2018年北师大附属实验中学七下数学期中测验试题 (答案版)

合集下载

2017~2018学年北京西城区北京师范大学附属实验中学分校初一下学期期中数学试卷——答案

2017~2018学年北京西城区北京师范大学附属实验中学分校初一下学期期中数学试卷——答案
选择题
1. 【答案】A 2. 【答案】B 3. 【答案】D 4. 【答案】B 5. 【答案】C 6. 【答案】D 7. 【答案】C 8. 【答案】C 9. 【答案】D 10. 【 【答案】3 < x < 11 13. 【答案】75∘ 14. 【答案】√5,π 15. 【答案】 1
27. 【答案】(1)40∘ (2)证明见解析. (3) 1 画图见解析.
2∘ 2∠AP H = 360 + ∠A − ∠AC B
28. 【答案】(1)c、d
(2)m < 4 .
3
(3)m ⩽ 0
填空题
29. 【答案】1.29 2.673
30. 【答案】(1)1.3 2.2
(2)7 ⩽ x < 9 (3)4.5 ⩽ x < 6.5
25. 【答案】(1)画图见解析. (2)画图见解析. (3)>
26. 【答案】(1)1套立体模型的价格为120元,1套三角板的价格为90元. (2)学校有三种购买方案,具体如下: 方案一,购买41套立体模型,39套三角板. 方案二,购买42套立体模型,38套三角板. 方案三,购买43套立体模型,37套三角板.
操作题
31. 【答案】(1)画图见解析. (2)画图见解析.
3
16. 【答案】如果两条直线平行
17. 【答案】55∘
18. 【答案】 、 、 (−4, 2) (−2, 2) (−1, 1)
19. 【答案】110∘或10∘
20. 【答案】两直线平行,内错角相等
解答题
21. 【答案】√3.
22. 【答案】证明见解析.
23. 【答案】−1 ⩽ x < 3.
24. 【答案】50∘;三角形内角和为180∘;AC B;25∘;角平分线的性质;DC B;25∘;两直线平行,内错角相等.

北师大版初中数学七年级下册期中测试卷(较易)(含答案解析)

北师大版初中数学七年级下册期中测试卷(较易)(含答案解析)

北师大版初中数学七年级下册期中测试卷(较易)(含答案解析)考试范围:第一.二.三单元; &nbsp; 考试时间:120分钟;总分:120分,第I卷(选择题)一、选择题(本大题共12小题,共36.0分。

在每小题列出的选项中,选出符合题目的一项)1. 今天数学课上,老师讲了单项式乘多项式,放学回到家,小明拿出课堂笔记复习,发现一道题:−3xy(4y−2x−1)=−12xy2+6x2y+▫,▫的地方被钢笔水弄污了,你认为▫内应为( )A. 3xyB. −3xyC. −1D. 12. 下列计算中正确的是( )A. (−a n)2=a n+2B. (−a3)4=(−a4)3C. (a4)4=a4⋅a4D. (a4)4=(a2)83. 如图,用尺规作图作∠AOC=∠AOB的第一步是以点O为圆心,以任意长为半径画弧①,分别交OA、OB于点E、F,那么第二步的作图痕迹②的作法是( )A. 以点F为圆心,OE长为半径画弧B. 以点F为圆心,EF长为半径画弧C. 以点E为圆心,OE长为半径画弧D. 以点E为圆心,EF长为半径画弧4. 如图,∠1=120°,要使a//b,则∠2的大小是( )A. 60°B. 80°C. 100°D. 120°5. 如图所示,已知AB//EF,那么∠BAC+∠ACE+∠CEF=( )A. 180°B. 270°C. 360°D. 540°6. 变量x与y之间的关系是y=−1x2+1,当自变量x=2时,因变量y的值是( )2A. −2B. −1C. 1D. 27. 如图是某市一天的温度变化曲线图,通过该图可知,下列说法错误的是( )A. 这天15点时的温度最高B. 这天3点时的温度最低C. 这天最高温度与最低温度的差是13℃D. 这天21点时的温度是30℃8. 甲、乙两人在100米赛跑中,路程s(m)与时间t(s)的关系如图所示,根据图象,下列结论错误的是( )A. 甲比乙先到达终点B. 甲、乙速度相差2m/sC. 甲的速度为10m/sD. 乙跑完全程需12s9. 计算x2⋅x3结果是( )A. 2x5B. x5C. x6D. x810. 在等式x2⋅(−x)⋅=x11中,括号内的代数式为( )A. x8B. (−x)8C. −x9D. −x811. 如图,DE//BC,BE平分∠ABC,若∠1=70°,则∠CBE的度数为( )A. 20°B. 35°C. 55°D. 70°12. 下图是统计一位病人的体温变化图,则这位病人在16时的体温约是( )A. 37.8℃B. 38℃C. 38.7℃D. 39.1℃第II卷(非选择题)二、填空题(本大题共4小题,共12.0分)13. 一个长方体的长,宽,高分别是3x−4,2x和x,则它的表面积是.14. 已知直线m//n,将一块含30°角的直角三角板ABC,按如图方式放置(∠ABC=30°),其中A,B两点分别落在直线m,n上,若∠1=18°,则∠2的度数为______15. 如图,已知直线AB与直线CD相交于点O,EO⊥CD,垂足为O.若∠AOC=35°,则∠BOE 的度数为____ ∘.16. 小颖画了一个边长为5cm的正方形,如果将正方形的边长增加x(cm),那么面积的增加值y(cm2)与边长的增加值x(cm)之间的关系式为.三、解答题(本大题共9小题,共72.0分。

北师大版七年级下学期期中考试数学试卷(带答案)

北师大版七年级下学期期中考试数学试卷(带答案)

七年级下学期期中考试数学试卷满分:150分考试用时:120分钟范围:第一章《整式的乘除》~第三章《变量之间的关系》班级姓名得分卷Ⅰ一、选择题(本大题共15小题,每小题3分,共45.0分。

在每小题的四个选项中,只有一个选项正确,请把你认为正确的选项填涂在相应的答题卡上)1.某学习小组做了一个试验:从一幢100m高的楼顶随手放下一只苹果(此试验在安全的环境下进行),测得有关数据如下:下落时间t(s)1234下落高度ℎ(m)5204580则下列说法错误的是()A. 苹果每秒下落的高度不变B. 苹果每秒下落的高度越来越长C. 苹果下落的速度越来越快D. 可以推测,苹果落到地面的时间不超过5秒2.下列图形中,∠1与∠2是同旁内角的是()A. B.C. D.3.x n−1⋅()=x n+1,括号内应填的代数式是()A. x n+1B. x n−1C. x2D. x4.冠状病毒的直径约为80∼120纳米,1纳米=1.0×10−9米.若用科学记数法表示110纳米,则正确的结果是()A. 1.1×10−9米B. 1.1×10−8米C. 1.1×10−7米D. 1.1×10−6米5.如果x2+kx+4恰好是另一个整式的平方,那么k的值为()A. 2B. 4C. −4D. ±46.如图,已知两直线l1与l2被第三条直线l3所截,下列等式一定成立的是()A. ∠1=∠2B. ∠2=∠3C. ∠2+∠4=180∘D. ∠1+∠4=180∘7.一跳远运动员跳落沙坑时的痕迹如图所示,则表示运动员成绩的是()A. 线段AP1的长B. 线段BP1的长C. 线段CP2的长D. 线段CP3的长8.一名老师带领x名学生到动物园参观,已知成人票每张30元,学生票每张10元.设门票的总费用为y元,则y与x的关系为()A. y=20xB. y=40xC. y=10+30xD. y=10x+309.张大伯出去散步,从家走了20min,到了一个离家900m的阅报亭,看了10min报纸后,用了15min返回到家,如图图象中能表示张大伯离家时间与距离之间关系的是()A. B.C. D.10.在一条笔直的航道上依次有甲、乙、丙三个港口,一艘船从甲出发,沿直线匀速行驶经过乙港驶向丙港,最终达到丙港,设行驶x(ℎ)后,与乙港的距离为y(km),y与x的关系如图所示,则下列说法正确的是()A. 甲港与丙港的距离是90kmB. 船在中途休息了0.5ℎC. 船的行驶速度是45km/ℎD. 从乙港到达丙港共花了1.5ℎ11.如图,2条直线相交最多有1个交点,3条直线相交最多有3个交点,4条直线相交最多有6个交点,...,按照此规律,n条直线相交最多有()个交点.A. n(n−1)2B. n(n+1)2C. (n−1)(n+1)2D. 无法确定12.若(−2x+a)(x−1)展开后的结果中不含x的一次项,则()A. a=1B. a=−1C. a=−2D. a=213.a表示两个相邻整数的平均数的平方,b表示这两个相邻整数平方的平均数,那么a与b的大小关系是()A. a>bB. a≥bC. a≤bD. a<b14.如图所示,同位角共有()A. 6对B. 8对C. 10对D. 12对15.一辆汽车由韶关匀速驶往广州,下列图象中大致能反映汽车距离广州的路程S(千米)和行驶时间t(小时)的关系的是()A. B. C. D.卷Ⅱ二、填空题(本大题共5小题,共25.0分)16.鸡蛋每个0.8元,那么所付款y(元)与所买鸡蛋个数x(个)之间的函数解析式是______.17.如图,点O在直线l上,当∠1与∠2满足条件时,OA⊥OB.18.用科学记数法表示0.0000109为__________________.19.观察下列图形,2条直线相交,有1个交点,3条直线相交最多有3个交点,4条直线相交最多有6个交点,…,像这样,10条直线相交最多有______个交点.20.根据图中的程序,当输入x=3时,输出的结果y=.三、解答题(本大题共7小题,共80.0分)a),其中a、b21.(8分)先化简,再求值:[(a−b)2+(2a+b)(1−b)−b]÷(−12满足|a+1|+(2b−1)2=0.22.(8分)如图,已知∠AOB=50°,OC平分∠AOB.(1)请在图中∠AOB的外部画出它的一个余角∠BOD;(2)求∠COD的度数.23.(10分)王教授和他的孙子小强星期天一起去爬山,来到山脚下,小强让爷爷先上山,然后追赶爷爷,如图所示,两条线段分别表示小强和爷爷离开山脚的距离(米)与爬山所用时间(分)的关系(小强开始爬山时开始计时),请看图回答下列问题:(1)爷爷比小强先上了多少米?山顶离山脚多少米?(2)谁先爬上山顶?小强爬上山顶用了多少分钟?(3)图中两条线段的交点表示什么意思?这时小强爬山用时多少?离山脚多少米?24.(12分)已知a x⋅a y=a5,a x÷a y=a.(1)求x+y和x−y的值;(2)求x2+y2的值.25.(12分)如图所示,l1,l2,l3相交于点O,∠1=∠2,∠3:∠1=8:1,求∠4的度数.26.(14分)某单位急需用车,但又不准备买车,他们准备和一个体车主或一国营出租车公司其中的一家订立月租车合同.设汽车每月行驶x千米,应付给个体车主月租费是y1元,应付给出租车公司的月租费是y2元,y1与y2分别与x之间的数量关系图象(两条射线)如图所示,观察图象回答下列问题:(1)每月行驶的路程在什么范围内时,租个体车主的车合算?(2)每月行驶的路程等于多少时,两家车的费用相同?(3)如果这个单位估计每月行驶的路程为2300千米,那么这个单位租哪家的车合算27.(16分)如图,直线AB与CD相交于点O,OE⊥AB,OF⊥CD.(1)图中∠AOF的余角是;(把符合条件的角都填出来)(2)图中除直角相等外,还有相等的角,请写出三对: ①; ②; ③;(3) ①如果∠AOD=160∘,那么根据可得∠BOC=; ②如果∠AOD=4∠EOF,求∠EOF的度数.答案1.A2.C3.C4.C5.D6.D7.B8.D9.C10.D11.A12.C13.D14.C15.B16.y=0.8x17.∠1+∠2=90∘18.1.09×10−519.4520.2a),21.解:原式=(a2−2ab+b2+2a−2ab+b−b2−b)÷(−12a),=(a2−4ab+2a)÷(−12=−2a+8b−4,∵|a+1|+(2b−1)2=0,又∵|a+1|≥0,(2b−1)2≥0,∴a=−1.b=1,2∴原式=2+4−4=2.22.解:(1)如图:(2)∵∠AOB=50°,OC平分∠AOB,∴∠AOC=∠BOC=25°,又∵∠AOB与∠BOD互余,∴∠AOB+∠BOD=90°,∴∠BOD=90°−50°=40°,∴∠COD=∠COB+∠BOD=25°+40°=65°.故答案为:65°.23.解:(1)由图可知,爷爷比小强先上了100米,当小强爬了10分钟,爬了300米∴小强的速度300÷10=30米/分,∴山高30×15=450米;(2)小强先到山顶,小强爬了15分钟;(3)图中两条线段的交点表示小强和爷爷相遇的时候,这时小强爬山用时10分钟,离山脚300米.24.解:(1)x+y=5,x−y=1.(2)x2+y2=13.25.解:设∠1=∠2=x∘,则∠3=8x∘.由∠1+∠2+∠3=180∘,得10x=180.解得x=18.所以∠1=∠2=18∘.所以∠4=∠1+∠2=36∘.26.解:(1)每月行驶的路程小于1500千米时,租个体车主的车合算.(2)每月行驶的路程等于1500千米时,两家车的费用相同.(3)由2300>1500可知,如果这个单位估计每月行驶的路程为2300千米,那么这个单位租出租车公司的车合算.27.解:(1)∠EOF,∠BOD,∠AOC(2)(答案不唯一) ①∠AOC=∠EOF ②∠AOC=∠BOD ③∠DOE=∠AOF(3) ①对顶角相等160∘ ②因为∠AOC=∠EOF,所以∠AOD=4∠EOF=4∠AOC.又因为∠AOC+∠AOD=180∘,所以5∠AOC=180∘.所以∠EOF=∠AOC=36∘.。

北师大版2017-2018学年七年级(下)数学期中模拟题(含答案)

北师大版2017-2018学年七年级(下)数学期中模拟题(含答案)

