Noise and vibration DC-motor(直流电机噪音及振动)
永磁同步电机高频振动与噪声研究
永磁同步电机高频振动与噪声研究一、概述永磁同步电机以其高效率、高功率密度及优秀的控制性能,在电动汽车、风力发电、工业驱动等领域得到了广泛应用。
随着电机运行频率的提高,高频振动与噪声问题日益凸显,成为制约永磁同步电机进一步发展的关键因素。
对永磁同步电机高频振动与噪声的研究具有重要的理论价值和实际意义。
高频振动主要来源于电机内部的电磁力波动、机械结构共振以及材料特性等因素。
这些振动不仅影响电机的稳定运行,还可能导致电机部件的疲劳损坏,降低电机的使用寿命。
同时,高频振动还会引发噪声污染,对人们的生产和生活环境造成不良影响。
针对永磁同步电机高频振动与噪声问题,国内外学者进行了大量的研究。
研究内容包括但不限于电机电磁设计优化、结构动力学分析、振动噪声测试与评估等方面。
通过改进电机电磁设计,优化绕组分布和磁极形状,可以有效降低电磁力波动,从而减少高频振动。
通过结构动力学分析,可以识别出电机的共振频率,进而采取相应的措施避免共振现象的发生。
目前对于永磁同步电机高频振动与噪声的研究仍面临一些挑战。
一方面,电机内部的电磁场和机械结构相互耦合,使得振动与噪声的产生机制复杂多样,难以准确描述和预测。
另一方面,随着电机技术的不断发展,新型材料和先进制造工艺的应用使得电机的振动噪声特性也发生了变化,需要不断更新和完善研究方法和手段。
本文旨在深入研究永磁同步电机高频振动与噪声的产生机理和影响因素,提出有效的抑制措施和优化方案,为永磁同步电机的设计、制造和运行提供理论支持和实践指导。
1. 永磁同步电机概述永磁同步电机,作为电动机和发电机的一种重要类型,以其独特的优势在现代工业中占据着举足轻重的地位。
其核心特点在于利用永磁体来建立励磁磁场,从而实现能量的高效转换。
定子产生旋转磁场,而转子则采用永磁材料制成,这种结构使得永磁同步电机在运行时能够保持稳定的磁场分布,进而实现平稳且高效的能量转换。
永磁同步电机可以分为他励电机和自励电机两种类型,前者从其他电源获得励磁电流,后者则从电机本身获取。
无刷电机电磁噪音振动的最主要原因分析和有效解决途径
这个板块中关于噪音的问题非常多。
在此我总结了1下,只从最常见发生机率最大也是刚刚开始做无刷最容易忽视的情况做1个分析和有效解决方案,我看好多的噪音求助就属于我下面要说的噪音种类了。
先说这种情况下的原因,解决方案相信大家看完了就应该知道怎么做了。
所有的电动机均呈现某种形式的齿槽效应。
齿槽效应越低电动机转动越平稳。
在电动机和电动机的铁芯结构中的磁体所产生的非均匀磁场形成了齿槽效应:当转子中的磁体切割定子齿时产生磁力。
当磁力从1个齿转到另外1个齿时,磁力帮助或阻止转动,使转子有规律的加速或者减速。
不均匀的磁拉力产生的齿槽效应。
电动机转动不平稳会引起速度脉动和转矩脉动、效率损耗、振动和噪音。
速度脉动是指全过程内的速度变化或者速度波动;而转矩脉动则描述了全过程内的转矩变化,槽中绕铜导线将增加这一效果。
而从1个齿到另外1个齿的不平衡拉力也在转子中产生了径向偏差,根据这一个产生的齿槽效应的强弱,相应幅度的电磁振动和电磁噪音将随之出现。
这种情况在无刷电机中表现最为明显。
根据这个基础在保证满足基本性能要求情况下,调整相关参数或气隙或磁钢磁场强度或者其他,只要是减弱齿槽效应的就可以,相对来说已经做好的电机调气隙是最方便的,直接降低了气隙磁密,这样可以解决或者削弱90%(这里不是说噪音的幅度是说电磁噪音的种类)以上的电磁噪音,只不过需要牺牲其他方面的性能。
具体调整矛盾的程度自己把握控制。
至于为什么,因为不管是电枢结构或者是电磁参数不当或者材料共振频率或者其他原因所形成的电磁振动噪音最终要表现于外时,必须得通过1个途径,那就是气隙。
控制了气隙也就可以直接影响电磁振动。
这里要说明一下电磁振动是电磁噪音的声源,他们本为1体,只不过因为其他相关原因表现出来的幅度不同而已。
这里我有点疑惑,这个相对于做过成熟的无刷设计者来说应该是众所周知了的问题吧?为什么没人把它明白的说出来,这个论坛上我没见到人说,只看见到处的噪音求助和讨论。
某纯电动汽车驱动系统24阶振动噪声的分析与优化
6 52
8-
7 60
8
-8
8 68
'-8 0 '
9 76
h 0 8.
10 84 11 92 12 100
8
-8
"-8
亠
040
1 12 8
16
2 20
"16 24 '1
3 28
”24 32( J
4 36 5 44
32
40
卩40 48 '
6 52
>48 56.
7 60 8 68 9 76
56
64
*64 72”
在变频器供电时定子的高时间谐电流在气隙磁场
频率与变频器开关频率相关的空间气隙磁场谐波-其振动噪
声频率主要分布在开关频率及其倍数附近。
1.1来源 当前纯电动汽车越来越多地米用水冷驱动电机系统,取
消散热风扇,也就没 由于风扇转动 空气流动、撞击、
摩擦而 的空气噪声,主要现在以下几个 :①驱动
电机电磁噪声,驱动电机作为声源,电磁噪声是由电机本身
驱动电机电 力 频率 车辆动力总成 频率共振引起
的。驱动电机和减速器连在
成的模态(74Hz),
驱动电机电力的频率着转速变,在蠕行步加速的
过程 着驱动电机转速、扭的上,新的模态 频率
电力波频率 ,
振。
综上所述,结合整车振动噪声测试数据和整车动力总成 频响、模态测试结果,车辆在130〜200r/min转速范围内,在 74Hz频率附近局部强 的24振动噪声是由驱动电机激励、
矩、优化扭矩阶跃强度的 ,有效地减弱了蠕行模式驱动电机系统24阶振动噪? %
关键词:驱动电机系统;振动噪?;共振;扭矩阶跃;预置扭矩
无刷直流电机噪音标准
无刷直流电机(BLDC Motor)的噪音标准并没有统一的全球或国家级别的强制性标准,而是根据不同的应用场合和环境要求来制定。
然而,无刷直流电机噪音水平通常被视为电机性能和质量的一部分,制造商通常会在产品研发阶段设定自己的噪音控制目标,以满足特定应用场景下的静音要求。
在一些应用中,例如家用电器、电动汽车、无人机、医疗器械等,电机噪音控制非常重要,通常希望电机在正常工作时的噪音水平尽可能低。
对于无刷直流电机,合格的噪音水平可能参照以下大致标准:家用电器电机:在正常使用距离下(例如1米),噪音水平可能要求低于50分贝(dB(A))。
工业应用中,如高端伺服电机,要求噪音更低,可能需要控制在40 dB(A)以下。
特殊高精度应用场合,例如实验室设备,可能要求更低的噪音等级。
当然,实际应用中无刷直流电机的噪音控制还会受到电机设计、制造质量、轴承选择、转子平衡性、散热风扇、电磁设计、以及电机控制器算法等多种因素的影响。
工程师在设计时会尽量通过优化结构、选材、生产工艺以及控制算法来降低噪音水平。
永磁直流电动机振动和噪声分析
曲和横 向振 动 。设 计 上 采用 非 均 匀 气 隙 、 电枢斜 槽 等 , 是 减少 磁 通 振 荡 和 振 动 电磁 力 的有 效措 施 。 都
() 2 气隙 的不 均 匀 。由 于装 配气 隙不 均 匀 , 电动 机 运 行 时产生 单边 磁拉 力 , 作 用 相 当 于 电动 机 转轴 其
! 节 省 了材 料并 减小 了 电动机体 积 。但在永 磁材 料应 用 中还存 在一 些 问题 , 电动 机 噪 声 、 动增 大 等 , 如 振
因此 , 决这些关 键 问题尤 为 重要 。 解 我 们 首 先 要 判 别 电动 机 的振 动 由何 原 因引 起 的, 即电磁 和机 械 原 因判 定 。 区分 是 电磁 原 因还 是 机械 原 因产 生 的方 法 是将 电动 机 运 转 至最 高 转 速 ,
苗uⅡv o .
.. . ~ … …
薹
… … …
,
… …
钼『 ● 妊 聿 铎 盆 嘘 吐
… … … … … … … … … … … … … … … … … … 一
.
