小学六年级数学长方体和正方体的认识、表面积典型例题解析
2023-2024年小学数学六年级上册精讲精练第一单元《第一单元《长方体和正方体》》(苏教版含解析)
期末知识大串讲苏教版数学六年级上册期末章节考点复习讲义第一单元《长方体和正方体》知识点01:长方体和正方体的认识1.长方体的特征长方体是由6个长方形(也可能有2个相对的面是正方形)围成的立体图形,有6个面、12条棱和8个顶点,相对的面完全相同、相对的棱长度相等。
2. 长方体的长、宽、高的含义长方体相交于同一顶点的三条棱的长度,分别叫作它的长、宽、高。
知识点02::长方体和正方体的展开图1.沿着正方体(或长方体)的棱将其剪开,可以把正方体(或长方体)展开成一个平面图形,这个平面图形就是正方体(或长方体)的展开图。
2.正方体(或长方体)的展开图的特点:在展开图中,正方体的6个面完全相同(长方体相对的面完全相同),相对的面完全隔开。
3. 一个表面涂色的正方体,把每条棱平均分成相等的若干份,然后切成同样大的小正方体。
(1)3面涂色的小正方体有8个。
(2)如果用n表示把正方体的棱平均分成的份数(n为大于或等于2的自然数),用a、b分别表示2面涂色和1面涂色的小正方体的个数,那么a=(n-2)×12,b=(n-2)2×6。
知识点32:长方体、正方体的表面积计算1.意义长方体(或正方体)6个面的总面积。
2.计算方法(1)长方体的表面积=长×宽×2+长×高×2+宽×高×2=(长×宽+长×高+宽×高)×2。
(2)正方体的表面积=棱长×棱长×6。
知识点42:体积与体积单位1.体积的意义:物体所占空间的大小叫作物体的体积。
2.容积的意义:容器所能容纳物体的体积叫作容器的容积。
常用的体积单位有立方厘米、立方分米和立方米,可以分别写成cm³、dm³和m³。
计量液体的体积,通常用升或毫升作单位。
1立方分米 = 1升,1立方厘米 = 1毫升知识点五:长方体和正方体的体积1.长方体的体积=长×宽×高,字母公式为V=a bh。
六年级数学长方体和正方体试题答案及解析
六年级数学长方体和正方体试题答案及解析1.(1分)(2014•黄岩区)一个长方体,棱长之和是72厘米;长是10厘米,宽是5厘米,高是厘米.【答案】3.【解析】根据长方体的特征,12条棱分为互相平行的3组,每组4条棱的长度相等.长方体的棱长总和=(长+宽+高)×4,高=棱长总和÷4﹣(长+宽),由此列式解答.解:72÷4﹣(10+5),=18﹣15,=3(厘米);答:高是3厘米.故答案为:3.点评:解答此题首先掌握长方体的特征,再根据棱长总和的计算方法得出:高=棱长总和÷4﹣(长+宽),由此解决问题.2.判断。
两个小正方体拼成一个长方体,长方体的体积等于两个小正方体的体积之和。
【答案】√【解析】两个小长方体在拼接的过程中,所占空间的大小不变,即它们的体积不变,所以长方体的体积等于两个小正方体的体积之和。
【考点】长方体、正方体的体积计算。
总结:长方体和正方体的体积的意义是解题的基本依据。
3.下列图形都是用1立方厘米的小木块搭成的,分别算出它们的体积。
(1)(2)(3)()()()【答案】(1)5立方厘米;(2)8立方厘米;(3)24立方厘米【解析】小木块的体积是 1立方厘米,数一下每个图形的个数,几个就是几立方厘米.【考点】体积的认识。
总结:数个数要不重不漏。
4.计算下面长方体和正方体的体积。
【答案】120dm3;125m3【解析】根据长方体和正方体的体积公式代入计算。
长方体的体积:8×5×3=40×3=120(dm3);正方体的体积:5×5×5=25×5=125(m3).总结:长方体的体积公式:V=abh;正方体的体积公式:V=a3。
5.一种汽车上的油箱,从里面量长80厘米,宽60厘米,高50厘米。
这个油箱可以装汽油多少升?【答案】240升【解析】80×60×50=240000(立方厘米)240000立方厘米=240000毫升=240升答:这个油箱可以装汽油240升。
六年级数学 《长方体和正方体》教材分析
第二单元《长方体和正方体》教材分析学生在一年级教材中直观认识了长方体和正方体,在数学学习中多次把长方体、正方体木块作为学具,对它们的形状有了初步的、整体的感受。
知道生活中许多物体的形状是长方体或正方体,能够识别一些常见的物体是什么形状。
本单元系统、深入地教学长方体和正方体的知识,内容很多。
下表是全单元的内容与编排。
认识形体长方体、正方体的面、棱、顶点,结构与特征。
(例 1、例2)长方体、正方体表面的展开图(例3)表面积表面积的意义和计算方法(例4)表面积的实际应用(例5)体积体积的意义、容积的意义(例6、例7)常用的体积单位和容积单位(例8)长方体、正方体的体积计算公式(例9、例10)体积单位的进率及简单换算(例11)“整理与练习”实践活动本单元教学内容在编排上有以下特点。
第一,有一条合理的编排线索。
先教学长方体、正方体的特征,再教学它们的表面积,然后教学体积,是一条符合知识间的发展关系,有利于学生认知的线索。
把形体的特征安排为第一块内容,能为后面的表面积、体积的教学打下扎实的基础。
如果不理解长方体的6个面都是长方形,且相对的面完全相同,就不可能形成长方体表面积的计算方法。
如果不建立长方体的长、宽、高的概念,体积公式就是无本之木、无源之水。
把表面积安排在体积之前教学,是因为学生已经有了面积的概念,掌握了常用的面积单位,会计算长方形、正方形的面积,教学表面积的条件比体积充分。
而且通过表面积的教学,更深一层掌握长方体、正方体的特征,对教学体积是有益的。
在体积这部分知识里,先教学体积的意义和常用单位,这些都是重要的基础知识。
建立了体积概念和体积单位概念,才能探索体积计算公式。
把体积单位的进率安排在体积公式之后教学,就能通过计算获得进率。
这样,体积单位的进率就是意义建构的,而不是机械接受的。
第二,加强了空间观念。
教学长方体和正方体,历来都很重视发展空间观念。
本单元不仅在传统的基础知识的教学时加强培养,还充实了长方体、正方体表面展开的内容。
小学六年级奥数试题详解 长方体和正方体
第五讲长方体和正方体长方体和正方体在立体图形中是较为简单的,也是我们较为熟悉的立体图形.如下图,长方体共有六个面(每个面都是长方形),八个顶点,十二条棱。
在六个面中,两个对面是全等的,即三组对面两两全等(叠放在一起能够完全重合的两个图形称为全等图形.两个全等图形的面积相等,对应边也相等).长方体的表面积和体积的计算公式是:长方体的表面积:S长方体=2(ab+bc+ac);长方体的体积:V长方体=abc.正方体是各棱相等的长方体,它是长方体的特例,它的六个面都是正方形.如果它的棱长为a,那么:S正方体=62a,V正方体=3a例1 有一个长方体,它的底面是一个正方形,它的表面积是190平方厘米,如果用一个平行于底面的平面将它截成两个长方体,则两个长方体表面积的和为240平方厘米,求原来长方体的体积.解:设原来长方体的底面边长为a厘米,高为h厘米,则它被截成两个长方体后,两个截面的面积和为22a平方厘米,而这也就是原长方体被截成两个长方体的表面积的和比原长方体的表面积所增加的数值,因此,根据题意有:190+22a=240,可知,2a=25,故a=5(厘米).又因为22a+4ah=190,解得19022545h-⨯=⨯=7(厘米)所以,原来长方体的体积为:V=2a h=25×7=175(立方厘米).例2 如下图,一个边长为3a厘米的正方体,分别在它的前后、左右、上下各面的中心位置挖去一个截口是边长为a厘米的正方形的长方体(都和对面打通).如果这个镂空的物体的表面积为2592平方厘米,试求正方形截口的边长。
解:原来正方体的表面积为:6×3a×3a=6×92a(平方厘米).六个边长为a的小正方形的面积为:6×a×a=62a(平方厘米);挖成的每个长方体空洞的侧面积为:3a×a×4=122a(平方厘米);三个长方体空洞重叠部分的校长为a的小正方体空洞的表面积为:a×a×4=42a(平方厘米).根据题意:6×92a-62a+3(122a-42a)=2592,化简得:542a-62a+242a=2592,解得2a=36(平方厘米),故a=6厘米.即正方形截口的边长为6厘米.例3 有一些相同尺寸的正方体积木,准备在积木的各面上粘贴游戏所需的字母和数目字.但全部积木的表面总面积不够用,还需增加一倍,请你想办法,在不另添积木的情况下,把积木的各面面积的总和增加一倍。
长方体和正方体的表面积和体积 重难点应用题训练题40题 带详细答案
长方体和正方体的表面积和体积重难点应用题训练题40题带详细答案1.将一根长52厘米的铁丝焊接成一个长6厘米、宽4厘米的长方体框架,求该长方体框架的表面积。
解:长方体的高为3厘米,表面积为108平方厘米。
2.将一根长84厘米的铁丝焊接成一个正方体框架,求该正方体框架的表面积。
解:正方体的棱长为7厘米,表面积为294平方厘米。
3.XXX老师要做一个长1.2米、宽45厘米、高1.5米的陈列箱,其中正面用玻璃,其余各面都用木板。
求XXX老师需要准备多少平方米的木板?解:陈列箱除正面外的表面积为4.23平方米。
4.舞蹈教室的长为8米,宽为6米,高为3.5米。
现在要粉刷墙壁和天花板,门窗和镜子的面积共为22平方米,每平方米需要0.25千克涂料。
求粉刷这间教室需要多少千克涂料?解:教室的墙壁和天花板的总面积为124平方米,需要31千克涂料。
5.有一个长方体,如果将它的高增加3厘米,那么它就会变成一个正方体,这时表面积会比原来增加96平方厘米。
求原长方体的表面积。
解:原长方体的长、宽、高分别为8厘米、8厘米、5厘米,表面积为336平方厘米。
6.如果把一个正方体木块一刀切成两个长方体,那么表面积会增加60平方厘米。
求原正方体的表面积。
解:原正方体的表面积为180平方厘米。
7.一个长方体的底面是面积为4平方米的正方形,它的侧面展开图正好也是一个正方形。
求该长方体的高和表面积。
解:该长方体的高为8米,表面积为72平方米。
8.桌子上有一根长1.5米的长方体木料,木料有两面是正方形。
如果把这根木料锯成两段后表面积会增加0.18平方米,求该木料的表面积。
解:该木料的表面积为未知。
1.锯成两段会增加两个面,这两个面是正方形,其面积为0.09平方米,边长为0.3米。
木料的表面积为1.98平方米。
2.将3个长5厘米、宽4厘米、高3厘米的长方体木块拼成一个表面积最小的长方体,最小表面积为202平方厘米。
3.从一个棱长为10厘米的正方体的上面竖直向下挖一个长方体的洞,洞的底面为边长是5厘米的正方形,这个空心正方体的表面积为750平方厘米。
六年级数学长方体和正方体应用题
六年级数学长方体和正方体应用题一、长方体的表面积相关(8题)1. 一个长方体,长6厘米,宽4厘米,高3厘米,求它的表面积。
解析:长方体表面积公式为S = 2×(ab+ac + bc),其中a为长,b为宽,c为高。
这里a = 6厘米,b=4厘米,c = 3厘米。
则S=2×(6×4 + 6×3+4×3)=2×(24 +18+12)=2×54 = 108平方厘米。
2. 一个长方体的长是8分米,宽是6分米,高是4分米,它的表面积比棱长为6分米的正方体的表面积小多少?解析:先求长方体表面积S_1=2×(8×6+8×4 + 6×4)=2×(48+32 + 24)=2×104 = 208平方分米。
再求正方体表面积S_2 = 6×6×6= 216平方分米。
两者差值为216 208=8平方分米。
3. 一间教室长9米,宽6米,高3米,要粉刷教室的顶面和四周墙壁(除去门窗面积18.5平方米),如果每平方米用涂料0.3千克,共需要涂料多少千克?解析:教室顶面面积为9×6 = 54平方米。
四周墙壁面积为2×(9×3+6×3)=2×(27 + 18)=90平方米。
需要粉刷的总面积为54+90 18.5=125.5平方米。
涂料重量为125.5×0.3 = 37.65千克。
4. 一个无盖的长方体铁皮水箱,长5分米,宽4分米,高6分米,做这个水箱至少需要多少平方分米的铁皮?解析:无盖长方体表面积为S=ab+(ac + bc)×2,这里a = 5分米,b = 4分米,c=6分米。
则S = 5×4+(5×6+4×6)×2=20+(30 + 24)×2=20 + 108 = 128平方分米。
苏教版六年级数学长方体和正方体解析
它的体积是(A)立方厘米
A 27
B3
C9
D 12
解决问题 如图:给这个火柴盒四周贴一层包装纸,需 要多少平方厘米包装纸?
