.32arcsin.323136sin .3,32,22,2.36321,2)4(.3,1,31.,,,,,,112211所成的角是与平面于是分中在直角三角形的重心是连结为矩形平面又的中点分别是ABD B A EB EG EBG EB B A AB CD FC EG ED FD EF FD FD FG EF EFD DF G ADB G DE CDEF ABC DC B A CC E D ∴=⋅==∠∴===∴===⨯===∴==⋅=∈∴∆∴⊥(Ⅱ)解:,,,F AB EF EF ED AB ED =⋂⊥⊥又.36236232222,.,.,.,.,111111*********的距离为到平面中在的距离到平面是即平面垂足为作面且面平面平面面又面AED A AB B A A A K A AB A AED A K A AED K A K AE K A AE AB A AED AB A AED AED ED AB A ED ∴=⨯=⋅=∆⊥∴⊥=⋂⊥∴⊂⊥∴19.解:函数xc y =在R 上单调递减.10<<⇔c不等式.1|2|1|2|上恒大于在函数的解集为R c x x y R c x x -+=⇔>-+ 22,2,|2|2,2,|2|2.1|2|121.21,,0.21,, 1.(0,][1,).2x c x c x x c c x c y x x c R c x x c R c c P Q c P Q c c -≥⎧+-=⎨<⎩∴=+-∴+->⇔>⇔><≤≥⋃+∞函数在上的最小值为不等式的解集为如果正确且不正确则如果不正确且正确则所以的取值范围为(以上方法在新疆考区无一人使用,大都是用解不等式的方法,个别使用的图象法) 20.解:如图建立坐标系以O 为原点,正东方向为x 轴正向.在时刻:(1)台风中心P (y x ,)的坐标为⎪⎪⎩⎪⎪⎨⎧⨯+⨯-=⨯-⨯=.22201027300,2220102300t y t x 此时台风侵袭的区域是,)]([)()(22t r y y x x ≤-+-其中,6010)(+=t t r 若在t 时刻城市O 受到台风的侵袭,则有.)6010()0()0(222+≤-+-t y x 即22)22201027300()2220102300(t t ⨯+⨯-+⨯-⨯2412,028836,)6010(22≤≤≤+-+≤t t t t 解得即答:12小时后该城市开始受到台风的侵袭.21.根据题设条件,首先求出点P 坐标满足的方程,据此再判断是否存在的两定点,使得点P 到两点距离的和为定值. 按题意有A (-2,0),B (2,0),C (2,4a ),D (-2,4a )设(01)BE CF DG k k BC CD DA===≤≤ 由此有E (2,4a k ),F (2-4k ,4a ),G (-2,4a -4ak ) 直线OF 的方程为:0)12(2=-+y k ax ① 直线GE 的方程为:02)12(=-+--a y x k a ②从①,②消去参数k ,得点P (x,y )坐标满足方程022222=-+ay y x a整理得1)(21222=-+a a y x 当212=a 时,点P 的轨迹为圆弧,所以不存在符合题意的两点. 当212≠a 时,点P 轨迹为椭圆的一部分,点P 到该椭圆焦点的距离的和为定长 当212<a 时,点P 到椭圆两个焦点(),21(),,2122a a a a ---的距离之和为定值2当212>a 时,点P 到椭圆两个焦点(0,)21,0(),2122-+--a a a a 的距离之和为定值2a .22.(本小题满分12分,附加题4分) (Ⅰ)解:用(t,s)表示22ts+,下表的规律为3((0,1)=0122+)5(0,2) 6(1,2)9(0,3) 10(1,3) 12(2,3) — — — —…………(i )第四行17(0,4) 18(1,4) 20(2,4) 24(3,4)第五行 33(0,5) 34(1,5) 36(2,5) 40(3,5) 48(4,5)(i i )解法一:因为100=(1+2+3+4+……+13)+9,所以100a =(8,14)=81422+=16640解法二:设0022100t s a +=,只须确定正整数.,00t s数列}{n a 中小于02t的项构成的子集为 },0|2{20t t t s s <<≤+ 其元素个数为.1002)1(,2)1(000020<--=t t t t C t 依题意满足等式的最大整数0t 为14,所以取.140=t因为100-.1664022,8s ,181410000214=+=∴=+=a s C 由此解得(Ⅱ)解:,22211603710++==k b令}0|22{2B ,(}1160|{r t s r C B c M t s <<≤++=<∈=其中因}.22222|{}222|{}2|{37107107101010++<<+∈⋃+<<∈⋃<∈=c B c c B c c B c M 现在求M 的元素个数:},100|222{}2|{10<<<≤++=<∈t s r c B c t s r其元素个数为310C : }.70|222{}222|{1071010<<≤++=+<<∈s r c B c r s某元素个数为}30|222{}22222|{:710371071027<≤++=++<<+∈r c B c C r某元素个数为.1451:2327310710=+++=C C C k C另法:规定222r t s ++=(r,t,s ),10731160222k b ==++=(3,7,10)则0121222b =++= (0,1,2) 22C依次为 (0,1,3) (0,2,3) (1,2,3) 23C (0,1,4) (0,2,4)(1,2,4)(0,3,4) (1,3,4)(2,3,4) 24C…………(0,1,9) (0,2,9)………… ( 6,8,9 )(7,8,9) 29C(0,1,10)(0,2,10).........(0,7,10)( 1,7,10)(2,7,10)(3,7,10) (2)7C +422222397()4145.k C C C C =+++++=。

2000年高考.全国卷.理科数学试题及答案

2000年高考.全国卷.理科数学试题及答案

2000年普通高等学校招生全国统一考试数学(理工农医类)本试卷分第I卷(选择题)和第II卷(非选择题)两部分。

第I卷1至2页.第II卷3至9页.共150分。

考试时间120分钟。

第I卷(选择题共60分)注意事项:1.答第I卷前,考生务必将自己的姓名、准考证号、考试科目用铅笔涂写在答题卡上。

2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答,不能答在试题卷上。

3.考试结束,监考人将本试卷和答题卡一并收回。

参考公式:三角函数的积化和差公式正棱台、圆台的侧面积公式其中c′、c分别表示上、下底面周长,l表示斜高或母线长其中S′、S分别表示上、下底面积,h表示高一、选择题:本大题共12分,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