苎
… 28蔓. . …O !…. O. 塑 …主
永磁 直 流 电动机 振 动 和 噪声 分 析
严 自新
( 坛 市 微 特 电 机 有 限 公 司 , 苏 常州 2 30 ) 金 江 120
Ab t a t T eman r a o n eb s o ui n o i mo in v b ain a d n i u ig t ep o u t n p o e sw r sr c : h i e s n a d t a i s l t ft s t i r t n os d r r d ci r c s e e h c o h o o e n h o
永磁同步电机的振动与噪音解析
理想次数
二、定位力矩
啸叫
大电机噪音与电流波形 噪音频率为电流频率的18倍 机械转速的180次
第16页/共31页
理想次数
三、方波无刷直流电机力矩波动与噪音
波动力矩 波动力矩—指令一定下不同转角对应的电磁力矩波动分量 引起的原因:电动势e和电流 i 的波形偏离了理想波形
Tr
1
ei
T
第17页/共31页
❖存在幅值偏差Δi
Tr
2 i sin 2
3
--υ=2P
❖ 存在相位偏差Δθ
Tr
2 i cos 2
3
--υ=2P
❖ 存在恒定成分ΔI
Tr I sin --υ=P
存在 次谐波成分i
Tr icos( 1)
第23页/共31页
五、抑制措施
电机本体
定位力矩 优化电机系统固有频率
控制器
力矩波动
方波驱动器 正弦波驱动器
第6页/共31页
一、振动与噪音机理
合成磁动势:
F (,t) Fs cos[p(1 ) 1t] Frk cos[kp(0 t)]
k
气隙磁密: B (,t) F / S
单位面积力: B2 (,t) 20
N, cos( t) ,
第7页/共31页
一、振动与噪音机理
一、不随时间变化的恒定力波,即零次力波。恒定力波只是对定 子铁心产生静压力时铁心产生静变形,不产生振动和噪音; 二、定子磁动势同次谐波,力波角频率为2ηω1; 三、转子磁动势同次谐波,力波角频率为2kω1; 四、定子磁动势不同次谐波,力波角频率为(ηi±ηj)ω1 ; 五、转子磁动势不同次谐波力波,角频率为(ki±kj)ω1 ; 六、定、转子磁动势不同次谐波力波,角频率为(ηi±kj)ω1; 七、定、转子磁动势同次谐波力波,角频率为2ηiω1;
燃料电池系统集成技术中的噪声与振动控制研究
燃料电池系统集成技术中的噪声与振动控制研究燃料电池技术作为一种清洁能源技术,在推动能源转型和可持续发展中具有重要的作用。
而燃料电池系统作为燃料电池技术的核心组成部分,其性能优劣直接影响着整个系统的运行效率和稳定性。
然而,随着燃料电池系统规模不断扩大,噪声与振动问题逐渐凸显出来,成为制约系统发展的重要因素。
燃料电池系统中的噪声主要来源于各种机械运动、电化学反应和气流等多个环节。
其中,机械运动引起的振动是主要的噪声源之一,其频率范围广、能量高,对系统的性能和寿命造成了负面影响。
因此,如何有效控制燃料电池系统中的噪声与振动,提高系统的运行效率和稳定性,成为当前燃料电池系统集成技术中亟需解决的问题。
在燃料电池系统中,噪声与振动控制的研究主要分为 passively acoustic control、active noise control、passive vibration control、active vibration control 四个方面。
其中,被动降噪技术主要通过结构优化、减振措施等 passively acoustical control Reduce the transmission of noise energy by vibration, transmission, and absorption processes of passive vibration control devices. The advantages of passive noise reduction design are high noise reduction rate, predictable performance and low cost for passivenoise reduction. The main example of a passive noise reduction device is a silencer. 另外利用橡胶垫(rubber pad)、密封件(sealing),以及结构材料,使振动降低来减小振动对人体的刺激【Vlad Curmei;Niculescu M]][F];而在主动降噪技术方面,通过传感器采集系统内部噪声与振动信息,并通过控制器对抗声波进行相位和幅值调节,以消除或抵消噪声与振动,使系统运行在更加安静和平稳的状态,提高系统的整体性能。
直流电机噪音大的原因
直流电机噪音大的原因直流电机是一种常见的电动机,它在工业和家用设备中广泛应用。
然而,与交流电机相比,直流电机在运转过程中往往会产生较大的噪音。
下面将从几个方面分析直流电机噪音大的原因。
直流电机噪音大的原因之一是由于电刷的摩擦和碳粉的产生。
直流电机中的电刷是与转子相连的,它们之间由于摩擦会产生噪音。
同时,电刷会不断磨损,产生碳粉,这些碳粉会进一步增加摩擦和噪音。
为了减少这种噪音,可以采用一些措施,如定期更换电刷和清洁电机内部。
直流电机噪音大的原因之二是磁场的不稳定性。
直流电机中的磁场是由电刷和永磁体产生的,而这些元件在运转过程中会受到各种因素的影响,如温度变化、磨损和震动等。
这些因素会导致磁场的不稳定性,进而产生噪音。
为了解决这个问题,可以使用高品质的永磁体和电刷,以提高磁场的稳定性,从而减少噪音的产生。
第三,直流电机噪音大的原因之三是机械振动和共振。
直流电机在运转过程中会产生机械振动,这些振动会通过机壳传导到周围环境,导致噪音。
此外,当电机的转速接近某些共振频率时,会引起共振现象,进一步增加噪音的产生。
为了减少振动和共振引起的噪音,可以采取一些措施,如增加机壳的密封性、使用减振材料和合理设计电机的结构等。
第四,直流电机噪音大的原因之四是电机内部的电磁干扰。
直流电机在运转过程中会产生电磁场,这个电磁场会干扰周围的电子设备,从而产生噪音。
为了减少这种干扰,可以采用屏蔽材料和滤波器等电磁兼容措施,以减少电机对周围设备的干扰,从而降低噪音的产生。
直流电机噪音大的原因主要包括电刷的摩擦和碳粉产生、磁场的不稳定性、机械振动和共振以及电机内部的电磁干扰等。
为了减少直流电机噪音,可以采取一系列措施,如定期更换电刷、使用高品质的永磁体和电刷、增加机壳的密封性、使用减振材料和合理设计电机的结构、采用屏蔽材料和滤波器等。
通过这些措施的综合应用,可以有效降低直流电机的噪音水平,提高设备的运行质量和环境舒适度。
改善直流无刷电机电磁噪音的驱动方式
改善直流无刷电机电磁噪音的驱动方式电机是日常生活中经常使用的一种电气设备,其存在的目的在于将电能转化为机械能,从而带动外部设备的转动或运动。
而无刷电机是一种高效、低噪音、高寿命的电机,近年来被广泛使用。
无刷电机的工作原理是利用磁场的吸引和排斥作用,将转子驱动起来,并将磁场调整到最佳状态,以保证最大效率和最小噪音。
然而,无刷电机的使用也会带来一定的电磁噪音问题,而改善直流无刷电机电磁噪音的驱动方式也成为了目前研究的一个热点。
一般来说,电机电磁噪声主要由定子和转子的激磁磁通波形的不规则性引起。
在无刷电机中,电磁噪声主要来自于磁场和电流的交互作用,因此,改善直流无刷电机电磁噪音的关键在于优化电流和磁场的控制方式。
一种常见的控制方式是PWM控制。
在这种方式中,通过改变占空比来控制电流的大小和方向,从而控制转子的转速。
然而,PWM控制方式会产生较大的电磁干扰和噪声,这是因为它的开关频率较高,容易产生短脉冲电流和高频振荡。
因此,通过优化PWM控制方式,可以降低直流无刷电机的电磁噪音。
一种改进的PWM控制方式是DPWM(Dithered Pulse Width Modulation)。
在DPWM控制方式中,使用一定的调制信号来随机调制开关频率,使其产生一定范围内的波动。
这样可以使得开关频率在一定范围内随机分布,减少短脉冲电流,从而降低电磁噪音。
另外,磁场控制方式也可以有效地降低直流无刷电机的电磁噪音。
磁场控制方式是通过调整磁场的方向和大小来控制电机的转速和转矩。
其中,一种常用的控制方式是FOC(Field Oriented Control),它是一种通过调节转子电流实现磁场方向与转子位置相耦合的控制方式,可以有效地降低电机电磁噪音。
总之,改善直流无刷电机电磁噪音的驱动方式需要综合考虑控制方式的稳定性、效率、噪音等因素。
未来,随着科学技术的发展和研究的深入,相信会有更多的优化方式被提出,并应用于电机控制领域。
直流电机噪声的产生原因与抑制方法
直流电机噪声的产生原因与抑制方法【摘要】简述了电机噪声的作为电机技术指标的重要和电机噪声的研究发展历程,分析了直流电机噪声产生的成因,对这些噪声进行了分类,分析并总结了直流电机的电磁噪声、机械噪声、空气动力噪声的产生原因和机理,提出了在电机设计、制造和应用中降低和抑制直流电机噪声的方法,这些方法可以有效地在电机研发和制造中实际应用和借监。
【关键词】电机;电机噪声;噪声抑制1.引言研发、创新能力的高低已成为世界各国最核心的竞争力之一,随着国家创新驱动战略的实施,国内电机生产企业逐步注重电机新产品研究与开发,在电机新产品的研发及实际应用方面,电机噪声是一项极其重要的硬性指标。
从环保角度看,低噪声、无电气干扰电机将成为“绿色电机”的基本指标。
从市场角度看,电机噪声高低已成为客户对电机的品质、技术和价值高低做判别的重要依据。
在电机噪声的研究方面,早在上世纪40年开始即有学者开始对电机噪声进行零星研究;70年代,学术界提出了“在单自由度振动理论基础上建立的噪声理论”,在工程实际应用中,该理论对电机噪声的控制指导方面有一定的适应性,也存在不完全准确的情况,但该理论对电机噪声的基础研究起到了奠定性的作用;90年代,学术界提出“电机电气噪声的二维理论”,这一理论是建立在电机电气噪声离散成分与电机参数的关系研究上,通过研究并发现了电机模态振动与电气噪声的数理关系,总结出了控制电气噪声的二维机电类比理论,对传统电机噪声理论进行了有效的拓展和延伸。
对直流电机而言,由于有换向器和电刷的存在,电机噪声的产生相比其它类型的电机更加复杂,电机噪声的抑制更是直流电机设计和生产制造的难点和重点。
为了对电机噪声进行分析和研究,我们根据直流电机噪声产生的成因归列为三类:分别为电磁噪声、机械噪声和空气动力噪声。
2.电机噪声产生的原因2.1 电磁噪声2.1.1 电机磁场产生的电磁噪声在磁场的作用下,直流电机完成电磁能和机械能的转换。
磁场中含有主磁通和漏磁通,主磁通是由N极经过气隙到转子再由另一个气隙返回S极,是直流电机起有效作用的磁通,它能在旋转的电枢绕组中产生感应电动势,并和电枢绕组的磁动势相互作应产生电磁力矩。
永磁电机nvh阶次定义
永磁电机nvh阶次定义全文共四篇示例,供读者参考第一篇示例:永磁电机在如今的汽车工业中扮演着越来越重要的角色,其优越的性能和高效的能源利用率让其在电动汽车领域受到了广泛关注。
在永磁电机的设计和制造过程中,NVH(Noise, Vibration, and Harshness)工程是一个至关重要的部分,因为它关乎到电机的噪音、振动和舒适性等方面的性能。
NVH阶次分析是NVH工程中的一个重要概念,它用来描述噪音和振动的频率特性。
在永磁电机中,NVH阶次定义了电机旋转时不同频率的振动信号。
在实际应用中,NVH阶次可以帮助工程师们更好地理解和分析电机的振动特性,进而采取相应的措施来降低噪音和改善舒适性。
永磁电机的NVH阶次定义通常是通过频谱分析技术来实现的。
频谱分析是一种将时域信号转换为频域信号的技术,可以清晰地展现出信号中不同频率的成分。
在永磁电机中,通过对电机运转时的振动信号进行频谱分析,可以得到不同频率成分的幅值和相位信息,从而确定NVH阶次。
在实际应用中,工程师们可以利用NVH阶次定义来评估电机的振动特性。
通过分析NVH阶次可以确定电机是否存在严重的谐振问题,是否需要进行结构优化来抑制振动。
NVH阶次还可以用来比较不同电机设计之间的性能差异,从而为电机设计的优化提供参考。
永磁电机的NVH阶次定义是NVH工程中的重要概念之一,它对于评估电机的振动特性和改善电机的NVH性能具有重要意义。
在未来的永磁电机设计和制造过程中,NVH阶次定义将继续发挥着重要作用,帮助工程师们更好地优化电机设计,提升电机的性能和舒适性。
【2000字】.第二篇示例:永磁电机(Permanent Magnet Synchronous Motor,PMSM)是一种采用永磁物质作为励磁源的同步电机,具有高效率、高功率密度和高响应速度等优点,在电动汽车、家用电器、工业生产等领域广泛应用。
在永磁电机的设计和制造过程中,NVH(Noise, Vibration, Harshness)问题一直是需要重点关注的一个方面。
电机行业专业英语单词集
电机行业专业英语单词集以下是一些电机行业常见的专业英语单词:1. 电动机(Motor)2. 发电机(Generator)3. 直流电机(DC Motor)4. 交流电机(AC Motor)5. 永磁电机(Permanent Magnet Motor)6. 电励磁电机(Electro-Excited Motor)7. 感应电机(Induction Motor)8. 同步电机(Synchronous Motor)9. 异步电机(Asynchronous Motor)10. 伺服电机(Servo Motor)11. 步进电机(Stepper Motor)12. 马达(Motor的俚)13. 控制器(Controller)14. 变速器(Gearbox)15. 电刷(Brush)16. 电动机驱动器(Motor Driver)17. 电源(Power Supply)18. 转子(Rotor)19. 定子(Stator)20. 线圈(Coil)21. 轴承(Bearing)22. 绝缘材料(Insulation Material)23. 电磁场(Electromagnetic Field)24. 热管理(Thermal Management)25. 能效(Energy Efficiency)26. 噪音与振动(Noise and Vibration)27. 维护与修理(Maintenance and Repair)28. 环境影响(Environmental Impact)29. 测试与验证(Testing and Verification)30. 安全与可靠性(Safety and Reliability)31. 材料科学(Materials Science)32. 控制理论(Control Theory)33. CAD/CAM/CAE (Computer-Aided Design / Manufacturing / Engineering)34. AI/ML (Artificial Intelligence / Machine Learning)35. UPS (Uninterruptible Power Supply)36. EMI (Electromagnetic Interference)37. RFI (Radio Frequency Interference)38. ECM (Electronic Speed Controller)39. PM (Permanent Magnet)40. FET (Field Effect Transistor)41. SCR (Silicon Controlled Rectifier)42. MCU (Microcontroller Unit)43. PCB (Printed Circuit Board)44. FET (Field-Effect Transistor)45. IGBT (Insulated Gate Bipolar Transistor)46. LSI (Large Scale Integration)47. ASIC (Application-Specific Integrated Circuit)48. PMSM (Pole-Phase-Modulated Synchronous Motor)49. BLDC (Brushless Direct Current Motor)50. ADC (Analog-to-Digital Converter)51. PWM (Pulse Width Modulation)52. VFD (Variable Frequency Drive)53. DTC (Direct Torque Control)54. VSD (Variable Speed Drive)55. ADC (Analog-to-Digital Converter)56. DAC (Digital-to-Analog Converter)57. DSC (Digital Signal Controller)58. PFC (Power Factor Correction)等等。
直流无刷电机产生换相噪声的原理及抑制方法
直流无刷电机产生换相噪声的原理及抑制方法摘要:直流无刷电机属于同步电机,在使用过程中会产生一定的噪音,要根据噪音产生的原理,采取相关的措施进行抑制,减少噪音的产生,稳定电机的运行。
关键词:直流无刷电机;噪音原理;抑制方法1 直流无刷电机工作原理及换相噪声的频率计算公式1.1 直流无刷电机的基本结构直流无刷电机利用电子开关线路和位里传感器来代替电刷和换相器,使这种电机既具有直流电机的特性,又具有交流电机结构简单、运行可靠、维护方便等优点。
直流电源通过开关线路向电机定子绕组供电,电机转子位置由位置传感器检测并提供信号去触发电子开关电路中的功率开关元件使之导通或截止,从而控制电机的转动,结构如图1所示。
1.2 直流无刷电机的工作原理本文以LN65-ZL电机为例,说明电机的工作原理。
该电机为8级12槽电机,在某一瞬间,定子和转子之间的位置关系如图2所示。
取出该电机的一个单元电机(图2中1/4部分即定转子各一对极)进行简化分析,转子每转动一个角度,由位置传感器感应出转子的位置,控制电路对位置信号进行逻辑变换后产生控制信号,控制信号经驱动电路隔离放大后控制电子开关电路中的的功率开关元件,使电机的各相绕组按一定的顺序工作。
1.3 换相噪声的频率计算公式推导图3表示电机的6个工作状态。
其中,1和0表示三向绕组中电流的方向,1为正向,0为负向。
三相绕组中从绕组的首端进、末端出为正,从绕组的末端进、首端出为负。
