高数第二章 一元函数微分学选择题
高等数学慕课版教材答案
高等数学慕课版教材答案《高等数学慕课版教材答案》尊敬的学生们,大家好!今天我将为大家提供《高等数学慕课版教材》的答案,希望能给大家在学习过程中提供一些参考和帮助。
第一章微积分概论1. 选择题答案:1) A2) D3) B4) C2. 解答题答案:1) 解:首先我们来求解f(x) = x^2 - 2x + 1的极值点和区间。
首先求导,得到f'(x) = 2x - 2。
令f'(x) = 0,得到2x - 2 = 0,解得x = 1。
当x < 1时,f'(x) < 0;当x > 1时,f'(x) > 0。
因此,当x < 1时,f(x)在递减;当x > 1时,f(x)在递增。
所以x = 1是f(x)的极小值点。
又因为f(x)在定义域上无其他极值点,所以x = 1为最小值点。
故f(x)在x = 1时取得最小值。
2) 解:首先我们来求解f(x) = 2x^3 + 3x + 1的极值点和区间。
首先求导,得到f'(x) = 6x^2 + 3。
令f'(x) = 0,得到6x^2 + 3 = 0,解得x = ±√(-1/2)。
由于方程无实数解,所以f(x)无极值点。
接下来我们要判断f(x)的单调性。
根据导函数f'(x)的正负性,当x < -√(-1/2)时,f'(x) < 0;当-√(-1/2) < x < √(-1/2)时,f'(x) > 0;当x > √(-1/2)时,f'(x) < 0。
所以当x < -√(-1/2)时,f(x)在递减;当-√(-1/2) < x < √(-1/2)时,f(x)在递增;当x > √(-1/2)时,f(x)在递减。
故f(x)在x = -√(-1/2)和x = √(-1/2)时取得局部极值。
第二章一元函数微分学1. 选择题答案:1) B2) D3) A4) C2. 解答题答案:1) 解:首先要求函数g(x) = ∫(x^2, 1, x)cos(t^2)dt的导函数。
考研数学复习教程答案详解高数部分
第一篇高等数学第一章函数、极限与连续强化训练(一)一、选择题1.2.提示:参照“例1.1.5”求解。
3.4.解因选项(D)中的 不能保证任意小,故选(D)5.6.7.8.9.10.二、填空题11.提示:由2cos 12sin 2xx =-可得。
12.13.提示:由1 未定式结果可得。
14.提示:分子有理化,再同除以n即可。
15.提示:分子、分母利用等价无穷小代换处理即可。
16.17.提示:先指数对数化,再利用洛必达法则。
18.19.解因()2000122(1cos )22cos 2lim lim lim lim lim 1x x x x x x x xx f x x xxx -----→→→→→⋅---=====- ()0lim lim xx x f x ae a --→→==, 而()0f a =,故由()f x 在 0x =处连续可知,1a =-。
20.提示:先求极限(1∞型)得到()f x 的表达式,再求函数的连续区间。
三、 解答题 21.(1)(2)提示:利用皮亚诺型余项泰勒公式处理12sin ,sin x x。
(3)(4)(5)提示:先指数对数化,再用洛必达法则。
(6)提示:请参照“例1.2.14(3)”求解。
22.23.解 由题设极限等式条件得21()ln(cos )201()lim ,limln(cos )1f x x xxx x f x e e x x x+→→=+=, 即 2201()1()limln(cos )lim ln(1cos 1)1x x f x f x x x x x x x→→+=+-+=, 利用等价无穷小代换,得201()lim(cos 1)1x f x x x x →-+=,即230cos 1()lim()1x x f x x x→-+=, 故 30()3lim 2x f x x →=。
24.提示:先指数对数化,再由导数定义可得。
25.26.28.提示:利用皮亚诺型余项泰勒公式求解。
专升本高等数学二(一元函数微分学)模拟试卷3(题后含答案及解析)
专升本高等数学二(一元函数微分学)模拟试卷3(题后含答案及解析)题型有:1. 选择题 2. 填空题 3. 解答题选择题1.设f(x)在x=0处可导,则= ( )A.f’(0)B.f’(0)C.2f’(0)D.f’(0)正确答案:C解析:知识模块:一元函数微分学2.设函数y=ex-2,则dy= ( )A.ex-3dxB.ex-2dxC.ex-1dxD.exdx正确答案:B解析:因为y=ex-2,y’=ex-2,所以dy=ex-2dx.知识模块:一元函数微分学3.下列函数中,在x=0处可导的是( )A.y=|x|B.y=C.y=x3D.y=lnx正确答案:C解析:选项A中,y=|x|,在x=0处左右导数不相同,则y=|x|在x=0处不可导;选项B中,在x=0处无定义,即y=在x=0处不可导;选项C中,y=x3,y’=3x2处处存在,即y=x3处处可导,也就在x=0处可导;选项D中,y=lnx在x=0点没定义,所以y=lnx在x=0处不可导.知识模块:一元函数微分学4.f(x)=(x+1)(x+2)…(x+100),则f’(一1)= ( )A.100!B.99!C.∞D.一99!正确答案:B解析:由导数的定义可知f’(一1)==(x+2)…(x+100)=99!.知识模块:一元函数微分学5.曲线y=( )A.有一个拐点B.有两个拐点C.有三个拐点D.无拐点正确答案:D解析:因y’=,则y’’在定义域内恒不等于0,且无二阶不可导点,所以无拐点.知识模块:一元函数微分学6.函数y=ex+e-x的单调增加区间是( )A.(一∞,+∞)B.(一∞,0]C.(一1,1)D.[0,+∞)正确答案:D解析:y=ex+e-x,则y’=ex一e-x=,令y’>0,则x>0,所以y 在区间[0,+∞)上单调递增.知识模块:一元函数微分学7.函数f(x)=在[0,3]上满足罗尔定理,则ξ= ( )A.2B.3C.0D.1正确答案:A解析:由f(x)=,得f(0)=f(3)=0.又因f’(x)=,故f’(ξ)=0,所以ξ=2.知识模块:一元函数微分学8.设y=f(x)在[0,1]上连续,且f(0)>0,f(1)<0,则下列正确的是( ) A.y=f(x)在[0,1]上可能无界B.y=f(x)在[0,1]上未必有最小值C.y=f(x)在[0,1]上未必有最大值D.方程f(x)=0在(0,1)内至少有一个实根正确答案:D解析:函数在闭区间上连续,则在该区间必定有界,且存在最大、最小值,由零点定理可知选项D正确.知识模块:一元函数微分学填空题9.设函数y=(x一3)4,则dy=________.正确答案:4(x一3)3dx解析:因为y=(x一3)4,y’=4(x一3)3,则dy=4(x一3)3dx.知识模块:一元函数微分学10.设y=x2ex,则y(10)|x=0=________.正确答案:90解析:y’=2xex+x2ex=ex(x2+2x)=ex[(x+1)2一1],y’’=ex(x2+2x)+ex(2x+2)=ex[(x+2)2一2],y’’’=ex(x2+4x+2)+ex(2x+4)=ex[(x+3)2一3],…y(10)=ex[(x+10)2一10],所以y(10)|x=0=90.知识模块:一元函数微分学11.x=,y=t3,则=________.正确答案:一3t2(1+t)2解析:=一3t2(1+t)2.知识模块:一元函数微分学12.曲线y=的水平渐近线方程为_________.正确答案:y=解析:的水平渐近线.知识模块:一元函数微分学13.f(x)=xex,则f(n)(x)的极小值点为_________.正确答案:x=一(n+1)解析:f’(x)=ex+xex=(x+1)ex,f’’(x)=ex+(x+1)ex=(x+2)ex,f’’’(x)=ex+(x+2)ex=(x+3)ex,…,f(n)(x)=(x+n)ex,故(f(n)(x))’=f(n+1)(x)=(x+n+1)ex=0,则x=一(n+1),显然当x>一(n+1)时,f(n+1)(x)>0;当x<一(n+1)时,f(n+1)(x)<0,因此f(n)(x)的极小值点为x=一(n+1).知识模块:一元函数微分学解答题14.讨论f(x)=在x=0处的可导性.正确答案:f-’(0)==0,f+’(0)==0.故函数在x=0处可导且f’(0)=0.涉及知识点:一元函数微分学15.求曲线y=e-x上通过原点的切线方程及和直线x+y=2垂直的法线方程.正确答案:曲线y=e-x上任一点(x0,e-x0)处的切线方程为y=e-x0=一(e -x)|x=x0(x—x0),即y—e-x0=一e-x0(x—x0).因切线过原点,则将x=0,y=0代入得x0=一1,则切点为(一1,e),故过原点的切线方程为y=一ex.又曲线y=e-x上任意点的法线方程为y—e-x0=ex0(x—x0),因法线与x+y=2垂直,故有ex0.(一1)=一1,得x0=0,从而所求法线方程为y=x+1.涉及知识点:一元函数微分学16.函数y=y(x)由方程ey=sin(x+y)确定,求dy.正确答案:将ey=sin(x+y)两边对x求导,有ey.y’=cos(x+y)(1+y’),所以y’=dx.涉及知识点:一元函数微分学17.求函数y=的导数[已知f(μ)可微].正确答案:设y=f(μ),μ=ν2,ν=sint,t=,则涉及知识点:一元函数微分学18.设f(x)在x0点可导,求.正确答案:=2f’( x0).涉及知识点:一元函数微分学19.已知g(x)=af2(x)且f’(x)=,证明:g’(x)=2g(x).正确答案:g’(x)=(af2(x))’=lna.af2(x).[f2(x)]’=lna.af2(x).2f(x).f’(x),又f’(x)=,所以g’(x)=lna.af2(x).2f(x).=2af2(x)=2g(x).涉及知识点:一元函数微分学20.已知曲线y=ax4+bx2+x2+3在点(1,6)处与直线y=11x一5相切,求a,b.正确答案:曲线过点(1,6),即点(1,6)满足曲线方程,所以6=a+b+4,①再y’=4ax2+3bx2+2x,且曲线在点(1,6)处与y=11x一5相切,所以y’|x=1=4a+3b+2=11,②联立①②解得a=3,b=一1.涉及知识点:一元函数微分学21.设f(x)在[0,+∞)上连续,f(0)=0,f’’(x)在(0,+∞)内恒大于零,证明g(x)=在(0,+∞)内单调增加.正确答案:方法一因为f’’(x)>0,所以f’(x)在(0,+∞)单调增加,故f’(x)>f’(ξ),即g’(x)>0,从而g(x)在(0,+∞)单调增加.方法二g’(x)=,欲证分子φ(x)=f’(x)x-f(x)大于零,因为φ’(x)=f’’(x)x+f’(x)一f’(x)=f’’(x)x>0(x>0),所以x>0时φ(x)单调增加,即φ(x)>φ(0)=0,故当x>0,g(x)在(0,+∞)内单调增加.涉及知识点:一元函数微分学22.设f(x)在[a,b]上具有一、二阶导数,f(a)=f(b)=0,又F(x)=(x一a)2f(x).证明F(x)在(a,b)内至少存在一点ζ,使F’’(ζ)=0.正确答案:显然,F(x)在[a,b]上满足罗尔定理条件,故存在η∈(a,b),使F’(η)=0,又由F’(x)=2(x一a)f(x)+(x一a)2f’(x),知F’(a)=0.因此,F’(x)在[a,η]上满足罗尔定理条件,故存在ζ∈(a,η)(a,b),使得F’’(ζ)=0.涉及知识点:一元函数微分学23.当0<x<π时,证明.正确答案:令F(x)=,则F(0)=F(π)=0.又F’(x)=<F’(0)>F’(x)>F’(π).而F’(0)=<0,判别不出F’(x)的正负.注意到F’’(x)<0,则F(x)在0<x<π时是凸曲线,由于F(0)=F(π)=0,故F(x)>0,即,得证.涉及知识点:一元函数微分学24.设函数f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=0,k为正整数,求证:存在一点ξ∈(0,1)使得ξf’(ξ)+kf(ξ)=f’(ξ).正确答案:xf’(x)+kf(x)=f’(x),整理得,(x一1)f’(x)=一kf(x),分离变量得,两边积分得lnf(x)=一kln(1一x)+C1,整理得lnf(x)(1一x)k=C1,即f(x)(1一x)k=C,所以设F(x)=f(x)(1一x)k,F(x)在[0,1]上连续,在(0,1)内可导,又F(0)=0,F(1)=0,则F(x)在[0,1]上满足罗尔定理,故存在一点ξ∈(0,1),使得F’(ξ)=0,即ξf’(ξ)+kf(ξ)=f’(ξ).涉及知识点:一元函数微分学25.证明当x>0时,有.正确答案:分析可得>0,又可构造辅助函数,用单调性证明.令F(x)=(0<x<+∞),因为F’(x)=<0,所以F(x)在(0,+∞)上单调减少,又=0,所以,对一切x∈(0,+∞),恒有F(x)>0,即.涉及知识点:一元函数微分学26.某企业计划生产一批服装a件,分若干批进行生产,设生产每批服装需要固定支出1000元,而每批生产直接消耗的费用与产品数量的平方成正比,已知当每批服装生产数量是40件时,直接消耗的生产费用是800元,问每批服装生产多少件时,才能使总费用最少?正确答案:设每批生产x件,则一年内生产批,每批生产直接消耗费用为p,则p=kx2,又因为根据条件,每批产品40件时,直接消耗的生产费用为800,所以,800=k402,即k=x2,该产品的总费用y为y=.0<x≤a,又因为在实际问题中唯一的极值点就是最值点,所以当x=≈45时,总费用最小.涉及知识点:一元函数微分学。
高等数学:一元函数微分学习题含答案
