岩石基本性质

合集下载

岩石力学_第一章

岩石力学_第一章

霍布斯〔Hobbs〕对一组煤系地层中的岩石〔如粉 砂岩、页岩、泥岩、石灰岩〕和强度为61-206MPa 的砂岩做了蠕变试验,得出第一、二阶段蠕变经验 公式
g, K, f——分 别为常数。
(t )

Ec
g f t K log(t 1)
平均增量 模量
罗伯逊(Roberstson)根据凯尔文模型通过实际试验 曲线校正,得出岩石在恒定荷载下的蠕变半经验公 瞬时弹性 蠕变 式: 应变
系数
(t ) e A ln t
A的取值:①在单轴压缩时
A E
nc
②在三轴压缩时
3 A 1 2G
nc
蠕变指数, 在低应力时 为1~2,在 高应力时为 2~3
3.指数函数
伊文思〔Evans〕对花岗岩、砂岩、板岩的研究得出
n 0 .4
例如,牛 顿流体
根据岩石的变形与破坏关系,还可以将岩石 性质划分为脆性和延性。
脆性是指物体受力后,变形很小时就发生破裂的性 质
破坏前总应变小,应力-应变 曲线上负坡较陡反之为延性
工程上一般以5%为标准进行划分, 总应变小于5%者为脆性材料反之为 延性材料
延性是指物体能承受较大变形而不丧失其承载力 的性质。
0
eG
0
O
0
e
0
G

0
O
t0
T
t
t
K体蠕变曲线〔应变与时间关系〕
3.粘弹性体 或称伯格(J.K.Burgers)体,简称Bu体
Bu M K (H N ) (H N )
K M K M
K M

K G2 K 2 K

岩石的基本物理力学性质

岩石的基本物理力学性质

岩石的基本物理力学性质岩石的基本物理力学性质是岩体最基本、最重要的性质之一,也是岩体力学中研究最早、最完善的力学性质。

岩石密度:天然密度、饱和密度、质量指标密度、重力密度岩石颗粒密度孔隙性孔隙比、孔隙率含水率、吸水率水理指标渗透系数抗风化指标软化系数、耐崩解性指数、膨胀率抗冻性抗冻性系数单轴抗压强度单轴抗拉强度抗剪强度三向压缩强度岩石的基本物理力学性质◆岩石的变形特性◆岩石的强度理论试验方法参照标准:《工程岩体试验方法标准》(GB/T 50266-99)。

第二章岩石的基本物理力学性质第一节岩石的基本物理性质第二节岩石的强度特性第三节岩石的变形特性第四节岩石的强度理论回顾----岩石的基本构成岩石是自然界中各种矿物的集合体,是天然地质作用的产物,一般而言,大部分新鲜岩石质地均坚硬致密,空隙小而少,抗水性强,透水性弱,力学强度高。

岩石是构成岩体的基本组成单元。

相对于岩体而言,岩石可看作是连续的、均质的、各向同性的介质。

岩石的基本构成:由组成岩石的物质成分和结构两大方面来决定的。

回顾----岩石的基本构成一、岩石的物质成分●岩石是自然界中各种矿物的集合体。

●岩石中主要的造岩矿物有:正长石、斜长石、石英、黑云母、角闪石、辉石、方解石、白云石、高岭石等。

●岩石中的矿物成分会影响岩石的抗风化能力、物理性质和强度特性。

●岩石中矿物成分的相对稳定性对岩石抗风化能力有显著的影响,各矿物的相对稳定性主要与化学成分、结晶特征及形成条件有关。

回顾----岩石的基本构成二、岩石的结构是指岩石中矿物(及岩屑)颗粒相互之间的关系,包括颗粒的大小、性状、排列、结构连结特点及岩石中的微结构面(即内部缺陷)。

其中,以结构连结和岩石中的微结构面对岩石工程性质影响最大。

回顾----岩石的基本构成●岩石结构连结结晶连结和胶结连结。

结晶连结:岩石中矿物颗粒通过结晶相互嵌合在一起,如岩浆岩、大部分变质岩及部分沉积岩的结构连结。

这种连结结晶颗粒之间紧密接触,故岩石强度一般较大,但随结构的不同而有一定的差异。

岩石的物理性质与性质分析

岩石的物理性质与性质分析

岩石的物理性质与性质分析岩石是地球表面最常见的地质材料之一,其物理性质和性质分析对于地质学研究以及工程建设都起到至关重要的作用。

本文将对岩石的物理性质进行介绍,并探讨如何对岩石的性质进行分析。

一、岩石的物理性质1. 密度密度是岩石的重要物理性质之一,通常用质量与体积的比值表示。

岩石的密度不仅与岩石的成分有关,还与其孔隙度和结构形态等因素密切相关。

不同类型的岩石其密度差异较大,例如火山岩的密度一般较低,而花岗岩和玄武岩的密度相对较高。

2. 弹性模量弹性模量是衡量岩石抗弹性变形能力的重要指标,通常用应力与应变的比值表示。

弹性模量可分为体积弹性模量、剪切模量和弯曲模量等。

不同类型的岩石其弹性模量也不同,例如砂岩的弹性模量相对较低,而页岩和石灰岩的弹性模量相对较高。

3. 磁性岩石的磁性是指岩石在外磁场作用下表现出的磁特性。

大部分岩石都具有不同程度的磁性,但具体的磁性表现与岩石的成分、结构以及成岩过程等因素有关。

通过对岩石的磁性分析,可以了解地质历史和构造变形。

4. 热性质岩石的热性质包括导热性、热膨胀系数和热导率等。

岩石的导热性取决于其成分、密度和孔隙度等因素,而热膨胀系数则决定了岩石在温度变化下的体积变化。

热导率是指岩石传导热量的能力,与岩石的矿物含量和孔隙度等因素有关。

二、岩石性质分析方法1. 物理试验常用的岩石性质分析方法之一是物理试验,包括密度测定、弹性模量测定和磁性测定等。

密度测定可通过称重和容器体积测量来完成,而弹性模量的测定通常使用弹性波速度的测量方法。

磁性测定则需要使用磁化强度计等仪器完成。

2. 岩心实验岩心是由地下取得的连续岩石样本,在岩石性质分析中起到非常重要的作用。

通过对岩心的观察和实验室分析,可以了解岩石的颜色、质地、孔隙度、矿物组成等特征,从而推测岩石的物理性质。

3. 地球物理勘探地球物理勘探是一种通过地球物理方法研究地壳结构和性质的方法。

它包括地震勘探、电磁测深、重力测量和磁力测量等。

岩石的基本物理性质以及工程分类

岩石的基本物理性质以及工程分类
(1)吸水率:岩石的吸水率(a)是指岩石试件在大气压力条件下自 由吸入水的质量(mw1)与岩样干质量(ms)之比,用百分数表示,岩石 的颗粒密度属实测指标,常用比重瓶法进行测定。

mW 1 100% ms
1.2 .3 岩石的水理性质
岩石的水理性质: 饱和吸水率
岩石的饱和吸水率( ρ )是指岩石在高压(一般压力为 15Mpa )或真 空条件下吸入水的质量( mw2)与岩样干质量( ms )之比 ,用百分数表示,
VV V
d *100%=(1- s
)100%
(1-4) (1-5) (1-6) (1-7) (1-8)
VV 0 V VVb V VVa V VVc V
*100% *100% *100%=n0-nb *100%=n-n0
1.2 .3 岩石的水理性质
岩石的水理性质:
岩石在水溶液作用下表现出来的性质,称为水理性质。主要有吸水 性、软化性、抗冻性、渗透性、膨胀性及崩解性等。 1) 岩石的吸水性 岩石在一定的试验条件下吸收水分的能力,称为岩石的吸水性。常 用吸水率,饱和吸水率与饱水系数等指标表示。
Kh Rcw Rc
(1-13)
KR愈小则岩石软化性愈强。研究表明:岩石的软化性取决于岩石的 矿物组成与空隙性。 当岩石中含有较多的亲水性和可溶性矿物,且含大开空隙较多时, 岩石的软化性较强,软化系数较小。
1.2 .3 岩石的水理性质
岩石的水理性质: 岩石的抗冻性 岩石抵抗冻融破坏的能力,称为抗冻性。常用冻融系数和质量损失 率来表示。
1.2 .3 岩石的水理性质
岩石的水理性质: 岩石的膨胀性 岩石的膨胀性是指岩石浸水后体积增大的性质。 大多数结晶岩和化学岩是不具有膨胀性的,这是因为岩石中的矿物 亲水性小和结构联结力强的缘故。如果岩石中含有绢云母、石墨和 绿泥石一类矿物,由于这些矿物结晶具有片状结构的特点,水可能 渗进片状层之间,同样产生楔劈效应,有时也会引起岩石体积增大。 岩石膨胀大小一般用膨胀力和膨胀率两项指标表示,这些指标可通 过室内试验确定。目前国内大多采用土的固结仪和膨胀仪的方法测 定岩石的膨胀性。