从图3可看出,直流无刷电机的一个单元电机(即电机的定子或转子中一对极)在一个周期内有6种工作状态,相邻两种工作状态的转换,对定子和转子都会产生转矩脉动,即换相转矩脉动。
由于电机有4对极,相应的一个周期内,将有4x6=24种工作状态。
综上所述,可推导直流无刷电机换相转矩脉动频率,简称换相频率为:f=i×k×p×n/60(1)其中,i—频率的阶数;产一一换相噪声频率,Hz;k—电机定转子中每对极在一个周期内所对应的工作状态数;P—电机极对数;n—电机转速,rpm。
基于模态分析的定子各向异性材料参数矫正方法
JournalofMechanicalStrength2022ꎬ44(2):503 ̄508DOI:10 16579/j.issn.1001 9669 2022 02 035∗20201015收到初稿ꎬ20210203收到修改稿ꎮ江苏省高等学校自然科学研究项目(19KJB440002)ꎬ江苏省 333人才工程 项目(BRA202242)资助ꎮ∗∗唐友亮ꎬ男ꎬ1977年生ꎬ山东临沂人ꎬ汉族ꎬ宿迁学院机电工程学院副教授ꎬ硕士ꎬ研究方向为数字化设计与制造技术㊁机电液一体化㊁控制技术ꎮ基于模态分析的定子各向异性材料参数矫正方法∗PARAMETEREQUIVALENTMETHODOFSTATORANISOTROPICMATERIALBASEDONMODALANALYSIS唐友亮∗∗㊀吕品德㊀㊀张㊀锦㊀㊀李守军(宿迁学院机电工程学院ꎬ宿迁223800)TANGYouLiang㊀LVPinDe㊀ZHANGJin㊀LIShouJun(SchoolofMechanicalandElectricalEngineeringꎬSuqianCollegeꎬSuqian223800ꎬChina)摘要㊀准确计算电机定子的模态振型和固有频率是降低电机噪声和振动的基础ꎬ目前ꎬ学者对于定子铁芯和绕组材料属性参数设置存在争议ꎮ对一台2 2kW永磁无刷直流电机定子系统进行模态仿真分析和试验测试ꎮ首先ꎬ赋予定子铁芯和绕组各项异性材料ꎬ通过有限元软件分析电机模态频率与各项异性材料参数之间的关系ꎬ根据模态频率变化规律ꎬ提出一种基于模态频率的各项异性材料参数矫正方法ꎬ该方法可完成定子的有限元模型参数矫正ꎮ其次ꎬ采用锤击法进行模态试验ꎬ验证有限元模型的准确性ꎬ确定该等效材料参数矫正方法的有效性ꎬ并且通过此方法可以快速确定定子各项异性材料参数ꎬ本次试验与仿真的误差均在3%以内ꎬ达到试验与仿真对标的目的ꎮ关键词㊀各向异性材料参数矫正方法㊀模态分析㊀模态试验㊀有限元分析中图分类号㊀TM341Abstract㊀Accuratecalculationofthemodeshapeandnaturalfrequencyofthemotorstatoristhebasisforreducingmotornoiseandvibration.Atpresentꎬscholarshavedisputesaboutthesettingofstatorcoreandwindingmaterialpropertyparameters.Inthispaperꎬthemodalsimulationanalysisandexperimentaltestofa2 2kWpermanentmagnetbrushlessDCmotorstatorsystemarecarriedout.FirstꎬtogivethestatorcoreandthewindingmaterialsꎬThefiniteelementsoftwareisusedtoanalyzetherelationshipbetweenthemotormodalfrequencyandtheparametersoftheanisotropicmaterials.Accordingtothemodalfrequencyvariationlawꎬamethodforcorrectingtheparametersoftheanisotropicmaterialsbasedonthemodalfrequencyisproposed.Themethodcancompletethefiniteelementmodelparametercorrectionofthestator.Secondlyꎬthemodalexperimentiscarriedoutbyhammeringmethodtoverifytheaccuracyofthefiniteelementmodelanddeterminetheeffectivenessofthemethodforcorrectingtheequivalentmaterialparameters.Andbythismethodꎬthestatormaterialparametersofthestatorcanbequicklydetermined.Theerrorofthisexperimentandsimulationiswithin3%ꎬachievingthepurposeofexperimentandsimulationbenchmarking.Keywords㊀AnisotropicmaterialparametercorrectionmethodꎻModalanalysisꎻModalexperimentꎻFiniteelementanalysisCorrespondingauthor:TANGYouLiangꎬE ̄mail:motor_nvh@163.comꎬFax:+86 ̄527 ̄84202303TheprojectsupportedbytheNaturalScienceResearchProjectofHigherEducationInstitutionsinJiangsuProvince(No.19KJB440002)ꎬandtheJiangsuProvince 333TalentProject (No.BRA202242).Manuscriptreceived20201015ꎬinrevisedform20210203.㊀㊀引言近年来ꎬ随着高性能材料的不断的发展ꎬ铝镍钴永磁㊁铁氧体永磁和稀土永磁等磁性材料的性能不断提升ꎬ永磁电机越发的运用于电动汽车ꎮ永磁电机与电励磁电机相比ꎬ具有高转矩电流比㊁高转矩体积比㊁高效率㊁体积小和结构简单等优点ꎬ它不仅可以替代部分传统励磁电动机ꎬ而且还实现了电励磁电机难以达到的高性能[1]ꎬ因而在众多行业受到青睐ꎮ同其它类型的电机一样ꎬ永磁电机在运行过程中也会产生振动和噪声ꎮ从电机本体角度出发ꎬ要考虑电机的固有频率来避免共振[2]ꎬ高速永磁电机还要考虑机械强度等问题[3 ̄4]ꎮ在一些对振动或噪声要求较高的行业或场合ꎬ如航空㊁船舰㊁汽车等ꎬ运行时所产生的振动噪声仍为突出问题ꎮ目前ꎬ电磁噪声有限元仿真主要采用磁场 ̄结构 ̄声学多物理耦合方法ꎬ计算过程中主要分为磁场电磁㊀504㊀机㊀㊀械㊀㊀强㊀㊀度2022年㊀力计算和结构模态计算ꎬ进而将电磁力映射在结构上得到电磁噪声计算结果ꎬ因此ꎬ模态分析的准确是计算电机噪声的前提ꎮ文献[5 ̄12][13]148 ̄152[14]100 ̄104[15][16]64592 ̄64602采用各向同性材料ꎬ研究定子铁芯的模态特性ꎬ探究了绕组对定子模态的影响ꎬ将仿真结果与试验结果进行对比ꎬ在一定程度上满足了工程要求ꎮ文献[13]148 ̄152赋予定子正交各向异性材料ꎬ计算电机各个部分模态频率ꎬ对其他类型的电机定子材料参数等效具有参考意义ꎮ文献[14]100 ̄104提出多种定子结构等效模型ꎬ对后续有限元仿真提供参考ꎬ但是上文对定子和铁芯的等效处理不够准确和完善ꎬ其仿真结果与试验存在一定误差ꎬ这给后期电机振动噪声的计算带来误差ꎮ文献[16]64592 ̄64602采用Jmag软件对定子的材料属性进行详细的分析ꎬ但未写到模态频率与材料参数的具体变化规律ꎮ定子作为电机振动噪声分析的关键部件ꎬ其有限模型的准确性至关重要ꎬ本文基于Nastran模态计算软件ꎬ研究材料参数对模态频率的影响ꎬ根据模态频率随材料参数的变化趋势ꎬ提出一种定子各向异性材料参数模态频率矫正方法ꎮ1㊀铁芯材料属性等效方法定子铁芯由轴向硅钢片叠压形成ꎬ在进行有限元建模时无法用实际结构来模拟ꎬ因此需要通过各向异性材料来等效定子的特殊结构ꎮ本文模态频率计算借助美国Altair公司的旗下的有限元前处理软件HyperMesh进行分析ꎬ如表1为HyperMesh软件中各向异性材料的输入参数ꎮ表1㊀定义各向异性材料属性Tab.1㊀Definesanisotropicmaterialproperties符号Symbol定义Definitionρ材料密度MaterialdensityGij剪切模量㊁弹性模量ShearmodulusꎬYoung smodulusAi热膨胀系数CoefficientofthermalexpansionT计算热负荷参考温度CalculationofheatloadreferencetemperatureGE结构单元阻尼系数Dampingcoefficientofstructuralelement本次模态试验是在恒温条件下进行的ꎬ因此忽略温度变化的影响ꎮ根据HyperMesh内置材料属性参数的关系σxσyσzτxyτyzzzxæèççççççççöø÷÷÷÷÷÷÷÷=G11G12G13G14G15G16G22G23G24G25G26G33G34G35G36G44G45G46G55G56G66éëêêêêêêêêêùûúúúúúúúúúεxεyεzγxyγyzγzxéëêêêêêêêêêùûúúúúúúúúú(1)式中ꎬσi为不同方向的正应力ꎻτij为不同方向的切应力ꎻεi为不同方向的纵向应变ꎻγij为不同方向的切向应变ꎮ定子铁芯由轴向硅钢片叠压形成ꎬ考虑到定子径向(硅钢片平行面方向)刚度与轴向(垂直硅钢片方向)刚度不同ꎬ即认为一层硅钢片X㊁Y方向的具有相同的力学参数ꎬ并且与Z向力学参数不同ꎮ对于定子铁芯ꎬ材料参数属性进行简化σx=σyG11=G22{(2)τyz=τzxG55=G66{(3)G12G16ꎬG23G26ꎬG34G36ꎬG45G46ꎬG56G66=0(4)㊀㊀采用MAT9材料数据可以直接设置Gij剪切模量参数ꎬ其中G11㊁G22㊁G33为弹性模量ꎬ不需要调整等效的E㊁G或Nu值ꎮ通过测量定子质量为3kgꎬ根据质量与体积的关系ꎬ计算的到定子铁芯的实际密度为7680kg/m3ꎬ本文首先参考相关文献中的材料属性ꎬ根据Voigt ̄Reuss公式[17]进行转换ꎮ设定大概参数初始值ꎬ如表2所示ꎮ表2㊀定子的结构等效力学参数Tab.2Equivalentmechanicalparametersofstatorstructure参数Parameter定子铁芯Statorcoreρ/(g m ̄3)7680G11/MPa200000G33/MPa20000G44/MPa100000G55/MPa13000表3为不同的铁芯等效材料参数ꎬ通过改变参数观察模态频率的变化趋势ꎬ表中编号1~n为改变G11参数ꎬ其它参数保持不变ꎻ编号2~n为改变G33参数ꎬ其它参数保持不变ꎻ编号3~n为改变G44参数ꎬ其它参数保持不变ꎻ编号G55为改变4~n参数ꎬ其它参数保持不变ꎻ确定单一变量对模态频率的影响ꎮ如图1所示为弹性模量G11参数改变10000MPa时ꎬ不同振型模态频率变化程度ꎬ其中横坐标代表模态振型ꎬ纵坐标代表模态频率的变化值和相对变化率ꎬ由图可得铁芯模态振型(mꎬ0)和(mꎬ1)阶与弹性模量G11的大小成正比ꎬ增大G11参数(mꎬ0)和(mꎬ1)阶模态频率都有所增加ꎻ弹性模量G11对(mꎬ0)阶变化程度大于(mꎬ1)ꎻ(mꎬ0)阶变化率在随着阶次的增加ꎬ相对变化逐渐增加ꎬ对于(mꎬ0)阶模态ꎬ弹性模量G11对高阶次的影响大于低阶次ꎬ而弹性模量G11对(2ꎬ0)阶次的影响程度最大ꎬ其相对变化率为2 05%ꎬ可能由于样本数少导致产生误差ꎻ对于(mꎬ1)阶模态ꎬ随着阶次的升高ꎬ相对变化率逐渐增加ꎬ因此ꎬ弹性模量G11对高阶次的影响大于低阶次ꎮ㊀第44卷第2期唐友亮等:基于模态分析的定子各向异性材料参数矫正方法505㊀㊀表3㊀铁芯等效材料参数Tab.3Equivalentmaterialparametersofironcore材料Material编号No.ρ/(g m-3)G11/MPaG33/MPaG44/MPaG55/MPa1-1768020000020000100000130001-2768019500020000100000130001-3768019000020000100000130001-4768018500020000100000130001-5768018000020000100000130002-1768018500050000100000130002-2768018500040000100000130002-3768018500030000100000130002-4768018500020000100000130002-5768018500010000100000130003-1768018500020000110000130003-2768018500020000100000130003-376801850002000090000130003 ̄476801850002000080000130003 ̄576801850002000070000130004 ̄1768018500020000100000130004 ̄2768018500020000100000125004 ̄3768018500020000100000120004 ̄4768018500020000100000115004 ̄576801850002000010000011000图1㊀弹性模量G11对模态频率的影响Fig.1㊀EffectofshearmodulusG11onmodalfrequency如图2所示为弹性模量G33参数改变10000MPa时ꎬ不同阶次模态频率的变化程度ꎮ从中可知ꎬ改变弹性模量G33对(mꎬ0)和(mꎬ1)阶次模态频率影响较小ꎮ弹性模量G33对(mꎬ0)阶模态频率无影响ꎬ其G33改变10000MPa时(mꎬ0)的变化率为0ꎻ对(mꎬ1)阶模态影响也较小ꎬ相对变化率在0 1%左右ꎮ因此得到G33对模态频率影响较小ꎬ在选择等效材料时暂且不考虑弹性模量G33的变化ꎮ如图3所示为剪切模量G44变化对不同阶次模态频率的影响ꎬ以图中的(2ꎬ0)阶为例ꎬ剪切模量G44减少10000MPa时ꎬ模态频率减少5Hzꎻ剪切模量G44再减少10000MPa时ꎬ模态频率减少7Hzꎬ故模态频率变化量是相对前者的模态值ꎮ从某一阶次来看ꎬ模态频率变化量随着剪切模量G44的减少逐渐增大ꎬ得出G44材料参数越小ꎬ其变化值对模态频率影响越大ꎻ从图2㊀弹性模量G33对模态频率的影响Fig.2㊀EffectofshearmodulusG33onmodalfrequency(mꎬ0)和(mꎬ1)来看ꎬ剪切模量G44对(mꎬ0)阶模态频率影响更大ꎻ从全部阶次来看ꎬ当剪切模量减少10000MPa时ꎬ高阶次模态频率变化量更大ꎮ图3㊀剪切模量G44变化量对模态的影响Fig.3㊀InfluenceofshearmodulusG44onmodal如图4所示为剪切模量G55参数改变500MPa时ꎬ不同阶次模态频率的变化程度ꎮ从中可知ꎬ剪切模量G55对(mꎬ0)阶模态频率无影响ꎬ其G33改变500MPa时(mꎬ0)的变化率为0ꎻ剪切模量G55主要影响(mꎬ1)模态频率ꎬ并且随着阶次的升高ꎬG55参数对其模态频率变量率影响逐渐减小ꎬ因此ꎬG55参数主要影响低阶振型为(mꎬ1)的模态频率ꎮ由于定子材料为各向异性材料ꎬ无论是对定子材料的实际测试还是对定子有限元模型材料属性的施加都非常困难ꎮ通常情况下ꎬ定子的初始材料可以通过经验公式计算ꎬ但其计算误差较大ꎬ因此在实际有限元分析中ꎬ需要对定子的材料属性进行等效处理ꎬ通过上述分析材料参数对不同阶次模态频率的影响ꎬ衍生出一种矫正定子铁芯材料参数的方法ꎮ如图5所示为各向异性材料参数矫正方法ꎬ首先根据经验公式大致计算铁芯的材料参数ꎬ然后进行有限元模态分析ꎬ计算初始模态结果Ms(mꎬn)ꎻ然后完㊀506㊀机㊀㊀械㊀㊀强㊀㊀度2022年㊀图4㊀剪切模量G55对模态频率的影响Fig.4㊀EffectofshearmodulusG55onmodalfrequency成模态试验ꎬ得到测试结果Mt(mꎬn)ꎬ将有限元结果和模态试验结果进行对比ꎬ生成aꎬb相对误差ꎬ如果相对误差在可接受范围内ꎬ则不需要对铁芯材料参数进行调整ꎬ否则适当的调整材料参数ꎬ参考图中的材料参数调整依据ꎮ关于G11和G44材料对模态频率的影响ꎬ在这里进一步说明ꎬ弹性模量G11对模态频率的变化较为固定ꎬ相同阶次模态频率随材料参数变化幅度相同ꎻ而剪切模量G44对模态频率的变化有递增趋势ꎬ相同阶次模态频率随材料参数变化幅度不相同ꎮ因此在实际调校过程中需要G11参数和G44参数协调使用ꎮ图5㊀各向异性材料参数矫正方法Fig.5㊀Correctionmethodofanisotropicmaterialparameters2㊀模态分析2 1㊀定子铁芯模态分析为了保证上文中有限元模型的准确性ꎬ对所用材料参数进行验证ꎬ对定子铁芯进行自由模态测试ꎮ将电机定子铁芯用带有弹性的尼龙绳将定子铁芯悬挂ꎬ模拟有限元仿真的自由模态ꎮ定子铁芯沿径向每层均匀布置12个激励点ꎬ间隔30ʎꎬ总共5层ꎬ间隔19 3mmꎬ共计60个激励点ꎬ4加速度传感器均匀布置ꎬ为了测量方便㊁快捷ꎬ将60个激励点标注在定子铁芯上ꎬ如图6所示ꎮ图6㊀定子铁芯模态试验Fig.6㊀Statorcoremodalexperiment使用LMSTest.lab14A软件测量时ꎬ首先要搭建电机的振动模型ꎬ与测试点相似ꎬ共计60个点ꎬ输入各个测点的坐标ꎬ将60个激励点按照电机的实际结构进行连接ꎬ采用游锤法对60个激励点分别敲击ꎬ因为定子铁芯的振动方向主要为径向圆周振动ꎬ因此在敲击定子铁芯时只敲击-Z方向便可得到定子铁芯的振型ꎮ对电机进行锤击测试时ꎬ每个激励点敲击5次ꎬ在同一点进行敲击时要保证每次力度㊁方向相同ꎬ然后取5次测试结果的平均值以减少误差ꎬ如图7所示为定子铁芯前七阶模态振型ꎮ图7㊀定子铁芯模态振型Fig.7㊀Modalmodeofstatorcore根据图5的方法对定子铁芯进行有限元仿真ꎬ得到定子铁芯的材料参数为G11=G22=195000MPaꎬG33=20000MPaꎬG44=10000MPaꎬG55=G66=11500MPaꎬ如图8所示为定子铁芯振型图ꎬ根据表4定子铁芯模态试验结果与仿真结果的对比ꎬ有限元仿真频率和振型与试验结果十分接近ꎬ误差均在1 