函数的基础知识大全

合集下载

函数知识点归纳

函数知识点归纳

函数知识点归纳函数是数学中一个非常重要的概念,它贯穿了从初中到高中,甚至大学的数学学习。

下面就来给大家详细归纳一下函数的相关知识点。

一、函数的定义函数的定义简单来说,就是对于给定的一个数集 A 中的每一个元素x,按照某种对应法则 f,在另一个数集 B 中都有唯一确定的元素 y 与之对应,那么就称 f 为从集合 A 到集合 B 的一个函数,记作 y = f(x),x ∈ A。

其中,x 叫做自变量,y 叫做因变量。

二、函数的三要素1、定义域定义域是指自变量 x 的取值范围。

确定函数的定义域时,需要考虑以下几个方面:(1)分式的分母不为零。

(2)偶次根式的被开方数非负。

(3)对数中的真数大于零。

(4)零次幂的底数不为零。

2、值域值域是指因变量 y 的取值范围。

求函数的值域需要根据函数的类型和定义域来确定,常见的方法有观察法、配方法、换元法、判别式法等。

3、对应法则对应法则是函数的核心,它决定了自变量和因变量之间的关系。

同一个对应法则,在不同的定义域上可能是不同的函数。

三、函数的表示方法1、解析法用数学式子表示两个变量之间的对应关系,如 y = 2x + 1。

2、列表法列出表格来表示两个变量之间的对应关系,例如在一个表格中列出不同的 x 值及其对应的 y 值。

3、图象法用图象来表示两个变量之间的对应关系,图象能够直观地反映函数的性质。

四、函数的性质1、单调性如果对于定义域 I 内某个区间 D 上的任意两个自变量的值 x₁、x₂,当 x₁< x₂时,都有 f(x₁) < f(x₂)(或 f(x₁) > f(x₂)),那么就说函数 f(x)在区间 D 上是增函数(或减函数)。

2、奇偶性设函数 f(x)的定义域为 D,如果对于任意的 x ∈ D,都有 x ∈ D,且 f(x) = f(x),那么函数 f(x)就叫做奇函数;如果对于任意的 x ∈ D,都有 x ∈ D,且 f(x) = f(x),那么函数 f(x)就叫做偶函数。

基本初等函数知识点

基本初等函数知识点

基本初等函数知识点1.函数的定义:函数是一种特殊的关系,它将一个或多个输入数值映射到唯一的输出数值。

函数通常用f(x)来表示,其中x是输入变量,f(x)是输出变量。

函数可以用图形、符号或表格来表示。

2.定义域和值域:函数的定义域是所有可输入的数值的集合,而函数的值域是所有可能的输出数值的集合。

定义域可写作D(f),值域可写作R(f)。

3.线性函数:线性函数是一种具有常数斜率的函数。

它的形式为f(x) = mx + b,其中m是斜率,b是截距。

线性函数的图形是一条直线。

4.幂函数:幂函数是一种形如f(x) = ax^b的函数,其中a和b是常数。

幂函数的图形通常是一条平滑的曲线。

当b为正偶数时,曲线在x轴的正半轴都是上升的;当b为负偶数时,曲线在x轴的正半轴是下降的。

5.指数函数:指数函数是以常数e为底的函数,它的形式为f(x)=a^x,其中a是指数底数。

指数函数的图形为一条逐渐增长(或逐渐减小)的曲线。

6.对数函数:对数函数是指以常数a为底的对数函数,它的形式为f(x) =log_a(x),其中a为底数,x为函数的输入值。

对数函数是指数函数的反函数,即f(x) = a^x的反函数。

7.三角函数:三角函数是有关三角形角度与边长之间的关系的函数。

常见的三角函数包括正弦函数、余弦函数和正切函数。

三角函数的图形是周期性的曲线,周期为2π。

8.反函数:反函数是指满足f(f^(-1)(x))=x和f^(-1)(f(x))=x的函数对。

反函数可以通过交换函数的输入和输出得到。

9.复合函数:复合函数是指将一个函数的输出作为另一个函数的输入的函数关系。

复合函数可以表示为f(g(x)),其中g(x)是一个函数,f(x)是另一个函数。

10.奇偶函数:奇函数是满足f(-x)=-f(x)的函数,而偶函数是满足f(-x)=f(x)的函数。

奇函数的图形关于原点对称,偶函数的图形关于y轴对称。

这些是基本初等函数的一些常见知识点,掌握了这些知识点可以帮助你理解函数的基本概念、性质和图像,为进一步学习更高级的数学知识打下坚实的基础。

初中函数入门的基础知识

初中函数入门的基础知识

初中函数入门的基础知识
函数的定义
给定一个数集a,假设其中的元素为x,对a中的元素x施加对应法则f,记作f(x),得到另一数集b,假设b中的元素为y,则y与x之间的等量关系可以用y=f(x)表示,函数概念含有三个要素:定义域a、值域c和对应法则f。

函数的分类
(一)常函数
x取定义域内任意数时,都有y=c(c是常数),则函数y=c 称为常函数,其图象是平行于x轴的直线或直线的一部分。

(二)一次函数
1.一般形如y=kx+b(k,b是常数,k≠0),其中x是自变量,y是因变量。

特别地,当b=0时,y=kx+b(k为常数,
k≠0),y叫做x的正比例函数。

2.一次函数有三种表示方法:
(1)解析式法:用含自变量x的式子表示函数的方法叫做解析式法。

(2)列表法:把一系列x的值对应的函数值y列成一个表来表示的函数关系的方法叫做列表法。

(3)图像法:用图象来表示函数关系的方法叫做图象法。

(三)二次函数
1.二次函数的基本表示形式为y=ax²+bx+c(a≠0)。

二次函数最高次必须为二次,二次函数的图像是一条对称轴与y轴平行或重合于y轴的抛物线。

2.顶点式:y=a(x-h)²+k 顶点坐标为(h,k)。

3.交点式:y=a(x-x₁)(x-x₂) 函数与图像交于(x₁,0)和(x₂,0)。

《函数的基本性质》知识总结大全

《函数的基本性质》知识总结大全

《函数的基本性质》知识总结大全函数的基本性质是数学中非常重要的一部分内容,对于理解和应用函数有着重要的作用。

以下是《函数的基本性质》的知识总结大全:1. 定义域和值域:函数的定义域是指函数可以取值的所有实数的范围,值域是指函数实际取值的范围。

函数的定义域和值域可以用图像来表示。

2. 奇偶性:如果对于函数中的任意实数x,有f(-x) = f(x),则称函数f(x)为偶函数;如果对于函数中的任意实数x,有f(-x) = -f(x),则称函数f(x)为奇函数。