岩石的工程性质

岩石的工程性质
于岩石孔隙、裂隙的大小和连通情况。岩石的透水性用渗透系数(K)来表示。 岩石名称 花岗岩 玄武岩 砂岩 页岩 石灰岩 白云岩 片岩 岩石渗透系数K/(m·s-1) 室内实验 野外实验 10-7~10-11 10-4~10-9 10-12 10-2~10-7 3×10-3~8×10-8 10-3~3×10-8 10-9~5×10-13 10-8~10-11 10-5~10-13 10-3~10-7 10-5~10-13 10-3~10-7 10-8 2×10-7
Vn n 100 % V
岩石中孔隙(含裂隙)的体积,cm3 岩石的总体积,cm3
岩石孔隙率的大小,主要取决于岩石的结构构造,同时也受风化作用、岩浆作用、
构造运动及变质作用的影响。由于岩石中孔隙、裂隙发育程度变化很大,其孔隙率的
变化也很大。
常见岩石的物理性质
岩石名称 花岗岩 正长岩 闪长岩 辉长岩 辉绿岩 玄武岩 安山岩 凝灰岩 砾岩 砂岩 页岩 石灰岩 泥灰岩 白云岩 片麻岩 花岗片麻岩 片岩 板岩 大理石 石英岩 蛇纹岩 石英片岩 相对密度ds 2.50~2.84 2.50~2.90 2.60~3.10 2.70~3.20 2.60~3.10 2.50~3.30 2.40~2.80 2.50~2.70 2.67~2.71 2.60~2.75 2.57~2.77 2.40~2.80 2.70~2.80 2.70~2.90 2.60~3.10 2.60~2.80 2.60~2.90 2.70~2.90 2.70~2.90 2.53~2.84 2.40~2.80 2.60~2.80 重度λ /(kN/m-3) 23.0~28.0 24.0~28.5 25.2~29.6 25.5~29.8 25.3~29.7 25.0~31.0 23.0~27.0 22.9~25.0 24.0~26.6 22.0~27.1 23.0~27.0 23.0~27.7 23.0~25.0 21.0~27.0 23.0~30.0 23.0~33.0 23.0~26.0 23.1~27.5 26.0~27.0 28.0~33.0 26.0 28.0~29.0 孔隙率n/% 0.04~2.80 0.18~5.00 0.29~4.00 0.29~5.00 0.30~7.20 1.10~4.50 1.50~7.50 0.80~10.00 1.60~28.30 0.40~10.00 0.50~27.00 1.00~10.00 0.30~25.00 0.70~2.20 0.30~2.40 0.02~1.85 0.10~0.45 0.10~6.00 0.10~8.70 0.10~2.50 0.70~3.00

岩体力学第二章岩石的基本物理力学性质PPT课件

岩体力学第二章岩石的基本物理力学性质PPT课件

岩石的强度和破坏
强度
岩石抵抗外力破坏的能力, 通常分为抗压、抗拉和抗 剪强度。
破裂准则
描述岩石在不同应力状态 下从弹性到破坏的过渡规 律。
破裂模式
岩石破坏时的形态和方式, 如脆性、延性、剪切等。
04
岩石的物理力学性质与岩体力学应用
岩石的物理力学性质在岩体工程设计中的应用
岩石的物理性质在岩体工程设计中具有重要影响, 如密度、孔隙率、含水率等参数,决定了岩体的承 载能力和稳定性。
岩石的物理力学性质在岩体工程治理中的应用
在岩体工程治理中,需要根据岩石的 物理力学性质制定相应的治理方案。
在治理过程中,还需要根据岩石的变形和 破坏模式,采取相应的监测和预警措施, 以确保工程治理的有效性和安全性。
如对于软弱岩体,可以采用加固、注浆等措 施提高其承载能力和稳定性;对于破碎岩体 ,可以采用锚固、支撑等措施防止其崩塌和 滑移。
弹性波速
表示岩石中弹性波传播速度, 与岩石的密度和弹性模量等有 关。
岩石的塑性和流变
01
02
03
塑性
当应力超过岩石的屈服点 时,岩石会发生塑性变形, 不再完全恢复到原始状态。
流变
在长期应力作用下,岩石 的变形不仅与当前应力状 态有关,还与应力历史有 关。
蠕变
在恒定应力作用下,岩石 变形随时间逐渐增加的现 象。
岩体力学第二章岩石的基本物 理力学性质ppt课件

CONTENCT

• 引言 • 岩石的物理性质 • 岩石的力学性质 • 岩石的物理力学性质与岩体力学应
用 • 结论
01
引言
岩石的基本物理力学性质在岩体力学中的重要性
岩石的基本物理力学性质是岩体力学研究的基础,对于理解岩体 的变形、破坏和稳定性至关重要。

第二章 岩石的物理性质

第二章 岩石的物理性质

wsa
Ww2 100% Ws
2.2 基本性质指标
岩石的水理性质: 饱水系数
岩石的吸水率( a )与饱和吸水率( sa )之比,称为饱水系数。
K
a sa
它反映了岩石中开口孔隙的发育程度。一般说来,饱 水系数愈大,岩石中的开口孔隙相对愈多。
饱水系数大,说明常压下吸水后余留的孔隙就愈少, 岩石愈容易被冻胀破坏,因而其抗冻性差。
Vvc nc 100% V
总孔隙率与开口和封闭孔隙率的关系
n no nc
(读2-3)
2.2 基本性质指标
岩石的水理性质: 岩石在水溶液作用下表现出来的性质,称为水理性质。主要有吸水 性、抗冻性、软化性、渗透性、膨胀性及崩解性等。
岩石的吸水性
岩石在一定的试验条件下吸收水分的能力,称为岩石的吸水性。常 用吸水率,饱和吸水率(饱水率)与饱水系数等指标表示。
导电性:岩石介质传导电流的能力,常用电导率或电阻率表示。
学科内应用较少

导电性复杂易变:矿物成分,结构,孔隙溶液的多少、化学组成、浓度等 电阻率岩浆岩高,变质岩次之,沉积岩变化范围大、垂直层理较高
2.4
概述
岩石的渗透性
在水力坡降作用下,水在岩体 孔隙和裂隙中的流动,即渗流; 该过程称为渗透。 而岩石的渗透性就是指在水压 力作用下,岩石的孔隙和裂隙 透过水的能力。
影响因素:取决于矿物成分及含量,可作常数看。 水的影响重要 含水状态岩石的比热可用干试样的比热等指标来进行换算,公式如下:
CS
m C mwt Cwt m mwt
2.3
岩石的热学和电学性质
导热性:岩石传导热量的能力
导热系数(热导率)λ:温度梯度为1时,单位时间内通过单位面积岩石所传 导的热量(cal/(cm2· s· ℃)) 多数造岩矿物λ介于0.40~0.80~4.00~7.00之间(2.10, 0.63, 0.021),岩石λ与岩石 密度有关(沉积岩骨架密度15~20%,一倍),注意各向异性岩石λ的差异(顺高 10~30%)。