第二章一元函数微分学一、选择题1.设)(x f y =可导,则)()2(x f h x f -+等于().A.)()(h o h x f +'B.)()(h o h x f +'C.)()(h o h x f +'-D.)()(2h o h x f +'2.设)(x f 在0x 处可导,且4)()2(lim000=--→xx f x x f x ,则)(0x f '等于().A.0B.1-C.1D.2-3.设)(x f 在0x 处可导,则下列命题中不正确的是().A.00)()(limx x x f x f x x --→存在B.00)()(limx x x f x f x x --→不存在C.00)()(lim 0x x x f x f x x --+→存在D.00)()(lim 0x x x f x f x x ---→存在4.已知)(x f y =在0=x 处可导且0)0(=f ,则当0≠t 时,有=→xtx f x )(lim 0().A.)(t f B.)0(f 'C.)0(f t 'D.不存在5.函数)(x f 在0x x =处连续,是)(x f 在0x 处可导的().A.充分条件B.必要条件C.充分必要条件D.既非充分也非必要条件6.函数x x f =)(在0=x 处().A.连续但不可导B.连续且可导C.极限存在但不连续D.不连续也不可导7.设0)0(=f ,且x x f x )(lim→存在,则xx f x )(lim 0→等于().A.)(x f 'B.)0(f 'C.)0(f D.)0(21f '8.设21)1(+=+x x f ,则)(x f '等于().A.2)1(1--x B.2)1(1+-x C.11+x D.11--x9.设x x f sin )(=,则0=x 处().A.1)0(,1)0(='='-+f f B.1)0(,1)0(-='='-+f f C.1)0(,1)0(-='-='-+f f D.1)0(,1)0(='-='-+f f 10.函数⎪⎩⎪⎨⎧>≤=1132)(23x xx xx f 在1=x 处().A.左右导数均存在B.左导数存在,右导数不存在C.左导数不存在,右导数存在D.左右导数均不存在11.设周期函数)(x f 在()+∞∞-,内可导,周期为2,又12)1()1(lim-=--→xx f f x ,则曲线)(x f y =在点())3(,3f 处的切线斜率为().A.21B.1C.2-D.212.设函数⎩⎨⎧≤<--+≤=10,110,sin )(x x x x x x f ,则)(x f 在0=x 处满足().A.0)0(='f B.1)0(='f C.3)0(='f D.)0(f '不存在13.已知⎩⎨⎧≤+>-=221)(2x b ax x x x ϕ,且)2(ϕ'存在,则常数b a ,的值为().A.1,2==b a B.5,1=-=b a C.5,4-==b a D.3,3-==b a 14.函数)(x f 在),(+∞-∞上处处可导,且有1)0(='f ,此外,对任何的实数x ,y 恒有xy y f x f y x f 2)()()(++=+,那么=')(x f ().A.xe B.xC.12+x D.1+x 15.设xe x g x xf =+=)(),1ln()(2,则[]='))((x g f ().A.x xe e 2212+B.x xe e 221+C.xxe e 2212-D.xxe e 221-16.设2)(-=x xf ,则)2(f '满足().A.值为2-B.值为2C.值为1D.不存在17.设)(x f y =的导数2)0(='f ,则=-→xx f f x 2)()0(lim 0().A.1B.2-C.1-D.218.设⎩⎨⎧<+≥+=0,,1sin )(x b x x x a x f ,要使)0(f '存在,则b a ,的值分别是().A.1,1==b a B.0,1==b a C.0,0==b a D.1,1-=-=b a 19.设函数⎪⎩⎪⎨⎧=≠=0,00,1arctan )(x x xx x f ,则)(x f 在0=x 处的性质是().A.连续且可导B.连续但不可导C.既不连续也不可导D.可导但不连续20.设2arcsin cosxy =,则=⎪⎪⎭⎫ ⎝⎛'23y ().A.21-B.21C.23-D.2321.函数xe y sin =,则y ''等于().A.xesin B.)sin (sin x ex-C.[]2sin cos x e xD.]sin )[(cos 2sin x x ex-22.函数x x x f )2()(+=的导数为().A.1)2(-+x x x B.1)2(-+x x C.)2ln()2(++x x x D.⎥⎦⎤⎢⎣⎡++++)2ln(2)2(x x xx x23.已知x x y ln =,则)12(y 等于().A.111x -B.111x C.11!10x D.11!10x -24.设xxe e y --=,则)2016(y等于().A.xxee -+B.xxee --C.xxee ---D.xx ee -+-25.已知函数)(x f 具有任何阶导数,且[]2)()(x f x f =',则当n 为大于2的正整数时,)(x f 的n 阶导数)()(x f n 是().A.[]1)(!+n x f n B.[]1)(+n x f n C.[]nx f 2)(D.[]nx f n 2)(!26.由方程1sin =-y xy 所确定的隐函数()x f y =的导数=xyd d ().A.yy x -cos B.xy y -cos C.yx y cos -D.yx x -cos 27.由方程x y x e y=++)ln(所确定的隐函数)(x f y =的导数=xy d d ().A.()11++--y x e y x y B.()11-++-y x e y x y C.()11++-+y x e y x y D.()11-+-+y x e y x y 28.设)(x y y =由方程)cos(sin y x x y -=所确定,则=')0(y ().A.12+πB.12+-πC.12-πD.12--π29.设由方程组⎩⎨⎧=++-=0112y te t x y 确定了y 是x 的函数,则==0d d t x y().A.21e B.e21-C.e1-D.e2-30.曲线22x e y x+=上横坐标0=x 处的切线方程是().A.012=-+-y x B.012=-+y x C.012=+-y x D.012=-+y x 31.曲线222)2ln(x x y +-=上对应于1=x 处的法线方程是().A.)1(22-=-x y B.)1(212--=-x y C.)1(22-=+x y D.)1(212--=+x y 32.曲线01cos 22=--y e x上点)3,0(π处的切线方程是().A.332π+=x y B.332π+-=x y C.332π--=x y D.xy 32-=33.曲线⎩⎨⎧==ty t x 2cos sin 在4π=t 处的切线方程是().A.)222222-=-x y B.)2222-=x y C.)22(22--=x y D.y 22=34.设1212+=x y ,则当01.0,1=∆=x x 时,y d 与y ∆分别为().A.2,01.0d =∆=y y B.01.0,201.12d =∆-=y y C.21)01.1(21,01.0d 2-=∆=y y D.1,01.0d =∆=y y 35.若函数)(x f y =有21)(0='x f ,则当0→∆x 时,该函数在0x x =处的微分y d 是x∆的().A.等价无穷小B.同阶但不等价的无穷小C.低阶无穷小D.高阶无穷大36.xx y 1=在e x =处取得().A.极大值B.最大值C.极小值D.最小值37.下列函数在[]e ,1满足拉格朗日中值定理的是().A.xx sin ln ln +B.xln 1C.)2ln(+x D.)2ln(2x -38.设函数)(x f 在[]b a ,上连续,则下列命题正确的是().A.)(x f 在[]b a ,上一定有最大值和最小值B.)(x f 必在区间内部取得最小值C.)(x f 必在区间端点处取得最大值D.若)(x f 在[]b a ,内有极值,则此值必为最值39.设1)()()(lim2-=--→a x a f x f ax ,则在a x =处)(x f ().A.可导且1)(-='a f B.)(a f 是)(x f 的极小值C.不可导D.)(a f 是)(x f 的极大值40.设函数c bx ax x x f +++=23)(,且0)0()0(='=f f ,则下列结论不正确的是().A.0==c b B.当0>a 时,)0(f 为极小值C.当0<a 时,)0(f 为极大值D.当0≠a 时,())0(,0f 为拐点41.函数2332)(x x x f -=在区间[]4,1-上的最小值是().A.0B.1-C.80D.5-42.若当0→x 时,)1(2++-bx ax e x是比2x 高阶的无穷小,则().A.1,1==b a B.1,21==b a C.1,21=-=b a D.1,1-=-=b a 43.(数二)已知某产品的需求函数为510QP -=,则当30=Q 时的边际收益为().A.2-B.3-C.2D.344.(数二)若总成本函数是二次函数c bQ aQ Q C C ++==2)(,其中0,0,0≥≥>c b a ,当产量=Q ()时,平均成本最低?A.a cB.ca C.ac D.ca 二、填空题45.设)(x f 在0x 处可导,且A x f =')(0,则hx f h x f h )()2(lim000-+→用A 的代数式表示为_______.46.设2)3(='f ,则=-+→h f h f h 2)3()3(lim_______.47.设xe xf 1)(=,则=--→h f h f h )2()2(lim_______.48.设2)(x x f =,则=--→2)2()(lim2x f x f x _______.49.))...(2)(1()(n x x x x x f +++=,则=')0(f _______.50.设432)4()3()2)(1()(----=x x x x x f ,则=')1(f _______.51.设1)(0-='x f ,则=--→)()2(lim000x f h x f hh _______.52.设215)()5(lim5-=--→x x f f x ,则=')5(f _______.53.设)(x f 在点0x 处可导,且41)()2(lim000=--→x f h x f h h ,则=')(0x f _______.54.已知)(x f 在0=x 处可导,且0,6)0(≠='h f ,则=--→xhx f hx f x 3)()(lim_______.55.若1)1(2-=-x x f ,则=')(x f _______.56.曲线xe x y +=在点()1,0处的切线方程是_______.57.已知x x y arctan )1(2+=,则=''y _______.58.已知)1ln(2x x y ++=,则=''y _______.59.设曲线方程为⎩⎨⎧+=++=tt y tt x cos sin 2,则='y _______.60.设)1sin(2+=x e y x,则=y d _______.61.求=--→xx e x x 630sin 1lim 3_______.62.设)7)(5)(1)(13()(----=x x x x x f ,则方程0)(='x f 有_______个实根.63.函数x y sin =在区间[]π,0满足罗尔定理的=ξ_______.64.函数x x y -=22在[]2,0上满足拉格朗日中值定理的=ξ_______.65.曲线x x x y 23123+-=的拐点为_______.66.曲线35)2(-=x y 的拐点为_______.67.(数一)曲线x x y -=12的垂直渐近线方程是.68.(数一)1)(22-=x x x f 有条渐近线.69.(数一)111)(-+=x e x f 有条渐近线.70.已知)4,2(是曲线c bx ax x y +++=23的拐点,且曲线在3=x 处有极值,=a ,=b ,=c .71.(数二)已知某产品的总成本函数C 与产量x 的函数关系为2000102.0)(2++=x x x C ,则当产量10=x 时,其边际成本是.72.(数二)已知某商品的收入函数为2312Q Q R -=,则当=Q 时边际收入为0.73.(数二)设某种产品的单位成本y 是产量x 的函数,xx y 164++=(元),若产品以每件1000元的价格销量,当产量=x 时总利润最大.74.(数二)生产某产品的边际成本函数为100143)(2+-='x x x C ,固定成本1000)0(=C ,求生产x 个产品的总成本函数.75.(数二)设边际收入函数为q q R 32)(+=',且0)0(=R ,则平均收入函数为__________.76.(数二)某公司在一个生产周期内制造x 台电冰箱的成本22.02008000)(xx x C -+=)4000(≤≤x 第251台电冰箱的实际制造成本为.三、计算题77.设)1ln(cos )(2x x f -=,求)(x f '.78.4312)(+-=xx x f ,求)(x f '.79.221cos 5ln x x y -+=,求y '及y d .80.设x ey x3cos -=,求y '.81.设xy 1cosln =,求y '.82.设1133+-=x x y ,求y '.83.设2x xee y +=,求1.00 d =∆=x x y.84.设x x y +=,求y '.85.设)32(2+-=-x x ey x,求y '.86.设212arcsintty +=,求y '.87.设⎪⎭⎫⎝⎛+-=2323x x f y ,且2arcsin )(x x f =',求d d =x x y .88.设134)1(2++=+x x x f ,)()(xe f x g -=,求)(x g '.89.求b a ,的值,使⎩⎨⎧>+≤-=1,ln 1),1(sin )(x b x x x a x f ,在1=x 处可导.90.设⎪⎩⎪⎨⎧≥+<--=0,0,11)(x bx a x x xx f 处处可导,求a 和b 的值.91.设函数⎪⎩⎪⎨⎧=≠+=0,00,1)(1x x e xx f x ,求)0(-'f ,)0(+'f ,同时讨论)0(f '是否存在.92.已知⎩⎨⎧≥<=0,0,sin )(x x x x x f ,求)(x f '.93.求函数⎪⎩⎪⎨⎧=≠==0,00,1sin )(2x x xx x f y 的导数.94.设)(x ϕ在a 点的某领域内连续,)()()(x a x x f ϕ-=,求)(a f '.95.设)(x f ''连续,0)0(=f ,记⎪⎩⎪⎨⎧='≠=0),0(0,)()(x f x x x f x F ,证明)(x F '连续.96.设函数)(x f 处处可导,[]{})(x f f f y =,求x yd d .97.设x x y ln 22+=,求y ''.98.设xx y +-=11,求)(n y .99.设x x y ln =,求)(n y .100.设)1ln(2x x y ++=,求y ''.101.[])(ln x f y =,求y ''102.)2(2x x f y +=,其中f 二阶可导,求y ''.103.设)(x f ''存在,)(x xe f y -=,求y ''.104.求由方程32y x e xy +=所确定的隐函数)(x f y =的微分y d .105.求方程)sin(y x y +=确定的隐函数的二阶导数.106.已知222222b a y a x b =+,求y ''107.求由方程232-+=y x e xy 确定的隐函数)(x f y =在点)1,0(处的切线方程.108.设)(x y y =由方程e xy e y =+确定,求)0(y '.109.用对数求导法求函数xx x y ⎪⎭⎫ ⎝⎛+=1的导数.110.用对数求导法求函数54)1()3(2+-+=x x x y 的导数.111.设函数)(x f y =由参数方程⎩⎨⎧==t e y t e x t t cos sin 所确定,求3d d π=t x y .112.设曲线)(x f y =由参数方程⎩⎨⎧==ty t x 2cos sin 所确定,求曲线在4π=t 处的切线方程.113.设函数)(x f y =由参数方程⎪⎩⎪⎨⎧-==ty t x 1 22,求22d d x y .114.设函数)(x f y =由参数方程⎩⎨⎧-==t t t y t x cos sin cos 确定,22d d ,d d x yx y .115.求方程⎩⎨⎧==ta y t a x 33sin cos 表示的函数的二阶导数.116.x xx x 20tan )1ln(lim -+→.117.x x x 2cot 2lim 2⎪⎭⎫⎛-→ππ.118.xx x cos 1120)1(lim -→-.119.求⎪⎭⎫⎝⎛--→111lim 0x x e x .120.求()x x x ln 31102sin lim +→+.121.求x x x 2sin 231lim ⎪⎭⎫ ⎝⎛+∞→.122.ax a x a x --→sin sin lim .123.xx x 5tan 3sin lim π→.124.22)2(sin ln lim x x x -→ππ.125.)0(lim ≠--→a a x a x nn mm a x .126.xx x 2tan ln 7tan ln lim 0+→.127.x xx 3tan tan lim 2π→.128.xarc x x cot 11ln lim ⎪⎭⎫ ⎝⎛++∞→.129.x x x x cos sec )1ln(lim 20-+→.130.x x x 2cot lim 0→.131.2120lim x xe x →.132.