材料力学性能指标

合集下载

什么叫材料的力学性能有哪些主要指标

什么叫材料的力学性能有哪些主要指标

材料的机械性能是什么?主要指标是什么材料在一定温度条件和外力作用下,抵抗变形和断裂的能力称为材料的力学性能。

锅炉、压力容器材料的常规力学性能主要包括:强度、硬度、塑性和韧性等。

(1)强度强度是指金属材料在外力作用下抵抗变形或断裂的能力。

强度指标是设计中决定许用应力的重要依据,常用的强度指标有屈服强度σS或σ0.2和抗拉强度σb,高温下工作时,还要考虑蠕变极限σn和持久强度σD。

(2)塑性塑性是指金属材料在断裂前发生塑性变形的能力。

塑性指标包括:伸长率δ,即试样拉断后的相对伸长量;断面收缩率ψ,即试样拉断后,拉断处横截面积的相对缩小量;冷弯(角)α,也就是说,当试样弯曲到拉伸表面上的第一条裂纹时测量的角度。

(3)韧性韧性是指金属材料抵抗冲击载荷的能力。

韧性常用冲击功Ak和冲击韧性值αk表示。

Αk值或αk值除反映材料的抗冲击性能外,还对材料的一些缺陷很敏感,能灵敏地反映出材料品质、宏观缺陷和显微组织方面的微小变化。

而且Ak对材料的脆性转化情况十分敏感,低温冲击试验能检验钢的冷脆性。

材料韧性的一个新指标是断裂韧性δ,它是反映材料对裂纹扩展的抵抗能力。

(4)硬度硬度是衡量材料软硬程度的一个性能指标。

硬度试验的方法较多,原理也不相同,测得的硬度值和含义也不完全一样。

最常用的是静负荷压入法硬度试验,即布氏硬度(HB)、洛氏硬度(HRA、HRB、HRC)、维氏硬度(HV),其值表示材料表面抵抗硬物体挤压的能力。

而肖氏硬度(HS)则属于回跳法硬度试验,其值代表金属弹性变形功的大小。

因此,硬度不是一个单纯的物理量,而是反映材料的弹性、塑性、强度和韧性等的一种综合性能指标。

材料的力学性能有哪些

材料的力学性能有哪些

材料的力学性能有哪些
1材料力学性能
材料力学性能是指材料受外力作用时产生的结构变形以及产生的变形所抵抗的力之间的相互关系。

材料力学性能决定着物体能够承受多大载荷,从而保证物体的安全和稳定性,也是应用工程材料的重要考量标准。

材料力学性能的分类:
1.1弹性性能
弹性性能是指材料受外力作用时能够承受的恢复力的大小,是衡量材料的强度的重要指标。

包括屈服强度、抗拉强度、抗压强度和断裂强度等级。

若外力作用则材料发生变形,材料结构恢复后变形越小,弹性性能越好。

1.2理论性能
理论性能是指材料在不受外力作用时产生的固有属性,一般包括形状、尺寸、密度、抗剪强度、压缩性能等。

这些性能判断材料的加工性能。

1.3定向性能
定向性能是指材料在特定方向受外力作用时,所产生的变形程度以及抵抗力的大小,一般包括抗断裂性能、抗拉伸性能、抗压缩性能以及特殊材料(如硅胶、聚氨酯)的韧性,用来测试其在特定应用场合时的表现。

1.4加工性能
加工性能是指材料加工时机械性能指标,一般包括热处理性能、热变形性能、焊接性能以及表面质量等。

1.5材料寿命性能
材料寿命性能是指材料受到温度、湿度、外力等作用时的抗老化性能,是材料用途的重要考量标准,一般包括热稳定性、导热性能、环境老化性能、化学稳定性等。

以上就是材料的力学性能的分类及指标,它们的测试可以反映出一种材料的强度、稳定性、耐久性及环境效应等状况。

选择合适的材料并使之满足应用要求,需要对材料力学性能做出合理评估。

材料的力学性能

材料的力学性能

材料的力学性能
材料的力学性能是指材料在外力作用下所表现出的性能,主要包括强度、韧性、硬度、塑性等指标。

这些性能对于材料的选择、设计和应用具有重要意义。

下面将分别对材料的强度、韧性、硬度和塑性进行介绍。

首先,强度是材料抵抗破坏的能力,通常用抗拉强度、抗压强度、抗弯强度等
指标来表示。

强度高的材料具有较好的抗破坏能力,适用于承受大外力的场合。

例如,建筑结构中常使用高强度钢材,以保证结构的安全稳定。

其次,韧性是材料抵抗断裂的能力,也可以理解为材料的延展性。

韧性高的材
料在受到外力作用时能够延展变形而不断裂,具有较好的抗震抗冲击能力。

例如,汽车碰撞安全设计中常使用高韧性的材料,以保护乘车人员的安全。

再次,硬度是材料抵抗划伤和压痕的能力,通常用洛氏硬度、巴氏硬度等指标
来表示。

硬度高的材料具有较好的耐磨损性能,适用于制造耐磨损零部件。

例如,机械设备中常使用高硬度的合金材料来制造齿轮、轴承等零部件。

最后,塑性是材料在受力作用下发生塑性变形的能力,通常用延伸率、收缩率
等指标来表示。

具有良好塑性的材料能够在加工过程中较容易地进行成型和加工,适用于复杂零部件的制造。

例如,塑料制品的生产常使用具有良好塑性的材料,以满足复杂形状的加工需求。

综上所述,材料的力学性能是材料工程领域中的重要指标,对于材料的选择、
设计和应用具有重要意义。

强度、韧性、硬度和塑性是衡量材料力学性能的重要指标,不同的应用场合需要选择具有不同力学性能的材料,以满足工程需求。

因此,深入了解和掌握材料的力学性能,对于材料工程师和设计师来说是非常重要的。

材料的常用力学性能有哪些

材料的常用力学性能有哪些

材料的常用力学性能有哪些材料的力学性能是指材料在不同环境(温度、介质、湿度)下,承受各种外加载荷(拉伸、压缩、弯曲、扭转、冲击、交变应力等)时所表现出的力学特征。