北师版七年级数学期中模拟试卷题号一二三总分得分第I卷(选择题)评卷人得分一、选择题(每小题3分,共30分)1.计算a5•a3正确的是()A.a2B.a8C.a10D.a15 2.若(x﹣1)0=1成立,则x的取值范围是()A.x=﹣1 B.x=1 C.x≠0D.x≠1 3.若(2a+3b)()=4a2﹣9b2,则括号内应填的代数式是()A.﹣2a﹣3b B.2a+3b C.2a﹣3b D.3b﹣2a 4.计算(﹣4x3+12x2y﹣7x3y2)÷(﹣4x2)等于()A.x+74xy2B.x﹣3y+74xy2C.x2﹣3y+74xy2D.x﹣3y+47x5.如图,下列说法中不正确的是()A.∠1和∠3是同旁内角B.∠2和∠3是内错角C.∠2和∠4是同位角D.∠3和∠5是对顶角6.两条直线相交于一点,则共有对顶角的对数为()A.1对B.2对C.3对D.4对7.如图,现要从村庄A修建一条连接公路PQ的小路,过点A作AH⊥PQ于点H,则这样做的理由是()A.两点之间线段最短B.两点确定一条直线C.垂线段最短D.过一点可以作无数条直线8.下列说法中,正确的是()A.两条不相交的直线叫做平行线B.一条直线的平行线有且只有一条C.若直线a∥b,a∥c,则b∥c D.若两条线段不相交,则它们互相平行9.下列图形中,已知∠1=∠2,则可得到AB∥CD的是()A.B.C.D.10.周末小丽从家里出发骑单车去公园,因为她家与公园之间是一条笔直的自行车道,所以小丽骑得特别放松.途中,她在路边的便利店挑选一瓶矿泉水,耽误了一段时间后继续骑行,愉快地到了公园.图中描述了小丽路上的情景,下列说法中错误的是()A.小丽从家到达公园共用时间20分钟B.公园离小丽家的距离为2000米C.小丽在便利店时间为15分钟D.便利店离小丽家的距离为1000米第II卷(非选择题)评卷人得分二、填空题(每小题3分,共18分)11.计算:(﹣ab)2÷a2b=.12.若(x﹣ay)(x+ay)=x2﹣16y2,则a=.13.直线AB、CD、EF交于点O,则∠1+∠2+∠3=度.14.如图,圆锥的底面半径r=2cm,当圆锥的高h由小到大变化时,圆锥的体积V也随之发生了变化,在这个变化过程中,变量是(圆锥体积公式:V=13πr2h)15.已知一个长方形的长为5cm,宽为xcm,周长为ycm,则y与x之间的函数表达式为.16.在如图所示的三个函数图象中,近似地刻画如下a、b、c三个情境:情境a:小芳离开家不久,发现把作业本忘在家里,于是返回了家里找到了作业本再去校;情境b:小芳从家出发,走了一段路程后,为了赶时间,以更快的速度前进.情境c:小芳从家出发,到校上,放回到了家.情境a,b,c所对应的函数图象分别是(按次序填写a,b,c对应的序号)评卷人得分三、解答题(共8小题,共62分)17.(6分)计算:(1)﹣(a2b)3+2a2b•(﹣3a2b)2(2)(a+2b﹣c)(a﹣2b+c)18.(8分)观察下列关于自然数的等式:(1)32﹣4×12=5(1)(2)52﹣4×22=9(2)(3)72﹣4×32=13(3)…根据上述规律解决下列问题:(1)完成第五个等式:112﹣4×2=;(2)写出你猜想的第n个等式(用含n的式子表示),并验证其正确性.19.(8分)如图,某市有一块长为(3a+b)米,宽为(2a+b)米的长方形地块,规划部门计划将阴影部分进行绿化,中间将修建一座雕像,则绿化的面积是多少平方米?并求出当a=3,b=2时的绿化面积.20.(10分)如图,直线AB、CD相交于点O,OE平分∠AOD,∠FOC=90°,∠1=40°求:(1)∠3的度数;(2)求∠2的度数.21.(10分)如图,直线AB与CD相交于点O,OE⊥A B.(1)如果∠AOD=140°,那么根据,可得∠BOC=度.(2)如果∠EOD=2∠AOC,求∠AOD的度数.22.(6分)某药物研究单位试制成功一种新药,经测试,如果患者按规定剂量服用,那么服药后每毫升血液中含药量y(微克)随时间x(小时)之间的关系如图所示,如果每毫升血液中的含药量不小于20微克,那么这种药物才能发挥作用,请根据题意回答下列问题:(1)服药后,大约分钟后,药物发挥作用.(2)服药后,大约小时,每毫升血液中含药量最大,最大值是微克;(3)服药后,药物发挥作用的时间大约有小时.23.(6分)探究:如图①,直线AB、BC、AC两两相交,交点分别为点A、B、C,点D在线段AB上,过点D作DE∥BC交AC于点E,过点E作EF∥AB交BC于点F.若∠ABC=40°,求∠DEF的度数.请将下面的解答过程补充完整,并填空(理由或数式)解:∵DE∥BC,∴∠DEF=.()∵EF∥AB,∴=∠AB C.()∴∠DEF=∠AB C.(等量代换)∵∠ABC=40°,∴∠DEF=°.应用:如图②,直线AB、BC、AC两两相交,交点分别为点A、B、C,点D在线段AB的延长线上,过点D作DE∥BC交AC于点E,过点E作EF∥AB交BC于点F.若∠ABC=60°,则∠DEF=°.24.(10分)我们知道对于一个图形,通过不同的方法计算图形的面积可以得到一个数等式.例如:由图1可得到(a+b)2=a2+2ab+b2.(1)写出由图2所表示的数等式:;写出由图3所表示的数等式:;(2)利用上述结论,解决下面问题:已知a+b+c=11,bc+ac+ab=38,求a2+b2+c2的值.参考答案第I卷(选择题)一、选择题(每小题3分,共30分)1.计算a5•a3正确的是()A.a2B.a8C.a10D.a15【答案】B.【解析】试题解析:a5•a3=a5+3=a8.故选:B.2.若(x﹣1)0=1成立,则x的取值范围是()A.x=﹣1 B.x=1C.x≠0D.x≠1【答案】D【解析】试题解析:由题意可知:x﹣1≠0,x≠1故选:D.3.若(2a+3b)()=4a2﹣9b2,则括号内应填的代数式是()A.﹣2a﹣3b B.2a+3b C.2a﹣3b D.3b﹣2a【答案】C【解析】试题解析:∵4a2﹣9b2=(2a+3b)(2a﹣3b),∴(2a+3b)(2a﹣3b)=4a2﹣9b2,故选:C.4.计算(﹣4x3+12x2y﹣7x3y2)÷(﹣4x2)等于()A.x+74xy2B.x﹣3y+74xy2C.x2﹣3y+74xy2D.x﹣3y+47x【答案】B【解析】试题解析:(﹣4x3+12x2y﹣7x3y2)÷(﹣4x2)=x﹣3y+74xy2.故选:B.5.如图,下列说法中不正确的是()A.∠1和∠3是同旁内角B.∠2和∠3是内错角C.∠2和∠4是同位角D.∠3和∠5是对顶角【答案】C6.两条直线相交于一点,则共有对顶角的对数为()A.1对B.2对C.3对D.4对【答案】B【解析】试题解析:如图所示,∠1与∠2,∠3与∠4都是对顶角,故两条直线相交于一点,则共有对顶角的对数为2对.故选:B.#网7.如图,现要从村庄A修建一条连接公路PQ的小路,过点A作AH⊥PQ于点H,则这样做的理由是()A.两点之间线段最短B.两点确定一条直线C.垂线段最短D.过一点可以作无数条直线【答案】C【解析】试题解析:∵从直线外一点到这条直线上各点所连线段中,垂线段最短,∴过点A作AH⊥PQ于点H,这样做的理由是垂线段最短.21世纪教育网故选:C.8.下列说法中,正确的是()A.两条不相交的直线叫做平行线B.一条直线的平行线有且只有一条C.若直线a∥b,a∥c,则b∥c D.若两条线段不相交,则它们互相平行【答案】C9.下列图形中,已知∠1=∠2,则可得到AB∥CD的是()A.B.C.D.【答案】B【解析】试题解析:A、∠1和∠2的是对顶角,不能判断AB∥CD,此选项不正确;B、∠1和∠2的对顶角是同位角,又相等,所以AB∥CD,此选项正确;C、∠1和∠2的是内错角,又相等,故AC∥BD,不是AB∥CD,此选项错误;D、∠1和∠2互为同旁内角,同旁内角相等两直线不平行,此选项错误.故选:B.10.周末小丽从家里出发骑单车去公园,因为她家与公园之间是一条笔直的自行车道,所以小丽骑得特别放松.途中,她在路边的便利店挑选一瓶矿泉水,耽误了一段时间后继续骑行,愉快地到了公园.图中描述了小丽路上的情景,下列说法中错误的是()A.小丽从家到达公园共用时间20分钟B.公园离小丽家的距离为2000米C.小丽在便利店时间为15分钟D.便利店离小丽家的距离为1000米【答案】C第II卷(非选择题)评卷人得分二、填空题(每小题3分,共18分)11.计算:(﹣ab)2÷a2b=.【答案】b【解析】试题解析:原式=a2b2÷a2b=b故答案为:b12.若(x﹣ay)(x+ay)=x2﹣16y2,则a=.【答案】±4【解析】试题解析:∵(x﹣ay)(x+ay)=x2﹣(ay)2(x﹣ay)(x+ay)=x2﹣16y2,∴a2=16,∴a=±4.13.直线AB、CD、EF交于点O,则∠1+∠2+∠3=度.【答案】18014.如图,圆锥的底面半径r=2cm,当圆锥的高h由小到大变化时,圆锥的体积V也随之发生了变化,在这个变化过程中,变量是(圆锥体积公式:V=πr2h)【答案】V、h.【解析】试题解析:圆锥的底面半径是2cm,当圆锥的高由小到大变化时,圆锥的体积也随之发生了变化.故答案为:V,h.点睛:主要考查了函数的定义.函数的定义:在一个变化过程中,有两个变量x,y,对于x的每一个取值,y都有唯一确定的值与之对应,则y是x的函数,x叫自变量.15.已知一个长方形的长为5cm,宽为xcm,周长为ycm,则y与x之间的函数表达式为.【答案】y=2x+10【解析】试题解析:一个长方形的长为5c m,宽为xcm,周长为ycm,则y与x之间的函数表达式为y=2x+10;故答案为:y=2x+1016.在如图所示的三个函数图象中,近似地刻画如下a、b、c三个情境:情境a:小芳离开家不久,发现把作业本忘在家里,于是返回了家里找到了作业本再去校;情境b:小芳从家出发,走了一段路程后,为了赶时间,以更快的速度前进.情境c:小芳从家出发,到校上,放回到了家.情境a,b,c所对应的函数图象分别是(按次序填写a,b,c对应的序号)【答案】③①②评卷人得分三、解答题(共8小题,共72分)17.(6分)计算:(1)﹣(a2b)3+2a2b•(﹣3a2b)2(2)(a+2b﹣c)(a﹣2b+c)【答案】(1) 17a6b3;(2)a2﹣4b2+4bc﹣c2;21世纪教育网18.(8分)观察下列关于自然数的等式:(1)32﹣4×12=5(1)(2)52﹣4×22=9(2)(3)72﹣4×32=13(3)…根据上述规律解决下列问题:(1)完成第五个等式:112﹣4×2=;(2)写出你猜想的第n个等式(用含n的式子表示),并验证其正确性.【答案】(1)5;21. (2)(2n+1)2﹣4n2=4n+1.【解析】试题分析:(1)根据前三个找出规律,写出第五个等式;(2)用字母表示变化规律,根据完全平方公式计算,即可证明.试题解析:(1)112﹣4×52=21,故答案为:5;21;(2)第n个等式为:(2n+1)2﹣4n2=4n+1,证明:(2n+1)2﹣4n2=4n2+4n+1﹣4n2=4n+1.19.(8分)如图,某市有一块长为(3a+b)米,宽为(2a+b)米的长方形地块,规划部门计划将阴影部分进行绿化,中间将修建一座雕像,则绿化的面积是多少平方米?并求出当a=3,b=2时的绿化面积.【答案】63.点睛:本题考查的是多项式乘多项式,多项式与多项式相乘的法则:多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加.20.(10分)如图,直线AB、CD相交于点O,OE平分∠AOD,∠FOC=90°,∠1=40°求:(1)∠3的度数;(2)求∠2的度数.【答案】(1)65°.【解析】试题分析:(1)根据平角为180度可得∠3=180°﹣∠1﹣∠FOC(2)根据对顶角相等可得∠AOD的度数,然后再根据角平分线定义进行计算即可试题解析:(1)∵∠AOB=180°,∴∠1+∠3+∠COF=180°,∵∠FOC=90°,∠1=40°,∴∠3=180°﹣∠1﹣∠FOC=50°,(2)∠BOC=∠1+∠FOC=130°,∴∠AOD=∠BOC=130°,∵OE平分∠AOD,∴∠2=12∠AOD=65°.21.(10分)如图,直线AB与CD相交于点O,OE⊥A B.(1)如果∠AOD=140°,那么根据,可得∠BOC=度.(2)如果∠EOD=2∠AOC,求∠AOD的度数.【答案】(1)对顶角相等,140°.(2)150°.故答案为:(1)对顶角相等,140°.(2)150°.22.(6分)某药物研究单位试制成功一种新药,经测试,如果患者按规定剂量服用,那么服药后每毫升血液中含药量y(微克)随时间x(小时)之间的关系如图所示,如果每毫升血液中的含药量不小于20微克,那么这种药物才能发挥作用,请根据题意回答下列问题:(1)服药后,大约分钟后,药物发挥作用.(2)服药后,大约小时,每毫升血液中含药量最大,最大值是微克;(3)服药后,药物发挥作用的时间大约有小时.【答案】(1)20,(2)2,80;(3)6.7.23.(6分)探究:如图①,直线AB、BC、AC两两相交,交点分别为点A、B、C,点D在线段AB上,过点D作DE∥BC交AC于点E,过点E作EF∥AB交BC于点F.若∠ABC=40°,求∠DEF的度数.请将下面的解答过程补充完整,并填空(理由或数式)解:∵DE∥BC,∴∠DEF=.()∵EF∥AB,∴=∠AB C.()∴∠DEF=∠AB C.(等量代换)∵∠ABC=40°,∴∠DEF=°.应用:如图②,直线AB、BC、AC两两相交,交点分别为点A、B、C,点D在线段AB的延长线上,过点D作DE∥BC交AC于点E,过点E作EF∥AB交BC于点F.若∠ABC=60°,则∠DEF=°.【答案】∠EFC,两直线平行,内错角相等,∠EFC,两直线平行,同位角相等,40;24.(10分)我们知道对于一个图形,通过不同的方法计算图形的面积可以得到一个数等式.例如:由图1可得到(a+b)2=a2+2ab+b2.(1)写出由图2所表示的数等式:;写出由图3所表示的数等式:;(2)利用上述结论,解决下面问题:已知a+b+c=11,bc+ac+ab=38,求a2+b2+c2的值.【答案】4D:完全平方公式的几何背景.21世纪教育网【解析】试题分析:(1)运用几何直观理解、通过不同的方法计算图形的面积可以得到一个数等式然后再通过化简可得.(2)可利用(1)所得的结果进行等式变换直接带入求得结果.%网试题解析:(1)由图2可得正方形的面积为:(a+b+c)2=a2+b2+c2+2ab+2bc+2ac故答案为:(a+b+c)2=a2+b2+c2+2ab+2bc+2ac【点评】本题主要是在完全平方公式的几何背景图形的基础上,利用其解题思路求得结果.。

2018-2019学年北师大版七年级数学第二学期期中测试卷及答案

2018-2019学年北师大版七年级数学第二学期期中测试卷及答案

2018-2019学年七年级数学第二学期期中测试卷一、选择题(每题3分,共30分)1.下列运算正确的是()A.x3÷x2=x B.(x3)2=x5C.(x+1)2=x2+1 D.(2x)2=2x22.若(x-5)(x+20)=x2+mx+n,则m,n的值分别为()A.-15,-100 B.25,-100C.25,100 D.15,-1003.下图中,∠1与∠2互为余角的是()4.计算x3·x3的结果是()A.2x3B.2x6C.x6D.x95.在烧开水时,水温达到100 ℃就会沸腾,下表是某同学做“观察水的沸腾”实验时所记录的两个变量时间t(min)和温度T(℃)的数据:在水烧开之前(即t<10),温度T与时间t的关系式及因变量分别为() A.T=7t+30,T B.T=14t+30,tC.T=14t-16,t D.T=30t-14,T6.如图,直线AB,CD相交于点O,∠AOC=70°,OE把∠BOD分成两部分,且∠BOE∠EOD=,则∠AOE等于()A.162°B.152°C.142°D.132°7.如图,在下列给出的条件中,不能判定AB∥EF的是() A.∠B+∠2=180°B.∠1=∠4C.∠B=∠3 D.∠1=∠B8.如图,AB∥CD∥EF,AF∥CG,则图中与∠A(不包括∠A)相等的角有() A.5个B.4个C.3个D.2个9.一列火车从贵阳出发,加速行驶一段时间后开始匀速行驶,过了一段时间,火车到达下一个车站,乘客上、下车后,火车开始加速,一段时间后再次开始匀速行驶,下面的哪一幅图可以近似地刻画出火车在这段时间内的速度变化情况()10.甲、乙两同学骑自行车从A地沿同一条路到B地,已知乙比甲先出发,他们离出发地的距离s(km)和骑自行车时间t(h)之间的关系如图所示,给出下列说法:①他们都骑行了20 km;②乙在途中停留了0.5 h;③甲、乙两人同时到达目的地;④相遇后,甲的速度小于乙的速度.根据图象信息,以上说法正确的有()A.1个B.2个C.3个D.4个二、填空题(每题3分,共30分)11.如图,已知DE∥BC,∠ABC=40°,则∠ADE=________.12.蜜蜂建造的蜂巢既坚固又省料,其厚度约为0.000 073 m.将0.000 073用科学记数法表示为_______________________________________________ _.13.如图,某小区A自来水供水路线为AB,现进行改造,沿路线AO铺设管道,并与主管道BO连接(AO⊥BO),这样路线AO最短,工程造价最低,根据是______________.14.如图,某人记录了某地一月份某天一段时间的温度随时间变化的情况.根据图象可知,在这段时间内温度最高是________℃,________________的温度是0 ℃.15.若32x-1=1,则x=________.16.洲际弹道导弹的速度会随着时间的变化而变化,某种型号的洲际弹道导弹的速度v(km/h)与时间t(h)的关系是v=1 000+50t,若导弹发出0.5 h即将击中目标,则此时该导弹的速度应为________km/h.17.若a+b=7,ab=12,则a2+b2=________.18.如图,已知∠1=∠2,则________∥________,理由是_________________ _______________________________________________________;若∠3=100°,则∠4=________,理由是_____________________________ ___________________________________________.19.某农场租用收割机收割小麦,甲收割机单独收割2天后,又调来乙收割机参与收割,直至完成800亩的收割任务.收割亩数S与天数t之间的关系图象如图所示,那么乙参与收割的天数是________天.20.如图,已知A1B∥A n C,则∠A1+∠A2+…+∠A n等于__________(用含n的式子表示).三、解答题(21,24,25题每题8分,22题5分,23题7分,其余每题12分,共60分)21.计算:(1)4a 2x 2·⎝ ⎛⎭⎪⎫-25a 4x 3y 3÷⎝ ⎛⎭⎪⎫-12a 5xy 2; (2)704×696;(3)(x -3)(2x +1)-3(2x -1)2;(4)(-5)0×(-2)-3+(-3)-1÷⎝ ⎛⎭⎪⎫13-1×32-|-5|.22.先化简,再求值:[(a -b )2+(2a +b )(1-b )-b ]÷⎝ ⎛⎭⎪⎫-12a ,其中a ,b 满足|a +1| +(2b -1)2=0.23.完成下列填空:如图,已知AD ⊥BC ,EF ⊥BC ,∠1=∠2.试说明:DG ∥B A. 解:因为AD ⊥BC ,EF ⊥BC (已知),所以∠EFB=∠ADB=90°(______________).所以________∥________(______________________________).所以∠1=∠BAD(______________________________).又因为∠1=∠2(已知),所以____________(等量代换).所以DG∥BA(____________________________).24.如图,AD∥BC,E,F分别在DC,AB的延长线上,∠DCB=∠DAB,AE ⊥EF,∠DEA=30°.(1)试说明:DC∥AB;(2)求∠AFE的度数.25.下表是橘子的销售额随橘子卖出质量的变化表:(1)这个表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)当橘子卖出5 kg时,销售额是________元.(3)如果用x表示橘子卖出的质量,y表示销售额,按表中给出的关系,y与x之间的关系式为________.(4)当橘子的销售额是100元时,共卖出多少千克橘子?26.如图是甲骑自行车与乙骑摩托车分别从A,B两地向C地(A,B,C地在同一直线上)行驶过程中离B地的距离与行驶时间的关系图,请你根据图象回答下列问题:(1)A,B两地哪个距C地近?近多少?(2)甲、乙两人谁出发时间早?早多长时间?(3)甲、乙两人在途中行驶的平均速度分别为多少?27.如图,已知射线CB∥OA,∠C=∠OAB=120°,E,F在CB上,且满足∠FOB=∠FBO,OE平分∠COF.(1)求∠EOB的度数.(2)若向右平行移动AB,其他条件不变,那么∠OBC∠OFC的值是否发生变化?若变化,找出其中规律;若不变,求出这个比值.(3)在向右平行移动AB的过程中,是否存在某种情况,使∠OEC=∠OBA?若存在,请直接写出∠OBA的度数;若不存在,请说明理由.答案一、1.A 2.D 3.C 4.C 5.A 6.B 7.D 8.B 9.C 10.B 二、11.40° 12.7.3×10-5 13.垂线段最短 14.2;12时和18时15.12 16.1 025 17.2518.a ;b ;同位角相等,两直线平行;100°;两直线平行,内错角相等 19.4 点拨:甲、乙合作的收割速度为(350-200)÷(3-2)=150(亩/天),乙收割机参与收割的天数为(800-200)÷150=4(天).20.(n -1)·180° 点拨:如图,过点A 2作A 2D ∥A 1B ,过点A 3作A 3E ∥A 1B ……因为A 1B ∥A n C ,所以A 3E ∥A 2D ∥…∥A 1B ∥A n C .所以∠A 1+∠A 1A 2D =180°,∠DA 2A 3+∠A 2A 3E =180°…… 所以∠A 1+∠A 1A 2A 3+…+∠A n -1A n C =(n -1)·180°. 三、21.解:(1)原式=-85a 6x 5y 3÷⎝ ⎛⎭⎪⎫-12a 5xy 2=165ax 4y ; (2)原式=(700+4)×(700-4)=7002-42=489 984;(3)原式=2x 2-5x -3-3(4x 2-4x +1)=2x 2-5x -3-12x 2+12x -3=-10x 2+7x -6;(4)原式=1×⎝ ⎛⎭⎪⎫-18+⎝ ⎛⎭⎪⎫-13÷3×9-5=-18-1-5=-618.22.解:原式=(a 2-2ab +b 2+2a -2ab +b -b 2-b )÷⎝ ⎛⎭⎪⎫-12a =(a 2-4ab +2a )÷⎝ ⎛⎭⎪⎫-12a =-2a +8b -4. 由|a +1|+(2b -1)2=0, 得a =-1,b =12.代入上式,得原式=-2×(-1)+8×12-4=2.23.垂直的定义;EF ;AD ;同位角相等,两直线平行;两直线平行,同位角相等;∠2=∠BAD ;内错角相等,两直线平行24.解:(1)因为AD∥BC,所以∠DAB=∠CBF.又因为∠DCB=∠DAB,所以∠CBF=∠DCB.所以DC∥AB.(2)因为AE⊥EF,所以∠AEF=90°.因为DC∥AB,所以∠DEF+∠AFE=180°.所以∠AFE=180°-∠DEF=180°-30°-90°=60°.25.解:(1)橘子卖出的质量与销售额之间的关系,橘子卖出的质量是自变量,销售额是因变量.(2)10(3)y=2x(4)当y=100时,x=50.答:此时共卖出50 kg橘子.26.解:(1)A地距C地近,近20 km.(2)甲出发时间早,早2 h.(3)甲:(80-20)÷6=10(km/h),乙:80÷(4-2)=40(km/h).答:甲的平均速度为10 km/h,乙的平均速度为40 km/h.27.解:(1)因为CB∥OA,∠C=∠OAB=120°,所以∠COA=180°-∠C=180°-120°=60°.因为CB∥OA,所以∠FBO=∠AOB.又因为∠FOB=∠FBO,所以∠AOB=∠FOB.因为OE平分∠COF,所以∠COE=∠FOE.所以∠EOB=∠EOF+∠FOB=12∠COA=30°.(2)不变.因为CB∥OA,所以∠OBC=∠BOA,∠OFC=∠FOA.所以∠OBC∠OFC=∠AOB∠FOA.又因为∠FOA=∠FOB+∠AOB=2∠AOB,所以∠OBC∠OFC=∠AOB∠FOA=∠AOB∠AOB=(3)存在.∠OBA=∠OEC=45°.。

北师大版数学七年级下册第二学期期中 达标测试卷(含答案)

北师大版数学七年级下册第二学期期中 达标测试卷(含答案)