【完整版毕业论文】岩石的基本物理力学性质及其试验方法

【完整版毕业论文】岩石的基本物理力学性质及其试验方法

第一讲岩石的基本物理力学性质及其试验方法(之一)一、内容提要:本讲主要讲述岩石的物理力学性能等指标及其试验方法,岩石的强度特性。

二、重点、难点:岩石的强度特性,对岩石的物理力学性能等指标及其试验方法作一般了解。

一、概述岩体力学是研究岩石和岩体力学性能的理论和应用的科学,是探讨岩石和岩体对其周围物理环境(力场)的变化作出反应的一门力学分支。

所谓的岩石是指由矿物和岩屑在长期的地质作用下,按一定规律聚集而成的自然体。

由于成因的不同,岩石可分成火成岩、沉积岩、变质岩三大类。

岩体是指在一定工程范围内的自然地质体。

通常认为岩体是由岩石和结构面组成。

所谓的结构面是指没有或者具有极低抗拉强度的力学不连续面,它包括一切地质分离面。

这些地质分离面大到延伸几公里的断层,小到岩石矿物中的片理和解理等。

从结构面的力学来看,它往往是岩体中相对比较薄弱的环节。

因此,结构面的力学特性在一定的条件下将控制岩体的力学特性,控制岩体的强度和变形。

【例题1】岩石按其成因可分为( )三大类。

A. 火成岩、沉积岩、变质岩B. 花岗岩、砂页岩、片麻岩C. 火成岩、深成岩、浅成岩D. 坚硬岩、硬岩、软岩答案:A【例题2】片麻岩属于( )。

A. 火成岩B. 沉积岩C. 变质岩答案:C【例题3】在一定的条件下控制岩体的力学特性,控制岩体的强度和变形的是( )。

A. 岩石的种类B. 岩石的矿物组成C. 结构面的力学特性D. 岩石的体积大小答案:C二、岩石的基本物理力学性质及其试验方法(一)岩石的质量指标与岩石的质量有关的指标是岩石的最基本的,也是在岩石工程中最常用的指标。

1 岩石的颗粒密度(原称为比重)岩石的颗粒密度是指岩石的固体物质的质量与其体积之比值。

岩石颗粒密度通常采用比重瓶法来求得。

其试验方法见相关的国家标准。

岩石颗粒密度可按下式计算2 岩石的块体密度岩石的块体密度是指单位体积岩块的质量。

按照岩块含水率的不同,可分成干密度、饱和密度和湿密度。

02-岩体的基本性质

02-岩体的基本性质

2 岩体的基本性质通常把在地质历史过程中形成的,具有一定的岩石成分和一定结构,并赋存于一定地应力状态的地质环境中的地质体,称为岩体。

岩体在形成过程中,长期经受着建造和改造两大地质作用,生成了各种不同类型的结构面,如断层、节理、层理、片理等。

受其影响,岩体往往表现出明显的不连续、非均质和各向异性,具有一定的结构是岩体的显著特征之一,它决定了岩体的工程特性及其在外力作用下的变形破坏机理。

因此,从抽象的、典型化的概念来说,可以把岩体看作是由结构面和受它包围的结构体共同组成的。

所谓“结构面”,是指在地质发展历史中,尤其是地质构造变形过程中形成的,具有一定方向、延展较大、厚度较小的二维面状地质界面,它包括岩石物质的分界面和不连续面,如岩体中存在的层面、节理、断层、软弱夹层等,可统称为结构面。

结构面是岩体的重要组成单元,由于受结构面的切割,岩体的物理力学性质与岩石有很大的差别。

岩体的物理力学性质取决于结构面和结构体两部分的组合情况,尤其在工程上,岩体的工程力学稳定性质主要取决于岩体内结构面的数量、空间大小、空间组合情况、结构面特征以及充填介质的性质等。

所谓结构体是指由结构面切割而成的岩石块体。

结构体的四周都被结构面包围,常见的结构体大都是有棱角的多面体,如立方体、长方体、柱状体、板状体、菱形体、梯形体、楔形体、锥形体等。

结构体也是岩体的重要组成部分,它本身的物质组成和排列组合方式也影响到岩体的力学性质。

总之,岩体是由结构面和结构体两部分组成的,这也决定了其物理力学性质不是单纯取决定于某一方面的结果,而是二者共同作用和表现的结果,这在岩体力学分析和研究时是十分重要的。

在上一章开始时曾简单介绍过岩石和岩体二者之间的关系,指出工程上的岩石可视为岩体中的结构体(岩块),在无特殊说明的情况下,工程中的岩石均是指岩体中的结构体即岩块而言的。

从力学角度来看,岩体与岩石有许多区别,其中较明显的特征可归纳为以下几点:1)岩体的非均质性岩体可以由一种或几种岩石组成,而且以后者居多。

岩石的物理性质与性质分析

岩石的物理性质与性质分析

岩石的物理性质与性质分析岩石是地壳中主要的固体物质,由矿物粒子和胶结物质组成。

岩石的物理性质是指岩石在外部作用下所表现出的性质,包括密度、硬度、磁性、导电性等。

岩石的性质分析是对岩石物理性质的具体研究,通过对岩石的性质分析,可以更好地了解岩石的组成和结构,为勘探、开采和利用岩石资源提供参考。

1. 密度分析岩石的密度是指单位体积岩石的质量,通常以g/cm³或kg/m³为单位。

密度是岩石的一个重要物理性质,可以通过密度的测定来判断岩石的成分和结构。

常见的岩石密度范围在2.4-3.0g/cm³之间,不同种类的岩石其密度也会有所差异。

例如,花岗岩的密度较高,大理石的密度较低,通过密度分析可以区分不同种类的岩石。

2. 硬度分析岩石的硬度是指岩石抵抗外力破坏的能力,通常以莫氏硬度来表示。

莫氏硬度是一个用来标定矿物硬度的量值,取值范围从1到10,硬度越大表示矿物的抗压能力越强。

常见的岩石硬度在2-7之间,硬度较高的岩石如石英、玄武岩等在建筑和工程领域中有重要的应用。

通过硬度分析可以进行岩石分类和评价。

3. 磁性分析岩石的磁性是指岩石在外磁场作用下表现出的性质,包括磁化强度、剩磁、磁化率等。

岩石的磁性与岩石的矿物成分密切相关,一些含铁矿物的岩石具有较强的磁性。

通过磁性分析可以对岩石中的矿物组成和结构进行识别和研究,为地质勘探和矿产资源调查提供基础数据。

4. 导电性分析岩石的导电性是指岩石导电能力的强弱,不同类型的岩石具有不同的导电性。

一些含水的岩石、矿石等具有较好的导电性,通过导电性分析可以进行矿石探测和地下水勘探。

导电性分析还可以用于岩石的工程评价和建筑设计,对岩石的稳定性和耐久性进行评估。

综上所述,岩石的物理性质与性质分析对于岩石资源的开发利用具有重要的意义。

通过对岩石的密度、硬度、磁性和导电性等方面的分析,可以更加深入地了解岩石的成分和结构,为岩石资源的综合利用提供科学依据。

矿山岩石和岩体的基本性质1

矿山岩石和岩体的基本性质1
《矿山压力与岩层控制》
第一章 矿山岩石和岩体的基本性质
第一节 岩石的基本物理性质
一、岩石的基本概念
岩石:组成地壳的基本物质,由各种造岩矿物或岩屑在地 质作用下按一定规律组合成的岩块。
岩石分类: 1.岩石成因:岩浆岩、沉积岩、变质岩 2.颗粒间结合特征:固结性、粘结性、散粒状、流动性 3.强度和坚实性:坚硬岩石、松软岩石
整体结构、块状结构、层状结构、碎裂结构、松 散结构
第五节
岩体的基本力学性能与分级标准
一、岩体变形特征
1.岩体应力应变曲线 压密阶段、弹性阶段、塑性阶段、破坏阶段
2.影响岩体变形的因素
岩体结构影响、岩体结构面影响、试验条件影响 二、岩体强度及其影响因素 影响岩体强度因素: 结构面产状、结构面密度、试件尺寸、环境围压、
一、岩石的破坏机理
1.岩石破坏形式
脆性破坏、塑性破坏 2.岩石破坏机理 张裂或压裂破坏、压剪破坏、塑流破坏 二、莫尔强度理论、格里菲斯强度理论
莫尔应力圆、强度曲线、莫尔强度准则
裂纹扩展的能量准则 裂纹扩展的应力准则
第四节
岩体的基本特征和类型
一、岩体的基本概念
二、岩体结构面及结构体特征 三、岩体的基本特征 非均质性、各向异性、非连续性 四、岩体结构的类型
孔隙水压
第二节
岩石强度和变形特性
一、岩石变形性质的类别及指标
1.岩石变形性质的类别
1)弹性变形
线弹性、完全弹性、滞弹性
2)塑性变形
第二节
二、岩石的抗剪强度
岩石强度和变形特性
第二节
岩石强度和变形特性
三、岩石的单轴强度及变形特性 1.岩石的单轴抗压强度及变形特征 2.岩石单轴抗拉强度 四、岩石在三轴应力作用下的强度及变形特性

初中岩石知识点总结

初中岩石知识点总结

初中岩石知识点总结一、岩石的类型1. 岩石的分类岩石主要可以分为火成岩、沉积岩和变质岩这三大类。

其中火成岩是由地壳深部岩浆冷却凝固形成的岩石,例如花岗岩和玄武岩;沉积岩是由岩屑、有机体或化学沉淀物堆积形成的岩石,例如砂岩和页岩;变质岩是在高温高压条件下,原有火成岩、沉积岩或变质岩发生变质作用形成的岩石,例如片岩和大理岩。

2. 岩石的性质不同类型的岩石有着不同的性质,火成岩的结晶颗粒大,硬度高,抗风化能力强;沉积岩的颗粒细腻,有层状结构,容易分层剥离;变质岩的结晶颗粒较小而有序,硬度高,抗风化能力也强。

二、岩石的形成1. 火成岩的形成火成岩是由地壳深部的高温岩浆冷却凝固形成的。

岩浆可以分为玄武岩、花岗岩等,根据其形成条件和成分的不同可以分为深成岩和浅成岩。

2. 沉积岩的形成沉积岩是由岩屑、有机体或化学沉积物经过风化、磨蚀、沉积、压实等过程形成的。

其形成有着特定的环境条件,例如湖泊、海洋、河流等。

3. 变质岩的形成变质岩是在高温高压条件下,原有的岩石(包括火成岩、沉积岩、变质岩)在不融化的情况下发生了结晶、形状、次生矿物或原有矿物的排列结构等方面的变化,形成了变质岩。