3. 函数的图像:函数的图像是指函数在坐标平面上的显示,可以通过画图来表示函数的特点。

可以通过图像来判断函数的增减性、极值、特殊点等。

4. 单调性:如果函数f(x)在定义域上是递增的,则称函数f(x)为增函数;如果函数f(x)在定义域上是递减的,则称函数f(x)为减函数。

5. 极值:如果函数在某一点上的函数值比它邻近的点上的函数值都大(或小),则称这个点为函数的极大值点(或极小值点)。

极大值和极小值统称为极值。

6. 零点:函数的零点是指函数在定义域上满足f(x) = 0的实数x的值。

7. 对称轴:如果函数的图像关于某一直线对称,则这条直线称为函数的对称轴。

8. 周期性:如果函数f(x)在一个定义域上的每一个x都有f(x+T) = f(x)成立,其中T>0,则称函数f(x)为周期函数,T称为函数的周期。

9. 常用函数:常用函数包括线性函数、二次函数、指数函数、对数函数、三角函数等,这些函数有着特殊的性质和应用。

10. 复合函数:复合函数是指由两个函数构成的新函数,其中一个函数的输出是另一个函数的输入。

复合函数的求值需要按照函数的定义进行计算。

函数的基础知识大全(完整)(包括函数在高考中所有考点知识)

函数的基础知识大全(完整)(包括函数在高考中所有考点知识)

函数基础知识大全§1.2.1、函数的概念1、 设A 、B 是非空的数集,如果按照某种确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B中都有惟一确定的数()x f 和它对应,那么就称B A f →:为集合A 到集合B 的一个函数,记作:()A x x f y ∈=,.2、 一个函数的构成要素为:定义域、对应关系、值域.如果两个函数的定义域相同,并且对应关系完全一致,则称这两个函数相等.3.两个函数的相等:函数的定义含有三个要素,即定义域A 、值域C 和对应法则f .当函数的定义域及从定义域到值域的对应法则确定之后,函数的值域也就随之确定.因此,定义域和对应法则为函数的两个基本条件,当且仅当两个函数的定义域和对应法则都分别相同时,这两个函数才是同一个函数. §1.2.2、函数的表示法1、 函数的三种表示方法:解析法、图象法、列表法. 1.函数的三种表示法(1)解析法:就是把两个变量的函数关系,用一个等式来表示,这个等式叫做函数的解析表达式,简称解析式.(2)列表法:就是列出表格来表示两个变量的函数关系. (3)图象法:就是用函数图象表示两个变量之间的关系. 2.求函数解析式的题型有:(1)已知函数类型,求函数的解析式:待定系数法;(2)已知()f x 求[()]f g x 或已知[()]f g x 求()f x :换元法、配凑法; (3)已知函数图像,求函数解析式;(4)()f x 满足某个等式,这个等式除()f x 外还有其他未知量,需构造另个等式解方程组法; (5)应用题求函数解析式常用方法有待定系数法等. 求函数解析式的常用方法: 1、换元法( 注意新元的取值范围)2、待定系数法(已知函数类型如:一次、二次函数、反比例函数等)3、整体代换(配凑法) 4.赋值法:3.映射的定义:一般地,设A 、B 是两个集合,如果按照某种对应关系f ,对于集合A 中的任何一个元素,在集合B 中都有唯一的元素和它对应,那么,这样的对应(包括集合A 、B ,以及集合A 到集合B 的对应关系f )叫做集合A 到集合B 的映射,记作f :A →B.由映射和函数的定义可知,函数是一类特殊的映射,它要求A 、B 非空且皆为数集.4.映射的概念中象、原象的理解:(1) A 中每一个元素都有象;(2)B 中每一个元素不一定都有原象,不一定只一个原象;(3)A 中每一个元素的象唯一。

函数的基本性质知识点总结

函数的基本性质知识点总结

函数的基本性质知识点总结一、函数的定义和表示方式1.定义:函数是一种特殊关系,它将一个集合中的每个元素与另一个集合中的唯一元素相对应。

2.表示方式:函数可以用图表、解析式、关系式等方式表示。

二、函数的定义域、值域和对应关系1.定义域:函数的定义域是指能使函数有意义的输入值的集合。

2.值域:函数的值域是指函数的所有可能的输出值的集合。

3.对应关系:对于函数中的每个输入值,都有一个唯一的输出值与之对应。

三、函数的图象和图像1.图象:函数的图象是函数在平面直角坐标系中的表示,其所有的点坐标满足函数的对应关系。

2.图像:函数的图像是函数的图象在控制显示器或打印机上的可视化表现。

四、函数的性质1.单调性:函数可以是递增的(单调递增)或递减的(单调递减)。

2.奇偶性:函数可以是奇函数(关于原点对称)或偶函数(关于y轴对称)。

3.周期性:函数可以是周期函数,即函数在一定区间内具有重复的规律。

4.奇点和间断点:函数的奇点是指函数在定义域内的特定点,其函数值不存在或趋于无穷;间断点是指函数在特定点不连续。

五、函数的极限与连续性1.极限:函数的极限是指当自变量趋于一些值时,函数值的趋向或趋近的特性。

2.连续性:函数在定义域内的所有点都连续,当且仅当函数在这些点的极限存在且等于这些点的函数值。

六、函数的导数与微分1.导数:函数的导数描述了函数在其中一点处的变化率。

导数表示为函数的斜率或函数的变化速率。

2.微分:函数的微分可以理解为函数在其中一点处的无穷小增量。

七、函数的极值与最值1.极值:函数在极值点处的函数值称为极大值或极小值。

极大值是函数在该点附近所有函数值中最大的值,极小值是函数在该点附近所有函数值中最小的值。

2.最值:函数的最大值和最小值称为函数的最值。

八、函数的反函数1.反函数:如果函数f的定义域与值域互换,且对于f的每一个输出值,存在唯一的输入值与之对应,则这个函数称为f的反函数。

以上是函数的基本性质的总结,函数理论是数学中的基础内容,也是其他学科中的重要概念。

(完整版)函数的基础知识大全(完整)(包括函数在高考中所有考点知识)

(完整版)函数的基础知识大全(完整)(包括函数在高考中所有考点知识)