(1)设集合A和B都是自然数集合N,映射f:A→B把集合A中的元素n映射到集合B中的元素,则在映射f下,象20的原象是()(A)2 (B)3(C)4(D)5(2)在复平面内,把复数对应的向量按顺时针方向旋转,所得向量对应的复数是(A)(B)(C)(D)(3)一个长方体共一顶点的三个面的面积分别是,这个长方体对角线的长是(A)(B)(C)6(D)(4)已知sinα>sinβ,那么下列命题成立的是(A)若α、β是第一象限角,则cosα>cosβ(B)若α、β是第二象限角,则tgα〉tgβ(C)若α、β是第三象限角,则cosα>cosβ(D)若α、β是第四象限角,则tgα〉tgβ(5)函数y=-xcosx的部分图象是(6)《中华人民共和国个人所得税法》规定,公民全月工资、薪金所得不超过800元的部分不必纳税,超过800元的部分为全月应纳税所得额,此项税款按下表分希累进计算。

全月应纳税所得额税率不超过500元的部分5%超过500元至2000元的部分10%超过2000元至5000元的部分15%……某人一月份应交纳此项税款26.78元,则他的当月工资、薪金所得介于(A)800~900元(B)900~1200元(C)1200~1500元(D)1500~2800元(7)若a>b〉1,,则(A)R〈P〈Q(B)P<Q<R(C)Q〈P<R(D)P<R〈Q (8)以极坐标中的点(1,1)为圆心,1为半径的圆的方程是(A)(B)(C)(D)(9)一个圆柱的侧面展开图是一个正方形,这个圆柱的全面积与侧面积的比是(A)(B)(C)(D)(10)过原点的直线与圆相切,若切点在第三象限,则该直线的方程是(A)(B)(C)(D)(11)过抛物线(a〉0)的焦点F作一直线交抛物线于P、Q两点,若线段PF与FQ 的长分别是p、q,则等于(A)2a(B)(C)4a(D)(12)如图,OA是圆锥底面中心O到母线的垂线,OA绕轴旋转一周所得曲面将圆锥分成体积相等的两部分,则母线与轴的夹角为(A)(B)(C)(D)第II卷(非选择题共90分)注意事项:1.第II卷共7页,用钢笔或圆珠笔直接答在试题卷中.2.答卷前将密封线内的项目填写清楚.题号二三总分17 18 19 20 21 22分数二、填空题:本大题共4小题,每小题4分,共16分。