1强度强度是指材料在外力作用下抵抗塑性变形或断裂的能力。

强度用应力表示,其符号是σ,单位为MPa,常用的强度指标有屈服强度和抗拉强度,通过拉伸试验测定。

2塑性塑性是指材料在断裂前产生永久变形而不被破坏的能力。

材料塑性好坏的力学性能指标主要有伸长率和收缩率,值越大,材料的塑性就越好,通过拉伸试验可测定。

3硬度硬度是指金属材料抵抗硬物压入其表面的能力。

材料的硬度越高,其耐磨性越好。

常用的硬度指标有布氏硬度(HBS)和洛氏硬度(HRC)。

1)布氏硬度表示方法:布氏硬度用HBS(W)表示,S表示钢球压头,W表示硬质合金球压头。

规定布氏硬度表示为:在符号HBS或HBW前写出硬度值,符号后面依次用相应数字注明压头直径(mm)、试验力(N)和保持时间(s)。

如120 HBS 10/1000/30。

适用范围:HBS适用于测量硬度值小于450的材料,主要用来测定灰铸铁、有色金属和经退火、正火及调质处理的钢材。

根据经验,布氏硬度与抗拉强度之间有一定的近似关系:对于低碳钢,有σ=0.36HBS;对于高碳钢:有σ=0.34HBS。

2)洛氏硬度表示方法:常用HRA、HRB、HRC三种,其中HRC最为常用。

洛氏硬度的表示方法为:在符号前面写出硬度值。

如62HRC。

适用范围:HRC在20-70范围内有效,常用来测定淬火钢和工具钢、模具钢等材料,1HRC相当于10HBS。

4冲击韧性冲击韧性是指材料抵抗冲击载荷而不被破坏的能力,材料的韧性越好,在受冲击时越不容易断裂。

5疲劳强度疲劳强度是指材料经过无数次应力循环仍不断裂的最大应力。

6弹性在物理学和机械学上,弹性理论是描述一个物体在外力的作用下如何运动或发生形变。

在物理学上,弹性是指物体在外力作用下发生形变,当外力撤消后能恢复原来大小和形状的性质。

材料的常用力学性能有哪些

材料的常用力学性能有哪些

材料的常用力学性能有哪些材料的常用力学性能指标有哪些材料在一定温度条件和外力作用下,抵抗变形和断裂的能力称为材料的力学性能.锅炉、压力容器用材料的常规力学性能指标主要包括:强度、硬度、塑性和韧性等.(1)强度强度是指金属材料在外力作用下对变形或断裂的抗力.强度指标是设计中决定许用应力的重要依据,常用的强度指标有屈服强度σS或σ0.2和抗拉强度σb,高温下工作时,还要考虑蠕变极限σn和持久强度σD.(2)塑性塑性是指金属材料在断裂前发生塑性变形的能力.塑性指标包括:伸长率δ,即试样拉断后的相对伸长量;断面收缩率ψ,即试样拉断后,拉断处横截面积的相对缩小量;冷弯(角)α,即试件被弯曲到受拉面出现第一条裂纹时所测得的角度.(3)韧性韧性是指金属材料抵抗冲击负荷的能力.韧性常用冲击功Ak和冲击韧性值αk表示.Αk值或αk值除反映材料的抗冲击性能外,还对材料的一些缺陷很敏感,能灵敏地反映出材料品质、宏观缺陷和显微组织方面的微小变化.而且Ak对材料的脆性转化情况十分敏感,低温冲击试验能检验钢的冷脆性.表示材料韧性的一个新的指标是断裂韧性δ,它是反映材料对裂纹扩展的抵抗能力.(4)硬度硬度是衡量材料软硬程度的一个性能指标.硬度试验的方法较多,原理也不相同,测得的硬度值和含义也不完全一样.最常用的是静负荷压入法硬度试验,即布氏硬度(HB)、洛氏硬度(HRA、HRB、HRC)、维氏硬度(HV),其值表示材料表面抵抗坚硬物体压入的能力.而肖氏硬度(HS)则属于回跳法硬度试验,其值代表金属弹性变形功的大小.因此,硬度不是一个单纯的物理量,而是反映材料的弹性、塑性、强度和韧性等的一种综合性能指标.力学性能主要包括哪些指标材料的力学性能是指材料在不同环境(温度、介质、湿度)下,承受各种外加载荷(拉伸、压缩、弯曲、扭转、冲击、交变应力等)时所表现出的力学特征.性能指标包括:弹性指标、硬度指标、强度指标、塑性指标、韧性指标、疲劳性能、断裂韧度.钢材的力学性能是指标准条件下钢材的屈服强度、抗拉强度、伸长率、冷弯性能和冲击韧性等,也称机械性能.金属材料的力学性能指标有哪些一:弹性指标1.正弹性模量2.切变弹性模量3.比例极限4.弹性极限二:强度性能指标1.强度极限2.抗拉强度3.抗弯强度4.抗压强度5.抗剪强度6.抗扭强度7.屈服极限(或者称屈服点)8.屈服强度9.持久强度10.蠕变强度三:硬度性能指标1.洛氏硬度2.维氏硬度3.肖氏硬度四:塑性指标1:伸长率(延伸率)2:断面收缩率五:韧性指标1.冲击韧性2.冲击吸收功3.小能量多次冲击力六:疲劳性能指标1.疲劳极限(或者称疲劳强度) 七:断裂韧度性能指标1.平面应变断裂韧度2.条件断裂韧度衡量钢材力学性能的常用指标有哪钢材的力学性能是指标准条件下钢材的屈服强度、抗拉强度、伸长率、冷弯性能和冲击韧性等,也称机械性能.1. 屈服强度钢材单向拉伸应力—应变曲线中屈服平台对应的强度称为屈服强度,也称屈服点,是建筑钢材的一个重要力学特征.屈服点是弹性变形的终点,而且在较大变形范围内应力不会增加,形成理想的弹塑性模型.低碳钢和低合金钢都具有明显的屈服平台,而热处理钢材和高碳钢则没有.2. 抗拉强度单向拉伸应力—应变曲线中最高点所对应的强度,称为抗拉强度,它是钢材所能承受的最大应力值.由于钢材屈服后具有较大的残余变形,已超出结构正常使用范畴,因此抗拉强度只能作为结构的安全储备.3. 伸长率伸长率是试件断裂时的永久变形与原标定长度的百分比.伸长率代表钢材断裂前具有的塑性变形能力,这种能力使得结构制造时,钢材即使经受剪切、冲压、弯曲及捶击作用产生局部屈服而无明显破坏.伸长率越大,钢材的塑性和延性越好.屈服强度、抗拉强度、伸长率是钢材的三个重要力学性能指标.钢结构中所有钢材都应满足规范对这三个指标的规定.4. 冷弯性能根据试样厚度,在常温条件下按照规定的弯心直径将试样弯曲180°,其表面无裂纹和分层即为冷弯合格.冷弯性能是一项综合指标,冷弯合格一方面表示钢材的塑性变形能力符合要求,另一方面也表示钢材的冶金质量(颗粒结晶及非金属夹杂等)符合要求.重要结构中需要钢材有良好的冷、热加工工艺性能时,应有冷弯试验合格保证.5. 冲击韧性冲击韧性是钢材抵抗冲击荷载的能力,它用钢材断裂时所吸收的总能量来衡量.单向拉伸试验所表现的钢材性能都是静力性能,韧性则是动力性能.韧性是钢材强度、塑性的综合指标,韧性越低则发生脆性破坏的可能性越大.韧性值受温度影响很大,当温度低于某一值时将急剧下降,因此应根据相应温度提出要求.力学性能指标符号是什么?任何机械零件或工具,在使用过程中,往往要受到各种形式外力的作用.如起重机上的钢索,受到悬吊物拉力的作用;柴油机上的连杆,在传递动力时,不仅受到拉力的作用,而且还受到冲击力的作用;轴类零件要受到弯矩、扭力的作用等等.这就要求金属材料必须具有一种承受机械荷而不超过许可变形或不破坏的能力.这种能力就是材料的力学性能.金属表现来的诸如弹性、强度、硬度、塑性和韧性等特征就是用来衡量金属材料材料在外力作用下表现出力学性能的指标.1.1.1 强度强度是指金属材料在静载荷作用下抵抗变形和断裂的能力.强度指标一般用单位面积所承受的载荷即力表示,符号为σ,单位为MPa.工程中常用的强度指标有屈服强度和抗拉强度.