0%以下ꎬ验㊀第44卷第2期唐友亮等:基于模态分析的定子各向异性材料参数矫正方法507㊀㊀证采用各向异性材料可以准确的预测定子铁芯各阶模态频率及振型ꎮ图8㊀定子铁芯有限元仿真Fig.8㊀Finiteelementsimulationofstatorcore2 2㊀定子绕组模态分析为了进一步验证等效参数方法的准确性ꎬ对定子绕组进行有限元分析和模态试验ꎮ如图9为定子绕组模态试验ꎬ图10为定子绕组试验得到的前5阶模态振型和频率ꎮ表4㊀定子铁芯模态试验与仿真对比结果Tab.4㊀Resultsofmodalexperimentandsimulationofstatorcore模态振型模态试验模态频率误差ModalshapeModaltest/HzModalfrequency/HzError/%一阶1storder6306290 1二阶2ndorder8928900 2三阶3rdorder172217190 2四阶4thorder214721520 2五阶5thorder310930950 4六阶6thorder356935860 5七阶7thorder467346390 7通过上文有限元方法的分析ꎬ将绕组等效为各项异性材料:G11=G22=200MPaꎬG33=100MPaꎬG44=10MPaꎬG55=G66=20MPaꎬ图11为定子绕组有限元图9㊀定子绕组模态试验Fig.9㊀Statorwindingmodalexperiment图10㊀定子绕组模态振型Fig.10㊀Modalmodesofstatorwinding仿真结果ꎬ表5为定子模态试验与有限元仿真结果对标ꎬ仿真与试验误差在3%以内ꎬ验证各向异性材料的等效方式可以准确的预测定子各阶模态频率及振型ꎮ图11㊀定子绕组有限元仿真Fig.11㊀Finiteelementsimulationofstatorcoil㊀508㊀机㊀㊀械㊀㊀强㊀㊀度2022年㊀表5㊀定子绕组模态试验与仿真对比结果Tab.5㊀Resultsofmodalexperimentandsimulationofstatorwinding模态振型模态试验模态频率误差ModalshapeModaltest/HzModalfrequency/HzError/%一阶1storder5825820二阶2ndorder8398162 74三阶3rdorder154715500 19四阶4thorder191119341 20五阶5thorder281827612 023㊀结论本文对某10极15槽永磁无刷直流电机进行了定子各向异性等效材料建模研究ꎮ首先分析等效参数对模态频率的影响ꎬ根据模态频率与材料参数的关系提出一种各向异性材料矫正方法ꎬ其次结合模态试验验证有限元模型的准确性ꎬ获得的主要结论如下:1)模态频率对材料属性的敏感度不同ꎬ分析得知ꎬ弹性模量G11参数影响(mꎬ0)和(mꎬ1)模态频率ꎻ弹性模量G33参数影响(mꎬ1)阶模态ꎬ但对模态频率频率影响较小ꎻ剪切模量G44参数影响(mꎬ0)和(mꎬ1)模态频率ꎻ剪切模量G55参影响(mꎬ1)阶模态频率ꎻ2)弹性模量G11参数对(mꎬ0)阶的影响效果大于(mꎬ1)阶ꎬ并且对高阶的影响大于低阶ꎻ不同阶次模态频率对G44的敏感度大于G11ꎬ并且随着材料参数的降低ꎬ模态频率改变逐渐增大ꎻ剪切模量G55对(mꎬ1)阶模态频率的变化率逐渐递减ꎮ3)定子各向异性材料属性能够保证有限元模型的精度ꎬ通过本文提出的各向异性材料参数矫正方法可以快速确定定子和绕组的等效材料参数ꎮ参考文献(References)[1]㊀唐任远.现代永磁电机:理论与设计[M].北京:机械工业出版社ꎬ2015:4 ̄5.TANGRenYuan.Modernpermanentmagnetmachines:Theoryanddesign[M].BeiJing:ChinaMachineryPressꎬ2015:4 ̄5(InChinese). [2]㊀李晓华ꎬ黄苏融ꎬ张㊀琪.电动汽车用永磁同步电机定子结构固有频率分析[J].中国电机工程学ꎬ2017ꎬ37(8):2383 ̄2390.LIXiaoHuaꎬHUANGSuRongꎬZHANGQi.Analysisofnaturalfrequenciesofstatorstructureofpermanentmagnetsynchronousmotorsforelectricvehicles[J].ProceedingsoftheCSEEꎬ2017ꎬ37(8):2383 ̄2390(InChinese).[3]㊀张㊀超ꎬ朱建国ꎬ韩雪岩.高速表贴式永磁电机转子强度分析[J].中国电机工程学报ꎬ2016ꎬ36(17):4719 ̄4727.ZHANGChaoꎬZHUJianGuoꎬHANXueYan.Rotorstrengthanalysisofhigh ̄speedsurfacemountedpermanentmagnetrotors[J].ProceedingsoftheCSEEꎬ2016ꎬ36(17):4719 ̄4727(InChinese). [4]㊀张艳芳ꎬ张艳林.一种机械元件失效概率计算的方法[J].机械强度ꎬ2020ꎬ42(5):1125 ̄1129.ZHANGYanFangꎬZHANGYanLin.Anewfailureprobabilitycomputingmethodformechanicalcomponents[J].JournalofMechanicalStrengthꎬ2020ꎬ42(5):1125 ̄1129(InChinese). [5]㊀谢㊀颖ꎬ王㊀严ꎬ吕㊀森ꎬ等.小型异步电机模态计算与试验分析[J].电工技术学报ꎬ2015(16):1 ̄9.XIEYingꎬWANGYanꎬLVSenꎬetal.Modalcalculationandtestofsmallasynchronousmotor[J].TransactionsofChinaElectrotechnicalSocietyꎬ2015(16):1 ̄9(InChinese).[6]㊀CaiWillimamꎬPillayP.Aninvestigationintovibrationinswitchedreluctancemotors[J].IEEETrans.onIndustryApplicationꎬ1999ꎬ35(3):589 ̄596.[7]㊀CaiWillimamꎬPillayP.Resonantfrequenciesandmodeshapesofswitchedreluctancemotors[J].IEEETrans.onEnergyConversionꎬ2001ꎬ16(l):43 ̄48.[8]㊀LongSAꎬZhuZQꎬHoweD.Vibrationbehaviorofstatorsofswitchedreluctancemotors[J].IEEProc.onElectricalPowerApplicationꎬ2001ꎬ148(3):257 ̄264.[9]㊀CaiWillimamꎬPillayPꎬZhangJuntang.Impactofstatorwindingsandend ̄bellsonresonantfrequenciesandmodeshapesofswitchedreluctancemotors[J].IEEETrans.onIndustryApplicationꎬ2002ꎬ38(4):1027 ̄1036.[10]㊀张式勤ꎬ刘芸芸ꎬ吴建华.开关磁阻电机定子振动的有限元分析[J].中小型电机ꎬ2004ꎬ31(1):5 ̄8.ZHANGShiQinꎬLIUYunYunꎬWUJianHua.FEManalysisofstatorvibrationbehaviorforswitchedreluctancemotors[J].ElectricMachines&ControlApplicationꎬ2004ꎬ31(1):5 ̄8(InChinese). [11]㊀张泽豫ꎬ焦志勇ꎬ夏洪兵ꎬ等.永磁同步电机转子表面辅助槽对齿槽转矩的影响研究[J]ꎬ机电工程ꎬ2019ꎬ36(12):1342 ̄1346.ZHANGZeYuꎬJIAOZhiYongꎬXIAHongBingꎬetal.EffectofrotorsurfaceauxiliaryslotoncoggingtorqueofPMSM[J].JournalofMechanical&ElectricalEngineeringꎬ2019ꎬ36(12):1342 ̄1346(InChinese).[12]㊀吴建华.基于物理模型开关磁阻电机定子模态和固有频率的研究[J].中国电机工程学报ꎬ2004ꎬ24(8):110 ̄114.WUJianHua.Studyonthestatormodeshapesandnaturalfrequenciesofswitchedreluctancemotorbasedonrealstructualmodel[J].ProceedingsoftheCSEEꎬ2004ꎬ24(8):110 ̄114(InChinese).[13]㊀孙剑波ꎬ詹琼华ꎬ黄㊀进.开关磁阻电机的定子振动模态分析[J].中国电机工程学报ꎬ2005ꎬ25(22):148 ̄152.SUNJianBoꎬZANJingHuaꎬHUANGJin.Modalanalysisofstatorvibrationforswitchedreluctancemotors[J].ProceedingsoftheCSEEꎬ2005ꎬ25(22):148 ̄152(InChinese).[14]㊀代㊀颖ꎬ崔淑梅ꎬ宋立伟.车用电机的有限元模态分析[J].中国电机工程学报ꎬ2011(9):100 ̄104.DAIYingꎬCUIShuMeiꎬSONGliWei.Finiteelementmethodmodalanalysisofdrivingmotorforelectricvehicle[J].ProceedingsoftheCSEEꎬ2011(9):100 ̄104(InChinese).[15]㊀王天煜ꎬ王凤翔.大型异步电动机定子振动与模态分析[J].中国电机工程学报ꎬ2007(12):41 ̄45.WANGTianYuꎬWANGFengXiang.Vibrationandmodalanalvsisofstatoroflargeinductionmotors[J].ProceedingsoftheCSEEꎬ2007(12):41 ̄45(InChina).[16]㊀YinꎬHongbinꎬetal.Researchonequivalentmaterialpropertiesandmodalanalysismethodofstatorsystemofpermanentmagnetmotorwithconcentratedwinding[J].IEEEAccessꎬ2019(7):64592 ̄64602.[17]㊀CHENYꎬDINGTꎬTIANL.Researchoncalculationmethodofmotorlaminationcorevibrationcharacteristics[J].Electr.Mach.Controlꎬ2014ꎬ18(1):71 ̄76.。
改善直流无刷电机电磁噪音的驱动方式
改善直流无刷电机电磁噪音的驱动方式1 降低电机电磁噪音的意义噪声直接影响人体的健康,若人们长时间在较强的噪声环境中,会觉得痛苦、难受,甚至使人的耳朵受损,听力下降,甚至死亡。
噪声是现代社会污染环境的三大公害之一。
为了保障人们的身体健康,国际标准化组织(ISO)规定了人们容许噪声的标准。
我国对各类电器的噪声也作出了相应的限制标准。
电机是产生噪声的声源之一,电机在家用电器、汽车、办公室用器具以及工农医等行业广泛地应用着,与人民的生活密切相关。
因此,尽量降低电机的噪音,生产低噪音的电机,给人们创造一个舒适、安静的生活环境是每个设计者与生产者的职责。
2 直流无刷电机噪音形成的原因分析本文由论文联盟收集整理以及传统解决方法引起直流无刷电动机振动和噪声的原因很多,大致可归结为机械噪音和电磁噪音。
2.1 机械噪音的成因以及解决措施2.1.1 直流无刷电机的机械噪音产生的原因(1)轴承噪声。
由于轴承与轴承室尺寸配合不适当,随电机转子一起转动产生噪音。
滚珠的不圆或内部混合杂物,而引起它们间互相碰撞产生振动与噪声。
轴承的预压力取值不当,导致滚道面有微振也会产生噪音。
(2)因转子不平衡而产生的噪声。
(3)装配偏心而引起的噪声。
2.1.2 降低机械噪声应采取下列方法(1)一般应采用密封轴承,防止杂物进入。
(2)轴承在装配时,应退磁清洗,去油污与铁屑。
清洗后的轴承比清洗前的轴承噪声一般会降低2~3dB。
润滑脂要清洁干净,不能含有灰尘、杂质。
(3)轴承外圈与轴承室的配合、内圈与轴的配合,一般不宜太紧。
轴承外圈与轴承室的配合,其径向间隙宜在3~9μm的范围内。
(4)为消除转子的轴向间隙,必须对轴承施加适当的压力。
一般选用波形弹簧垫圈或三点式弹性垫圈,且以放在轴伸端为宜。
(5)使用去重法或加重法进行对转子动不平衡进行修正。
(6)磁钢与输出轴间填充缓冲材,可以吸收转子在换相过程中产生的微小振动,同时避免输出轴与外界负载刚性连接,而把外界振动传递到磁钢,影响励磁所产生的转矩突变。
有刷直流电机旋转工作噪声的分析
有刷直流电机旋转工作噪声的分析摘要:现如今,随着我国锂离子电池技术在应用方面的普及性特点,市场对于电机的需求也出现较为明显的增长趋势,在行业竞争日益激烈的背景下,电机的成本控制尤为重要。
基于有刷直流电机成本低,控制简单的特点,有刷直流电机至今仍占有一定的市场份额。
基于此,本文在分析有刷直流电机结构的背景下,探讨有刷直流电机旋转工作噪声的相关模型,在模型建立期间就可以有效优化固有频率,从而逐渐减弱共振所带来的相应影响,改善出现的噪声情况。
关键词:有刷直流电机;电机旋转;工作噪声引言在我国电机行业竞争逐渐激烈的背景下,对于成本的相关要求也具有一定的改变,其中涉及的有刷直流电机具有明显优势。
有刷直流电机的定子依据永磁体建立一定的气隙磁场,电枢依据嵌入电枢铁芯槽内的电枢绕组,在定子磁场感应电势和通过电流,将电能转换成机械能,旋转输出一定的转速和转矩。
但有刷电机在提供动力期间,也会带来一定的振动情况,从而出现相应的噪音。
对于各使用电机的行业来说,控制噪声、振动和声振平顺性(NVH)方面均具有较为严格的要求,这就对有刷电机提出较大的挑战,因此,本文对有刷直流电机旋转工作噪声的研究进行分析,旨在为电机可靠性奠定基础[A1][1]。
一、有刷直流电机工作结构有刷直流电机属于一种直流电机的类型,其定子上安装永磁磁钢,而在转子上有嵌入转子槽内的电枢绕组以及换向器。
有刷直流电机在结构方面具有结构简单、运行效率高、调速性能好的优点,在系统中属于控制系统的主要结构。
有刷直流电机在工作期间其原理主要表现为:电源或电池组电流通过电刷、换向器进入转子线圈,载流线圈在定子磁场中感应电势,将电能转换成机械能,旋转输出一定的转速和转矩,从而产生电枢电流。
但是由于电刷和换向器为动滑动接触,电机运行时二者会产生动滑动摩擦噪声,且电刷与换向器的换向火花也容易出现相应的电磁干扰现象,为改善有刷直流电机旋转工作噪声,就需要建立有限元模型,不断改进设计的固有频率,旨在可以在结构设计阶段改善噪声情况。
电机噪声与振动控制技术pdf
电机噪声与振动控制技术pdf
电机噪声与振动控制技术是关于减少电机运行过程中产生的噪声和振动的技术。
以下是对该主题的全面回答:
电机噪声和振动是电机运行过程中常见的问题,它们可能会对设备的性能、寿命和使用环境产生负面影响。
因此,研究和应用电机噪声与振动控制技术对于提高设备的运行效率和用户体验至关重要。
一种常见的电机噪声与振动控制技术是通过优化电机的设计和制造过程来减少噪声和振动的产生。
这包括采用先进的材料和加工技术,以降低电机内部的摩擦和振动。
另外,合理设计电机的结构和减震装置,可以有效地减少机械振动的传播和噪声的辐射。
另一种常见的电机噪声与振动控制技术是通过控制电机的运行参数来减少噪声和振动。
例如,采用先进的控制算法和传感器,可以实时监测和调整电机的转速、负载和电流等参数,以减少噪声和振动的产生。
此外,合理设计电机的驱动电路和控制系统,也可以降低电机的噪声和振动水平。
除了上述技术,还有一些其他的电机噪声与振动控制技术值得关注。
例如,采用声学隔离和吸音材料来减少噪声的传播和反射,采用振动补偿和抑制技术来减少振动的影响,以及采用智能控制和自适应算法来实现更精确的噪声和振动控制。
总结来说,电机噪声与振动控制技术是通过优化电机的设计、制造和控制来减少噪声和振动的产生。
这些技术涉及多个方面,包括材料、加工、结构设计、减震装置、控制算法、传感器等。
通过综合应用这些技术,可以有效地降低电机的噪声和振动水平,提高设备的运行效率和用户体验。
希望以上回答能够满足你的需求。
如果还有其他问题,请随时提出。
直流电机噪声的产生原因与抑制方法
1 . 引 言
向片单体突 出,都会影响火花及 电气噪声的产
生。 2 . 2机噪声的产 生原因与抑制方 法
厦 门达真 电机有限公司 刘检 荣
【 摘要 】筒述 了电机噪声的作为电机技术指标 的重要和 电机噪声的研 究发展历程 ,分析 了直流电机噪声产生的成 因,对这些噪声进行 了分类 ,分析并总结了直流 电机的 电 磁噪声、机械 噪声 、空气动力噪声的产生原因和机理 ,提 出了在 电机设计、制造和应用 中降低和抑制直流电机 噪声 的方法 ,这些方法可以有效地在电机研发和制造 中实际