函数基础知识大全§1.2.1、函数的概念1、 设A 、B 是非空的数集,如果按照某种确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B中都有惟一确定的数()x f 和它对应,那么就称B A f →:为集合A 到集合B 的一个函数,记作:()A x x f y ∈=,.2、 一个函数的构成要素为:定义域、对应关系、值域.如果两个函数的定义域相同,并且对应关系完全一致,则称这两个函数相等.3.两个函数的相等:函数的定义含有三个要素,即定义域A 、值域C 和对应法则f .当函数的定义域及从定义域到值域的对应法则确定之后,函数的值域也就随之确定.因此,定义域和对应法则为函数的两个基本条件,当且仅当两个函数的定义域和对应法则都分别相同时,这两个函数才是同一个函数. §1.2.2、函数的表示法1、 函数的三种表示方法:解析法、图象法、列表法. 1.函数的三种表示法(1)解析法:就是把两个变量的函数关系,用一个等式来表示,这个等式叫做函数的解析表达式,简称解析式.(2)列表法:就是列出表格来表示两个变量的函数关系. (3)图象法:就是用函数图象表示两个变量之间的关系. 2.求函数解析式的题型有:(1)已知函数类型,求函数的解析式:待定系数法;(2)已知()f x 求[()]f g x 或已知[()]f g x 求()f x :换元法、配凑法; (3)已知函数图像,求函数解析式;(4)()f x 满足某个等式,这个等式除()f x 外还有其他未知量,需构造另个等式解方程组法; (5)应用题求函数解析式常用方法有待定系数法等. 求函数解析式的常用方法: 1、换元法( 注意新元的取值范围)2、待定系数法(已知函数类型如:一次、二次函数、反比例函数等)3、整体代换(配凑法) 4.赋值法:3.映射的定义:一般地,设A 、B 是两个集合,如果按照某种对应关系f ,对于集合A 中的任何一个元素,在集合B 中都有唯一的元素和它对应,那么,这样的对应(包括集合A 、B ,以及集合A 到集合B 的对应关系f )叫做集合A 到集合B 的映射,记作f :A →B.由映射和函数的定义可知,函数是一类特殊的映射,它要求A 、B 非空且皆为数集.4.映射的概念中象、原象的理解:(1) A 中每一个元素都有象;(2)B 中每一个元素不一定都有原象,不一定只一个原象;(3)A 中每一个元素的象唯一。

函数的基本性质知识点总结

函数的基本性质知识点总结

函数的基本性质知识点总结1.函数的定义:函数是一种数学对象,它将一个集合中的每个元素映射到另一个集合中的唯一元素上。

函数通常以符号表示,例如f(x)。

2.定义域:函数的定义域是指函数能够接受的自变量的值的集合。

它是函数能够有效进行计算的自变量的范围。

通常用符号表示为D(f)。

3.值域:函数的值域是指函数在定义域上所有可能的函数值的集合。

它是因变量的取值范围。

通常用符号表示为R(f)。

4.图像:函数的图像是指由函数的所有有序对(x,f(x))组成的点的集合。

可以通过将自变量的取值代入函数的表达式来确定函数的图像。

5.奇偶性:函数的奇偶性指函数在坐标系中的对称性。

一个函数被称为奇函数,如果对于定义域上的任何x值,-x处的函数值等于x处的相反数。

一个函数被称为偶函数,如果对于定义域上的任何x值,-x处的函数值等于x处的函数值。

6.单调性:函数的单调性指函数在定义域上的增减趋势。

一个函数被称为严格递增函数,如果对于定义域上的任意两个x值,f(x1)<f(x2)。

一个函数被称为严格递减函数,如果对于定义域上的任意两个x值,f(x1)>f(x2)。

7.周期性:函数的周期性指函数在定义域上以一定的周期重复。

一个函数被称为周期函数,如果存在一个正整数T,对于定义域上的任意x值,有f(x+T)=f(x)。

8.连续性:函数的连续性指函数在定义域上的无间断性。

一个函数在点x=c处连续,如果当x趋近于c时,f(x)趋近于f(c)。

一个函数在整个定义域上连续,如果它在每个点都连续。

9.可导性:函数的可导性指函数在一些点上的导数是否存在。

函数f(x)在点x=c处可导,如果当x趋近于c时,f(x)的斜率存在,并且等于c处的导数。

10.极值:函数的极值指函数在定义域上的最大值和最小值。

一个局部最大值是指函数在一些区间上的最大值,而不一定是整个定义域上的最大值。

一个局部最小值是指函数在一些区间上的最小值,而不一定是整个定义域上的最小值。

基本初等函数知识点

基本初等函数知识点

基本初等函数知识点一、引言在数学中,初等函数是由基本初等函数经过有限次的四则运算(加、减、乘、除)以及复合运算得到的函数。

基本初等函数包括常数函数、幂函数、指数函数、对数函数、三角函数以及反三角函数。

本文将详细介绍这些基本初等函数的定义、性质和图像。

二、常数函数定义:常数函数 \( f(x) = c \),其中 \( c \) 是一个实数常数。

性质:常数函数的图像是一条平行于 \( x \) 轴的直线,其所有点的函数值都等于常数 \( c \)。

图像:见附录图1。

三、幂函数定义:幂函数 \( f(x) = x^n \),其中 \( n \) 是实数。

性质:幂函数的性质取决于指数 \( n \) 的值。

当 \( n \) 为正整数时,函数图像是 \( n \) 次幂的曲线;当 \( n \) 为负整数时,函数图像是倒数的幂函数曲线。

图像:见附录图2。

四、指数函数定义:指数函数 \( f(x) = a^x \),其中 \( a > 0 \) 且 \( a\neq 1 \)。

性质:指数函数的底数 \( a \) 决定了函数图像的形状。

当 \( a > 1 \) 时,函数是增长的;当 \( 0 < a < 1 \) 时,函数是衰减的。

图像:见附录图3。

五、对数函数定义:对数函数 \( f(x) = \log_a(x) \),其中 \( a > 0 \) 且\( a \neq 1 \)。

性质:对数函数是指数函数的逆函数。

当 \( a > 1 \) 时,函数是单调增加的;当 \( 0 < a < 1 \) 时,函数是单调减少的。

图像:见附录图4。

六、三角函数1. 正弦函数 \( \sin(x) \)2. 余弦函数 \( \cos(x) \)3. 正切函数 \( \tan(x) \)定义:这些函数与单位圆上的点的坐标有关。

性质:三角函数具有周期性,它们的周期为 \( 2\pi \)。

函数基本知识

函数基本知识

函数的基本知识1.定义域、值域(高中函数定义):设A ,B 是两个非空的数集,如果按某个确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一确定的数)(x f 和它对应,那么就称f :B A −→−为集合A 到集合B 的一个函数,记作)(x f y =,x 属于集合A 。

其中,x 叫作自变量,x 的取值范围A 叫作函数的定义域;叫做函数的定义域的取值范围B y .2.奇偶性(1)奇偶函数的定义:①奇函数:如果对于函数)(x f 定义域内的任意一个x ,都有)()(x f x f -=-,那么函数)(x f 就叫做奇函数。

②偶函数:如果对于函数)(x f 定义域内的任意一个x ,都有)()(x f x f =-,那么函数)(x f 就叫做偶函数。

③非奇非偶函数:如果对于函数定义域内的存在一个a ,使得)()(a f a f -≠-,存在一个b ,使得)()(b f b f ≠-,那么函数)(x f 既不是奇函数又不是偶函数,称为非奇非偶函数。