三、岩石的用途岩石在生活中有着多种用途。

火成岩可以用来建筑、雕刻和装饰等;沉积岩可以制作砖头、石灰等;变质岩可以作为地质材料和装饰材料等。

四、国内外的岩石地质中国地处欧亚大陆的东部,地质构造复杂,岩石种类繁多。

主要分布在东北的火成岩、华北的变质岩、长江中下游的火成岩和沉积岩、西南的岩石构造多样。

五、岩石的保护与治理由于自然条件剥蚀、水文作用、地质活动等,岩石往往受到自然侵蚀的影响。

对于岩石的保护与治理是一项长期的工作。

总结:岩石作为地球的基本组成部分,在地球形成的过程中扮演着重要的角色。

同学们应该通过学习岩石的相关知识,了解岩石的形成、类型和用途,进而增强对地质学知识的理解和应用能力。

同时也要关注岩石的保护与治理,促进岩石资源的可持续利用。

01-岩石的基本性质

01-岩石的基本性质

1 岩石的基本性质在地下工程稳定性研究当中,研究岩体或岩石主要是研究其物理性质和力学性质,其次是从微观上研究其矿物组成。

这主要取决于煤矿地下工程者的两个主要研究目的,其一是岩体的开挖问题,即采用何种方式方法和工艺过程对岩体进行开挖,从而形成所需要的地下空间,如井下巷道和硐室;其二是岩体的维护问题,即采用何种支护方式来保证在岩体中所形成地下空间能够确保使用期间的安全,也即通过何种方式来保证其围岩的稳定。

从地质学的基本知识可知,岩体是指在地质历史过程中形成的,具有一定的岩石成分和一定结构,并赋存于一定地应力状态的地质环境中的地质体。

岩体在形成过程中,长期经受着建造和改造两大地质作用,生成了各种不同类型的结构面,如断层、节理、层理、片理等。

所以,岩体往往表现出明显的不连续、非均质和各向异性。

具有一定的结构是岩体的显著特征之一,它决定了岩体的工程特性及其在外力作用下的变形破坏机理。

由此可见,从抽象的、典型化的概念来说,可以把岩体看作是由结构面和受它包围的结构体两部分共同组成的,而岩石是不含有结构面的矿物集合体,故在这种条件下,可以将岩石近似看作岩块(结构体)进行分析和研究。

在岩体的两个基本组成部分当中,首先要对岩石的基本性质进行全面的了解。

1.1 岩石的结构与构造岩石作为多孔介质的一种,是各种矿物的集合体,是各种地质作用的产物,是构成地壳的物质基础。

影响岩石基本性质的主要因素是岩石的矿物组成、岩石的结构与构造。

1.1.1 岩石的分类目前在岩石的分类当中,主要从以下两个方面进行:1)按其成因可分为岩浆岩、沉积岩和变质岩三大类①岩浆岩岩浆岩是指在内力地质作用下,地球内部的岩浆沿地壳裂隙侵入地壳或喷出地面冷凝而成的岩石。

岩浆岩又称火成岩,其中,埋于地下深处或接近地表的称为侵入岩;喷出地表的称为喷出岩。

②沉积岩沉积岩是指岩石在外力地质作用下,经过风化、剥蚀成岩石碎屑,经流水、风等搬运作用搬运到低洼处沉积下来,而后再经过压紧或化学作用硬结而成的岩石。

3岩石的工程地质性质_204807711

3岩石的工程地质性质_204807711

化学岩的工程地质性质 石灰岩 力学强度大多较高,抗水性弱(具溶解性),地 下水的溶蚀形成喀斯特(Karst)空洞。是地下水的集中渗 流通道,地基中的不稳定区。 白云岩 力学强度较高,具有微弱的溶蚀性。 硅质岩 强度高,抗水性好,抗风化能力强。 沉积岩中分布最广的是石灰岩,其次是泥质岩(页岩和 粘土岩)和砂岩。
石林(石灰岩溶蚀地貌)
图片来自 /
石灰岩溶蚀地貌(Malham Cove, UK)
图片来自 /
石灰岩溶洞
石 灰 岩 溶 蚀 地 貌 ---
3. 岩石的抗风化能力 抗化学风化的能力,主要取决于其成分。 造岩矿物在地表风化条件下的化学稳定性 相对稳定性 很稳定的 较稳定的 1 较稳定的 2 较稳定的 3 不太稳定的 很不稳定的 造岩矿物 石英 白云母、正长石、酸性斜长石 白云石 (弱溶解性) 粘土矿物 (不易分解,但易软化) 方解石(易被溶蚀) 角闪石、辉石、黑云母、橄榄石、基性斜长 石 (易被分解)
5.岩石的风化带
风化作用使地表附近的岩石发生化学破坏和机械破碎,矿 物成份和完整性发生不同程度的改变,形成与原岩性质不 同的风化产物。 在垂直剖面上,从地表向下,岩石风化程度由深变浅,过 渡到新鲜岩石。
《岩土工程勘查规范》GB50021-2001划分出4种风化程 度的岩石:全风化、强风化、中等风化和微风化。
沉积岩的两种主要成分:石英和粘土矿物。 石英的化学稳定性最强; 粘土矿物在化学风化的条件下稳定性也较好,但是容易 受地下水的作用而软化,易发生物理风化。 沉积岩的组成成分,为地表风化产物,大部分具有较好 的抗化学风化能力。 岩浆岩,大部分为不稳定的硅酸盐矿物。在化学风化条 件下,易于被分解破坏。
4. 三大岩类的工程地质性质 (1) 岩浆岩的工程地质性质 绝大部分岩浆岩,力学强度高,透水性弱,抗水性强 (不软化,不溶解)。但同沉积岩相比抗风化能力较弱。 不同产状的岩浆岩略有差异: 深成岩浆岩: 矿物颗粒间结晶联结,力学强度高; 孔隙率小,透水性弱、抗水性强;岩体大、整体稳定性 好;良好的建筑地基和天然建筑石材。总体抗化学风化 能力较差。

岩石及岩体的基本性质[详细]

岩石及岩体的基本性质[详细]