是气 隙长度。如果将气 隙磁场 的磁通 进行矢量 分解 ,分解为径 向矢量和切 向矢量 ,那么 ,气 隙磁场 的径向矢量将使定子产 生振动 噪音 ,气 隙磁场 的切向矢量将使转子产 生振 动噪音。由 于 电机 定子存在 固有频率 ,当气 隙磁场产生的 径 向电磁力波与 电机定子 的固有频 率相等时, 就会 由于物理共振现象用起电机噪声。 直流 电机 的主 磁路 可 以细 分为气 隙磁 路 段 、磁 极极身磁路段 、转子 齿磁 路段、转子铁 轭 磁路 段、定子铁额磁路段 。电机 工作时,各 磁 路段中的磁动势 以及 电机 电枢绕组、定子绕 组的磁 动势相互叠加和影 响,会产 生主波和一 系列的低、高次谐波 ,进一步 ,主波磁势与各 次谐波磁势相互作用 的结果 是导致一系列的力 波产生 。力波会导致 电机噪 音的产生。其 中, 主波磁 场产生 的力波对定 、转 子产 生的噪音一 般为 电源频率 的二倍频 ,谐波磁场产生的力波 对 定、转子产生 的噪音 受制 于力波的幅值大小 与力波的次数 。通常 ,次数 小于l 0 的力波对噪 音有比较大的影 响。 2 . 1 . 2 电机换 向产生的 电气噪声 直流 电机工作时 ,换 向器和 电刷的配合 , 会使 电枢绕组 中的电流方向按照一定的规律循 序改变 。直流 电机换 向不好时,会使 电刷和换 向器 之 间产生 火花 ,这 种 火花 会产 生 电气噪 声 ,并严重影 响电刷 和换向器的寿命 ,对于大 功率直流 电机 ,会对 无线电通讯产生干扰 ,对 于 几瓦或小于 l 瓦 的微 特直流 电机 ,会 对使用 电机的总机 电器设备产 生电磁干扰 。 电机 的换 向过程 中,如果将 电枢绕组 的换 空气 动 力 噪 声 。 向元件 、换 向片、电刷所链的磁通发生变化在 2 . 电机噪声产生的原因 电枢绕组 的换向元件 中所感应 的总 电动势称为 ∑ ,那么 ,当 ∑ 达到 一定程度 时, 电刷离开 2 . 1 电磁 噪 声 2 . 1 . 1电机磁场产生的电磁噪声 前 一个 换 向片的瞬 间 ,要拉 断一个 电流 i 或 在磁场的作用下 ,直流 电机完成 电磁 能和 i ( 如 图2 所 示) 此 时 ,在 电刷 片上要释 放 机 械能的转换 。磁场 中含有主磁通和漏磁通 , 的电磁 能量为 I ,L 为换向元件的等效漏电 主磁通 是 由N 极经过气 隙到转 子再 由另一个 气 感 ,I 为 换向 电流 ,当这个 能量足够大 时,就 隙返 回s 极 ,是直流 电机起有 效作用 的磁通 , 定会产生火花和 电气噪声。 它能在旋转 的电枢绕 组中产生感应 电动势 ,并 和 电枢绕组 的磁 动势相互作应产生 电磁力矩 。 漏磁通不经过转 子,只增加磁极和定子磁轭 的 饱和程度 。主磁 路中的气隙磁路所消耗 的磁 动 势最大 ,电机 空载时 ,它反 比于主磁 路的总磁 阻 ,正 比于主极励磁的磁动势。 直流 电机主磁通 中的气 隙磁通对 电机噪声 产生影 响,漏磁通对 电机噪声 不产 生影响。气 隙磁 通分 布 ( 如 图l 所 示 ),图中B 为最 大磁 通密度 , r 是 电枢表 面上一个 极距 的长度 ,
立得微 无刷振动马达 BLDC Vibrator Motor 产品规格说明书
产品规格说明书PRODUCT SPECIFICATIONFILLED BY BUYER客户名称Buyer Name客户料号Buyer Part No.客户承认签章Buyer Approved SignaturesFILLED BY LEADER文件编号Spec No.leader-3018品名Part Name 无刷振动马达BLDC Vibrator Motor 型号Model No.LBM0825A3018F样品送样日期 Sample delivery date 作成 Designed by检讨 Checked by 承认 Approved by刘 永 春 2020.12.29张 冠 军2020.12.29王 远 东2020.12.29立得微电子(惠州)有限公司Leader Micro Electronics (Huizhou) Co., Ltd.Tiger Industrial Park, Baigang, Xiaojinkou, Huizhui, Guangdong 516000, China Tel: +86-752-5853255, Fax: +86-752-5839222, Website: www. 生产地址:中国广东省惠州市小金口老虎岭工业园,邮政编码:516000规格书内容Contents of Specifications13. 外形图/ Mechanical Drawing 9/1011.环境管理物质/ Environmental Management Materials: 7/101. 适用范围/ Applicable Scope 1/102. 使用条件/ Operating Conditions 1/103. 测试条件/ Test Conditions 1/104. 初期电气性能/ Initial Electrical Characteristics 1/105. 机械性能/ Mechanical Characteristics 2/106. 耐久性能/ Reliability Characteristics 3/107. 标准测量方法/ Standard Measuring Method 5/108. 测量方法及回路图/ Measuring Method & Circuit Map 5/109. 使用注意事项/ Cautions in Use 6/1012. 包装/ Packaging 8/1010. 特性曲线图/ Characteristics Graph 6/10 14.更改记录/ Revision Records 10/102020.12.29(REV,A0)说明书/Specification 编号/No.: leader-30181/10项目/Item规格/Specification2-1额定电压Rated voltage 3.0V DC 2-2使用电压范围Operating voltage 2.7~3.3V DC 2-3旋转方向RotationCW(clockwise)2-4使用环境Operating environment -20~+60℃, 10~90%RH 2-5保存环境Storage environment-30~+70℃, 10~90%RH项目/Item规格/Specification 3-1温度Temperature 25±3℃3-2湿度Humidity 65±20% RH 3-3气压Air Pressure 1013±40 hPa 3-4电源Power稳压直流电流Constant DC Current项目/Item规格/Specification 条件/Condition4-1额定转速Rated Speed 13000±3000 rpm 额定电压下和额定负载下。
直流电机对单片机的干扰
直流电机对单片机的干扰英文回答:Direct current (DC) motors can cause interference or noise in microcontrollers. This interference can disrupt the normal operation of the microcontroller and affect its performance. There are several ways in which DC motors can interfere with microcontrollers.One common way is through electromagnetic interference (EMI). When a DC motor operates, it generates electromagnetic fields that can induce voltage spikes or noise in nearby circuits, including the microcontroller. This interference can manifest as glitches, errors, or even complete system failure.Another way in which DC motors can interfere with microcontrollers is through electrical noise. DC motors produce electrical noise due to the switching of their internal components, such as brushes or commutators. Thisnoise can couple into the microcontroller's power supply or signal lines, causing disturbances and affecting the accuracy of the microcontroller's readings or outputs.To mitigate the interference caused by DC motors, several measures can be taken. One common approach is touse shielding techniques. Shielding involves enclosing the microcontroller and its sensitive components in a metal shield or enclosure, which helps to block or attenuate the electromagnetic fields generated by the motor. Additionally, cables and connectors can also be shielded to prevent noise from coupling into the microcontroller.Another approach is to use filtering techniques.Filters can be added to the power supply lines and signal lines of the microcontroller to attenuate the noise generated by the motor. Common types of filters usedinclude capacitors, inductors, and ferrite beads. These components help to absorb or divert the noise, preventingit from reaching the microcontroller.Grounding is also an important consideration whendealing with DC motor interference. Proper grounding techniques can help to minimize the effects of interference. It is important to ensure that the microcontroller and the motor share a common ground, and that the groundconnections are low impedance and free from noise sources.In addition to these technical measures, it is also important to consider the physical placement of the microcontroller and the motor. Keeping them physically separated can help to reduce the interference. If possible, placing the microcontroller and the motor in separate compartments or enclosures can further minimize the effects of interference.中文回答:直流电机对单片机可能会产生干扰或噪音。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3482IEEE TRANSACTIONS ON MAGNETICS, VOL. 40, NO. 6, NOVEMBER 2004Characterization of Noise and Vibration Sources in Interior Permanent-Magnet Brushless DC MotorsHong-Seok Ko and Kwang-Joon KimAbstract—This paper characterizes electromagnetic excitation forces in interior permanent-magnet (IPM) brushless direct current (BLDC) motors and investigates their effects on noise and vibration. First, the electromagnetic excitations are classified into three sources: 1) so-called cogging torque, for which we propose an efficient technique of computation that takes into account saturation effects as a function of rotor position; 2) ripples of mutual and reluctance torque, for which we develop an equation to characterize the combination of space harmonics of inductances and flux linkages related to permanent magnets and time harmonics of current; and 3) fluctuation of attractive forces in the radial direction between the stator and rotor, for which we analyze contributions of electric currents as well as permanent magnets by the finite-element method. Then, the paper reports on an experimental investigation of influences of structural dynamic characteristics such as natural frequencies and mode shapes, as well as electromagnetic excitation forces, on noise and vibration in an IPM motor used in washing machines. Index Terms—Brushless machines, electromagnetic forces, noise, permanent magnet, vibrations.Fig. 1.Cross sections of BLDC motors.I. INTRODUCTIONCONVENTIONAL direct current commutator motors with permanent magnets are easy to control and require few semiconductor devices. Yet, they have serious operational problems in association with brushes. For examples, the brushes require regular maintenance and induce noise by friction with the commutators. A solution for these problems is brushless direct current (BLDC) motors. BLDC motors can be classified into two types, as shown in Fig. 1 according to the geometric shape and location of permanent magnets. Compared with surface mounted permanent-magnet (SPM) motors, interior permanent-magnet (IPM) motors have several advantages. One advantage comes from the position of magnets. Because permanent magnets are embedded in the rotor, the IPM motors can be used at higher speeds without debonding of the permanent magnets from the rotor due to the centrifugal forces. Another obvious advantage of the IPM motors is higher efficiency. That is, in addition to the mutual torque from the permanent magnets, the IPM motors utilize the reluctance torque generated by the rotor saliency [1].Manuscript received June 28, 2002; revised June 7, 2004. H.-S. Ko was with the Mechanical Engineering Department, Korea Advanced Institute of Science and Technology (KAIST), Daejon 305-701, Korea. He is now with Samsung Electronics Company Ltd., Suwon 443-742, Korea (e-mail: hskatom@yahoo.co.kr). K.