地铁工程施工监测方案
地铁施工变形监测专项施工方案
地铁施工变形监测专项施工方案一、背景简介随着城市交通的发展,地铁工程建设日益增多,然而地铁施工过程中可能会引起地面建筑物的变形,因此对地铁施工变形进行监测显得尤为重要。
二、监测对象地铁施工变形监测的对象主要包括地面建筑物以及地下管线等。
三、监测手段1.地表测量:通过对地表标志物进行定点测量,如测角、测距等方法,了解地表的变形情况。
2.遥感监测:利用航空摄影和遥感技术,对地铁工程周边的地形进行全方位监测。
3.地下管线探测:采用地下雷达等技术,对地下管线的情况进行探测,及时排除隐患。
四、监测频率1.实时监测:在地铁施工过程中,对地面建筑物变形进行实时监测,保证施工过程的安全。
2.定期监测:除实时监测外,还需定期对地铁施工周边区域进行监测,及时发现潜在问题。
五、监测报告1.监测数据分析:对监测数据进行系统分析,了解地面建筑物的变形情况。
2.问题排查:如发现地面变形异常,需及时进行问题排查,找出原因并提出解决方案。
3.监测报告撰写:根据监测数据和问题排查结果,编制监测报告,向相关部门汇报情况。
六、应急预案1.事故处理:如发生地面建筑物坍塌等紧急情况,需立即启动应急预案,保障施工现场人员的安全。
2.紧急通知:在出现紧急情况时,需第一时间向相关部门通报,并配合开展应急处理工作。
七、总结与展望地铁施工变形监测是保障地下工程施工安全的重要环节,只有加强监测工作,提高预警能力,才能确保地铁施工的顺利进行。
未来,随着监测技术的不断创新,地铁施工变形监测工作将更加精准、高效。
以上是关于地铁施工变形监测专项施工方案的介绍,希望通过不懈的努力,确保地铁施工的顺利进行,保障城市交通的高效便捷。
地铁工程监测方案
地铁工程监测方案1.引言地铁是城市交通运输系统中的重要组成部分,对于现代城市的交通运输和经济发展起着至关重要的作用。
作为一个大型的基础设施工程项目,地铁的建设需要进行全面的监测和评估,以确保其安全运行和可持续发展。
因此,地铁工程监测方案的设计和实施至关重要。
本文将就地铁工程监测方案的设计和实施进行详细介绍。
2.工程概述地铁工程是一项综合性的工程项目,主要包括地下隧道、车站、站台、车辆运行系统等。
地铁隧道的建设和运行受到地质条件、地下水位、地表沉降、围岩压力等多种因素的影响。
因此,对于地铁工程的监测必须全面、系统和科学地进行。
3.监测对象地铁工程监测对象主要包括地下隧道、车站、站台、地下水位、地表沉降、围岩压力等。
监测内容主要包括地铁结构的变形、地铁运行的振动、地下水位和地表沉降情况等。
4.监测方法地铁工程监测主要采用传统的监测方法和现代的监测技术。
传统的监测方法主要包括地下水位监测、地表沉降监测和围岩压力监测等。
现代的监测技术则包括全站仪、GPS、遥感技术、激光扫描技术等。
5.监测设备地铁工程监测设备主要包括地下水位监测仪、地表沉降监测仪、围岩压力监测仪,以及全站仪、GPS、激光扫描仪等现代监测设备。
这些设备将根据监测要求进行布设,并进行实时监测。
6.监测数据处理对于地铁工程的监测数据,需要进行及时、准确的处理和分析。
监测数据的处理应采用科学的方法,包括数据的采集、传输、存储以及数据的分析和评估,以便及时发现问题并采取相应措施。
7.监测方案实施地铁工程监测方案的实施需要进行详细的计划和安排。
监测方案应包括监测目标、监测内容、监测方法、监测设备、监测数据处理以及应急措施等。
监测方案的实施应根据监测计划进行,并由专业的监测团队进行实施。
8.监测结果评估对于地铁工程的监测结果,需要进行综合评估。
监测结果的评估应包括监测数据的准确性和可靠性,以及结合实际情况进行分析和判断,为地铁工程的安全运行提供依据。
城市轨道交通地铁项目施工监测方案
城市轨道交通地铁项目施工监测方案1.1 测点布置1.1.1 测点布置原则1、按监测方案在现场布设测点,当实际地形不允许时,可在靠近设计测点位置设置测点,以能达到监测目地为原则。