1厘米 4厘米 6厘米
一个长方体,如果高增加2厘米,就变成一个正方体。这是表 面积比原来增加56平方厘米。原来长方体的体积是多少立方厘米?
想:增加的是四个面的面积,且每个面面积相等。
体积单位: 立方米、立方分米、立方厘米
容积单位: 升、毫升 (用于计量液体的体积)
1000 1000
1立方分米=1000立方厘米 1立方米=1000立方分米
1升=1立方分米 1毫升=1立方厘米 1升=1000毫升
二、单位换算:
3.05立方米= ( 3050) 立方分米 7200立方厘米= ( 7.2 ) 立方分米 4.6升 = ( 4600) 毫升 2340 升= ( 2.34 ) 立方米 1.06立方米= ( 1 )立方米( 60 )立方厘米
60毫升=( )升 • 450立方厘米=( )立方分
米
• 0.8升=( )立方厘米
1平方米=100平方分米 1平方分米=100平方厘米
1立方米=1000立方分米 1立方分米=1000立方厘米
相邻体积单位之间的进率是多少?
1升=1000毫升
7.02立方分米=( 7020 )立方厘米 8020立方分米=( 8.02 )立方米 4.5升=( 4500 )毫升=( 4500 )立方厘米 86立方厘米=( 0.086 )立方分米=( 0.086 )升
4要油漆大厅里4根同样的柱子柱子的底面是边长05m的正方形柱子的高是3米每平方米的油漆费是3元油漆大厅里的这些柱子要多元
长方体
正方体
同桌一起回顾本单元的知识,相互说一说:
长方体和正方体的表面积经典应用题经典例题
长方体和正方体的表面积经典应用题一、概念:长方体或正方体6个面的总面积,叫做它们的表面积。
(1)由于长方体相对的面完全相同,所以可以先求出前面、后面和下面三个面的面积,再乘以2,就可以求出表面积了。
前面面积=后面面积;左面面积=右面面积;上面面积=下面面积计算公式:长方体表面积=(长×宽+长×高+宽×高)×2或=)2 S a b a c b c⨯+⨯+⨯⨯表((2)正方体的六个面完全相同,所以计算时只要算出其中的一个面,再乘6就可以了。
计算公式:正方体表面积=棱长×棱长×6或2 =66 S a a a⨯⨯=表二、长方体表面求法的变形在解决一些问题时,要充分考虑实际情况,想清楚要算几个面。
在解答时,可以把这几个面的面积分别算出来,再相加,也可以先算出六个面的面积总和,再减去不需要的那个(些)面。
(1)具有6个面的长方体、正方体物品:油箱、罐头盒、纸箱、化妆品包装等;(2)具有5个面的长方体、正方体物品:抽屉、水池、鱼缸、火柴盒内盒、教室粉刷等;(3)具有4个面的长方体、正方体物品:烟囱、通风管、火柴盒外盒、产品贴标签等。
①贴商标类型:只求四周面积。
例如:一个长方体包装盒,长宽高分别为8,4,5,需要在包装盒四周贴上商标,需要商标纸的面积是多少?②游泳池类型:只求四周和底面。
例如:一座游泳池,长宽高分别为10m,4m,1.5m,需要在池内贴上边长为1dm的瓷砖,大约需要多少块瓷砖?③抽纸盒类型:六个面面积减去缺口面积。
例如:一款抽纸盒,长宽高分别是20cm,12cm,5cm,上面有长14cm,宽3cm的抽纸口,做这款抽纸盒需要多少硬纸片?④占地面积问题:只求底面面积。
两个棱长和相等的长方体或一个长方体和一个正方体,表面积不一定相等!表面积相等的两个长方体或一个长方体和一个正方体,棱长和也不一定相等!经典例题例1(1)一个无盖的长方体鱼缸,底面是边长为0.8米的正方形,高为0.3米.请问:这个鱼缸的表面积是多少平方米?无盖的鱼缸只要计算底面积和侧面积,为0.8×0.8+0.8×0.3×4=1.6(平方米);(2)李师傅要做通风管,已知这个通风管是长方体,横截面是一个长方形,长10厘米,宽5厘米,每节长10分米.请问:做5节这样的通风管,至少需要多少平方分米的铁皮?(不考虑损耗)10厘米=1分米,5厘米=0.5分米,通风管只要计算侧面积,每节需要的铁皮为(1×10+0.5×10)×2=30(平方分米),做5节这样的通风管至少需要30×5=150(平方分米)练1(1)豆豆要用硬纸片做一个无盖的长方体盒子,长50厘米,宽20厘米,高10厘米.请问:至少需要多少平方厘米的硬纸片?(不考虑损耗)无盖的长方体盒子只要计算底面积和侧面积,为50×20+(50×10+20×10)×2=2400(平方厘米);(2)一个通风管的横截面是边长为40厘米的正方形,长为80厘米.请问:如果用铁皮做10个这样的通风管,那么至少需要多少平方分米的铁皮? (不考虑损耗)40厘米=4分米,80厘米=8分米,通风管只要计算侧面积,所以做10个这样的通风管至少需要4×4×8×10=1280(平方分米)的铁皮. 例2一间教室长10米,宽7米,高3米,现在要用涂料粉刷它的四壁和顶棚.如果扣除门、窗和黑板所占的32平方米.请问:要粉刷的面积有多少平方米?如果每平方米用涂料0.5千克,一共需要多少千克涂料? (不计损耗)解:教室的四壁和顶棚就是侧面积和顶面,扣除门、窗和黑板还剩下的总面积为10×7+(10×3+7×3)×2-32=140(平方米),共需要140×0.5=70(千克)的涂料.练2一个长方体游泳池,长30米,宽20米,深2米,现要将它的每个面抹上水泥,如果每平方米用水泥4千克.请问:要用去多少千克水泥?(不计损耗)解:游泳池的表面积只要计算底面积和侧面积,为30×20+(30×2+20×2)×2=800(平方米),要用去800×4=3200(千克)水泥.课后练习1、学校要粉刷一间教室的四壁和天花。
六年级数学长方体和正方体试题答案及解析
六年级数学长方体和正方体试题答案及解析1.右图中的⑴⑵⑶⑷是同样的小等边三角形,⑸⑹也是等边三角形且边长为⑴的2倍,⑺⑻⑼⑽是同样的等腰直角三角形,⑾是正方形.那么,以⑸⑹⑺⑻⑼⑽⑾为平面展开图的立体图形的体积是以⑴⑵⑶⑷为平面展开图的立体图形体积的多少倍.【答案】16【解析】本题中的两个图都是立体图形的平面展开图,将它们还原成立体图形,可得到如下两图:其中左图是以⑴⑵⑶⑷为平面展开图的立体图形,是一个四个面都是正三角形的正四面体,右图以⑸⑹⑺⑻⑼⑽⑾为平面展开图的立体图形,是一个不规则图形,底面是⑾,四个侧面是⑺⑻⑼⑽,两个斜面是⑸⑹.对于这两个立体图形的体积,可以采用套模法来求,也就是对于这种我们不熟悉的立体图形,用一些我们熟悉的基本立体图形来套,看看它们与基本立体图形相比,缺少了哪些部分.由于左图四个面都是正三角形,右图底面是正方形,侧面是等腰直角三角形,想到都用正方体来套.对于左图来说,相当于由一个正方体切去4个角后得到(如下左图,切去、、、);而对于右图来说,相当于由一个正方体切去2个角后得到(如下右图,切去、).假设左图中的立方体的棱长为,右图中的立方体的棱长为,则以⑴⑵⑶⑷为平面展开图的立体图形的体积为:,以⑸⑹⑺⑻⑼⑽⑾为平面展开图的立体图形的体积为.由于右图中的立方体的棱长即是题中正方形⑾的边长,而左图中的立方体的每一个面的对角线恰好是正三角形⑴的边长,通过将等腰直角三角形⑺分成4个相同的小等腰直角三角形可以得到右图中的立方体的棱长是左图中的立方体的棱长的2倍,即.那么以⑴⑵⑶⑷为平面展开图的立体图形的体积与以⑸⑹⑺⑻⑼⑽⑾为平面展开图的立体图形的体积的比为:,也就是说以⑸⑹⑺⑻⑼⑽⑾为平面展开图的立体图形的体积是以⑴⑵⑶⑷为平面展开图的立体图形体积的16倍.2.(西城区)一个长方体水槽,从里面量长2.5分米,宽1.8分米,高1.5分米,这个水槽的容积是多少立方分米?【答案】这个水槽的容积是6.75立方分米【解析】分析:已知长方体的长、宽、高,根据长方体的体积=长×宽×高,即可求得体积.解答:解:2.5×1.8×1.5,=4.5×1.5,=6.75(立方分米);答:这个水槽的容积是6.75立方分米.点评:此题考查了长方体的体积计算,可根据已知直接运用公式计算.3.(2012•桐庐县)如图的立体图形是用边长为1厘米的小正方体积木叠成的.这个立体图形的表面积是平方厘米,体积是立方厘米.【答案】72,30【解析】(1)这个几何体的表面积就是露出小正方体的面的面积之和,从上面看有16个面;从下面看有16个面;从前面看有10个面;从后面看有10个面;从左面看有10个面;从右面看有10个面.由此即可解决问题;(2)根据题干,这个几何体的体积就是这些小正方体的体积之和,棱长1厘米的正方体的体积是1立方厘米,由此只要数出有几个小正方体就能求得这个几何体的体积.解答:解:(1)图中几何体露出的面有:10×4+16×2=72(个),所以这个几何体的表面积是:1×1×72=72(平方厘米);(2)这个几何体共有4层组成,所以共有小正方体的个数为:1+4+9+16=30(个),所以这个几何体的体积为:1×1×1×30=30(立方厘米);答:这个图形的表面积是72平方厘米,体积是30立方厘米.故答案为:72,30.点评:此题考查了观察几何体的方法的灵活应用;抓住这个几何体的体积等于这些小正方体的体积之和;几何体的表面积是露出的小正方体的面的面积之和是解决此类问题的关键.4.一块长方形铁皮,长20厘米,宽16厘米,在它的四个角分别减去边长4厘米的正方形,然后焊成一个无盖的铁盒子,它的容积是多少?焊这个盒子至少用多少铁皮?【答案】铁盒的容积是384立方厘米,做这样一个盒子至少需要256平方厘米铁皮.【解析】计算铁盒的容积,需要求出盒子的长、宽,长方形铁皮的长、宽都要减去两个4厘米即是盒子的长、宽,高是4厘米.根据长方体的容积公式解答即可;求做这样一个盒子至少需要多少铁皮,用长方形铁皮的面积减去四个边长4厘米的正方形的面积.解答:解;(20﹣4﹣4)×(16﹣4﹣4)×4=12×8×4=384(立方厘米);20×16﹣4×4×4=320﹣64=256(平方厘米);答:铁盒的容积是384立方厘米,做这样一个盒子至少需要256平方厘米铁皮.点评:此题这样考查长方体的表面积和体积的计算,在计算长方体的表面积的时候,一定要分清求几个面的面积,根据公式解答即可.5.用铁丝做棱长8厘米的正方体模型一个,至少用铁丝厘米.【答案】96【解析】根据正方体的特征,12条棱的长度都相等,正方体的棱长总和=棱长×12.把数据代入棱长总和公式解答即可.解答:解:8×12=96(厘米)答:至少需要铁丝96厘米.故答案为:96.点评:此题主要考查正方体的特征及棱长总和的计算方法.6.一个长方体铁皮桶,底面是一个周长为1209厘米的正方形,高30厘米,这个桶最多可装水多少升?(保留整升数)【答案】这个桶最多可装水2741升【解析】先计算出油桶的底面积,再依据长方体的体积公式即可求出油的体积即可.解答:解:(1)1209÷4=302.25(厘米)302.25×302.25×30=2740651.875(立方厘米)≈2741(升)答:这个桶最多可装水2741升.点评:此题主要考查的是长方体表面积和长方体体积公式的灵活应用.7.1时25分=时;3千克80克=克;2立方米10立方分米=立方米;2平方千米=平方米.【答案】1,3080,2.01,2000000.【解析】分析:把1时25分化成时数,用25除以进率60,然后再加上1;把3千克80克化成克数,用3乘进率1000,然后再加上80;把2立方米10立方分米化成立方米数,用10除以进率1000,然后再加上2;把2平方千米化成平方米数,用2乘进率1000000;即可得解.解答:解:1时25分=1时;3千克80克=3080克;2立方米10立方分米=2.01立方米;2平方千米=2000000平方米;故答案为:1,3080,2.01,2000000.