2022年全国高考理科数学(乙卷)试题及答案解析

2022年全国高考理科数学(乙卷)试题及答案解析

2022年普通高等学校招生全国统一考试(乙卷)理科数学1.设全集U={1,2,3,4,5},集合M满足∁U M={1,3},则()A. 2∈MB. 3∈MC. 4∉MD. 5∉M2.已知z=1−2i,且z+az−+b=0,其中a,b为实数,则()A. a=1,b=−2B. a=−1,b=2C. a=1,b=2D. a=−1,b=−23.已知向量a⃗,b⃗ 满足|a⃗|=1,|b⃗ |=√3,|a⃗−2b⃗ |=3,则a⃗⋅b⃗ =()A. −2B. −1C. 1D. 24.嫦娥二号卫星在完成探月任务后,继续进行深空探测,成为我国第一颗环绕太阳飞行的人造行星.为研究嫦娥二号绕日周期与地球绕日周期的比值,用到数列{b n}:b1=1+1α1,b2=1+1α1+1α2,b3=1+1α1+1α2+1α3,…,依此类推,其中αk∈N∗(k=1,2,…).则()A. b1<b5B. b3<b8C. b6<b2D. b4<b75.设F为抛物线C:y2=4x的焦点,点A在C上,点B(3,0),若|AF|=|BF|,则|AB|=()A. 2B. 2√2C. 3D. 3√26.执行如图的程序框图,输出的n=()A. 3B. 4C. 5D. 67.在正方体ABCD−A1B1C1D1中,E,F分别为AB,BC的中点,则()A. 平面B 1EF ⊥平面BDD 1B. 平面B 1EF ⊥平面A 1BDC. 平面B 1EF//平面A 1ACD. 平面B 1EF//平面A 1C 1D8. 已知等比数列{a n }的前3项和为168,a 2−a 5=42,则a 6=( )A. 14B. 12C. 6D. 39. 已知球O 的半径为1,四棱锥的顶点为O ,底面的四个顶点均在球O 的球面上,则当该四棱锥的体积最大时,其高为( )A. 13B. 12C. √33D. √2210. 某棋手与甲、乙、丙三位棋手各比赛一盘,各盘比赛结果相互独立.已知该棋手与甲、乙、丙比赛获胜的概率分别为p 1,p 2,p 3,且p 3>p 2>p 1>0.记该棋手连胜两盘的概率为p ,则( )A. p 与该棋手和甲、乙、丙的比赛次序无关B. 该棋手在第二盘与甲比赛,p 最大C. 该棋手在第二盘与乙比赛,p 最大D. 该棋手在第二盘与丙比赛,p 最大11. 双曲线C 的两个焦点为F 1,F 2,以C 的实轴为直径的圆记为D ,过F 1作D 的切线与C 交于M ,N 两点,且cos∠F 1NF 2=35,则C 的离心率为( )A. √52B. 32C. √132D. √17212. 已知函数f(x),g(x)的定义域均为R ,且f(x)+g(2−x)=5,g(x)−f(x −4)=7.若y =g(x)的图像关于直线x =2对称,g(2)=4,则∑f 22k=1(k)=( )A. −21B. −22C. −23D. −2413. 从甲、乙等5名同学中随机选3名参加社区服务工作,则甲、乙都入选的概率为______. 14. 过四点(0,0),(4,0),(−1,1),(4,2)中的三点的一个圆的方程为______. 15. 记函数f(x)=cos(ωx +φ)(ω>0,0<φ<π)的最小正周期为T.若f(T)=√32,x =π9为f(x)的零点,则ω的最小值为______.16. 已知x =x 1和x =x 2分别是函数f(x)=2a x −ex 2(a >0且a ≠1)的极小值点和极大值点.若x 1<x 2,则a 的取值范围是______.17. 记△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知sinCsin(A −B)=sinBsin(C −A).(1)证明:2a 2=b 2+c 2;(2)若a =5,cosA =2531,求△ABC 的周长.18. 如图,四面体ABCD 中,AD ⊥CD ,AD =CD ,∠ADB =∠BDC ,E 为AC 的中点. (1)证明:平面BED ⊥平面ACD ;(2)设AB =BD =2,∠ACB =60°,点F 在BD 上,当△AFC 的面积最小时,求CF 与平面ABD 所成的角的正弦值.19. 某地经过多年的环境治理,已将荒山改造成了绿水青山.为估计一林区某种树木的总材积量,随机选取了10棵这种树木,测量每棵树的根部横截面积(单位:m 2)和材积量(单位:m 3),得到如下数据: 样本号i12345678910 总和根部横截面积x i 0.04 0.06 0.04 0.08 0.08 0.05 0.05 0.07 0.07 0.06 0.6 材积量y i0.25 0.40 0.22 0.54 0.51 0.34 0.36 0.46 0.42 0.40 3.9并计算得∑x i 210i=1=0.038,∑y i 210i=1=1.6158,∑x i 10i=1y i =0.2474.(1)估计该林区这种树木平均一棵的根部横截面积与平均一棵的材积量; (2)求该林区这种树木的根部横截面积与材积量的样本相关系数(精确到0.01); (3)现测量了该林区所有这种树木的根部横截面积,并得到所有这种树木的根部横截面积总和为186m 2.已知树木的材积量与其根部横截面积近似成正比.利用以上数据给出该林区这种树木的总材积量的估计值. 附:相关系数r =∑(n i=1x i −x −)(y i −y −)√∑(ni=1x i −x −)2∑(n i=1y i −y −)2,√1.896≈1.377.20. 已知椭圆E 的中心为坐标原点,对称轴为x 轴、y 轴,且过A(0,−2),B(32,−1)两点.(1)求E 的方程;(2)设过点P(1,−2)的直线交E 于M ,N 两点,过M 且平行于x 轴的直线与线段AB 交于点T ,点H 满足MT ⃗⃗⃗⃗⃗⃗ =TH ⃗⃗⃗⃗⃗⃗ .证明:直线HN 过定点. 21. 已知函数f(x)=ln(1+x)+axe −x .(1)当a =1时,求曲线y =f(x)在点(0,f(0))处的切线方程; (2)若f(x)在区间(−1,0),(0,+∞)各恰有一个零点,求a 的取值范围.22. 在直角坐标系xOy 中,曲线C 的参数方程为{x =√3cos2t,y =2sint(t 为参数).以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,已知直线l 的极坐标方程为ρsin(θ+π3)+m =0.(1)写出l 的直角坐标方程;(2)若l 与C 有公共点,求m 的取值范围.已知a,b,c都是正数,且a32+b32+c32=1,证明:(1)abc≤19;(2)ab+c +ba+c+ca+b≤2√abc.答案解析1.【答案】A【解析】解:因为全集U ={1,2,3,4,5},∁U M ={1,3}, 所以M ={2,4,5},所以2∈M ,3∉M ,4∈M ,5∈M . 故选:A .根据补集的定义写出集合M ,再判断选项中的命题是否正确. 