2、为验证设计参数而设的测点布置在设计最不利位置和断面,为指导施工而设的测点布置在相同状况下最先施工部位,其目的是为了及时反馈信息,以修改设计和指导施工。
3、地表变形测点的位置既要考虑反映对象的变形特征,又要便于采用仪器进行观测,还要有利于测点的保护。
4、深埋测点(结构变形测点等)不能影响和妨碍结构的正常受力,不能削弱结构的刚度和强度。
5、各类监测测点的布置在时间和空间上有机结合,力求同一监测部位能同时反映不同的物理变化量,以便找出其内在的联系和变化规律。
6、测点的埋设应提前一定的时间,并及早进行初始状态的量测。
7、测点在施工过程中一旦破坏,尽快在原来位置或尽量靠近原来位置补设测点,以保证该测点观测数据的连续性。
1.1.2车站测点布置车站测点布设情况如下表9-4所示表9-4 测点布设表1.1.3区间测点布置(1)地面沉降(隆起)监测点:—般地沿隧道中线方向每隔5m布设一个测点,每隔定距离布设一个监测横断面,见表9-5。
表9-5 地面沉降监测横断面间距表注:B代表隧道的外径横断面方向测点间隔,一般为5〜8m在一个监测断面内设9个测点,地表测点顶突出地面5mm以内。
地面沉降测量应在盾构机开挖面附近,每天进行及每周进行后期观测直到沉降稳定。
(2)地面建筑物及临近建筑物沉降、倾斜和水平位移:在每栋建筑物四角各设置一个观测点,以测量其位移、倾斜,沉降点的数量不少于4点,规模较大的建筑物根据需要增加测点数量。
地面和建筑物沉降监测断面沿隧道纵向每30m设一断面地面或建筑物沉醫标志地面或罐於物沉障标£不少穴个5t(J0 分泾沅降仪沉障孔测斜仪 测斜仪测黏扎K 斜孔时称中心纯图 9-20 主断面监测点布置图(单位:mm拱顶下沉测点匚-1收敛测线A'f ■*! j匚!!u 11L ;]图9-21 洞内常规监测点布置图11隧道中心找/ 'V图9-22 纵断面监测点布置图地面或建筑物沉降监测标志\1测斜孔[拱顶下沉监测点[ 1隧道结构 | || If 1 1 1收敛测线A| 1隧底隆起监测点 1 rri 1 隧道结构M 1II1 L 1 1f 20〜30m (特殊地段加密)f 20〜30m (特殊地段加密)丫图9-23 单线隧道掘进地面沉降监测点布置示意图 (3) 土体水平位移及分层沉降:在典型断面布置测斜 仪进行测量,见图9-24。
地铁施工周边建筑监测方案
地铁施工周边建筑监测方案地铁施工周边建筑监测是确保施工期间周边建筑安全和防止施工对周边建筑造成不良影响的重要措施。
下面是一份地铁施工周边建筑监测方案,详细介绍了监测的目的、内容、方法和频率等。
1. 监测目的:确保施工对周边建筑的安全无影响,及时发现并处理潜在的安全隐患,保护周边建筑的稳定和周边居民的生命财产安全。
2. 监测内容:(1)地表沉降监测:监测施工期间地表沉降情况,确保地铁施工对周边地表的影响在可接受范围内。
(2)建筑物倾斜监测:监测周边建筑物的倾斜情况,及时发现建筑物倾斜严重程度,防止因施工引起的建筑物不稳定。
(3)振动监测:监测施工引起的地面振动情况,确保振动不超过规定的安全限值,避免对周边建筑物造成损害。
(4)裂缝监测:监测周边建筑物出现的裂缝情况,及时发现并评估裂缝的发展趋势,防止严重裂缝对建筑物稳定性的影响。
3. 监测方法:(1)地表沉降监测:采用水准测量和高斯仪等方法,通过测量固定的控制点,监测地表沉降情况。
(2)建筑物倾斜监测:采用倾斜仪或全站仪等设备,监测建筑物的倾斜情况,并定期进行测量和记录。
(3)振动监测:采用地震仪或振动传感器等设备,监测施工引起的地面振动情况,并记录振动参数。
(4)裂缝监测:采用激光扫描仪或倾角仪等设备,对建筑物裂缝进行定期监测和测量。
4. 监测频率:(1)地表沉降监测:施工前后进行一次测量,然后每月进行一次测量,持续至施工结束。