点评:此题考查名数的换算,把高级单位的名数换算成低级单位的名数,就乘单位间的进率,把低级单位的名数换算成高级单位的名数,就除以单位间的进率.8.一个长9厘米、宽6厘米、高3厘米的长方体,切割成3个体积相等的长方体,表面积最大可增加()A.36平方厘米B.72平方厘米C.108平方厘米D.216平方厘米【答案】D【解析】根据长方体切割小长方体的特点可得:要使切割后表面积增加的最大,可以平行于原长方体的最大面,即9×6面,进行切割,这样表面积就会增加4个原长方体的最大面;据此解答.解答:解:9×6×4=216(平方厘米),答:表面积最大可增加216平方厘米.故选:D9.两个棱长5厘米的正方体拼成一个长方体,这个长方体的棱长总和是120厘米..(判断对错)【答案】错误.【解析】根据题意,这个长方体的长变为10厘米,但是宽和高没变还是5厘米,由此即可判断.解:(10+5+5)×4=80厘米,所以原题说法错误.10.把你的拳头伸进装满水的容器中,溢出来的水约()A.1.3立方米B.13立方分米C.130立方厘米D.1300毫升【答案】C【解析】一只拳头伸进装满水的脸盆中,溢出来的水的体积就是拳头的体积,根据生活经验可以知道,人的拳头的体积可能是130立方厘米;由此解答即可.解答:解:把你的拳头伸进装满水的容器中,溢出来的水约130立方厘米;故选:C.点评:此题考查数的估算,根据生活经验和所学知识求解.11.把32厘米的钢筋折成一个最大的正方形,它的面积是平方厘米,如果折成一个最大正方体,它的体积是立方厘米.【答案】64,.【解析】把32厘米的钢筋折成一个最大的正方形,它的边长是32÷4=8厘米,根据正方形的面积=边长×边长可求出它的面积,如果折成一个最大的正方体,它的棱长是32÷12=厘米,根据正方体的体积=棱长×棱长×棱长可求出它的体积,据此解答.解答:解:32÷4=8(厘米)8×8=64(平方厘米)32÷12=(厘米)××=(立方厘米)答:它的面积是64平方厘米,如果折成一个最大正方体,它的体积是立方厘米.故答案为:64,.点评:本题的重点是求出围成的正方形的边长和正方体的棱长,再根据正方形的面积公式和正方体的体积公式进行解答.12.一个长方体长是5厘米,宽是4厘米,高是3厘米.它的棱长总和是厘米,表面积是平方厘米,体积是立方厘米.【答案】48;94;60.【解析】长方体的12条棱分为互相平行的3组,每组4条棱的长度相等,相对的面的面积相等,长方体的棱长总和=(a+b+h)×4;表面积公式是s=(ab+ah+bh)×2;体积公式是v=abh;分别代入数据计算即可.解答:解:棱长之和:(5+4+3)×4=12×4,=48(厘米);表面积:(5×4+5×3+4×3)×2=(20+15+12)×2,=47×2,=94(平方厘米);体积:5×4×3=60(立方厘米);答:它的棱长总和是48厘米,表面积是94平方厘米,体积是60立方厘米.故答案为:48;94;60.点评:此题考查长了方体的特征以及棱长总和、表面积、体积的计算,直接根据它们的公式计算即可.13.一个长方体正好可以切成3个一样的正方体,切开后每个正方体的表面积是12平方厘米,那么原来这个长方体的表面积是()平方厘米.A.36B.30C.28D.24【答案】C【解析】解:12×3﹣(12÷6)×4,=36﹣8,=28(平方厘米);答:原来这个长方体的表面积是28平方厘米;故选:C.14.一个棱长是4分米的正方体,棱长总和是()分米.A.16B.24C.32D.48【答案】D【解析】一个正方体有12条棱,棱长总和为12条棱的长度和.解:4×12=48(分米).故选:D.【点评】此题考查计算正方体的棱长总和的方法,即用棱长乘12即可.15.一块正方体的石头,棱长是5分米,每立方分米的石头大约重2.7千克,这块石头重有多少千克?【答案】337.5千克【解析】根据正方体的体积计算公式求出它的体积,再求它的质量即可.解:5×5×5=125(立方分米);2.7×125=337.5(千克);答:这块石头重有337.5千克.【点评】此题主要考查正方体的体积计算方法,能够利用正方体的体积计算方法解决有关的实际问题.16.有一块棱长是8厘米的正方体的铁皮,现在要把它熔铸成一个横截面积是20平方厘米的长方体,这个长方体的长是多少厘米?【答案】25.6厘米【解析】先利用正方体的体积V=a3,求出这块铁块的体积,因为这块铁块的体积是不变的,于是可以利用长方体的体积V=Sh求出溶铸成的长方体的长.解:8×8×8÷20=512÷20=25.6(厘米)答:这个长方体的长是25.6厘米.【点评】此题主要考查正方体和长方体的体积的计算方法在实际中的应用,关键是明白:这块铁块的体积是不变的.17.从一个体积是30立方厘米的长方体木块中,挖掉一小块后(如图),它的表面积()A.和原来同样大B.比原来小C.比原来大D.无法判断【答案】A【解析】从这一个体积是30立方厘米的长方体木块中,挖掉一小块后,对于这个图形是在长方体的顶点上挖掉的,减少的面与增加的面个数是相等的都是3个面.所以长方体的表面积没发生变化.解:因为挖掉一小块后,对于这个图形是在长方体的顶点上挖掉的,减少的面与增加的面个数是相等的都是3个,所以长方体的表面积没发生变化.故选:A.【点评】本题考查了关于长方体的表面积的问题,考查了学生观察,分析,解决问题的能力.18.如图是长方体展开图,测量需要的数据,并计算出长方体体积.长方体的长是厘米,宽是厘米,高是厘米.【答案】2.5、1.8、0.9.【解析】首先测量出这个长方体的长、宽、高,再根据长方体的体积公式:v=abh,把数据代入公式解答.解:如图:2.5×1.8×0.9=4.05(立方厘米),答:这个长方体的体积是4.05立方厘米.故答案为:2.5、1.8、0.9.【点评】此题考查的目的是理解掌握长方体展开图的特征,以及长方体的体积公式的灵活运用.19.把一个大正方体切割成27个同样大小的小正方体后,3面涂色的有个.1面涂色的有________ 个.【答案】8,6.【解析】根据只有一面涂色的小正方体在每个正方体的面上,只有2面涂色的小正方体在长方体的棱长上(不包括8个顶点处的小正方体)3面三面涂色的小正方体都在顶点处,即可解答问题.解:3×3×3=27,一个大正方体切割成27个同样大小的小正方体,则每条棱上有3个小正方体,大正方体8个顶点上各有1个3面涂色的小正方体,因此三面涂色的小正方体一共有8个;每个面的正中间的一个只有一面涂色,故只有一面涂色的正方体有6个;故答案为:8,6.【点评】抓住表面涂色的正方体切割小正方体的特点:1面涂色的在面上,2面涂色的在棱长上,3面涂色的在顶点处,没有涂色的在内部,由此即可解决此类问题.20.至少8个小正方体才能拼成一个大一些的正方体..【答案】√【解析】要使所用的小正方体最少,那么大正方体的棱长最少可以由2个小正方体的棱长组成,由此即可求得小正方体的个数.解:要使所用的小正方体最少,那么大正方体的棱长最少可以由2个小正方体的棱长组成,所以使用的小正方体个数最少是:2×2×2=8(个).故答案为:√.【点评】此题考查了小正方体拼组大正方体的特点的灵活应用.21.有一个长方体,长是a米,宽是b米,高是h米,若把它的高增加5米,则这个长方体的体积增加()A.abh+5B.ab(h+5)C.5ab D.以上都不是【答案】C【解析】此题可直接考虑,长方体的高增加5米,而长和宽不变增加的部分仍是一个长方体,由长方体的体积计算公式直接得到结果.解:高增加5米,而长和宽不变,增加的部分是一个长是a米,宽是b米,高是5米的长方体,所以它的体积V=5ab;故选C.【点评】此题主要考查长方体的体积计算公式:长方体的体积=长×宽×高.22. 85000毫升= 升= 立方米.【答案】85,0.085.【解析】低级单位毫升化高级单位升除以进率1000;化高级单位立方米除以进率1000000.解:85000毫升=85升=0.085立方米.故答案为:85,0.085.【点评】立方米、立方分米(升)、立方厘米(毫升)相邻之间的进率是1000,由高级单位化低级单位乘进率,反之除以进率.23.一个油桶可装200L汽油,它的()是200L.A.体积B.容积C.表面积D.重量【答案】B【解析】根据容积的意义,某容器所能容纳别的物体的体积叫做这个容器的容积.据此解答.解:一个油桶可装200L汽油,它的容积是200L.故选:B.【点评】此题考查的目的是理解掌握容积的意义及应用.24.用一根铁丝焊接成一个长6厘米,宽5厘米,高4厘米的长方体框架,至少需要铁丝厘米,如果将这根铁丝改围成一个正方体框架,这个正方体的体积是立方厘米.【答案】60,125.【解析】根据长方体的棱长总和=(长+宽+高)×4,把数据代入公式即可求出这根铁丝的长度,再根据正方体的特征,正方体的12条棱的长度都相等,因此,用这根铁丝的长度除以12求出正方体的棱长,再根据正方体的体积公式:v=a3,把数据代入公式解答.解:(6+5+4)×4=15×4=60(厘米),60÷12=5(厘米),5×5×5=125(立方厘米),答:至少需要铁丝60厘米,这根正方体的体积是125立方厘米.故答案为:60,125.【点评】此题主要考查长方体、正方体的棱长总和公式、以及正方体的体积公式的灵活运用,关键是熟记公式.25.如图,正方体木块的表面积是96平方厘米。
六年级数学长方体和正方体试题答案及解析
六年级数学长方体和正方体试题答案及解析1.从由8个棱长是1厘米的小正方体拼成的大正方体中,拿走一个小正方体,如图,这时它的表面积是()平方厘米。
A.18 B.21 C.24【答案】C【解析】由题意可知,拿走一个小正方体减少了3个面,又增加了3个面,现在图形的表面积就等于原来大正方体的表面积,大正方体的棱长可求,从而可以求出其表面积。
解:(1+1)×(1+1)×6=24(平方厘米)答:图形的表面积是24平方厘米。
故选:C【考点】简单的立方体切拼问题;长方体和正方体的表面积。