⎪⎭⎫⎝⎛---→1112lim 21x x x .133.122231lim -∞→⎪⎭⎫ ⎝⎛+++x x x x a .134.x x x sin 0lim +→.135.x x x tan 01lim ⎪⎭⎫ ⎝⎛+→.136.求7186223---=x x x y 的单调区间.137.求3)3)(1(+-=x x y 的单调区间.138.求函数x x y -=在区间[]1,0上的最小值.139.求函数)1ln(21arctan 2x x y +-=的极值点和极值.140.求函数32)1(2--=x y 的极值点和极值.141.设x x a y 3sin 31sin +=在点3π=x 处取得极小值,求a 的值.142.求曲线)1ln(2+=x y 的拐点.143.设函数)(x f y =由方程1222223=-+-x xy y y 所确定,求)(x f y =的极值.144.求曲线21x xy +=的凹凸区间及拐点.145.设函数x bx x a x f 3ln )(2-+=在1=x 和2=x 处取得极值,求b a ,的值.146.已知点)4,2(是曲线c bx ax x y +++=23的拐点,且曲线在3=x 处取得极值,求b a ,c 的值.147.求函数12+=x x y 的极值.148.求函数x e x x f -=2)(在]3,1[-上的最大值与最小值.149.设曲线方程为462++=x x y ,求曲线在)4,2(--处的切线方程.150.求等边双曲线x y 1=在点⎪⎭⎫ ⎝⎛2,21处的切线的斜率,并写出在该点处的切线方程和法线方程.151.求曲线⎩⎨⎧==-t tey e x 22在0=t 处的切线方程和法线方程.152.求曲线0)ln(22=++yxe y x 在0=x 处的切线方程.153.确定c b a ,,的值,使c bx ax x y +++=23在点)1,1(-处为拐点,且在0=x 处有极大值为1,并求此函数的极小值.154.设函数)(x f 在[]a ,0上二阶可导,0>a 且0)(>''x f ,0)0(=f ,证明xx f x g )()(=在[]a ,0上单调增加.155.求函数26323-+-=x x x y 在区间[]1,1-上的最值.156.求函数322)1()2(+-=x x y 在区间[]2,2-上最大值和最小值.157.求过点⎪⎭⎫ ⎝⎛0,23与曲线21x y =相切的直线方程.158.求曲线01322=+++y xy x 在点)1,2(-处的切线和法线方程.159.设甲船以km/h 6的速率向东行驶,乙船以8km/h 的速度向南行驶,在中午十二点整时,乙船位于甲船之北16km 处,问下午一点整时两船相离的速率为多少?160.已知曲线2x y =与3x y =的切线平行,求x 的取值.161.求椭圆12222=+by a x 在点),(11y x M 处的切线方程.162.设甲、乙两船同时从一码头出发,甲船以km/h 30的速度向北行驶,乙船以km/h 40的速度向东行驶,求两船间的距离增加的速度.163.已知曲线的参数方程⎩⎨⎧==-232t t e y e x ,证明0d d d d 21222=+x y x y e t .164.(数一)求曲线2)1(42--=xx y 的水平和垂直渐近线.165.设曲线cx bx ax y ++=23上点)2,1(处有水平切线,且原点为该曲线的拐点,求该曲线方程.166.设点)2,1(-是曲线123-+=bx ax y 上的一个拐点,求a 和b 的值.167.设函数3)(4-+=bx ax x f 在1-=x 点处取得极小值0,求a 和b 的值.168.设函数)(x f 满足)()(x f x f =',且1)0(=f ,求证:x e x f =)(.169.求函数xe y x+=1的单调区间和极值.170.设)1ln(21arctan )(arctan 21222x x x x x y ++-+=,求y d .171.求函数3223x x y -=在区间[]1,1-上的最大值与最小值.172.已知曲线2x y =与直线cx y =)10(<<c 所围成图形的面积为1S ,曲线2x y =与直线cx y =)10(<<c 及直线1=x 所围城图形的面积为2S ,求21)(S S c S +=的最小值.173.求内接于半径a的球的长方体体积的最大值.174.用32cm长的一根铁丝围成一个矩形小框,试问:当矩形的长和宽各为多少时,围成的矩形面积最大?175.用薄铁板做一体积为V的有盖圆柱形桶,问桶底直径与桶高应有怎样的比例,才能使所用材料最省.176.已知某船的耗油费用与其速度的立方成正比,若每小时行驶10海里的耗油费为25元,其余费用每小时100元,求最经济的速度.177.欲做一个容积为3m V 的无盖圆柱形储粮桶,底用铝制,侧壁用木板制,已知每平方米铝价是木板价的5倍,问怎样做才能使费用最少.178.窗子的上半部为半圆,下半部为矩形,如果窗子的周长L 固定,试问当圆的半径r 取何值时,能使窗子的面积最大.179.欲围一个面积为2m 150的矩形场地,所用材料的造价是正面是每平方米6元,其余三面是每平方米3元,问场地的长,宽各为多少米时,才能使所用材料费最少.180.设甲船位于乙船东75海里,以12海里每小时的速度向西行驶,而乙船则以6海里每小时的速度向北行驶,问经过多长时间,两船相距最近?181.用a 万元购料,建造一个宽于深相同的长方体水池,已知四周的单位面积材料费为底面积材料费的5.1倍,求水池长与宽(深)各是多少,才能使容积最大.(地面单位面积材料费为1万元).182.在曲线26x y -=)0(>x 上确定一点,使该点处的切线与两坐标轴围城的平面图形的面积最小,并求最小值.183.已知函数x x x f 2)(3+=在区间[]1,0上满足拉格朗日定理,求相关的ξ值.184.(数二)设某工厂生产某种商品的固定成本为200(百元),每生产一个单位商品成本增加5(百元),且已知需求函数P Q 2100-=(其中P 为价格,Q 为产量).这种商品在市场上市场上畅销的.(1)试分别列出该商品的总成本函数)(P C 和总收益函数)(P R 的表达式.(2)求出使该商品的总利润最大时的产量.185.(数二)某工厂生产某种产品的固定成本为200万元,每多生产一吨该产品,成本增加5万元,该产品的边际收益函数为Q Q R 02.010)(-=',其中Q (单位:吨)为产量.试求:(1)该产品的边际成本函数;(2)该产品的总收入函数;(3)Q 为多少时,该厂总利润L 最大?最大利润是多少?186.(数二)某工厂生产某产品时,每日总成本为C 元,其中固定成本为50元,每多生产一单位产品,成本增加2元,该产品的需求函数为505Q p =-,求Q 为多少时,工厂日总利润L 最大?最大利润是多少?187.(数二)某商品的需求函数为275)(p p f Q -==,(1)求5=p 时的边际需求;(2)当p 为何值时,总收益最大?最大的总收益为多少?31第二章一元函数微分学1.D 。
一元函数微分学练习题
第一部分、一元函数微分学习题集1一、选择题1.下列命题正确的是( )0(A)()lim ().x x f x x f x →=∞若在的任意空心邻域内无界,则0(B)lim (),().x x f x f x x →=∞若则在的任意空心邻域内无界(C)lim (),lim ().x x x x f x f x →→=∞若不存在则1(D)lim (),lim.()x x x x f x f x →→=∞若=0则 2.{}n x 关于数列下列命题正确的个数是( ){}(1)lim .n n n x A x →∞⇒若=存在有界(2)lim lim .n n k n n x A k x A +→∞→∞=⇔=存在对任意确定正整数有221(3)lim lim lim .n n n n n n x A x x A -→∞→∞→∞=⇔==存在1(4)lim lim1.n n n n nx x A x +→∞→∞=⇒=存在(A)1 (B)2 (C)3 (D)43. 下列命题正确的是( )00,0()()lim (),lim ()x x x x x x f x g x f x A g x B A B δδ→→∃><-<>==>(A)若当时, 且均存在,则0lim ()lim ()00()()x x x x f x g x x x f x g x δδ→→≥∃><-<>(B)若,则,当时 00lim ()lim ()00()()x x x x f x g x x x f x g x δδ→→≥∃><-<≥(C)若,则,当时0lim ()lim ()00()()x x x x f x g x x x f x g x δδ→→>∃><-<>(D)若,则,当时4 ()()()cos 1sin ,02x x x x x x πααα-=<→设,当时( )x (A)比高阶的无穷小 x (B)比低阶的无穷小 x (C)与同阶但不等价的无穷小 x (D)与是等价的无穷小5. 已知当0x →时,函数()3sin sin 3f x x x =-与k cx 是等价无穷小,则( )(A) 1,4k c == (B )1,4k c ==- (C )1,4k c == (D )3,4k c ==- 6.20()sin ()ln(1)x f x x ax g x x bx →=-=-当时,与是等价无 a 穷小,则=( )b=( )1111(A)1,(B)1,(C)1,(D)1,6666a b a b a b a b ==-===-=-=-=-7.设()(1231,1,1a x a a =-=+=.当0x +→时,以上3个无穷小量按照从低阶到高阶的排序是 ( ) (A )123,,a a a (B )231,,a a a (C )213,,a a a (D )321,,a a a8.(](](),lim (),(),x f x b f x A f x b →-∞-∞=-∞设在上连续,则存在是在上有界的( ) (A )充分不必要条件 (B )必要不充分条件(C )充要条件 (D )既不充分也不必要条件 9.[]11()tan (),( ) ()xxe e xf x x x e e ππ+=-=-设在上的第一类间断点是0 1 22ππ(A) (B)(C)- (D)10. 1()( )(1)ln xx f x x x x-=+函数的可去间断点的个数为0 1 2(A) (B)(C) (D)311.()20sin ()lim 1,( ) x tt t f x x →⎛⎫+-∞+∞ ⎪⎝⎭函数=在内(A)连续 (B)有可去间断点(C)有跳跃间断点 (D)有无穷间断点12.曲线y= 1ln(1)x e x++, 渐近线的条数为 ( )A.0B.1C.2D.313. 已知()f x 在0x =附近有定义,且()00f =,则f(x)在0x =处可导的充要条件为 ( )(A )()22limx f x x →存在. (B )()1lim xx f ex→-存在.(C) ()201cos limx f x x →-存在. (D)()02()lim x f x f x x→-存在.14. 已知函数(),0111,,1,2,1x x f x x n n n n ≤⎧⎪=⎨<≤=⎪+⎩,则( )(A )0x =是()f x 的第一类间断点 (B )0x =是()f x 的第二类间断点 (C )()f x 在0x =处连续但不可导 (D )()f x 在0x =处可导15. 已知函数()2321cos ,0()arcsin ,0x x f x xg x x x ⎧->⎪=⎨⎪≤⎩,其中g (x )是有界函数,则f (x )在x =0处( ) (A )极限不存在 (B )极限存在但不连续 (C )连续但不可导 (D )可导16.[]0(),(0)1y f x f δδδ∃>=-=若使得在上有定义,且满足20ln(12)2()lim 0()x x xf x x →-+=,则 ''(A)()0 (B)()0(C)()0(0)0 (D)()0(0)1f x x f x x f x x f f x x f ======在处不连续在处连续但不可导在处可导,且在处可导,且17.'1cos ,0()()00, 0x x f x f x x x x αβαβ⎧>⎪==⎨⎪≤⎩设,(>0,>0),若在处连续,则( )(A) 1 (B)0 1 (C) 2 (D)0 2 αβαβαβαβ-><-≤-><-≤18.()2()cos ln 1lim 1?n y f x xy y x f n →∞⎡⎤⎛⎫=+-=-= ⎪⎢⎥⎝⎭⎣⎦设是由所确定,则n ( )(A) 2 (B) 1 (C) 1 (D) 2--19.()()''0,()0 , f x f x +∞>设函数在上具有二阶导数,且 令(),1,2,3,,n u f n n ==则下列结论正确的是( ).{}{}{}{}12121212(A), (B),(C), (D),n n n n u u u u u u u u u u u u >><<若则必收敛若则必发散若则必收敛若则必发散20.()()()2'2arctan limx f x x f x xfx ξξ→==设,若则=( )211(A)1 (B) (C) (D)32321.21,y ax b y x a b x=+=设直线同时与曲线及y=相切,则为( )(A)4, 4 (B)3, 4(C)4, 3 (D)3, 3a b a b a b a b =-=-=-=-=-=-=-=-22.()()()0,()0,()gf xg x g x g x a x ''<=设函数具有二阶导数,且若是()()0f g x x 的极值,则在取极大值的一个充分条件是( )(A) ()0f a '< (B)()0f a '> (C)()0f a ''< (D)0)(>''a f 23.设函数0()y f x x =在的某邻域内具有二阶导数,且0''0()lim 0x x f x A x x →=<-,则( ) ()()0000(A)0,(),()x x x y f x x x x y f x δδδ∃>∈-=∈+=当时是凹的,当时是凸的()()0000(B)0,(),()x x x y f x x x x y f x δδδ∃>∈-=∈+=当时是凸的,当时是凹的()00(C)0,()x x x y f x δδδ∃>∈-+=当时是凹的()00(D)0,()x x x y f x δδδ∃>∈-+=当时是凸的 24. 设函数()f x 在(),-∞+∞内连续,其导函数的图形如图所示,则 ( ) (A )函数()f x 有2个极值点,曲线()y f x =有2个拐点 (B )函数()f x 有2个极值点,曲线()y f x =有3个拐点 (C )函数()f x 有3个极值点,曲线()y f x =有1个拐点 (D )函数()f x 有3个极值点,曲线()y f x =有2个拐点25.''22()()(1,1)2()f x y f x x y f x =+=设 不变号,且曲线在点上的曲率圆为,则函数在区间(1,2)内( ).(A), (B),(C), (D),有极值点无零点无极值点有零点有极值点有零点无极值点无零点26.设函数()(1,2)i f x i =具有二阶连续导数,且''0()0(1,2)i f x i <=,若两条曲线()(1,2)i y f x i ==在点00(,)x y 处具有公切线()y g x =,且在该点处曲线1()y f x =的曲率大于曲率2()y f x =的曲率,则在0x 的某个邻域内,有 ( )(数一、二做)12(A)()()()f x f x g x ≤≤ 21(B)()()()f x f x g x ≤≤ 12(C)()()()f x g x f x ≤≤ 21(D)()()()f x g x f x ≤≤ 27.