(2)建筑物倾斜监测:施工前后进行一次测量,然后每周进行一次测量,持续至施工结束。
(3)振动监测:施工期间每日进行振动监测,限值超标则立即通知相关部门采取控制措施。
(4)裂缝监测:施工前后进行一次测量,然后每季度进行一次测量,持续至施工结束。
以上就是一份地铁施工周边建筑监测方案,以确保施工期间周边建筑安全和防止施工对周边建筑造成不良影响。
这个方案中包括监测目的、内容、方法和频率等关键要素,同时也应根据具体情况进行灵活调整和完善。
地铁施工变形监测专项施工方案
地铁施工变形监测专项施工方案一、方案背景与目的地铁工程建设一般都会伴随着地表地下土体的变形与沉降,这些变形和沉降对地铁工程的安全运营和城市建设都有很大影响。
因此,进行地铁施工变形监测是必不可少的工作。
该方案旨在制定详细的地铁施工变形监测方案,以确保地铁工程的安全运营和城市建设的顺利进行。
二、监测目标与内容1.监测目标:(1)地铁隧道施工引起的地表沉降;(2)地铁施工对周围房屋、道路等的影响;(3)地铁施工对邻近地铁线路以及地下设施的影响。
2.监测内容:(1)地表沉降监测;(2)结构物位移监测;(3)环境振动监测;(4)隧道内部和周边地下水位监测;(5)地下管线移动监测。
三、监测方法与技术1.地表沉降监测方法:(1)使用测量仪器和测量数据处理软件,进行地表沉降点的定位与测量;(2)定期测量地表沉降变化;(3)将测量数据与设计要求进行比对,判断是否超过了允许的变形限值。
2.结构物位移监测方法:(1)使用位移传感器,在施工前后对结构物进行定位与测量;(2)定期测量结构物位移变化;(3)将测量数据与设计要求进行比对,判断是否超过了允许的变形限值。
3.环境振动监测方法:(1)在施工现场周边设置振动传感器,监测施工引起的振动情况;(2)定期测量振动变化;(3)将测量数据与环境振动标准进行比对,判断是否超过了允许的振动限值。
4.隧道内部和周边地下水位监测方法:(1)在施工现场设置水位监测井或压力计,监测地下水位;(2)定期测量地下水位变化;(3)将测量数据与设计要求进行比对,判断是否超过了允许的水位限值。
5.地下管线移动监测方法:(1)通过地下管线的管内摄像机或声纳仪器进行监测;(2)定期检查管线的移动情况;(3)将监测数据与设计要求进行比对,判断是否超过了允许的限值。
四、监测方案的实施1.在施工前进行基准测量,记录基准数据。
2.在施工期间定期进行监测,记录监测数据。
3.对监测数据进行分析、比对和整理,及时发现异常情况。
地铁隧道工程监测方案
地铁隧道工程监测方案一、前言地铁隧道工程是城市轨道交通系统的重要组成部分,具有大规模、复杂性高等特点。
为保障地铁隧道工程的施工质量和运营安全,必须进行科学合理的监测工作。
本方案将针对地铁隧道工程的监测需求和特点,制定相应的监测方案,以确保施工和运营过程中的安全可控。
二、监测目标地铁隧道工程监测的目标主要包括以下几个方面:1. 地质环境监测:监测地下隧道施工区域的地质情况,包括地下水位、地层稳定性、地下裂缝等;2. 隧道结构监测:监测隧道结构的变形情况,包括隧道径向变形、轴向变形、纵横向位移等;3. 施工监测:监测地铁隧道施工过程中的施工质量和安全情况,包括土压平衡盾构机的掘进参数、锚杆的张力等;4. 运营监测:监测地铁隧道运营过程中的地下水位、地铁车辆振动等。
三、监测方法1. 地质环境监测方法:(1)地下水位监测:采用定点井水位监测法,通过埋设水位计和传感器监测地下水位的变化情况;(2)地层稳定性监测:采用地下虚拟仪器成像技术,通过地质雷达和地震波勘测技术监测地层的稳定性;(3)地下裂缝监测:采用微震监测技术,通过监测地下微震事件的发生情况来判断地下裂缝的分布和变化。