2.(2009•武昌区)有两盒长方形的糖果,长、宽、高分别是15cm、10cm、3cm,用包装纸将它们全封闭包装在一起,怎样包装最节约包装纸?请计算出包装纸的面积(接缝处忽略不计).【答案】将糖果盒的最大面相粘合最节省包装纸,包装纸的面积是600平方厘米【解析】把这两个长方体糖果盒的15×10面相粘合,得到的大长方体的表面积最小,比原来两个糖果盒的表面积减少了2个最大的面,最节约包装纸,由此即可解答.解答:解:(15×10+15×3+10×3)×2×2﹣15×10×2,=(150+45+30)×4﹣300,=225×4﹣300,=900﹣300,=600(平方厘米);答:将糖果盒的最大面相粘合最节省包装纸,包装纸的面积是600平方厘米.点评:抓住两个长方体拼组一个大长方体的方法:最大面相粘合,得到的大长方体的表面积最小;最小面相粘合,得到的大长方体的表面积最大.3.(西城区)一个长方体水槽,从里面量长2.5分米,宽1.8分米,高1.5分米,这个水槽的容积是多少立方分米?【答案】这个水槽的容积是6.75立方分米【解析】分析:已知长方体的长、宽、高,根据长方体的体积=长×宽×高,即可求得体积.解答:解:2.5×1.8×1.5,=4.5×1.5,=6.75(立方分米);答:这个水槽的容积是6.75立方分米.点评:此题考查了长方体的体积计算,可根据已知直接运用公式计算.4.(2012•慈溪市)一个底面长25厘米,宽20厘米的长方体容器,里面盛有一些水,当把一个正方体木块放入水中时,木块的二分之一没入水中,此时水面升高了1厘米,问正方体木块的棱长是多少?【答案】正方体木块的棱长是10厘米【解析】升高了1厘米部分水的体积就是木块体积的二分之一,这部分水的体积就等于长25厘米,宽20厘米,高1厘米的长方体的体积,根据长方体的体积=长×宽×高,求出这个体积,然后再乘2,就是正方体木块的体积,再分解因数,即可得出答案.解答:解:25×20×1×2,=500×2,=1000(立方厘米),1000=10×10×10,所以,正方体木块的棱长是10厘米;答:正方体木块的棱长是10厘米.点评:本题关键是根据等积变形,明确升高了1厘米部分水的体积就是木块体积的二分之一.5.右图是一个棱长为2厘米的正方体,将它挖掉一个棱长为1厘米的小正方体后,它的表面积()A.比原来大B.比原来小C.不变【答案】C【解析】根据正方体的特征和表面积的计算方法,在顶点处挖掉一个棱长为1厘米的小正方体,又露出了和原来一样的三个正方形的面,因此它的表面积不变,据此解答.解:一个棱长为2厘米的正方体,将它挖掉一个棱长为1厘米的小正方体后,它的表面积不变.故选:C.点评:解答此题要明确减少了哪几个面,又增加了哪几个面.6.正方体的棱长扩大2倍,体积扩大4倍..(判断对错)【答案】×【解析】根据正方体体积=棱长3,可得正方体体积扩大的倍数是棱长扩大倍数的立方求解即可.解答:解:正方体的棱长扩大2倍,则体积扩大23=8倍,所以原题说法错误.故答案为:×.点评:考查了正方体的体积与正方体棱长的关系,是基础题型,比较简单.7.1时25分=时;3千克80克=克;2立方米10立方分米=立方米;2平方千米=平方米.【答案】1,3080,2.01,2000000.【解析】分析:把1时25分化成时数,用25除以进率60,然后再加上1;把3千克80克化成克数,用3乘进率1000,然后再加上80;把2立方米10立方分米化成立方米数,用10除以进率1000,然后再加上2;把2平方千米化成平方米数,用2乘进率1000000;即可得解.解答:解:1时25分=1时;3千克80克=3080克;2立方米10立方分米=2.01立方米;2平方千米=2000000平方米;故答案为:1,3080,2.01,2000000.点评:此题考查名数的换算,把高级单位的名数换算成低级单位的名数,就乘单位间的进率,把低级单位的名数换算成高级单位的名数,就除以单位间的进率.8.下面各图是由棱长为1厘米的正方体拼成的,根据前三个图形表面积的排列规律,第五个图形的表面积是平方厘米.【答案】22.【解析】棱长为1厘米的小正方体,1个面的面积是1平方厘米,观察图形可得:每增加1个正方体,表面积就增加4个面;由此即可推理出一般规律.解答:解:1个小正方体,表面积是:6平方厘米可以写成2+1×4;2个小正方体,表面积是10平方厘米,可以写成2+2×4;3个小正方体,表面积是14平方厘米,可以写成2+3×4;…;所以n个小正方体,表面积就是2+4n平方厘米;当n=5时,表面积是:2+4×5=22(平方厘米),答:第五个图形的表面积是22平方厘米.故答案为:22.点评:主要考查了学生通过特例分析从而归纳总结出一般结论的能力.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的,通过分析找到各部分的变化规律后直接利用规律求解.9.如图,是用积木摆放的一组图案,观察图案并探索:第五个图案中共有()块积木.A.25 B.16 C.36【答案】A.【解析】观察积木摆放的一组图案特征,可知第一个图案有12=1块积木,第二个图案有22=4块积木,第三个图案有32=9块积木,依此类推,第五个图案有52=25块积木,第n个图案有n2块积木.解答:解:根据以上分析第五个图案中共有52=25块积木.故选:A.点评:此题是根据图形摆放的特点寻找规律的题目,注意多观察,从多角度考虑问题.10.正方体的棱长扩大2倍,体积扩大了()倍.A.2 B.4 C.8【答案】C【解析】根据正方体的体积=棱长×棱长×棱长,所以棱长扩大2倍,体积就会扩大2×2×2=8倍.解答:解:2×2×2=8;故选:C.点评:此题主要考查正方体的体积随着棱长扩大或缩小的规律.11. 2立方米=立方厘米.【答案】2000000.【解析】把2立方米换算为立方厘米数,用2乘进率1000000.解答:解:2立方米=2000000立方厘米;故答案为:2000000.点评:此题考查名数的换算,把高级单位的名数换算成低级单位的名数,就乘单位间的进率,把低级单位的名数换算成高级单位的名数,就除以单位间的进率.12.一个长方体长是5厘米,宽是4厘米,高是3厘米.它的棱长总和是厘米,表面积是平方厘米,体积是立方厘米.【答案】48;94;60.【解析】长方体的12条棱分为互相平行的3组,每组4条棱的长度相等,相对的面的面积相等,长方体的棱长总和=(a+b+h)×4;表面积公式是s=(ab+ah+bh)×2;体积公式是v=abh;分别代入数据计算即可.解答:解:棱长之和:(5+4+3)×4=12×4,=48(厘米);表面积:(5×4+5×3+4×3)×2=(20+15+12)×2,=47×2,=94(平方厘米);体积:5×4×3=60(立方厘米);答:它的棱长总和是48厘米,表面积是94平方厘米,体积是60立方厘米.故答案为:48;94;60.点评:此题考查长了方体的特征以及棱长总和、表面积、体积的计算,直接根据它们的公式计算即可.13.用3个棱长4分米的正方体粘合成一个长方体,长方体的表面积比3个正方体的表面积少平方分米.【答案】64.【解析】用3个棱长4分米的正方体粘合成一个长方体,有4个正方形的面粘合在一起,即表面积少了4个正方形面的面积.由此解答.解:4×4×4=64(平方分米);故答案为:64.【点评】此题左右考查长方体和正方体的表面积计算方法,解答这类题首先要弄清有几个面粘合在一起.14.把30L水装入容积是250ml的水瓶里,能装瓶.【答案】120.【解析】先把30L换算成30000ml,进而求30000ml里面有几个250ml,用除法计算.解:30L=30000ml30000÷250=120(瓶)答:能装120瓶.故答案为:120.【点评】关键是把单位化统一,进而根据求一个数里面有几个另一个数,用除法计算得解.15.加工一个长方体油箱要用多少铁皮,是求这个油箱的()A.表面积 B.体积 C.容积【答案】A【解析】根据油箱的特点,加工一个长方体油箱要用多少铁皮,是求这个长方体的表面积.解:根据题干可得,要求油箱要用多少铁皮,是求这个长方体的表面积.故选:A.【点评】此题考查了长方体表面积的实际应用.16.把正方体的棱长扩大3倍,它的表面积扩大()A.3倍B.6倍C.9倍D.27倍【答案】C【解析】因为正方体的表面积=棱长×棱长×6,棱长扩大3倍,根据积的变换规律可以得知,表面积扩大了3×3=9倍,由此可以解决问题.解:正方体的表面积=棱长×棱长×6,棱长扩大3倍,表面积扩大了3×3=9倍,故选:C.【点评】此题考查了正方体的表面积公式以及积的变化规律的应用.17.一盒饼干长20厘米,宽15厘米,高30厘米,现在要在它的四周贴上商标纸,这张商标纸的面积是多少平方厘米?【答案】2100平方厘米【解析】这张商标纸的面积是指长方体的侧面积,根据长方形的面积公式:s=ab,把数据代入公式解答即可.解:(20×30+15×30)×2=(600+450)×2=1050×2=2100(平方厘米),答:这张商标纸的面积是2100平方厘米.【点评】此题主要考查长方体的表面积公式的灵活运用.18.填上合适的单位名称.①橡皮的体积大约是6②集装箱的体积大约是40③一个墨水瓶的容积是60④一本数学书的体积大约是320⑤一个正方体,棱长1分米,表面积是600 ,体积是1 .【答案】立方厘米,立方米,毫升,立方厘米,平方厘米,立方分米.【解析】根据情景根据生活经验,对面积单位、容积单位、体积单位和数据大小的认识,可知计量橡皮的体积用“立方厘米”做单位;可知计量集装箱的体积用“立方米”做单位;计量一个墨水瓶的容积用“毫升”做单位,计量一本数学书的体积用“立方厘米”做单位;1分米=10厘米,根据正方体表面积公式10×10×6=600平方厘米,根据条件公式1分米×1分米×1分米=1立方分米,所以计量一个正方体,棱长1分米,表面积用“平方厘米”作单位,计量体积用“立方分米”做单位;据此得解.解:①橡皮的体积大约是6 立方厘米②集装箱的体积大约是40 立方米③一个墨水瓶的容积是60 毫升④一本数学书的体积大约是320 立方厘米⑤一个正方体,棱长1分米,表面积是600 平方厘米,体积是1 立方分米;故答案为:立方厘米,立方米,毫升,立方厘米,平方厘米,立方分米.【点评】此题考查根据情景选择合适的计量单位,要注意联系生活实际、计量单位和数据的大小,灵活的选择.19.一个正方体石块占地20平方分米,这个石块的表面积是平方分米.【答案】120.【解析】首先根据正方体石块占地20平方分米,可得正方体的每个面的面积都是20平方分米;然后根据正方体的表面积=每个面的面积×6,求出这个石块的表面积是多少平方分米即可.解:20×6=120(平方分米)答:这个石块的表面积是120平方分米.故答案为:120.【点评】此题主要考查了正方体的表面积的求法,要熟练掌握,解答此题的判断出正方体的每个面的面积都是20平方分米.20.下面5个长方形中,哪3个是同一个长方体中相邻的3个面?请你在括号里打“√”【答案】见解析【解析】根据长方体的特征,长方体对面是相同的长方形,长方体有12条棱,相对的四条棱长度相等.按长度可分为三组,每一组有4条棱,长方体有8个顶点.每个顶点连接三条棱,三条棱分别叫做长方体的长,宽,高,再结合长方体的长、宽、高,组成的长方体长为5,宽为3,高为2,即③(长5、宽3)可作底面,②(长3,宽2)可作左面,①(长5、宽2)可作上面;同理可推:组成的长方体的长为5、宽为4、高为2,所以①④⑤是同一个长方体中相邻的3个面,解答即可.解:由分析可知:组成的长方体的长为5、宽为3、高为2,所以①②③是同一个长方体中相邻的3个面;组成的长方体的长为5、宽为4、高为2,所以①④⑤是同一个长方体中相邻的3个面.故答案为:或:【点评】本题主要是考查长方体的特征,根据长方体的长、宽、高,结合长方体的特征,即可确定长方体的上、下底,左、右面,前、后面的长和宽.21.体积是1立方分米的正方体,可截成个棱长是1厘米小正方体,将这些小正方体排成一排成为长方体,这个长方体长是米.【答案】1000;10.【解析】棱长是1厘米的小正方体体积是1立方厘米,再把1立方分米化成1000立方厘米,所以1立方分米的正方体木块里面有1000个1立方厘米的小正方体,所以将这些小正方体排成一排成为长方体,这个长方体宽是1厘米,高是1厘米的长方体,这个长方体长是:1000÷1÷1=1000厘米.解:1立方分米=1000立方厘米,1000÷(1×1×1)=1000(个),1000÷1÷1=1000(厘米)=10(米),答:体积是1立方分米的正方体,可截成1000个棱长是1厘米小正方体,将这些小正方体排成一排成为长方体,这个长方体长是10米.故答案为:1000;10.【点评】解答此题应根据体积单位间的进率进行分析,或先把棱长为1分米的正方体化为棱长为10厘米的正方体,进而根据正方体的体积计算公式进行解答.22.把两个完全相同的正方体拼成一个长方体,拼成的长方体的表面积是120平方厘米,原来每个正方体的表面积是平方厘米.【答案】72.【解析】两个正方体拼成一个长方体后,相当于减少了两个正方体的面,即10个正方体的面的面积是120平方厘米,由此求出正方体一个面的面积,进而求出每个正方体的表面积.