设商品的需求函数为()215()150082Q p p p p =--<<其中Q , p 分别为需求量和价格,ε为商品需求弹性,若1ε<,则p 的取值范围 ( )(数三做)(A)03p << (B)58p << (C)35p << (D)05p <<二、填空题 1. 212lim tan1x xx x →∞-=+ . 2. 0ln(1sin )lim cos 1x x x x →+-= .3.cos 0x x →= .4. tan sin 0limx xx e e →=- .5.limx →∞= .6.(lim sin x →∞-= .7.设0()ln 1lim 3x f x x x x→⎛⎫++ ⎪⎝⎭=,则20()lim x f x x →= .8. []()21cos ()()lim 1(0) 1()xx xf x f x f ef x →-==-已知函数连续且,则 . 9. 已知函数()f x满足x →=02,则lim ()____x f x →=0.10.20()()x x kx x αβ→==当时,与 k 是等价无穷小则= .11.3231lim (sin cos )2x x x x x x x →∞+++=+求 .12.20ln cos lim _________.x xx →=13. 30arctan sin lim x x x x →-⎛⎫=⎪⎝⎭求 .14.()11lim _________nn n n -→∞+⎛⎫= ⎪⎝⎭.15.101+2lim 2xxx →⎛⎫= ⎪⎝⎭求 . 16.10ln(1)lim 2xx x x →+⎛⎫-= ⎪⎝⎭.17.20lim x x →-= .18.21lim tan 4n n n π→∞⎛⎫-= ⎪⎝⎭.19.21000lim xx e x--→= .20.()2224cos limx x e x x xe ex-→-= .21.若2260sin 3()lim 0x x x f x x→+=,则403()lim →+=x f x x . 22.()21,()=, .2, x x cf x c x c x ⎧+≤⎪-∞+∞=⎨>⎪⎩设函数在内连续则23. x =0是1()1arctanf x x x=-的 间断点.24. x =1是221()lim 1n nn x f x x →∞-=+的 间断点. 25. 曲线()322arctan 11x y x x=+++的斜渐近线方程为 . 26. 曲线1y x =-+的水平渐近线方程为 ,垂直渐近线方程为 ,斜渐近线方程为 .27.1()(()) .21,1x edyx f x y f f x dx x x =⎧≥===⎨-<⎩设,,则28.'()y f x f =设是以3为周期的周期函数,且(7)=1,则(1)(13tanh)lim.h f h f h→+--=29.'f 设(1)=1,则0(1)(12sin )lim .2sin x f x f x x x→+--+=30. ()2()1,0lim . 2n n y f x y x x nf n →∞⎛⎫==-=⎪+⎝⎭曲线和在点处有切线,则31.111cos '1(0)1(0)3lim . nn n f f f n -→∞⎛⎫=== ⎪⎝⎭设,,则32. 2cos cos .41sin x t t t y tπ⎧=+=⎨=+⎩曲线上对应于点的法线斜率为33.()21ln(1),()2arctan x t t y f x y t ⎧=+⎪=⎨⎪=⎩设为参数则在任意点处的曲率22 ,() .()d yK dx==数一、二做数三做34.曲线arctan y x=在(1,0)点的切线方程为 .35. 曲线tan()4y x y e π++=在点(0,0)处的切线方程为 .36.()12 ln 0(0)13n x y x n y x -===+函数在处的阶导数 . 37.()2()sin cos (0).n f x x x x f=设 ,则 =38.()23 ()3+ 0, f x x Ax x A A -=>设为正常书,则至少取时f(x)20.≥有39. 若曲线y x ax bx =+++3214有拐点(1,3),则b=_____________.40. 已知一个长方形的长l 以2cm/s 的速率增加,宽w 以3cm/s 的速率增加,则当l=12cm,w=5cm 时,它的对角线增加的速率为_________. (数学一、二做) 41.已知动点P 在曲线3x y =上运动,记坐标原点与点P 间的距离为l 。
专升本高等数学二(一元函数微分学)模拟试卷1(题后含答案及解析)
专升本高等数学二(一元函数微分学)模拟试卷1(题后含答案及解析)题型有:1. 选择题 2. 填空题 3. 解答题选择题1.设函数f(x)在点x0的某邻域内可导,且f(x0)为f(x)的一个极小值,则= ( )A.一2B.0C.1D.2正确答案:B解析:因f(x)在x=x0处取得极值,且可导,于是f’(x0)=0.又=2f’(x0)=0.知识模块:一元函数微分学2.设函数f(x)=e-x2,则f’(x)等于( )A.一2e-x2B.2e-x2C.一2xe-x2D.2xe-x2正确答案:C解析:因f(x)=e-x2,则f’(x)=e-x2.(一2x)=一2xe-x2.知识模块:一元函数微分学3.设函数f(x)=2lnx+ex,则f’(2)= ( )A.eB.1C.1+e2D.ln2正确答案:C解析:因f(x)=2lnx+ex,于是f’(x)=+ex,故f’(2)=1+e2.知识模块:一元函数微分学4.设y=exsinx,则y’’’= ( )A.cosx.exB.sinx.exC.2ex(cosx—sinx)D.2ex(sinx—cosx)正确答案:C解析:y’=exsinx+excosx=ex(sinx+cosx),y’’=ex(sinx+cosx)+ex(cosx—sinx)=2excosx,y’’’=2excosx一2exsinx=2ex(cosx—sinx).知识模块:一元函数微分学5.设f(x)可导,且满足=一2,则曲线y=f(x)在点(1,f(1))处的切线斜率为( )A.4B.一4C.1D.一1正确答案:D解析:=2f’(1)=一2,故f’(1)=一1.知识模块:一元函数微分学6.曲线y=1+( )A.有水平渐近线,无铅直渐近线B.无水平渐近线,有铅直渐近线C.既有水平渐近线,又有铅直渐近线D.既无水平渐近线,也无铅直渐近线正确答案:C解析:对于曲线y==1,故有水平渐近线y=1;又=一∞,故曲线有铅直渐近线x=一1.知识模块:一元函数微分学7.曲线y==1的水平渐近线的方程是( )A.y=2B.y=一2C.y=1D.y=一1正确答案:D解析:=一1,所以水平渐近线为y=一1.知识模块:一元函数微分学8.曲线y=(x一1)2(x一3)2的拐点个数为( )A.0B.1C.2D.3正确答案:C解析:本题考察曲线拐点的概念,可直接求函数二阶导数为零的点,再判断在零点左右两侧的二阶导数是否异号,以求出拐点,但由于函数的一阶、二阶导数有明显的几何意义,因而这类题目若能结合曲线的形状,往往判断起来更为方便,本题的曲线对称于直线x=2,所以它或者没有拐点,或者只有两个拐点,因此B与D被排除掉,又y’=4(x一1)(x一2)(x一3),对导函数y’应用罗尔定理,知y’’有两个零点,从而知曲线有两个拐点,故选C.知识模块:一元函数微分学9.方程x3一3x+1=0 ( )A.无实根B.有唯一实根C.有两个实根D.有三个实根正确答案:D解析:令f(x)=x3一3x+1,则f’(x)=3(x+1)(x-1),可知,当一1<x<1时,f’(x)<0,f(x)单调递减;当x>1或x<一1时,f’(x)>0,f(x)单调递增,因f(一2)=一1<0,f(一1)一3>0,f(1)=一1<0,f(2)一3>0,由零点定理及f(x)的单调性知,在(一2,一1),(-1,1)及(1,2)各存在一个实根,故f(x)=x3一3x+1有且只有三个实根,故选D.知识模块:一元函数微分学填空题10.设函数f(x)在x=0处可导,且f(0)=0,f’(0)=b,若F(x)=在x=0处连续,则常数A=________.正确答案:a+b解析:由函数F(x)在x=0处连续可得=F(0),即=b+a=A.知识模块:一元函数微分学11.设y=2x,则y(n)=________.正确答案:(ln2)n2x解析:y=2x,y’=2xln2,y’’=2x.ln2.ln2=(ln2)22x,y’’’=(ln2)2.2x.ln2=(ln2)3.2x,…y(n)=(ln2)n2x.知识模块:一元函数微分学12.设y=,则y’=_________.正确答案:解析:知识模块:一元函数微分学13.设f(x)=ax3一6ax2+b在区间[一1,2]的最大值为2,最小值为一29,又知a>0,则a=_________,b=_________.正确答案:,2解析:f’(x)=3ax2-12ax,f’(x)=0,则x=0或x=4,而x=4不在[一1,2]中,故舍去,f’’(x)=6ax一12a,f’’(0)=一12a,因为a>0,所以f’’(0)<0,所以x=0是极大值点.又因f(一1)=一a一6a+b=b一7a,f(0)=b,f(2)=8a一24a+b=b一16a,因为a>0,故当x=0时,f(x)最大,即b=2;当x=2时,f(x)最小.所以b一16a=一29,即16a=2+29=31,故a=.知识模块:一元函数微分学14.若=1,则f(x)在x=a处取极_________值.正确答案:小解析:一1>0,又有(x一a)2>0,则由极限的保号性可知f(x)一f(a)>0,故f(a)为极小值.知识模块:一元函数微分学解答题15.求y=的n阶导数.正确答案:y’=,y’’=,y’’’=,依次类推y(n)=(一1)n.涉及知识点:一元函数微分学16.求函数y=ln(x+)的二阶导数y’’.正确答案:y’’=.涉及知识点:一元函数微分学17.设x=φ(y)是严格单调的连续函数y=f(x)的反函数,且f(1)=9,f’(1)=一,求φ’(9).正确答案:φ’(y)=,而f(1)=9,f’(1)=一,故φ’(9)=.涉及知识点:一元函数微分学18.设y=y(x)由所确定,f’’(t)存在且f’’(t)≠0,求.正确答案:涉及知识点:一元函数微分学19.设函数f(x)在(一∞,+∞)内具有二阶导数,且f(0)=f’(0)=0,试求函数g(x)=的导数.正确答案:当x≠0时,g’(x)=;涉及知识点:一元函数微分学20.求曲线y=x3一3x+5的拐点.正确答案:y’=3x2一3,y’’=6x.令y’’=0,解得x=0.当x<0时,y<0;当x>0时,y’’>0,当x=0时,y=5.因此,点(0,5)为所给曲线的拐点.涉及知识点:一元函数微分学已知f(x)是定义在R上的单调递减的可导函数,且f(1)=2,函数F(x)=∫0xf(t)dt一x2—1.21.判别曲线y=F(x)在R上的凹凸性,并说明理由;正确答案:∵F’(x)=f(x)一2x,F’’(x)=f(x)一2,且由题意知f’(x)≤0(x∈R),∴F’’(x)<0(x∈R),故曲线y=F(x)在R上是凸的;涉及知识点:一元函数微分学22.证明:方程F(x)=0在区间(0,1)内有且仅有一个实根.正确答案:显然F(x)在[0,1]上连续,且F(0)=一1<0,F(1)=∫01f(t)dt一2>∫012dt一2=0,∴方程F(x)=0在区间(0,1)内至少有一个实根.由F’’(x)<0知F’(x)在R上单调递减,∴x<1时,有F’(x)>F’(1)=f(1)一2=0,由此知F(x)在(0,1)内单调递增,因此方程F(x)=0在(0,1)内至多只有一个实根,故方程F(x)=0在区间(0,1)内有且仅有一个实根.涉及知识点:一元函数微分学23.若f(x)在[0,1]上有三阶导数,且f(0)=f(1)=0,设F(x)=x3f(x),试证在(0,1)内至少存在一个ξ,使F’’’(ξ)=0.正确答案:由题设可知F(x),F’(x),F’’(x),F’’’(x)在[0,1]上存在,又F(0)=0,F(1)=f(1)=0,由罗尔定理,存在ξ1∈(0,1)使F’(ξ1)=0.又F’(0)=[3x2f(x)+x3f’(x)]|x=0=0,F’(x)在[0,ξ1]上应用罗尔定理,存在ξ2∈(0,ξ1)(0,1)使F’’(ξ2)=0,又F’’(0)=[6xf(x)+6x2f’(x)+x3f’’(x)]|x=0=0,对F’’(x)在[0,ξ2]上再次用罗尔定理,存在ξ∈(0,ξ2)(0,1)使F’’’(ξ)=0.涉及知识点:一元函数微分学24.设0<a<b<1,证明不等式arctanb—arctana<.正确答案:只需证明,在[a,b]上用拉格朗日中值定理,涉及知识点:一元函数微分学25.证明:当x>0时,有不等式(1+x)ln(1+x)>arctanx.正确答案:令f(x)=(1+x)ln(1+x)一arctanx,f’(x)=ln(1+x)+1一,f’’(x)=当x>0时,f’’(x)>0,则f’(x)单调递增,故有f’(x)>f’(0)=0,则f(x)单调递增,故有f(x)>f(0)=0,即(1+x)ln(1+x)>arctanx.涉及知识点:一元函数微分学26.证明当x>0时,x>ln(1+x).正确答案:令F(x)=x—ln(1+x),由F’(x)=1->0(当x>0时)知F(x)单调增加,又F(0)=0,所以,当x>0时,F(x)>0,即x—ln(1+x)>0,即x>ln(1+x).涉及知识点:一元函数微分学27.设有底为等边三角形的直柱体,体积为V,要使其表面积为最小,问底边的长应为多少?正确答案:设底边长为x,直柱体高为y,则V=,S’=,令S’=0得为极小值点,故在实际问题中,也为最小值点,即底边为时,表面积最小.涉及知识点:一元函数微分学。
第二章 一元函数微分学测试卷