2. 隧道结构监测方法:(1)隧道径向变形监测:采用激光测距仪和全站仪结合的方法,通过测量隧道内壁的变形情况来判断隧道的径向变形;(2)轴向变形监测:采用应变片和应变计监测技术,通过对隧道结构的应变情况进行监测来判断隧道的轴向变形;(3)纵横向位移监测:采用全站仪和GPS监测技术,通过监测隧道内各个位置的坐标来判断隧道的纵横向位移。
3. 施工监测方法:(1)土压平衡盾构机的掘进参数监测:采用激光测距仪和倾斜仪监测技术,通过监测盾构机的掘进速度、推力、转速等参数来判断盾构机的施工状态;(2)锚杆的张力监测:采用拉力计和应变计监测技术,通过监测锚杆的张力情况来判断锚杆的施工质量和状态。
4. 运营监测方法:(1)地下水位监测:采用定点井水位监测法,通过监测地下水位的变化情况来判断地下水对地铁隧道的影响;(2)地铁车辆振动监测:采用振动传感器和加速度计监测技术,通过监测地铁车辆在运行过程中的振动情况来判断地铁隧道的安全性。
地铁施工监测方案
地铁施工监测方案1. 简介地铁施工监测方案是指在地铁建设过程中,为了确保地铁施工过程的安全和顺利进行,对施工现场进行监测和控制的方案。
该方案旨在通过应用先进的地铁施工监测技术,对地铁施工现场的各项参数进行实时监测,提前发现潜在的问题,及时采取相应的措施,以减少施工风险,确保施工质量,保障地铁运营的安全。
2. 监测内容和方法地铁施工监测包括以下内容:2.1 基坑监测基坑监测是对地铁施工过程中的基坑进行实时监测,主要包括以下方面的内容:•地下水位监测:通过设置水位监测设备,实时监测基坑周围地下水位的变化情况,预防水位过高导致基坑坍塌等问题。
•土壤位移监测:通过设置位移监测仪器,实时监测基坑周围土壤的位移情况,及时发现土壤松动、下沉等问题。
•施工权重监测:通过设置权重监测仪器,监测地铁施工对基坑周围建筑物的力学影响,保证施工过程对周围环境的安全。
2.2 隧道监测隧道监测是对地铁隧道施工过程中的各项参数进行实时监测,主要包括以下方面的内容:•隧道位移监测:通过设置位移监测仪器,实时监测隧道的位移情况,及时发现隧道变形、沉降等问题。
•隧道应力监测:通过设置应力监测仪器,监测隧道结构的应力分布情况,及时发现应力集中和超出设计范围的情况。
•隧道温度监测:通过设置温度监测仪器,监测隧道内外温度的变化情况,及时发现温度异常,预防温度变化导致的隧道结构问题。
2.3 工程振动监测工程振动监测是对地铁施工过程中的振动参数进行实时监测,主要包括以下方面的内容:•施工振动监测:通过设置振动监测仪器,实时监测地铁施工对周围建筑物的振动情况,预防施工振动造成的建筑物损坏。
•列车振动监测:通过设置振动监测仪器,监测地铁列车在运营过程中产生的振动情况,及时发现并解决列车振动过大的问题,确保列车运营的安全和乘客的舒适度。
3. 监测数据处理和分析为了有效利用监测数据,提前发现和解决问题,监测数据将进行处理和分析。
具体步骤如下:1.数据采集:监测设备定期采集监测数据,包括基坑监测数据、隧道监测数据和工程振动监测数据。
地铁工程施工监测方案
地铁工程施工监测方案监测目的:一是通过对监测信息的分析指导后续工程的施工,二是确保周围建筑物的稳定及施工安全,三是为今后类似工程的建设提供经验.根据招标文件中有关施工监测部分的精神,结合本工程的地理位置及基坑的开挖深度和工程结构型式的特点来考虑,我们认为监测重点为监测围护结构的水平位移及沉降、地表变形、钢支撑受力、地下水位以及地下管线变形等方面监测。
1.监测组织与程序建立专业监测小组,根据业主要求委托有资质和有业绩的单位进行,并由具备独立资质有丰富施工经验、监测经验及有结构受力计算、分析能力的工程技术人员组成。
负责监测方案的制定、监测仪器的埋设和调试、监测数据的收集、整理和分析,并采用先进可靠的计算软件,快速、及时准确的反馈信息,指导施工。
同时与预测的数据进行对照,有利于及时发现异常,及早采取措施。