解:120÷10=12(平方厘米)12×6=72(平方厘米)答:原来每个正方体的表面积72平方厘米.故答案为:72.【点评】关键是根据题意得出两个正方体拼成一个长方体后,相当于减少了两个正方体的面,即10个正方体的面的面积是120平方厘米,进而求出正方体一个面的面积.23.在横线里填上合适的单位.星期天,小玲到离家1.2 的超市购物,他买了800 的猪肉,买了1.5 的苹果,又买了一瓶1.25 的可口可乐,一共花了32.5 钱.【答案】千米,克,千克,升,元.【解析】根据情景根据生活经验,对质量单位、长度单位、货币单位、体积单位和数据大小的认识,可知计量小玲家离超市的距离用“千米”做单位;可知计量猪肉的质量用“克”做单位;计量苹果的质量用“千克”做单位,计量可口可乐用“升”做单位,计量一共花钱数用“元”作单位.解:星期天,小玲到离家1.2 千米的超市购物,他买了800 克的猪肉,买了1.5 千克的苹果,又买了一瓶1.25 升的可口可乐,一共花了32.5 元钱;故答案为:千米,克,千克,升,元.【点评】此题考查根据情景选择合适的计量单位,要注意联系生活实际、计量单位和数据的大小,灵活的选择.24.集装箱的体积大约是40()A.立方米B.立方分米C.升D.毫升【答案】A【解析】根据生活经验以及对体积单位和数据大小的认识,可知计量集装箱的体积,应用体积单位,结合数据可知:应用“立方米”做单位;据此解答.解:集装箱的体积大约是40立方米;故选:A.【点评】此题考查根据情景选择合适的计量单位,要注意联系生活实际、计量单位和数据的大小,灵活的选择.25.如图,长方体礼盒的长、宽、高分别是20厘米、18厘米、6厘米.如果用彩带把这个礼盒捆扎起来(打结处的彩带长12厘米),一共需要彩带多少厘米?【答案】112厘米.【解析】根据长方体的特征:12条棱分为互相平行的3组,每组4条棱的长度相等,由图形可知:所需彩带的长度等于4条高、2条长、2条宽棱的长度和再加上接头处用的12厘米即可.解:(20+18)×2+6×4+12=38×2+24+12=76+24+12=112(厘米);答:一共需要彩带112厘米.【点评】此题考查的目的是掌握长方体的棱的特征,根据棱长总和的计算方法解答.26.把一个棱长是6分米的正方体截成两个同样的长方体,每个长方体的表面积是( )平方分米,体积是()立方分米。
六年级奥数考点:立体图形的表面积问题
考点:立体图形的表面积问题一、知识要点小学阶段所学的立体图形主要有四种长方体、正方体、圆柱体和圆锥体。
从平面图形到立体图形是认识上的一个飞跃,需要有更高水平的空间想象能力。
因此,要牢固掌握这些几何图形的特征和有关的计算方法,能将公式作适当的变形,养成“数、形”结合的好习惯,解题时要认真细致观察,合理大胆想象,正确灵活地计算。
在解答立体图形的表面积问题时,要注意以下几点:(1)充分利用正方体六个面的面积都相等,每个面都是正方形的特点。
(2)把一个立体图形切成两部分,新增加的表面积等于切面面积的两倍。
反之,把两个立体图形粘合到一起,减少的表面积等于粘合面积的两倍。
(3)若把几个长方体拼成一个表面积最大的长方体,应把它们最小的面拼合起来。
若把几个长方体拼成一个表面积最小的长方体,应把它们最大的面拼合起来。
二、精讲精练【例题1】从一个棱长10厘米的正方体木块上挖去一个长10厘米、宽2厘米、高2厘米的小长方体,剩下部分的表面积是多少?这是一道开放题,方法有多种:①按图27-1所示,沿着一条棱挖,剩下部分的表面积为592平方厘米。
图27--1②按图27-2所示,在某个面挖,剩下部分的表面积为632平方厘米。
图27--2③按图27-3所示,挖通某两个对面,剩下部分的表面积为672平方厘米。
图27--3练习1:1、(课后)从一个长10厘米、宽6厘米、高5厘米的长方体木块上挖去一个棱长2厘米的小正方体,剩下部分的表面积是多少?切下一块后,切口处的表面减少了前、后、上面3个1×1的正方形,新增加了左右下面三个1×1的正方形,所以表面积大小不变。
2、把一个长为12分米,宽为6分米,高为9分米的长方体木块锯成两个想同的小长方体木块,这两个小长方体的表面积之和,比原来长方体的表面积增加了多少平方分米?4×4×6-2×2×2=92平方厘米3、在一个棱长是4厘米的立方体上挖一个棱长是1厘米的小正方体后,表面积会发生怎样的变化?中心挖去的洞的体积是:12×3×3-13×2=7立方厘米,挖洞后木块的体积:33-7=20立方厘米,中心挖洞后每面增加的面积是12×4-12=3平方厘米,挖洞后木块的表面积:(32+3)×6=72平方厘米。
六年级数学长方体和正方体整理与复习、表面积的变化典型例题解析
一、本周主要内容:长方体和正方体整理与复习、表面积的变化二、本周学习目标:1、知识与技能:进一步掌握长方体和正方体的基本特征;掌握常用的体积单位及容积单位间的进率;能够正确计算长方体和正方体的表面积、体积(容积);能够正确解决有关的实际问题。
2、情感与态度:能积极主动地参与各种探索和操作活动;愿意与他人交谈自己的想法;提出不懂的问题;倾听不同的观点。
有克服困难和运用知识解决问题的成功体验。
三、考点分析:能从现实生活中发现并提出一些与长方体、正方体相关的简单的实际问题;能主动探索解决问题的有效方法;并对自己解决问题的过程作出合理的解释。
四、典型例题例1、回顾与整理回顾本单元的有关概念。
口答:1、长方体、正方体的特征。
(面、棱、顶点)2、什么叫表面积?3、什么是体积?4、什么是容积?5、常用的体积单位有哪些?常用的容积单位有哪些?它们之间有怎样的关系?6、怎样求长方体、正方体的表面积、体积?长方体的表面积=(长×宽 + 宽×高 + 长×高)×2正方体的表面积= 棱长×棱长×6长方体的体积= 长×宽×高正方体的体积= 棱长×棱长×棱长长(正)方体的体积= 底面积×高例2、请你分别计算出下面每个长方体或正方体向上、向左的面的面积。
5厘米厘米7厘米5厘米①②分析与解:首先要弄清楚每个长方体(含正方体)向上、向左的面是哪个面;如果是长方形;长和宽分别是多少厘米;如果是正方形;边长又是多少厘米;这样即可求出所求面的面积。
图①向上的面积是7×2 = 14(平方厘米);向左的面积是2×5 = 10(平方厘米)。
图②向上、向左的面积都是5×5 = 25(平方厘米)。
例3、江宁体育馆有一个长方体形状的游泳池;长50米;宽30米;深3米;现在要在游泳池的各个面上抹上一层水泥;抹水泥的面积有多少平方米?如果每平方米用水泥12千克;22吨够吗?分析与解:求水泥的面积有多少平方米;实际就是求这个长方体游泳池的表面积。
长方体和正方体知识点+例题+习题
长⽅体和正⽅体知识点+例题+习题第1节长⽅体和正⽅体的认识典型例题例1.⼀个长⽅体长8厘⽶,宽6厘⽶,⾼4厘⽶,它的棱长总和是多少厘⽶?分析:根据长⽅体的特征,它相对的棱(3组,每组4条)的长度相等,那么长⽅体的棱长和等于长、宽、⾼的4倍.解:(8+6+4)×4=18×4=72(厘⽶)答:它的棱长总和是72厘⽶.例2.⽤⼀根48厘⽶的铁丝焊接成⼀个最⼤的正⽅体框架,这个框架的每条边应该是多少厘⽶?分析:根据正⽅体的特征,它的12条棱长都相等,把48厘⽶平均分成12份,每份就是⼀条棱的长度.解:48÷12=4(厘⽶)答:这个框架的每条边应该是4厘⽶.例3.⽤棱长1厘⽶的⼩正⽅体摆成稍⼤⼀些的正⽅体,⾄少需要多少个⼩正⽅体?分析:题⽬要求⾄少要多少个棱长为1厘⽶的⼩正⽅体,那么拼成的棱长应尽量⼩,所以应该考虑棱长为2的⽴⽅体,体积是8⽴⽅厘⽶,所以要8个.解:2×2×2=8(个)答:⾄少需要8个⼩正⽅体.例4.将下⾯的硬纸板按照虚线折成⼀个⽴⽅体,哪个⾯与哪个⾯相对?分析:通过实验可以看到带有标号的⾯7与10,⾯8与11,⾯9与12是相对的⾯.例5.⼀个正⽅体的六个⾯上,分别写着“1”“2”“3”“4”“5”“6”.根据下⾯摆放的三种情况,判断出每个对⾯上的数字是⼏?分析:正⽅体有6个⾯,每⼀个⾯有⼀个相对的⾯,⽽与其余四个⾯相邻.解题时我们如果抓住这⼀特征,确定某⼀个⾯与哪四个⾯相邻,于是就不难判断出这⼀⾯相对的⾯上的数字是⼏了.即排除包括⾃⼰在内的五个数字,剩下的就是与某⼀⾯相对的⾯上数字了.先以“3”为例:从上⾯左图可以看出,“3”⾯与“2”⾯、“1”⾯相邻;从中图可以看出.“3”⾯⼜与“4”⾯、“5”⾯相邻.这就是说,“3”⾯与“1”⾯、“2”⾯、“4”⾯和“5”⾯这四个⾯相邻.那么,就可以很快知道,“3”⾯与“6”⾯相对.再来看“1”⾯:从上⾯左图可看出,“1”⾯与“2”⾯“3”⾯相邻;从右图可看出,“1”⾯⼜与“6”⾯“4”⾯相邻,这就是说,与“1”相邻的四个⾯,是“2”⾯、“3”⾯、“4”⾯和“6”⾯,那么,与“1”⾯相对的⾯就只能是“5”⾯了.最后看“4”⾯:从上⾯中图可以看出,“4”⾯与“3”⾯、“5”⾯相邻;从右图可以看出,“4”⾯⼜与“1”⾯“6”⾯相邻.这就是说,与“4”⾯相邻的四个⾯,是“1”⾯、“3”⾯、“5”⾯和“6”⾯,于是可知,与“4”⾯相对是⾯是“2”⾯.所以题⽬的结论是:这个正⽅体上相对的⾯,分别是“1”⾯和“5”⾯、“2”⾯和“4”⾯、“3”⾯和“6”⾯.解:这个正⽅体上相对的⾯,分别是“1”⾯和“5”⾯、“2”⾯和“4”⾯、“3”⾯和“6”⾯.习题精选⼀、填空.1.长⽅体有()个⾯,它们⼀般都是()形,也可能有()个⾯是正⽅形.2.长⽅体的上⾯和下⾯、前⾯和后⾯、左⾯和右⾯都叫做(),它们的⾯积().3.长⽅体的12条棱,每相对的()条棱算作⼀组,12条棱可以分成()组.4.正⽅体有()个⾯,每个⾯都是()形,⾯积都().5.⼀个正⽅体的棱长是6厘⽶,它的棱长总和是().6.⼀个长⽅体的长是1.5分⽶,宽是1.2分⽶,⾼是1分⽶,它的棱长和是()分⽶.7.⼀个长⽅体的棱长总和是80厘⽶,其中长是10厘⽶,宽是7厘⽶,⾼是()厘⽶.8.把两个棱长1厘⽶的正⽅体拼成⼀个长⽅体,这个长⽅体的棱长总和是()厘⽶.⼆、判断题.1.长⽅体和正⽅体都有6个⾯,12条棱,8个顶点.()2.长⽅体的6个⾯不可能有正⽅形.()3.长⽅体的12条棱中,长、宽、⾼各有4条.()4.正⽅体不仅相对的⾯的⾯积相等,⽽且所有相邻的⾯的⾯积也都相等.()5.长⽅体(不包括正⽅体)除了相对的⾯相等,也可能有两个相邻的⾯相等.()6.⼀个长⽅体长12厘⽶,宽8厘⽶,⾼7厘⽶,把它切成⼀个尽可能⼤的正⽅体,这个正⽅体的棱长是8厘⽶.()三、选择题.1.下列物体中,形状不是长⽅体的是()①⽕柴盒②红砖③茶杯④⽊箱2.长⽅体的12条棱中,⾼有()条.①4②6③8④123.下列三个图形中,能拼成正⽅体的是()4.把⼀个棱长3分⽶的正⽅体切成两个相等的长⽅体,增加的两个⾯的总⾯积是()平⽅分⽶.①18②9③36④以上答案都不对参考答案⼀、填空.1.6 长⽅形 22.相对⾯相等3.4 34.6 正⽅形相等5.72厘⽶6.14.87.38.16⼆、判断题.1.√ 2.× 3.√4.√ 5.√ 6.×三、选择题.1.③2.①3.①和③4.①第2节长⽅体和正⽅体的表⾯积例1.⼀种有盖的长⽅体铁⽪盒,长8厘⽶,宽5厘⽶,⾼3厘⽶.做25个这样的盒⼦⾄少需要多少平⽅⽶铁⽪?(不计接⼝⾯积)分析:根据长⽅体表⾯积的计算⽅法,先求出⼀个盒⼦需要的铁⽪数量,然后就可以求出25个这样的盒⼦需要的铁⽪数量.解:(8×5+8×3+5×3)×2×25=158×25=3950(平⽅厘⽶)=0.395(平⽅⽶)答:⾄少需要0.395平⽅⽶的铁⽪.