本题考查了补集的定义与应用问题,是基础题.2.【答案】A【解析】解:因为z =1−2i ,且z +az −+b =0,所以(1−2i)+a(1+2i)+b =(1+a +b)+(−2+2a)i =0, 所以{1+a +b =0−2+2a =0,解得a =1,b =−2. 故选:A .根据复数与共轭复数的定义,利用复数相等列方程求出a 、b 的值. 本题考查了复数与共轭复数以及复数相等的应用问题,是基础题.3.【答案】C【解析】解:因为向量a ⃗ ,b ⃗ 满足|a ⃗ |=1,|b ⃗ |=√3,|a ⃗ −2b ⃗ |=3,所以|a ⃗ −2b ⃗ |=√(a ⃗ −2b ⃗ )2=√a ⃗ 2−4a ⃗ ⋅b ⃗ +4b ⃗ 2=√1−4a ⃗ ⋅b ⃗ +4×3=3,两边平方得, 13−4a ⃗ ⋅b ⃗ =9, 解得a ⃗ ⋅b ⃗ =1, 故选:C .利用|a ⃗ −2b ⃗ |=√(a ⃗ −2b ⃗ )2,结合数量积的性质计算可得结果. 本题考查了平面向量数量积的运算和性质,属于基础题.4.【答案】D【解析】解:∵αk∈N∗(k=1,2,…),∴可以取αk=1,则b1=1+11=2,b2=1+11+11=32,b3=1+11+11+11=5 3,b4=1+11+11+11+11=85,b5=1+11+11+11+11+11=138,b6=1+11+11+11+11+11+11=2113,b7=1+11+11+11+11+11+11+11=3421,b8=1+11+11+11+11+11+11+11+11=5534,∴b1>b5,故A错误;b3>b8,故B错误;b6>b2,故C错误;b4<b7,故D正确.故选:D.αk∈N∗(k=1,2,…),可以取αk=1,依次求出数列的前8项,能求出正确选项.本题考查命题真假的判断,巧妙地把人造行星融入高考数学题,培养学生爱国热情,考查运算求解能力,是基础题.5.【答案】B【解析】解:F为抛物线C:y2=4x的焦点(1,0),点A在C上,点B(3,0),|AF|=|BF|=2,由抛物线的定义可知A(1,2)(A不妨在第一象限),所以|AB|=2√2.故选:B.利用已知条件,结合抛物线的定义,求解A的坐标,然后求解即可.本题考查抛物线的简单性质的应用,距离公式的应用,是基础题.6.【答案】B【解析】解:模拟执行程序的运行过程,如下:输入a=1,b=1,n=1,计算b=1+2=3,a=3−1=2,n=2,判断|3222−2|=14=0.25≥0.01,计算b=3+4=7,a=7−2=5,n=3,判断|7252−2|=125=0.04≥0.01;计算b=7+10=17,a=17−5=12,n=4,判断|172122−2|=1144<0.01;输出n=4.故选:B.模拟执行程序的运行过程,即可得出程序运行后输出的n值.本题考查了程序的运行与应用问题,也考查了推理与运算能力,是基础题.7.【答案】A【解析】解:对于A,由于E,F分别为AB,BC的中点,则EF//AC,又AC⊥BD,AC⊥DD1,BD∩DD1=D,且BD,DD1⊂平面BDD1,∴AC⊥平面BDD1,则EF⊥平面BDD1,又EF⊂平面B1EF,∴平面B1EF⊥平面BDD1,选项A正确;对于B,由选项A可知,平面B1EF⊥平面BDD1,而平面BDD1∩平面A1BD=BD,故平面B1EF不可能与平面A1BD垂直,选项B错误;对于C,在平面ABB1A1上,易知AA1与B1E必相交,故平面B1EF与平面A1AC不平行,选项C错误;对于D,易知平面AB1C//平面A1C1D,而平面AB1C与平面B1EF有公共点B1,故平面B1EF 与平面A1C1D不可能平行,选项D错误.故选:A.对于A,易知EF//AC,AC⊥平面BDD1,从而判断选项A正确;对于B,由选项A及平面BDD1∩平面A1BD=BD可判断选项B错误;对于C,由于AA1与B1E必相交,容易判断选项C错误;对于D,易知平面AB1C//平面A1C1D,而平面AB1C与平面B1EF有公共点B1,由此可判断选项D错误.本题考查空间中线线,线面,面面间的位置关系,考查逻辑推理能力,属于中档题.8.【答案】D【解析】解:设等比数列{a n}的公比为q,q≠0,由题意,q≠1.∵前3项和为a1+a2+a3=a1(1−q3)1−q=168,a2−a5=a1⋅q−a1⋅q4=a1⋅q(1−q3)= 42,∴q=12,a1=96,则a6=a1⋅q5=96×132=3,故选:D.由题意,利用等比数列的定义、性质、通项公式,求得a6的值.本题主要考查等比数列的定义、性质、通项公式,属于基础题.9.【答案】C【解析】解:由题意可知,当四棱锥为正四棱锥时,其体积最大,设底面边长为a,底面所在圆的半径为r,则r=√22a,∴该四棱锥的高ℎ=√1−a22,∴该四棱锥的体积V=13a2√1−a22=43√a24⋅a24⋅(1−a22)≤4 3√(a24+a24+1−a223)3=43√(13)3=4√327,当且仅当a24=1−a22,即a2=43时,等号成立,∴该四棱锥的体积最大时,其高ℎ=√1−a22=√1−23=√33,故选:C.由题意可知,当四棱锥为正四棱锥时,其体积最大,设底面边长为a,由勾股定理可知该四棱锥的高ℎ=√1−a22,所以该四棱锥的体积V=13a2√1−a22,再利用基本不等式即可求出V的最大值,以及此时a的值,进而求出ℎ的值.本题主要考查了四棱锥的结构特征,考查了基本不等式的应用,属于中档题.10.【答案】D【解析】解:A 选项,已知棋手与甲、乙、丙比赛获胜的概率不相等,所以P 受比赛次序影响,故A 错误;设棋手在第二盘与甲比赛连赢两盘的概率为P 甲,棋手在第二盘与乙比赛连赢两盘的概率为P 乙,棋手在第二盘与丙比赛连赢两盘的概率为P 丙, P 甲=p 1[p 2(1−p 3)+p 3(1−p 2)]=p 1p 2+p 1p 3−2p 1p 2p 3, P 乙=p 2[p 1(1−p 3)+p 3(1−p 1)]=p 1p 2+p 2p 3−2p 1p 2p 3, P 丙=p 3[p 1(1−p 2)+p 2(1−p 1)]=p 1p 3+p 2p 3−2p 1p 2p 3, P 丙−P 甲=p 2(p 3−p 1)>0,P 丙−P 乙=p 1(p 3−p 2)>0, ∴所以P 丙最大,即棋手在第二盘与丙比赛连赢两盘的概率最大. 故选:D .已知棋手与甲、乙、丙比赛获胜的概率不相等,所以P 受比赛次序影响,A 错误;再计算第二盘分别与甲、乙、丙比赛连赢两盘的概率,比较大小即可.本题考查概率的求法,是基础题,解题时要认真审题,注意相互独立事件概率乘法公式的灵活运用.11.