2. 监测项目地下工程按信息化设计,现场监控量测是监视围岩稳定、判断支护衬砌设计是否合理安全、施工方法是否正确的重要手段,通过监控量测:将监测数据与预测值相比较,判断前一步施工工艺和支护参数是否符合预期要求,以确定和调整下一步施工,确保施工安全和地表建筑物、地下管线的安全。
将现场测量的数据、信息及时反馈,以修改和完善设计,使设计达到优质安全、经济合理。
将现场测量的数据与理论预测值比较,用反分析法进行分析计算,使设计更符合实际,以便指导今后的工程建设。
测点布置、监测手段与监测频率现场监控量测项目、测点布置、监测手段与监测频率详见明挖段监控量测表。
3.监测方案及相应措施1)地面沉降(1)监测方法:主要监测基坑开挖引起的地表变形情况。
监测方法是在地表埋设测点,用水准仪进行下沉的量测。
根据量测结果进行回归分析,判断基坑开挖对地表变形的影响。
(2)测点布置原则:测点布置在基坑周围地面上,间距10~20米。
(3)量测频率:见监测项目汇总表(4)量测精度:±1mm(5)相应对策: 当地表沉降速度过大,加快监测频率,必要时,停工检查原因,采用加强支撑和加固地层的措施保证施工安全。
地铁施工监测方案
地铁施工监测方案1. 引言地铁是现代城市交通中一种重要的公共交通方式,对于城市的发展和居民的出行起到了重要的推动作用。
然而,在地铁建设和施工中,往往会面临一些挑战和风险,如地质条件复杂、邻近建筑物安全等问题。
为了保障地铁施工的安全和顺利进行,需要进行地铁施工监测,及时发现和解决问题。
本文将针对地铁施工监测,提出一套完整的监测方案。
2. 地铁施工监测方案的目标和原则2.1 目标地铁施工监测的目标是确保地铁施工过程中的安全和顺利进行。
具体包括以下几个方面:•提前发现和预警地铁建设过程中的潜在风险和问题;•实时监测地铁施工影响范围内的环境变化;•及时采取措施,减少对周边环境和建筑物的影响;•提供科学依据,指导地铁施工的调整和优化。
2.2 原则地铁施工监测方案应遵循以下原则:•精确性:监测数据应具备高精度和可靠性,保证准确地反映地铁施工过程中的变化;•全面性:监测范围应涵盖地铁施工的影响范围内所有需要监测的因素;•及时性:监测数据应及时传输和处理,以便及时采取相应的措施;•可操作性:监测方案应具备较高的实施和操作性,便于监测人员进行监测工作;•可追溯性:监测的整个过程应具备可追溯性,便于后续数据分析和问题解决。
3. 地铁施工监测方案的内容和方法3.1 监测内容地铁施工监测方案应包括以下内容的监测:•地质监测:监测地下结构和地质条件的变化,包括建筑物下沉情况、地下水位变化等;•建筑物监测:监测邻近建筑物的变化情况,包括建筑物倾斜、开裂等;•环境监测:监测地铁施工对周边环境的影响,包括噪声、空气质量等变化;•施工过程监测:监测地铁施工过程中的各种参数变化,包括振动、位移等。
3.2 监测方法根据监测内容的不同,地铁施工监测可以采用不同的方法,常用的监测方法包括:•地面测量:利用全站仪等测量仪器对地面及建筑物进行测量,得到精确的位移和变形数据;•钻孔取样:通过钻孔取样,获取地下结构的土层和地质情况,分析地下水位等情况;•建筑物倾斜仪:安装建筑物倾斜仪,实时监测建筑物的倾斜情况;•环境监测站:设置环境监测站,监测地铁施工对周边环境的影响,包括噪声、空气质量等参数;•振动监测设备:安装振动监测设备,监测地铁施工过程中的振动情况。
地铁施工变形监测专项施工方案
地铁施工变形监测专项施工方案一、背景与目的随着城市的快速发展,地铁成为城市公共交通系统中不可或缺的一部分。
然而,地铁施工过程中的变形问题可能会对周边建筑物、地面和地下管线等产生不利影响。
因此,进行地铁施工变形监测是确保地铁施工安全、降低对周边环境影响的重要手段。
本专项施工方案旨在制定地铁施工变形监测的具体措施和步骤,以保障施工过程中的安全性和可控性。
二、监测内容1.土体变形监测选择合适位置进行土体的变形监测,使用全站仪或测量仪器实时记录地表移动情况。