第二学期期中达标测试卷一、选择题(共8小题,每小题3分,计24分,每小题只有一个选项是符合题意的)1.下列图形中,∠1与∠2是同旁内角的是()2.下列计算正确的是()A.(a3)4=a12B.a3·a5=a15C.(x2y)3=x6y D.a6÷a3=a23.如图,直线a,b相交于点O,如果∠1+∠2=100°,那么∠2是() A.50°B.100°C.130°D.150°(第3题) (第4题)(第5题)(第7题)4.如图,下列条件能判定a∥b的是()A.∠2+∠3=180°B.∠1+∠2=180°C.∠1=∠2 D.∠3=∠45.二十四节气是中国古代劳动人民长期经验积累的结晶,它与白昼时长密切相关.如图是一年中部分节气所对应的白昼时长示意图.在下列选项中白昼时长不足11小时的节气是()A.惊蛰B.小满C.秋分D.大寒6.已知(a+b)2=40,(a-b)2=60,则a2+b2的值为()A.40 B.50 C.60 D.1007.甲骑自行车从A地到B地,乙骑电动车从B地到A地,两人同时出发,匀速行驶,各自到达终点后停止运动.设甲、乙两人间的距离为s(单位:m),甲行驶的时间为t(单位:min),s与t之间的关系如图所示,则下列结论中不正确的是()A.出发30 min时,甲、乙同时到达终点B.出发15 min时,乙比甲多行驶了3 000 mC.出发10 min时,甲、乙在途中相遇D.乙的速度是甲的速度的两倍8.如图,有两个正方形A,B.现将B放在A的内部得图①,将A,B并列放置后,构造新的正方形得图②.图①和图②中阴影部分的面积分别为1和12,若三个正方形A和两个正方形B如图③摆放,则图③中阴影部分的面积为()(第8题)A.28 B.29 C.30 D.31二、填空题(共5小题,每小题3分,计15分)9.近来,中国芯片技术获得重大突破,7 nm芯片已经量产,已知7 nm=0.000 000 7cm,则0.000 000 7用科学记数法表示为____________.10.已知某地的地面气温是20 ℃,如果每升高1 000 m气温下降6 ℃,则气温t(℃)与高度h(m)的函数关系式为________________.11.已知2x+y-4=0,则4x·2y的值是__________.12.如图,一块含有30°角的直角三角板,两个顶点分别在直尺的一对平行边上,∠α=110°,则∠β=________°.(第12题)(第13题)13.如图,点C是线段AB上的一点,以AC,BC为边向两边作正方形,设两正3 方形的面积分别为S 1,S 2.若AB =9,两正方形的面积和为51,则图中阴影部分的面积为__________.三、解答题(共13小题,计81分,解答应写出过程) 14.(5分)化简:(1)(-x 2)3÷(-2x 3)·x 3; (2)(-2a 2)(4ab -ab 2+1).15.(5分)计算: (1)-12 024+2 0242-2 025×2 023;(2)(2 023-π)0-|-4|+⎝ ⎛⎭⎪⎫-12-3.16.(5分)先化简,再求值:[(x +y )(3x -y )-(x +2y )2+5y 2]÷2x ,其中x =1,y =-2.17.(5分)已知x+y=6,xy=4,求下列各式的值:(1)(x-3)(y-3);(2)[(2x-y)2-(2x+y)(2x-y)]÷(-2y)-y(x-3).18.(5分)如图,已知∠α.请你用直尺和圆规画一个∠BAC,使得∠BAC=∠α.(要求:保留作图痕迹,不写作法)(第18题)19.(5分)一种大豆的总售价y(元)与所售质量x(千克)之间的关系如下表所示:所售质量x(千克)00.51 1.5总售价y(元)012 3(1)按表中给出的信息,写出y与x的关系式;(2)当售出大豆的质量为20千克时,总售价是多少?20.(5分)如图,已知直线EF⊥MN,垂足为F,且∠1=138°,若AB∥CD,求∠2的度数.(第20题)21.(6分)如图,已知AD是∠BAC的平分线,点E在BC上,点F在CA的延长线上,EF∥DA,且EF交AB于点G.试说明∠AGF=∠F.5(第21题)22.(7分)如图,直线MN分别与直线AC,DG交于点B,F,且∠1=∠2.∠ABF 的平分线BE交直线DG于点E,∠BFG的平分线FC交直线AC于点C.(第22题)(1)试说明BE∥CF;(2)若∠C=35°,求∠BED的度数.23.(7分)如图,直线AB,CD相交于点O,OM⊥AB.(第23题)(1)若∠1=30°,求∠BOD的度数;(2)如果∠1=∠2,那么ON与CD互相垂直吗?请说明理由.24.(8分)如图表示的是李军从家到超市的时间与他离家的距离之间的关系.观察图象并回答下列问题:(1)图象表示的是哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)李军到达超市用了多少时间?(3)李军出发的第20 min到第30 min内可能在做什么?(4)李军从家到超市的平均速度是多少?返回时的平均速度是什么?(第24题)725.(8分)已知动点P从点A出发沿图①的边框(边框拐角处都互相垂直)按A→B→C→D→E→F的路径移动,相应的三角形AHP的面积y(cm2)关于移动路程x(cm)的关系图象如图②,若AH=2 cm,根据图象信息回答下列问题:(第25题)(1)图①中AB=________cm;(2)图②中n=________;(3)求三角形AHP面积的最大值.26.(10分)如图①,已知直线CD∥EF,点A,B分别在直线CD,直线EF上,P 为两平行线间的一点.(第26题)(1)猜想∠DAP,∠FBP,∠APB之间有什么数量关系?并说明理由;(2)利用(1)的结论解答:①如图②,AP1,BP1分别平分∠DAP,∠FBP,请你直接写出∠P与∠P1的数量关系,不需要说明理由;②如图③,AP2,BP2分别平分∠CAP,∠EBP,若∠APB=α,求∠AP2B的大小(用含α的代数式表示).9答案一、1.B 2.A 3.A 4.A 5.D 6.B 7.A8.B 点拨:设正方形A ,B 的边长各为a ,b (a >b ),得图①中阴影部分的面积为(a -b )2=a 2-2ab +b 2=1,解得a -b =1或a -b =-1(舍去),图②中阴影部分的面积为(a +b )2-(a 2+b 2)=2ab =12.所以(a +b )2=a 2+2ab +b 2=a 2-2ab +b 2+4ab =(a -b )2+4ab =1+2×12=25,解得a +b =5或a +b =-5(舍去),所以图③中阴影部分的面积为(2a +b )2-(3a 2+2b 2)=a 2+4ab -b 2=(a +b )·(a -b )+2×2ab =5×1+2×12=5+24=29,故选B. 二、9.7×10-7 10.t =-0.006h +20 11.16 12.5013.152 点拨:设AC =m ,CF =n ,因为AB =9,所以m +n =9,又因为S 1+S 2=51,所以m 2+n 2=51,由完全平方公式可得,(m +n )2=m 2+2mn +n 2,所以92=51+2mn ,所以mn =15,所以S 阴影部分=12mn =152,即阴影部分的面积为152. 三、14.解:(1)原式=-x 6÷(-2x 3)·x 3=12x 6-3+3 =12x 6.(2)原式=-2a 2·4ab +2a 2·ab 2-2a 2·1 =-8a 3b +2a 3b 2-2a 2.15.解:(1)原式=-1+2 0242-(2 024+1)(2 024-1)=-1+2 0242-(2 0242-1) =-1+2 0242-2 0242+1 =0.(2)原式=1-4-8 =-11.16.解:[(x +y )(3x -y )-(x +2y )2+5y 2]÷2x=(3x 2+3xy -xy -y 2-x 2-4xy -4y 2+5y 2)÷2x =(2x 2-2xy )÷2x =x -y .当x=1,y=-2时,原式=1-(-2)=3.17.解:(1)(x-3)(y-3)=xy-3x-3y+9=xy-3(x+y)+9=4-3×6+9=-5.(2)[(2x-y)2-(2x+y)(2x-y)]÷(-2y)-y(x-3)=(2x-y)[(2x-y)-(2x+y)]÷(-2y)-xy+3y=(2x-y)(-2y)÷(-2y)-xy+3y=2x-y-xy+3y=2(x+y)-xy=2×6-4=8.18.解:如图所示,∠BAC即为所求.(第18题)19.解:(1)表格中反映的是大豆所售质量x(千克)与总售价y(元)之间的关系,大豆所售质量x(千克)是自变量,总售价y(元)是因变量,y与x之间的关系式为y=2x.(2)由关系式可知,当售出大豆的质量为20千克时,y=2×20=40,所以当售出大豆的质量为20千克时,总售价是40元.20.解:若AB∥CD,则∠BFG=∠DGN,由题知∠1=138°,∠1+∠DGN=180°,所以∠DGN=42°.所以∠BFG=∠DGN=42°.因为EF⊥MN,所以∠2+∠BFG=90°,11所以∠2=90°-∠BFG=90°-42°=48°. 21.解:因为AD是∠BAC的平分线,所以∠BAD=∠CAD,因为EF∥DA,所以∠AGF=∠BAD,∠F=∠CAD,所以∠AGF=∠F.22.解:(1)因为∠1=∠2,∠2=∠BFG,所以∠1=∠BFG,所以AC∥DG,所以∠ABF=∠BFG.因为BE,FC分别为∠ABF,∠BFG的平分线,所以∠EBF=12∠ABF,∠CFB=12∠BFG,所以∠EBF=∠CFB,所以BE∥CF.(2)由题意知,AC∥DG,∠C=35°,所以∠C=∠CFG=35°,又因为BE∥CF,所以∠BEG=∠CFG=35°,故∠BED=180°-∠BEG=145°.23.解:(1)因为OM⊥AB,所以∠AOM=90°,又因为∠1=30°,所以∠AOC=∠AOM-∠1=90°-30°=60°,因为∠BOD=∠AOC,所以∠BOD=60°.(2)ON⊥CD.理由:因为∠1+∠AOC=90°,∠1=∠2,所以∠2+∠AOC=90°,即∠CON=90°,所以ON⊥CD.24.解:(1)图象表示的是李军从家到超市的时间与他离家的距离两个变量之间的关系,时间为自变量,离家的距离为因变量.(2)由图象可知,李军到达超市用了20 min.(3)可能在超市选购商品.(答案不唯一).(4)李军从家到超市的平均速度是90020=45(m/min),返回时的平均速度是90045-30=60(m/min).25.解:(1)3(2)26(3)由图象可得,当0<x≤3时,点P在AB上运动;当3<x≤5时,点P在BC上运动;当5<x≤11时,点P在CD上运动;当11<x≤17时,点P在DE上运动;当17<x≤30时,点P在EF上运动.所以点P在DE上运动时,三角形AHP的面积最大,即12×2×(11-2)=9(cm2).所以△AHP面积的最大值为9 cm2.26.解:(1)∠APB=∠DAP+∠FBP,理由如下:过点P作MP∥CD,如图,(第26题) 所以∠APM=∠DAP,因为CD∥EF,所以MP∥EF,所以∠MPB=∠FBP,所以∠APM+∠MPB=∠DAP+∠FBP.即∠APB=∠DAP+∠FBP.(2)①∠P=2∠P1.②由(1)得∠APB=∠DAP+∠FBP,13同理可得∠AP 2B =∠CAP 2+∠EBP 2, 因为AP 2,BP 2分别平分∠CAP ,∠EBP ,所以∠CAP 2=12∠CAP ,∠EBP 2=12∠EBP , 所以∠AP 2B =12∠CAP +12∠EBP=12(180°-∠DAP )+12(180°-∠FBP )=180°-12(∠DAP +∠FBP ) =180°-12∠APB =180°-12α.。

北师大版七年级数学下册期中学情评估附答案 (3)

北师大版七年级数学下册期中学情评估附答案 (3)

北师大版七年级数学下册期中学情评估一、选择题(每题3分,共30分)1.计算:(-3)-1=( )A.-3 B.3 C.13D.-132.下列各图中,∠1与∠2是对顶角的是( )3.某颗粒物的直径约为0.000 001 8米,用科学记数法表示该颗粒物的直径为( )A.0.18×10-5米B.1.8×10-5米C.1.8×10-6米D.18×10-5米4.下列运算正确的是( )A.(a2)3=a6B.a3·a4=a12C.a8÷a4=a2D.(-3a2)2=6a45.如图,点E在BC的延长线上,下列条件不能判断AB∥CD的是( )A.∠BAC=∠ACDB.∠DCE=∠BC.∠B+∠BCD=180°D.∠B+∠BAD=180°6.下列算式不能运用平方差公式计算的是( )A.(x+a)(x-a)B.(x+2a)(-2a+x)C.(a+b)(-a-b)D.(-x-b)(x-b)7.洗衣机在洗涤衣服时,每浆洗一遍都经历了注水、清洗、排水三个连续过程(工作前洗衣机内无水).在这三个过程中,洗衣机内的水量y(升)与浆洗一遍的时间x(分)之间关系的图象大致为( )8.已知在弹簧的承受范围内,弹簧挂上物体后会伸长,测得一弹簧的长度y(cm)与所挂的物体的质量x(kg)间有下表的关系,下列说法不正确的是( )x/kg0123 4y/cm2022242628A.x与y都是变量,且x是自变量,y是因变量B.所挂物体的质量为2 kg时,弹簧的长度为24 cmC.弹簧不挂物体时的长度为0 cmD.在弹性限度内,所挂物体的质量每增加1 kg,弹簧的长度增加2 cm 9.观察如图所示的图形,下列说法正确的个数是( )①过点A有且只有一条直线与直线BD平行;②平面内,过点A有且只有一条直线AC垂直于直线BD;③线段AC的长是点A到直线BD的距离;④线段AB、AC、AD中,线段AC最短,根据是两点之间,线段最短.A.1个B.2个C.3个D.4个(第9题) (第10题)10.如图,AB∥CD,OE平分∠BOC,OF⊥OE,OP⊥CD,∠ABO=n°,则下列结论:①∠COE=90°-12n°;②OF平分∠BOD;③∠POE=∠BOF;④∠POB=2∠DOF.其中正确的有( )A.①②③B.①②④C.①③④D.①②③④二、填空题(每题3分,共15分)11.小明家离学校3千米,上学时小明骑自行车以10千米/时的速度骑了x小时,这时离学校还有y千米.写出y与x之间的关系式:__________________.12.一个角的补角与这个角的余角的差是 ______ °.13.已知2x=6,4y=7,那么2x+2y的值是______.14.若代数式x2-6x+k是完全平方式,则k=______.15.如图①,在某个底面积为20 cm2的盛水容器内,有一个实心圆柱体铁块,现在匀速持续地向容器内注水,容器内水的高度y(cm)和注水时间x(s)之间的关系满足如图中的图象,则水流速度是______cm3/s.三、解答题(一)(每题8分,共24分)16.先化简,再求值:[(ab+2)(ab-2)-2a2b2+4]÷2ab,其中a=1,b=-2. 17.如图所示,点B、E分别在AC、DF上,BD、CE均与AF相交,∠1=∠2,∠C=∠D.(1)BD和CE平行吗?请说明理由;(2)∠A和∠F相等吗?请说明理由.18.作图题(保留作图痕迹,不写作图过程):(1)在如图所示的方格纸中不用量角器与三角尺,仅用直尺.①经过点P,画直线PQ平行于AB所在直线.②过点C,画直线CN垂直于CB所在直线.(2)尺规作图:已知∠ACB,求作:∠A′C′B′,使∠A′C′B′=∠ACB.四、解答题(二)(每题9分,共27分)19.亮亮计算一道整式乘法的题(3x-m)·(2x-5),由于亮亮在解题过程中,抄错了第一个多项式中m前面的符号,把“-”写成了“+”,得到的结果为6x2-5x-25.(1)求m的值;(2)计算这道整式乘法的正确结果.20.为了解某种品牌汽车的耗油量,我们对这种车在高速公路上做了耗油试验,并把试验的数据记录下来,制成下表:(1)根据上表的数据,请你写出Q与t的关系式;(2)该品牌汽车的油箱有50L油,若以100km/h的速度匀速行驶,该车最多能行驶多远?21.小明骑单车上学,当他骑了一段路后,想起要买某本书,于是又折回到刚经过的新华书店,买到书后继续去学校,以下是他本次上学所用的时间与离家距离的关系示意图.根据图中的信息回答下列问题:(1)小明家到学校的距离是______米;(2)小明在书店停留了______分钟;(3)本次上学途中,小明一共行驶了____米,一共用了______分钟;(4)若骑单车的速度超过300米/分就超过了安全限度.在整个上学途中小明的最快车速是多少米/分?速度是否在安全限度内?五、解答题(三)(每题12分,共24分)22.如图①的两个长方形可以按不同的形式拼成图②和图③两个图形.(1)在图②中的阴影部分的面积S1可表示为____________;(写成多项式乘法的形式);在图③中的阴影部分的面积S2可表示为______;(写成两数平方差的形式)(2)比较图②与图③的阴影部分面积,可以得到的等式是______;A.(a+b)2=a2+2ab+b2B.(a+b)(a-b)=a2-b2C.(a-b)2=a2-2ab+b2(3)请利用所得等式解决下面的问题:①已知4m2-n2=12,2m+n=4,则2m-n=______;②计算(2+1)(22+1)(24+1)(28+1)+…+(232+1)+1的值,并写出该值的个位数字是多少.23.【阅读理解】两条平行线间的拐点问题经常可以通过作一条直线的平行线进行转化.例如:如图①,MN∥PQ,点C、B分别在直线MN、PQ上,点A在直线MN、PQ之间.试说明:∠CAB=∠MCA+∠PBA.解:如图①,过点A作AD∥MN,因为MN∥PQ,AD∥MN,所以AD∥MN∥PQ,所以∠MCA=∠DAC,∠PBA=∠DAB,所以∠CAB=∠DAC+∠DAB=∠MCA+∠PBA,即∠CAB=∠MCA+∠PBA.【类比应用】若直线AB∥CD,P为平面内一点,连接PA、PD.(1)如图②,若∠A=50°,∠D=150°,求∠APD的度数;(2)如图③,设∠PAB=∠α、∠CDP=∠β,则∠α、∠β、∠P之间的数量关系为__________________;【联系拓展】如图④,直线AB∥CD,P为平面内一点,连接PA、PD.AP⊥PD,DN平分∠PDC,若∠PAN+12∠PAB=∠P,运用(2)中的结论,直接写出∠N的度数.答案一、1.D 2.B 3.C 4.A 5.D 6.C 7.D 8.C 9.C 10.A二、11.y =3-10x 12.90 13.42 14. 915.403提示:由题图可知,5s 时,水面刚好到达实心圆柱体铁块顶端,5s 后水面高度不受实心圆柱体铁块影响, 则水流速度为(15-11)×2011-5=403(cm 3/s).故答案为403. 三、16.解:原式=(a 2b 2-4-2a 2b 2+4)÷2ab=(-a 2b 2)÷2ab =-12ab .当a =1,b =-2时,原式=-12×1×(-2)=1.17.解:(1)平行.理由:因为∠1=∠2,∠2=∠3,所以∠1=∠3,所以BD ∥CE .(2)相等.理由:因为BD ∥CE ,所以∠C =∠DBA , 又因为∠C =∠D ,所以∠DBA =∠D , 所以DF ∥AC ,所以∠A =∠F . 18.解:(1)如图.(2)如图.四、19.解:(1)根据题意可得,(3x+m)(2x-5)=6x2-15x+2mx-5m=6x2-(15-2m)x-5m,所以-5m=-25,解得m=5.(2)(3x-5)(2x-5)=6x2-15x-10x+25=6x2-25x+25. 20.解:(1)由题意得汽车每行驶1h,油量减少6L,则剩余油量为Q=100-6t.(2)50÷6×100=2 5003(km),答:该车最多能行驶2 5003km.21.解:(1)1 500 (2)4 (3)2 700;14(4)当时间在0~6分钟内时,速度为1 200÷6=200(米/分),当时间在6~8分钟内时,速度为(1 200-600)÷(8-6)=300(米/分),当时间在12~14分钟内时,速度为(1 500-600)÷(14-12)=450(米/分),因为450>300>200,所以在整个上学途中小明的最快车速为450米/分,速度不在安全限度内.五、22.解:(1)(a+b)(a-b);a2-b2(2)B(3)①3②原式=(2-1)(2+1)(22+1)(24+1)(28+1)+…+(232+1)+1=(22-1)(22+1)(24+1)(28+1)+…+(232+1)+1=(24-1)(24+1)(28+1)+…+(232+1)+1=…=264-1+1=264,而21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,…,其个位数字2,4,8,6重复出现,而64÷4=16,于是“2,4,8,6”经过16次循环,因此264的个位数字为6.23.解:(1)如图①,过点P作PE∥AB,因为AB∥CD, PE∥AB,所以AB∥PE∥CD,所以∠APE=∠A=50°,∠DPE+∠D=180°,所以∠DPE= 180°-150°=30°.所以∠APD=∠APE+∠DPE= 50°+30°=80°.(2)∠α+∠β-∠P=180°【联系拓展】∠N的度数为45°. 提示:如图②,设PD交AN于点O,因为AP⊥PD,所以∠APO=90°,所以∠POA+∠PAN= 90°,因为∠PAN+12∠PAB=∠APD,所以∠PAN+12∠PAB= 90°,所以∠POA=12∠PAB,因为∠POA=∠NOD,所以∠NOD=12∠PAB,因为DN平分∠PDC,所以∠ODN=12∠PDC,所以∠AND= 180°-∠NOD-∠ODN= 180°-12(∠PAB+∠PDC),由(2)得∠CDP+∠PAB-∠APD= 180°,所以∠CDP+∠PAB= 180°+∠APD,所以∠AND= 180°-12(∠PAB+∠PDC)= 180°-12(180°+∠APD)= 180°-12(180°+90°)= 45°.北师大版七年级数学下册期末学情评估一、选择题(每题3分,共30分)1.下列运算正确的是( )A.a3·a4=a12B.2a5÷a=2a6C.(-ab3)2=a2b6D.3ab-2ab=12.目前已知自然界中最小的细胞是支原体,直径只有0.1~0.3μm,已知1μm =0.000 001m,则0.3μm用科学记数法可以表示为( )A.3×10-6m B.0.3×10-6mC.0.3×10-7m D.3×10-7m3.下列诗句所描述的事件中,不可能事件是( )A.黄河入海流B.手可摘星辰C.大漠孤烟直D.红豆生南国4.如图,直线a,b被直线c所截,下列不能判定直线a∥b的条件是( )A.∠3=∠4B.∠1=∠3C.∠1=∠4D.∠1+∠2=180°5.某天学校组织学生到市文化宫参观学习,早上,学生们乘客车从学校出发到市文化宫,匀速行驶一段时间后,途中遇到堵车,原地等了一会儿,然后客车加快速度行驶,按时到达市文化宫.参观学习后,客车匀速行驶返回.其中t 表示客车从学校出发后所用的时间,s表示客车离学校的距离.下面能反映s 与t之间关系的大致图象是( )6.关于x的多项式(x+2)(x-m)展开后,若常数项为6,则m的值为( ) A.6 B.-6C.3 D.-37.如图,在△ABC中,BF平分∠ABC,CF平分∠ACB,∠BFC=125°,则∠A的度数为( )A.60°B.80°C.70°D.45°8.端午节的早上,小丽妈妈买了八个粽子,其中有两个蜜枣的,如果她只吃一个粽子,那么她吃不到蜜枣粽子的概率是( )A.0 B.1C.14D.349.如图,BD为∠ABC的平分线,DE⊥BC于点E,AB=5,DE=2,则△ABD的面积是( )A.5 B.7C.7.5 D.10(第9题) (第10题)10.如图,在△ABC中,AD⊥BC,CE⊥AB,垂足分别为D、E,AD、CE交于点H,已知EH=EB=3,AE=4,则CH的长是( )A.12B.1 C.3 D.2二、填空题(每题3分,共15分)11.已知x+y=8,x-y=2,则x2-y2=______.12.小明在自家的院子里种下一棵小树苗,随着一天天过去,小树苗也一天天长高.小明详细记录了小树苗的生长过程,发现小树苗的高度h(cm)与时间t(个月)之间的关系如图所示,则小树苗种下3个月时的高度是______.13.如图,点A,B,C在直线l上,PB⊥l,PA=6,PB=5,PC=7,点P到直线l的距离是______.14.如图,在3×4的正方形网格中已有2个正方形涂灰,再选择一个正方形涂灰,使得3个涂灰的正方形组成轴对称图形,可选择的位置共有______处.15.如图,在△ABC 中,依次取AB 的中点D 1,AC 的中点D 2,AD 1的中点D 3,AD 2的中点D 4,…,并连接CD 1,D 1D 2,D 2D 3,D 3D 4,…,若△ABC 的面积是1,则△AD 2 022D 2 023的面积是______.三、解答题(一)(每题8分,共24分) 16.计算:(-1)2 023-(3.14-π)0×⎝ ⎛⎭⎪⎫-12-3.17.先化简,再求值:[](a -2b )2-(a -2b )(a +2b )+4b 2÷(-2b ),其中a =1,b =-2.18.如图,要在长方形木板上截去一个平行四边形,使它的一组对边在长方形木板的边缘上,另一组对边中的一条边为AB.请过点C画出与AB平行的另一条边CD.(要求:不写作法,但要保留作图痕迹)四、解答题(二)(每题9分,共27分)19.端午节,又称端阳节,是中国四大传统节日之一.赛龙舟是端午节重要的节日民俗活动,6月22日,时逢端午佳节,某地组织了“龙腾虎跃”龙舟竞渡大赛.甲、乙两队参加了比赛,两队在比赛时的路程y(米)与时间x(分钟)之间的关系如图所示,请你根据图象,回答下列问题:(1)图象中的自变量是______,因变量是______;(2)本次龙舟竞渡大赛的全程是______米,______队先到达终点;(3)比赛2分钟后,乙队的速度为______米/分;(4)甲队比乙队晚到几分钟?20.如图,在所给的网格图(每小格均为边长是1的正方形)中完成下列各题:(1)画出格点△ABC(顶点均在格点上)关于直线DE对称的△A1B1C1;(2)求△A1B1C1的面积;(3)在DE上画出点P,使PB+PC最小.(保留作图痕迹)21.如图,已知AB∥CD,AD与BC交于点F,点H在AD的延长线上,∠1=∠2.(1)判断BC与DE平行吗?为什么?(2)若∠1=110°,∠A=50°,求∠C的度数.五、解答题(三)(每题12分,共24分)22.在一个不透明的口袋中放入6个白球和14个红球,它们除颜色外其他完全相同.(1)求从口袋中随机摸出一个球是白球的概率;(2)现从口袋中取出若干个红球,并放入相同数量的白球,充分摇匀后,要使从口袋中随机摸出一个球是白球的概率是45,问取出了多少个红球?23.如图,在Rt△ABC中,∠BAC=90°,AD⊥BC于点D,将边AB沿AD折叠,点B的对应点B′落在DC上.(1)利用尺规作出∠CAB′的平分线AP,交CD于点E,延长AB′到点F,使AF=AC,连接EF;(保留作图痕迹,不写作法)(2)判断(1)中EF与BC的位置关系,并说明理由;(3)在(1)的条件下,若AB=3,AC=4,求B′F的长.答案一、1.C 2.D 3.B 4.A 5.B 6.D 7.C 8.D 9.A 10.B 提示:因为AD ⊥BC ,CE ⊥AB ,所以∠ADC =∠AEH =90°. 因为∠AHE =∠CHD , 所以易得∠HAE =∠BCE .因为在△HEA 和△BEC 中,⎩⎨⎧∠HAE =∠BCE ,∠AEH =∠CEB =90°,EH =EB ,所以△HEA ≌△BEC ,所以AE =EC =4, 所以CH =EC -EH =4-3=1.故选B. 二、 11.16 12.85 cm 13.5 14.715.122 023 提示:因为D 1是AB 的中点,△ABC 的面积是1, 所以△ACD 1的面积=12×△ABC 的面积=12.因为D 2是AC 的中点,所以△AD 1D 2的面积=12×△ACD 1的面积=12×12=122, 同理△AD 2D 3的面积=12×△AD 1D 2的面积=123,……则△AD n -1D n 的面积=12n ,所以△AD 2 022D 2 023的面积是122 023.故答案为122 023. 三、16.解:(-1)2 023-(3.14-π)0×⎝ ⎛⎭⎪⎫-12-3=-1-1×(-8)=-1+8=7.17.解:[](a -2b )2-(a -2b )(a +2b )+4b 2÷(-2b )=(a2-4ab+4b2-a2+4b2+4b2)÷(-2b)=(-4ab+12b2)÷(-2b)=2a-6b.当a=1,b=-2时,原式=2×1-6×(-2)=2+12=14.18.解:如图所示.四、19.解:(1)时间;路程(2)800;乙(3)240(4)由图象知甲队的速度为200米/分钟,甲队到达终点所用的时间为800÷200=4(分钟),乙队到达终点所用的时间为2+(800-360)÷240=236(分钟),4-236=16(分钟).答:甲队比乙队晚到16分钟.20.解:(1)如图①,△A1B1C1即所求.(2)S△A1B1C1=2×3-12×1×2×2-12×1×3=52.答:△A1B1C1的面积为5 2 .(3)如图②,点P即为所求.21.解:(1)BC∥DE,理由如下:因为∠1=∠BFD,∠1=∠2,所以∠BFD=∠2,所以BC∥DE.(2)因为∠1=110°,所以∠AFB=180°-∠1=70°.因为∠A=50°,所以在△ABF中,∠B=180°-∠A-∠AFB=60°.因为AB∥CD,所以∠C=∠B=60°.五、22.解:(1)因为口袋中共有6个白球和14个红球,所以一共有6+14=20(个)球,所以P(摸出白球)=620=310.答:从口袋中随机摸出一个球是白球的概率是3 10 .(2)设取出了x个红球.根据题意,得6+x20=45,解这个方程,得x=10.答:取出了10个红球.23.解:(1)作图如下.(2)EF⊥BC.理由如下:因为AP平分∠B′AC,所以∠CAE=∠FAE.因为AC=AF,AE=AE,所以△AEC≌△AEF,所以∠C=∠AFE.因为∠BAC=90°,所以∠B+∠C=90°,所以∠B+∠AFE=90°.因为将边AB沿AD折叠,点B的对应点B′落在DC上,所以∠B=∠AB′D=∠FB′E,所以∠FB′E+∠AFE=90°,所以∠B′EF=90°,所以EF⊥BC.(3)因为将边AB沿AD折叠,点B的对应点B′落在DC上,所以AB=AB′=3.因为AF=AC=4,所以B′F=AF-AB′=4-3=1.21。