屈服强度是指金属材料在外力作用下,产生屈服现象时的应力,或开始出现塑性变形时的最低应力值,用σs表示.抗拉强度是指金属材料在拉力的作用下,被拉断前所能承受的最大应力值,用σb表示.对于大多数机械零件,工作时不允许产生塑性变形,所以屈服强度是零件强度设计的依据;对于因断裂而失效的零件,而用抗拉强度作为其强度设计的依据.1.1.2 塑性塑性是指金属材料在外力作用下产生塑性变形而不断裂的能力.工程中常用的塑性指标有伸长率和断面收缩率.伸长率指试样拉断后的伸长量与原来长度之比的百分率,用符号δ表示.断面收缩率指试样拉断后,断面缩小的面积与原来截面积之比,用y表示.伸长率和断面收缩率越大,其塑性越好;反之,塑性越差.良好的塑性是金属材料进行压力加工的必要条件,也是保证机械零件工作安全,不发生突然脆断的必要条件.1.1.3 硬度硬度是指材料表面抵抗比它更硬的物体压入的能力.硬度的测试方法很多,生产中常用的硬度测试方法有布氏硬度测试法和洛氏硬度试验方法两种.(一)布氏硬度试验法布氏硬度试验法是用一直径为D的淬火钢球或硬质合金球作为压头,在载荷P的作用下压入被测试金属表面,保持一定时间后卸载,测量金属表面形成的压痕直径d,以压痕的单位面积所承受的平均压力作为被测金属的布氏硬度值.布氏硬度指标有HBS和HBW,前者所用压头为淬火钢球,适用于布氏硬度值低于450的金属材料,如退火钢、正火钢、调质钢及铸铁、有色金属等;后者压头为硬质合金,适用于布氏硬度值为450~650的金属材料,如淬火钢等.布氏硬度测试法,因压痕较大,故不宜测试成品件或薄片金属的硬度.(二)洛氏硬度试验法洛氏硬度试验法是用一锥顶角为120°的金刚石圆锥体或直径为f1.558mm(1/16英寸)的淬火钢球为压头,以一不定的载荷压入被测试金属材料表面,根据压痕深度可直接在洛氏硬度计的指示盘上读出硬度值.常用的洛氏硬度指标有HRA、HRB和HRC三种.采用120°金刚石圆锥体为压头,施加压为600N时,用HRA表示.其测量范围为60~85,适于测量合金、表面硬化钢及较薄零件.采用f1.588mm淬火钢球为压头,施加压力为1000N时,用HRC表示,其测量硬度值范围为25~100,适于测量有色金属、退火和正火钢及锻铁等.采用120°金刚石圆锥体为压头,施加压力为1500N时,用HRC表示,其测量硬度值范围为20~67,适于测量淬火钢、调质钢等.洛氏硬度测试,操作迅速、简便,且压痕小不损伤工件表面,故适于成品检验.硬度是材料的重要力学性能指标.一般材料的硬度越高,其耐磨性越好.材料的强度越高,塑性变形抗力越大,硬度值也越高.1.1.4 冲击韧性金属材料抵抗冲击载荷的能力称为冲击韧性,用ak表示,单位为J/cm2.冲击韧性常用一次摆锤冲击弯曲试验测定,即把被测材料做成标准冲击试样,用摆锤一次冲断,测出冲断试样所消耗的冲击AK,然后用试样缺口处单位截面积F上所消耗的冲击功ak表示冲击韧性.ak值越大,则材料的韧性就越好.ak值低的材料叫做脆性材料,ak值高的材料叫韧性材料.很多零件,如齿轮、连杆等,工作时受到很大的冲击载荷,因此要用ak值高的材料制造.铸铁的ak值很低,灰口铸铁ak值近于零,不能用来制造承受冲击载荷的零件.低碳钢的力学性能指标低碳钢由于含碳量低,它的延展性、韧性和可塑性都是高于铸铁的,拉伸开始时,低碳钢试棒受力大,先发生变形,随着变形的增大,受力逐渐减小,当试棒断开的瞬间,受力为“0”,其受力曲线是呈正弦波>0的形状.铸铁由于轫性差,拉伸开始时,受力是逐步加大的,当达到并超过它的拉伸极限时,试棒断开,受力瞬间为“0”,其受力曲线是随受力时间延长,一条直线向斜上方发展,试棒断开,直线垂直向下归“0”.同样的道理:低碳钢抗压缩的能力比铸铁要低,当对低碳钢试块进行压缩实验时,受力逐渐加大,试块随外力变形,当试块变形达到极限时,其受力也达到最大值,其受力曲线是一条向斜上方的直线.铸铁则不然,开始时与低碳钢受力情况基本相同,只是当铸铁试块受力达到本身的破坏极限时,受力逐渐减小,直到试块在外力下被破坏(裂开),受力为“0”其受力曲线与低碳钢拉伸时的受力曲线相同.以上就是低碳钢和铸铁在拉伸和压缩时力学性质的异同点.简述常用力学性能指标在选材中的意义?钢材常见的力学性能通俗解释归为四项,即:强度、硬度、塑性、韧性.简单的可这样解释:强度,是指材料抵抗变形或断裂的能力.有二种:屈服强度σb、抗拉强度σs.强度指标是衡量结构钢的重要指标,强度越高说明钢材承受的力(也叫载荷)越大;硬度,是指材料表面抵抗硬物压人的能力.常见有三种:布氏硬度HBS、洛氏硬度HRC、维氏硬度HV.硬度是衡量钢材表面变形能力的指标,硬度越高,说明钢的耐磨性越好;即不容易磨损;塑性,是指材料产生变形而不断裂的能力.有两种表示方法:伸长率δ、断面收缩率ψ.塑性是衡量钢材成型能力的指标,塑性越高,说明钢材的延展性越好,即容易拉丝或轧板;韧性也叫冲击韧性,是指材料抵抗冲击变形的能力,表示方法为冲击值αk.冲击韧性是衡量钢材抗冲击能力的指标,数值越高,说明钢材抵抗运动载荷的能力越强.一般情况下,强度低的钢材,硬度也低,塑性和韧性就高,例如钢板、型材,就是由强度较低的钢材生产的;而强度较高的钢材,硬度也高,但塑性和韧性就差,例如生产机械零件的中碳钢、高碳钢,就很少看到轧成板或拉成丝."钢材的主要力学性能指标有哪些(1)拉伸性能反映建筑钢材拉伸性能的指标,包括屈服强度、抗拉强度和伸长率.屈服强度是结构设计中钢材强度的取值依据.抗拉强度与屈服强度之比(强屈比)是评价钢材使用可靠性的一个参数.强屈比愈大,钢材受力超过屈服点工作时的可靠性越大,安全性越高;但强屈比太大,钢材强度利用率偏低,浪费材料.钢材在受力破坏前可以经受永久变形的性能,称为塑性.在工程应用中,钢材的塑性指标通常用伸长率表示.伸长率是钢材发生断裂时所能承受永久变形的能力.伸长率越大,说明钢材的塑性越大.试件拉断后标距长度的增量与原标距长度之比的百分比即为断后伸长率.对常用的热轧钢筋而言,还有一个最大力总伸长率的指标要求.预应力混凝土用高强度钢筋和钢丝具有硬钢的特点,抗拉强度高,无明显的屈服阶段,伸长率小.由于屈服现象不明显,不能测定屈服点,故常以发生残余变形为0.2%原标距长度时的应力作为屈服强度,称条件屈服强度,用σ0.2表示.(2)冲击性能冲击性能是指钢材抵抗冲击荷载的能力.钢的化学成分及冶炼、加工质量都对冲击性能有明显的影响.除此以外,钢的冲击性能受温度的影响较大,冲击性能随温度的下降而减小;当降到一定温度范围时,冲击值急剧下降,从而可使钢材出现脆性断裂,这种性质称为钢的冷脆性,这时的温度称为脆性临界温度.脆性临界温度的数值愈低,钢材的低温冲击性能愈好.所以,在负温下使用的结构,应当选用脆性临界温度较使用温度低的钢材.(3)疲劳性能受交变荷载反复作用时,钢材在应力远低于其屈服强度的情况下突然发生脆性断裂破坏的现象,称为疲劳破坏.疲劳破坏是在低应力状态下突然发生的,所以危害极大,往往造成灾难性的事故.钢材的疲劳极限与其抗拉强度有关,一般抗拉强度高,其疲劳极限也较高.硬度硬度,物理学专业术语,材料局部抵抗硬物压入其表面的能力称为硬度。