(2)奇偶函数的图像性质:①奇函数的图像关于原点对称(关于原点成中心对称图形) ②偶函数的图像关于y 轴对称③如果奇函数在某一定义区间[]b a ,为单调的,则在对称区间[]a b --,也为单调的,并且单调性一致;如果偶函数在[]b a ,为单调的,则在[]a b --,也为单调的,但单调性不一致(3)奇偶函数的运算:①两个偶函数相加所得的和为偶函数②两个奇函数相加所得的和为奇函数③一个偶函数与一个奇函数相加所得的和为非奇函数与非偶函数 ④两个偶函数相乘所得的积为偶函数⑤两个奇函数相乘所得的积为偶函数⑥一个偶函数与一个奇函数相乘所得的积为奇函数3.单调性(1)单调性的定义:①单调递增:如果函数)(x f 在定义域的一个子区间[]b a ,上对任意的[]b a x x ,,21∈且21x x <满足)()(21x f x f <,则称函数)(x f 在区间[]b a ,为单调递增的 ②单调递减:如果函数)(x f 在定义域的一个子区间[]b a ,上对任意的[]b a x x ,,21∈且21x x <满足)()(21x f x f >,则称函数)(x f 在区间[]b a ,为单调递减的(2)单调性的证明(定义法): 第一步:设21x x 、是给定区间内的两个任意的值,且21x x <第二步:作差)()(12x f x f -,并对“差式”变形,主要采用的方法是“因式分解”或“配方法”第三步:判断差式)()(12x f x f -的正负号,从而证得其增减性4.周期性(1)函数的周期性定义:若T 为非零常数,对于定义域内的任一x ,使)()(T x f x f += 恒成立,则)(x f 叫做周期函数,T 叫做这个函数的一个周期。

函数知识点与公式总结

函数知识点与公式总结

函数知识点与公式总结一、函数的定义和性质函数的定义:函数是一个对应关系,它把一个集合的元素对应到另一个集合的元素。

一个简单的函数可以用如下的记号来表示:f:X→Y,表示一个函数f从集合X到集合Y的映射关系。

其中,X称为定义域,Y称为值域。

函数的性质:1. 定义域和值域:定义域是指函数的输入可以取的值的集合,值域是函数的输出可以取的值的集合。

2. 单调性:函数的单调性是指在定义域内,函数的增减趋势。

可以分为递增和递减两种情况。

3. 奇偶性:函数的奇偶性是指函数的图像是否关于原点对称。

如果对于任意x∈定义域,都有f(-x)=f(x),那么函数是偶函数;如果对于任意x∈定义域,都有f(-x)=-f(x),那么函数是奇函数。

4. 周期性:函数的周期性是指函数在一定范围内具有重复的性质。

5. 函数的图像:函数的图像是函数在直角坐标系中的点的集合,描述了函数的性质和特点。

二、常见的函数公式1. 线性函数线性函数是指函数的图像是一条直线的函数。

线性函数的一般形式为y=ax+b,其中a和b 是常数,a称为斜率,b称为截距。

2. 二次函数二次函数是指函数的图像是一个抛物线的函数。

二次函数的一般形式为y=ax^2+bx+c,其中a、b和c是常数,a≠0。

3. 指数函数指数函数是以常数e为底数的幂函数,一般形式为y=a^x,其中a为底数,x为指数。

4. 对数函数对数函数是指以常数a为底数的对数函数,一般形式为y=log_a(x),其中a为底数,x为真数。

5. 三角函数三角函数包括正弦函数、余弦函数、正切函数等,它们描述了角度和弧度之间的关系。

6. 反比例函数反比例函数是指函数的图像是一条反比例曲线的函数,一般形式为y=k/x,其中k是常数。

7. 绝对值函数绝对值函数的一般形式为y=|x|,它表示x的绝对值,即x的正数部分。

8. 分段函数分段函数是指在定义域的不同区间上有不同函数式的函数,一般形式为f(x)=```{g(x),a≤x≤bh(x),b<x<c}```9. 复合函数复合函数是指一个函数的自变量(或生成元素)是另一个函数的值域,即f[g(x)],表示函数f和g的复合。

函数的基础知识大全

函数的基础知识大全

函数的基础知识大全在数学的广阔天地中,函数就像是一座桥梁,连接着不同的数学概念和实际问题。

函数的概念虽然看似抽象,但它却在我们的日常生活和科学研究中有着广泛的应用。

接下来,让我们一起走进函数的世界,探索它的基础知识。

一、函数的定义简单来说,函数是一种对应关系。

给定一个输入值(通常称为自变量),通过这种对应关系,能唯一确定一个输出值(通常称为因变量)。

比如说,我们有一个函数 f(x) = 2x ,当 x = 3 时,通过这个对应关系,就能确定 f(3) = 6 。

函数通常用字母 f 、g 等表示,自变量常用 x 、y 等表示。

函数的表达式可以是多种多样的,比如常见的整式、分式、根式等等。

二、函数的三要素1、定义域定义域是自变量 x 的取值范围。

例如,对于函数 f(x) = 1 / x ,由于分母不能为 0 ,所以其定义域就是x ≠ 0 。

确定定义域时,需要考虑函数的表达式、实际问题的背景等因素。

2、值域值域是因变量 y 的取值范围。

它是由定义域和函数的对应关系共同决定的。

比如对于函数 f(x) = x²,因为 x²总是大于等于 0 的,所以其值域就是y ≥ 0 。

3、对应法则对应法则是函数的核心,它规定了自变量和因变量之间的具体关系。

不同的对应法则会产生不同的函数。

三、函数的表示方法1、解析法用数学表达式来表示函数,如前面提到的 f(x) = 2x 、f(x) = 1 / x 等。

2、列表法通过列出自变量和对应的因变量的值来表示函数。

例如,在一个表格中列出不同时刻的温度值,就可以看作是一个函数。

3、图像法将函数用图像的形式表示出来。

图像能够直观地反映函数的性质,比如单调性、奇偶性等。

四、常见的函数类型1、一次函数形如 f(x) = kx + b (k、b 为常数,k ≠ 0 )的函数称为一次函数。

它的图像是一条直线。

2、二次函数形如 f(x) = ax²+ bx + c (a ≠ 0 )的函数称为二次函数。

函数基本知识点

函数基本知识点

函数基本知识点函数四大要素:函数名、函数体、函数类型、函数的参数一、函数定义的一般形式1.无参函数的定义形式:类型标识符函数名(){声明部分语句}2.有参函数定义的一般形式:类型标识符函数名(形式参数表列){声明部分语句}3.”空函数“的形式:类型说明符函数名(){}4.对形参的声明的传统方式与现代方式:传统方式对形参类型的声明是放在函数定义的第二行,也就是不在第一行的括号内指定形参的类型,而是在括号外单独指定。