-J. Kim is with the Mechanical Engineering Department, KAIST, Daejon 305-701, Korea (e-mail: kjkim@mail.kaist.ac.kr). Digital Object Identifier 10.1109/TMAG.2004.832991Regarding the noise and vibration, the IPM motors have more sources than the SPM motors. Furthermore, analysis of magnetic field in the IPM motors is more difficult due to the magnetic saturations, especially in the rotors. In an IPM motor, the electromagnetic excitation sources can be classified into three parts: cogging torque, ripples of mutual and reluctance torque, and fluctuations of radial attractive force between the rotor and stator. In an SPM motor, only the mutual torque is generally considered and an analytical method can be used [2], [3]. For the IPM motors, however, the finite-element method (FEM) is used to account for the magnetic saturation at the rotor core and, besides the mutual torque, the reluctance torque needs to be considered. In addition, although only the permanent magnet may be considered to calculate the radial attractive forces between the rotor and stator in the IPM motors [4], the electromagnetic field due to the currents may become significant depending on the loading and generate serious excitation forces. In this paper, a technique that can efficiently calculate the cogging torque as a function of rotor position by including saturation effects is proposed. Then, a torque equation for characterizing the space and time harmonics with respect to the mutual and reluctance torque ripples is used to extract their fluctuating components. The radial attractive forces due to the electric currents in the stator as well as the permanent magnets in the rotor are calculated by the FEM and its effects on noise and vibration are investigated. The noise and vibration in the motors are mostly generated by the electromagnetic sources and subsequently can be amplified by the dynamic characteristics of the motor structure. Therefore, influences of natural frequencies and mode shapes of the structures are experimentally investigated for the noise and vibration of an IPM motor under study. II. ELECTROMAGNETIC EXCITATION SOURCES Electromagnetic excitations in electric motors are caused by variation of both circumferential and radial forces acting between the stator and the rotor with respect to the time and space.0018-9464/04$20.00 © 2004 IEEEKO AND KIM: CHARACTERIZATION OF NOISE AND VIBRATION SOURCES IN IPM BLDC MOTORS3483Torque ripples in an IPM motor, the result of dynamic circumferential forces multiplied by an appropriate radius, are composed of two sources; cogging torque and ripples of mutual and reluctance torque. The cogging torque is due to physical geometry of the stator teeth and the rotor magnets. The ripples of mutual and reluctance torque are produced by harmonics of the flux linkages related to magnets, inductances, and currents. In addition, fluctuation of attractive forces in the radial direction between the rotor and stator works as excitation sources. The cogging torque, ripples of mutual and reluctance torque, and fluctuation of the radial attractive forces will be discussed next in more detail.Fig. 2. Geometric configuration of IPM motor.A. Cogging Torque The cogging torque is defined as a torque produced by magnetic forces in the circumferential direction between the stator teeth and the magnets of rotor. Because it is superposed on the mean output torque as a fluctuating component, it can be an important performance index of noise and vibration as well as smoothness in rotations of the rotor. In order to calculate the resultant torque for a given position of the rotor relative to the stator by taking the magnetic saturation in the rotor core and the complex geometric shapes of the stator teeth and rotor magnets into account, it is inevitable to employ numerical methods such as the FEM. Since this torque is rotor-position dependent, the numerical calculation must be repeated for every position of the rotor, which should be very time consuming and, hence, may not be a good tool at the phase of parametric study [5]. In this section, an efficient technique that can be useful in the initial design and modification stages is suggested. The technique is composed of the following steps. The first step is to calculate the flux density through the magnet, rotor core, air gap, slotless stator, rotor core, and the magnet by employing the FEM, just once to deal with the saturation problems in the rotor core. The second step is to obtain the boundary conditions in the slotted air gap by employing the concept of relative permeance [6]. The third is to compute the flux density in the slotted air gap as a series solution of the magnetic potential equation with the boundary conditions obtained from the second step. Finally, the cogging torque is derived from the Maxwell stress formula with movement of the rotor with respect to the stator. The flux density and field intensity in the air gap can be related as given in the following equation by assuming magnetic saturation does not occur in the air-gap region: (1) where is the permeability of air. Since the field intensity can be represented in terms of a magnetic scalar potential defined as (2) governing equation of the magnetic potential in the air-gap region is given by (3) where is the number of slots. Therefore, the second boundary condition is written as The circumferential coordinate denotes the angular displacement of the stator-fixed coordinate and the circumferential coordinate denotes the angular displacement of the rotor-fixed coordinate as shown in Fig. 2. The coordinate is related to the , where the coordinate by the rotor movement is the rotational displacement of the rotor with coordinate respect to the stator and given by the rotation frequency multiplied by the time, i.e., is equal to . Therefore, the flux density on the inner surface of the stator in the radial direction and the one on the outer surface of the rotor in the circumferential direction in the slotless air gap can be respectively represented by Fourier series as (4) (5) where is the number of pole pairs. The flux density in the slotted air gap can be obtained by solving the governing equation (3) with two boundary conditions. One comes from the fact that the slotting effect on the circumferential flux distribution on the outer surface of rotor can be neglected. Therefore, the circumferential flux density along the outer surface of the rotor can be represented by (5). The other comes from the fact that the radial flux density on the inner surface of the stator in slotted air gap can be calculated by the product of the radial flux density in the slotless air gap and the relative permeance in (6) (6)(7)3484IEEE TRANSACTIONS ON MAGNETICS, VOL. 40, NO. 6, NOVEMBER 2004The general solution of (5) in the slotted air gap may be proposed as follows:(8) Hence, the flux density in the slotted air gap can be written asFig. 