机械制造基础3_材料的力学性能指标

机械制造基础3_材料的力学性能指标

机械制造基础3_材料的力学性能指标材料的力学性能指标是指材料在力学加载下的表现和性能参数,用来评估材料的强度、刚度、韧性、耐磨性、抗疲劳性等。

以下将介绍常见的材料力学性能指标。

1.强度:材料的强度指的是其所能承受的最大应力。

常见的强度指标有屈服强度、抗拉强度、抗压强度等。

屈服强度是材料在弹性阶段的抗拉、抗压应力,即在材料开始发生塑性变形之前所能承受的应力。

抗拉强度是材料在拉伸过程中所能承受的最大应力,抗压强度是材料在受压过程中的最大应力。

2.刚度:材料的刚度指的是其抵抗变形的能力。

常见的刚度指标有弹性模量、切变模量等。

弹性模量是材料在弹性阶段的刚度大小,可以描述材料在拉伸或压缩时的回复能力。

切变模量是材料在剪切变形时的刚度大小,可以衡量材料的抗扭转能力。

3.韧性:材料的韧性指的是其在断裂前能够吸收的能量。

常见的韧性指标有延伸率、冲击韧性、断裂伸长率等。

延伸率表示材料在受拉时能够延长的程度,冲击韧性表示材料在受冲击载荷下的抵抗性能,断裂伸长率是材料在断裂前拉伸的长度与初始长度之比。

4.耐磨性:材料的耐磨性指的是其抗磨损能力。

常见的耐磨性指标有硬度、摩擦系数等。

硬度表示材料抵抗表面划伤、模具磨损等形变的能力,摩擦系数表示材料表面与其他物体接触时的磨擦阻力。

5.抗疲劳性:材料的抗疲劳性指的是其抵抗循环加载下疲劳破坏的能力。

常见的抗疲劳性指标有疲劳极限、疲劳寿命等。

疲劳极限是材料在疲劳加载下所能承受的最大应力,疲劳寿命表示材料在循环加载下能够承受的加载次数。

除了上述指标外,材料还有其他性能指标,如导热性能、热膨胀系数、电导率等,这些性能指标主要用于材料的特殊应用领域。

总而言之,材料的力学性能指标是评估材料力学特性的重要依据,不同的材料具有不同的力学性能指标,根据具体应用需求选择合适的材料和合适的力学性能指标是非常重要的。

材料力学性能

材料力学性能

材料力学性能材料力学性能是指材料在外力的作用下所表现出来的力学特性和性能。

材料力学性能的评价是材料工程中非常重要的一个方面,它直接关系到材料的使用性能和安全性。

下面就常见的材料力学性能进行简要介绍。

1. 强度:材料的强度是指材料在外力作用下抗变形和断裂的能力。

强度是材料力学性能中最基本和重要的指标之一。

常见的强度指标有拉伸强度、屈服强度、抗压强度、剪切强度等。

2. 韧性:材料的韧性是指材料在受到外力作用下的抗冲击和抗断裂能力。

韧性可以通过材料的断裂韧性、冲击韧性等指标来评价。

高韧性的材料具有良好的抗冲击和抗断裂性能。

3. 塑性:材料的塑性是指材料在受到外力作用下能够发生可逆的形变。

材料的塑性可以通过塑性应变、塑性延伸率、塑性饱和应变等指标来描述。

常见的塑性材料有金属材料和塑料材料。

4. 刚性:材料的刚性是指材料在受到外力作用下不易发生形变的能力。

刚性材料具有较高的弹性模量和抗弯刚度。

常见的刚性材料有钢材和铝合金等。

5. 弹性:材料的弹性是指材料在受到外力作用后能自行恢复原状的能力。

弹性材料具有较高的弹性模量和较小的应变率。

常见的弹性材料有弹簧钢和橡胶等。

6. 硬度:材料的硬度是指材料抵抗外部物体对其表面的压入的能力。

硬度指标可以通过洛氏硬度、布氏硬度、维氏硬度等来表示。

硬度高的材料具有较好的抗划伤和抗磨损性能。

7. 耐磨性:材料的耐磨性是指材料在长时间摩擦和磨损作用下的抗磨损能力。

耐磨性可以通过磨损试验来评价。

高耐磨性的材料具有较长的使用寿命。

总的来说,材料力学性能是评价材料使用性能的重要指标,不同材料的力学性能差异很大,选择合适的材料可以提高产品的使用寿命和安全性。

在材料工程中,需要根据具体应用要求和工作环境选择合适的材料,并通过力学性能的评价来保证材料的质量和可靠性。

材料的力学性能

材料的力学性能

材料的力学性能在一定的温度条件和外力作用下,材料的抗变形和抗断裂能力称为材料的力学性能。

锅炉和压力容器材料的常规力学性能主要包括强度、硬度、塑性和韧性。

(1)强度强度是指金属材料在外力作用下抵抗变形或断裂的能力。

强度指标是设计中确定许用应力的重要依据。

常用的强度指标为:屈服强度为s,或强度为0.2,抗拉强度为b。

高温工作时,应考虑蠕变极限为N,断裂强度为D。

(2)塑性是指金属材料在断裂前产生塑性变形的能力。

塑性指标包括:断裂伸长率,断裂后试样的相对伸长率;面积圆的减少,断裂点上横截面积的相对减少;和冷弯(角)α,即角测量标本时第一个裂纹在拉伸弯曲表面。

(3)韧性是指金属材料抵抗冲击载荷的能力。

韧性通常表达的冲击能量AK和冲击韧性值αk . k值或αk值不仅反映了材料的耐冲击,但也有些敏感材料的缺陷,可以敏感地反映材质的细微变化,宏观缺陷和微观结构。

而且AK对材料的脆性转变非常敏感,可以通过低温冲击试验来测试钢的冷脆性。

断裂韧度是衡量材料韧性的一个新的指标,它反映了材料的抗裂纹扩展能力。

(4)硬度,硬度是衡量材料硬度和柔软度的性能指标。

硬度测试的方法很多,原理不一样,硬度值和意义也不完全相同。

最常用的是静载荷压痕硬度试验,即布氏硬度(HB)、洛氏硬度(HRA、HRB、HRC)、维氏硬度(HV),其值代表材料表面抵抗坚硬物体冲击的能力。

肖氏硬度(HS)属于回弹硬度试验,其值代表金属的弹性变形功。

因此,硬度不是一个简单的物理量,而是反映材料的弹性、塑性、强度和韧性的综合性能指标。

力学性能是钢材最重要的使用性能,包括抗拉性能、塑性、韧性及硬度等。

(1)抗拉性能。

表示钢材抗拉性能的指标有屈服强度、抗拉强度、屈强比、伸长率、断面收缩率。

屈服是指钢材试样在拉伸过程中,负荷不再增加,而试样仍继续发生变形的现象。

发生屈服现象时的最小应力,称为屈服点或屈服极限,在结构设计时,一般以屈服强度作为设计依据。

抗拉强度是指试样拉伸时,在拉断前所承受的最大荷载与试样原横截面面积之比。

力学性能的主要指标有哪些

力学性能的主要指标有哪些

力学性能的主要指标有哪些引言力学性能是评价材料、结构或设备性能的重要指标之一。

在工程设计中,了解和掌握材料或结构的力学性能对于确保产品的安全性、可靠性以及寿命具有至关重要的作用。

本文将介绍力学性能的主要指标,并对其进行简要解释。

1. 强度强度是材料抵抗外部力量破坏的能力。

它通常用于描述材料的最大承载能力。

在工程设计中,强度是一个重要的指标,因为它可以帮助确定材料的适用范围和结构的安全性。