现代方式则可以在括号里面声明。

二、函数的参数和函数的值:1.形式参数和实际参数:a.在定义函数中指定的形参,在未出现函数调用时,它们并不占内存中的存储单元。

只有在调用函数时,才会给形参分配内存,调用完之后分配的内存也会被释放。

b.实参可以是常量、变量或者表达式,但是要求它们拥有确定值。

(如果形参是数组名,在调用实参赋值给形参时,则传递的是数组首地而不是数组的值。

)c.在被定义的函数中,必须指定形参发类型。

d.实参与形参的类型应相同或赋值兼容。

e.C语言规定,实参变量对形参变量的数据传递是”值传递“,即单向传递,由实参传给形参,不能由形参传给实参。

2.函数的返回值:a.函数的返回值是通过函数中的return语句获得的。

b.函数值的类型。

既然函数有返回值,这个值当然属于某一个确定的类型,应当在定义函数时指定函数值的类型。

c.如果函数值的类型和return语句中表达式的值不一致,则以函数类型为准,对数值型数据,可以自动进行类型转换。

即函数类型决定返回值的类型。

d.如果被调用函数中没有return语句,并不带回一个确定的、用户所希望得到的函数值,实际上,函数并不是不带回值,而只是不带回有用的值,带回是一个不确定的值。

(带回一个不确定的值,这个值不是一个有用的值。

)e.为了明确表示”不带回值“,可以用”void“定义”无类型“(或称”空类型“)。

函数的基本知识点总结

函数的基本知识点总结

函数的基本知识点总结1. 函数的定义在计算机编程中,函数通常包含以下几个部分:函数名:用于调用函数的名称。

函数名应具有描述性,能够清晰地表达函数的作用。

参数列表:函数可以接受零个或多个参数作为输入。

参数列表定义了函数所需的输入信息。

函数体:包含了完成特定任务的代码块。

函数体中的代码通过参数列表传递的参数来执行,并可能返回一个值。

返回值:函数可以返回一个值,该值就是函数的输出结果。

如果函数不需要返回值,可以省略返回值。

2. 函数的调用调用函数是指使用函数名及其参数列表来执行函数体中的代码。

函数的调用可以在程序的任何地方进行,只需使用函数名和正确的参数即可。

在调用函数时,要注意参数的顺序,数量和类型要与函数定义中的要求一致,否则程序可能会发生错误。

3. 函数的参数函数可以接受零个或多个参数作为输入。

参数允许函数在执行时使用外部提供的数据进行计算或处理。

函数的参数可以有默认值。

在定义函数时,可以为参数指定默认值。

如果函数被调用时没有提供对应的参数,将会使用默认值。

函数的参数可以是不同的类型,包括整数、浮点数、字符串、布尔值、列表、字典等等。

在函数内部,可以根据需要进行参数类型的判断和处理。

4. 函数的返回值函数可以返回一个值,用于将计算结果传递给调用者。

返回值可以是任何有效的数据类型,包括数字、字符串、列表、字典等。

如果函数没有返回值,可以使用关键字“None”来表示。

None是Python中的特殊值,表示空值或者没有值。

在函数执行完毕后,返回值被传递给函数的调用者。

调用者可以根据需要对返回值进行处理或者继续传递给其他函数。

5. 函数的作用域函数内部的变量通常只在函数内部有效,称为局部变量。

函数外部定义的变量一般称为全局变量,可以在整个程序中被访问和使用。

在函数内部可以使用关键字“global”来声明全局变量,使得函数内部的代码可以修改全局变量的值。

但是在实际开发中,尽量避免使用全局变量,因为全局变量容易导致代码的混乱和不可预测性。

函数的基础知识大全

函数的基础知识大全

函数基础知识大全§1.2.1、函数的概念1、 设A 、B 是非空的数集,如果按照某种确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B中都有惟一确定的数()x f 和它对应,那么就称B A f →:为集合A 到集合B 的一个函数,记作:()A x x f y ∈=,.2、 一个函数的构成要素为:定义域、对应关系、值域.如果两个函数的定义域相同,并且对应关系完全一致,则称这两个函数相等.3.两个函数的相等:函数的定义含有三个要素,即定义域A 、值域C 和对应法则f .当函数的定义域及从定义域到值域的对应法则确定之后,函数的值域也就随之确定.因此,定义域和对应法则为函数的两个基本条件,当且仅当两个函数的定义域和对应法则都分别相同时,这两个函数才是同一个函数.§1.2.2、函数的表示法1、 函数的三种表示方法:解析法、图象法、列表法.1.函数的三种表示法(1)解析法:就是把两个变量的函数关系,用一个等式来表示,这个等式叫做函数的解析表达式,简称解析式.(2)列表法:就是列出表格来表示两个变量的函数关系.(3)图象法:就是用函数图象表示两个变量之间的关系.2.求函数解析式的题型有:(1)已知函数类型,求函数的解析式:待定系数法;(2)已知()f x 求[()]f g x 或已知[()]f g x 求()f x :换元法、配凑法;(3)已知函数图像,求函数解析式;(4)()f x 满足某个等式,这个等式除()f x 外还有其他未知量,需构造另个等式解方程组法;(5)应用题求函数解析式常用方法有待定系数法等.求函数解析式的常用方法:1、换元法( 注意新元的取值范围)2、待定系数法(已知函数类型如:一次、二次函数、反比例函数等)3、整体代换(配凑法)4.赋值法:3.映射的定义:一般地,设A 、B 是两个集合,如果按照某种对应关系f ,对于集合A 中的任何一个元素,在集合B 中都有唯一的元素和它对应,那么,这样的对应(包括集合A 、B ,以及集合A 到集合B 的对应关系f )叫做集合A 到集合B 的映射,记作f :A →B.由映射和函数的定义可知,函数是一类特殊的映射,它要求A 、B 非空且皆为数集.4.映射的概念中象、原象的理解:(1) A 中每一个元素都有象;(2)B 中每一个元素不一定都有原象,不一定只一个原象;(3)A 中每一个元素的象唯一。

(完整版)基本初等函数知识点及函数的基本性质

(完整版)基本初等函数知识点及函数的基本性质

指数函数及其性质一、指数与指数幂的运算 (一)根式的概念1、如果,,,1nx a a R x R n =∈∈>,且n N +∈,那么x 叫做a 的n 次方根.当n 是奇数时,a的n次方根用符号n 是偶数时,正数a 的正的n的n次方根用符号0的n 次方根是0;负数a 没有n 次方根.2n 叫做根指数,a 叫做被开方数.当n 为奇数时,a 为任意实数;当n 为偶数时,0a ≥.3、根式的性质:na =;当n 为奇数时,a =;当n 为偶数时,(0)|| (0)a a a a a ≥⎧==⎨-<⎩. (二)分数指数幂的概念1、正数的正分数指数幂的意义是:0,,,m na a m n N +>∈且1)n >.0的正分数指数幂等于0. 2、正数的负分数指数幂的意义是: 1()0,,,mm nn aa m n N a -+==>∈且1)n >.0的负分数指数幂没有意义.注意口诀:底数取倒数,指数取相反数. 3、a 0=1 (a ≠0) a -p = 1/a p (a ≠0;p ∈N *) 4、指数幂的运算性质(0,,)r s r s a a a a r s R +⋅=>∈ ()(0,,)r s rs a a a r s R =>∈ ()(0,0,)r r r ab a b a b r R =>>∈5、0的正分数指数幂等于0,0的负分数指数幂无意义。