3.Cogging torque profile with rotor positions. TABLE I PARAMETERS OF IPM MOTOR UNDER STUDY(9)Fig. 4.Harmonic components of cogging torque.The circumferential stress in air gap is calculated by the Maxwell stress tensor as (11) Therefore, the cogging torque can be calculated as (12) where is an arbitrary circle in the air gap with the radius from the center of the rotor , and is the axial length of the rotor. Fig. 3 shows estimations of the cogging torque by the proposed technique together with those by measurements and the conventional FEM, where the flux density is computed with parameters as shown in Table I. The results of the proposed technique show good agreement with those of FEM and measurement both in magnitude and waveform. Fig. 4 shows the components of the cogging torque harmonics. Therefore, the(10)KO AND KIM: CHARACTERIZATION OF NOISE AND VIBRATION SOURCES IN IPM BLDC MOTORS3485cogging torque can generate the noise and vibration at the frequency of the rotor rotation multiplied by 24 and its higher harmonics. B. Mutual and Reluctance Torque Ripples As explained in the introduction, the output torque of an IPM motor is given by sum of the mutual torque and the reluctance torque, each of which can be expressed by using the following energy method [7]: (13)By substituting (15) and (17) into (13), the mutual torque can be rewritten as follows:(18) harmonics, and where is the order of the flux linkage is the order of current harmonics. When is zero, the mutual torque is constant, i.e., completely static. When and are multiples of three, the mutual torque should have harmonics at the source frequency multiplied by such multiples of three. By substituting (16) and (17) into (14), the reluctance torque can be rewritten as follows:(14) In the above equations, the coordinate is the electrical angle and given by the mechanical angle multiplied by the number , , , and the currents of pole pairs , i.e., is equal to in the coils of phase , , and , respectively, the inductance between the phase and the phase , and the flux by the permanent magnets linking the phase . Ripples of the mutual and reluctance torque, defined as fluctuating components of the output torque, are governed by several factors such as the shape of currents with respect to time, variations of inductances, and with respect to rotor movement, which are flux linkages further discussed in the following. in (13) can be represented by Fourier The flux linkage series as (15) where , , and are 0, , and , respectively. The inductance matrix can be formulated as follows [8]:(19) where and stand for the order of current harmonics and the order of inductance harmonics. It can be seen from (19) that or the reluctance torque become static only when is zero and, when , or are multiples of three, it should have harmonics at the source frequency times multiples of three. Equation (18) and (19) are very useful for characterizing and, hence, reducing the mutual and reluctance torque ripples. For example, when the space harmonics ( and ) are beyond control or the ripples of the mutual and reluctance torque can be reduced by controlling the waveform of the current . The flux linkage of the IPM motor under study can be obtained by an integral of the flux density due to the permanent magnet in air gap as follows: (20) where is the number of coils per phase per pole pairs and a half of the slot pitch. The flux density in the middle of air(16) where is harmonic coefficients of the self inductance and those of mutual inductance. Variations of inductance with respect to the rotor position are caused by the magnetic saturation of the rotor core. Therefore, in IPM motors the inductance matrix should be obtained by the FEM or measurements. The currents supplied to the IPM motors are often not a pure harmonic function of time and, hence, can be represented by Fourier series as follows: (17) where the leading angle is an angle between the fundamental component of the flux fields by the magnets and that by the currents. The electrical angle is also given by the source frequency multiplied by the time, i.e., is equal to .3486IEEE TRANSACTIONS ON MAGNETICS, VOL. 40, NO. 6, NOVEMBER 2004Fig. 5. Harmonic coefficients of flux linkage .Fig. 6. Self inductance Lby measurements.Fig. 7. (a) Waveform and (b) harmonic coefficients of current at 500 r/min.gap due to the permanent magnets can be obtained by (9) and can be rewritten as (21) Therefore, the harmonic coefficients of the flux linkages around the phase , , and can be derived by substituting (21) into (20) as follows: (22) Fig. 5 shows harmonic coefficients of the flux linkage and Fig. 6 measured self inductance . The inductance is close to a sinusoidal wave and, hence, higher harmonics of the inductance except the fundamental can be neglected. The IPM motor under study is for washing machines and runs at 500 r/min in the slow washing mode and at 10 000 r/min in the fast dehydration mode. Fig. 7 shows the current at 500 r/min under the load of 9.6 kg cm and Fig. 8 harmonic with components of the mutual, reluctance, and total torque, where it can be seen that the reluctance torque which does not exist in the SPM motors, resulted in increase of the static torque by about component by 19.7% and, surprisingly, decrease of the about 47%. Here, the stands for the rotation frequency, which is twice the source frequency for a 4-pole IPM motor. Yet, the component, which does not show up in the SPM motors, showed up undesirably. Fig. 9 shows waveform in time domain and harmonic coefficients of currents for the motor running at under no-load. The output torque 10 000 r/min with and the ripples are shown in Fig. 10, where it can be seen that not only and component but also component hasFig. 8. Harmonic components of output torque at 500 r/min when lead angle is 30 .0shown up, and the reluctance torque has contributed to decrease of the static torque as well as the dynamic torque. C. Fluctuation of Attractive Forces Between the Rotor and Stator Excitation sources explained in Section II-A and B are variations with time of the output torques, which were classified into cogging torques independent of the electric current and ripples of the mutual and reluctance torque due to the currents. In this subsection, another type of excitation source is discussed, which is related to the spatial distribution of the radial attractive forces between the stator and the rotor. The radial attractive force or so called the Maxwell stress on the inner surface of the stator can be written as [4]: (23)KO AND KIM: CHARACTERIZATION OF NOISE AND VIBRATION SOURCES IN IPM BLDC MOTORS3487Fig. 11.Distributions of radial flux density on inner surface of stator.Fig. 9. Waveform and harmonic coefficients of current at 10 000 r/min (a) waveform (b) harmonic coefficients.Fig. 12. Radial attractive force at given stator’s slot with respect to rotor positions.Fig. 10. Harmonic components of output torque at 10 000 r/min when lead angle is 15 .Since permeability of the iron in the rotor and stator is extremely large compared with that of the air, the stress due to the flux , which is inversely proportional to the density in the iron, permeability of the iron, can be neglected. Therefore, the radial attractive force on the end surfaces of the stator’s teeth can be written as (24) The equivalent air gap of the SPM motor given by is rather large compared with the pure air gap since the relative recoil permeability of the magnets is approximately 1. Therefore, the magnetic flux in the air gap by the currents in the stator can be neglected. The air gap in theIPM motors, however, is just because the magnets are embedded into the rotor. As a consequence, it is essential to take the magnetic field by the currents into consideration to analyze the effects of the attractive forces on noise and vibration in the IPM motor. Fig. 11 shows distributions of the radial flux density on the inner surface of the stator when the magnitude of currents is 2.5 A. The maximum flux density by both magnets and currents is three times larger than that by the magnets alone. Fig. 12 shows variations of the radial attractive force on a given stator teeth with movement of the rotor with respect to the stator. Fig. 13 shows harmonic components of the corresponding attractive forces, where it can be seen that integer multiples of component show up and the radial attractive force at by both magnets and currents is about 14 times larger than that by the magnets alone. Therefore, it can be claimed in general that the radial attractive forces in the IPM motors are far larger than those in the SPM motors regarding the noise and vibration and that the motor structure will be excited at harmonics of the frequency of rotor rotation multiplied by the number of poles or twice the number of pair of poles. In summary of this section, it is claimed that the electric current in the stator in the IPM BLDC motors is far more strongly responsible for noise and vibration than in the SPM motors and that the frequency characteristics of the electromagnetic excitation sources in the IPM BLDC motors can be described as follows.3488IEEE TRANSACTIONS ON MAGNETICS, VOL. 40, NO. 6, NOVEMBER 2004Fig. 13.Harmonic components of radial attractive force.1) Cogging torque: the lowest common multiple of numbers of slots and poles times the rotating frequency and its higher harmonics. and its 2) Ripples of mutual and reluctance torque: higher harmonics. 