第一章岩石及岩体的基本性质第一节概述岩石是组成地壳的基本物质,它由各种造岩矿物或岩屑在地质作用下按一定规律(通过结晶或借助于胶结物粘结)组合而成.一、岩石的分类自然状态下的岩石,按其固体矿物颗粒之间的结合特征,可分为:①固结性岩石:固结性岩石是指造岩矿物的固体颗粒间成刚性联系,破碎后仍可保持一定形状的岩石.②粘结性岩石、③散粒状岩石、④流动性岩石等.在煤矿中遇到的大多是固结性岩石.常见的有砂岩、石灰岩、砂质页岩、泥质页岩、粉砂岩等.按岩石的力学性质不同,常把矿山岩石分为:①坚硬岩石②松软岩石两类.工程中常把饱水状态下单向抗压强度大于10米Pa的岩石叫做坚硬岩石,而把低于该值的岩石称为松软岩石.松软岩石具有结构疏松、密度小、孔隙率大、强度低、遇水易膨胀等特点.从矿压控制角度看,这类岩石往往会给采掘工作造成很大困难.二、岩石的结构和构造岩石的强度与岩石的结构和构造有关.1.岩石的结构指决定岩石组织的各种特征的总合.如岩石中矿物颗粒的结晶程度、颗粒大小、颗粒形状、颗粒间的联结特征、孔隙情况,以及胶结物的胶结类型等.岩石中矿物颗粒大小差别很大,在沉积岩中,有的颗粒小到用肉眼难以分辩(如石灰岩、泥岩、粉砂岩中的细微颗粒),有的颗粒可大至几厘米(如砾岩中的粗大砾石).组成岩石的物质颗粒大小,决定着岩石的非均质性.颗粒愈均匀,岩石的力学性质也愈均匀.一般来说,组成岩石的物质颗粒愈小,则该岩石的强度愈大.2.岩石的构造是指岩石中矿物颗粒集合体之间,以及与其它组成部分之间的排列方式和充填方式.主要有以下几种构造:1.整体构造——岩石的颗粒互相紧密地紧贴在一起,没有固定的排列方向;2.多孔状构造——岩石颗粒间彼此相连并不严密,颗粒间有许多小空隙;3.层状构造——岩石颗粒间互相交替,表现出层次叠置现象(层理).岩石的构造特征对其力学性质有明显影响,如层理的存在常使岩石具有明显的各向异性.在垂直于层理面的方向上,岩石承受拉力的性能很差,沿层理面的抗剪能力很弱.受压时,随加载方向与层理面的交角不同,强度有较大差别.第二节 岩石的物理性质一、岩石的相对密度(比重)岩石的相对密度就是岩石固体部分实体积(不包括空隙)的质量与同体积水质量的比值.其计算公式为:w c dV G γ•=∆ (1-1)式中 Δ—岩石的比重;G d —绝对干燥时岩石固体实体积的重量,g;V c —岩石固体部分实体积,厘米3;γw —水的密度,g/厘米3岩石比重的大小取决于组成岩石的矿物比重,而与岩石的空隙和吸水多少无关.岩石的比重可用于计算岩石空隙度和空隙比.煤矿中常见岩石的比重见表1-1.二、岩石的质量密度岩石的密度是指单位体积(包括空隙)岩石的质量.根据含水状态不同,岩石的密度分为天然密度、干密度、和饱和密度.天然密度是岩石在天然含水状态下的密度.干密度是岩石在105~110℃烘箱内烘至恒重时的密度.饱和密度是岩石在吸水饱和状态下的密度.干密度、饱和密度和天然密度的表达式如下:V G d d =γVG sat sat =γ (1-2) VG =γ 式中 G d 、G sat 、G —分别是干燥岩石、水饱和岩石和天然含水岩石的质量,g;γd 、γsat 、γ—岩石的干密度、饱和密度和天然密度,g/厘米3V —岩石的体积,厘米3.通常,不说明含水状态时,即指岩石的干密度.煤矿常见的岩石密度见表1-1. 对于遇水易膨胀的某些松软岩石,区分干密度和湿密度有重要意义.三、岩石的空隙性岩石的空隙性是指岩石中孔隙和裂隙的发育程度,常用空隙度表示.所谓空隙度是指岩石中各种空隙、裂隙的体积的总和与岩石总体积之比.按下式计算:%1001⨯⎪⎭⎫ ⎝⎛∆-=d n γ (1-3) 式中 n —岩石的空隙度(也称空隙率);γd —岩石的干密度,g/厘米3;Δ—岩石的比重值.岩石的空隙性也可用空隙比表示.空隙比是指岩石中各种孔隙和裂隙体积 总和与岩石内固体部分实体积之比.表达式如下:co V V e = (1-4) 式中 e —岩石的空隙比;V o —岩石内各种空隙和裂隙体积的总和,厘米3;V c —岩石内固体部分实体积,厘米3;空隙比与空隙度之间有如下关系:nn e -=1 (1-5) 岩石的空隙性对岩石的其它性质有显著影响.一般来说,空隙度增大可使岩石密度和强度降低,使塑性变形和透水性增加.煤矿中常见岩石的空隙度和空隙比见表1-1.四、岩石的碎胀性和压实性岩石破碎以后的体积将比整体状态下增大,这种性质称为岩石的碎胀性.碎胀系数——岩石的碎胀性可用岩石破碎后处于松散状态下的体积与破碎前处于整体状态下的体积之比来表示,该值称为碎胀系数.表达式如下:VV k p '= (1-6) 式中 k p —岩石的碎胀系数;V ’—岩石破碎膨胀后的体积,厘米3;V —岩石处于整体状态下的体积,厘米3.岩石的碎胀系数对矿山压力控制,特别是采煤工作面的顶板管理有重要意义.碎胀系数与岩石的物理性质、破碎后块度的大小及其排列状态等因素有关.例如,坚硬岩石成大块破坏且排列整齐时,碎胀系数较小,如破碎后块度较小且排列较杂乱,则碎胀系数较大.煤矿中常见岩石的碎胀系数见表1-2.岩石破碎后,在其自重和外加载荷的作用下会逐渐压实,体积随之减小,碎胀系数比初始破碎时相应变小.这种压实后的体积与破碎前原始体积之比,称为残余碎胀系数,以k ‘p 表示,其值见表1-2.五、岩石的水理性质1.岩石的吸水性.岩石的吸水性是指遇水不崩解的岩石,在一定试验条件下(规定的试尺寸和试验压力)吸入水分的能力.通常以岩石的自然吸水率和强制吸水率表示.岩石的自然吸水率是指试件在大气压力作用下吸入水分的质量与试件的烘干质量之比.岩石的强制吸水率(也称饱和吸水率)是指试件在加压(150个大气压)条件下吸入水分的质量与烘干质量之比.两种吸水率表达式如下:(1-7)%100⨯=d w G G ω%100⨯=⋅d s w sat G G ω式中 ω、ωsat —岩石的自然吸水率和强制吸水率;G w —岩石试件在大气压力下吸入水分的质量,g;G d —岩石试件烘干后质量,g;G w·s —岩石试件强制饱和吸水后质量,g.2.岩石的透水性.在地下水水力坡度(压力差)作用下,岩石能被水透过的性能称为岩石的透水性.用渗透系数来表征岩石透水性能的大小.渗透系数的大小取决于岩石孔隙的大小、数量和相互贯通情况.根据达西定律:KAI Q = (1-8)式中 Q —单位时间透水量;K —渗透系数;A —渗透面积;I —水力坡度(压力差);3.岩石的软化性.岩石浸水后的强度明显降低,可用软化系数表示水分对岩石强度的影响程度.软化系数是水饱和岩石试件的单向抗压强度与干燥岩石试件单向抗压强度的比值,其关系式如下:1≤=ccw c R R η (1-9) 式中 ηc —岩石的软化系数;R cw —水饱和岩石试件的单向抗压强度,米Pa;R c —干燥岩石试件的单向抗压强度,米Pa.岩石浸水后的软化程度,与岩石中亲水矿物和易溶性矿物的含量、空隙的发育程度、水的化学成份,以及岩石浸水时间的长短等因素有关.亲水矿物和易溶矿物含量越多,张性裂隙越发育,则岩石浸水后强度降低程度越大.此外,岩石浸水时间越长,其强度降低程度也越大.如某些砂岩浸水3天后,单向抗压强度降低32~35%,浸水9天后降低51~59%.研究岩石的软化性对用高压注水法控制坚硬难冒落顶板有重要意义.表1-3为煤矿中几种常见岩石的软化系数,由该表可看出,各种岩石的软化系数都小于1,说明岩石普遍具有软化性.第三节岩石的变形性质变形是岩石的主要力学性质.岩石受载时将首先发生变形,当载荷超过一定数值(极限强度)时导致破坏.变形和破坏是载荷作用下岩石的力学性质发展变化的两个阶段.一、岩石的弹性和塑性岩石受力后既可出现弹性变形,也可出现塑性变形.但岩石与一般固体材料不同,它的弹性变形和塑性变形往往同时出现.岩石是兼有弹性和塑性的材料.二、在单向压缩下岩石的变形特性1. 脆性岩石的变形性质.图l-l a为脆性岩石的应力—应变曲线.其特点是岩石在破坏前没有明显的塑性变形,总应变量也较小.通常把在外力作用下破坏前总应变小于3%的岩石,叫做脆性岩石.可将图l-l a所示曲线分为三段:OA段表示岩石受载初期,由于岩石中的各种空隙受压闭合,曲线出现上弯,OA段称为岩石的压密阶段;AB段接近于直线,可近似地称为线弹性阶段,这时可认为岩石处于弹性状态;在BC段内,自B点开始岩石内部已有微破裂不断发生,到C点发生破坏,故BC段可称为破裂发展阶段.C点即为岩石的强度极限.图l-1a是利用具有普通刚度的试验机所得的结果,岩石破碎时发出巨大的声响,岩石碎块强烈弹出,这就是一般所说的脆性破坏.如果采用刚度很大的材料试验机(常称为刚性试验机)加压,就可以使原先呈炸裂性破坏的岩石试件平静地产生破坏,从而可使试验继续进行下去,并得出岩石的应力—应变全程曲线(图l-l b).它说明岩石应力达到最大值以后,并不立即完全丧失承载能力,而是要达到D点才完全破坏.D点称为完全破坏点,而该点所保持的某一较小的应力值称为残余强度.岩石具有残余强度的特性,对地下开采过程中合理地利用已经受到破坏的围岩(或煤体)的自承能力有重要意义.图l-l 脆性岩石的应力应变曲线2. 塑性岩石的变形性质.图l-2为塑性岩石的应力应变曲线,它的特点是岩石在破坏之前的应变量较大.通常把外力作用下破坏前总应变大于5%的岩石叫做塑性岩石.由图l-2可知,塑性岩石应变曲线的斜率开始较陡,以后逐渐平缓.工程上把开始变缓的转折点称为屈服点,该点的应力值称为屈服极限σT.有时为了方便起见,也将OEF曲线简化为OEG折线.认为岩石在达到屈服极限以前处于近似弹性状态,而σT表示塑性流动开始.塑性岩石产生的塑性变形要比弹性变形大得多.图1-2 塑性岩石的应力应变曲线三、三向压缩条件下岩石的变形特性图l-3a、b为干砂岩和湿砂岩在常温和不同侧压(或称围压)三向压缩条件下的变形曲线.图中的纵坐标表示最大的主应力σ1(一般为垂直应力)与最小应力σ,(一般为侧向应力)之差,横坐标表示轴向应变.试验时侧向应力σ2=σ3.由图可知: 3(l)当岩石受三向压缩时,其应力应变的开始阶段,有一段近似于直线的关系,说明在主应力差值(σ1-σ3)的峰值前不远的范围内,岩石属弹性变形.(2)岩石的脆性和塑性是相对的,在单向应力或较低的三向应力状态下表现为脆性的岩石,在高压三向应力状态下破坏前也能表现出很大的塑性.(3)三向压缩时,随着侧向应力σ3和主应力差值(σ1-σ3)的增加,强度极限(峰值)也随之增大.(4)岩石在三向压缩条件下破坏以后,虽然其结构发生了变化,但仍然保留一定的承载能力.这对于在井下控制煤柱和岩体的稳定性很有实际意义.