【答案】C【解析】解:设双曲线的方程为x 2a 2−y 2b 2=1,设过F 1的切线与圆D :x 2+y 2=a 2相切于点P ,则|OP|=a ,OP ⊥PF 1,又|OF 1|=c ,所以PF 1=√OF 12−OP 2=√c 2−a 2=b ,过点F 2作F 2Q ⊥MN 于点Q , 所以OP//F 2Q ,又O 为F 1F 2的中点, 所以|F 1Q|=2|PF 1|=2b ,|QF 2|=2|OP|=2a ,因为cos∠F 1NF 2=35,所以sin∠F 1NF 2=45,所以|NF 2|=QF 2sin∠F 1NF 2=5a2,则|NQ|=|NF 2|⋅cos∠F 1NF 2=3a 2,所以|NF 1|=|NQ|+|F 1Q|=3a 2+2b ,由双曲线的定义可知|NF 1|−|NF 2|=2a , 所以3a2+2b −5a 2=2a ,可得2b =3a ,即b a =32, 所以C 的离心率e =ca=√1+b 2a 2=√1+94=√132. 故选:C .由题意设双曲线的方程为x 2a 2−y 2b 2=1,设过F 1的切线与圆D :x 2+y 2=a 2相切于点P ,从而可求得|PF 1|,过点F 2作F 2Q ⊥MN 于点Q ,由中位线的性质可求得|F 1Q|,|QF 2|,在Rt △F 1NF 2中,可求得|NF 2|,|NQ|,利用双曲线的定义可得a ,b 的关系,再由离心率公式求解即可.本题主要考查双曲线的性质,圆的性质,考查转化思想与数形结合思想,考查运算求解能力,属于中档题.12.【答案】D【解析】解:∵y =g(x)的图像关于直线x =2对称,则g(2−x)=g(2+x), ∵f(x)+g(2−x)=5,∴f(−x)+g(2+x)=5,∴f(−x)=f(x),故f(x)为偶函数, ∵g(2)=4,f(0)+g(2)=5,得f(0)=1.由g(x)−f(x −4)=7,得g(2−x)=f(−x −2)+7,代入f(x)+g(2−x)=5,得f(x)+f(−x −2)=−2,故f(x)关于点(−1,−1)中心对称,∴f(1)=f(−1)=−1,由f(x)+f(−x −2)=−2,f(−x)=f(x),得f(x)+f(x +2)=−2,∴f(x +2)+f(x +4)=−2,故f(x +4)=f(x),f(x)周期为4, 由f(0)+f(2)=−2,得f(2)=−3,又f(3)=f(−1)=f(1)=−1,所以∑f 22k=1(k)=6f(1)+6f(2)+5f(3)+5f(4)=11×(−1)+5×1+6×(−3)=−24, 故选:D .由y =g(x)的对称性可得f(x)为偶函数,进而得到f(x)关于点(−1,−1)中心对称,所以f(1)=f(−1)=−1,再结合f(x)的周期为4,即可求出结果. 本题主要考查了函数的奇偶性、对称性和周期性,属于中档题.13.【答案】310【解析】解:由题意,从甲、乙等5名学生中随机选出3人,基本事件总数C 53=10, 甲、乙被选中,则从剩下的3人中选一人,包含的基本事件的个数C 31=3,根据古典概型及其概率的计算公式,甲、乙都入选的概率P =C 31C 53=310.故答案为:310.从甲、乙等5名学生中随机选出3人,先求出基本事件总数,再求出甲、乙被选中包含的基本事件的个数,由此求出甲、乙被选中的概率.本题主要考查古典概型及其概率计算公式,熟记概率的计算公式即可,属于基础题.14.【答案】x 2+y 2−4x −6y =0(或x 2+y 2−4x −2y =0或x 2+y 2−83x −143y =0或x 2+y 2−165x −2y −165=0)【解析】解:设过点(0,0),(4,0),(−1,1)的圆的方程为x 2+y 2+Dx +Ey +F =0, 即{F =016+4D +F =02−D +E +F =0,解得F =0,D =−4,E =−6, 所以过点(0,0),(4,0),(−1,1)圆的方程为x 2+y 2−4x −6y =0. 同理可得,过点(0,0),(4,0),(4,2)圆的方程为x 2+y 2−4x −2y =0. 过点(0,0),(−1,1),(4,2)圆的方程为x 2+y 2−83x −143y =0.过点(4,0),(−1,1),(4,2)中的三点的一个圆的方程为x 2+y 2−165x −2y −165=0.故答案为:x 2+y 2−4x −6y =0(或x 2+y 2−4x −2y =0或x 2+y 2−83x −143y =0或x 2+y 2−165x −2y −165=0).选其中的三点,利用待定系数法即可求出圆的方程.本题考查了过不在同一直线上的三点求圆的方程应用问题,是基础题.15.【答案】3【解析】解:函数f(x)=cos(ωx +φ)(ω>0,0<φ<π)的最小正周期为T =2πω,若f(T)=cos(ω×2πω+φ)=cosφ=√32,则φ=π6,所以f(x)=cos(ωx +π6). 因为x =π9为f(x)的零点,所以cos(ωπ9+π6)=0,故ωπ9+π6=kπ+π2,k∈Z,所以ω=9k+3,k∈Z,则ω的最小值为3.故答案为:3.由题意,结合余弦函数的周期和零点,建立相关的方程求解即可.本题主要考查余弦函数的图象和性质,考查了方程思想,属于基础题.16.【答案】(0,1e)【解析】解:对原函数求导f′(x)=2(a x lna−ex),分析可知:f(x)在定义域内至少有两个变号零点,对其再求导可得:f″(x)=2a x(lna)2−2e,当a>1时,易知f″(x)在R上单调递增,此时若存在x0使得f″(x0)=0,则f′(x)在(−∞,x0)单调递减,(x0,+∞)单调递增,此时若函数f(x)在x=x1和x=x2分别取极小值点和极大值点,应满足x1>x2,不满足题意;当0<a<1时,易知f″(x)在R上单调递增减,此时若存在x0使得f″(x0)=0,则f′(x)在(−∞,x0)单调递增,(x0,+∞)单调递减,且x0=log a e(lna)2,此时若函数f(x)在x=x1和x=x2分别取极小值点和极大值点,且x1<x2,故仅需满足f′(x0)>0,即:elna >elog a e(lna)2⇒a1lna>e(lna)2⇒lna1lna>ln e(lna)2⇒1lnalna>1−ln(lna)2,解得:0<a<1e或者0<a<e(舍去),综上所述:a的取值范围是(0,1e).由已知分析函数f′(x)=2(a x lna−ex)至少应该两个变号零点,对其再求导f″(x)=2a x(lna)2−2e,分类讨论0<a<1和a>1时两种情况,本题主要考查利用导函数研究函数极值点存在大小关系时,导函数图像的问题,属于中档题.17.【答案】(1)证明:△ABC中,sinCsin(A−B)=sinBsin(C−A),所以sinC(sinAcosB−cosAsinB)=sinB(sinCcosA−cosCsinA),所以sinAsinBcosC+sinAcosBsinC=2cosAsinBsinC,即sinA(sinBcosC+cosBsinC)=2cosAsinBsinC,所以sinAsin(B +C)=2cosAsinBsinC , 由正弦定理得a 2=2bccosA , 由余弦定理得a 2=b 2+c 2−a 2, 所以2a 2=b 2+c 2;(2)当a =5,cosA =2531时,b 2+c 2=2×52=50,2bc =a 2cosA =252531=31,所以(b +c)2=b 2+c 2+2bc =50+31=81,解得b +c =9, 所以△ABC 的周长为a +b +c =5+9=14.