北师大版七年级(下)期中数学试卷(含解析)

北师大版七年级(下)期中数学试卷(含解析)

北师大版七年级数学(下)期中试卷一.选择题(本大题共10个小题,每小题3分,共30分)1.(3分)如果一个角是50°,那么它的余角的度数是()A.40°B.50°C.100°D.130°2.(3分)甲型H1N1流感病毒的直径大约为0.00000008米,用科学记数法表示为()A.0.8×10﹣7米B.8×10﹣8米C.8×10﹣9米D.8×10﹣7米3.(3分)下列长度的3条线段,能首尾依次相接组成三角形的是()A.1,3,5B.3,4,6C.5,6,11D.8,5,24.(3分)下列运算正确的是()A.(a﹣b)2=a2﹣b2 B.a3﹣a2=a C.(2a+1)(2a﹣1)=4a﹣1 D.(﹣2a3)2=4a65.(3分)下列乘法中,不能运用平方差公式进行运算的是()A.(x+a)(x﹣a)B.(x+a)(﹣a+x)C.(﹣x﹣b)(x﹣b)D.(a+b)(﹣a﹣b)6.(3分)如图,工人师傅砌门时,常用木条EF固定长方形门框ABCD,使其不变形,这种做法的根据是()A.三角形的稳定性B.长方形的对称性C.长方形的四个角都是直角D.两点之间线段最短7.(3分)请仔细观察用直尺和圆规作一个角∠A′O′B′等于已知角∠AOB的示意图,请你根据所学的图形的全等这一章的知识,说明画出∠A′O′B′=∠AOB的依据是()A.SAS B.ASA C.AAS D.SSS8.(3分)某星期天小李步行去图书馆看书,途中遇到一个红灯,停下来耽误了几分钟,为了赶时间,他以更快速度步行到图书馆,下面几幅图是步行路程s(米)与行进时间t(分)的关系的示意图,你认为正确的是()A.B.C.D.9.(3分)下列说法中正确的个数有()(1)在同一平面内,不相交的两条直线必平行;(2)同旁内角互补;(3)相等的角是对顶角;(4)从直线外一点到这条直线的垂线段,叫做这点到这条直线的距离;(5)经过直线外一点,有且只有一条直线与已知直线平行.A.2个B.3个C.4个D.5个10.(3分)如图,△ABC中,∠A=α°,延长BC到D,∠ABC与∠ACD的平分线相交于点A1,∠A1BC与∠A1CD 的平分线相交于点A2,依此类推,∠A n﹣1BC与∠A n﹣1CD的平分线相交于点A n,则∠A n的度数为()A.B.C.D.二.填空题(本大题共4个小题,每小题4分,共16分)11.(4分)三角形的三个内角的比为1:3:5,那么这个三角形的最大内角的度数为.12.(4分)若a+b=2,a2﹣b2=6,则a﹣b=.13.(4分)将两张长方形纸片如图所示摆放,使其中一张长方形纸片的一个顶点恰好落在另一张长方形纸片的一条边上,则∠1+∠2=.14.(4分)如果4x2+mx+9是一个完全平方式,则m的值为.三.解答题(本大题共6个小题,15题10分,16题8分,17题6分,18题8分,19题10分,20题12分,共54分)15.(10分)计算:①;②(﹣ab2)3•(﹣9a3b)÷(﹣3a3b5).16.(8分)先化简,在求值:[(2x+y)2﹣y(y+4x)﹣8xy]÷(2x),其中x=2,y=﹣1.17.(6分)阅读下列推理过程,在括号中填写理由.已知:如图,点D、E分别在线段AB、BC上,AC∥DE,DF∥AE交BC于点F,AE平分∠BAC.求证:DF平分∠BDE证明:∵AE平分∠BAC(已知)∴∠1=∠2()∵AC∥DE(已知)∴∠1=∠3()故∠2=∠3()∵DF∥AE(已知)∴∠2=∠5,()∠3=∠4()∴∠4=∠5()∴DF平分∠BDE()18.(8分)如图,在Rt△ABE中,∠AEB=90°,C为AE延长线上的一点,D为AB边上的一点,DC交BE于F,若∠ADC=80°,∠B=30°,求∠C的度数.19.(10分)如图所示,小明某天上午9时骑自行车离开家,15时回家,他有意描绘了离家的距离与时间的变化情况.(1)图象表示了哪两个变量的关系?哪个是自变量?哪个是因变量?(2)他到达离家最远的地方是什么时间?离家多远?(3)10时到12时他行驶了多少千米?(4)他可能在哪段时间内休息,并吃午餐?(5)他由离家最远的地方返回时的平均速度是多少?20.(12分)以点A为顶点作两个等腰直角三角形(△ABC,△ADE),如图1所示放置,使得一直角边重合,连接BD,CE.(1)说明BD=CE;(2)延长BD,交CE于点F,求∠BFC的度数;(3)若如图2放置,上面的结论还成立吗?请简单说明理由.一.填空题(本大题共5个小题,每小题4分,共20分)21.(4分)已知a﹣b=4,则a2﹣b2﹣8b的值为.22.(4分)如图所示,把一个长方形纸片沿EF折叠后,点D,C分别落在D′,C′的位置.若∠CFC′=150°,则∠AED′=.23.(4分)已知代数式x2+2x+5可以利用完全平方公式变形为(x+1)2+4,进而可知x2+2x+5的最小值是4.依此方法,代数式y2﹣y+5的最小值是.24.(4分)在△ABC中,∠ABC=45°,AD,BE分别为BC、AC边上的高,AD、BE相交于点F,下列结论:①∠FCD=45°;②AE=EC;③S△ABF:S△AFC=AD:FD;④若BF=2EC,则△FDC周长等于AB的长.正确结论的序号是.25.(4分)有一系列等式:1×2×3×4+1=52=(12+3×1+1)2,2×3×4×5+1=112=(22+3×2+1)2,3×4×5×6+1=192=(32+3×3+1)2,4×5×6×7+1=292=(42+3×4+1)2,……(1)根据你的观察,归纳发现规律,写出9×10×11×12+1的结果是;(2)式子(n﹣1)n(n+1)(n+2)+1=.二.解答题(本大题共3个小题,26题8分,27题10分,28题12分,共30分)26.(8分)已知x2+y2+4x﹣6y+13=0,求代数式[(x+2y)2﹣(x+y)(3x﹣y)﹣5y2]÷(2x)的值,要求先化简后求值.27.(10分)(1)如图①,已知:△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥m于D,CE⊥m于E,求证:DE=BD+CE;(2)拓展:如图②,将(1)中的条件改为:△ABC中,AB=AC,D、A、E三点都在直线m上,并且∠BDA =∠AEC=∠BAC=α,α为任意锐角或钝角,请问结论DE=BD+CE是否成立?如成立,请证明;若不成立,请说明理由;(3)应用:如图③,在△ABC中,∠BAC是钝角,AB=AC,∠BAD>∠CAE,∠BDA=∠AEC=∠BAC,直线m与BC的延长线交于点F,若BC=2CF,△ABC的面积是12,求△ABD与△CEF的面积之和.28.(12分)如图①,将一副直角三角板放在同一条直线AB上,其中∠ONM=30°,∠OCD=45°.(1)将图①中的三角板OMN绕点O按逆时针方向旋转,使∠BON=30°,如图②,MN与CD相交于点E,求∠CEN的度数;(2)将图①中的三角尺OMN绕点O按每秒15°的速度沿逆时针方向旋转一周,在旋转的过程中,在第秒时,边MN恰好与边CD平行;在第秒时,直线MN恰好与直线CD垂直.(直接写出结果)试题解析一.选择题(本大题共10个小题,每小题3分,共30分)1.解:∵一个角是50°,∴它的余角的度数是:90°﹣50°=40°,故选:A.2.解:0.00 000 008=8×10﹣8,故选:B.3.解:A、3+1<5,不能构成三角形;B、3+4=7>6,能构成三角形;C、5+6=11,不能构成三角形;D、5+2=7<8,不能构成三角形.故选:B.4.解:A、根据完全平方公式,得(a﹣b)2=a2﹣2ab+b2,故本选项错误;B、两项不是同类项,不能合并,故本选项错误;C、根据平方差公式,得(2a+1)(2a﹣1)=4a2﹣1,故本选项错误;D、(﹣2a3)2=4a6,故本选项正确.故选:D.5.解:A答案(x+a)(x﹣a)=x2﹣a2,能用平方差公式;B答案(x+a)(﹣a+x)=(x+a)(x﹣a)=x2﹣a2,能用平方差公式;C答案(﹣x﹣b)(x﹣b)=﹣(x+b)(x﹣b)=﹣(x2﹣b2)=b2﹣x2,能用平方差公式;D答案(a+b)(﹣a﹣b)=﹣(a+b)2,不能用平方差公式.故选:D.6.解:常用木条EF固定长方形门框ABCD,使其不变形,这种做法的根据是三角形具有稳定性.故选:A.7.解:由作法易得OD=O′D′,OC=O′C′,CD=C′D′,在△ODC和△O′D′C′中,∵,∴△COD≌△C'O'D'(SSS),∴∠D′O′C′=∠DOC.故选:D.8.解:根据题意:步行去图书馆看书,分3个阶段;(1)从家里出发后以某一速度匀速前进,位移增大;(2)中途遇到一个红灯,停下来耽误了几分钟,位移不变;(3)小李加快速度(仍保持匀速)前进,位移变大.故选:C.9.解:(1)符合平行线的定义,故本选项正确;(2)应为“两直线平行,同旁内角互补”,故本选项错误;(3)相等的角是指度数相等的角,未必为对顶角,故本选项错误;(4)应为“从直线外一点到这条直线的垂线段的长度,叫做这点到这条直线的距离”股本选项错误;(5)这是平行公理,故本选项正确;故选:A.10.解:∵A1B、A1C分别平分∠ABC和∠ACD,∴∠ACD=2∠A1CD,∠ABC=2∠A1BC,而∠A1CD=∠A1+∠A1BC,∠ACD=∠ABC+∠A,∴∠A=2∠A1=α,∴∠A1=α°,同理可得∠A1=2∠A2,即∠A=22∠A2=α°,∴∠A2=α°,∴∠A=2n∠A n,∴∠A n=α°•()n=()°.故选:C.二.填空题(本大题共4个小题,每小题4分,共16分)11.解:设三角形三个角的度数分别为x,3x,5x,所以x+3x+5x=180°,解得x=20°,所以5x=100°.故答案为100°.12.解:∵(a+b)(a﹣b)=a2﹣b2,∴2×(a﹣b)=6,∴a﹣b=3.故答案为:3.13.证明:如图,过点B作BN∥FG,∵四边形EFGH是矩形纸片,∴EH∥FG,∴BN∥EH∥FG,∴∠1=∠3,∠2=∠4,∴∠1+∠2=∠3+∠4=∠ABC=90°,即∠1+∠2=90°.故答案为:90°.14.解:如果4x2+mx+9是一个完全平方式,则m的值为±12,故答案为:±12三.解答题(本大题共6个小题,15题10分,16题8分,17题6分,18题8分,19题10分,20题12分,共54分)15.解:①原式=1﹣1+9=9;②原式=(﹣a3b6)•(﹣9a3b)÷(﹣3a3b5)=9a6b7÷(﹣3a3b5)=﹣3a3b2.16.解:[(2x+y)2﹣y(y+4x)﹣8xy]÷(2x)=[4x2+4xy+y2﹣y2﹣4xy﹣8xy]÷(2x)=(4x2﹣8xy)÷(2x)=2x﹣4y,当x=2,y=﹣1时,原式=2×2﹣4×(﹣1)=4+4=8.17.证明:∵AE平分∠BAC(已知)∴∠1=∠2(角平分线的定义)∵AC∥DE(已知)∴∠1=∠3(两直线平行,内错角相等)故∠2=∠3(等量代换)∵DF∥AE(已知)∴∠2=∠5,(两直线平行,同位角相等)∠3=∠4(两直线平行,内错角相等)∴∠4=∠5(等量代换)∴DF平分∠BDE(角平分线的定义).故答案为:角平分线的定义,两直线平行,内错角相等,等量代换,两直线平行,同位角相等,等量代换,角平分线的定义.18.解:∵在Rt△ABE中,∠AEB=90°,∠B=30°∴∠A=90°﹣∠B=60°,∵在△ADC中,∠A=60°,∠ADC=80°∴∠C=180°﹣60°﹣80°=40°,答:∠C的度数为40°.19.解:(1)图象表示了离家的距离与时间这两个变量之间的关系.其中时间是自变量,离家的距离是因变量;(2)根据图象可知,他到达离家最远的地方是在12时,离家30千米;(3)根据图象可知,30﹣15=15(千米).故:10时到12时他行驶了15千米;(4)根据图象可知,他可能在12时到13时间内休息,并吃午餐;(5)根据图象可知,30÷(15﹣13)=15(千米/时).故:他由离家最远的地方返回时的平均速度是15千米/时.20.解:(1)∵△ABC、△ADE是等腰直角三角形,∴AB=AC,∠BAD=∠EAC=90°,AD=AE,∵在△ADB和△AEC中,,∴△ADB≌△AEC(SAS),∴BD=CE;(2)∵△ADB≌△AEC,∴∠ACE=∠ABD,而在△CDF中,∠BFC=180°﹣∠ACE﹣∠CDF又∵∠CDF=∠BDA∴∠BFC=180°﹣∠DBA﹣∠BDA=∠DAB=90°;(3)BD=CE成立,且两线段所在直线互相垂直,即∠BFC=90°.理由如下:∵△ABC、△ADE是等腰直角三角形∴AB=AC,AD=AE,∠BAC=∠EAD=90°,∵∠BAC+∠CAD=∠EAD+∠CAD∴∠BAD=∠CAE,∵在△ADB和△AEC中,,∴△ADB≌△AEC(SAS)∴BD=CE,∠ACE=∠DBA,∴∠BFC=∠CAB=90°.一.填空题(本大题共5个小题,每小题4分,共20分)21.解:∵a﹣b=4,∴a=b+4,∴a2=(b+4)2=b2+8b+16,∴a2﹣b2﹣8b=b2+8b+16﹣b2﹣8b=16.故答案为16.22.解:∵∠CFC′=150°,∴∠EFC′==105°.∵ED′∥FC′,∴∠D′EF=180°﹣105°=75°,∴∠AED′=180°﹣2×75°=180°﹣150°=30°.故答案为:30°.23.解:y2﹣y+5=y2﹣y++=(y﹣)2+≥,则代数式y2﹣y+5的最小值是.故答案为:.24.解:∵△ABC中,AD,BE分别为BC、AC边上的高,∴AD⊥BC,而△ABF和△ACF有一条公共边,∴S△ABF:S△AFC=BD:CD,∴③正确;∵∠ABC=45°,∴AD=BD,∠DAC和∠FBD都是∠ACD的余角,而∠ADB=∠ADC=90°,∴△BDF≌△ADC,∴FD=CD,∴∠FCD=∠CFD=45°,∴①正确;若AE=EC,BE⊥AC,可得AB=BC,无法证得AB=BC,故②错误.若BF=2EC,根据①得BF=AC,∴AC=2EC,即E为AC的中点,∴BE为线段AC的垂直平分线,∴AF=CF,BA=BC,∴AB=BD+CD=AD+CD=AF+DF+CD=CF+DF+CD,即△FDC周长等于AB的长,∴④正确.故答案为①③④.25.解:(1)通过观察分析可得,每列的连续四个做积的自然数中第一个数乘以第四个自然数的积再加上1得到的和,就等于每列中间做平方的底数,所以9×10×11×12+1=(9×12+1)2=(109)2,每列中的最后一组式子括号里的数为四个做乘积的自然中的第一个自然数的平方然后加上3乘以这个自然数再加上1得到和,所以9×10×11×12+1=(109)2=(92+3×9+1)2.(2)根据(1)分析的规律可得,(n﹣1)n(n+1)(n+2)+1=[(n﹣1)(n+2)+1]2=(n2+n﹣1)2.故答案为:(1)9×10×11×12+1=(109)2=(92+3×9+1)2,(2)(n2+n﹣1)2.二.解答题(本大题共3个小题,26题8分,27题10分,28题12分,共30分)26.解:[(x+2y)2﹣(x+y)(3x﹣y)﹣5y2]÷(2x)=(x2+4xy+4y2﹣3x2+xy﹣3xy+y2﹣5y2)÷(2x)=(﹣2x2+2xy)÷(2x)=﹣x+y,∵x2+y2+4x﹣6y+13=0,∴(x2+4x+4)+(y2﹣6y+9)=0,∴(x+2)2+(y﹣3)2=0,∴x+2=0,y﹣3=0,∴x=﹣2,y=3,当x=﹣2,y=3时,原式=﹣(﹣2)+3=2+3=5.27.(1)证明:∵BD⊥直线m,CE⊥直线m,∴∠BDA=∠CEA=90°,∵∠BAC=90°,∴∠BAD+∠CAE=90°,∵∠BAD+∠ABD=90°,∴∠CAE=∠ABD,在△ADB和△CEA中,,∴△ADB≌△CEA(AAS),∴AE=BD,AD=CE,∴DE=AE+AD=BD+CE;(2)解:结论DE=BD+CE成立;理由如下:∵∠BDA=∠BAC=α,∴∠DBA+∠BAD=∠BAD+∠CAE=180°﹣α,∴∠CAE=∠ABD,在△ADB和△CEA中,,∴△ADB≌△CEA(AAS),∴AE=BD,AD=CE,∴DE=AE+AD=BD+CE;(3)解:∵∠BAD>∠CAE,∠BDA=∠AEC=∠BAC,∴∠CAE=∠ABD,在△ABD和△CEA中,,∴△ABD≌△CEA(AAS),∴S△ABD=S△CEA,设△ABC的底边BC上的高为h,则△ACF的底边CF上的高为h,∴S△ABC=BC•h=12,S△ACF=CF•h,∵BC=2CF,∴S△ACF=6,∵S△ACF=S△CEF+S△CEA=S△CEF+S△ABD=6,∴△ABD与△CEF的面积之和为6.28.解:(1)∵∠BON=∠N=30°,∴MN∥BC,∴∠CEN=180°﹣∠DCO=180°﹣45°=135°;(2)如图,MN∥CD时,旋转角为90°﹣(60°﹣45°)=75°,或270°﹣(60°﹣45°)=255°,所以,t=75°÷15°=5秒,或t=255°÷15°=17秒;MN⊥CD时,旋转角为90°+(180°﹣60°﹣45°)=165°,或360°﹣(60°﹣45°)=345°,所以,t=165°÷15°=11秒,或t=345°÷15°=23秒.故答案为:5或17;11或23.。