例2.⼀个长⽅体,表⾯积是456平⽅厘⽶,它的底⾯是⼀个边长为4厘⽶的正⽅形,它的⾼是多少厘⽶?分析:题⽬中给出这个长⽅体底⾯是⼀个边长为4厘⽶的正⽅形,说明这个长⽅体是有两个相对的⾯是正⽅形的,其余4个⾯是⾯积相等的长⽅形,只要我们求出⼀个长⽅形⾯的⾯积,再⽤⾯积除以底⾯的边长,就算出了长⽅体的⾼了.这也是利⽤长⽅体的特征,逆解题⽬.解:456-4×4×2=424(平⽅厘⽶)424÷4=106(平⽅厘⽶)106÷4=26.5(厘⽶)答:它的⾼是26.5厘⽶.例3.⼀个教室长8⽶,宽6⽶,⾼3.5⽶,要粉刷教室的墙壁和天花板.门窗和⿊板的⾯积是22平⽅⽶,平均每平⽅⽶⽤涂料0.25千克,粉刷这个教室共需要涂料多少千克?分析:求需要涂料多少千克,必须先求出实际粉刷的⾯积.长⽅体的表⾯积去掉门窗、⿊板和地⾯的⾯积就是实际粉刷的⾯积.解:(1)粉刷的⾯积为:(8×6+8×3.5+6×3.5)×2-8×6-22=(48+28+21)×2-48-22=97×2-48-22=194-48-22=124(平⽅⽶)(2)需要涂料的重量为:0.25×124=31(千克)答:粉刷这个教室共需要涂料31千克.例4.将⼀个长12厘⽶,宽9厘⽶,⾼5厘⽶的长⽅体,切成两个长⽅体,两个长⽅体表⾯积的总和最多是多少平⽅厘⽶?最少是多少平⽅厘⽶?分析:切割长⽅体⼀次,原来的表⾯积增加两个⾯的⾯积,要使切开后的两个长⽅体表⾯积的总和最多(少),必须使横截⾯的⾯积最⼤(⼩).解:(12×9+12×5+9×5)×2+12×9×2=(108+60+45)×2+216=213×2+216=642(平⽅厘⽶)(12×9+12×5+9×5)×2+9×5×2=(108+60+45)×2+90=213×2+90=516(平⽅厘⽶)答:两个长⽅体表⾯积的总和最多是642平⽅厘⽶,最少是516平⽅厘⽶.例5.⼀个正⽅体,棱长的总和是96厘⽶.这个正⽅体的表⾯积是多少?分析:因为正⽅体的12根棱长都相等,所以可知,这个正⽅体的棱长是96÷12=8(厘⽶).⼜由于正⽅体有相等的6个⾯,每个都是正⽅形.解:8×8×6=384(平⽅厘⽶)答:这个正⽅体的表⾯积是384平⽅厘⽶.例6.做两个同样的正⽅体纸盒,⼀个有盖⼀个⽆盖,有盖纸盒⽤的纸板是⽆盖纸盒的多少倍?分析:有盖纸盒的表⾯积是它的⼀个⾯⾯积的6倍,⽆盖纸盒的表⾯积是它的⼀个⾯⾯积的5倍,⽽两个同样的正⽅体纸盒的⾯的⾯积是相等的,所以有盖纸盒⽤的纸板是⽆盖纸盒的6÷5=1.2倍.解:6÷5=1.2答:有盖纸盒⽤的纸板是⽆盖纸盒的1.2倍.习题精选⼀、填空题1.(1)下图上、下每个⾯的长()厘⽶,宽()厘⽶,⾯积是();(2)前、后每个⾯的长是()厘⽶,宽是()厘⽶,⾯积是();(3)左、右每个⾯的长是()厘⽶,宽是()厘⽶,⾯积是().(4)它的表⾯积是().2.(1)下图中上⾯的⾯积是(),前⾯的⾯积是(),右⾯的⾯积是();(2)计算它的表⾯积的算式是().⼆、计算题求下⾯各长⽅体的表⾯积:1.长6⽶,宽3⽶,⾼2⽶.2.长8分⽶,宽4.5分⽶,⾼2分⽶.3.长和宽都是6厘⽶,⾼3.4厘⽶.三、应⽤题1.做⼀个长⽅体的纸箱,长0.8⽶,宽0.6⽶,⾼0.4⽶.做这个纸箱⾄少需要纸板多少平⽅⽶?2.⼀个正⽅体的⽊箱,棱长5分⽶,在它的表⾯涂漆,涂漆的⾯积是多少?如果每平⽅分⽶⽤漆8克,涂这个⽊箱要⽤漆多少克?合多少千克?3.⼀个长⽅体的铁⽪盒,长25厘⽶,宽20厘⽶,⾼8厘⽶.做这个铁⽪盒⾄少要⽤多少平⽅厘⽶铁⽪?参考答案⼀、1.(1)下图上、下每个⾯的长( 9 )厘⽶,宽( 3 )厘⽶,⾯积是(27平⽅厘⽶);(2)前、后每个⾯的长是( 9 )厘⽶,宽是( 4 )厘⽶,⾯积是(36平⽅厘⽶);(3)左、右每个⾯的长是( 4 )厘⽶,宽是( 3 )厘⽶,⾯积是(12平⽅厘⽶).(4)它的表⾯积是:9×3+9×4+4×3)×2=150(平⽅厘⽶).2.(1)下图中上⾯的⾯积是(36平⽅分⽶),前⾯的⾯积是(48平⽅分⽶),右⾯的⾯积是(48平⽅分⽶);(2)计算它的表⾯积的算式是:6×6×2+6×8×4=264(平⽅分⽶).⼆、1.(6×3+6×2+3×2)×2=72(平⽅⽶)2.(8×4.5+8×2+4.5×2)×2=122(平⽅分⽶)3.6×6×2+6×3.4×4=153.6(平⽅厘⽶)三、1.(0.8×0.6+0.8×0.4+0.6×0.4)×2=2.08(平⽅⽶)答:⾄少需要纸板2.08平⽅⽶.2.5×5×6=150(平⽅分⽶)答:涂漆的⾯积是150平⽅分⽶.8×150=1200(克)=1.2(千克)答:要⽤漆1200克,合1.2千克.3.(25×20+25×8+20×8)×2=1720(平⽅厘⽶)答:⾄少要⽤1720平⽅厘⽶铁⽪.第3节长⽅体和正⽅体的体积(⼀)典型例题例1.把⼀个棱长6分⽶的正⽅体钢坯,锻造成⼀个宽3分⽶,⾼2分⽶的长⽅体钢件,这个钢件长多少分⽶?分析:把正⽅体钢坯锻造成长⽅体钢件,形状改变了,但是体积没有改变,即正⽅体的体积和长⽅体的体积相等.已知长⽅体的宽和⾼,⽤体积除以宽,要再除以⾼,就可以求出长.解:6×6×6÷3÷2=216÷3÷2=36(分⽶)答:这个钢件的长是36分⽶.例2.⼀个正⽅体的铁⽪油箱,从⾥⾯量得棱长为6分⽶,⾥⾯装满汽油.如果把这箱汽油全部倒⼊⼀个长10分⽶、宽8分⽶、⾼5分⽶的长⽅体铁⽪油箱中,那么,油⾯离箱⼝还有多少分⽶?分析:根据题意,可先求得正⽅体铁⽪油箱的汽油体积为:6×6×6=216(⽴⽅分⽶)⽽长⽅体油箱底⾯积是10×8=80(平⽅分⽶),所以,汽油在长⽅体铁⽪油箱⾥的⾼度是216÷80=2.7(分⽶).因此,油⾯离油箱⼝的⾼度就是:5-2.7=2.3(分⽶)答:油⾯离油箱⼝还有2.3分⽶.例3.⼀段⽅钢长3⽶,横截⾯是⼀个边长为0.4分⽶的正⽅形.如果1⽴⽅分⽶的钢重7.8千克,那么这段⽅钢有多重?分析:题⽬中的长度单位不统⼀,为计算的⽅便,可都化成以分⽶为单位来进⾏计算.解:3⽶=30分⽶0.4×0.4×30=4.8(⽴⽅分⽶)7.8×4.8=37.44(千克)答:这段⽅钢的重量是37.44千克.例4.有沙⼟12⽴⽅⽶,要铺在长5⽶,宽4⽶的房间⾥,可以铺多厚?分析:此题要把12⽴⽅⽶的沙⼟铺在房间⾥,也就是铺成⼀个长5⽶、宽4⽶、厚⽶的长⽅体,我们就可以⽤⽅程法求出所求问题了.这题是⼀道利⽤体积计算公式逆解的题.遇到此类题⽤⽅程法解即可.解:设可铺⽶厚.4×5×=12=0.6答:可以铺0.6⽶厚.例5.⼀个长⽅体的底⾯长6厘⽶,长是宽的1.2倍,宽⽐⾼少0.5厘⽶,这个长⽅体的体积是多少⽴⽅厘⽶?分析:这道题要求的是长⽅体的体积,求体积就必须知道长⽅形的长、宽、⾼.此题只直接给出了长,宽和⾼是间接给出的,因此应先⽤求⼀倍量的⽅法求出宽,再根据“求⽐⼀个数多⼏的数是多少”的题型算出⾼,最后⽤公式V=abh算出体积就可以了.解:6÷1.2=5(厘⽶)5+0.5=5.5(厘⽶)6×5×5.5=165(平⽅厘⽶)答:这个长⽅体的体积是165平⽅厘⽶.例6.在长为12厘⽶、宽为10厘⽶、8厘⽶深的玻璃缸中放⼊⼀⽯块并没⼊⽔中,这时⽔⾯上升2厘⽶.⽯块的体积是多少?分析:把⽯块浸没在装⽔的长⽅体玻璃缸中,⽯块占有⼀定的空间,从⽽使⽔的体积增⼤,它的具体表现就是⽔⾯上升,不管⽯块的形状如何,只要求出增加的体积就可以了(即⽯块的体积).解:12×10×2=240(⽴⽅厘⽶)答:⽯块的体积是240⽴⽅厘⽶.例7.把棱长6厘⽶的正⽅体铁块锻造成宽和⾼都是4厘⽶的长⽅体铁条,能锻造出多长?分析:我们不难看出,棱长6厘⽶的正⽅体和要锻造的长⽅体的体积相等,只不过形状不⼀样,这类题叫等积变形题.只要求出正⽅体的体积就是长⽅体的体积了.解:6×6×6÷4÷4=13.5(厘⽶)答:能锻造13.5厘⽶长.习题精选⼀、填空题1.物体所占空间的⼤⼩叫做物体的().2.计量体积要⽤()单位,常⽤的体积单位有()()和().3.棱长1厘⽶的正⽅体体积是(),棱长1分⽶的正⽅体体积是(),棱长1⽶的正⽅体体积是().4.长⽅体的体积=(),正⽅体的体积=().5.在括号⾥填上合适的计量单位.(1)⼀本数学解题题典封⾯的周长是80(),⾯积是375(),体积是1125().(2)⼀块橡⽪的体积是6(),⼀只卫⽣保健箱的体积是30(),⼀堆钢材的体积是4().⼆、判断题1.⼀块长⽅体⽊料,长6分⽶,宽4分⽶,厚3分⽶.容积是72升.()2.⼀个游泳池的容积是1000毫升.()3.⼀个正⽅体的棱长扩⼤2倍,体积就扩⼤8倍.()4.⼀个长⽅体的⽊箱,它的体积和容积⼀样⼤.()5.⼀只杯⼦能装⽔1升,杯⼦的容积就是1⽴⽅分⽶.()三、计算题看图计算下⾯长⽅体和正⽅体的体积.1.2.3.四、应⽤题1.⼀个长⽅体⽊箱,长7分⽶,宽4分⽶,⾼3.5分⽶.这个⽊箱的体积是多少?2.⼀块⽅砖的厚是5厘⽶,长和宽都是30厘⽶.求这块⽅砖的体积.3.⼀块正⽅体⽯料,棱长是0.8⽶.这块⽯料的体积是多少⽴⽅分⽶?五、提⾼题1.下图是由棱长为1厘⽶的⼩正⽅体拼摆⽽成的.这个拼摆⽽成的形体的表⾯积是多少平⽅厘⽶?体积是多少⽴⽅厘⽶?⾄少再摆上⼏个⼩正⽅体后就可以拼摆成⼀个正⽅体?2.⼀个长⽅体玻璃容器,长5分⽶,宽4分⽶,⾼6分⽶,向容器中倒⼊30升⽔,再把⼀块⽯头放⼊⽔中,这时量得容器内的⽔深20厘⽶,⽯头的体积是多少⽴⽅分⽶?参考答案⼀、1.物体所占空间的⼤⼩叫做物体的(体积).2.计量体积要⽤(体积)单位,常⽤的体积单位有(⽴⽅厘⽶)(⽴⽅分⽶)和(⽴⽅⽶).3.棱长1厘⽶的正⽅体体积是(1⽴⽅厘⽶),棱长1分⽶的正⽅体体积是(1⽴⽅分⽶),棱长1⽶的正⽅体体积是(1⽴⽅⽶).4.长⽅体的体积=(长×宽×⾼),正⽅体的体积=(棱长×棱长×棱长).5.在括号⾥填上合适的计量单位.(1)⼀本数学解题题典封⾯的周长是80(厘⽶),⾯积是375(平⽅厘⽶),体积是1125(⽴⽅厘⽶).(2)⼀块橡⽪的体积是6(⽴⽅厘⽶),⼀只卫⽣保健箱的体积是30(⽴⽅分⽶),⼀堆钢材的体积是4(⽴⽅⽶).⼆、1.⼀块长⽅体⽊料,长6分⽶,宽4分⽶,厚3分⽶.容积是72升.(× )2.⼀个游泳池的容积是1000毫升.(× )3.⼀个正⽅体的棱长扩⼤2倍,体积就扩⼤8倍.(√ )4.⼀个长⽅体的⽊箱,它的体积和容积⼀样⼤.(× )5.⼀只杯⼦能装⽔1升,杯⼦的容积就是1⽴⽅分⽶.(√ )三、1.48×5=240(⽴⽅厘⽶)2.0.36×0.6=0.216(⽴⽅⽶)3.9×8=72(⽴⽅分⽶)四、1.7×4×3.8=98(⽴⽅分⽶)答:这个⽊箱的体积是98⽴⽅分⽶.2.30×30×5=4500(⽴⽅厘⽶)答:这块⽅砖的体积是4500⽴⽅厘⽶.3.0.8×0.8×0.8=0.512(⽴⽅⽶)答:这块⽯料的体积是512⽴⽅分⽶.五、1.(1×1)×48=48(平⽅厘⽶)(1×1×1)×18=18(⽴⽅厘⽶)答:表⾯积是48平⽅厘⽶,体积是18⽴⽅厘⽶,⾄少再摆上9个⼩正⽅体就可以拼成⼀个正⽅体.2.5×4×[2-30÷(5×4)] =10(⽴⽅分⽶)或5×4×2-30=10(⽴⽅分⽶)答:⽯头的体积是10⽴⽅分⽶.2-3长⽅体和正⽅体的体积(⼆)典型例题例1.⼀个长⽅体沙坑的长是8⽶,宽是4.2⽶,深是0.6⽶,每⽴⽅⽶沙⼟重1.75吨,填平这个沙坑共要⽤沙⼟多少吨?分析:已知每⽴⽅⽶沙⼟重1.75吨,求共要⽤沙⼟多少吨,必须先求出共要沙⼟多少⽴⽅⽶,即先求出沙坑的容积.解: 1.75×(8×4.2×0.6)=1.75×20.16=35.28(吨)答:共要沙⼟35.28吨.