常见的强度指标有抗拉强度、屈服强度、剪切强度等。

•抗拉强度:抗拉强度是材料在受拉破坏之前能承受的最大拉力。

它是材料的机械性能之一,通常以标准试样的断裂拉伸为基础来测定。

•屈服强度:屈服强度是材料在受压或受拉过程中开始发生塑性变形的应力水平。

它表征了材料的延性和可塑性。

•剪切强度:剪切强度是材料抵抗剪切应力的能力。

它通常用于描述连接件、焊缝等材料在受剪切力作用下的破坏。

2. 刚度刚度是指材料或结构在承受外部载荷时抵抗变形的能力。

刚度可以反映材料或结构的硬度和刚性程度。

刚度通常用弹性模量来描述,常见的弹性模量有弹性系数、扭转模量、剪切模量等。

•弹性系数:弹性系数是一个表示材料抗弯曲弹性变形的量。

它与材料的刚度有关,常用的弹性系数有弹性模量、剪切模量等。

•扭转模量:扭转模量是材料在受扭剪时所变形的一种性能参数。

它是衡量材料或结构抵抗扭转变形的能力。

•剪切模量:剪切模量是衡量材料或结构在受剪切力作用下所变形的一个性能参数。

它描述了材料的剪切刚度。

3. 韧性韧性是材料在破坏前能够吸收外界能量的能力。

它是描述材料耐久性和抗冲击性的重要指标。

常见的韧性指标有冲击韧性、断裂韧性等。

•冲击韧性:冲击韧性是材料在受冲击或冲击载荷作用下能够吸收的能量。

它可以衡量材料在突然受到外部冲击时的承载能力。

•断裂韧性:断裂韧性是材料在承受载荷时抵抗破裂的能力。

它通常通过断裂韧性试验来进行评定。

4. 疲劳性能疲劳性能是材料在长期受到交变载荷时抵抗疲劳破坏的能力。

2机械制造基础5_材料的力学性能指标

2机械制造基础5_材料的力学性能指标

2机械制造基础5_材料的力学性能指标材料的力学性能指标是评价材料在受力条件下的表现的重要标准。

它们描述了材料的强度、韧性、硬度等性能,是衡量材料适用性的重要指标。

下面将就材料的力学性能指标进行详细的介绍。

1.强度:材料的强度是指材料抵抗外力破坏的能力。

常见的强度指标有抗拉强度、抗压强度、抗弯强度等。

抗拉强度是指材料在拉伸试验中发生拉断时所能承受的最大应力,在工程中用于估计材料的承载能力。

抗压强度是指材料在压缩试验中发生压碎时所能承受的最大应力。

抗弯强度是指材料在弯曲试验中发生折断时所能承受的最大应力。

2.延伸性:材料的延伸性指材料在受力时的延伸程度。

延伸性常用的指标有伸长率和断口收缩率。

伸长率是指材料在拉伸试验中的断口长度与原始长度之比,反映了材料的延伸性能。

断口收缩率是指材料断裂后断口的最窄处的宽度与原始横截面的宽度之比,常用来评估材料的塑性。

材料的延伸性与其粘体能力有着密切的关系,对于需要抵抗外力变形的材料来说,具有较好的延伸性能是非常重要的。

3.韧性:材料的韧性是指材料耗能能力的指标。

韧性体现了材料抗击穿、抗冲击、抗振动、抗疲劳等性能,通常用断裂韧性来描述。

断裂韧性指材料在拉伸过程中的变形能力。

韧性越大,材料的抗外力破坏能力越强。

衡量材料韧性的指标有冲击强度、断裂伸长率等。

4.硬度:材料的硬度是指材料抵抗局部外力的能力。

硬度的高低决定了材料的耐磨性、耐划伤性等性能。

常见的硬度测试方法有洛氏硬度、布氏硬度、维氏硬度等。

不同的硬度测试方法适用于不同类型的材料。

5.压缩模量:材料的压缩模量是指材料在受压力作用下产生相对变形的能力。

压缩模量越大,材料的抗压缩性能越好,即材料的体积变化能力越小。

综上所述,材料的力学性能指标包括强度、延伸性、韧性、硬度和压缩模量等。

每种指标都体现了材料在受力条件下的性能表现,不同的指标适用于不同类型的材料和不同的工程要求。

通过对这些指标的评价和分析,可以选择合适的材料,并对其使用性能进行预测和评估。

材料的力学性能

材料的力学性能

材料的力学性能材料的力学性能是指材料在外力作用下的力学行为和性能表现。

力学性能是材料工程中非常重要的一个指标,它直接关系到材料的使用寿命、安全性和可靠性。

材料的力学性能主要包括强度、韧性、硬度、塑性、蠕变等指标。

首先,强度是材料抵抗外力破坏的能力。

常见的强度指标包括抗拉强度、抗压强度、抗弯强度等。

抗拉强度是材料在拉伸状态下抵抗断裂的能力,抗压强度是材料在受压状态下抵抗破坏的能力,抗弯强度是材料在受弯曲状态下抵抗破坏的能力。

强度指标直接反映了材料的抗破坏能力,是衡量材料力学性能的重要参数。

其次,韧性是材料抵抗断裂的能力。

韧性是指材料在受外力作用下能够吸收大量的变形能量而不断裂的能力。

韧性好的材料具有良好的抗冲击性能和抗疲劳性能,能够在外力作用下保持良好的形状和结构完整性。

再次,硬度是材料抵抗划痕和穿刺的能力。

硬度是材料抵抗外界硬物划破或穿透的能力,是材料抵抗局部破坏的重要指标。

硬度高的材料通常具有较好的耐磨性和耐磨损性能,能够在恶劣环境下保持较长时间的使用寿命。

此外,塑性是材料在受力作用下发生形变的能力。

塑性好的材料能够在外力作用下产生较大的变形,具有良好的加工性能和成形性能。

材料的塑性直接影响到材料的加工工艺和成型工艺,是材料加工和成形的重要指标。

最后,蠕变是材料在长期受力作用下发生变形和破坏的现象。

蠕变是材料在高温、高压、长期受力作用下产生的一种渐进性变形和破坏,是材料在高温高应力环境下的重要性能指标。

综上所述,材料的力学性能是衡量材料质量和可靠性的重要指标,强度、韧性、硬度、塑性和蠕变是材料力学性能的重要方面。

在材料设计、选材和工程应用中,需要充分考虑材料的力学性能,选择合适的材料以满足工程需求。

同时,通过合理的材料处理和改性,可以改善材料的力学性能,提高材料的使用寿命和安全可靠性。

材料的力学性能强度、塑性

材料的力学性能强度、塑性

F
F
二、拉伸试验
0
拉伸试验是在静拉力的作用下,
1
对试样进行轴向拉伸,直至将试
样拉断,通过测量拉伸中力和试
样长之间的关系来判断材料的
性能。
0 2
实验仪器
0 3
万能材料试验机
2.拉伸原理
拉伸标准试样
标准试样直径为d,标 距长度为L。
标距L和直径d之间有 两种关系:L=5d或者 L=10d。
力-伸长曲线分析 力-伸长曲线 屈服 冷变形强化 颈缩 断裂
材料的力学性能指标:
强度、塑性、韧性、硬度、疲劳等。
一、强度和塑性
1. 强度:材料或构件在一定载荷下抵抗永久变形和断裂的能 力称为强度。(强度是材料整体抵抗变形和断裂的能力)
2. 弹性:物体受外力作用变形后,除去作用力时能恢复原来形 状的性质。
3. 塑性:在某种给定载荷下,材料产生永久变形的特性。一但 发生塑性形变则无法恢复。
202X
材料的力学性能