2.2018年北师大附属实验中学数学期中测验试题(答案版)

2.2018年北师大附属实验中学数学期中测验试题(答案版)

北师大附属实验中学2017—2018学年度第二学期初一数学期中考试试卷试卷说明:1.本试卷考试时间为100分钟,总分数为120分.2.本试卷共10页,六道大题,32道小题.3.请将全部答案填在答题纸上,选择题和作图使用2B铅笔,解答题必须使用0.5毫米黑色签字笔,不得使用铅笔或圆珠笔答题.4.一律不得使用涂改液及涂改带,本试卷主观试题铅笔答题无效.试卷命题人:苏海燕吴勇试卷审核人:陈平A卷一、选择题(每小题3分,共30分,在每小题给出的四个选项中,只有一个选项符合题意)1. 9的算术平方根是()A.3 B. ±3 C. 81 D. ±812. 在平面直角坐标系中,下列各点在第四象限的是()A. (1,3)B. (3,-1)C. (0,-1)D. (-3,-1)3. 皮影戏是中国民间古老的传统艺术,图1就是皮影戏中孙悟空的一个形象,在下面右侧的四个图形中,能由图1经过平移得到的图形是( ) .图1 A. B. C D.D CBA4. 下列各个不等式中,能推出??>??的是()A. ??-3<??-3B. -4??<-4??C. 32??<32??D. ??+4>??+25. 下列命题中是真命题的是()A. 相等的角是对顶角B. 同旁内角互补C. 数轴上的点与实数一一对应D. 无理数就是开方开不尽的数6. 如图所示,AD ⊥BD ,BC ⊥CD ,AB=5cm ,BC=3cm ,则BD 的范围是( )A.大于5cmB.小于3cmC.大于5cm 或小于3cmD.大于3cm 且小于5cm7. 如图,????∥????,∠??=35°,∠??=40°,则∠??=()A. 65°B. 70°C. 75°D. 80°8.如果不等式组{??>????<2无解,则??的取值范围是()A. ??>2B. ??<2C. ??≥2D. ??≤29. 如图,由起点??到终点??有多条路径,其中一条路径为线段????,长度为??,第二条路径为折线??????????????????????,其长度为??,第三条路径为折线????????,其长度为??,第四条路径为折线??????????,其长度为??,则这四条路径的长短关系为()A. ??>??>??>??B. ??<??<??<??C. ??<??=??<??D. ??<??<??=??ABCDE F10. 如图,△??????的三边长均为整数,且周长为22,????是边????上的中线,△??????的周长比△??????的周长大2,则????长的可能值有()个。

2018-2019学年北师大版数学七年级下册期中考试试题及答案

2018-2019学年北师大版数学七年级下册期中考试试题及答案

2018-2019学年北师大版数学七年级下册期中考试试题及答案2018-201年七年级下学期数学期中试卷一、选择题(本大题共10个小题,每小题2分,共20分。

每小题的四个选项中只有一个正确答案)1.下列运算正确的是()A。

a = 1B。

(-3) - 2 =C。

a6 ÷ a3 = a2D。

(a3)2 = a62.肥皂泡的泡壁厚度大约是0.xxxxxxxx米,数字0.xxxxxxxx用科学记数法表示为()A。

7.1×107B。

0.71×10-6C。

7.1×10-7D。

71×10-83.计算:a2•a的结果是()A。

aB。

a2C。

a3D。

2a24.如图,∠1和∠2是对顶角的是()A。

B。

C。

D。

5.已知,∠1与∠2互为邻补角,∠1=140°,则∠2的余角的度数为()A。

30°B。

40°C。

50°D。

100°6.将一副三角板如图放置,使点A在DE上,BC∥DE,∠C=45°,∠D=30°,则∠ABD的度数为()A。

10°B。

15°C。

20°D。

25°7.下列多项式乘法中可以用平方差公式计算的是()A。

(-a+b)(a-b)B。

(x+2)(2+x)C。

(+y)(y-)D。

(x-2)(x+1)8.周末___从家里出发骑单车去公园,因为她家与公园之间是一条笔直的自行车道,所以___骑得特别放松。

途中,她在路边的便利店挑选一瓶矿泉水,耽误了一段时间后继续骑行,愉快地到了公园。

图中描述了___路上的情景,下列说法中错误的是()A。

___在便利店时间为15分钟B。

公园离___家的距离为2000米C。

___从家到达公园共用时间20分钟D。

___从家到便利店的平均速度为100米/分钟9.如图,点P是直线a外的一点,点A、B、C在直线a 上,且PB⊥a,垂足是B,PA⊥PC,则下列不正确的语句是()A。

2018-2019学年北师大版七年级数学第二学期期中测试卷(含答案)

2018-2019学年北师大版七年级数学第二学期期中测试卷(含答案)

2018-2019学年七年级数学第二学期期中测试卷一、选择题(每题3分,共30分)1.下列运算正确的是()A.x3÷x2=x B.(x3)2=x5C.(x+1)2=x2+1 D.(2x)2=2x22.若(x-5)(x+20)=x2+mx+n,则m,n的值分别为()A.-15,-100 B.25,-100C.25,100 D.15,-1003.计算x3·x3的结果是()A.2x3B.2x6C.x6D.x94.下图中,∠1与∠2互为余角的是()5.在烧开水时,水温达到100 ℃就会沸腾,下表是某同学做“观察水的沸腾”实验时所记录的两个变量时间t(min)和温度T(℃)的数据:在水烧开之前(即t<10),温度T与时间t的关系式及因变量分别为() A.T=7t+30,T B.T=14t+30,tC.T=14t-16,t D.T=30t-14,T6.如图,直线AB,CD相交于点O,∠AOC=70°,OE把∠BOD分成两部分,且∠BOE∠EOD=,则∠AOE等于()A.162°B.152°C.142°D.132°7.如图,在下列给出的条件中,不能判定AB∥EF的是() A.∠B+∠2=180°B.∠1=∠4C.∠B=∠3 D.∠1=∠B8.如图,AB∥CD∥EF,AF∥CG,则图中与∠A(不包括∠A)相等的角有() A.5个B.4个C.3个D.2个9.一列火车从贵阳出发,加速行驶一段时间后开始匀速行驶,过了一段时间,火车到达下一个车站,乘客上、下车后,火车开始加速,一段时间后再次开始匀速行驶,下面的哪一幅图可以近似地刻画出火车在这段时间内的速度变化情况()10.甲、乙两同学骑自行车从A地沿同一条路到B地,已知乙比甲先出发,他们离出发地的距离s(km)和骑自行车时间t(h)之间的关系如图所示,给出下列说法:①他们都骑行了20 km;②乙在途中停留了0.5 h;③甲、乙两人同时到达目的地;④相遇后,甲的速度小于乙的速度.根据图象信息,以上说法正确的有()A.1个B.2个C.3个D.4个二、填空题(每题3分,共30分)11.如图,已知DE∥BC,∠ABC=40°,则∠ADE=________.12.蜜蜂建造的蜂巢既坚固又省料,其厚度约为0.000 073 m .将0.000 073用科学记数法表示为________________________________________________. 13.如图,某小区A 自来水供水路线为AB ,现进行改造,沿路线AO 铺设管道,并与主管道BO 连接(AO ⊥BO ),这样路线AO 最短,工程造价最低,根据是______________.14.如图,某人记录了某地一月份某天一段时间的温度随时间变化的情况.根据图象可知,在这段时间内温度最高是________℃,________________的温度是0 ℃.15.若32x -1=1,则x =________.16.洲际弹道导弹的速度会随着时间的变化而变化,某种型号的洲际弹道导弹的速度v (km/h)与时间t (h)的关系是v =1 000+50t ,若导弹发出0.5 h 即将击中目标,则此时该导弹的速度应为________km/h. 17.若a +b =7,ab =12,则a 2+b 2=________.18.如图,已知∠1=∠2,则________∥________,理由是________________________________________________________________________;若∠3=100°,则∠4=________,理由是________________________________________________________________________.19.某农场租用收割机收割小麦,甲收割机单独收割2天后,又调来乙收割机参与收割,直至完成800亩的收割任务.收割亩数S 与天数t 之间的关系图象如图所示,那么乙参与收割的天数是________天.20.如图,已知A 1B ∥A n C ,则∠A 1+∠A 2+…+∠A n 等于__________(用含n 的式子表示).三、解答题(21,24,25题每题8分,22题5分,23题7分,其余每题12分,共60分) 21.计算:(1)4a 2x 2·⎝ ⎛⎭⎪⎫-25a 4x 3y 3÷⎝ ⎛⎭⎪⎫-12a 5xy 2; (2)704×696;(3)(x -3)(2x +1)-3(2x -1)2;(4)(-5)0×(-2)-3+(-3)-1÷⎝ ⎛⎭⎪⎫13-1×32-|-5|.22.先化简,再求值:[(a -b )2+(2a +b )(1-b )-b ]÷⎝ ⎛⎭⎪⎫-12a ,其中a ,b 满足|a +1| +(2b -1)2=0.23.完成下列填空:如图,已知AD ⊥BC ,EF ⊥BC ,∠1=∠2.试说明:DG ∥B A. 解:因为AD ⊥BC ,EF ⊥BC (已知), 所以∠EFB =∠ADB =90°(______________).所以________∥________(______________________________). 所以∠1=∠BAD (______________________________).又因为∠1=∠2(已知),所以____________(等量代换).所以DG∥BA(____________________________).24.如图,AD∥BC,E,F分别在DC,AB的延长线上,∠DCB=∠DAB,AE ⊥EF,∠DEA=30°.(1)试说明:DC∥AB;(2)求∠AFE的度数.25.下表是橘子的销售额随橘子卖出质量的变化表:(1)这个表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)当橘子卖出5 kg时,销售额是________元.(3)如果用x表示橘子卖出的质量,y表示销售额,按表中给出的关系,y与x之间的关系式为________.(4)当橘子的销售额是100元时,共卖出多少千克橘子?26.如图是甲骑自行车与乙骑摩托车分别从A,B两地向C地(A,B,C地在同一直线上)行驶过程中离B地的距离与行驶时间的关系图,请你根据图象回答下列问题:(1)A,B两地哪个距C地近?近多少?(2)甲、乙两人谁出发时间早?早多长时间?(3)甲、乙两人在途中行驶的平均速度分别为多少?27.如图,已知射线CB∥OA,∠C=∠OAB=120°,E,F在CB上,且满足∠FOB=∠FBO,OE平分∠COF.(1)求∠EOB的度数.(2)若向右平行移动AB,其他条件不变,那么∠OBC∠OFC的值是否发生变化?若变化,找出其中规律;若不变,求出这个比值.(3)在向右平行移动AB的过程中,是否存在某种情况,使∠OEC=∠OBA?若存在,请直接写出∠OBA的度数;若不存在,请说明理由.答案一、1.A 2.D 3.C 4.C 5.A 6.B 7.D 8.B 9.C 10.B 二、11.40° 12.7.3×10-5 13.垂线段最短 14.2;12时和18时15.12 16.1 025 17.2518.a ;b ;同位角相等,两直线平行;100°;两直线平行,内错角相等 19.4 点拨:甲、乙合作的收割速度为(350-200)÷(3-2)=150(亩/天),乙收割机参与收割的天数为(800-200)÷150=4(天).20.(n -1)·180° 点拨:如图,过点A 2作A 2D ∥A 1B ,过点A 3作A 3E ∥A 1B ……因为A 1B ∥A n C ,所以A 3E ∥A 2D ∥…∥A 1B ∥A n C .所以∠A 1+∠A 1A 2D =180°,∠DA 2A 3+∠A 2A 3E =180°…… 所以∠A 1+∠A 1A 2A 3+…+∠A n -1A n C =(n -1)·180°. 三、21.解:(1)原式=-85a 6x 5y 3÷⎝ ⎛⎭⎪⎫-12a 5xy 2=165ax 4y ; (2)原式=(700+4)×(700-4)=7002-42=489 984;(3)原式=2x 2-5x -3-3(4x 2-4x +1)=2x 2-5x -3-12x 2+12x -3=-10x 2+7x -6;(4)原式=1×⎝ ⎛⎭⎪⎫-18+⎝ ⎛⎭⎪⎫-13÷3×9-5=-18-1-5=-618.22.解:原式=(a 2-2ab +b 2+2a -2ab +b -b 2-b )÷⎝ ⎛⎭⎪⎫-12a =(a 2-4ab +2a )÷⎝ ⎛⎭⎪⎫-12a =-2a +8b -4. 由|a +1|+(2b -1)2=0, 得a =-1,b =12.代入上式,得原式=-2×(-1)+8×12-4=2.23.垂直的定义;EF ;AD ;同位角相等,两直线平行;两直线平行,同位角相等;∠2=∠BAD ;内错角相等,两直线平行24.解:(1)因为AD∥BC,所以∠DAB=∠CBF.又因为∠DCB=∠DAB,所以∠CBF=∠DCB.所以DC∥AB.(2)因为AE⊥EF,所以∠AEF=90°.因为DC∥AB,所以∠DEF+∠AFE=180°.所以∠AFE=180°-∠DEF=180°-30°-90°=60°.25.解:(1)橘子卖出的质量与销售额之间的关系,橘子卖出的质量是自变量,销售额是因变量.(2)10(3)y=2x(4)当y=100时,x=50.答:此时共卖出50 kg橘子.26.解:(1)A地距C地近,近20 km.(2)甲出发时间早,早2 h.(3)甲:(80-20)÷6=10(km/h),乙:80÷(4-2)=40(km/h).答:甲的平均速度为10 km/h,乙的平均速度为40 km/h.27.解:(1)因为CB∥OA,∠C=∠OAB=120°,所以∠COA=180°-∠C=180°-120°=60°.因为CB∥OA,所以∠FBO=∠AOB.又因为∠FOB=∠FBO,所以∠AOB=∠FOB.因为OE平分∠COF,所以∠COE=∠FOE.所以∠EOB=∠EOF+∠FOB=12∠COA=30°.(2)不变.因为CB∥OA,所以∠OBC=∠BOA,∠OFC=∠FOA.所以∠OBC∠OFC=∠AOB∠FOA.又因为∠FOA=∠FOB+∠AOB=2∠AOB,所以∠OBC∠OFC=∠AOB∠FOA=∠AOB∠AOB=(3)存在.∠OBA=∠OEC=45°.。

【期中卷】北师大版七年级数学下册期中质量检测卷(六)含答案与解析

【期中卷】北师大版七年级数学下册期中质量检测卷(六)含答案与解析

北师大版七年级下册期中质量检测卷(六)数学(考试时间:100分钟试卷满分: 120分)班级___________ 姓名___________ 学号____________ 分数____________注意事项:1.本试卷满分120分,试题共25题,选择10道、填空8道、解答7道,答在本试卷上无效。