二、指数函数的概念一般地,函数)1a ,0a (a y x≠>=且叫做指数函数,其中x 是自变量,函数的定义域为R .注意:○1 指数函数的定义是一个形式定义; ○2 注意指数函数的底数的取值范围不能是负数、零和1.(1)在[a ,b]上,)1a 0a (a )x (f x≠>=且值域是)]b (f ),a (f [或)]a (f ),b (f [ (2)若0x ≠,则1)x (f ≠;)x (f 取遍所有正数当且仅当R x ∈ (3)对于指数函数)1a 0a (a )x (f x≠>=且,总有a )1(f =(4)当1a >时,若21x x <,则)x (f )x (f 21< 四、底数的平移对于任何一个有意义的指数函数:在指数上加上一个数,图像会向左平移;减去一个数,图像会向右平移。

函数基本知识

函数基本知识

七、作业
1(2)(4);2(2)(3); 第6页 1(2)(4);2(2)(3);5
y M y=f(x) o -M x X M y
x0
o -M X
x
有界
无界
(4)函数的周期性: 函数的周期性:
f D 设函数 ( x)的定义域为 , 如果存在一个不为零的
且 x 数l, 使得对于任一 ∈ D, ( x ± l ) ∈ D. f ( x + l ) = f ( x)
f , f . 恒成立. 则称 (x)为周期函数 l称为 ( x)的周期
1 0≤ x ≤1 例1 设f ( x) = , 求函数 f ( x + 3)的定义域 . − 2 1 < x ≤ 2

1 0≤ x ≤1 Q f ( x) = − 2 1 < x ≤ 2
1 0≤ x + 3≤1 ∴ f ( x + 3) = − 2 1 < x + 3 ≤ 2 1 − 3 ≤ x ≤ −2 = − 2 − 2 < x ≤ −1

Df : [−3,−1]
(3)隐函数与显函数 (3)隐函数与显函数
隐函数: 隐函数:函数的对应法则是由方程 给出, 的隐函数。 给出,称 y为 的隐函数。
x
F(x, y) = 0
显函数: 显函数:由
确定的函数, y = f (x) 确定的函数,如 2 y = lg x, y = x − 2x + 3等。
u = ϕ(x)的值域为 Zϕ , 若 Df ∩ Zϕ ≠ ∅, 则称
复合函数. 函数 y = f [ϕ( x)]为 x的复合函数
, , x ←自变量 u ←中间变量 y ←因变量 ,

函数的基本性质知识点总结

函数的基本性质知识点总结

函数的基本性质基础知识:1.奇偶性(1)定义:如果对于函数f (x )定义域内的任意x 都有f (-x )=-f (x ),则称f (x )为奇函数;如果对于函数f (x )定义域内的任意x 都有f (-x )=f (x ),则称f (x )为偶函数。

如果函数f (x )不具有上述性质,则f (x )不具有奇偶性.如果函数同时具有上述两条性质,则f (x )既是奇函数,又是偶函数。

偶函数。

注意:①函数是奇函数或是偶函数称为函数的奇偶性,函数的奇偶性是函数的整体性质;②由函数的奇偶性定义可知,函数具有奇偶性的一个必要条件是,对于定义域内的任意一个x ,则-x 也 一定是定义域内的一个自变量(即定义域关于原点对称)。

(2)利用定义判断函数奇偶性的格式步骤:)利用定义判断函数奇偶性的格式步骤:①首先确定函数的定义域,并判断其定义域是否关于原点对称;首先确定函数的定义域,并判断其定义域是否关于原点对称; ②确定f (-x )与f (x )的关系;的关系; ③作出相应结论:作出相应结论:若f (-x ) = f (x ) 或 f (-x )-f (x ) = 0,则,则f (x )是偶函数;是偶函数; 若f (-x ) =-f (x ) 或 f (-x )+f (x ) = 0,则,则f (x )是奇函数。

是奇函数。

(3)简单性质:)简单性质:①图象的对称性质:一个函数是奇函数的充要条件是它的图象关于原点成中心对称;一个函数是偶函数的充要条件是它的图象关于y 轴成轴对称;轴成轴对称;②设()f x ,()g x 的定义域分别是12,D D ,那么在它们的公共定义域上:,那么在它们的公共定义域上:奇+奇=奇,奇´奇=偶,偶+偶=偶,偶´偶=偶,奇´偶=奇 2.单调性(1)定义:一般地,设函数y =f (x )的定义域为I , 如果对于定义域I 内的某个区间D 内的任意两个自变量x 1,x 2,当x 1<x 2时,都有f (x 1)<f (x 2)(f (x 1)>f (x 2)),那么就说f (x )在区间D 上是增函数(减函数);注意:①函数的单调性是在定义域内的某个区间上的性质,是函数的局部性质; ②必须是对于区间D 内的任意两个自变量x 1,x 2;当x 1<x 2时,总有f (x 1)<f (x 2)。

函数的基础知识

函数的基础知识

函数的基础知识一、 知识要点1. 函数的三要素:定义域:解析式:方法 。

值域:方法2. 反函数:求反函数的步骤: 反函数与原函数的关系3. 函数的性质:⑴单调性:①定义法(作差比较和作商比较);作差法的基本步骤: , , , , . ②图象法;③复合函数单调性,判断法则 ;④导数:⑵奇偶性:数量的关系:偶函数 奇函数图形的关系:偶函数 奇函数⑶周期性和对称性:常见结论对称性:①、函数 )(x f y =满足 )()(x T f x T f -=+(T 为常数)的充要条件是 )(x f y =的图象关于直线 T x =对称。

②、函数 )(x f y =满足 )2()(x T f x f -=(T 为常数)的充要条件是 )(x f y =的图象关于直线 T x =对称。

③、函数 )(x f y =满足 )()(x b f x a f -=+的充要条件是 )(x f y =图象关于直线 22)()(b a x b x a x +=-++=对称。