202X
材料的力学性能:
材料在不同环境中,承受载荷(静载荷、动载荷、交变载荷)时 表现出的性能, 主要为变形、破坏。
研究材料的力学性能的目的:
确定材料在变形和破坏情况下的一些重要性能指标;作为选择、设计、制造机 械零件或工具的主要依据,也是评判材料质量好坏的重要判据。
2.拉伸试验中的强度指标
1)屈服强度:屈服现象是指试样在试样过程中,外载荷不变的情况下依然 继续变形。
σs=Fs/S0 其中:Fs是试样屈服时承受的拉伸力(N);S0是试样原始横截面积(m2 )。
2)规定残余伸长应力:很多材料没有明显的屈服现象。规定残余伸长应力 是指试样卸载拉伸力后,标距部分的伸长量达到规定的原始标距长度百分比 时产生的拉力与试样横截面比值。

材料力学性能指标

材料力学性能指标

材料力学性能指标
材料力学性能指标是用于描述材料力学性能的数值指标,它们是评价材料在外力作用下变形和破坏行为的重要参数。

常见的材料力学性能指标包括强度、韧性、硬度、刚度等。

强度是材料抵抗本体破坏的能力,通常用屈服强度、抗拉强度、抗压强度等来衡量。

屈服强度是材料开始变形的强度,抗拉强度是在拉伸过程中材料破坏前所能承受的最大拉力,抗压强度是材料在受到压缩作用下承受的最大压力。

强度的高低决定了材料在受力环境下是否会发生破坏。

韧性是材料抵抗塑性变形能力的指标,一般用断裂延伸率和断裂韧性来描述。

断裂延伸率是材料在断裂前所能承受的最大拉伸变形与原始尺寸的比值,反映了材料在拉伸过程中的延展性;断裂韧性是材料在断裂前所能吸收的单位体积的能量,反映了材料的抗冲击能力。