2.请认真核对监考教师在答题卡上所粘贴条形码的姓名、考试证号是否与本人相符合,再将自己的姓名、准考证号用0.5毫米黑色墨水签字笔填写在答题卡及本试卷上。

3.答选择题必须用2B铅笔将答题卡上对应的答案标号涂黑。

如需改动,请用橡皮擦干净后,再选涂其他答案。

答非选择题必须用0.5毫米黑色墨水签字笔写在答题卡的指定位置,在其他位置答题一律无效。

一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.下列各式中,正确的有()A.a3+a2=a5B.x(x m)3=x3mC.a8÷a2=a4D.(﹣2a3)2=4a62.芯片是手机、电脑等高科技产品的核心部件,目前我国芯片已可采用14纳米工艺.已知14纳米为0.000000014米,数据0.000000014用科学记数法表示为()A.1.4×10﹣10B.1.4×10﹣8C.14×10﹣8D.1.4×10﹣93.如图,直线b、c被直线a所截,则∠1与∠2是()A.内错角B.同位角C.同旁内角D.对顶角4.如图,在四边形ABCD中,连接BD,判定正确的是()A.若∠1=∠2,则AB∥CDB.若∠3=∠4,则AD∥BCC.若∠A+∠ABC=180°,则AD∥BCD.若∠C=∠A,则AB∥CD5.如图,把长方形ABCD沿EF对折,若∠1=44°,则∠AEF等于()A.136°B.102°C.122°D.112°6.水滴进如图所示的玻璃容器(水滴的速度是相同的),那么水的高度随着时间变化的图象大致是()A.B.C.D.7.如图在边长为a的正方形中挖掉一个边长为b的小正方形(a>b).把余下的部分剪拼成一个矩形,通过计算阴影部分的面积,验证了一个等式,则这个等式是()A.a2﹣b2=(a+b)(a﹣b)B.(a+b)2=a2+2ab+b2C.(a﹣b)2=a2﹣2ab+b2D.a2﹣ab=a(a﹣b)8.小明在利用完全平方公式计算一个二项整式的平方时,不小心用墨水把正确结果的最后一项染黑了,正确的结果为9a2+12ab+(),则被染黑的这一项应是()A.2b2B.3b2C.4b2D.﹣4b29.若关于x的多项式(2x﹣m)与(3x+5)的乘积中,一次项系数为25,则m的值()A.5 B.﹣5 C.3 D.﹣310.用四个完全一样的长方形(长、宽分别设为a、b,a>b)拼成如图所示的大正方形,已知大正方形的面积为64,中间空缺的小正方形的面积为16,则下列关系式中不正确的是()A.a+b=8 B.a﹣b=4 C.a•b=12 D.a2+b2=64二、填空题(本大题共8小题,每小题3分,共24分)请把答案直接填写在横线上11.若2m=3,2n=4,则23m﹣2n等于.12.已知m+2n=2,m﹣2n=2,则m2﹣4n2=.13.如图,AB∥CD,且∠DEC=100°,∠C=45°,则∠B的度数是.14.某水库的水位在一天内持续上涨,初始的水位高度为8米,水位以每小时0.2米的速度匀速上升,这天水库的水位高度y(米)与时间x(小时)的函数表达式是.15.一辆轿车和一辆货车同时从甲地出发驶往乙地,轿车到达乙地后立即以另一速度原路返回甲地,货车到达乙地后停止.如图所示的图象分别表示货车、轿车离甲地的距离(千米)与轿车所用时间(小时)的关系.当轿车从乙地返回甲地的途中与货车相遇时,相遇处离甲地的距离为千米.16.若a=20170,b=2015×2017﹣20162,c=()2016×()2017,则下列a,b,c的大小关系正确的是.17.如图,BD平分∠ABC,EF∥BC,AE与BD交于点G,连接ED.若∠A=22°,∠D=20°,∠DEF =2∠AED,则∠AGB的大小=(度).18.观察下列各式(x﹣1)(x+1)=x2﹣1(x﹣1)(x2+x+1)=x3﹣1(x﹣1)(x3+x2+x+1)=x4﹣1…你能否由此归纳出一般性规律:(x﹣1)(x2019+x2018+…+x+1)=.三、解答题(本大题共7小题,共66分.解答时应写出文字说明、证明过程或演算步骤)19.计算(1)(x2y)3•(﹣3xy2)(2)(xy+z)(﹣xy+z)20.先化简,再求值:(2x+3y)2﹣(2x+y)(2x﹣y),其中x,y.21.如图,已知HM平分∠EHD,GB∥HD,∠3=35°.(1)求∠1的度数;(2)求∠EGB的度数.22.如图,直线AB与CD相交于点O,OP是∠BOC的平分线,EO⊥AB于点O,FO⊥CD于点O.(1)若∠AOD=40°,求∠EOC的度数;(2)若∠AOD:∠EOF=1:5,求∠BOP的度数.23.一辆汽车在公路上行驶,其所走的路程和所用的时间可用下表表示:时间/t(min) 1 2.5 5 10 20 50 …路程/s(km) 2 5 10 20 40 100 …(1)在这个变化过程中,自变量、因变量各是什么?(2)当汽车行驶路程s为20km时,所花的时间t是多少分钟?(3)从表中说出随着t逐渐变大,s的变化趋势是什么?(4)如果汽车行驶的时间为t(min),行驶的路程为s(km),那么路程s与时间t之间的关系式为.(5)按照这一行驶规律,当所花的时间t是300min时,汽车行驶的路程s是多少千米?24.对于一个平面图形,通过两种不同的方法计算它的面积,可以得到一个数学等式,例如:图1可以得到(a+b)2=a2+2ab+b2,请解答下列问题:(1)写出图2所表示的数学等式:=;(2)已知上述等式中的三个字母a,b,c可取任意实数,若a=7k﹣5,b=﹣4k+2,c=﹣3k+4,且a2+b2+c2=37,请利用(1)所得的结论求ab+bc+ac的值;(3)小明同学用图3中2张边长为a的正方形,3张边长为b的正方形和m张邻边长分别为a、b的长方形纸片拼出一个长方形,通过拼图求出m的值.(求出1个即可)25.(1)如图1,已知点A是BC外一点,连接AB,AC.求∠BAC+∠B+∠C的度数.请补充下面的推理过程:解:过点A作ED∥BC,所以∠B=∠EAB,∠C=.又因为∠EAB+∠BAC+∠DAC=180°,所以∠B+∠BAC+∠C=180°.(2)如图2,已知AB∥ED,借鉴(1)的方法,求∠B+∠BCD+∠D的度数;(3)如图3,已知AB∥CD,∠ADC=70°.∠ABC=60°,BE平分∠ABC,DE平分∠ADC,BE,DE 所在的直线交于点E,点E在AB与CD两条平行线之间,借鉴(1)的方法,求∠BED的度数.参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.下列各式中,正确的有()A.a3+a2=a5B.x(x m)3=x3mC.a8÷a2=a4D.(﹣2a3)2=4a6【分析】直接利用合并同类项法则以及同底数幂的乘除运算法则分别判断得出答案.【解析】A、a3+a2,无法合并,故此选项错误;B、x(x m)3=x3m+1,故此选项错误;C、a8÷a2=a6,故此选项错误;D、(﹣2a3)2=4a6,正确.故选:D.2.芯片是手机、电脑等高科技产品的核心部件,目前我国芯片已可采用14纳米工艺.已知14纳米为0.000000014米,数据0.000000014用科学记数法表示为()A.1.4×10﹣10B.1.4×10﹣8C.14×10﹣8D.1.4×10﹣9【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正数;当原数的绝对值<1时,n是负数.【解析】0.000000014=1.4×10﹣8.故选:B.3.如图,直线b、c被直线a所截,则∠1与∠2是()A.内错角B.同位角C.同旁内角D.对顶角【分析】根据同位角定义可得答案.【解析】直线b、c被直线a所截,则∠1与∠2是同位角,故选:B.4.如图,在四边形ABCD中,连接BD,判定正确的是()A.若∠1=∠2,则AB∥CDB.若∠3=∠4,则AD∥BCC.若∠A+∠ABC=180°,则AD∥BCD.若∠C=∠A,则AB∥CD【分析】根据平行线的性质和判定逐个判断即可.【解析】A、根据∠1=∠2不能推出AB∥CD,故本选项不符合题意;B、根据∠3=∠4不能推出AD∥BC,故本选项不符合题意;C、根据∠A+∠ABC=180°能推出AD∥BC,故本选项符合题意;D、根据∠C=∠A不能推出AB∥CD,故本选项不符合题意.故选:C.5.如图,把长方形ABCD沿EF对折,若∠1=44°,则∠AEF等于()A.136°B.102°C.122°D.112°【分析】根据折叠的性质和平角的定义,可以得到∠3的度数,再根据平行线的性质,即可得到∠AEF 的度数.【解析】由折叠的性质可得,∠2=∠3,∵∠1=44°,∴∠2=∠3=68°,∵AD∥BC,∴∠AEF+∠3=180°,∴∠AEF=112°,故选:D.6.水滴进如图所示的玻璃容器(水滴的速度是相同的),那么水的高度随着时间变化的图象大致是()A.B.C.D.【分析】根据容器的粗细变化情况,可得答案.【解析】因为容器内容积的横截面先变大,再变小,而水滴的速度是相同的,所以容器下面大,上升速度慢,上面较小,上升速度变快,故选:D.7.如图在边长为a的正方形中挖掉一个边长为b的小正方形(a>b).把余下的部分剪拼成一个矩形,通过计算阴影部分的面积,验证了一个等式,则这个等式是()A.a2﹣b2=(a+b)(a﹣b)B.(a+b)2=a2+2ab+b2C.(a﹣b)2=a2﹣2ab+b2D.a2﹣ab=a(a﹣b)【分析】这个图形变换可以用来证明平方差公式:已知在左图中,大正方形减小正方形剩下的部分面积为a2﹣b2;因为拼成的长方形的长为(a+b),宽为(a﹣b),根据“长方形的面积=长×宽”代入为:(a+b)×(a﹣b),因为面积相等,进而得出结论.【解析】由图可知,大正方形减小正方形剩下的部分面积为a2﹣b2;拼成的长方形的面积:(a+b)×(a﹣b),所以得出:a2﹣b2=(a+b)(a﹣b),故选:A.8.小明在利用完全平方公式计算一个二项整式的平方时,不小心用墨水把正确结果的最后一项染黑了,正确的结果为9a2+12ab+(),则被染黑的这一项应是()A.2b2B.3b2C.4b2D.﹣4b2【分析】利用完全平方公式的结构特征判断即可.【解析】根据题意得:9a2+12ab+(),其中被染黑的这一项应是4b2,故选:C.9.若关于x的多项式(2x﹣m)与(3x+5)的乘积中,一次项系数为25,则m的值()A.5 B.﹣5 C.3 D.﹣3【分析】先求出两个多项式的积,再根据一次项系数为25,得到关于m的一次方程,求解即可.【解析】(2x﹣m)(3x+5)=6x2﹣3mx+10x﹣5m=6x2+(10﹣3m)x﹣5m.∵积的一次项系数为25,∴10﹣3m=25.解得m=﹣5.故选:B.10.用四个完全一样的长方形(长、宽分别设为a、b,a>b)拼成如图所示的大正方形,已知大正方形的面积为64,中间空缺的小正方形的面积为16,则下列关系式中不正确的是()A.a+b=8 B.a﹣b=4 C.a•b=12 D.a2+b2=64【分析】根据正方形的面积可以求出其边长,即可得到a+b,a﹣b,进而又可以求出a、b的值,再逐个判断即可.【解析】∵大正方形的面积为64,中间空缺的小正方形的面积为16,∴大正方形的边长为8,小正方形的边长为4,即:a+b=8,a﹣b=4,因此a=6,b=2,∴a2+b2=36+4=40,ab=6×2=12,故选:D.二、填空题(本大题共8小题,每小题3分,共24分)请把答案直接填写在横线上11.若2m=3,2n=4,则23m﹣2n等于.【分析】先根据同底数幂的除法和幂的乘方的性质的逆用,把23m﹣2n转化为用已知条件表示,然后代入数据计算即可.【解析】∵2m=3,2n=4,∴23m﹣2n=(2m)3÷(2n)2,=27÷16,.故应填:.12.已知m+2n=2,m﹣2n=2,则m2﹣4n2=4.【分析】原式利用平方差公式分解,把各自的值代入计算即可求出值.【解析】∵m+2n=2,m﹣2n=2,∴m2﹣4n2=(m+2n)(m﹣2n)=2×2=4.故答案为:4.13.如图,AB∥CD,且∠DEC=100°,∠C=45°,则∠B的度数是35°.【分析】根据平行线的性质和三角形内角和,可以求得∠B的度数,本题得以解决.【解析】∵∠DEC=100°,∠DEC=∠BEA,∴∠BEA=100°,∵AB∥CD,∠C=45°,∴∠C=∠A=45°,∴∠B=180°﹣∠A﹣∠BEA=35°,故答案为:35°.14.某水库的水位在一天内持续上涨,初始的水位高度为8米,水位以每小时0.2米的速度匀速上升,这天水库的水位高度y(米)与时间x(小时)的函数表达式是y=8+0.2x(x>0).【分析】根据水位高度随着时间x的变化关系,得出y与x之间的函数关系式.【解析】由题意得,y=8+0.2x(x>0),故答案为:y=8+0.2x(x>0).15.一辆轿车和一辆货车同时从甲地出发驶往乙地,轿车到达乙地后立即以另一速度原路返回甲地,货车到达乙地后停止.如图所示的图象分别表示货车、轿车离甲地的距离(千米)与轿车所用时间(小时)的关系.当轿车从乙地返回甲地的途中与货车相遇时,相遇处离甲地的距离为75千米.【分析】根据函数图象中的数据,可以计算出货车的速度已经轿车返回时的速度,然后即可计算出相遇处到甲地的距离.【解析】由图象可得,货车的速度为:90÷2=45(千米/小时),轿车返回时的速度为:90÷(2.5﹣1.5)=90(千米/小时),设当轿车从乙地返回甲地的途中与货车相遇时,货车行驶的时间为a小时,45a+90(a﹣1.5)=90,解得,a,4575(千米),即相遇处到甲地的距离是75千米.故答案为:75.16.若a=20170,b=2015×2017﹣20162,c=()2016×()2017,则下列a,b,c的大小关系正确的是a>b>c.【分析】直接利用积的乘方运算法则以及乘法公式进而计算得出答案.【解析】∵a=20170=1,b=2105×2017﹣20162=(2016﹣1)(2016+1)﹣20162=20162﹣1﹣20162=﹣1,c=()2016×()2017=[()×()]2016×(),∴a>b>c.故答案为:a>b>c.17.如图,BD平分∠ABC,EF∥BC,AE与BD交于点G,连接ED.若∠A=22°,∠D=20°,∠DEF =2∠AED,则∠AGB的大小=142(度).【分析】根据平行线的性质和角平分线的定义解答即可.【解析】∵BD平分∠ABC,∴∠ABD=∠DBC,设∠ABD=x°,DE与BC交于点M,∵∠AGB=∠DGE,∵∠AGB=180°﹣∠A﹣∠ABD,∠DGE=180°﹣∠D﹣∠AED,∴∠AED=x+2°,∵∠DGE=2∠AED,∴∠DEF=2x+4°,∵BC∥EF,∴∠DMC=∠DEF=2x+4°,∵∠DMC=∠D+∠DBC,∴2x+4°=20°+x,解得:x=16°,∴∠AGB=180°﹣∠A﹣∠ABD=180°﹣22°﹣16°=142°,故答案为:142.18.观察下列各式(x﹣1)(x+1)=x2﹣1(x﹣1)(x2+x+1)=x3﹣1(x﹣1)(x3+x2+x+1)=x4﹣1…你能否由此归纳出一般性规律:(x﹣1)(x2019+x2018+…+x+1)=x2020﹣1.【分析】根据已知算式得出规律,再根据所得的规律得出答案即可.【解析】∵(x﹣1)(x+1)=x2﹣1=x1+1﹣1,(x﹣1)(x2+x+1)=x3﹣1=x2+1﹣1,(x﹣1)(x3+x2+x+1)=x4﹣1=x3+1﹣1,…∴(x﹣1)(x2019+x2018+…+x+1)=x2019+1﹣1=x2020﹣1,故答案为:x2020﹣1.三.解答题(共7小题)19.计算(1)(x2y)3•(﹣3xy2)(2)(xy+z)(﹣xy+z)【分析】(1)先计算单项式的乘方,再计算单项式乘单项式即可得.(2)根据平方差公式解答.【解析】(1)原式=(x6y3)•(﹣3xy2)=()×(﹣3)•x2×3+1y3+2x7y5;(2)原式=z2﹣x2y2.20.先化简,再求值:(2x+3y)2﹣(2x+y)(2x﹣y),其中x,y.【分析】先根据完全平方公式和平方差公式算乘法,再合并同类项,最后代入求出即可.【解析】原式=4x2+12xy+9y2﹣(4x2﹣y2)=4x2+12xy+9y2﹣4x2+y2=12xy+10y2,当,时,原式.21.如图,已知HM平分∠EHD,GB∥HD,∠3=35°.(1)求∠1的度数;(2)求∠EGB的度数.【分析】(1)根据角平分线的性质可得∠1=∠2∠GHD,再根据平行线的性质可得∠2=∠3=35°,进而可得∠1的度数;(2)根据两直线平行同位角相等可得∠EGB=∠GHD,进而可得答案.【解析】(1)∵HM平分∠EHD,∴∠1=∠2∠GHD,∵GB∥HD,∴∠2=∠3=35°,∴∠1=35°;(2)∵∠1=∠2=35°,∴∠GHD=70°,∵GB∥HD,∴∠EGB=∠GHD=70°.22.如图,直线AB与CD相交于点O,OP是∠BOC的平分线,EO⊥AB于点O,FO⊥CD于点O.(1)若∠AOD=40°,求∠EOC的度数;(2)若∠AOD:∠EOF=1:5,求∠BOP的度数.【分析】(1)直接利用垂线的定义结合平角的性质得出答案;(2)设∠AOD为x°,则∠EOF为5x°利用周角的性质得出答案.【解析】(1)∵EO⊥AB,∴∠AOE=90°.∵∠AOD=40°,∴∠EOC=180°﹣∠AOD﹣∠AOE=180°﹣40°﹣90°=50°.(2)∵∠AOD:∠EOF=1:5,设∠AOD为x°,则∠EOF为5x°∵DO⊥FO,∴∠DOF=90°.∵∠AOD+∠AOE+∠EOF+∠DOF=360°,∴x+90°+5x+90°=360°.解得x=30°,即∠AOD=30°.又∴∠BOC=∠AOD=30°(对顶角相等),∵OP是∠BOC的平分线,∴∠POB∠BOC30°=15°.23.一辆汽车在公路上行驶,其所走的路程和所用的时间可用下表表示:时间/t(min) 1 2.5 5 10 20 50 …路程/s(km) 2 5 10 20 40 100 …(1)在这个变化过程中,自变量、因变量各是什么?(2)当汽车行驶路程s为20km时,所花的时间t是多少分钟?(3)从表中说出随着t逐渐变大,s的变化趋势是什么?(4)如果汽车行驶的时间为t(min),行驶的路程为s(km),那么路程s与时间t之间的关系式为s =2t.(5)按照这一行驶规律,当所花的时间t是300min时,汽车行驶的路程s是多少千米?【分析】(1)根据函数的定义可得出自变量为时间t,因变量为函数:路程s;(2)根据表格可知,每分钟行2千米,由公式t,再得出行驶路程s为20km时,所花的时间t即可;(3)从表中得出随着t逐渐变大,s逐渐变大;(4)路程、速度、时间之间的关系式为s=vt,再把v=2代入即可;(5)把t=300代入s=2t即可得出答案.【解析】(1)自变量是时间,因变量是路程;(2)∵当t=1时,s=2,∴v2,∴t10分钟;(3)由表得,随着t逐渐变大,s逐渐变大(或者时间每增加1分钟,路程增加2千米);(4)由(2)得v=2,∴路程s与时间t之间的关系式为s=2t,故答案为s=2t;(5)把t=300代入s=2t,得s=600.24.对于一个平面图形,通过两种不同的方法计算它的面积,可以得到一个数学等式,例如:图1可以得到(a+b)2=a2+2ab+b2,请解答下列问题:(1)写出图2所表示的数学等式:(a+b+c)2=a2+b2+c2+2ab+2bc+2ac;(2)已知上述等式中的三个字母a,b,c可取任意实数,若a=7k﹣5,b=﹣4k+2,c=﹣3k+4,且a2+b2+c2=37,请利用(1)所得的结论求ab+bc+ac的值;(3)小明同学用图3中2张边长为a的正方形,3张边长为b的正方形和m张邻边长分别为a、b的长方形纸片拼出一个长方形,通过拼图求出m的值.(求出1个即可)【分析】(1)直接求得正方形的面积,然后再根据正方形的面积=各矩形的面积之和求解即可;(2)将a=7k﹣5,b=﹣4k+2,c=﹣3k+4,且a2+b2+c2=37代入(1)中得到的关系式,然后进行计算即可;(3)根据所拼图形写出m的值即可.【解析】(1)正方形的面积可表示为=(a+b+c)2;正方形的面积=各个矩形的面积之和=a2+b2+c2+2ab+2bc+2ac,∴(a+b+c)2=a2+b2+c2+2ab+2bc+2ac,故答案为(a+b+c)2;a2+b2+c2+2ab+2bc+2ac;(2)∵a=7k﹣5,b=﹣4k+2,c=﹣3k+4,a2+b2+c2=37,∴(7k﹣5﹣4k+2﹣3k+4)2=37+2(ab+bc+ac),∴ab+bc+ac=﹣18;(3)如图所示:2a2+7ab+3b2=(a+3b)(2a+b).∴m=7.25.(1)如图1,已知点A是BC外一点,连接AB,AC.求∠BAC+∠B+∠C的度数.请补充下面的推理过程:解:过点A作ED∥BC,所以∠B=∠EAB,∠C=∠DAC.又因为∠EAB+∠BAC+∠DAC=180°,所以∠B+∠BAC+∠C=180°.(2)如图2,已知AB∥ED,借鉴(1)的方法,求∠B+∠BCD+∠D的度数;(3)如图3,已知AB∥CD,∠ADC=70°.∠ABC=60°,BE平分∠ABC,DE平分∠ADC,BE,DE 所在的直线交于点E,点E在AB与CD两条平行线之间,借鉴(1)的方法,求∠BED的度数.【分析】(1)根据平行线的性质即可得到结论;(2)过C作CF∥AB根据平行线的性质得到∠D=∠FCD,∠B=∠BCF,然后根据已知条件即可得到结论;(3)过点E作EF∥AB,然后根据两直线平行内错角相等,即可求∠BED的度数.【解析】(1)过点A作ED∥BC,所以∠B=∠EAB,∠C=∠DAC.又因为∠EAB+∠BAC+∠DAC=180°,所以∠B+∠BAC+∠C=180°.(2)如图2,过C作CF∥AB,∵AB∥DE,∴CF∥DE,∴∠D=∠FCD,∵CF∥AB,∴∠B=∠BCF,∵∠BCF+∠BCD+∠DCF=360°,∴∠B+∠BCD+∠D=360°(3)如图3,过点E作EF∥AB,∵AB∥CD,∴AB∥CD∥EF,∴∠ABE=∠BEF,∠CDE=∠DEF,∵BE平分∠ABC,DE平分∠ADC,∠ABC=60°,∠ADC=70°,∴,,∴∠BED=∠BEF+∠DEF=30°+35°=65°.故答案为:∠DAC.。