例2.长⽅体货仓1个,长50⽶,宽30⽶,⾼5⽶,这个货仓可以容纳8⽴⽅⽶的正⽅体货箱多少个?分析:已知正⽅体货箱的体积是8⽴⽅⽶,可以知道正⽅体货箱的棱长为2⽶.货仓的长是50⽶,所以⼀排可以摆放50÷2=25个,宽是30⽶,可以摆放30÷2=15排,⾼是5⽶,可以摆放5÷2=2层 (1)⽶,所以⼀共可以摆放25×15×2=750个.(如图)解:50÷2=25(个)30÷2=15(排)5÷2=2层……1⽶25×15×2=750(个)答:可以容纳8⽴⽅⽶的正⽅体货箱750个.说明:如果此题先计算长⽅体货仓的体积(50×30×5=7500⽴⽅⽶),然后再除以⽴⽅体的体积8⽴⽅⽶(7500÷8=937.5个)是不对的.因为货仓的⾼是5⽶,⽴⽅体的棱长2⽶,只能摆放2层,上⾯的1⽶实际上是空的,没有摆放货箱.例3.⼀只底⾯是正⽅形的长⽅体铁箱,如果把它的侧⾯展开,正好得到⼀个边长是60厘⽶的正⽅形.(1)这只铁箱的容积是多少升?(2)如果铁箱内装半箱⽔,求与⽔接触的⾯的⾯积.分析:(1)根据侧⾯展开后是⼀个边长为60厘⽶的正⽅形,可以得出长⽅形的底⾯(正⽅形)的周长是60厘⽶,⾼也是60厘⽶.由底⾯(正⽅形)的周长可以求出底⾯的⾯积.从⽽求出容积.(2)与⽔接触的⾯的⾯积是原长⽅体的侧⾯积的⼀半加上⼀个底⾯积.⽽侧⾯积是边长60厘⽶的正⽅形的⾯积,底⾯积上⾯已经求出.解:(1)×60=225×60=13500(⽴⽅厘⽶)(2)60×60÷2+=1800+225=2025(平⽅厘⽶)答:这只铁箱的容积是13.5升,如果装半箱⽔,与⽔接触的⾯积是2.25平⽅厘⽶.例4.有⼀个空的长⽅体容器和⼀个⽔深24厘⽶的长⽅体容器,将容器的⽔倒⼀部分到,使两容器⽔的⾼度相同,这时两容器相同的⽔深为⼏厘⽶?分析1:容器的底⾯积是40×30,容器的底⾯积是30×20,40×30÷(30×20)=2,即的底⾯积是的底⾯积的2倍,中的⽔倒⼀部分到使、两容器⽔的⾼度相同,所以这个⽔深为24÷(2+1)=8厘⽶.解法1:24÷[40×30÷(30×20)+1 ]=24÷3=8(厘⽶)分析2:设这个相同的⽔深为厘⽶,则中倒出的⽔深为(24-)厘⽶,倒出的⽔为30×20×(24-)⽴⽅厘⽶,这些⽔就全部在中,中的⽔有40×30×⽴⽅厘⽶,故可得⽅程.解法2:设这个相同的⽔深为厘⽶.40×30×=30×20×(24-)24-=40×30×÷(30×20)24-=23=24=8答:这个相同的⽔深是8厘⽶.例5.⼀个正⽅体⽊头,棱长是6厘⽶,在6个⾯的中央各挖⼀个长、宽、⾼都是2厘⽶的洞孔,这时它的表⾯积、体积各是多少?分析:表⾯积等于正⽅体表⾯积加上6个洞孔的4个⾯的⾯积;体积等于正⽅体的体积减去6个洞孔的体积.解:表⾯积为:6×6×6+2×2×4×6=216+96=312(平⽅厘⽶)体积为:6×6×6-2×2×2×6=216-48=168(⽴⽅厘⽶)答:表⾯积为312平⽅厘⽶,体积为168⽴⽅厘⽶.例6.有⼀块宽为22厘⽶的长⽅形铁⽪,在四⾓上剪去边长为5厘⽶的正⽅形后(如图⼀),将它焊成⼀个⽆盖的长⽅体盒⼦(如图⼆),已知这个盒⼦的体积是2160⽴⽅厘⽶,求原来这块铁⽪的⾯积是多少平⽅厘⽶?分析:已知盒⼦的体积是2160⽴⽅厘⽶,⾼为5厘⽶,这个盒⼦的底⾯积就可以求出,⽽这个盒⼦的底⾯长⽅形的宽为22-5×2=12(厘⽶),所以这底⾯长⽅形的长也可以求出.解:长⽅体盒⼦的长为:2160÷5÷(22-5×2)=432÷12=36(厘⽶)铁⽪的⾯积为:(36+5×2)×22=46×22=1012(平⽅厘⽶)答:原来这块铁⽪的⾯积是1012平⽅厘⽶.习题精选⼀⼀、填空.1、40⽴⽅⽶=()⽴⽅分⽶4⽴⽅分⽶5⽴⽅厘⽶=()⽴⽅分⽶30⽴⽅分⽶=()⽴⽅⽶0.85升=()毫升2100毫升=()⽴⽅厘⽶=()⽴⽅分⽶0.3升=()毫升=()⽴⽅厘⽶2、⼀个正⽅体的棱长和是12分⽶,它的体积是()⽴⽅分⽶.3、⼀个长⽅体的体积是30⽴⽅厘⽶,长是5厘⽶,⾼是3厘⽶,宽是()厘⽶.4、⼀个长⽅体的底⾯积是0.2平⽅⽶,⾼是8分⽶,它的体积是()⽴⽅分⽶.5、表⾯积是54平⽅厘⽶的正⽅体,它的体积是()⽴⽅厘⽶.6、正⽅体的棱长缩⼩3倍,它的体积就缩⼩()倍.7、⼀个长⽅体框架长8厘⽶,宽6厘⽶,⾼4厘⽶,做这个框架共要()厘⽶铁丝,是求长⽅体(),在表⾯贴上塑料板,共要()塑料板是求(),在⾥⾯能盛()升⽔是求(),这个盒⼦有()⽴⽅⽶是求().8、长⽅体的长是6厘⽶,宽是4厘⽶,⾼是2厘⽶,它的棱长总和是()厘⽶,六个⾯种最⼤的⾯积是()平⽅厘⽶,表⾯积是()平⽅厘⽶,体积是()⽴⽅厘⽶.⼆、判断.1、体积单位⽐⾯积单位⼤,⾯积单位⽐长度单位⼤.()2、正⽅体和长⽅体的体积都可以⽤底⾯积乘⾼来进⾏计算.()3、表⾯积相等的两个长⽅体,它们的体积⼀定相等.()4、长⽅体的体积就是长⽅体的容积.()5、如果⼀个长⽅体能锯成四个完全⼀样的正⽅体,那么长⽅体前⾯的⾯积是底⾯积的4倍.()三、选择.1、正⽅体的棱长扩⼤2倍,则体积扩⼤()倍.①2 ②4 ③6 ④82、⼀根长⽅体⽊料,长1.5⽶,宽和厚都是2分⽶,把它锯成4段,表⾯积最少增加()平⽅分⽶.①8 ②16 ③24 ④323、⼀个长⽅体的长、宽、⾼都扩⼤2倍,它的体积扩⼤()倍.①2 ②4 ③6 ④84、表⾯积相等的长⽅体和正⽅体的体积相⽐,().①正⽅体体积⼤②长⽅体体积⼤③相等5、将⼀个正⽅体钢坯锻造成长⽅体,正⽅体和长⽅体().①体积相等,表⾯积不相等②体积和表⾯积都不相等.③表⾯积相等,体积不相等.6、⼀个菜窖能容纳6⽴⽅⽶⽩菜,这个菜窖的()是6⽴⽅⽶.①体积②容积③表⾯积参考答案⼀、填空.1、40000; 4.005; 850; 2100、2.1; 300、3002、13、24、16005、276、277、72、棱长和、208、表⾯积、0.192、容积、0.192、体积8、48、24、88、48⼆、判断.1、×2、√3、×4、×5、×三、选择.1、④2、③3、④4、①5、①6、②⼆⼀、填表.⼆、计算下图的体积(单位:分⽶).三、应⽤题.1、⼀块⽔泥砖长8厘⽶,宽6厘⽶,厚4厘⽶,它的体积是多少⽴⽅厘⽶?2、⼀个正⽅体⽊块,棱长6分⽶,已知每⽴⽅分⽶⽊重0.4千克,这个⽊块重多少千克?3、把⼀块棱长是20厘⽶的正⽅体钢坯,锻造成底⾯积是16平⽅厘⽶的长⽅体钢材,长⽅体钢材长多少厘⽶?参考答案⼀、填表.⼆、计算下图的体积.(单位:分⽶)1、8×4×5=160(⽴⽅分⽶)2、3×3×7=63(⽴⽅分⽶)3、2.5×2.5×2.5=15.625(⽴⽅分⽶)三、应⽤题.1、8×6×4=192(⽴⽅厘⽶)答:它的体积是192⽴⽅厘⽶.2、6×6×6=216(⽴⽅分⽶)0.4×216=86.4(千克)答:这个⽊块重86.4千克.3、20×20×20÷16=8000÷16=500(厘⽶)答:钢材长500厘⽶.。
小学数学公开课《长方体和正方体的表面积》优秀教学案例及反思
小学数学公开课《长方体和正方体的表面积》优秀教学案例及反思一、教学构思长方体和正方体是学生十分熟悉的立体图形,在生活中经常要求解它们的表面积,例如:计算做一个长方体形状的鱼缸需要多少材料。
虽然学生已经学会了如何计算长方体的表面积,但是由于学生缺少生活实践经验,导致计算出来的结果不符合实际要求:多加了一个上面的面积。
一个看似很简单的问题,学生似懂非懂:鱼缸的外形是什么样的?长方体吗?计算所需材料的面积是否就是计算这个长方体的表面积?鱼缸没有哪一个面,所以实际上是计算哪几个面的总面积?如何计算这些面的面积?《长方体和正方体表面积》,在教学中根据学生的实际情况、教材内容和教育资源引导学生对于以上几个问题进行探索、发现,在认识矛盾冲突是如何产生的以及如何解决问题的驱使下开展探究活动,让学生去解决鱼缸制作的问题来开展教学。
当学生经历了探索发现的过程,就学会了如何用所学的知识运用到生活中去实践,并且培养了学生分析问题、解决问题以及表述能力。
同时学生在学习中体会到了探究、发现问题和灵活地解决实际问题的乐趣,充分体现了学生在教学中的主体学习的地位。
二、教学目标:1.使学生理解和掌握正方体的表面积的计算方法,能够正确计算正方体的表面积。
2.使学生能够根据实际情况计算长方体和正方体里几个面的总面积,进一步培养学生的探索意识和空间观念,提高解决简单实际问题的能力。
三、教学活动过程:一、引导学生学习正方体表面积的计算方法1.回忆上节课我们学习了长方体表面积的概念以及如何计算长方体的表面积,那么谁来说一说什么叫做表面积以及如何计算长方体的表面积?2.联想:(拿起一个正方体的模型,手摸着面)提问:正方体的面有什么特点?正方体的表面积是指什么?正方体里每个面的面积怎样算?所以可以怎样计算正方体的表面积?3.归纳引入新课:正方体的6个相同的正方形面的总面积就是正方体的表面积。
正方体的表面积怎样求呢?这就是这节课的主要内容(板书课题)4.教学例2提问:题目条件是什么,让我们求什么?求至少要多少平方厘米硬纸板就是求正方体的什么?你会算吗?(课堂实录:有同学提出可以用长方体的表面积计算公式,因为长方体是一种特殊的正方体,所以可以这么做。
长方体正方体的表面积和体积试题精选和答案解析
长方体正方体的表面积和体积练习卷答案1. 长方体表面积的求法:长方体的表面积=(长×宽+长×高+宽×高)×2.如果用字母a、b、h 分别表示长方体的长、宽、高。
S表示它的表面积,则S=(ab+ac+bc)×2。
长方体的体积=长×宽×高。
字母表示:V=abc2. 正方体表面积的求法:正方体的表面积=棱长×棱长×6.如果用字母a表示正方体的棱长,S表示正方体的表面积,则正方体的表面积计算公式是:S=6a。
正方体的体积=棱长×棱长×棱长。
字母表示:s=a*a*a .1、一个长方体有(6)个面,他们一般都是(长方)形,也有可能(2)个面是正方形。
2、把长方体放在桌面上,最多可以看到(3)个面。
3、一个长方体,长12厘米,宽和高都是8厘米,这个长方体的表面积是( 512平方厘米)。
4、一个长方体,长8厘米,宽是5厘米,高是4厘米,这个长方体的表面积是(184平方厘米),棱长之和是(68厘米)。
5、一个正方体的棱长之和是84厘米,它的棱长是(7厘米),一个面的面积是(49平方厘米),表面积是(294平方厘米)。
6、把三个棱长是1厘米的正方体拼成一个长方体,这个长方体的表面积是(14平方厘米),比原来3个正方体表面积之和减少了(4平方厘米)。
7、把三个棱长是2分米的正方体拼成一个长方体,表面积是( 56平方分米),体积是(24立方分米)。
8、用棱长为1厘米的小正方体木块拼成一个较大的正方体,至少要(8)个这样的小木块才能拼成一个正方体。
9、一个正方体的棱长如果扩大2倍,那么表面积扩大(4 )倍,体积扩大(8)倍。
10、一个无盖正方体铁桶内外进行涂漆,涂漆的是(10)个面。
11、有一根长52厘米的铁丝,恰好可以焊接成一个长6厘米,宽4厘米,高(3)厘米的长方体。
12、一个长方体的长宽高分别是a ,b, h,如果高增高3米,那么表面积比原来增加( )平方米,体积增加()立方米。
(完整版)长方体和正方体的表面积知识点及练习题
长方体和正方体的表面积知识点1、长方体的表面积就是长方体六个面的总面积。
由于相对的面完全相同,所以可以先求出前面、和下面三个面的面积,再乘以2,就可以求出表面积了。
长方体的表面积 = 长×宽×2+长×高×2+宽×高×2=(长×宽+长×高+宽×高)×2正方体的六个面完全相同,所以计算时只要算出其中的一个面,再乘6就可以了。