硬度是材料抵抗划痕或穿刺的能力,常用硬度测试方法包括洛氏硬度、布氏硬度和维氏硬度等。

硬度的高低反映了材料的抗刮擦和抗磨损能力。

刚度是材料抵抗变形的能力,常用刚度系数衡量。

刚度系数是指材料在单位应力下的相对应变,刚度系数越大,材料的刚性越高,变形能力越小。

除了上述指标外,还有一些其他的材料力学性能指标,如耐疲劳性、蠕变性、弹性模量、破裂韧度等,这些指标可以根据具
体的材料性质和使用环境来选择。

综上所述,材料力学性能指标是评价材料性能的重要参数,不同的指标反映了材料在力学应力下的不同特性。

在工程设计和材料选择中,需要根据具体需求和使用环境来选择合适的材料力学性能指标,以保证材料在使用过程中具有良好的性能。

材料力学性能指标

材料力学性能指标

材料力学性能指标材料力学性能指标是评价材料力学性能优劣的重要标准,它直接影响着材料的使用范围和性能表现。

在工程实践中,材料力学性能指标的选择和评价对于材料的选用、设计和应用起着至关重要的作用。

本文将从材料的强度、韧性、硬度、塑性和疲劳性能等方面,对材料力学性能指标进行介绍和分析。

首先,材料的强度是衡量材料抵抗外部力量破坏的能力。

常见的强度指标包括抗拉强度、抗压强度、抗弯强度等。

抗拉强度是材料在拉伸状态下的最大承载能力,抗压强度是材料在受压状态下的最大承载能力,而抗弯强度则是材料在受弯状态下的最大承载能力。

这些强度指标直接反映了材料在外部力作用下的抵抗能力,是评价材料质量的重要依据。

其次,材料的韧性是衡量材料抵抗断裂的能力。

韧性指标包括断裂韧性、冲击韧性等。

断裂韧性是材料在受拉伸或受压状态下的抗断裂能力,而冲击韧性则是材料在受冲击载荷作用下的抗破坏能力。

韧性指标反映了材料在受外部冲击或载荷作用下的抗破坏能力,是评价材料耐用性和安全性的重要指标。

此外,材料的硬度是衡量材料抵抗划痕或压痕的能力。

硬度指标包括洛氏硬度、巴氏硬度、维氏硬度等。

这些硬度指标直接反映了材料表面的抗划痕和抗压痕能力,是评价材料表面耐磨性和耐磨损性的重要指标。

再次,材料的塑性是衡量材料抵抗变形的能力。

塑性指标包括屈服强度、延展率、收缩率等。

屈服强度是材料在受拉伸或受压状态下开始发生塑性变形的能力,延展率是材料在拉伸过程中的变形程度,而收缩率则是材料在冷却或凝固过程中的变形程度。

这些塑性指标反映了材料在受外部载荷作用下的塑性变形能力,是评价材料加工性和成形性的重要指标。

最后,材料的疲劳性能是衡量材料抵抗疲劳破坏的能力。

疲劳性能指标包括疲劳极限、疲劳寿命等。

疲劳极限是材料在循环载荷作用下的最大承载能力,疲劳寿命则是材料在循环载荷作用下的使用寿命。

这些疲劳性能指标反映了材料在循环载荷作用下的抗疲劳破坏能力,是评价材料使用寿命和安全性的重要指标。

材料的力学性能指标

材料的力学性能指标

材料的力学性能指标材料的力学性能指标是评价材料力学性能的重要标准,它直接影响着材料的使用性能和工程应用。

力学性能指标包括强度、韧性、硬度、塑性、疲劳性能等多个方面,下面将逐一介绍这些指标。

首先,强度是材料抵抗外部力量破坏的能力。

常见的强度指标包括拉伸强度、屈服强度、抗压强度等。

拉伸强度是材料在拉伸状态下抵抗破坏的能力,屈服强度是材料在受力到一定程度时开始产生塑性变形的能力,抗压强度是材料在受到压缩力作用下抵抗破坏的能力。

强度指标直接反映了材料的抗破坏能力,是衡量材料质量的重要标准之一。

其次,韧性是材料抵抗断裂的能力。

韧性指标包括断裂韧性、冲击韧性等。

断裂韧性是材料在受力作用下抵抗破坏的能力,冲击韧性是材料在受到冲击载荷时不发生破坏的能力。

韧性指标直接反映了材料的抗断裂能力,对于承受外部冲击载荷的材料尤为重要。

再次,硬度是材料抵抗局部变形的能力。

硬度指标包括洛氏硬度、巴氏硬度、维氏硬度等。

硬度指标直接反映了材料的抗变形能力,对于承受局部载荷的材料尤为重要。

此外,塑性是材料在受力作用下发生形变的能力。

塑性指标包括延伸率、收缩率、冷弯性等。

塑性指标直接反映了材料的可加工性和成型性,对于需要进行加工和成型的材料尤为重要。

最后,疲劳性能是材料在受到交变载荷作用下不发生破坏的能力。

疲劳性能指标包括疲劳极限、疲劳寿命等。

疲劳性能直接影响着材料在实际工程应用中的使用寿命,是衡量材料耐久性的重要标准之一。

综上所述,材料的力学性能指标是评价材料力学性能的重要标准,它直接影响着材料的使用性能和工程应用。

强度、韧性、硬度、塑性、疲劳性能等指标相互联系、相互影响,综合考虑这些指标可以全面评价材料的力学性能,为材料的选择和设计提供重要依据。

力学性能的五个指标

力学性能的五个指标

力学性能的五个指标力学性能是指材料在受力作用下的变形和破坏的特性。

在工程领域中,力学性能的评估是非常重要的,它直接影响着材料的可靠性和安全性。

本文将介绍力学性能的五个主要指标:强度、韧性、硬度、刚性和延展性。

1. 强度强度是材料抵抗外部应力破坏的能力。

常见的强度指标有屈服强度、抗拉强度和抗压强度等。

屈服强度是指材料在受力后开始发生塑性变形的应力值,抗拉强度和抗压强度分别表示材料在拉伸和压缩过程中承受的最大应力。

强度指标的高低直接反映了材料的机械强度,能够评估材料在受力时的稳定性和耐久性。

2. 韧性韧性是指材料在受力过程中能够吸收较大能量而不发生破坏的能力。

它代表了材料的抗破坏能力和承受外力后的变形能力。

通常,韧性指标包括延伸率和断裂韧性。

延伸率是指材料在拉伸过程中发生塑性变形前的变形量,而断裂韧性则表示材料在破坏前能够吸收的能量。

韧性指标的高低可以评估材料在受力下的变形程度和抗震性能。

3. 硬度硬度是指材料抵抗外界压力的能力。

它反映了材料的耐磨性和抗刮擦能力。

硬度可以通过硬度试验来表征,常见的硬度试验有布氏硬度试验、洛氏硬度试验和维氏硬度试验等。

硬度指标的高低可以评估材料的耐磨性、耐腐蚀性和耐磨损性。

4. 刚性刚性是指材料在受力时难以发生形变的性质。

它反映了材料的刚性和不可塑性。

刚性可以通过弹性模量来评估,弹性模量表示材料在受力下的应变程度。

刚性指标的高低可以评估材料在受力时的变形程度和稳定性。

5. 延展性延展性是指材料在受力下能够延展或伸长的性质。

它描述了材料的可塑性和可加工性。

延展性可以通过伸长率来评估,伸长率表示材料在断裂前拉伸变形的程度。

延展性指标的高低可以评估材料的可加工性和可塑性。

总之,强度、韧性、硬度、刚性和延展性是评估材料力学性能的重要指标。

不同应用领域对这五个指标的要求不同,因此在选用材料时需要根据具体应用场景来综合考虑这些指标的优劣。

在工程设计和材料选择过程中,合理利用这些指标可以提高产品的质量和可靠性。

材料力学性能

材料力学性能

材料力学性能材料力学性能是指材料在受力作用下所表现出来的性能,包括强度、刚度、韧性等指标。

材料力学性能的好坏直接影响到材料在工程应用中的可靠性和安全性。

本文将介绍材料力学性能的相关概念和测试方法,并分析其对材料应用的影响。

一、强度强度是指材料抵抗外力破坏的能力。

常见的强度指标包括抗拉强度、抗压强度、抗弯强度等。

抗拉强度是指材料在拉伸力作用下,抗拉破坏的能力。

抗压强度是指材料在受压力作用下,抗压破坏的能力。

抗弯强度是指材料在受弯力作用下,抗弯曲破坏的能力。

强度的测试方法主要包括拉伸试验、压缩试验、弯曲试验等。

材料的强度往往与其成分、结构和加工工艺有关。

例如,金属材料中添加合适的合金元素,可以提高其强度;陶瓷材料中控制晶粒尺寸和界面结合情况,可以提高其抗压强度;纤维增强复合材料中,纤维的分布和取向对抗弯强度有重要影响。

在工程设计中,需要根据具体应用情况选择合适的材料强度指标,并保证其符合设计要求,以确保结构的稳定性和安全性。

二、刚度刚度是指材料抵抗形变的能力,也可以理解为材料对外力作用下的变形程度。

常见的刚度指标包括弹性模量、切变模量等。

弹性模量是指材料在弹性变形范围内,单位应力下的应变,反映了材料的抗弹性变形能力。

刚度的测试方法主要包括拉伸试验、扭转试验等。

材料的刚度与其物理性质和结构密切相关。

高弹性模量的材料具有较高的刚度,其在受力下变形较小;而低弹性模量的材料具有较低的刚度,其在受力下变形较大。

在工程设计中,需要根据结构的刚度要求选择合适的材料,以确保结构的稳定性和正常运行。

三、韧性韧性是指材料抵抗断裂的能力,反映了材料在受力下的变形能力和吸能能力。

常见的韧性指标包括断裂韧性、冲击韧性等。

断裂韧性是指材料在断裂前所能吸收的能量。

冲击韧性是指材料在受冲击载荷下,能够抵抗破坏的能力。

韧性的测试方法主要包括冲击试验、拉伸试验等。

材料的韧性与其断裂机制和微观结构有关。

例如,金属材料中的晶界和位错可以有效地阻止裂纹扩展,提高韧性;聚合物材料中的交联结构和链段运动可以吸收能量,提高韧性。

材料的力学性能指标

材料的力学性能指标

材料的力学性能指标材料的力学性能指标是评价材料力学性能的重要参数,它直接影响着材料的使用性能和工程应用。

力学性能指标通常包括强度、硬度、韧性、塑性和疲劳性能等多个方面。

下面将对这些力学性能指标进行详细介绍。

首先,强度是材料抵抗外部载荷作用下变形和破坏的能力。

强度包括屈服强度、抗拉强度、抗压强度、抗弯强度等。

屈服强度是材料在拉伸过程中开始产生塑性变形的应力值,抗拉强度是材料抵抗拉伸破坏的能力,抗压强度是材料抵抗压缩破坏的能力,抗弯强度是材料抵抗弯曲破坏的能力。

强度指标反映了材料在外部载荷作用下的稳定性和安全性。

其次,硬度是材料抵抗外部划伤或压痕的能力。

硬度测试常用的方法有洛氏硬度、巴氏硬度、布氏硬度等。

硬度指标是评价材料抵抗表面破坏和耐磨损能力的重要参数,对于金属材料的选择和设计具有重要意义。

再次,韧性是材料抵抗断裂的能力。

韧性包括断裂韧性、冲击韧性、拉伸韧性等。

断裂韧性是材料在受到外部冲击或拉伸作用下抵抗破坏的能力,冲击韧性是材料在受到冲击载荷作用下不发生断裂的能力,拉伸韧性是材料在拉伸过程中能够吸收较大的变形能量而不断裂的能力。

韧性指标反映了材料在受到外部冲击或拉伸作用下的抗破坏能力和变形能量吸收能力。

此外,塑性是材料在受到外部加载作用下发生塑性变形的能力。

塑性包括延展性、收缩性、压缩变形等。

材料的塑性指标直接影响着材料的成形加工性能和变形加工性能。

最后,疲劳性能是材料在受到交变载荷作用下抵抗疲劳破坏的能力。

疲劳性能是评价材料在交变载荷下的抗疲劳寿命和抗疲劳破坏的能力,对于机械结构和零部件的设计和使用具有重要意义。

综上所述,材料的力学性能指标是评价材料力学性能的重要参数,它直接影响着材料的使用性能和工程应用。

强度、硬度、韧性、塑性和疲劳性能等多个方面的力学性能指标是相互关联、相互影响的,对于材料的选择、设计和应用具有重要意义。

在工程实践中,需要根据具体的工程要求和使用条件来选择合适的材料,并进行相应的力学性能测试和评价,以确保材料具有良好的力学性能和使用性能。

材料的常用力学性能有哪些

材料的常用力学性能有哪些

材料的常用力学性能有哪些材料的力学性能是指材料在不同环境(温度、介质、湿度)下,承受各种外加载荷(拉伸、压缩、弯曲、扭转、冲击、交变应力等)时所表现出的力学特征1强度强度是指材料在外力作用下抵抗塑性变形或断裂的能力。