2018年北师大附属实验中学初一数学期中测验试题 (答案版)

2018年北师大附属实验中学初一数学期中测验试题 (答案版)

22. (本题共 5 分)如图,∠1 = ∠2,������������∥������������, 求证:∠3 = ∠4。
A
C E
1
B
2
D
3
4 F
2x 5 3x 2
23.
(本小题
6
分)解不等式组
2 / 14
10. 如图,△������������������的三边长均为整数,且周长为 22,������������
是边������������上的中线,△������������������的周长比△������������������的周长大 2,
则������������4. 将四个数√2、√5、√20和π表示在数轴上,被图中表示的解集包含的数


15. 已知������的平方根是������ + 1和2������ − 2,则������ =

16. 命 题 “ 两 直 线 平 行 , 同 位 角 相 等 ” 的 题 设 部 分


3 / 14
17. 如图,一艘船从 A 点出发先沿北偏东 55°方向航行,
6. 如图所示,AD⊥BD,BC⊥CD,AB=5cm,BC=3cm,则
BD 的范围是( )
A.大于 5cm
B.小于 3cm
B
C.大于 5cm 或小于 3cm D.大于 3cm 且小于 5cm
A D
C
7. 如图,������������∥������������,∠������ = 35°,∠������ = 40°,则∠������ =(
A. 65°
B. 70°
C. 75°
D. 80°

A

北师大版七年级下册数学《期中测试卷》(带答案)

北师大版七年级下册数学《期中测试卷》(带答案)

北师大版七年级下册数学期中测试卷学校________ 班级________ 姓名________ 成绩________一、选择题(本大题共10小题,每小题3分,共30分)1.计算33x x -的结果是( )A .32x -B .9x -C .6x -D .6x2.以下列各组长度的线段为边,能构成三角形的是( )A .6cm ,8cm ,15cmB .7cm ,5cm ,12cmC .4cm ,6cm ,5cmD .8cm ,4cm ,3cm 3.如图所示,90AOC BOD ∠=∠=︒,若150AOB ∠=︒,则DOC ∠的度数为( )A .30︒B .40︒C .50︒D .60︒4.如图,给出下列四组条件:①AB DE =,BC EF =,AC DF =;②AB DE =,B E ∠=∠.BC EF =;③B E ∠=∠,BC EF =,C F ∠=∠;④AB DE =,AC DF =,B E ∠=∠.其中,能使ABC DEF ∆≅∆的条件共有( )A .1组B .2组C .3组D .4组5.一辆汽车在公路上行驶,两次拐弯后,仍在原来的方向上平行行驶,那么两个拐弯的角度( )A .先向左转130︒,再向左转50︒B .先向左转50︒,再向右转50︒C .先向左转50︒,再向右转40︒D .先向左转50︒,再向左转40︒6.下面说法错误的是( )A .三角形的三条角平分线交于一点B .三角形的三条中线交于一点C .三角形的三条高交于一点D .三角形的三条高所在的直线交于一点7.如果两个三角形全等,那么下列结论不正确的是( )A .这两个三角形的对应边相等B .这两个三角形都是锐角三角形C .这两个三角形的面积相等D .这两个三角形的周长相等8.若236x mx ++是一个完全平方式,则m 的值为( )A .6B .6±C .12D .12± 9.下列图中,与图中的图案完全一致的是( )A .B .C .D .10.下列说法正确的有( )①在同一平面内,过直线上一点有且只有一条直线垂直于已知直线;②在同一平面内,过直线外一点有且只有一条直线垂直于已知直线;③在同一平面内,过一点可以任意画一条直线垂直于已知直线;④在同一平面内,有且只有一条直线垂直于已知直线.A .1个B .2个C .3个D .4个二、填空题(本大题共7小题,每小题4分,共28分)11.ABC ∆中,2A B C ∠=∠=∠,那么C ∠= .12.若等腰ABC ∆中,AB AC =,已知它的两边长分别为6cm 和7cm ,则此三角形的周长为 . 13.如23(1)(31)x mx x x ++-+乘积中不含4x 项,则m 的值为 .14.如图,直线12//l l ,若1130∠=︒,260∠=︒,则3∠= .15.已知:如图所示,//AB CD ,//BC DE ,那么B D ∠+∠= 度.16.某公司销售部门发现,该公司的销售收入随销售量的变化而变化,其中 是自变量, 是因变量. 17.已知14a a +=,则221a a+= . 三、解答题(一)(本大题共3小题,每小题6分,共18分)18.计算:(1)32232()x y x y x y -÷(2)2()(2)(2)x y y x y x --+-19.如图,已知点P 为AOB ∠的OA 边上的一点,过点P 作直线EF ,使//EF OB .(用尺规作图,保留作图痕迹,不用写作法)20.如图,点C 为AB 的中点,CD BE =,//CD BE .求证:ACD CBE ∆≅∆.四、解答题(二)(本大题共3小题,每小题8分,共24分)21.已知:如图,点A 、B 、C 、D 在同一条直线上,AC DB =,AE DF =,EA AD ⊥,FD AD ⊥,垂足分别是A 、D .求证://BE CF .22.先化简,再求值.()()()2x y x y x x y xy +--++,其中0(3)x π=-,2y =.23.已知:如图,//BE CF ,BE 、CF 分别平分ABC ∠和BCD ∠.求证://AB CD .五、解答题(三)(本大题共2小题,每小题10分,共20分)24.已知:如图,AD AE =,AB AC =,BD 、CE 相交于O .求证:OD OE =.25.等边三角形ABC 和等边三角形DEC ,D 在AC 边上.延长BD 交CE 延长线于N ,延长AE 交BC 延长线于M.∆≅∆;求证:(1)BCD ACE=.(2)CM CN答案与解析一、选择题(本大题共10小题,每小题3分,共30分)1.计算33x x -的结果是( )A .32x -B .9x -C .6x -D .6x【解析】336x x x -=-,故选:C .2.以下列各组长度的线段为边,能构成三角形的是( )A .6cm ,8cm ,15cmB .7cm ,5cm ,12cmC .4cm ,6cm ,5cmD .8cm ,4cm ,3cm 【解析】A 、6815+<,不能构成三角形,故此选项错误;B 、5612+=,不能构成三角形,故此选项错误;C 、456+>,能构成三角形,故此选项正确;D 、348+<,不能构成三角形,故此选项错误;故选:C .3.如图所示,90AOC BOD ∠=∠=︒,若150AOB ∠=︒,则DOC ∠的度数为( )A .30︒B .40︒C .50︒D .60︒【解析】150AOB ∠=︒,90AOC ∠=︒,60BOC AOB AOC ∴∠=∠-∠=︒,90BOD ∠=︒,30DOC BOD BOC ∴∠=∠-∠=︒.故选:A .4.如图,给出下列四组条件:①AB DE =,BC EF =,AC DF =;②AB DE =,B E ∠=∠.BC EF =;③B E ∠=∠,BC EF =,C F ∠=∠;④AB DE =,AC DF =,B E ∠=∠.其中,能使ABC DEF ∆≅∆的条件共有( )A.1组B.2组C.3组D.4组∆≅∆.【解析】第①组满足SSS,能证明ABC DEF∆≅∆.第②组满足SAS,能证明ABC DEF∆≅∆.第③组满足ASA,能证明ABC DEF∆≅∆.第④组只是SSA,不能证明ABC DEF∆≅∆.所以有3组能证明ABC DEF故符合条件的有3组.故选:C.5.一辆汽车在公路上行驶,两次拐弯后,仍在原来的方向上平行行驶,那么两个拐弯的角度() A.先向左转130︒,再向左转50︒B.先向左转50︒,再向右转50︒C.先向左转50︒,再向右转40︒D.先向左转50︒,再向左转40︒【解析】如图:∠=︒,A、1130∴∠=︒=∠,3502∴,方向相反;a b//∠=∠=︒,B、1250∴;a b//∠=︒,240∠=︒,C、150∴∠≠∠,12∴不平行于b;a∠=︒,D、24031401∴∠=︒≠∠,∴不平行于b.a故选:B .6.下面说法错误的是( )A .三角形的三条角平分线交于一点B .三角形的三条中线交于一点C .三角形的三条高交于一点D .三角形的三条高所在的直线交于一点【解析】A 、三角形的三条角平分线交于一点,是三角形的内心,故命题正确;B 、三角形的三条中线交于一点,是三角形的重心,故命题正确; 三角形的三条高所在的直线交于一点,三条高不一定相交,故C 错误,D 正确.故选:C .7.如果两个三角形全等,那么下列结论不正确的是( )A .这两个三角形的对应边相等B .这两个三角形都是锐角三角形C .这两个三角形的面积相等D .这两个三角形的周长相等【解析】因为能够完全重合的两个三角形是全等三角形,所以:A 、这两个三角形的对应边相等,正确;B 、直角三角形,钝角三角形也能全等,所以全等三角形可以是锐角三角形、直角三角形或钝角三角形,故本选项错误;C 、能够完全重合,所以这两个三角形的面积相等,正确;D 、能够完全重合,所以这两个三角形的周长相等,正确.故选:B .8.若236x mx ++是一个完全平方式,则m 的值为( )A .6B .6±C .12D .12± 【解析】22236262m x mx x x ++=++,是一个完全平方式, ∴62m =±,即12m =±, 故选:D .9.下列图中,与图中的图案完全一致的是( )A .B .C .D .【解析】能够完全重合的两个图形叫做全等形.题干中的图案与A 、C 、D 中的图案不一致,只有与B 中的图案一致, 故选:B .10.下列说法正确的有( )①在同一平面内,过直线上一点有且只有一条直线垂直于已知直线; ②在同一平面内,过直线外一点有且只有一条直线垂直于已知直线; ③在同一平面内,过一点可以任意画一条直线垂直于已知直线;④在同一平面内,有且只有一条直线垂直于已知直线.A .1个B .2个C .3个D .4个【解析】由垂线的性质可知①②正确.故选:B .二、填空题(本大题共7小题,每小题4分,共28分)11.ABC ∆中,2A B C ∠=∠=∠,那么C ∠= 36︒ .【解析】设C x ∠=︒,则2A B x ∠=∠=︒,22180x x x ++=︒,解得:36x =︒,故答案为:36︒.12.若等腰ABC ∆中,AB AC =,已知它的两边长分别为6cm 和7cm ,则此三角形的周长为 19cm 或20cm .【解析】根据题意,①当腰长为6cm 时,周长665719()cm =+=;②当腰长为7cm 时,周长67720()cm =++=;故答案为:19cm 或20cm .13.如23(1)(31)x mx x x ++-+乘积中不含4x 项,则m 的值为 0 .【解析】23(1)(31)x mx x x ++-+5324223331x x x mx mx mx x x =-++-++-+54323(23)(3)1x mx x m x m x =+-+-+-+,23(1)(31)x mx x x ++-+乘积中不含4x 项,0m ∴=,故答案为:0.14.如图,直线12//l l ,若1130∠=︒,260∠=︒,则3∠= 70︒ .【解析】直线12//l l ,41130∴∠=∠=︒,54270∴∠=∠-∠=︒5370∴∠=∠=︒.故答案为:70︒.15.已知:如图所示,//AB CD ,//BC DE ,那么B D ∠+∠= 180 度.【解析】//AB CD ,B C ∴∠=∠.又//BC DE ,180C D ∴∠+∠=︒,即180B D ∠+∠=度.故填180.16.某公司销售部门发现,该公司的销售收入随销售量的变化而变化,其中 销售量 是自变量, 是因变量.【解析】根据题意知,公司的销售收入随销售量的变化而变化,所以销售量是自变量,收入数为因变量.故答案为:销售量,销售收入.17.已知14a a +=,则221a a+= 14 . 【解析】14a a +=, 21()16a a∴+=, 221216a a ∴++=, 22114a a ∴+=. 故答案为14.三、解答题(一)(本大题共3小题,每小题6分,共18分)18.计算:(1)32232()x y x y x y -÷(2)2()(2)(2)x y y x y x --+-【解析】(1)原式322232x y x y x y x y =÷-÷2xy y =-;(2)原式222224x xy y y x =-+-+252x xy =-.19.如图,已知点P 为AOB ∠的OA 边上的一点,过点P 作直线EF ,使//EF OB .(用尺规作图,保留作图痕迹,不用写作法)【解析】如图所示,直线EF 即为所求:20.如图,点C 为AB 的中点,CD BE =,//CD BE .求证:ACD CBE ∆≅∆.【解析】证明:C 是AB 的中点(已知),AC CB ∴=(线段中点的定义).//CD BE (已知),ACD B ∴∠=∠(两直线平行,同位角相等).在ACD ∆和CBE ∆中,AC CB ACD CBE CD BE =⎧⎪∠=∠⎨⎪=⎩,()ACD CBE SAS ∴∆≅∆.四、解答题(二)(本大题共3小题,每小题8分,共24分)21.已知:如图,点A 、B 、C 、D 在同一条直线上,AC DB =,AE DF =,EA AD ⊥,FD AD ⊥,垂足分别是A 、D .求证://BE CF .【解析】证明:延长FC 到K .AC BD =,AC BC BD BC ∴-=-,即AB CD =,EA AD ⊥,FD AD ⊥,90A D ∴∠=∠=︒,在EAB ∆和FDC ∆中,AE DF A D AB DC =⎧⎪∠=∠⎨⎪=⎩,EAB FDC ∴∆≅∆,ABE DCF ∴∠=∠,DCF BCK ∠=∠,ABE BCK ∴∠=∠,//BE CF ∴.22.先化简,再求值.()()()2x y x y x x y xy +--++,其中0(3)x π=-,2y =.【解析】当0(3)1x π=-=,2y =时,原式2222x y x xy xy =---+2xy y =-24=-2=-23.已知:如图,//BE CF ,BE 、CF 分别平分ABC ∠和BCD ∠.求证://AB CD .【解析】证明:BE 、CF 分别平分ABC ∠和BCD ∠, 2ABC EBC ∴∠=∠,2BCD FCB ∠=∠,//BE CF ,EBC FCB ∴∠=∠,ABC BCD ∴∠=∠,//AB CD ∴.五、解答题(三)(本大题共2小题,每小题10分,共20分) 24.已知:如图,AD AE =,AB AC =,BD 、CE 相交于O .求证:OD OE =.【解析】证明:在ABD ∆与ACE ∆中AD AE A A AB AC =⎧⎪∠=∠⎨⎪=⎩,()ABD ACE SAS ∴∆≅∆,B C ∴∠=∠,AB AC =,AE AD =,BE DC ∴=,在DOC ∆与EOB ∆中B C DOC EOB BE DC ∠=∠⎧⎪∠=∠⎨⎪=⎩,()DOC EOB AAS ∴∆≅∆.25.等边三角形ABC 和等边三角形DEC ,D 在AC 边上.延长BD 交CE 延长线于N ,延长AE 交BC 延长线于M .求证:(1)BCD ACE ∆≅∆;(2)CM CN =.【解析】证明:(1)ABC ∆和CDE ∆都为等边三角形, 60BCD ACE ∴∠=∠=︒,AC BC =,CD CE =, 在BCD ∆和ACE ∆中,BC AC BCD ACE CD CE =⎧⎪∠=∠⎨⎪=⎩,()BCD ACE SAS ∴∆≅∆;(2)BCD ACE ∆≅∆,CBD CAE ∴∠=∠,60BCD ACE ∠=∠=︒,60MCE ∴∠=︒,120BCN ACM ∴∠=∠=︒,在BCN ∆和ACM ∆中,CBN CAN BC ACBCN ACM ∠=∠⎧⎪=⎨⎪∠=∠⎩, BCN ACM ∴∆≅∆,M N ∴∠=∠,在CEM ∆和CDN ∆中,60N M DCN MCE DC EC ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩,CEM CDN ∴∆≅∆,。