监测时间应至少覆盖施工期间。
2.建筑物倾斜监测在地铁施工周边的建筑物选择适当位置,使用倾斜度监测仪进行实时倾斜监测。
监测时间应至少覆盖地铁施工期间及施工后数月。
3.地下管线位移监测对地下管线进行位移监测,使用光纤测量系统或监测设备进行实时数据采集。
监测时间应至少覆盖地铁施工期间及施工后数月。
4.地下水位变化监测选择适当位置,安装水位监测仪器,对周边地下水位进行实时监测。
监测时间应至少覆盖地铁施工期间。
三、监测方法与技术1.土体变形监测方法利用全站仪进行地表移动监测,设立不同高程的监测点,通过测量点的高程变化来判断土体的变形情况。
监测数据将通过无线通讯或高精度测量仪器实时传输。
2.建筑物倾斜监测方法使用倾斜度监测仪对建筑物进行实时倾斜监测。
监测数据将通过无线通讯或数据线传输。
3.地下管线位移监测方法采用光纤测量系统或其他监测仪器对地下管线进行位移监测。
光纤测量系统可通过光纤传感器测量管线位移,监测数据将通过数据线实时传输。
4.地下水位变化监测方法使用水位监测仪器对地下水位进行实时监测。
监测数据将通过无线通讯或数据线传输。
四、监测频率与阈值1.土体变形监测频率与阈值监测频率应根据施工阶段的不同进行调整,一般情况下应为每周监测一次。
土体变形监测阈值应由专业工程师根据地质条件、建筑物等因素进行评估和制定。
2.建筑物倾斜监测频率与阈值监测频率应根据施工阶段的不同进行调整,一般情况下应为每周监测一次。
广州地铁基坑及围护结构施工监测方案
广州地铁基坑及围护结构施工监测方案一、背景介绍广州地铁系统作为国内最重要的城市轨道交通系统之一,在城市快速发展的背景下,不断扩大规模。
地铁基坑及围护结构施工监测是确保施工质量和安全的关键环节。
因此,为确保施工过程中基坑及围护结构的稳定性,我们制定了下面的施工监测方案。
二、监测内容1.基坑周边地下管线的监测:监测地下管线的位置、变形和应力变化,应对施工过程中可能发生的影响到管线稳定性的情况进行实时监测和报警。
2.周围建筑物的监测:监测周围建筑物的振动和变形情况,确保施工过程中对周围建筑物的影响在安全范围内。
3.基坑土体和挡土墙的监测:监测基坑土体的沉降和变形情况,以及挡土墙的位移和变形情况,及时发现问题并采取相应措施。
4.地下水位的监测:监测地下水位的变化情况,防止因施工过程中地下水位的变化引发的安全事故。
5.施工机械设备的监测:监测施工机械设备的振动和位移情况,确保施工机械设备的正常工作和安全运行。
三、监测方法1.传统监测方法:包括使用测量仪器对基坑周边地下管线、周围建筑物、基坑土体和挡土墙进行定期监测。
使用测量仪器可以实时获取监测数据,并进行数据分析和处理。
同时,采用地下水位监测仪对地下水位进行实时监测。
2.光纤光栅监测技术:利用激光从光纤上发射出去,通过光纤回流的行为来检测光纤上的应变,从而实现对基坑周边地下管线、周围建筑物、基坑土体和挡土墙的实时监测。
该技术具有传感器布设方便、实时数据传输方便等优点,具有较高的精度和可靠性。
3.GPS监测技术:使用GPS定位系统对施工机械设备的位置和位移进行实时监测。
GPS监测技术具有高精度、快速、实时性好等优点,可有效监测施工机械设备的状态。
四、监测周期1.对于地下管线、土体变形等稳定性较好的要素,每周进行一次监测。
2.对于地下水位和周围建筑物等需要关注的要素,每天进行一次监测。
3.对于施工机械设备,每班次进行一次监测。
五、数据处理与分析监测数据的处理与分析是确保监测有效的重要环节,对于监测数据的处理,可以采用现场监测系统,并配备相关的数据处理软件,及时提取和保存监测数据,并进行初步的数据分析。
地铁工程沉降监测方案
地铁工程沉降监测方案一、前言地铁工程是城市交通建设的重要组成部分,对于城市的交通运输能力和效率有着重要的影响。