周期性:①()()f x f x a =+,则()y f x =是以T a =为周期的周期函数;②()()f x a f x +=-,则()x f 是以2T a =为周期的周期函数;③()()1f x a f x +=±,则()x f 是以2T a =为周期的周期函数; ④()()f x a f x a +=-,则()x f 是以2T a =为周期的周期函数;⑤函数()y f x =满足()()f a x f a x +=-(0a >),若()f x 为奇函数,则其周期为4T a =,若()f x 为偶函数,则其周期为2T a =.⑥函数()y f x =()x R ∈的图象关于直线x a =和x b =()a b <都对称,则函数()f x 是以()2b a -为周期的周期函数;⑦函数()y f x =()x R ∈的图象关于两点()0,A a y 、()0,B b y ()a b <都对称,则函数()f x 是以()2b a -为周期的周期函数;⑧函数()y f x =()x R ∈的图象关于()0,A a y 和直线x b =()a b <都对称,则函数()f x 是以()4b a -为周期的周期函数;易错点:研究函数时忘记函数的定义域。

函数的基本知识

函数的基本知识

正比例函数y=kx(k≠0);反比例函数y=k/x(k≠0);一次函数y=kx+b(k≠0);二次函数y=ax^2+bx+c(a≠0);幂函数y=x^a;指数函数y=a^x(a>0,a≠1);对数函数y=log(a)x(a是底数,x是真数,且a>0,a≠1) 三角函数y=sinx,y=cosx,y=tanx。

(X≠0)表示首先要理解,函数是发生在集合之间的一种对应关系。

然后,要理解发生在A、B之间的函数关系不止且不止一个。

最后,要重点理解函数的三要素。

函数的对应法则通常用解析式表示,但大量的函数关系是无法用解析式表示的,可以用图像、表格及其他形式表示。

函数的解析式法:用含有数学关系的等式来表示两个变量之间的函数关系的方法叫做解析式法。

这种方法的优点是能简明、准确、清楚地表示出函数与自变量之间的数量关系;缺点是求对应值时往往要经过较复杂的运算,而且在实际问题中有的函数关系不一定能用表达式表示出来。

1、幂函数一般地,y=xα(α为有理数)的函数,即以底数为自变量,幂为因变量,指数为常数的函数称为幂函数。

例如函数y=x0、y=x1、y=x2、y=x-1(注:y=x-1=1/x、y=x0时x≠0)等都是幂函数。

2、指数函数基本初等函数之一。

一般地,y=ax函数(a为常数且以a>0,a≠1)叫做指数函数,函数的定义域是R。

注意,在指数函数的定义表达式中,在ax 前的系数必须是数1,自变量x必须在指数的位置上,且不能是x的其他表达式,否则,就不是指数函数。

3、对数函数对数函数是以幂(真数)为自变量,指数为因变量,底数为常量的函数。

函数y=logaX(a>0,且a≠1)叫做对数函数,也就是说以幂(真数)为自变量,指数为因变量,底数为常量的函数,叫对数函数。

4、三角函数常见的三角函数包括正弦函数、余弦函数和正切函数。

在航海学、测绘学、工程学等其他学科中,还会用到如余切函数、正割函数、余割函数、正矢函数、余矢函数、半正矢函数、半余矢函数等其他的三角函数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

函数基础知识大全§1.2.1、函数的概念1、 设A 、B 是非空的数集,如果按照某种确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B中都有惟一确定的数()x f 和它对应,那么就称B A f →:为集合A 到集合B 的一个函数,记作:()A x x f y ∈=,.2、 一个函数的构成要素为:定义域、对应关系、值域.如果两个函数的定义域相同,并且对应关系完全一致,则称这两个函数相等.3.两个函数的相等:函数的定义含有三个要素,即定义域A 、值域C 和对应法则f .当函数的定义域及从定义域到值域的对应法则确定之后,函数的值域也就随之确定.因此,定义域和对应法则为函数的两个基本条件,当且仅当两个函数的定义域和对应法则都分别相同时,这两个函数才是同一个函数.§1.2.2、函数的表示法1、 函数的三种表示方法:解析法、图象法、列表法.1.函数的三种表示法(1)解析法:就是把两个变量的函数关系,用一个等式来表示,这个等式叫做函数的解析表达式,简称解析式.(2)列表法:就是列出表格来表示两个变量的函数关系.(3)图象法:就是用函数图象表示两个变量之间的关系.2.求函数解析式的题型有:(1)已知函数类型,求函数的解析式:待定系数法;(2)已知()f x 求[()]f g x 或已知[()]f g x 求()f x :换元法、配凑法;(3)已知函数图像,求函数解析式;(4)()f x 满足某个等式,这个等式除()f x 外还有其他未知量,需构造另个等式解方程组法;(5)应用题求函数解析式常用方法有待定系数法等.求函数解析式的常用方法:1、换元法( 注意新元的取值范围)2、待定系数法(已知函数类型如:一次、二次函数、反比例函数等)3、整体代换(配凑法)4.赋值法:3.映射的定义:一般地,设A 、B 是两个集合,如果按照某种对应关系f ,对于集合A 中的任何一个元素,在集合B 中都有唯一的元素和它对应,那么,这样的对应(包括集合A 、B ,以及集合A 到集合B 的对应关系f )叫做集合A 到集合B 的映射,记作f :A →B.由映射和函数的定义可知,函数是一类特殊的映射,它要求A 、B 非空且皆为数集.4.映射的概念中象、原象的理解:(1) A 中每一个元素都有象;(2)B 中每一个元素不一定都有原象,不一定只一个原象;(3)A 中每一个元素的象唯一。

1.映射:注意: ①第一个集合中的元素必须有象;②一对一或多对一.2求函数定义域一般有三类问题:(1)给出函数解析式的:函数的定义域是使解析式有意义的自变量的取值集合;(2)实际问题:函数的定义域的求解除要考虑解析式有意义外,还应考虑使实际问题有意义;(3)已知()f x 的定义域求[()]f g x 的定义域或已知[()]f g x 的定义域求()f x 的定义域:掌握基本初等函数(尤其是分式函数、无理函数、对数函数、三角函数)的定义域;(1)分式的分母不为0;(2)偶次方根的被开方数不小于0;(3)对数函数的真数大于0;(4)指数函数、对数函数的底数大于0且不等于1;(5)零指数、负指数幂的底数不等于0.②① 若f(x)的定义域为[a ,b ],则复合函数f[g(x)]的定义域由不等式a ≤ g(x) ≤ b 解出② 若f[g(x)]的定义域为[a,b],求 f(x)的定义域,相当于x∈[a,b]时,求g(x)的值域.2.函数值域的求法:①直接法 ;②配方法 ;③判别式法 ;④利用函数单调性 ;⑤换元法 ;⑥利用均值不等式 2222b a b a ab +≤+≤; ⑦几何意义(斜率、距离、绝对值的意义等);⑧利用函数有界性(x a 、x sin 、x cos 等);⑨平方法;⑩ 导数法(11)分离常数法;(12)反函数法;(13)数形结合法。