【解析】(1)利用两角差与和的正弦公式,三角形内角和公式,正弦和余弦定理,即可求得结论;(2)利用(1)中结论求出b 2+c 2和2bc 的值,即可求出△ABC 的周长.本题考查了三角恒等变换与解三角形的应用问题,也考查了运算求解能力与推理证明能力,是中档题.18.【答案】(1)证明:∵AD =CD ,E 为AC 的中点.∴DE ⊥AC ,又∵AD =CD ,∠ADB =∠BDC ,BD =BD ,∴△ABD≌△CBD , ∴AB =BC ,又∵E 为AC 的中点.∴EB ⊥AC ,又BE ∩DE =E , ∴AC ⊥平面BED ,又AC ⊂平面ACD ,∴平面BED ⊥平面ACD ; (2)解:连接EF ,由(1)知AC ⊥EF ,∴S △AFC =12AC ×EF ,故EF 最小时,△AFC 的面积最小,∴EF ⊥BD 时,△AFC 的面积最小, 又AC ⊥平面BED ,BD ⊂平面BED ,∴AC ⊥BD ,又AC ∩EF =E , ∴BD ⊥平面AFC ,又BD ⊂平面ABD ,∴平面ABD ⊥平面AFC , 过C 作CM ⊥AF 于点M ,则CM ⊥平面ABD , 故∠CFM ,即∠CFA 为直线CF 与平面ABD 所成的角,由AB =BD =2,∠ACB =60°,知△BAC 是2为边长的等边三角形,故AC =2,由已知可得DE =1,BE =√3,又BD =2,∴BD 2=ED 2+EB 2, ∴∠BED =90°,所以EF =BE×DE BD=√32,∴CF =√12+34=√72, 在△ACF 中,由余弦定理得cos∠AFC =74+74−42×√72×√72=−17,∴sin∠AFC =4√37. 故CF 与平面ABD 所成的角的正弦值为4√37. 【解析】(1)利用三角形全等可得AB =BC ,可证EB ⊥AC ,易证DE ⊥AC ,从而可证平面BED ⊥平面ACD ;(2)由题意可知△AFC 的面积最小时,EF ⊥BD ,据此计算可求得CF 与平面ABD 所成的角的正弦值.本题考查面面垂直的证明,考查线面角的正弦值的求法,属中档题.19.【答案】解:(1)设这棵树木平均一棵的根部横截面积为x −,平均一棵的材积量为y −, 则根据题中数据得:x −=0.610=0.06,y −=3.910=0.39;(2)由题可知,r =10i=1i −i −√∑(i=1x i −x −)2∑(i=1y i −y −)2=i 10i=1i −−√(∑x i i=1−nx −2)(∑y i i=1−ny −2)=√0.002×0.0948=0.01×√1.896=0.01340.01377=0.97; (3)设从根部面积总和X ,总材积量为Y ,则XY=x−y−,故Y =0.390.06×186=1209(m 3).【解析】根据题意结合线性回归方程求平均数、样本相关系数,并估计该林区这种树木的总材积量的值即可.本题考查线性回归方程,属于中档题.20.【答案】解:(1)设E 的方程为x 2a 2+y2b 2=1, 将A(0,−2),B(32,−1)两点代入得{4b 2=194a 2+1b 2=1,解得a 2=3,b 2=4, 故E 的方程为x 23+y 24=1;(2)由A(0,−2),B(32,−1)可得直线AB :y =23x −2 ①若过P(1,−2)的直线的斜率不存在,直线为x =1, 代入x 23+y 24=1,可得M(1,2√63),N(1,−2√63), 将y =2√63代入AB :y =23x −2,可得T(√6+3,2√63),由MT ⃗⃗⃗⃗⃗⃗ =TH ⃗⃗⃗⃗⃗⃗ ,得H(2√6+5,2√63), 易求得此时直线HN :y =(2−2√63)x −2,过点(0,−2);②若过P(1,−2)的直线的斜率存在,设kx −y −(k +2)=0,M(x 1,y 1),N(x 2,y 2), 联立{kx −y −(k +2)=0x 23+y 24=1,得(3k 2+4)x 2−6k(2+k)x +3k(k +4)=0,故有{x 1+x 2=6k(2+k)3k 2+4x 1x 2=3k(4+k)3k 2+4,{y 1+y 2=−8(2+k)3k 2+4y 1y 2=4(4+4k−2k 23k 2+4,且x 1y 2+x 2y 1=−24k 3k 2+4(∗), 联立{y =y 1y =23x −2,可得T(3y 12+3,y 1),H(3y 1+6−x 1,y 1),可求得此时HN :y −y 2=y 1−y 23y1+6−x 1−x 2(x −x 2),将(0,−2)代入整理得2(x 1+x 2)−6(y 1+y 2)+x 1y 2+x 2y 1−3y 1y 2−12=0, 将(∗)代入,得24k +12k 2+96+48k −24k −48−48k +24k 2−36k 2−48=0, 显然成立.综上,可得直线HN 过定点(0,−2). 【解析】(1)设E 的方程为x 2a 2+y 2b 2=1,将A ,B 两点坐标代入即可求解;(2)由A(0,−2),B(32,−1)可得直线AB :y =23x −2,①若过P(1,−2)的直线的斜率不存在,直线为x =1,代入椭圆方程,根据MT ⃗⃗⃗⃗⃗⃗ =TH ⃗⃗⃗⃗⃗⃗ 即可求解;②若过P(1,−2)的直线的斜率存在,设kx −y −(k +2)=0,M(x 1,y 1),N(x 2,y 2),联立{kx −y −(k +2)=0x 23+y 24=1,得(3k 2+4)x 2−6k(2+k)x +3k(k +4)=0,结合韦达定理和已知条件即可求解. 本题考查了直线与椭圆的综合应用,属于中档题.21.【答案】解:(1)当a =1时,f(x)=ln(1+x)+xe −x ,则f′(x)=11+x +e −x −xe −x ,∴f′(0)=1+1=2, 又f(0)=0,∴所求切线方程为y =2x ; (2)f′(x)=11+x +a(1−x)e x,若a ≥0,当−1<x <0时,f′(x)>0,f(x)单调递增,则f(x)<f(0)=0,不合题意; 故a <0,f′(x)=11+x(1+a(1−x 2)e x),令g(x)=1+a(1−x 2)e x,注意到g(1)=1,g(0)=1+a,g′(x)=a(x−1+√2)(x−1−√2)e x ,令g′(x)>0,解得−1<x<1−√2或x>1+√2,令g′(x)<0,解得1−√2<x<1+√2,∴g(x)在(−1,1−√2),(1+√2,+∞)单调递增,在(1−√2,1+√2)单调递减,且x>1时,g(x)>0,①若g(0)=1+a≥0,当x>0时,g(x)>0,f(x)单调递增,不合题意;②若g(0)=1+a<0,g(0)g(1)<0,则存在x0∈(0,1),使得g(x0)=0,且当x∈(0,x0)时,g(x)<g(0)=0,f(x)单调递减,则f(x0)<f(0)=0,当x>1时,f(x)>ln(1+x)+a>0,f(e−a−1)>0,则由零点存在性定理可知f(x)在(1,e−a−1)上存在一个根,当1−√2<x<0时,g(x)<0,f(x)单调递减,f(1−√2)>f(0)=0,当−1<x<1−√2时,f(x)<ln(1+x)−ae<0,f(e ae−1)<0,则由零点存在性定理可知f(x)在(e ae−1,1−√2)上存在一个根.