图1-3 砂岩在常温和不同侧压三向压缩下的应变曲线a-干砂岩;b-湿砂岩四、岩石的蠕变性在恒定载荷持续作用下,应变随时间增长而变化的现象称为蠕变,表示这一特征的曲线叫做蠕变曲线.图l-4是岩石的典型蠕变曲线.由图可知,在开始加载时,试件立即产生一个瞬时应变(图中OA段),由于这一段作用的时间极短,故可近似地认为是弹性变形.在AB段,应变不断增加,但应变速率不断降低,故曲线呈下凹型,这个阶段的蠕变称为第一阶段蠕变或短暂蠕变.在BC段,应变以稳定恒速增长,这个阶段的蠕变称为第二阶段蠕变或定常蠕变,且这个阶段的时间延续最长.在CD 段,应变以加速增长,曲线呈上凹型,这个阶段的蠕变称第三阶段蠕变或加速蠕变.当应变达到某数值D时,最终引起试件破坏.图1-4岩石的典型蠕变曲线第四节 岩石的强度特性在载荷的作用下,岩石变形达到一定程度就会破坏.岩石发生破坏时所能承受的最大载荷称为极限载荷,用单位面积表示则称为极限强度.在不同应力条件下,岩石具有不同的极限强度.岩石的强度可分为单向抗压强度、单向抗拉强度、抗剪强度、抗弯强度、三向抗压强度等.一、岩石的单向抗压强度岩石试件在单向压缩时所能承受的最大应力值,称为岩石的单向抗压强度.它是地下工程中使用最广的岩石力学特性参数,在煤矿中研究岩石分类、确定破坏准则以及表达围岩坚硬程度时,常采用这一指标.测定岩石的单向抗压强度,通常采用直径5厘米和高径比为2的圆柱形试件,在压力机上以50~100N/s 的速度加载,直到试件破坏,然后按下式计算:AP R c (1-10) 式中 R c —岩石试件的单向抗压强度,kPa;P —岩石试件破坏时施加的载荷,kN;A —试件初始截面积,米2.煤矿常见岩石的单向抗压强度见表1-4.二、岩石的单向抗拉强度岩石试件在单向拉伸时能承受的最大拉应力值,称为单向抗拉强度.它是岩石力学性质中的重要指标.由于岩石的抗拉强度远小于抗压强度,在受载不大时就可能出现拉伸破坏,因此,它对研究井下巷硐失稳等问题有重要意义.目前,测定岩石抗拉强度的基本方法基本上可分两类,即直接拉伸法和间接拉伸法.直接拉伸法与金属材料拉伸试验类似.可按下式求得岩石的抗拉强度:AP R t t = (1-11) 式中 R t —岩石试件的单向抗拉强度,kPaP t —试件破坏时的总拉力,kN;A —试件破坏断面积,米2.由于直接拉伸法的岩石试件加工复杂,目前广泛采用劈裂法间接地测定岩石的单向抗拉强度.这种方法是用直径为5厘米和厚2.5厘米的圆盘形试件,在材料试验机上以3~5N/s 的速度加载,直至试件被压裂(图1-5).此时,可按下式计算试件的抗拉强度:DtP R p π2= (1-12) 式中 R p —圆盘形试件的抗拉强度,kPa;P —试件裂开破坏时的竖向总压力,kN;D 、t —圆盘形试件的直径和厚度,米.图1-5 劈裂法试验装置示意图1-试件;2-钢丝垫条;3-承压板图1-6 倾斜压模剪切装置三、岩石的抗剪强度岩石的抗剪强度是指岩石抵抗剪切作用的能力.目前广泛采用倾斜压模法测定岩石抗剪强度.如图1-6所示,将规格为5厘米×5厘米×5厘米的立方体试件放在两个钢制的倾斜压模之间,以50~100N/s 的速度加载迫使试件沿预定的剪切面AB 剪断.这时作用在破坏面上的应力为:(1-13)式中 T 、N —作用在剪切破坏面上的剪应力和正应力,kN;τ—抗剪强度,kPa;σn —剪切破坏面上的正应力,kPa;P —试件发生剪切破坏时压力机施加的总压力,kN;A —试件剪切破坏面的面积,米2;α—试件与水平面的夹角,(°)ατsin A P A T ==ασcos A P A N n ==四、岩石的三向抗压强度岩石在三向应力作用下所能抵抗的最大轴向应力,称为岩石的三向抗压强度.它通常是在轴对称应力组合方式(即σ1>σ2=σ3)的三向应力条件下,利用岩石三轴应力试验机测定的.图1-7 三轴试验装置1-压力室;2-密封设备;3-球面底座;4-压力液进口;5-排气口;6-侧向压力;7-试件如图1-7所示,测定时将试件放在密闭的高压容器内,用油泵向压力室内送入高压油,对试件施加侧向压力(σ2=σ3),达到预定值后封闭压力室,然后以50~100N/s 的稳定速度,连续均匀地通过压力机活塞施加轴向载荷,直至试件破坏.试件在相应侧压力下的三向抗压强度可按下式计算:AP R c 3 (1-14) 式中 R 3c —在一定侧向压力作用下的岩石三向抗压强度,kPa;P —试件破坏时的轴向载荷,kN;A —试件的初始横断面积,米2.岩石因受力状态不同,其极限强度相差很大.岩石在不同应力状态下的各种极限强度一般符合下列顺序:三向等压抗压强度>三向不等压抗压强度>双向抗压强度>单向抗压强度>抗剪强度>抗弯强度>单向抗拉强度.此外,单向抗压强度R c 、单向抗拉强度R t 和抗剪强度τ之间有以下数量关系:第五节 岩石的破坏类型岩石在外力作用下首先产生不同形式的变形,继而产生微细裂缝和破裂,如果破裂不断发展,将导致岩石最终破坏.有些岩石在破坏前出现很大的变形,而另一些岩石破坏前出现的变形很小或可忽略不计.通常把岩石在载荷作用下没有显著的变形而突然发生的破坏称为脆性破坏,把岩石在载荷作用下出现较大的变形以后才发生的破坏称为塑性破坏.但是在脆性破坏和塑性破坏之间并无明确的界限,岩石呈现脆性破坏还是塑性破坏,不仅取决于岩石本身的性质,还在很大程度上取决于外界条件,如岩石所处的应力状态,温度,压力,水分,受载时间等等.例如,在常温、低围压和高应变率条件下呈现为脆性破坏的岩石,在高温、高围压、多水分和低应变率的条件下,岩石可呈现为塑性破坏.不论在何种受力状态下,岩石发生破坏的基本形式只有两种:拉断破坏和剪切破坏.例如岩石在受单向压缩时,根据其上下端面的润滑情况,可能出现拉断破或剪切破坏.岩石试件在受弯曲时,往往是由于下部表面受到拉应力的作用而导致拉断破坏.至于塑性破坏(例如粘土类岩石),它实质上是塑性岩石颗粒间产生微小剪切滑移的结果,仍属于剪切破坏.因此,尽管由于岩石性质、构造特征、受力方式以及试件形状和尺寸不同,试件的破坏形态有很大差别,但从岩石的破坏方式和机理来看,都可归结为拉断破坏和剪切破坏这两种基本类型.一、拉断破坏151~21=c R τ381~51=c R R τ3c R R ⋅≅ττ拉断破坏可以直接由拉力引起的拉应力造成,也可以由压缩、弯曲等衍生的拉应力造成,但不论加载方式如何,都是由于拉应力超过极限强度而造成的破坏,其特点是岩石破坏时呈现出沿破坏面发生拉开的运动.拉断破坏又称张性破坏.图l-8 拉断破坏的两种情况a—直接拉断;b、c—间接拉断根据加载方式不同,拉断破坏可分两种情况:(一)直接拉断直接拉断(图l-8a)的特点是断裂面与受力方向垂直,断裂面明显分离.而在断裂面之间没有错动.(二)间接拉断间接拉断(图l-8b、c)的特点是断裂而与受力方向平行.当在受压面上涂润滑剂时,由于加压板与试件受压面之间无摩擦阻力或摩擦阻力很小,在纵向压缩过程中,引起试件自由地产生横向变形.当横向变形伸长量超过试件抵抗伸长的能力时,就会导致试件产生纵向劈裂而被拉断.这种因压缩而引起的拉断破坏形式又叫“压裂”或“横向张裂”.尽管以上两种拉断破坏的受力方式不同,但两者共同之处都是由拉应力引起破坏,而且都出现张开的裂缝.二、剪切破坏剪切破坏可以直接由剪切破坏或者由压缩衍生的剪应力造成.但无论加载方向如何,都是由于剪应力超过极限强度而造成的破坏.其特点是岩石破坏时呈现出沿破坏面发生相互错动的运动.剪切破坏又称剪破裂或剪裂.根据加载方式不同,剪切破坏有两种情况:(一)直接剪切通常由外加的剪力造成,其特点是剪切破坏面与外加剪力方向一致(图1-9,a).图1-9 剪切破坏的两种情况a—直接剪切;b、c—间接剪切(二)间接剪切由轴向压缩或其它受力方式引起的剪切破坏.当受压面上不涂润滑剂时,加压板与试件受压面之间有很大的摩擦阻力,试件不易产生横向变形.于是试件内部产生剪应力,最后沿与最大压应力垂直方向成一定角度α的某个平面发生剪切破坏(图1-9b、c).α称为剪切破坏角.剪切破坏角与岩石强度有关.通常,坚硬岩石的剪切破坏角较大,软岩则较小,常见岩石剪切破坏角见表1-5.尽管直接剪切和间接剪切破坏的受力方式不同,但两者共同之处是其破坏形式表现为试件的一部分相对于另一部分产生滑移,即形成剪切裂缝.但这种裂缝通常都不张开,而是呈闭合的形式,常称之为剪裂面.通常,试件内部的剪应力具有对称性,试件受剪切破坏时常出现成对的倾斜裂缝,常称为“X形剪裂隙”(图1-9c).第六节岩体的基本性质前面讨论的岩石力学性质,都是以对小块岩石试件(岩块)进行的实验和研究为基础,与大范围天然岩体的力学性质有很大差别.为了有效地解决与工程有关的岩石力学实际问题,需要了解岩体的特征及其有关的力学性质.概括来说,岩体在以下三个方面与实验室岩石试件有显著不同:l)岩体以天然状态埋藏在地下,处于特定的自然物理环境(地下水、地温、地应力等)之中,这些因素无疑将对岩体的物理力学性质有很大影响.2)岩体由一定数量的岩石组成,没有特定的自然边界.岩体的范围根据解决问题的需要来圈定.3)岩体中存在各种地质弱面和地质构造.岩体在自然状态下经历了漫长的地质作用过程.在地应力作用下,岩体内部保留了各种永久变形和地质构造形迹,例如:不整合、褶皱、断层、层理、节理、裂隙等等.根据上述特征,岩体可定义为自然界中由各种岩性各种结构特征的岩石的集合体.从工程实际来看,大多数情况下遇到的岩体,是存在有各种弱面的坚硬天然岩石.因此,从抽象的、典型化的角度来说,可以把岩体看作是由结构面和受它包围的结构体共同组成的.所谓“结构面”是指在地质发展历史中,尤其是地质构造运动过程中形成的,具有一定方向、延展较大、厚度较小的地质界面,它包括岩石物质的分界面和不连续面,如岩体中存在的层面、节理、断层、软弱夹层等,可统称为结构面.结构面是岩体的重要组成单元,它的性质影响到岩体的性质.所谓“结构体”是指由不同产状的结构面相互切割而形成的单元块体,也称单元岩块.结构体的四周都被结构面包围,常见的结构体大都是有棱有角的多面体,如立方体、柱状体、板状体、菱形体、梯形体、楔形体、锥形体等.结构体也是岩体的重要组成部分,它本身的物质组成和排列组合方式也影响到岩体的力学性质.一、岩体的基本类型根据岩体结构特征的不同,岩体可分为以下几种基本类型(图1-10),1. 整体岩体(图1-10a)它是指只遭受轻微构造变动的厚层沉积岩,岩层多呈水平或缓斜状,节理不发育,很少有断层,通常可认为是均质、连续介质.这类岩体本身有很高的力学强度和抗变形能力,岩体的整体强度接近于岩石的强度,具有很好的自稳性能.。