强度用应力表示,其符号是(7,单位为MPa ,常用的强度指标有屈服强度和抗拉强度,通过拉伸试验测2塑性塑性是指材料在断裂前产生永久变形而不被破坏的能力。

材料塑性好坏的力学性能指标主要有伸长率和收缩率,值越大,材料的塑性就越好,通过拉伸试验可测3硬度硬度是指金属材料抵抗硬物压入其表面的能力。

材料的硬度越高,其耐磨性越好。

常用的硬度指标有布氏硬度(HBS)和洛氏硬度(HRC)。

1 )布氏硬度表示方法:布氏硬度用HBS (W)表示,S表示钢球压头,W表示硬质合金球压头。

规定布氏硬度表示为:在符号HBS或HBW前写出硬度值,符号后面依次用相应数字注明压头直径(mm )、试验力(N )和保持时间(s)。

如120 HBS10/1000/30 。

适用范围:HBS适用于测量硬度值小于450的材料,主要用来测定灰铸铁、有色金属和经退火、正火及调质处理的钢材。

根据经验,布氏硬度与抗拉强度之间有一定的近似关系:对于低碳钢,有芦0.36HBS ;对于高碳钢:有芦0.34HBS。

2 )洛氏硬度表示方法:常用HRA、HRB、HRC三种,其中HRC最为常用。

洛氏硬度的表示方法为:在符号前面写出硬度值。

如62HRC。

适用范围:HRC在20-70范围内有效,常用来测定淬火钢和工具钢、模具钢等材料,1HRC相当于10HBS。

4冲击韧性冲击韧性是指材料抵抗冲击载荷而不被破坏的能力,材料的韧性越好,在受冲击时越不容易断裂。

5疲劳强度疲劳强度是指材料经过无数次应力循环仍不断裂的最大应力。

6弹性在物理学和机械学上,弹性理论是描述一个物体在外力的作用下如何运动或发生形变。

在物理学上,弹性是指物体在外力作用下发生形变,当外力撤消后能恢复原来大小和形状的性质。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
力下体积变化。
= (V0-V1)/V0
2.1.2 材料的静载力学性能指标
静载力学性能是指材料在加载速度较慢 时表现出的力学性能。
(1) 静拉伸试验是工业上应用最广泛的力 学性能评定方法之一。试验时在试样两 端缓慢施加载荷,使其工作部分缓慢地 沿轴向伸长,直至拉断为止。
在应力较小时为弹性变形,外力去除后变 形消失。应力增大到一定程度后,外力去 除后变形也不能完全消失,而是有一部分 残余变形,即发生了塑性变形。材料不发 生塑性变形的最大应力为弹性极限σe。在 弹性变形阶段,应力—应变一般服从虎克 (Hook)定律,成正比关系,但应力达到某 一极限值σp后的短暂的弹性变形阶段应力 和应变偏离直线关系,σp是应力—应变成 正比关系的最大应力,称为比例极限。
静拉伸力学性能—— 应力应变曲线分析
不同材料的应力应变曲线
低碳钢
铝合金
不同材料的应力应变曲线
聚氯乙烯
无机材料
延伸率
材料的塑性是指材料发生塑性变形而不断裂的 能力。
延伸率(elongation percentage)δ定义为试样拉 断后工作部分长度的相对伸长量,即:
lb l0 100%
研究目的和意义
(1)正确地使用材料,保证构件在服役期内有 效运行。 (2)通过对材料力学性能的研究可以评价材料 合成与加工工艺的有效性,并通过控制材料的 加工工艺,提高材料的力学性能。 (3)在材料力学性能理论的指导下,采用新的 材料成分和结构,或新的加工和合成工艺,设 计和开发出新材料,以满足对材料的更高需求。
主要内容
2.1 材料的力学性能指标 2.2 材料的变形 2.3 材料的断裂 2.4 材料的断裂韧性 2.5 材料的疲劳 2.6 材料的抗冲击性能
概念
材料的力学性能是关于材料强度的一门 学科,即关于材料在外加载荷(外力)作用 下或载荷和环境因素(温度、介质和加载速 率)联合作用下表现的变形、损伤与断裂的 行为规律及其物理本质和评定方法的一门学 科。
低碳钢刚刚开始塑性变形时,应力达到某 一水平后突然降低,并在较低的水平上几 乎维持不变,但应变持续增大,这一现象 叫屈服。出现屈服的应力高限称为上屈服 点,应力低限称为下屈服点。对有屈服现 象的材料,以其下屈服点为屈服强度 (yield strength),以σs表示。屈服后材料 发生加工硬化,即随着塑性变形量的增大 应力持续增大。但应力增大到一定水平后 试样开始发生颈缩,即试样的变形不再均 匀分布在整个工作长度上,而是集中发生 在中间的某一部分,该部分试样变细并大 量变形最后导致断裂。颈缩后虽然试样的 名义应力降低,但变形持续增大,最后断 裂。试样在拉断前可承受的最大名义应力 称为材料的抗拉强度(tensile strength),以 σb表示。
2.1 材料的力学性能指标
2.1.1 应力和应变 2.1.2 材料的静载力学性能指标 2.1.3 硬度
2.1.1 应力和应变
应力(stress):材料单位面积上所受的附加 内力,其数值等于单位面积上所受的外力。
= F/A
式中, 为应力,F为外力,A为面积。
国际单位:N/m2,Pa
工程应力、名义应力(nominal (A0:起始面积)
抗剪强度
扭转条件强度极限τb通常也称为抗剪强 度,其定义为:
b

Mb W
式中,W为试样断面系数,由试样断面
的形状和尺寸决定。扭矩增大到某一极
限值Mb时材料断裂。
扭转切应变
扭转切应变γb可代表材料的塑性,其计 算公式为:
b

bd0
2l0
100%
式中,φb为断裂后残余的扭转角;d0为 试样直径。
(2)扭转试验
材料的塑性变形从本质上是由切应力引起的。 扭转试验可更真实地反映材料在切应力下的行 为。
扭转试验一般用圆柱形试样在扭转试验机上进 行。试验机自动记录每一时刻施加于试样上的 扭矩M和扭转角θ(在试样标距l0上的两个端面 间的相对扭转角)绘制成M-θ曲线,求出材料的 扭转强度、切弹性模量和剪切应变.。
stress):
0
=
F/A0
真实应力(real stress): T = F/A (Aቤተ መጻሕፍቲ ባይዱ真实面积)
应力的方向规定:
拉应力为正,压应力为负。 剪切应力方向规定:
体积元上任意面上的法向应 力与坐标轴的正方向相同, 则该面上的剪切应力指向 坐标轴的正方向者为正; 如果该面上的法向应力指 向坐标轴的负方向,则剪 切应力指向坐标轴的正方 向者为负。
试样上的最大弯矩:M最大=PL/4,P为载荷, L为两支持点的距离。
根据最大弯矩值求弯曲强度。对弯断的脆性材 料只求断裂时的抗弯强度:
bb

Mb W
式中,Mb为断裂时的最大弯矩;W为试样截 面系数,由试样的截面形状和尺寸决定。
2.1.3 硬度
定义:硬度是衡量材料软硬程度的一种力 学性能指标,是在给定载荷条件下,材料 对形成表面压痕(刻痕)的抵抗能力。
l0
式中,l0为试样工作部分的初始长度;lb为试
样工作部分断裂后的长度。δ越大,断裂前的 伸长率越大,代表塑性变形能力越大。
断面收缩率
表征塑性的另一指标为断面收缩率 (contraction of area)
其定义为试样断裂后的截面收缩率,即:
S0 Sb 100%
S0
式中,S0和Sb分别是试样的初始截面积 和断裂后的最小截面积。
应变(strain):用来表征材料受力时 内部各质点之间的相对位移。
根据受力不同分为: 拉伸应变 剪切应变 压缩应变
拉伸应变:同一直
线上拉应力下发生的 形变。
= (l1-l0)/l0 =l/l0
剪切应变:平行剪
切应力下发生的形变。
= tg
压缩应变:均匀应
(1)莫氏硬度
(3) 弯曲试验
弯曲试验不仅便于评价脆性和低塑性 材料的塑性,也更接近这些构件的实 际工作条件,因此弯曲试验也是工程 中常用的材料性能评价方法。但对塑 性材料的弯曲试验不能导致材料破坏。
弯曲试验一般用圆柱或方条形试样在 万能试验机上进行。三点弯曲试验操 作简便,因此在工程中的应用较广泛。
抗弯强度
相关文档
最新文档