综上,实数a的取值范围为(−∞,−1).【解析】(1)将a=1代入,对函数f(x)求导,求出f′(0)及f(0),由点斜式得答案;(2)对函数f(x)求导,分a≥0及a<0讨论,当a≥0时容易判断不合题意,当a<0时,令g(x)=1+a(1−x2)e x,利用导数判断g(x)的性质,进而判断得到函数f(x)的单调性并结合零点存在性定理即可得解.本题考查导数的几何意义,考查利用导数研究函数的单调性,零点问题,考查分类讨论思想及运算求解能力,属于难题.22.【答案】解:(1)由ρsin(θ+π3)+m=0,得ρ(sinθcosπ3+cosθsinπ3)+m=0,∴12ρsinθ+√32ρcosθ+m=0,又x=ρcosθ,y=ρsinθ,∴12y+√32x+m=0,即l的直角坐标方程为√3x+y+2m=0;(2)由曲线C的参数方程为{x=√3cos2t,y=2sint(t为参数).消去参数t,可得y2=−2√33x+2,联立{√3x+y+2m=0y2=−2√33x+2,得3y2−2y−4m−6=0(−2≤y≤2).−3≤√3≤6,即−193≤4m≤10,−1912≤m≤52,∴m的取值范围是[−1912,5 2 ].【解析】(1)由ρsin(θ+π3)+m=0,展开两角和的正弦,结合极坐标与直角坐标的互化公式,可得l的直角坐标方程;(2)化曲线C的参数方程为普通方程,联立直线方程与曲线C的方程,化为关于y的一元二次方程,再求解m的取值范围.本题考查简单曲线的极坐标方程,考查参数方程化普通方程,考查直线与抛物线位置关系的应用,是中档题.23.【答案】解:(1)证明:∵a,b,c都是正数,∴a32+b32+c32≥33a32⋅b32⋅c32=3(abc)12,当且仅当a=b=c=3−23时,等号成立.因为a32+b32+c32=1,所以1≥3(abc)12,所以13≥(abc)12,所以abc≤19,得证.(2)证明:要使ab+c +ba+c+ca+b≤2√abc成立,只需证a32√bcb+c+b32√aca+c+c32√aba+b≤12,又因为b+c≥2√bc,a+c≥2√ac,a+b≥2√ab,当且仅当a=b=c=3−23时,同时取等.所以a 32√bcb+c +b32√aca+c+c32√aba+b≤a32√bc2√bcb32√ac2√ac32√ab2√ab=a32+b32+c322=12,得证.【解析】结合基本不等式与恒成立问题证明即可.本题考查基本不等式的应用,属于中档题.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2002年普通高等学校招生全国统一考试数学试卷(理科)及答案本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分.第I 卷1至2页.第II 卷3至9页.共150分.考试时间120分钟.第Ⅰ卷(选择题共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分.第I 卷1至2页.第II 卷3至9页.共150分.考试时间120分钟.(1)圆1)1(22=+-y x 的圆心到直线y x =的距离是 (A )21(B )23 (C )1 (D )3(2)复数3)2321(i +的值是 (A )i - (B )i (C )1- (D )1 (3)不等式0|)|1)(1(>-+x x 的解集是(A )}10|{<≤x x (B )0|{<x x 且}1-≠x (C )}11|{<<-x x (D )1|{<x x 且}1-≠x (4)在)2,0(π内,使x x cos sin >成立的x 的取值范围是(A ))45,()2,4(ππππ (B )),4(ππ (C ))45,4(ππ (D ))23,45(),4(ππππ (5)设集合},412|{Z k k x x M ∈+==,},214|{Z k k x x N ∈+==,则(A )N M = (B )N M ⊂ (C )N M ⊃ (D )∅=N M(6)点)0,1(P 到曲线⎩⎨⎧==ty t x 22(其中参数R t ∈)上的点的最短距离为(A )0 (B )1 (C )2 (D )2(7)一个圆锥和一个半球有公共底面,如果圆锥的体积恰好与半球的体积相等,那么这个圆锥轴截面顶角的余弦值是 (A )43 (B )54 (C )53 (D )53- (8)正六棱柱111111F E D C B A ABCDEF -的底面边长为1,侧棱长为2,则这个棱柱侧面对角线D E 1与1BC 所成的角是(A )︒90 (B )︒60 (C )︒45 (D )︒30 (9)函数c bx x y ++=2(),0[+∞∈)是单调函数的充要条件是 (A )0≥b (B )0≤b (C )0>b (D )0<b (10)函数111--=x y 的图象是(11)从正方体的6个面中选取3个面,其中有2个面不相邻的选法共有 (A )8种 (B )12种 (C )16种 (D )20种 (12)据2002年3月5日九届人大五次会议《政府工作报告》:“2001年国内生产总值达到95933亿元,比上年增长7.3%”,如果“十•五”期间(2001年-2005年)每年的国内生产总值都按此年增长率增长,那么到“十•五”末我国国内年生产总值约为(A )115000亿元 (B )120000亿元 (C )127000亿元 (D )135000亿元第II 卷(非选择题共90分)二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线. (13)函数xa y =在]1,0[上的最大值与最小值这和为3,则a = (14)椭圆5522=+ky x 的一个焦点是)2,0(,那么=k (15)72)2)(1(-+x x 展开式中3x 的系数是(16)已知221)(xx x f +=,那么)41()4()31()3()21()2()1(f f f f f f f ++++++= 三、解答题:本大题共6小题,共74分,解答应写出文字说明、证明过程或演算步骤. (17)已知12cos cos 2sin 2sin 2=-+αααα,)2,0(πα∈,求αsin 、αtg 的值(18)如图,正方形ABCD 、ABEF 的边长都是1,而且平面ABCD 、ABEF 互相垂直点M 在AC 上移动,点N 在BF 上移动,若a BN CM ==(20<<a )(1)求MN 的长;(2)a 为何值时,MN 的长最小;(3)当MN 的长最小时,求面MNA 与面MNB 所成二面角α的大小(19)设点P 到点)0,1(-、)0,1(距离之差为m 2,到x 、y 轴的距离之比为2,求m 的取值范围(20)某城市2001年末汽车保有量为30万辆,预计此后每年报废上一年末汽车保有量的6%,并且每年新增汽车数量相同为保护城市环境,要求该城市汽车保有量不超过60万辆,那么每年新增汽车数量不应超过多少辆?