第二章 一元函数微分学测试题(A )一、选择题:(每小题3分,共计15分)1.设()f x 在0x x =可导,则下列各式中结果等于0()f x '的是 () A .000()()lim x f x f x x x∆→-+∆∆;B .000()()limx f x x f x x∆→-∆-∆C .000(2)()lim x f x x f x x∆→+∆-∆; D .000(2)()lim x f x x f x x x∆→+∆-+∆∆. 2.函数()1f x x =-()A .在1x =处连续可导B .在1x =处不连续C .在0x =处连续可导D .在0x =处不连续 3.设x x y =,则='y( )A .)1(ln +x x xB .)1ln (+x x x xC .x x x lnD .x x4.若函数()f x 在[],a b 上连续,在),(b a 内可导,且( )时,则在(),a b 内至少存在一点ξ,使0)(='ξf 成立.A .()()f a f b =;B .()()f a f b ≠;C .0)()(>b f a f ;D .0)()(<b f a f . 5.若()f u 可导,且()x y f e =,则有dy( )A .()x f e dx ';B .()x x f e de ;C .[()]x x f e de ';D .[()]x x f e e dx '.二、填空题(每小题3分,共计15分)1.已知 2ln sin y x =,则y '= ; 2.求极限:1lim1ln xx x xx x→--+= ;3.已知曲线方程为2323x t t y t t ⎧=-⎨=-⎩,则()y x ''= ; 4.已知函数410()3f x x e =,则(10)y = ; 5.曲线ln sec y x =在点(,)x y 处的曲率半径为 ; 三、计算题(每题5分,共30分)1.1ln(1)lim cot x x arc x→+∞+2.tan 0lim x x x +→3.0limln(1)x x x x→+-4.已知ln(y x =-,求()y x ¢5.已知 y x x y =,求d y d x四、解答题(每题8分,共40分)1、设曲线)(x f y =与x y sin =在原点处相切,求极限)2(lim nnf n ∞→ 2、当20π<<x 时,证明xx x <<sin 2π.3.若曲线32y ax bx cx d =+++在点0x =处有极值0y =,点(1,1)为拐点,求,,,a b c d 的值.4.已知221sin ,0()0,01sin ,0x x x f x x x x x ìïï<ïïïï==íïïïï>ïïïî,讨论()f x 的连续性与可导性. 5.用汽船拖载重相等的小船若干只,在两港之间来回运送货物,已知每次拖4只小船,一日能来回16次,每次拖7只,则一日能来回10次,如果小船增多的只数与来回减少的次数成正比,问每日来回多少次,每次拖多少只小船能使运货总量达到最大?参考答案:一、选择题:(每小题3分,共计15分)1-5. DCAAC二、填空题(每小题3分,共计15分)1.22cot x x ;2. 2;3.34(1)t -;4.0;5.232sec (1tan )xx +三、计算题(每题5分,共30分)1.1ln(1)lim cot x x arc x→+∞+222211()11ln(1)11:limlim lim1cot 122limlim1212x x x x x xxx xarc x x x xx x →+∞→+∞→+∞→+∞→+∞⋅-+++==+-+===+解2.tan 0lim xx x+→tan 221ln :lim lim exp tan ln exp lim exp lim cot csc sin exp lim 1xx x x x x x x xx x xx x e x+++++→→→→→===--===解3.0limln(1)x x x x→+-:limtan 1cos lim ln(1)11cos 1sin limlim12ln(1)2111sin (1)1lim22x x x x x x x xx xx x x x xx x x→→→→→=-=⋅+--==+--++==--解原极限4.已知ln(y x =-,求()y x ¢12211(1)2:x xy---⋅'===-解5.已知y xx y=,求d yd x: :ln lnln lnlnlnlnlny x x yy yy x y xx yyyx y yxyx y x xxy=''+=+⋅--'==--解两边取对数得四、解答题(每题8分,共40分)1、解:因为曲线)(xfy=与xy sin=在原点处相切,000,sin0(0)0,cos1,(0)1x xx y fy x f======''===当时且则00lim lim2()()()(0)lim lim lim(0)120limn nn x xnff x f x fn fx xn→∞→∞→∞→∞→→→∞→∞∴==-'====-∴==2、sin,(0,]:()21,0xxf x xxπ⎧∈⎪=⎨⎪=⎩证明构造函数2cos sin ()[0,](0,),(0,),()<0 222x x xf x x f xx πππ-'∴∀∈=在上连续.在内可导且对于总有2sin ()[0,],(0,),()<()<(0)1,2222s 2s in n <1,i #<x f x x f f x f xx xx x x ππππππ<<∴∀∈===在上单调递减所以有即所以3.32:00,y ax bx cx d x y =+++==解在处有极值232,(0)0,(0)=0(1,1)62(1)=620(1)113,2213,,0,022y ax bx c y c y d y ax b y a b y a b c d a b a b c d '=++'∴===''=+''∴+==+++==-=∴=-===为拐点,解得4.已知221sin ,0()0,01sin ,0x x x f x x x x x ìïï<ïïïï==íïïïï>ïïïî,讨论()f x 的连续性与可导性.22222:(00)lim (00)lim (00)(00)(0)0()0,R (0)lim 1sin1sin1sin1sin1sinlim 0(0)lim 1sinlim 0()0x x x x x x f f f f f f x x f x x xx xx xxx f x x x xf x x -+--++→→-→→+→→-=+=-=+==='==-'====-=--=解所以在处连续从而在上处处连不存在在所以续处不可导5.用汽船拖载重相等的小船若干只,在两港之间来回运送货物,已知每次拖4只小船,一日能来回16次,每次拖7只,则一日能来回10次,如果小船增多的只数与来回减少的次数成正比,问每日来回多少次,每次拖多少只小船能使运货总量达到最大?:,.744121610162(12)2(12)012,0,12,n x z y nxz x n x nn y n zy n zy n y z n y =--=⇒=---∴=-'=-'''===-<=解设每日来回次每次拖只小船每只小船的运货量为 则一天的运货总量为令得故时最大所以每日来回12次,每次拖6只小船能使运货总量达到最大.一元函数微分学测试卷(B )一、单项选择题:(每小题3分,共计15分) 1.设()f x 在x a =可导,则0()()limx f a x f a x x®+--=( )A .()f a ¢B .2()f a ¢C .()f x ¢D .(2)f a ¢ 2.下列结论错误的是( ) A .如果函数()f x 在x a =处连续,则()f x 在x a =处可导B .如果函数()f x 在x a =处不连续,则()f x 在x a =处不可导C .如果函数()f x 在x a =处可导,则()f x 在x a =处连续D .如果函数()f x 在x a =处不可导,则()f x 在x a =处也可能连续 3.在曲线ln y x =与直线x e =的交点处,曲线ln y x =的切线方程是 ( )A .0x ey -=B .20x ey --=C .0ex y -=D .0ex y e --=4. 若函数()f x 在[],a b 上连续,在),(b a 内可导,则()f x '在(),a b 内 ( )A .只有一实根B .至少有一个实根C .至少有两个实根D .没有实根 5.2cos 2y x =,则dy =( )A .2(cos 2)(2)x x dx ''B .2(cos 2)cos 2x d x 'C. 2cos 2sin 2x xdx -D. 2cos 2cos 2xd x二、填空题(每小题3分,共计15分) 1.已知 1arctan 1x y x+=-,则y '= ;2.求极限: 21sin(1)lim1x x x →--= ;3.已知曲线方程为cos sin x a t y b t=⎧⎨=⎩,则()y x '= ;4.已知函数ln y x x =,则(10)y = ;5.椭圆2244x y +=在点(0,2)处的曲率为 ; 三、计算题(每题5分,共30分) 1.求011lim ()1xx xe ®--2.求()1lim 1sin x x x ®+3.0limx ®4. 已知xx xxe e y e e---=+,求()y x ¢5. 已知 ln y x y =+,求d y d x四、解答题(每题8分,共40分) 1、设22ln(1)lim2x x ax bxx®+--=,求,a b 的值.2. 已知4321y x x =-+,求其单调区间,极值点,凸凹区间及拐点.3、已知221sin ,0()0,0x x f x x x ìïï¹ï=íïï=ïî,讨论()f x 的连续性与可导性.4. 设()f x 在[]0,a 上连续,()0,a 内可导,且()0f a =,证明:存在一点(0,)a ξ∈,使得()()0f f ξξξ'+=5.一张 1.4 m 高的图片挂在墙上 , 它的底边高于观察者的眼睛1.8 m ,问观察者在距墙多远处看图才最清楚(视角θ 最大) ?参考答案:一、单项选择题:(每小题3分,共计15分)1-5 BAABD二、填空题(每小题3分,共计15分)1.211x+;2.2;3.cot b t a-;4.98!x;5.2三、计算题(每题5分,共30分)1.求011lim ()1xx xe ®--1111lim ()limlim1(1)(1)11limlim112xxxxx xx xx xxxxx xe x e xe x e e xeee e xex解: ----==---+===++++2.求()1lim 1sin x x x ®+()()111ln(1sin )lim 1sin lim exp[ln 1sin ]exp lim sin exp limx x xx x x x x x xxe ex解: ®++=+====3.0limx ®1.41.8θ332212limlimlim1sin 236limlim61cos sin x xx x xxxx xxx xx解: ==-===-4. 已知x x xxe e y e e---=+,求()y x ¢22()()()()4()()()x xxx xxxxxxxxe ee e e ee e y x e ee e解:------++---¢==++5. 已知 ln y x y =+,求d y d xln 111y x y dy dy dx y dxdy y dx y 解:=+=+=-四、解答题(每题8分,共40分)1、设22ln(1)lim2x x ax bxx®+--=,求,a b22222212ln(1)1limlim22120lim[2]011lim[2]1111212ln(1)(1)1limlimlim22215lim22(1)2x xx x x xx x a bx x ax bxxxxx x a bx xa bx xbbx x ax bxx xxxb x 解:且当为无穷小,即 ®® ®--+--+==甛--=+=-=+----+--++\===-\=-=-+2. 已知4321y x x =-+,求其单调区间,极值点,凸凹区间及拐点.43322122:21462(23)300,2121212(1)0,01y x x y x x x x y x x y x x x x y x =-+'=-=-'===''=-=-''==解令得驻点为时或33311(,),(-,),(,)22216(-,0)(1,),(0,1),(0,1)(1,0).∞∞-∞∞单调增区间为单调减区间为极小值点为凹区间为及凸区间为拐点为及3、已知221sin ,0()0,0x x f x x x ìïï¹ï=íïï=ïî,讨论()f x 的连续性与可导性. 222221:lim ()lim sin(0)0()0,()R 1sin 0()(0)1(0)limlimlim sin()0,()R .x x x x x f x x xf f x x f x x f x f xf x x xxf x x f x →→→→→===∴=--'====-∴=解在处连续则在上处处连续在处可导则在上处处可导4. 设()f x 在[]0,a 上连续,()0,a 内可导,且()0f a =,证明:存在一点(0,)a ξ∈,使得()()0f f ξξξ'+=[]():()=(),()0,,0,,F(0)=F()=0,,(0,),F ()=0.()()0#x xf x x a a a a f f ξξξξξ''∃∈+=证明令F 则F 在上连续在内可导且从而满足罗尔中值定理条件所以使得即5.一张 1.4 m 高的图片挂在墙上 , 它的底边高于观察者的眼睛1.8 m ,问观察者在距墙多远处看图才最清楚(视角θ 最大) ?2222222221.4 1.8 1.8arctanarctan ,(0,)3.2 1.8 1.4( 5.76)3.2 1.8( 3.2)( 1.8)0, 2.4(0m,,,, 2.4 ,)m .x x x x x x x x x x 则令得驻点根据问题的实际意义观察者最佳站位存在驻点又唯一因此观察者站在距离墙处看图最解:设观察者清楚与墙的距离为q q q +=-? ---¢=+=++++¢==?1.4 1.8。
第二章习题答案21一元函数微分学
第二章习题答案一、 填空题1.设,2)3(='f 则=--→hf h f h 2)3()3(lim0 1- .2. 曲线t y t x 33sin ,cos ==上对应于点6π=t 处的法线方程13-=x y .3.若,e 23yx x y +=则=xyd dy y x x e 213e 22-+ 4. 若0e2=-+x xy y ,则=y dx y x yy d e212+- . 5.已知⎩⎨⎧+=-=)sin (cos )cos (sin t t t a y t t t a x ,则==π43d d t y x-1 . 6.曲线⎪⎩⎪⎨⎧=+=321ty tx 在2=t 处的切线方程为 73-=x y . 7.设函数)(x y y =由方程0e e =+-yxxy 所确定,则=')0(y 1 .8. 曲线x y ln =在点)1,e (P 处的切线方程 )e (e11-=-x y . 9.曲线x x y e +=在0=x 处的切线方程是12y x -=. 10.设)(2ex f y =,其中)(x f 可微,则=y d 2()2()()f x f x f x e dx '11.设函数()y f x =在点0x 可导,且0()0f x '≠,则0d lim x y yx∆→∆-=∆ 0 .12()f x 在0x =可导,则=--→xx f x f x )()(lim2(0)f '.13.若00()()f x x f x +∆-与21x ∆-为当0x ∆→时的等价无穷小,则0()f x '=ln 2. 14.曲线xy e =在0=x 处的切线方程是1+=x y 15.曲线2021y x =在1=x 处的切线方程是20202021-=x y16.二、选择题1. 设⎪⎩⎪⎨⎧>+≤=2, 2 ,2)(2x b ax x x x f ,若)(x f 在点2=x 处可导,则必有( B ).(A) 2==b a ; (B) 2,2-==b a ; (C) 2,1==b a ;(D) 2,3==b a . 2. 设0),1ln()(2>+=-a ax f x为常数,则=')0(f ( A ).(A) a ln -; (B) a ln ;(C)a ln 21;(D) 21. 3. 设由方程⎩⎨⎧-=-=)cos 1()sin (t a y t t a x 所确定的函数为)(x y y =,则在2π=t 处的导数为( B ).(A )1-; (B )1 ; (C )0; (D )21-. 4.设由方程⎪⎩⎪⎨⎧=+=ty t x arctan 1ln 2所确定的函数为)(x y y =,则=x y d d ( B ).(A )tt 212+; (B )t 1; (C )t 21; (D )t .5.设xy e arctan =,则=y d ( B )x d .(A) x2e11+; (B) x x 2e 1e +; (C) x2e11+;(D)xx 2e1e +.6.设xy 2sin e=,则=y d ( B ).(A) x x2sin d e ; (B) x x2sin sin d e2;(C) x x x sin d sin2e 2sin ;)D (x x sin d e 2sin . 7.