北师大版2018-2019学年七年级数学下册期中测试题及答案答案

北师大版2018-2019学年七年级数学下册期中测试题及答案答案

2018-2019学年七年级(下)期中数学试卷一、选择题(每题3分,共30分)1.如图,直线a、b被直线c所截,若a∥b,∠1=50°,∠2=65°,则∠3的度数为()A.110°B.115°C.120°D.130°2.已知P点坐标为(2﹣a,3a+6),且点P在x轴上,则点P的坐标是()A.P(0,12)B.P(0,2)C.P(2,0)D.P(4,0)3.下列各数中3.141,,π,﹣,0.,0.1010010001…无理数有()A.2个B.3个C.4个D.5个4.二元一次方程组的是()A.B.C.D.5.已知点P位于y轴右侧,距y轴3个单位长度,位于x轴上方,距离x轴4个单位长度,则点P 坐标是()A.(﹣3,4)B.(3,4)C.(﹣4,3)D.(4,3)6.已知﹣1<x<0,那么在x、2x、、﹣x2中最小的数是()A.﹣x2B.2x C.D.x7.若满足方程组的x与y互为相反数,则m的值为()A.1B.﹣1C.11D.﹣118.方程3x+2y=20的非负整数解的个数为()A.1个B.2个C.3个D.4个9.某校初三(2)班40名同学为“希望工程”捐款,共捐款100元,捐款情况如表:捐款(元)1234人数(人)6●●7表格中捐款2元和3元的人数不小心被墨水污染已经看不清楚.若设捐款2元的有x名同学,捐款3元的有y名同学,根据题意,可得方程组()A.B.C.D.10.方程组的解是,则方程组的解为()A.B.C.D.二、填空题(每题3分,共24分)11.点N(x,y)的坐标满足xy<0,则点N在第象限.12.如果2x2a﹣b﹣1﹣3y3a+2b﹣16=10是一个二元一次方程,那么数a=,b=.13.已知直线AB∥x轴,A点的坐标为(1,2),并且线段AB=3,则点B的坐标为.14.已知+|3x+2y﹣15|=0,则的算术平方根为.15.如图,四边形ABCD中,点M、N分别在AB、BC上,将△BMN沿MN翻折,得△FMN,若MF∥AD,FN∥DC,则∠B=°.16.数轴上有A、B、C三个点,B点表示的数是1,C点表示的数是,且AB=BC,则A点表示的数是.17.∠A的两边与∠B的两边互相平行,且∠A比∠B的2倍少15°,则∠A的度数为.18.对有序数对(m,n)定义“f运算”:f(m,n)=(m+a,n﹣b),其中a、b为常数.f 运算的结果也是一个有序数对,在此基础上,可对平面直角坐标系中的任意一点A(x,y)规定“F变换”:点A(x,y)在F变换下的对应点即为坐标为f(x,y)的点A′(1)当a=0,b=0时,f(﹣2,4)=;(2)若点P(4,﹣4)在F变换下的对应点是它本身,则a=,b=.三、解答题(共66分19.解二元一次方程组:.20.21.25(x﹣1)2﹣9=0.22.(7分)如图,∠1+∠2=180°,∠DAE=∠BCF,DA平分∠BDF.(1)AD与BC的位置关系如何?为什么?(2)证明BC平分∠DBE.23.(8分)如图,已知A(﹣2,3)、B(4,3)、C(﹣1,﹣3)(1)求△ABC的面积;(2)点P在y轴上,当△ABP的面积为6时,求点P的坐标.24.(6分)已知2+的小数部分为m,2﹣的小数部分为n,求(m+n)2018.25.(8分)在矩形ABCD中,放入六个形状、大小相同的长方形,所标尺寸如图所示.试求图中阴影部分的总面积.(写出分步求解的简明过程)26.(8分)河大附中初一年级有350名同学去春游,已知2辆A 型车和1辆B 型车可以载学生100人;1辆A 型车和2辆B 型车可以载学生110人. (1)A 、B 型车每辆可分别载学生多少人?(2)若租一辆A 需要100元,一辆B 需120元,请你设计租车方案,使得恰好运送完学生并且租车费用最少.27.(8分)某旅行社拟在暑假期间面向学生推出“林州红旗渠一日游”活动,收费标准如下:人数m 0<m ≤100100<m ≤200m >200 收费标准(元/人)908575甲、乙两所学校计划组织本校学生自愿参加此项活动.已知甲校报名参加的学生人数多于100人,乙校报名参加的学生人数少于100人.经核算,若两校分别组团共需花费20 800元,若两校联合组团只需花费18 000元.(1)两所学校报名参加旅游的学生人数之和超过200人吗?为什么? (2)两所学校报名参加旅游的学生各有多少人?28.(12分)如图,在平面直角坐标系中,点A ,B 的坐标分别为A (a ,0),B (b ,0),且a 、b 满足a =.现同时将点A ,B 分别向上平移2个单位,再向右平移1个单位,分别得到点A ,B 的对应点C ,D ,连接AC ,BD .得AC ∥BD . (1)直接写出点C ,D 的坐标和四边形ABDC 的面积;(2)若在坐标轴上存在点M ,使S △MAC =S 四边形ABDC ,求出点M 的坐标,(3)若点P 在直线BD 上运动,连接PC ,PO .请画出图形,写出∠CPO 、∠DCP 、∠BOP 的数量关系并证明.2018-2019学年七年级(下)期中数学试卷参考答案与试题解析一、选择题(每题3分,共30分)1.如图,直线a、b被直线c所截,若a∥b,∠1=50°,∠2=65°,则∠3的度数为()A.110°B.115°C.120°D.130°【分析】先根据平行线的性质求出∠4的度数,故可得出∠4+∠2的度数.由对顶角相等即可得出结论.【解答】解:∵a∥b,∠1=50°,∠2=65°,∴∠4=∠1=50°,∴∠2+∠4=65°+50°=115°,∴∠3=∠2+∠4=115°.故选:B.【点评】本题考查的是平行线的性质,用到的知识点为:两直线平行,内错角相等.2.已知P点坐标为(2﹣a,3a+6),且点P在x轴上,则点P的坐标是()A.P(0,12)B.P(0,2)C.P(2,0)D.P(4,0)【分析】根据x轴上点的纵坐标为0列方程求出a,再求解即可.【解答】解:∵P点坐标为(2﹣a,3a+6),且点P在x轴上,∴3a+6=0,解得a=﹣2,2﹣a=2﹣(﹣2)=4,故点P的坐标为(4,0).故选:D.【点评】本题考查了点的坐标,熟记x轴上点的纵坐标为0是解题的关键.3.下列各数中3.141,,π,﹣,0.,0.1010010001…无理数有()A.2个B.3个C.4个D.5个【分析】根据无理数的定义逐个判断即可.【解答】解:无理数有π,﹣,0.1010010001…,共3个,故选:B.【点评】本题考查了算术平方根、立方根、无理数等知识点,能熟记无理数的定义是解此题的关键.4.二元一次方程组的是()A.B.C.D.【分析】二元一次方程组满足三个条件:①方程组中的两个方程都是整式方程.②方程组中共含有两个未知数.③每个方程都是一次方程.依此即可求解.【解答】解:A、有3个未知数,不是二元一次方程组,故选项错误;B、是二次方程组,故选项错误;C、是二次方程组,故选项错误;D、是二元一次方程组,故选项正确.故选:D.【点评】考查了二元一次方程组的定义:把具有相同未知数的两个二元一次方程合在一起,就组成了一个二元一次方程组.5.已知点P位于y轴右侧,距y轴3个单位长度,位于x轴上方,距离x轴4个单位长度,则点P 坐标是()A.(﹣3,4)B.(3,4)C.(﹣4,3)D.(4,3)【分析】根据题意,P点应在第一象限,横、纵坐标为正,再根据P点到坐标轴的距离确定点的坐标.【解答】解:∵P点位于y轴右侧,x轴上方,∴P点在第一象限,又∵P点距y轴3个单位长度,距x轴4个单位长度,∴P点横坐标为3,纵坐标为4,即点P的坐标为(3,4).故选B.【点评】本题考查了点的位置判断方法及点的坐标几何意义.6.已知﹣1<x<0,那么在x、2x、、﹣x2中最小的数是()A.﹣x2B.2x C.D.x【分析】直接利用x的取值范围,进而比较各数大小.【解答】解:∵﹣1<x<0,∴>﹣x2>x>2x,∴在x、2x、、﹣x2中最小的数是:2x.故选:B.【点评】此题主要考查了实数比较大小,正确掌握实数的比较大小的方法是解题关键.7.若满足方程组的x与y互为相反数,则m的值为()A.1B.﹣1C.11D.﹣11【分析】由x与y互为相反数,得到y=﹣x,代入方程组计算即可求出m的值.【解答】解:由题意得:y=﹣x,代入方程组得:,消去x得:=,即3m+9=4m﹣2,解得:m=11,故选:C.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.8.方程3x+2y=20的非负整数解的个数为()A.1个B.2个C.3个D.4个【分析】根据非负整数的定义分别代入求出答案.【解答】解:当x=0时,y=10;当x=1时,y=8.5(不合题意);当x=2时,y=7;当x=3时,y=5.5(不合题意);当x=4时,y=4;当x=5时,y=2.5(不合题意);当x=6时,y=1;当x=7时,y=﹣0.5(不合题意);故方程3x+2y=20的非负整数解的个数为4个.故选:D.【点评】此题主要考查了二元一次方程的解,正确把握非负整数的定义是解题关键.9.某校初三(2)班40名同学为“希望工程”捐款,共捐款100元,捐款情况如表:捐款(元)1234人数(人)6●●7表格中捐款2元和3元的人数不小心被墨水污染已经看不清楚.若设捐款2元的有x名同学,捐款3元的有y名同学,根据题意,可得方程组()A.B.C.D.【分析】根据题意和表格可以列出相应的方程组,从而可以的打哪个选项是正确的.【解答】解:由题意可得,,化简,得,故选:A.【点评】本题考查由实际问题抽象出二元一次方程组,解题的关键是明确题意,列出相应的方程组.10.方程组的解是,则方程组的解为()A.B.C.D.【分析】将方程组变形为,根据已知方程组的解得出,解之可得.【解答】解:由方程组,得:,由题意可得,解得:,故选:D.【点评】本题主要考察二元一次方程组的解,解题的关键是掌握整体思想的运用.二、填空题(每题3分,共24分)11.点N(x,y)的坐标满足xy<0,则点N在第二、四象限.【分析】根据有理数的乘法,可得横坐标与纵坐标异号,根据点的坐标特征,可得答案.【解答】解:由题意,得横坐标与纵坐标异号,点N在第二、四象限,故答案为:二、四.【点评】本题考查了点的坐标,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).12.如果2x2a﹣b﹣1﹣3y3a+2b﹣16=10是一个二元一次方程,那么数a=3,b=4.【分析】根据一元二次方程的定义,令未知数的次数为1,即可列方程解答.【解答】解:∵2x2a﹣b﹣1﹣3y3a+2b﹣16=10是一个二元一次方程,∴,解得,,故答案为3,4.【点评】本题考查了二元一次方程的定义,根据题意列出方程是解题的关键.13.已知直线AB∥x轴,A点的坐标为(1,2),并且线段AB=3,则点B的坐标为(4,2)或(﹣2,2).【分析】AB∥x轴,说明A,B的纵坐标相等为2,再根据两点之间的距离公式求解即可.【解答】解:∵AB∥x轴,点A坐标为(1,2),∴A,B的纵坐标相等为2,设点B的横坐标为x,则有AB=|x﹣1|=3,解得:x=4或﹣2,∴点B的坐标为(4,2)或(﹣2,2).故本题答案为:(4,2)或(﹣2,2).【点评】本题主要考查了平行于x轴的直线上的点的纵坐标都相等.注意所求的点的位置的两种情况,不要漏解.14.已知+|3x+2y﹣15|=0,则的算术平方根为.【分析】根据非负数的性质列式求出x、y的值,然后代入代数式进行计算,再根据算术平方根的定义解答.【解答】解:由题意得,x+3=0,3x+2y﹣15=0,解得x=﹣3,y=12,所以,==3,所以,的算术平方根为.故答案为:.【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.15.如图,四边形ABCD中,点M、N分别在AB、BC上,将△BMN沿MN翻折,得△FMN,若MF∥AD,FN∥DC,则∠B=95°.【分析】根据两直线平行,同位角相等求出∠BMF、∠BNF,再根据翻折的性质求出∠BMN和∠BNM,然后利用三角形的内角和定理列式计算即可得解.【解答】解:∵MF∥AD,FN∥DC,∴∠BMF=∠A=100°,∠BNF=∠C=70°,∵△BMN沿MN翻折得△FMN,∴∠BMN=∠BMF=×100°=50°,∠BNM=∠BNF=×70°=35°,在△BMN中,∠B=180°﹣(∠BMN+∠BNM)=180°﹣(50°+35°)=180°﹣85°=95°.故答案为:95.【点评】本题考查了两直线平行,同位角相等的性质,翻折变换的性质,三角形的内角和定理,熟记性质并准确识图是解题的关键.16.数轴上有A、B、C三个点,B点表示的数是1,C点表示的数是,且AB=BC,则A点表示的数是2﹣.【分析】设A点表示x,再根据数轴上两点间距离的定义即可得出结论.【解答】解:设A点表示x,∵B点表示的数是1,C点表示的数是,且AB=BC,∴1﹣x=﹣1.解得:x=2﹣故答案为:2﹣.【点评】本题考查的是数轴,熟知数轴上两点间距离公式是解答此题的关键.17.∠A的两边与∠B的两边互相平行,且∠A比∠B的2倍少15°,则∠A的度数为15°或115°.【分析】如果两个角的两边互相平行,那么这两个角相等或互补,由∠A比∠B的3倍小20°和∠A与∠B相等或互补,可列方程组求解.【解答】解:根据题意,得或解方程组得∠A=∠B=15°或∠A=115°,∠B=65°.故答案为:15°或115°.【点评】本题主要考查了平行线的性质,此类问题结合方程的思想解决更简单.注意结论:如果两个角的两边互相平行,那么这两个角相等或互补.18.对有序数对(m,n)定义“f运算”:f(m,n)=(m+a,n﹣b),其中a、b为常数.f 运算的结果也是一个有序数对,在此基础上,可对平面直角坐标系中的任意一点A(x,y)规定“F变换”:点A(x,y)在F变换下的对应点即为坐标为f(x,y)的点A′(1)当a=0,b=0时,f(﹣2,4)=(﹣1,2);(2)若点P(4,﹣4)在F变换下的对应点是它本身,则a=2,b=﹣2.【分析】(1)根据新定义运算法则解得;(2)根据新定义运算法则得到关于a、b的方程,通过解方程求得它们的值即可.【解答】解:(1)依题意得:f(﹣2,4)=(×(﹣2)+0,×4﹣0)=(﹣1,2).故答案是:(﹣1,2);(2)依题意得:f(4,﹣4)=(×4+a,×(﹣4)+b)=(4,﹣4).所以×4+a=4,×(﹣4)﹣b=﹣4所以a=2,b=2.故答案是:2;2.【点评】考查了坐标与图形性质.关键是掌握对有序数对(m,n)定义“f运算”法则.三、解答题(共66分19.解二元一次方程组:.【分析】直接利用加减消元法解方程得出答案.【解答】解:由①×6得:3x﹣2y=8,③由②+③得:x=3,将x=3代入到②得:y=,故原方程组的解为:.【点评】此题主要考查了二元一次方程组的解法,正确掌握解方程的是解题关键.20.【分析】根据二元一次方程组的解法即可求出答案.【解答】解:原方程组化为∴3x+4y=4x+3y即x=y∴3x+4y=3x+4x=7x=84解得:x=12∴y=12∴方程组的解为【点评】本题考查二元一次方程组的解法,解题的关键是熟练运用二元一次方程组的解法,本题属于基础题型.21.25(x﹣1)2﹣9=0.【分析】25(x﹣1)2﹣9=0中每个数同时除以25,得到(x﹣1)2﹣=0,利用平方差公式求出x的值.【解答】解:∵25(x﹣1)2﹣9=0∴(x﹣1)2﹣=0(x﹣1﹣)(x﹣1+)=0解得x1=x2=【点评】本题主要考查了利用平方差公式解一元二次方程,熟练掌握平方差公式是解题的关键.22.(7分)如图,∠1+∠2=180°,∠DAE=∠BCF,DA平分∠BDF.(1)AD与BC的位置关系如何?为什么?(2)证明BC平分∠DBE.【分析】(1)平行,根据平行线的性质可以证得∠A=∠CBE,然后利用平行线的判定方法即可证得;(2)∠EBC=∠CBD,根据平行线的性质即可证得.【解答】解:(1)平行.理由如下:∵AE∥CF,∴∠C=∠CBE(两直线平行,内错角相等)又∵∠A=∠C∴∠A=∠CBE∴AD∥BC(同位角相等,两直线平行)(2)平分.理由如下:∵DA平分∠BDF,∴∠FDA=∠ADB∵AE∥CF,AD∥BC∴∠FDA=∠A=∠CBE,∠ADB=∠CBD∴∠EBC=∠CBD.∴BC平分∠DBE.【点评】本题考查了平行线的判定与性质,解答此题的关键是注意平行线的性质和判定定理的综合运用.23.(8分)如图,已知A(﹣2,3)、B(4,3)、C(﹣1,﹣3)(1)求△ABC的面积;(2)点P在y轴上,当△ABP的面积为6时,求点P的坐标.【分析】(1)先根据点的坐标求出AB长和点C到AB的距离,根据三角形的面积公式求出即可;(2)设P点到直线AB的距离为h,根据三角形的面积公式求出h,即可得出P点的坐标.【解答】解:(1)∵A(﹣2,3)、B(4,3)、C(﹣1,﹣3),∴AB∥x轴,AB=4﹣(﹣2)=6,C到AB的距离是3﹣(﹣3)=6,∴△ABC的面积为:=18;(2)设P点到直线AB的距离为h,∵△ABP的面积为6,AB=6,∴=6,解得:h=2,∵3+2=5,3﹣2=1,∴P点的坐标为(0,5)或(0,﹣1).【点评】本题考查了三角形的面积、坐标与图形性质等知识点,能求出AB的长和分别求出点C、P到直线AB的距离是解此题的关键.24.(6分)已知2+的小数部分为m,2﹣的小数部分为n,求(m+n)2018.【分析】首先估算出的范围,然后可求得m、n的值,最后即可求得(m+n)2018的值.【解答】解:∵1<3<4,∴1<<2.∴m=2+﹣3=﹣1,n=2﹣﹣0=2﹣,∴(m+n)2018=12018=1.【点评】本题主要考查的是估算无理数的大小、求得m、n的值是解题的关键.25.(8分)在矩形ABCD中,放入六个形状、大小相同的长方形,所标尺寸如图所示.试求图中阴影部分的总面积.(写出分步求解的简明过程)【分析】设小长方形的长为x厘米,宽为y厘米,根据题意和图示,列出关于x和y的二元一次方程组,解出x和y的值,即可求出矩形的AD的长度,从而求出矩形ABCD的面积,根据阴影部分的面积=矩形ABCD的面积﹣六个小长方形的面积,即可求得答案.【解答】解:设小长方形的长为x厘米,宽为y厘米,根据题意得:,解得:,即小长方形的长为8厘米,宽为2厘米,矩形ABCD的宽AD=6+2×2=10(厘米),矩形ABCD的面积为:14×10=140(平方厘米),阴影部分的面积为:140﹣6×8×2=44(平方厘米),答:图中阴影部分的总面积为44平方厘米.【点评】本题考查二元一次方程组的应用,正确找出等量关系,列出二元一次方程组是解题的关键.26.(8分)河大附中初一年级有350名同学去春游,已知2辆A型车和1辆B型车可以载学生100人;1辆A型车和2辆B型车可以载学生110人.(1)A、B型车每辆可分别载学生多少人?(2)若租一辆A需要100元,一辆B需120元,请你设计租车方案,使得恰好运送完学生并且租车费用最少.【分析】(1)根据载客量,可得方程组,根据解方程组,可得答案;(2)根据题意列出方程,可得答案.【解答】解:(1)设A、B型车每辆可分别载学生x,y人,可得:,解得:,答:A、B型车每辆可分别载学生30人,40人;(2)设租用A型a辆,B型b辆,可得:30a+40b=350,因为a,b为正整数,所以方程的解为:,方案一:A型1辆,B型8辆,费用:100×1+120×8=1060元;方案二:A型5辆,B型5辆,费用:100×5+120×5=1100元;方案三:A型9辆,B型2辆,费用:100×9+120×2=1140元;所以租用1辆A型8辆B型车花费最少为1060元.【点评】本题考查了二元一次方程组的应用,解(1)的关键是解方程组;解(2)的关键是解方程.27.(8分)某旅行社拟在暑假期间面向学生推出“林州红旗渠一日游”活动,收费标准如下:人数m0<m≤100100<m≤200m>200收费标准(元/人)908575甲、乙两所学校计划组织本校学生自愿参加此项活动.已知甲校报名参加的学生人数多于100人,乙校报名参加的学生人数少于100人.经核算,若两校分别组团共需花费20 800元,若两校联合组团只需花费18 000元.(1)两所学校报名参加旅游的学生人数之和超过200人吗?为什么?(2)两所学校报名参加旅游的学生各有多少人?【分析】(1)由已知分两种情况讨论,即a>200和100<a≤200,得出结论;(2)根据两种情况的费用,即x>200和100<x≤200分别设未知数列方程组求解,讨论得出答案.【解答】解:(1)这两所学校报名参加旅游的学生人数之和超过200人,理由为:设两校人数之和为a,若a>200,则a=18000÷75=240;若100<a≤200,则a=18000÷85=211>200,不合题意,则这两所学校报名参加旅游的学生人数之和等于240人,超过200人.(2)设甲学校报名参加旅游的学生有x 人,乙学校报名参加旅游的学生有y 人,则①当100<x ≤200时,得解得(6分)②当x >200时,得解得不合题意,舍去.答:甲学校报名参加旅游的学生有160人,乙学校报名参加旅游的学生有80人.【点评】此题考查的是二元一次方程组的应用,关键是把不符合题意的结论舍去.28.(12分)如图,在平面直角坐标系中,点A ,B 的坐标分别为A (a ,0),B (b ,0),且a 、b满足a =.现同时将点A ,B 分别向上平移2个单位,再向右平移1个单位,分别得到点A ,B 的对应点C ,D ,连接AC ,BD .得AC ∥BD .(1)直接写出点C ,D 的坐标和四边形ABDC 的面积;(2)若在坐标轴上存在点M ,使S △MAC =S 四边形ABDC ,求出点M 的坐标,(3)若点P 在直线BD 上运动,连接PC ,PO .请画出图形,写出∠CPO 、∠DCP 、∠BOP 的数量关系并证明.【分析】(1)根据非负数的性质求出a 、b 的值得出点A 、B 的坐标,再由平移可得点C 、D 的坐标,即可知答案;(2)分点M 在x 轴和y 轴上两种情况,设出坐标,根据S △ACM =S 四边形ABDC 列出方程求解可得;(3)作PE ∥AB ,则PE ∥CD ,可得∠DCP =∠CPE 、∠BOP =∠OPE ,继而知∠CPO =∠CPE +∠OPE =∠DCP +∠BOP ,即可得答案.【解答】解:(1)由a =.得:a =﹣1,b =3.所以A (﹣1,0),B (3,0),C (0,2),D (4,2),∵AB =4,CO =2,∴S=AB•CO=4×2=8;四边形ABDC(2)①M在y轴上,设M坐标为(0,m),∴,∴CM=16,∴m=2+16=18或m=2﹣16=﹣14,∴M点的坐标为(0,18)或(0,﹣14);②M在x轴上,设点m的坐标为(m,0),∴,∴AM=8,∴m=﹣1+8=7或m=﹣1﹣8=﹣9,所以点M的坐标为(7,0)或(﹣9,0).综上所述M点的坐标为(0,18)或(0,﹣14)或(7,0)或(﹣9,0);(3)当点P在BD上,如图1,∠DCP+∠BOP=∠CPO;当点P在线段BD的延长线上时,如图2,∠BOP﹣∠DCP=∠CPO,同理可得当点P在线段DB的延长线上时,如图3:∠DCP﹣∠BOP=∠CPO,【点评】本题主要考查非负数的性质、平行四边形的性质及平行线的判定与性质,根据非负数性质求得四点的坐标是解题的根本,熟练掌握平行线的判定与性质是解题的关键.。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档