岩石的基本物理性质

岩石的基本物理性质
2.2岩石的质量/Mass of Rock 1、颗粒密度 / Density of Rock Grain
/Pycnometer method
T
Chapter 2 Basic Physical Properties of Rock
2.2岩石的质量/Mass of Rock 2、岩石的密度/Density of Rock
固相/solid 液相/liquid 气相/gas
T
颗粒, 晶粒, 胶结材料, 孔隙, 裂隙
固体, 气体, 水
Chapter 2 Basic Physical Properties of Rock
2.1 岩石的三相性/Three Phases of Rock
Volume of viods
概化模型
三相示意图/Sketch Map of the Three Phases of Rock
开口孔隙率:试件中与大气相通的孔隙体积占试件总体积 的百分比,按下式计算:
nk
Vk V
100%
式中:Vk——岩石中开口孔隙的体积,m3。 封闭孔隙率:试件中不与大气相通的孔隙体积占试件总 体积的百分比,按下式计算:
nc n nk
T
Chapter 2 Basic Physical Properties of Rock
T
Chapter 2 Basic Physical Properties of Rock
2.4岩石的水理性质/ Hydraulic Properties of Rock
岩石渗透仪 1-注水管路;2-围压室;3-岩样;
4-放水阀
T
径向渗透Physical Properties of Rock
岩石饱和单轴抗压强度和干燥状态下单轴抗压强度之比:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