(21)设a 为实数,函数1||)(2+-+=a x x x f ,R x ∈ (1)讨论)(x f 的奇偶性; (2)求)(x f 的最小值(22)设数列}{n a 满足:121+-=+n n n na a a , ,3,2,1=n (I )当21=a 时,求432,,a a a 并由此猜测n a 的一个通项公式; (II )当31≥a 时,证明对所的1≥n ,有 (i )2+≥n a n (ii )2111111111321≤++++++++n a a a a ADE参考答案(13)2 (14)1 (15)1008 (16)27 三、解答题(17)解:由12cos cos 2sin 2sin 2=-+αααα,得0cos 2cos sin 2cos sin 42222=-+ααααα0)1sin sin 2(cos 222=-+ααα 0)1)(sin 1sin 2(cos 22=+-ααα∵)2,0(πα∈∴01sin ≠+α,0cos 2≠=α ∴01sin 2=-α,即21sin =α ∴6πα=∴33=αtg (18)解(I )作MP ∥AB 交BC 于点P ,NQ ∥AB 交BE 于点Q ,连结PQ ,依题意可得MP ∥NQ ,且NQ MP =,即MNQP 是平行四边形∴PQ MN =由已知a BN CM ==,1===BE AB CB ∴2==BF AC ,a BQ CP 22== )20( 21)22( )2()21( )1(22222<<+-=+-==+-==a a a a BQ CP PQ MN(II )由(I )21)22( 2+-=a MN 所以,当22=a 时,22=MN 即当M 、N 分别为AC 、BF 的中点时,MN 的长最小,最小值为22(III )取MN 的中点G ,连结AG 、BG , ∵BN BM AN AM ==,,G 为MN 的中点∴MN BG MN AG ⊥⊥,,即AGB ∠即为二面角的平面角α又46==BG AG ,所以,由余弦定理有 31464621)46()46(cos 22-=⋅⋅-+=α 故所求二面角为31arccos -=πα(19)解:设点P 的坐标为),(y x ,依题设得2||||=x y ,即x y 2±=,0≠x 因此,点),(y x P 、)0,1(-M 、)0,1(N 三点不共线,得2||||||||=<-MN PN PM∵0||2||||||>=-m PN PM ∴1||0<<m因此,点P 在以M 、N 为焦点,实轴长为||2m 的双曲线上,故112222=--my m x 将x y 2±=代入112222=--m y m x ,并解得222251)1(mm m x --=,因012>-m 所以0512>-m 解得55||0<<m 即m 的取值范围为)55,0()0,55( -(20)解:设2001年末汽车保有量为1b 万辆,以后各年末汽车保有量依次为2b 万辆,3b 万辆,…,每年新增汽车x 万辆,则301=b ,x b b +⨯=94.012对于1>n ,有)94.01(94.0 94.0211x b xb b n n n ++⨯=+⨯=-+ 所以)94.094.094.01(94.0211nn n x b b +++++⨯=+x b nn06.094.0194.01-+⨯=n x x 94.0)06.030(06.0⨯-+= 当006.030≥-x,即8.1≤x 时 3011=≤≤≤+b b b n n当006.030<-x,即8.1>x 时 数列}{n b 逐项增加,可以任意靠近06.0x 06.0]94.0)06.030(06.0[lim lim 1x x x b n n n n =⨯-+=-+∞→+∞→ 因此,如果要求汽车保有量不超过60万辆,即60≤n b ( ,3,2,1=n )则6006.0≤x,即6.3≤x 万辆 综上,每年新增汽车不应超过6.3万辆(21)解:(I )当0=a 时,函数)(1||)()(2x f x x x f =+-+-=- 此时,)(x f 为偶函数当0≠a 时,1)(2+=a a f ,1||2)(2++=-a a a f ,)()(a f a f -≠,)()(a f a f --≠此时)(x f 既不是奇函数,也不是偶函数(II )(i )当a x ≤时,43)21(1)(22++-=++-=a x a x x x f 当21≤a ,则函数)(x f 在],(a -∞上单调递减,从而函数)(x f 在],(a -∞上的最小值为1)(2+=a a f .若21>a ,则函数)(x f 在],(a -∞上的最小值为a f +=43)21(,且)()21(a f f ≤. (ii )当a x ≥时,函数43)21(1)(22+-+=+-+=a x a x x x f若21-≤a ,则函数)(x f 在],(a -∞上的最小值为a f -=-43)21(,且)()21(a f f ≤-若21->a ,则函数)(x f 在),[+∞a 上单调递增,从而函数)(x f 在),[+∞a 上的最小值为1)(2+=a a f .综上,当21-≤a 时,函数)(x f 的最小值为a -43 当2121≤<-a 时,函数)(x f 的最小值为12+a当21>a 时,函数)(x f 的最小值为a +43.(22)解(I )由21=a ,得311212=+-=a a a 由32=a ,得4122223=+-=a a a 由43=a ,得5133234=+-=a a a由此猜想n a 的一个通项公式:1+=n a n (1≥n ) (II )(i )用数学归纳法证明:①当1=n 时,2131+=≥a ,不等式成立. ②假设当k n =时不等式成立,即2+≥k a k ,那么3521)2)(2(1)(1+≥+=+-++≥+-=+k k k k k k a a a k k k .也就是说,当1+=k n 时,2)1(1++≥+k a k 据①和②,对于所有1≥n ,有2n a n ≥+. (ii )由1)(1+-=+n a a a n n n 及(i ),对2≥k ,有1)1(11++-=--k a a a k k k121)121(11+=++-+-≥--k k a k k a……1)1(2122211211-+=++++≥---a a a k k k k于是11211111-⋅+≤+k k a a ,2≥k2131212211121111111111121111=+≤+≤+=+++≤+∑∑∑=-=-=a a a a a nk k nk k nk k。

相关文档
最新文档