设)00e )(3 , ,⎩⎨⎧≤>=-x x x x x f x 则)(x f 在0=x 处( B ). (A) 可导; (B) 连续但不可导; (C)左可导而右不可导; (D) 右可导而左不可导.8.设⎪⎩⎪⎨⎧=≠=, , ,,0001sin )(x x xx x f 则)(x f 在0=x 处( B ). (A) 可导; (B) 连续但不可导; (C) 不连续; (D) 左可导而右不可导.9.设方程e e =+xy y确定了y 是x 的函数,则==0d d x x y( B ). (A )1; (B )e1-; (C )1-; (D )e 1.10.函数f (x )=⎪⎩⎪⎨⎧=≠0,00,1cos x x xx , 在x =0处( B ). A.不连续; B. 连续,但不可导; C. 可导, 导函数不连续; D . 可导,导函数也连续.11.设⎪⎩⎪⎨⎧=≠=, , ,,0001sin )(x x x x x f ⎪⎩⎪⎨⎧=≠=, , ,,0001sin )(2x x x x x g则在0=x 处( B ).(A) )(x f 可导,)(x g 不可导; (B))(x f 不可导,)(x g 可导 ; (B) )(x f 可导,)(x g 可导;; (D))(x f 不可导,)(x g 不可导 .12.设⎪⎩⎪⎨⎧=≠=, , ,,0001cos )(x x x x x f ⎪⎩⎪⎨⎧=≠=, , ,,0001cos )(2x x xx x g则在0=x 处( B ).(C) )(x f 可导,)(x g 不可导; (B))(x f 不可导,)(x g 可导 ; (D) )(x f 可导,)(x g 可导;; (D))(x f 不可导,)(x g 不可导 . 三、计算题.1.求下列函数的导数:(1) )ln(22x a x y ++=; (2) 313)21(x y -=; (3) xy 1sin e =;(4)x y x 4cos e 2-=;(5)y =(1+sinx)2021 (6) y =(1−cosx)2022分析 一次或多次运用复合函数的求导法则,总能将一个复杂函数的求导转化成多个基本初等函数的求导运算.同时要求熟记基本初等函数的求导公式及函数和、差、积、商的求导法则.解(1))(1))(ln(222222'++++='++='x a x x a x x a x y.12211222222x a x a x x a x +=⎪⎪⎭⎫⎝⎛++++=(2) )21()21(31)21(3323313'--='⎥⎦⎤⎢⎣⎡-='-x x x y.)21(2)6()21(3132322323x x x x --=-⋅-=-(3) '⎪⎭⎫⎝⎛⋅='⎪⎭⎫ ⎝⎛='⎪⎪⎭⎫ ⎝⎛='x x x y x x x 11cos e 1sin e e 1sin 1sin 1sin.1cos e 11sin 2xx x -=(4))4(cos e 4cos )e(22'+⋅'='--x x y x xx x xx4sin e 44cos e 2122---⋅-=).4sin 84(cos e 212x x x+-=-(5) y ′=2021(1+sinx)2020cosx(6) y ′=2022(1+sinx)2021sinx2.求下列函数的导数: (1)设y y x x sin e22=-,求xy d d ; (2)设)(x f y =由方程y yxxy=+tane 确定,求)0(y '; (3) 设)(xf y =由方程)sin(e y x y x y+=+确定,求.y '分析 此题为隐函数的求导,注意y 是x 的函数,利用复合函数求导法则求导. 解 (1)方程两边对x 求导.,d d cos 2e d d 222x y y x x y x xy x ⋅=⋅-+从而.cos )e (2d d 22x y y x x y x --=(2)方程两边对x 求导得y y y x y y x y x y xy '='-⋅+'+22sec )(e ,得xyxy x y x y x y x y y x y e sec 1sec 1e d d 222-⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛+= 当0=x 时,1=y ,代入上式得2)0(='y . (3)方程两端对x 求导得 ),1()cos(e 21y y x y y yxy y '+⋅+='+'+解得 .)cos(2e 22)cos(2y x y y x yy x y y y+-+-+='3.设xx y e 3=,求.)5(y)()e (!3345)()e (!245)()e (5)e ()e (333)4(3)5()5(3)5('''⋅''⋅⨯⨯+''⋅'''⋅⨯+'⋅+⋅==x x x x x y xx x x x x x x x e )606015(23+++=.4. .求下列参数方程所确定的函数导数xy d d : (1) ,2cos ,sin ⎩⎨⎧==t y t x ;(2) ,cos e ,sin e ⎩⎨⎧==t y t x tt (1)t x y sin 4d d -=; (2)tt tt x y cos sin sin cos d d +-=5.用对数求导法求下列导数.(1))1()sin (13>+=x x x y x; (2)xx y tan =;用对数求导法.(1) ⎥⎦⎤⎢⎣⎡++⋅++-+='x x x x x x x x x x y xsin cos 31)sin ln(1)sin (323213;(2)⎪⎭⎫ ⎝⎛+='x x x x xy xtan ln sec 2tan。
专升本高等数学(二)-一元函数微分学(一)
专升本高等数学(二)-一元函数微分学(一)(总分:94.00,做题时间:90分钟)一、{{B}}选择题{{/B}}(总题数:4,分数:8.00)1.已知函数y=x5+3x4,则y'|x=2=______。
∙ A.8∙ B.176∙ C.7∙ D.186(分数:2.00)A.B. √C.D.解析:2.若下列各极限都存在,其中等式不成立的是______ A. B. C. D (分数:2.00)A.B.C. √D.解析:[解析] 利用导数f(x)在点x0处的定义进行判断。
选项A中,[*],原等式成立。
选项B中,[*],原等式成立。
选项C中,[*],原等式不成立。
选项D中,[*],原等式成立。
3.已知函数f(x)在点x0处可导,且f'(x0)=2______∙ A.0∙ B.1∙ C.2∙ D.4(分数:2.00)A.B.C.D. √解析:[解析] [*]。
4.设f(x)在x0处不连续,则______A.f'(x0)必存在 B.f'(x0)必不存在C.必存在 D(分数:2.00)A.B. √C.D.解析:[解析] 根据函数的可导与连续的关系可知,f(x)在x0处不连续,则f(x)在x0处不可导。
二、{{B}}填空题{{/B}}(总题数:8,分数:24.00)5.(2,3)处的切线方程是 1。
(分数:3.00)填空项1:__________________ (正确答案:[*])解析:6.函数y=4x3-9x2+6x+1的驻点是 1。
(分数:3.00)填空项1:__________________ (正确答案:[*],1)解析:7.f'(0)=______。
(分数:3.00)填空项1:__________________ (正确答案:[*])解析:[解析] [*] 依题意,有[*],于是有[*]。
8.曲线y=e-x在点(0,1)处的切线的斜率k为 1。
(分数:3.00)填空项1:__________________ (正确答案:-1)解析:[解析] y'=(e-x)'=-e-x,根据导数的几何意义有,k=y'|x=0=-e0=-1。
考研数学二(一元函数微分学)-试卷11
考研数学二(一元函数微分学)-试卷11(总分:62.00,做题时间:90分钟)一、选择题(总题数:16,分数:32.00)1.选择题下列每题给出的四个选项中,只有一个选项符合题目要求。
(分数:2.00)__________________________________________________________________________________________ 解析:2.f(x)在(一∞,+∞)内( )(分数:2.00)A.处处可导B.恰有一个不可导点C.恰有两个不可导点√D.至少有三个不可导点解析:解析:本题可以先求出f(x)的表达式,再讨论其不可导点。
|x|<1时,|x|=1时,|x|>1时,即f(x)可见f(x)仅在x=±1两点处不可导,故应选C。
3.设f(x)=|(x一1)(x一2) 2 (x一3) 3 |,则导数f"(x)不存在的点的个数是( )(分数:2.00)A.0B.1 √C.2D.3解析:解析:设φ(x)=(x一1)(x一2) 2 (x一3) 3,则f(x)=|φ(x)|。
使φ(x)=0的点x=1,x=2,x=3可能是f(x)的不可导点,还需考虑φ"(x)在这些点的值。
φ"(x)=(x一2) 2 (x一3) 3 +2(x一1)(x 一2)(x一3) 3 +3(x一1)(x一2) 2 (x一3) 3,显然,φ"(1)≠0,φ"(2)=0,φ"(3)=0,所以只有一个不可导点x=1。
故选B。
4.设f(x)=3x 2 +x 2|x|,则使f (n) (0)存在的最高阶数n为( )(分数:2.00)A.0B.1C.2 √D.3解析:解析:由3x 3任意阶可导,本题实质上是考查分段函数x 2|x|在x=0处的最高阶导数的存在性。
事实上,由可立即看出f(x)在x=0处的二阶导数为零,三阶导数不存在,故选C。
考研数学二一元函数微分学-试卷18_真题-无答案
考研数学二(一元函数微分学)-试卷18(总分62,考试时间90分钟)1. 选择题选择题下列每题给出的四个选项中,只有一个选项符合题目要求。
1. 设,则( )A. f(x)在x=x0处必可导,且f"(x0)=aB. f(x)在x=x0处连续,但未必可导C. f(x)在x=x0处有极限,但未必连续D. 以上结论都不对2. 设f(x)可导且则当△x→0时,f(x)在x0点处的微分dy是( )A. 与△x等价的无穷小。
B. 与△x同阶的无穷小。
C. 比△x低阶的无穷小。
D. 比△x高阶的无穷小。
3. 设函数f(u)可导,y=f(x2)当自变量x在x=一1处取得增量△x=一0.1时,相应的函数增量△y的线性主部为0.1,则f"(1)等于( )A. 一1B. 0.1C. 1D. 0.54. 设函数y=f(x)具有二阶导数,且f"(x)>0,f""(x)>0,△x为自变量x在点x0处的增量,△y 与dy分别为f(x)在点x0处对应的增量与微分,若△x>0,则( )A. 0<dy<△yB. 0<△y<dyC. △y<dy<0D. dy<△y<05. 设函数g(x)可微,h(x)=e1+g(x),h"(1)=1,g"(1)=2,则g(1)等于( )A. ln3—1B. 一ln3—1C. 一ln2—1D. ln2—16. 设g(x)可微,=( )A. 一ln2—1B. ln2—1C. 一ln2—2D. ln2—27. =( )A.B.C. In(1+lnx)一In(1+2x)D. In(1+lnx)一21n(1+2x)8. 设f(x)=(x一a)(x一b)(x—c)(x一d),其中a,b,c,d互不相等,且f"(k)=(k一a)(k一b)(k一c),则k的值等于( )A. aB. bC. cD. d9. 对任意的x∈(一∞,+∞),有f(x+1)=f2(x),且f(0)=f"(0)=1,则f"(1)=( )A. 0B. 1C. 2D. 以上都不正确10. 设函数f(x)在(一∞,+∞)存在二阶导数,且f(x)=f(一x),当x<0时有f"(x)<0,f""(x)>0,则当x>0时,有( )A. f"(x)<0,f""(x)>0B. f"(x)>0,f""(x)<0C. f"(x)>0,f""(x)>0D. f"(x)<0,f""(x)<011. 已知函数f(x)具有任意阶导数,且f"(x)=f2(x),则当n为大于2的正整数时,f(x)的n阶导数是( )A. n![f(x)]n+1B. n[f(x)n+1C. f(x)]2nD. n![f(x)]2n12. 设函数f(x)在闭区间[a,b]上有定义,在开区间(a,b)内可导,则( )A. 当f(A)f(B)<0,存在ξ∈(a,b),使f(ξ)=0B. 对任何ξ∈(a,b),有C. 当f(A)=f(B)时,存在ξ∈(a,b),使f"(ξ)=0。
医用高数课后习题答案
第一章 函数、极限与连续习题题解(P27)一、判断题题解1. 正确。
设h (x )=f (x )+f (x ), 则h (x )= f (x )+f (x )=h (x )。
故为偶函数。
2. 错。
y =2ln x 的定义域(0,+), y =ln x 2的定义域(,0)∪(0,+)。
定义域不同。
3. 错。
+∞=→21lim x x 。
故无界。
4. 错。
在x 0点极限存在不一定连续。
5. 错。
01lim =-+∞→xx 逐渐增大。
6. 正确。
设A x f x x =→)(lim 0,当x 无限趋向于x 0,并在x 0的邻域内,有εε+<<-A x f A )(。
7. 正确。
反证法:设F (x )=f (x )+g (x )在x 0处连续,则g (x ) =F (x )f (x ),在x 0处F (x ),f (x )均连续,从而g (x )在x =x 0处也连续,与已知条件矛盾。
8. 正确。
是复合函数的连续性定理。
二、选择题题解1. ())( 22)]([,2)(,)(222D x f x x x f x x x ====ϕϕ2. y =x (C )3. 01sin lim 0=→xx x (A ) 4. 0cos 1sinlim0=→xx x x (B ) 5. )1(2)(lim ,2)3(lim )(lim ,2)13(lim )(lim 11111f x f x x f x x f x x x x x ≠=∴=-==-=→→→→→++--(B )6. 3092<⇒>-x x(D )7. 画出图形后知:最大值是3,最小值是10。
(A )8. 设1)(4--=x x x f ,则13)2(,1)1(=-=f f ,)(x f 连续,由介质定理可知。
(D )三、填空题题解 1. 210≤-≤x 31≤≤x2. )arctan(3x y =是奇函数,关于原点对称。
3. 31=ω,πωπ62==T 。
考研数学二(一元函数微分学)-试卷3
考研数学二(一元函数微分学)-试卷3(总分:62.00,做题时间:90分钟)一、选择题(总题数:6,分数:12.00)1.选择题下列每题给出的四个选项中,只有一个选项符合题目要求。