3求函数值域的各种方法函数的值域是由其对应法则和定义域共同决定的其类型依解析式的特点分可分三类:(1)求常见函数值域;(2)求由常见函数复合而成的函数的值域;(3)求由常见函数作某些“运算”而得函数的值域①直接法:利用常见函数的值域来求一次函数y=ax+b(a ≠0)的定义域为R ,值域为R ;反比例函数)0(≠=k xk y 的定义域为{x|x ≠0},值域为{y|y ≠0}; 二次函数)0()(2≠++=a c bx ax x f 的定义域为R ,当a>0时,值域为{ab ac y y 4)4(|2-≥}; 当a<0时,值域为{ab ac y y 4)4(|2-≤} ②配方法:转化为二次函数,利用二次函数的特征来求值;常转化为型如:),(,)(2n m x c bx ax x f ∈++=的形式;③分式转化法(或改为“分离常数法”)④换元法:通过变量代换转化为能求值域的函数,化归思想;⑤三角有界法:转化为只含正弦、余弦的函数,运用三角函数有界性来求值域;⑥基本不等式法:转化成型如:)0(>+=k xk x y ,利用平均值不等式公式来求值域; ⑦单调性法:函数为单调函数,可根据函数的单调性求值域⑧数形结合:根据函数的几何图形,利用数型结合的方法来求值域⑨逆求法(反求法):通过反解,用y 来表示x ,再由x 的取值范围,通过解不等式,得出y 的取值范围;常用来解,型如:),(,n m x dcx b ax y ∈++= ⑩判别式法⑾.导数法:6.复合函数:若y=f(u),u=g(x),x (a,b),u (m,n),那么y=f[g(x)]称为复合函数,u 称为中间变量,它的取值范围是g(x)的值域。

(2)复合函数单调性的判定:①首先将原函数)]([x g f y =分解为基本函数:内函数)(x g u =与外函数)(u f y =②分别研究内、外函数在各自定义域内的单调性③根据“同性则增,异性则减”来判断原函数在其定义域内的单调性.4.分段函数:在函数定义域内,对于自变量x 的不同取值区间,有着不同的对应关系,这样的函数通常叫分段函数。

值域(最值)、单调性、图象等问题,先分段解决,再下结论。

5.函数的奇偶性1.(1)判断函数的奇偶性有时可以用定义的等价形式:()()0f x f x ±-=,()1()f x f x =±- 讨论函数的奇偶性的前提条件是函数的定义域关于原点对称,要重视这一点;(2)奇函数的图象关于原点对称,偶函数的图象关于y 轴对称,因此根据图象的对称性可以判断函数的奇偶性2.奇偶函数的性质:(1)函数的定义域关于原点对称是函数具有奇偶性的必要条件....(2)偶函数的图象关于y 轴对称,奇函数的图象关于原点对称;(3)()f x 为偶函数()(||)f x f x ⇔=(4)若奇函数)(x f 在0处有定义,,则f(0)=0,因此,“f(x)为奇函数”是"f(0)=0"的非充分非必要条件;(5)设()f x ,()g x 的定义域分别是12,D D ,那么在它们的公共定义域上:(6)定义在R 上的任意函数f(x)均可表示为一个偶函数与一个奇函数之和。

(7)在定义域内的公共部分内,两个奇函数之积(商)为偶函数;两个偶函数之积(商)为偶函数;一奇一偶函数之积(商)为奇函数;两个奇(偶)函数之和、差为奇(偶)函数。

即奇+奇=奇,奇⨯奇=偶,偶+偶=偶,偶⨯偶=偶,奇⨯偶=奇(8)偶函数在关于原点对称的区间上单调性相反;奇函数在关于原点对称的区间上单调性一致.(9)f(x)既是奇函数又是偶函数的充要条件是f(x)=0.3.奇、偶性的推广:(1)函数()x f y =与函数()x f y -=的图像关于直线0=x (y 轴)对称.推广一:函数y=f(x)对于定义域内任一x 都有()()f a x f a x +=- ,则y=f(x)的图象关于x=a 对称,即y=f(a+x)为偶函数;推广二:如果函数()x f y =对于一切x ∈R ,都有()()f a x f b x +=-成立,那么()x f y =的图像关于直线2a b x +=(由“x 和的一半()()2a x b x x ++-=确定”)对称. 推广三:函数()x a f y +=,()y f b x =-的图像关于直线2b a x -=(由a x b x +=-确定)对称. 推广四:函数()x f y =与函数()y A f x =-的图像关于直线2A y =对称(由“y 和的一半[()][()]2f x A f x y +-=确定”). (2) 函数()x f y =与函数()x f y -=的图像关于直线0=y (x 轴)对称. 推广一:函数y=f(x)对定义域内任一x 都有()()f a x f a x +=-- ,则y=f(x)的图象关于点(a,0)成中心对称,即y=f(a+x)为奇函数。

推广二:函数y=f(x)对定义域内任一x 都有()()2f a x f a x b ++-=,则y=f(x)的图象关于点(),a b 成中心对称。

推广三:函数()x f y =与函数()y m f n x =--的图像关于点(,)22n m 中心对称. 4.对于复合函数F (x )=f[g(x)]满足同奇则奇,有偶则偶。

6.函数的单调性:⑴单调性的定义:①)(x f 在区间M 上是增函数,,21M x x ∈∀⇔当21x x <时有12()()f x f x <;②)(x f 在区间M 上是减函数,,21M x x ∈∀⇔当21x x <时有12()()f x f x >;⑵单调性的判定:①定义法:一般要将式子)()(21x f x f -化为几个因式作积或作商的形式,以利于判断符号;设2121,x x A x x <∈且;作差)()(21x f x f -(一般结果要分解为若干个因式的乘积,且每一个因式的正或负号能清楚地判断出);判断正负号。

②导数法(见导数部分);若)(x f 在某个区间A 内有导数,则()0f x ≥’,)x A ∈(⇔)(x f 在A 内为增函数;⇔∈≤)0)(A x x f ,(’)(x f 在A 内为减函数。

③复合函数法;复合函数[])(x g f y =在公共定义域上的单调性:①若f 与g 的单调性相同,则[])(x g f 为增函数;“同则增”②若f 与g 的单调性相反,则[])(x g f 为减函数。

“异则减”注意:先求定义域,单调区间是定义域的子集。

④图像法注:证明单调性主要用定义法和导数法。

(3)性质①奇函数在其对称区间上的单调性相同;②偶函数在其对称区间上的单调性相反;③在公共定义域内:增函数+)(x f 增函数)(x g 是增函数;减函数+)(x f 减函数)(x g 是减函数;增函数-)(x f 减函数)(x g 是增函数;减函数-)(x f 增函数)(x g 是减函数。

相关文档
最新文档