20
地质学分类原则
• 地质上逐渐形成了以下岩石分类命名原则:
1) 根据岩石的矿物组成和含量; 2) 根据岩石的结构和构造; 3) 根据岩石的地质产状和成因; 4) 根据明显影响岩石物理性质的因素,例如次生蚀变现 象、破坏现象等。
21
• 火成岩定义为岩浆凝固后形成的岩石。严格说来岩浆 和由它固结所形成的岩石在化学组成上是不完全相同 的。由岩浆逐渐冷却所形成的火成岩种类具有多样性。 • 沉积岩是在水或空气中由沉积作用和其后的成岩作用 形成的岩石,一般来讲,沉积作用发生的地点是河流、 湖泊和海洋。 • 变质岩是火成岩或沉积岩在变质作用(改造)条件下形 的新岩石。在变质作用过程中,岩石基本上处于固 态,但矿物成分或结晶状态发生了变化,是在热力学 环境下的改造,而不是机械的改造。
第二章 岩石的基本特性
• 人类生活在地球的固体物体上,地质学将这些固体物 称岩石。 • 构成地球的最基本材料,岩石是地球内部和外部地质 作用的产物。 • 在现代,岩石仍是农田、水利、建筑、交通、化工、 矿业等经济部门施工对象和开采利用的重要资源。 • 本章的主要内容:什么是岩石?地球上最主要的岩石是 什么? 岩石有哪些特殊的性质?油气资源中岩石的特点 等等。
13
地壳表层的条件
• 地壳表层是指大气圈的下层、水圈和生物圈的 全部以及岩石圈上层。沉积岩就在这个层圈内。
• 地壳表层条件:
温度:地壳表层温度,最高85c,最低-75,温差 150-160 压力:海平面的压力为0.1MPa(1atm)。绝大部 分的沉积岩形成的压力在0.1-2MPa的范围内。 水和气作用 生物和生物化学作用 事件沉积作用
28
泥质沉积岩
• 是由粘土经固结后形成的岩石,约占沉积岩的 50%。尽管页岩含量丰富,但它在地表的出露 却不如砂岩广泛。 • 具有显著的层理构造的泥质沉积岩称为页岩, 反之称为泥岩。 • 成分复杂和矿物颗粒细小等原因使得关于页岩 性质的研究不如其他沉积岩那样深入。
29
• 特点为: 1) 颗粒直径不超过1/16 mm。 2) 粘土是主要成分,也包含许多细颗粒的石英、 长石等其他矿物。 3) 页岩颗粒致密,渗透性很差,可以形成不透水 层,能防止石油、水、天然气等的流失,是水、 气等理想的天然储体,是重要的密封性岩石。
25
• 按照岩石的物理性质对岩石进行分类的优点和 合理性在于能够得到完整的岩石特征。但是由 于不同类型的岩石可以具有相同的物理性质, 所以仅仅依据岩石的物理性质所做的分类是不 充分的。
26
三、油气藏储层岩石的基本概念
• 石油和天然气生成于沉积岩中,绝大部分也储集于沉 积中。其实,石油和天然气本身也和煤、油岩盐及其 它一些沉积矿产一样,也是一种沉积岩,只不过是液 态和气态。 • 可通过露头、岩芯的宏观观察和镜下微观观察等手段 研究沉积岩构造。也可通过实验模拟研究沉积岩构造 的形成机理。
18
成岩旋回(rock cycle)
• 由火成岩、沉积岩和变 岩的形成过程有着密切 联系, • 可以互相转变。 • 对于一个运动的地球, 述过程是在不停地进行 的,这就构成了成岩旋
成岩旋回过程
19
2、岩石的分类
• 岩石的分类原则和标准有许多种。
• 目前最通用的岩石分类方法是按照岩石的形成过程分 类,即按照不同的成岩过程对岩石进行地质学上的分 类。 • 也可以按照岩石包含的矿物种类,各种矿物的比例, 矿物的空间分布等,对不同的岩石进行分类。 • 在岩石物理学中,则用岩石的物理学分类原则和标准 较方便。
10
• 变质过程(metamorphic process) 在地球内部高温或高压环境下,先已存在的岩石发生 各种物理、化学变化,使其中的矿物重结晶或发生交 互作用,进而形成新的矿物组合。这些变化可以在低 于硅的熔化温度时发生,所以,先已存在的岩石可以 始终保持固态。这种过程不同于前面叙述过的火成过 程或沉积过程,一般称之为变质过程。 • 岩石圈主要有三大类岩石:火成岩、沉积岩、变质岩。
15
沉积岩的孔隙度
• 未固结很好的沉积岩的孔隙度可达80% • 沉积岩的孔隙度平均在5%~30%范围之内。 • 岩石孔隙中可以流动的液体既是化学反应的组 分,也是岩石中物质传运的通道。 • 沉积岩的多孔性和高渗透率使烃类物质在其中 的聚集成为可能。 • 了解沉积岩孔隙的演化及其物理性质,对本课 程也具有重要意义。
1
2.1 岩石和矿物的基本知识
• 地球及其以外的物质可以分为固体圈、水圈和大气圈 个圈层结构。 • 在地球的总质量中,大气圈的质量不到1%,水圈仅占 分之一左右,固体圈的质量占99%以上。
2
地球固体圈
• 地球的固体圈是由地核、地幔和地壳组成的,其中 岩石和矿物是构成固体圈的最主要的物质。
3
一、矿物
27
1、沉积岩储层的分类和特征
• 沉积岩的分类方案有很多,主要介绍沉积岩的形成作 用划分的岩石类型: 1)母岩风化主物组成的沉积岩; 2)火山碎屑物质和深部卤水组成的沉积岩; 3)由生物遗体组成的沉积岩。 • 以此,把沉积岩简单分为碎屑沉积岩、粘土岩和化学 一生物(钙质)沉积岩。常见相对应的岩石有:泥质(页 岩) 、砂岩和碳酸盐岩三类。 • 这种分类也考虑到矿物颗粒的大小以及矿物成分等方 面的因素。
22
地壳中最常见的三类9种岩石的一些物理性质
• 沉积岩的孔隙度比其它类岩石大;而对于抗压强度, 火成岩则明显高于沉积岩。因此,上面介绍的岩石分 类方法对于描述多种岩石的共同特性,是十分有意义 的。
23
岩石物理性分类
• 岩石的物理性质主要由三个方面的因素决定: 1)岩石的组成,包括组成岩石的矿物成分,岩石内部 的孔隙度,岩石的饱和状态和孔隙流体的性质等; 2)岩石内部的结构,包括矿物颗粒的大小、形状及胶 结情况,岩石内部的裂隙和其他不连续界面等; 3)岩石所处的热力学环境,包括温度、压力和地应力 场等。尽管不同的岩石具有不同的矿物组成、结构、 孔隙度等,所处的热力学环境也大不相同,但在受到 应力(天然的力或足人为的力)作用时,同一类别内岩 石的反应差别较小,并且有许多相似处。
5

矿物千姿百态,但多表现为颗粒状(grain),其大小悬 殊,小的要借助于显微镜辨认,大的颗粒直径可达几 厘米,仅凭肉眼即可看见。由此可见,矿物在地质上 是建造地球的非常小的材料单元。
• 地球上已知的矿物有3300多种。岩石中常见的矿物只 有20几种,其中又以长石、石英、辉石、闪石、云母、 橄榄石、方解石、磁铁矿和黏土矿物为多。
7
常见的硅酸盐以外的造岩与非造岩矿物
1.石英,以砂岩为主的多数沉积岩中,没有磁性,是良 好的绝缘体,相对介电常数约为1.553。 2.方解石,是灰岩和大理岩中的主要矿物。 3.白云石,在灰岩中较多
8
二、岩石
• 岩石是由一种或几种造岩矿物按一定方式结合而成的矿 物的天然集合体 。 • 岩石是在地球发展到一定阶段时,经各种地质作用形成 的坚硬产物,它是构成地壳和地幔的主要物质。 • 作为天然物体,岩石具有自己特定的比重、孔隙度、抗 压强度等许多物理性质。正如矿物由原子组成,但矿物 可显示出个别原子不具备的性质一样. • 岩石虽由矿物组成,但岩石所表现出来的特性,却常常 是不能用单独的一种或几种矿物的特性加以替代或描述 的。
24
物理学分类原则
• 岩石的物理学分类是利用了岩石在岩石学和物理学方 面的一些重要性质,具体的分类原则是: 1)根据岩石的成因类型; 2)根据岩石中造岩矿物的含量和组分; 3)根据岩石的结构和构造特征; 4)根据岩石的物理参数特征(平均值、方差、统计分布规 律、属性); 5)根据铁磁性和电子导电矿物的组分; 6)根据成岩作用的类型; 7)根据岩浆岩的建造归属。
30
碎屑沉积岩
• 碎屑沉积岩以砂岩为主,一般富含石英颗粒,在砂粒 之间有自生矿物发生的胶结作用。 • 约占沉积岩的25%,超过半数的石油产自砂岩储层。 • 砂岩是由性质不同、形状各异、大小不等的砂粒经胶 结物胶结而成的。主要成份含有物理性质和化学性质 都稳定的石英。 • 粒度大小较广,在1/16~ 2mm之间,细分为粗、细砂。 • 颗粒大多来源于风化等侵蚀作用后的火成岩的矿物颗 粒或岩石碎片,也有不少颗粒来源于已经存在的砂岩 风化的岩中的各种矿物成分不是处在一种平衡的集合状 态中。 • 在地表附近的低温环境下,矿物之间的相互作用和矿 物成分在岩石内部的转换也许还不显著;但当沉积岩 随地球的各种运动中进入地球内部的高温、高压环境 时,这种相互作用和成分转变会显著地改变岩石的组 成和微结构。 • 流体在沉积岩中的流动、化学反应和孔隙几何度的变 化,以及它们之间的耦合等,都是控制沉积岩演化的 最主要的因素。
12
沉积岩
• 地壳表层分布最广泛的是沉积岩。沉积岩覆盖了大陆 面积的75%(平均厚度为2 km)和几乎全部的海洋地壳 (平均厚度为1 km)面积。 • 沉积岩是成层堆积的松散沉积物固结而成的岩石。也 就是说,它是早先形成的岩石破坏后,又通过物理或 化学作用在地球表面(大陆和海洋)的低凹部位沉积, 经过压实、胶结再次硬化,形成的具有层状构造特征 的岩石。 • 它是在地壳表层的条件下,由母岩的风化产物,火山 物质、有机物质等沉积岩的原始物质成分,经搬运作 用、沉积作用以及沉积后作用而形成的一类岩石。
11
火成岩
• 火成岩一般指岩浆在地下或喷出地表冷凝后形成的岩 石,又称岩浆岩,是组成地壳的主要岩石。 • 构成火成岩的主要元素有氧、硅、铝、钙、钠、钾、 镁和钛,后几种元素氧化物的含量即占火成岩总重量 的99%左右,特别是氧化硅的含量最高,在不同的火 成岩中均占总重量的35%~78%。 • 在各种不相同的地质环境下岩浆都可以冷凝成岩。如 果岩浆在地下活动,冷凝固化后可以形成侵入岩 (intrusive rocks);
6
几种常见矿物
• 常见的硅酸盐矿物
1.斜长石所有的岩浆岩中都含有斜长石,大部分的变质 岩和沉积岩中也含有斜长石。 2.碱性长石 在花岗岩、火山岩 中较多。 3.云母族矿物,有白云母、黑云母、锂云母等,分布较 广。 4.粘土矿物,种类许多,代表性的有高岭石、蒙脱石、 伊利石等 。 还有海绿石、辉石族矿物、角闪石族矿物、橄榄石等
相关文档
最新文档