(分数:2.00)__________________________________________________________________________________________解析:2.设ψ(x)在[a,b]上连续,且ψ(x)>0,则函数y=φ(x)=∫ a b |x一t|ψ(t)dt的图形 ( )(分数:2.00)A.在(a,b)内为凸B.在(a,b)内为凹√C.在(a,b)内有拐点D.在(a,b)内有间断点解析:解析:先将φ(x)利用|x—t|的分段性分解变形,有φ(x)=∫ a x (x一t)ψ(t)dt+∫ x b (t一x)ψ(t)dt=s∫ a xψ(t)dt一∫ a x tψ(t)dt+∫ x b tψ(t)dt—x∫ x bψ(t)dt.因为ψ(t)在[a,b]上连续,所以φ(x)可导,因而答案不可能是(D).为讨论其余三个选项,只需求出φ"(x),讨论φ"(x)在(a,b)内的符号即可.因φ"(x)=∫ a xψ(t)dt一∫ x bψ(t)dt,φ"(x)=2ψ(x)>0,x∈[a,b],故y=φ(x)的图形为凹.直选(B).x f(t)dt,则 ( )-1(分数:2.00)A.F(x)为f(x)的一个原函数B.F(x)在(一∞,+∞)上可微,但不是f(x)的原函数C.F(x)在(一∞,+∞)上不连续D.F(x)在(一∞,+∞)上连续,但不是f(x)的原函数√解析:解析:请看通常的解法:求积分并用连续性确定积分常数,可得F" +(0)≠F" -(0).根据原函数定义,F(x)不是f(x)在(-∞,+∞)上的原函数.请考生看看,我们还有更好的方法解决这个问题吗?事实上,由于f(x)有第一类间断点,所以F(x)必然不是其原函数,而变限积分存在就必连续,所以答案自然选择(D).(一∞,+∞)内,下列正确的是 ( )(分数:2.00)A.f(x)不连续且不可微,F(x)可微,且为f(x)的原函数√B.f(x)不连续,不存在原函数,因而F(x)不是f(x)的原函数C.f(x)和F(x)均为可微函数,且F(x)为f(x)的一个原函数D.f(x)连续,且F’(x)=f(x)解析:解析:可以验证x=0为f(x)的第二类间断点,因为:故x=0为f(x)的第二类振荡间断点,可能存在原函数.故F(x)可微.即F"(x)=f(x),故(A)正确.5.设F(x)=∫ x x+2π e sint sintdt,则F(x) ( )(分数:2.00)A.为正常数√B.为负常数C.恒为零D.不为常数解析:解析:因e sinx sin x是以2π为周期的周期函数,所以 e sinx cos 2x≥0,故选(A).6.设f(x)是以l为周期的周期函数,则∫ a+kl a+(k+l)l f(x)dx之值 ( )(分数:2.00)A.仅与a有关B.仅与a无关C.与a及k都无关√D.与a及k都有关解析:解析:因为f(x)是以l为周期的周期函数,所以∫ a+kl a+(k+1)l f(x)dx=∫ kl(k+1)l f(x)dx=∫ 0l f(x)dx,故此积分与a及k都无关.二、填空题(总题数:9,分数:18.00)7.∫ 0+∞ xe -x dx= 1.(分数:2.00)填空项1:__________________ (正确答案:正确答案:1)解析:解析:原积分=一∫ 0+∞ xde -x =xe -x | 0+∞+∫ 0+∞ e -x dx=∫ 0+∞ e -x dx=一e -x | 0+∞ =1.8.设f(x)连续,则0x [sin 2∫ 0t f(u)du]dt)= 1(分数:2.00)填空项1:__________________ (正确答案:正确答案:sin 2∫ 0x f(u)du)解析:解析:∫ 0x [sin 2∫ 0t f(u)du]dt是形如∫ 0xφ(t)dt形式的变上限积分,由9.设两曲线y=f(x)与y=∫ 0arctanx在点(0,0)处有相同的切线,则(分数:2.00)填空项1:__________________ (正确答案:正确答案:2)解析:解析:由已知条件知f(0)=0,f"(0)==1(分数:2.00)填空项1:__________________ (正确答案:正确答案:0)解析:解析:显然积分难以积出.考虑积分中值定理,其中ξx介于a,a+a之间.所以11.设f(x),则f(7)= 1.(分数:2.00)填空项1:__________________ (正确答案:正确答案:[*])解析:解析:要从变上限积分得到被积函数,可以对变限积分求导.等式两边对x求导得f(x 3一1).3x 2 =1,f(x 3一1)= 令x=2,即得12.设01 f(x)dx= 1.(分数:2.00)填空项1:__________________ (正确答案:正确答案:[*])解析:解析:令3x+1=t,所以13.设-∞a te t dt,则a= 1.(分数:2.00)填空项1:__________________ (正确答案:正确答案:2)解析:解析: e a =(a一1)e a,a=2.14.设f(x)的一个原函数,则∫ 1e xf’(x)dx= 1.(分数:2.00)填空项1:__________________ (正确答案:正确答案:[*])解析:解析:∫ 1e xf’(x)dx=∫ 1e xdf(x)=[xf(x)]| 1e一∫ 1e f(x)dx.(分数:2.00)填空项1:__________________ (正确答案:正确答案:ln 3)三、解答题(总题数:16,分数:32.00)16.解答题解答应写出文字说明、证明过程或演算步骤。
高等数学2-5章习题
f ( x) f ( x)2 ,则当n为大于 2 的正整数时,
f ( x)的 n 阶导数 f (n) ( x) 是( )
(A)n![ f ( x)]n1;
(B) n[ f ( x)]n1 ;
(C) [ f ( x)]2n;
(D)n![ f ( x)]2n .
7、若函数 x x(t ), y y(t ) 对t 可导且x(t ) 0 ,又
(
x
)
g(
x
)
x
cos
x
,
x
0
其中g(
x)
有二阶连
a, x 0
续导数,且g(0) 1,
1、确定 a 的值,使 f ( x)在x 0 点连续;
2、求 f ( x)
五、设 y x ln x,求 f (n) (1).
六、计算3 9.02 的近似值 .
七、一人走过一桥之速率为 4 公里/小时,同时一船在 此人底下以 8 公里/小时之速率划过,此桥比船高 200 米,问 3 分钟后人与船相离之速率为多少?
3、若函数 f ( x) 在点x0 不连续,则f ( x) 在x0 ( ) (A)必不可导; (B)必定可导;
(C)不一定可导; (D)必无定义.
4、如果 f ( x) =( ),那么 f ( x) 0 .
(A) arcsin 2 x arccos x ;
(B) sec2 x tan2 x ; (C) sin 2 x cos 2 (1 x);
(D)有有限个间断点
4、下列结论正确的是(
)
(A) 初等函数必存在原函数;
(B) 每个不定积分都可以表示为初等函数;
高等数学一元函数微积分学题目与答案A
三、一元函数积分学练习题(A)一.选择题1. =+òdx x )1(cos ()Cx x A ++sin .Cx x B ++-s i n .Cx x C ++c o s .Cx xx D ++-cos .2. =òdx x 41()CxA +-331.CxB +331.CxC +31.CxD +-31.3. 已知函数2(1)x +为()f x 的一个原函数,则下列函数中()f x 的原函数是()A 21x -B 21x +C 22x x -D 22x x+4. 已知函数()f x 在(,)-¥+¥内可导,且恒有()f x ¢=0,又有(1)1f -=,则函数()f x = ()A 1 B -1 C 0 D x5. 若函数()f x 的一个原函数为ln x ,则一阶导数()f x ¢=()A 1xB 21x-C ln xD ln x x6.定积分ò1221ln xdx x 值的符号为().A 大于零.B 小于零.C 等于零.D 不能确定7.曲线)2)(1(--=x x x y ,x 轴所围成的图形的面积可表示为().A ò--10)2)(1(dx x x x ;.B ò--20)2)(1(dx x x x ;.C òò-----2110)2)(1()2)(1(dx x x x dx x x x ;.D òò--+--2110)2)(1()2)(1(dxx x x dx x x x 8. 已知dt t x F xò+=21)(,则=)('x F ()212.x x A + 11.2++x B 21.x C + 11.2-+x D 9. =ò-dx x 115( ) 2.-A 1.-B 0.C D .1 10.若()211xx F -=¢,()231p=F ,则()=x F ( ) A.x arcsin B. c x +arcsin C.p +x arccos D. p +x arcsin二.填空题二.填空题1. 1. 写出下列函数的一个原函数写出下列函数的一个原函数写出下列函数的一个原函数 (1) 52x 的原函数为的原函数为 (2) cos x -的原函数为的原函数为(3) 12t 的原函数为的原函数为 (4) 221x--的原函数为的原函数为2. 在下列各式等号右端的空白处填入适当的系数,使等式成立在下列各式等号右端的空白处填入适当的系数,使等式成立 (1)dx = (51)d x -;(2)xdx = 2(2)d x -;(3)3x dx = 4(32)d x +; (4)2xe dx -= 2()xd e-;(5)219dx x=+ (a r c t a n 3d x ;(6)212dx x=+ (a r c t a n 2)d x ; (7)2(32)x dx -= 3(2)d x x -; (8)dx x= (3l n )d x ;(9)21dx x=- (2a r c si n d x -; (10)21xdx x=- 21d x -. 3. 若()1xf e x ¢=+,则()f x = 4. 根据定积分的性质,比较积分值的大小根据定积分的性质,比较积分值的大小(1)120x dx ò13x d x ò(2)10xe dx ò1(1)x dx +ò5. _________3=òdx e x 6. __________1=òdx ex 7. ò+dx x xln 1=_____________ 8. 已知一阶导数已知一阶导数2(())1f x dx x ¢=+ò,则(1)f ¢= 9. 当x = 时,函数()ò-=xt dt te xI 02有极值. 10. 设()ïîïíì>£+=1,211,12x x x x xf ,()ò20dx x f = 11. 已知ò=xdt t xf y0)(,则=dx dy 12. dt t t x x x )1sin (1lim 030-ò®=三.计算题三.计算题 1.不定积分的计算不定积分的计算(1)1x x e dx e +ò (2)12x e dx x ò(3)ln dx x x ò(4)211x dx x --ò (5)3431xdx x -ò(6)12dx x -ò(7)223xdx x-ò(8)3xa dx ò(9)sin tdt tò (10)2cos ()x dx w j +ò(11)2cos ()sin()x x dx w j w j ++ò(12)22(arcsin )1dx x x-ò(13)3tan secx xdxò(14)sec(sec tan)x x x dx-ò(15)11cos2dxx+ò(16)2(4)x x dx-ò(17)32(32)x dx-ò(18)221dxx x-ò(19)1231dxx-+ò(20)sinx xdxò(21)xxe dx-ò(22)arcsin xdxò(23)2tte dt -ò(24)2arcsin 1xdx x-ò(25)sin cos xxe dx ò(26)1cos sin x dx x x++ò(27)dxx 43-ò (28)dx x 122-ò(29)dx xxe e --ò (30)e32x dx +ò(31)()232xx dx+ò (32)1252+òx dx(33)sin5xdxò(34)cos25xdxò(35)()()244522x dxx x+++ò(36)x dxx23412-ò(37)sin cossin cosx xx xdx+-ò3(38)dxx x(arcsin)221-ò(39)dxx x222-+ò(40)sin cossinx xxdx14+ò(41)2x xe dxò(42)23523x xx dx ×-×ò2.定积分的计算定积分的计算(1)1e xx dx-ò(2)e1lnx xdxò(3)41ln xdxxò(4)324sinxdxxppò(5)220e cosxxdxpò(6)221logx xdxò(7)π2(sin)x x dxò(8)e1sin(ln)x dxò(9)121ln(1)x x dx-++ò(10)41xdxò(11)dx xx x )1(241+ò(12)dx xxò+1241 (13)dx x ò+2241 (14)dx x x ò40tansec p(15)xdxò242cotpp(16)ò--112d x x x(17)dx ò2121)-(3x 1 (18)dx ò+3ln 0x xe 1 e(19)dxx xò-123 (20)ò1arctan xdx x3.反常积分的计算反常积分的计算(1)2048dx x x +¥++ò(2)21arctan xdx x +¥ò(3)101(1)dx x x -ò(4)1ln edx x x ò4. 4. 比较下列各对积分的大小:比较下列各对积分的大小:比较下列各对积分的大小:(1)ò4arctan pxdx 与ò402)(arctan pdx x(2)ò43ln xdx 与ò432)(ln dx x(3)dx x ò-+1141与dxx ò-+112)1((4)ò-2)cos 1(pdx x 与ò2221pdx x四.综合题四.综合题 1.求导数求导数(1)201xdt dt dx +ò (2)5ln 2xtdt e dt dx -ò(3)cos 2cos()xd t dt dx p ò (4)sin xd tdt dx tpò (0x >). 2. 验证下列等式验证下列等式(1)2311d 2-=-+òx x C x ; (2)(sin cos )cos sin x x dx x x C+=-++ò. 3. 求被积函数()f x . (1) 2()ln(1)f x dx x x C =+++ò;(2)21()1f x dx C x=++ò. 4 求由下列曲线所围成的平面图形的面积:求由下列曲线所围成的平面图形的面积:(1) 2y x =与22y x =- (2) xy e =与0x =及y e =(3) 24y x =-与0y =(4) 2y x =与y x =及2y x =5.5. 求由下列曲线围成的平面图形绕指定坐标轴旋转而成的旋转体的体积:求由下列曲线围成的平面图形绕指定坐标轴旋转而成的旋转体的体积: (1) ,1,4,0y x x x y ====,绕x 轴;轴;(2) 3,2,y x x x ==轴,分别绕x 轴与y 轴;轴; (3) 22,y x x y ==,绕y 轴;轴;(4) 22(5)1x y -+=,绕y 轴.轴.(5). 32y x =,x=4 ,绕y 轴.轴.6. 当k 为何值时,反常积分+2(ln )k dxx x ¥ò收敛?当k 为何值时,这反常积分发散? 7. 设1321()()1f x x f x dx x=++ò,求1()f x dx ò.8. 求函数2()(1)xtf x t e dt -=-ò的极值.的极值.9. 设()f x 在[],a b 上连续,且()1b af x dx =ò,求()baf a b x dx +-ò.10. 设曲线通过点(0,1),且其上任一点(,)x y 处的切线斜率为xe -,求此曲线方程.11. 设3()1xxf e e ¢=+,且(0)1f =,求()f x . 12. 设()ïîïí죣=其它,00,sin 21p x x xf ,求()()ò=x dt t f x 0j . 13. 设()ïïîïïíì<+³+=时当时当0,110,11x ex x x f x ,求()ò-21dxx f . 14. 已知222(sin )cos tan 01f x x x x ¢=+<< ,求()f x . 三、一元函数积分学 练习题( A ) 参考答案 一.选择题一.选择题1. A2. A3. D4. A5. B6. B7. C8. C9. C 9. C 因为因为5x 为奇函数为奇函数 10. D 10. D二.