正方体的表面积 = 棱长×棱长×62、在解决一些问题时,要充分考虑实际情况,想清楚要算几个面。
在解答时,可以把这几个面的面积分别算出来,再相加,也可以先算出六个面的面积总和,再减去不需要的那个(些)面。
一个抽屉有5个面,分别是前面、后面、左面、右面、底面。
所以做这样一个抽屉所需要的木板,只要算出这5个面的面积就可以了。
通风管顾名思义是通风用的,没有底面。
所以只要算四个侧面就可以了。
(1)具有六个面的长方体、正方体物品:油箱、罐头盒、纸箱子等;(2)具有五个面的长方体、正方体物品:水池、鱼缸等;(3)具有四个面的长方体、正方体物品:水管、烟囱等。
长方体和正方体表面积知识巩固一、填空题。
1、一个正方体的棱长之得84厘米,它的棱长是(),一个面的面积是(),表面积是(),体积是()。
2、一个长方体的长、宽、高都扩大2倍,它的表面积就()。
3、两个棱长2厘米的正方体木块,拼成一个长方体,这个长方体的表面积是()。
4、把一个长12厘米,宽和高都是3厘米的长方体分割成4个大小一样的正方体,表面积增加了(),每个正方体的表面积是()。
5、用棱长1厘米的小正方体木块拼成一个较大的的正方体,至少要()块这样的小木块,拼成的正方体的棱长是(),表面积是()。
6、把一个棱长2分米的正方体切成两个体积相等的长方体,其中一个长方体的表面积是()平方分米。
7、一个长方体的长是25厘米,宽是20厘米,高是18厘米,最大的面的长是()厘米,宽是()厘米,它的面积是()平方厘米;最小的面长是()厘米,宽是()厘米,它的面积是()平方厘米。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【同步教育信息】一、本周主要内容:长方体和正方体的认识、表面积二、本周学习目标:1、认识长方体和正方体及其展开图,知道长方体和正方体的面、棱、顶点以及长、宽、高(棱长)的含义,掌握长方体和正方体的特征。
2、掌握长方体和正方体的表面积的计算方法,能解决与表面积有关的一些简单实际问题。
3、积累空间和图形的学习经验,增强空间观念,发展数学思维。
三、考点分析:理解并掌握长方体和正方体的特征;通过观察、操作等活动认识其展开图,能够知道各个面在展开图中的位置;能够根据其表面积的计算方法,解决生活中的实际问题。
四、典型例题例1、长方体和正方体的特征。
分析与解:例2(1)、下面几种说法中,错误的是( )①长方体和正方体都有6个面,12条棱,8个顶点。
②长方体的12条棱中,长、宽、高各有4条。
③正方体不仅相对面的面积相等,而且所有相邻面的面积也都相等。
④长方体除了相对面的面积相等,不可能有两个相邻面的面积相等。
分析与解:根据长方体和正方体的特征,可以判断①、②、③是对的,④中说“不可能有两个相邻面的面积相等”是不对的,因为如果长方体中相对的两个面是正方形,那么除这两个面外的相邻的两个面的面积相等。
(2)、指出右图中的长、宽、高各是多少厘米?再说出它的上、下、前、后、左、右六个面的长和宽分别是多少厘米?厘米20厘米40厘米分析与解:因为长方体和正方体都有8个顶点,从一点发出的三条棱长分别是长、宽、高。
而这道题的长、宽、高都不相等,所以每个面都是长方形,只要将对应的长和宽写正确就可以了。
答:右图中的长、宽、高分别是40厘米、20厘米、10厘米。
上、下面长是40厘米、宽是20厘米;前、后面长是40厘米、宽是10厘米;左、右面长是20厘米、宽是10厘米;例3、下列三个图形中,不能拼成正方体的是()①②③分析与解:可以把其中一个正方形作为底面,想象一下,其它的正方形围绕这个正方形应如何去拼。
点评:在解答这类题目时,可以在方格纸上画出相同的图,用剪刀剪开去拼一拼,看能不能拼成正方体。
也可以根据自己的积累,如果出现4个连排的正方形,那么还有两个正方形就应该放在四个的正方形的左右两侧。
例4、一个饼干盒长20厘米,宽15厘米,高30厘米,做这样一个饼干盒要用硬纸板多少平方厘米?分析与解:求这个饼干盒要用硬纸板多少平方厘米,就是求这个长方体饼干盒的表面积是多少平方厘米。
长、宽、高都已经知道,用长方体的表面积计算公式计算。
长方体的表面积= 长×宽×2+长×高×2+宽×高×2=(长×宽+长×高+宽×高)×2(20×15+20×30+15×30)×2=(300+600+450)×2= 1350×2= 2700(平方厘米)答:做这样一个饼干盒要用2700平方厘米的硬纸板。
点评:长方体的表面积就是长方体六个面的总面积。
由于相对的面完全相同,所以可以先求出前面、后面和下面三个面的面积,再乘以2,就可以求出表面积了。
例5、做一个正方体纸盒,棱长是20厘米,至少需要多少平方厘米的纸板?分析与解:求要多少平方厘米的纸板?,就是求这个正方体的表面积。
根据正方体表面积计算公式计算。
正方体的表面积= 棱长×棱长×620×20×6 = 2400(平方厘米)答:至少需要2400平方厘米的纸板。
点评:正方体的六个面完全相同,所以计算时只要算出其中的一个面,再乘6就可以了。
例6、一个抽屉,长50厘米,宽30厘米,高10厘米,做一个这样的抽屉,至少需要木板多少平方厘米?分析与解:一个抽屉有5个面,分别是前面、后面、左面、右面、底面。
所以做这样一个抽屉所需要的木板,只要算出这5个面的面积就可以了。
长方体的表面积= 长×宽×2+长×高×2+宽×高×250×30+50×10×2+30×10×2=1500+1000+600=3100(平方厘米)答:至少需要木板3100平方厘米。
点评:在解决一些问题时,要充分考虑实际情况,想清楚要算几个面。
在解答时,可以把这几个面的面积分别算出来,再相加,也可以先算出六个面的面积总和,再减去不需要的那个(些)面。
例7、做一节长120厘米,宽和高都是10厘米的通风管,至少需要铁皮多少平方厘米?分析与解:错误解法:120×10+10×10×2+10×10×2=1200+200+200=1600(平方厘米)通风管顾名思义是通风用的,没有底面。
所以只要算四个侧面就可以了。
正确解答:120×10×4 = 4800(平方厘米)答:至少需要铁皮4800平方厘米。
点评:这也是一道实际应用的题目,同时,这也是个底面是正方形的长方体,由于它的四个侧面是完全相同的,所以可以先算出一个面的面积,再乘4。
在实际生产和生活中,有时要根据实际需要计算长方体或正方体中某几个面的面积之和。
联系一下生活中的几件物体,看看它们具有几个面?(1)具有六个面的长方体、正方体物品:油箱、罐头盒、纸箱子等;(2)具有五个面的长方体、正方体物品:水池、鱼缸等;(3)具有四个面的长方体、正方体物品:水管、烟囱等。
熟悉了这些生活中的实物的形体特征,我们在解答有关形体的表面积应用问题时,就应先认真分析面的情况,再计算,切不可马虎。
【模拟试题】一、基础巩固题1、长方体有()个面,有()条棱,有()个顶点。
2、在一个长方体中,()的面完全相同,(3、右图是()体,长是(),宽是(),高是(),5厘米这个形体的底面积是();它的右侧面是()形,长是(),宽是(),面积是();它的前面是()形,长是(),厘米宽是(),面积是(),它的棱长总和是()。
6厘米4、右图是一个(),它有()个面,()条棱,它的棱长是()分米,所有棱的长度的和是()分米。
4分米它的六个面是完全相同()形,边长是()分米,分米每个面的面积都是( )平方分米。
4分米5、一个长方体形状的冷库,长12米,宽8米,高4米。
这个冷库的地面面积是( )平方米,最小的一个面的面积是( )平方米。
6、把一根棱长8分米的正方体木料锯成两个长方体,表面积一共增加了( )平方米。
二、思维拓展题7、填一填。
右图是一个正方体的展开图。
在这个正方体中, 与面相对的是( )面,与面相对的是( ), ( )面与( )面是相对的面。
8、用铁皮做一个棱长6分米的正方体铁盒,需要铁皮多少平方分米?9、礼堂内有四根长方形状的柱子,底面是正方形,边长6分米,高5米。
要油漆这四根柱子,求油漆部分的面积是多少平方米?10、实验中学建一个长方体游泳池,长60米,宽25米,深2米。
请你算一算。
(1)游泳池的占地面积是多少平方米?(2)在游泳池底面和内壁抹一层水泥,抹水泥面积是多少平方米? (3)沿游泳池的内壁1.5米高处用白漆画一条水位线,水位线全长多少米? 三、自主探索题11、一个长方体的长、宽、高分别是5厘米、3厘米、7厘米,这个长方体最大面的面积比最小面的面积多多少平方厘米?12、把两个棱长3厘米的正方体拼成一个长方体,拼成的长方体的表面积与两个正方体的表面积之和比有没有变化?是怎样变化的?【试题答案】一、基础巩固题1、长方体有(6 )个面,有(12 )条棱,有( 8)个顶点。
2、在一个长方体中,(相对)的面完全相同,(平行)的棱的长度相等。
3、右图是(长方)体,长是(6),宽是(4),高是(5),5厘米 这个形体的底面积是(24);它的右侧面是(长方)形,长是(4),宽是(5),面积是(20);它的前面是(长方厘米 长是(6),宽是(5),面积是(30),它的棱长总和是(60)。
6厘米 4、右图是一个(正方体),它有(6)个面,(12)条棱,(8)个顶点。
它的棱长是(4)分米,所有棱的长度的和 4分米 是(48)分米。
它的六个面是完全相同的(正方)形, 分米 边长是(4)分米,每个面的面积都是(16)平方分米。
4分米5、一个长方体形状的冷库,长12米,宽8米,高4米。
这个冷库的地面面积是(96)平方米,最小的一个面的面积是(32)平方米。
6、把一根棱长8分米的正方体木料锯成两个长方体,表面积一共增加了(128)平方米。
二、思维拓展题7、填一填。
右图是一个正方体的展开图。
在这个正方体中,与a面相对的是(c)面,与e面相对的是(f ),(b)面与(d)面是相对的面。
8、用铁皮做一个棱长6分米的正方体铁盒,需要铁皮多少平方分米?6×6×6 = 216(平方分米)9、礼堂内有四根长方形状的柱子,底面是正方形,边长6分米,高5米。
要油漆这四根柱子,求油漆部分的面积是多少平方米?6分米= 0.6米0.6×5×4×4 = 48(平方米)10、实验中学建一个长方体游泳池,长60米,宽25米,深2米。
请你算一算。
(1)游泳池的占地面积是多少平方米?60×25 = 1500(平方米)(2)在游泳池底面和内壁抹一层水泥,抹水泥面积是多少平方米?60×25 + (60×2 + 25×2)×2 = 1840(平方米)(3)沿游泳池的内壁1.5米高处用白漆画一条水位线,水位线全长多少米?(60 + 25)×2 = 170(米)三、自主探索题11、一个长方体的长、宽、高分别是5厘米、3厘米、7厘米,这个长方体最大面的面积比最小面的面积多多少平方厘米?7×5 - 5×3 = 20(平方厘米)12、把两个棱长3厘米的正方体拼成一个长方体,拼成的长方体的表面积与两个正方体的表面积之和比有没有变化?是怎样变化的?长方体表面积:6×3×4 + 3×3×2 = 90(平方厘米)两个正方体表面积之和:3×3×6×2 = 108(平方厘米)两个正方体表面积之和比拼成的长方体表面积大。
数学趣味园信不信由你▲在晴朗、无月的夜间,人站在山顶上能看到50英里以外划着的一根火柴。
▲人们笑的时候牵动着17块肌肉,而皱眉时则要牵动43块肌肉。
一个人活到72岁,心脏要跳动三十亿次左右。
▲在一盘国际象棋中至少有170,000,000,000,000,000,000,000,000种方法来走开局的十步棋。