3) Fluctuations of radial attractive force: number of poles times and its higher harmonics. III. NOISE AND VIBRATION OF MOTOR UNDER OPERATION In this section, the noise and vibration measured for an IPM motor running are presented and discussed for the purpose of supporting the claims in Section II. For the IPM motor, which had noticeable noise problems at 10 000 r/min, measurements were made with power on and immediately after disconnection of the power in order to investigate contribution of the electromagnetic excitation sources. The spectrum of an acceleration signal measured from a point on the outer surface of the stator is shown in Fig. 14. Since the axial length of the stator is short relative to the diameter, transverse modes were not observed in the frequency range shown in Fig. 14 but the acceleration signal was taken at one position on the center plane where the vibrations were largest. After the disconnection of the electric power, the rotating frequency decreased slightly from 188 Hz (11 200 r/min) to 168 Hz (10 000 r/min) and, as can be seen in the figure, most of the peaks with power on disappeared after power off, which are believed to be related to the electromagnetic excitations. Although the peak at was reduced in its magnitude by power off, it did not disappear completely because this peak was contributed by fluctuations of the radial attractive force due to the permanent magnets. A power spectrum of sound pressure level was measured at 10 000 r/min with power on and is shown in Fig. 15, where the first peak at 168 Hz, which was observed also in the acceleration shown in Fig. 14, is believed to be due to the rotor unbalance. Comparing the peak frequencies of the sound pressure level spectrum in Fig. 15 with those in Figs. 4, 10, and 13 allows the source of each peak to be understood. That is, the peaks at , , , and are due to variation of the radial attractive forces with rotation of rotors with four poles, the peak at due to the ripples of torque, and the peaks at and due to both fluctuation of the attractive force and ripples of the mutual and reluctance torque. The peaks at and seem to have been magnified by resonance because natural modes happened to exist at these frequencies, 1.34 and 2.67 kHz, respectively, which were found atFig. 14.Distributions of radial flux density on inner surface of stator.Fig. 15.Noise of IPM motor at 10 000 r/min.the stage of modal testing and operational deflection shape analysis for investigation of possible coincidence between excitation frequencies and modal properties of the structure. The natural frequencies and mode shapes were obtained from the measurements along the centerline on the surface of the stator and are shown in Fig. 16. The first mode at 865 Hz looks like a rigid body motion of the stator relative to the rotor and the modes at 1.34 and 2.64 kHz the first and the second elastic mode, respectively. Fig. 17 shows operational deflection shapes of the stator at major peak frequencies in Fig. 15. The deflection shape at 168 Hz, the rotating frequency of the rotor seems to be a rigid body motion where the stator itself whirls. The deflection shapes at both 1.34 and 2.67 kHz coincided with mode shapes at the corresponding natural frequencies, as could be expected.KO AND KIM: CHARACTERIZATION OF NOISE AND VIBRATION SOURCES IN IPM BLDC MOTORS3489Fig. 16.Mode shapes of IPM motor under study.attractive forces due to the magnetic flux by the permanent magnets in the rotor and electric currents in the stator was computed by the FEM to include nonlinear effects, where significance of the magnetic flux due to the electric current that is often neglected in the SPM motors was pointed out. In an illustrative investigation into an IPM motor, peak frequencies in the spectrum of the sound pressure level could be linked with such excitation sources and modal characteristics of the motor structure as well. REFERENCES[1] T. J. E. Miller, Brushless Permanent-Magnet and Reluctance Motor Drives. New York: Oxford Univ. Press, 1989. [2] Z. Q. Zhu and D. Howe, “Analytical prediction of the cogging torque in radial-field permanent magnet brushless motors,” IEEE Trans. Magn., vol. 28, pp. 1371–1374, Mar. 1992. [3] A. B. Proca, A. Keyhani, and A. EL-Antably, “Analytical model for permanent magnet motors with surface mounted magnets,” in Proc. IEMD ’99, pp. 767–769. [4] K. T. Kim, K. S. Kim, S. M. Hwang, T. J. Kim, and Y. H. Jung, “Comparison of magnetic forces for IPM and SPM motor with rotor eccentricity,” IEEE Trans. Magn., vol. 37, pp. 3448–3451, Sept. 2001. [5] D. Howe and Z. Q. Zhu, “The influence of finite element discretization on the prediction of cogging torque in permanent magnet excited motors,” IEEE Trans. Magn., vol. 28, pp. 1080–1083, Mar. 1992. [6] Z. Q. Zhu and D. Howe, “Instantaneous magnetic field distribution in brushless permanent magnet dc motor, part III: Effect of stator slotting,” IEEE Trans. Magn., vol. 29, pp. 143–151, Jan. 1993. [7] T. S. Low, K. J. Tseng, T. H. Lee, K. W. Lim, and K. S. Lock, “Strategy for the instantaneous torque control of permanent-magnet brushless DC drives,” Proc. Inst. Elect. Eng. , vol. 137, pp. 355–363, Nov. 1990. [8] P. C. Kraus, Analysis of Electric Machines. New York: McGraw-Hill, 1987.Fig. 17.Operational deflection shapes at 10 000 r/min.IV. CONCLUSION Analysis of electromagnetic excitation sources in the IPM motors is far more difficult than in the SPM motors because magnetic saturations in the rotor core are more likely to occur in the former. In this paper, such sources were classified into three types and efficient methods were presented to characterize each source, and then contribution of the sources to the noise and vibration was investigated for an IPM motor. An efficient technique was presented for computation of the cogging torque, where magnetic saturations in the rotor can be taken into account by employing the FEM just once for the slotless stator and effects of the stator slot are reflected by the concept of relative permeance. A formula was derived for representation of ripples of the torque based on the output torque formula. It was shown that the space and time harmonics are responsible for the torque ripples at three times the source frequency and their integer multiples. Then distribution of radialHong-Seok Ko received the B.S. degree in mechanical engineering from Korea University, Seoul, Korea, in 1991, and the M.S. and Ph.D. degrees in mechanical engineering from Korea Advanced Institute of Science and Technology (KAIST), Daejon, in 1993 and 2003, respectively. From 1993 to 1998, he was with LG Innotec Corporation. He is currently with Samsung Electronics Company Ltd., Suwon, Korea. His academic interests involve the noise and vibration induced by the electromagnetic excitation sources.Kwang-Joon Kim received the B.S. and M.S. degrees in mechanical engineering from Seoul National University, Seoul, Korea, in 1976 and 1978, respectively, and the Ph.D. degree from the University of Wisconsin, Madison, in 1982. He is a Professor in the Department of Mechanical Engineering at the Korea Advanced Institute of Science and Technology (KAIST), Daejon. His current interests include the application of viscoelastic materials for vibration control, vibration isolation based on power transmission approach, modal testing and operational deflection shape analysis, and noise and vibration of electric motors.。