填空题二.填空题1. 1. 写出下列函数的一个原函数写出下列函数的一个原函数写出下列函数的一个原函数(1) 613x (2) sin x - (3) t (4) 2arcsin x -2. 2. 在下列各式等号右端的空白处填入适当的系数,使等式成立在下列各式等号右端的空白处填入适当的系数,使等式成立在下列各式等号右端的空白处填入适当的系数,使等式成立 (1)51;(2)21-;(3)121;(4)21-;(5)31;(6)21;(7)1- (8)31;(9)1-;(1010))1- 3. ()(1ln )ln f x x dx x x C=+=+ò4. 4. 根据定积分的性质,比较积分值的大小根据定积分的性质,比较积分值的大小根据定积分的性质,比较积分值的大小 (1)112300x dx x dx>òò;∵ 当[0,1]x Î时,232(1)0x x x x -=-³,即23x x ³,又2x3x ,所以112300x dx x dx >òò(2)110(1)xe dx x dx >+òò;令()1,()1xxf x e x f x e ¢=--=-,因01x ££,所以()0f x ¢>,从而()(0)0f x f ³=,说明1xe x ³+,所以1100(1)xe dx x dx >+òò5. C e x+33 6. C ex+-- 7. c x x ++2ln 21ln 8.229. 0. 10.38 11. )()(0x xf dt t f x +ò 12. 181- 三.计算题三.计算题1.1.不定积分的计算不定积分的计算不定积分的计算(1)1(1)ln(1)11xx xx x e dx d e e C e e =+=++++òò (2)11121xx xedx e d e C x x=-=-+òò (3)ln ln ln ln ln dx d x x C x x x ==+òò (4)211(1)ln 11(1)(1)1x x d x dx dx x C x x x x --+===++-+-+òòò(5)3444444333(1)3ln 1141414x dx d x dx x C x x x -==-=--+---òòò(6)1(12)1ln 12122122dx d x x C x x -=-=--+--òò (7)22222211(23)123263232323x dx d x dx x C xx x -==-=--+---òòò (8)33311(3)33ln x x xa dx a d x a C a ==+òò(9)sin 2sin 2cos t dt td t t C t ==-+òò(1010))21cos(22)cos ()2x x dxdx w j w j +++=òò 11 cos(22)(22)24x x d x w j w j w =+++ò11sin(22)24x x C w j w=+++ (1111))221cos ()sin()cos ()cos()x x dx x d x w j w j w j w j w ++=-++òò 31cos ()3x C w j w=-++(1212))222arcsin 1(arcsin )arcsin (arcsin )1dxd xC x xx x==-+-òò(1313))32231tan sectan sec (sec 1)sec sec sec 3x xdx xd x x d x x x C ==-=-+òòò (1414))2sec (sec tan )(sec sec tan )tan sec x x x dx x x x dx x x C-=-=-+òò(1515))221111sec tan 1cos 22cos 22dx dx xdx x C x x ===++òòò (1616))515173222222228(4)(4)473x x dx x x dx x dx x dx x x C -=-=-=-+òòòò(1717))33522211(32)(32)(32)(32)25x dx x d x x C -=---=--+òò (1818)令)令sin ()22x t t p p=-<<,则cos dx tdt =,所以,所以22222cos 1csc cot sincos 1dxtdtx tdt t C C t txxx-===-+=-+×-òòò(1919)令)令23x t -=,则23,2t x dx tdt +==,所以所以11(1)ln(1)11231tdt dxdt t t C t t x ==-=-++++-+òòò23ln(231)x x C =---++(2020))sin cos cos cos cos sin x xdx xd x x x xdx x x x C=-=-+=-++òòò(2121))xxxxxxxe dxxdexee dxxeeC ------=-=-+=--+òòò(2222))222111arcsin arcsin arcsin (1)211xdx x x x dx x x d x xx=-×=+---òòò2arcsin 1x x x C =+-+ (2323))2222221111122224ttttttte dt tdetee dt tee C ------=-=-+=--+òòò(2424))22arcsin 1arcsin arcsin arcsin21x dx xd x x C x ==+-òò(2525))sin sin sin cossinx x x xe dx e dx e C==+òò(2626))1cos (sin )ln sin sin sin x d x x dx x x C x x x x++==++++òò(2727))dx x 43-ò=1(43)1ln 434434d x x C x -=-+-ò。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高数第二章 一元函数微分学[选择题]容易题 1—39,中等题40—106,难题107—135。
1.设函数)(x f y =在点0x 处可导,)()(00x f h x f y -+=∆,则当0→h 时,必有( )(A) y d 是h 的同价无穷小量. (B) y y d -∆是h 的同阶无穷小量。
(C) y d 是比h 高阶的无穷小量. (D) y y d -∆是比h 高阶的无穷小量. 答D2. 已知)(x f 是定义在),(+∞-∞上的一个偶函数,且当0<x 时,0)(,0)(<''>'x f x f , 则在),0(+∞内有( )(A )0)(,0)(<''>'x f x f 。
(B )0)(,0)(>''>'x f x f 。
(C )0)(,0)(<''<'x f x f 。
(D )0)(,0)(>''<'x f x f 。
答C3.已知)(x f 在],[b a 上可导,则0)(<'x f 是)(x f 在],[b a 上单减的( )(A )必要条件。
(B) 充分条件。
(C )充要条件。
(D )既非必要,又非充分条件。
答B4.设n 是曲线x x x y arctan 222-=的渐近线的条数,则=n ( ) (A) 1. (B) 2 (C) 3 (D) 4 答D5.设函数)(x f 在)1,1(-内有定义,且满足)1,1(,)(2-∈∀≤x x x f ,则0=x 必是)(x f 的( )(A )间断点。
(B )连续而不可导的点。
(C )可导的点,且0)0(='f 。
(D )可导的点,但0)0(≠'f 。
答C6.设函数f(x)定义在[a ,b]上,判断何者正确?( )(A )f (x )可导,则f (x )连续 (B )f (x )不可导,则f (x )不连续 (C )f (x )连续,则f (x )可导 (D )f (x )不连续,则f (x )可导 答A7.设可微函数f(x)定义在[a ,b]上,],[0b a x ∈点的导数的几何意义是:( )(A )0x 点的切向量 (B )0x 点的法向量 (C )0x 点的切线的斜率 (D )0x 点的法线的斜率 答C8.设可微函数f(x)定义在[a ,b]上,],[0b a x ∈点的函数微分的几何意义是:( )(A )0x 点的自向量的增量 (B )0x 点的函数值的增量(C )0x 点上割线值与函数值的差的极限 (D )没意义 答C 9.x x f =)(,其定义域是0≥x ,其导数的定义域是( )(A )0≥x (B )0≠x (C )0>x (D )0≤x 答C10.设函数)(x f 在点0x 不可导,则( )(A ))(x f 在点0x 没有切线 (B ))(x f 在点0x 有铅直切线 (C ))(x f 在点0x 有水平切线 (D )有无切线不一定 答D11.设'=''='''>f x f x f x ()(),()00000 , 则( ) (A) x 0是'f x ()的极大值点 (B) x 0是f x ()的极大值点 (C) x 0是f x ()的极小值点 (D) (,())x f x 00是f x ()的拐点[D]12. (命题I ): 函数f 在[a,b]上连续. (命题II ): 函数f 在[a,b]上可积. 则命题II 是命 题 I 的( )(A )充分但非必要条件 (B )必要但非充分条件 (C )充分必要条件(D )既非充分又非必要条件(答 B )13.初等函数在其定义域内( )(A )可积但不一定可微 (B )可微但导函数不一定连续 (C )任意阶可微 (D )A, B, C 均不正确 (答 A )14. 命题I ): 函数f 在[a,b]上可积. (命题II ): 函数 |f| 在[a,b]上可积. 则命题I 是命 题 II 的 ( )(A )充分但非必要条件 (B )必要但非充分条件 (C )充分必要条件(D )既非充分又非必要条件(答 A ) 15.设 )(x u ey = 。
则 ''y 等于( )(A ) )(x u e (B ) )(x u e)(''x u(C ))(x u e)]('')('[x u x u + (D ))(x u e )](''))('[(2x u x u +(答 D )16.若函数 f 在 0x 点取得极小值,则必有( )(A ) 0)('0=x f 且 0)(''=x f (B )0)('0=x f 且 0)(''0<x f (C ) 0)('0=x f 且 0)(''0>x f (D )0)('0=x f 或不存在 (答 D ) 17. ≠)('a f ( )a x a f x f A a x --→)()(lim)(; xx a f a f B x ∆∆--→∆)()(lim ).(0;t a f a t f C t )()(lim ).(0--→; ss a f s a f D S )2()2(lim ).(0--+→ 答(C ) 陆小 18. y 在某点可微的含义是:( ) (A ) a x a y ,∆≈∆是一常数; (B ) y ∆与x ∆成比例(C ) x a y ∆+=∆)(α,a 与x ∆无关,0→α)0(→∆x .(D ) α+∆=∆x a y ,a 是常数,α是x ∆的高阶无穷小量).0(→∆x 答( C )19.关于dy y =∆,哪种说法是正确的?( )(A ) 当y 是x 的一次函数时dy y =∆. (B )当0≈∆x 时,dy y =∆ (C ) 这是不可能严格相等的. (D )这纯粹是一个约定. 答( A )20.哪个为不定型?( )(A )0∞ (B )∞0 (C )∞0 (D )0∞ 答( D )21.函数f x x x x x ()()=---232不可导点的个数为(A) 0(B) 1(C) 2(D) 3[C]22.若)(x f 在0x 处可导,则=--→hx f h x f h )()(lim 000( )(A ))(0x f '-; (B ))(0x f -'; (C ))(0x f '; (D ))(0x f -'-.答案:A23.)(x f 在),(b a 内连续,且),(0b a x ∈,则在0x 处( ) (A ))(x f 极限存在,且可导;(B ))(x f 极限存在,且左右导数存在;(C ))(x f 极限存在,不一定可导; (D ))(x f 极限存在,不可导.答案:C24.若)(x f 在0x 处可导,则|)(|x f 在0x 处( )(A )必可导;(B )连续,但不一定可导;(C )一定不可导;(D )不连续.答案:B25.设|)(|)()(0x x x x f ϕ-=,已知)(x ϕ在0x 连续,但不可导,则)(x f 在0x 处( ) (A )不一定可导;(B )可导;(C )连续,但不可导; (D )二阶可导. 答案:B26.设)()()(bx a g bx a g x f --+=,其中)(x g 在),(+∞-∞有定义,且在a x =可导,则)0(f '=( )(A )a 2; (B ))(2a g '; (C ))(2a g a ';(D ))(2a g b '.答案:D27.设))(cos()(cos x f x f y ⋅=,且f 可导, 则y '=( )(A ))())(sin(sin )(cos x f x f x x f '⋅⋅';(B )+⋅'))(cos()(cos x f x f ))](sin([)(cos x f x f -⋅;(C )-⋅⋅'-))(cos(sin )(cos x f x x f )())(sin()(cos x f x f x f '⋅⋅; (D )-⋅'))(cos()(cos x f x f )())(sin()(cos x f x f x f '⋅⋅.答案:C28.哪个为不定型?( ) (A )0∞ (B )∞0 (C )∞0 (D )0∞ 答( D )29.设)100)(99()2)(1()(----=x x x x x x f ,则).()0('=f( A ) 100 (B ) 100! (C ) -100 (D ) -100! 答案:B30.设)(x f 的n 阶导数存在,且)()(lim)()1(a f ax x f n n a x =--→,则)()()1(=-a f n(A ) 0 ( B ) a (C ) 1 (D ) 以上都不对答案: A31.下列函数中,可导的是( )。
( A ) x x x f =)( (B ) x x f sin )(=(C ) ⎪⎩⎪⎨⎧>≤=0,0,)(2x x x x x f (D ) ⎪⎩⎪⎨⎧=≠=0,00,1sin )(x x xx x f 答案:A32.初等函数在其定义域区间内是( )( A ) 单调的 (B ) 有界的 (C ) 连续的 (D ) 可导的 答案:C33.若)(x f 为可导的偶函数,则曲线)(x f y =在其上任意一点),(y x 和点),(y x -处 的切 线斜率( )(A ) 彼此相等 (B ) 互为相反数(C ) 互为倒数 ( D )以上都不对 答案:B34. 设函数)(x f y =在点0x 可导,当自变量由0x 增至x x ∆+0时,记y ∆为)(x f 的增量, dy 为)(x f 的微分,则)(→∆-∆xdyy (当0→∆x 时)。
(A ) 0 ( B ) 1- (C ) 1 (D ) ∞答案:A 35. 设xx x f log log log )(=,则)()('=x f(A )2)(log log log x x x x - (B ) 2)(log log log 1x x x- (C ) 2)(log log log x x x x + ( D ) 2)(log log log 1x x x+答案:B36.若⎩⎨⎧>-≤.1,;1,)(2x b ax x x x f 在x =1处可导,则a b , 的值为( )。