然而,地铁工程施工过程中可能会对周边建筑物和地下管线等设施造成一定的影响,其中最为重要的就是地铁工程施工引起的地表沉降问题。
为了及时发现并监测地铁工程沉降的变化,保证地铁工程的安全和周边建筑物的稳定,制定一套科学合理的地铁工程沉降监测方案显得非常重要。
二、监测目的1. 监测地铁工程施工过程中对地表沉降的影响,及时发现问题并进行调整。
2. 监测周边建筑物、地下管线等设施对地铁工程施工引起的沉降情况,保证设施的安全和稳定。
3. 监测地铁工程施工后的地表沉降情况,为地铁线路的运营提供技术支持。
三、监测内容地铁工程沉降监测的内容主要包括地表沉降监测、建筑物变形监测、管线位移监测等。
1. 地表沉降监测:通过设置地表沉降监测点,对地铁工程施工过程中和施工后地表沉降情况进行实时监测。
2. 建筑物变形监测:选择周边建筑物作为监测目标,通过设置变形监测点或者使用建筑物结构健康监测系统,对建筑物的变形情况进行实时监测。
3. 管线位移监测:选择地下管线作为监测对象,通过设置位移监测点,对地下管线的位移情况进行实时监测。
四、监测方法1. 地表沉降监测方法:采用高精度测量仪器进行地表沉降点的测量,如全站仪、GNSS测量等。
2. 建筑物变形监测方法:使用变形监测仪器对建筑物的变形情况进行监测,如倾斜仪、位移传感器等。
3. 管线位移监测方法:通过设置位移传感器对地下管线的位移情况进行监测,如测斜仪、位移传感器等。
五、监测方案1. 地表沉降监测方案地表沉降监测方案主要包括监测点的设置、监测频次、数据处理等内容。
(1)监测点的设置:根据地铁工程的施工范围和地表沉降的敏感区域,确定监测点的位置,并采用同一坐标系进行设置,以确保监测数据的准确性和可比性。
(2)监测频次:地铁工程施工期间,监测频次应根据具体情况进行调整,一般可以采用日、周、月的监测频次,以确保及时发现地表沉降的变化。
(完整版)地铁施工监测方案
施工监测方案编制:审核:审定:目录1工程概况 (1)1.1工程概况 (1)1.1.2 监测范围、内容 (3)1.2工程地质条件 (3)1.2.1地质条件 (3)1.2.2地下水 (3)2编制依据及原则 (4)2.1编制依据 (4)2.2编制原则 (4)2.2.1 系统性原则 (4)2.2.2 可靠性原则 (4)2.2.3 与设计图纸相结合原则 (4)2.2.4 关键部位优先、兼顾全局的原则 (5)2.2.5 与施工相结合的原则 (5)2.2.6 经济合理性原则 (5)3监测的目的及意义 (6)4监测的实施方法 (7)4.1监测基准点的布设 (7)4.1.1、设计交桩情况 (8)4.1.2、监测基点的布设 (7)4.1.3、监测控制工作基点测量要求 (8)4.1.4、工作基点的复核测量 (14)4.2地表及周边建筑物沉降 (12)4.2.1 监测目的 (12)4.2.2 监测仪器 (12)4.2.3 监测实施方法 (12)4.3桩顶位移 (14)4.3.1 监测目的 (14)4.3.2测点埋设 (14)4.3.2 监测仪器 (14)4.3.3 监测实施 (14)4.4钻孔桩位移 (15)4.4.1 监测目的 (15)4.4.2 监测仪器 (15)4.4.3 监测实施 (16)4.5钢支撑轴力 (17)4.5.1 监测目的 (17)4.5.2 监测仪器 (17)4.5.3 监测实施 (18)4.6地下管线沉降监测 (19)4.6.1 管线测点埋设原则 (19)4.6.2 管线埋设方式 (20)4.7水位监测 (21)4.7.1 监测目的 (21)4.7.2 监测仪器 (21)4.7.3 监测实施 (21)5北一路站附属结构监测的风险源及应对措施 (22)5.1风险源统计 (22)5.2针对风险源的监测措施 (22)6现场巡视工作要求 (23)6.1现场巡视工作范围 (23)6.2现场巡视内容 (23)6.2.1施工工况 (23)6.2.2北二路站附属结构支护状况 (24)6.2.3周边环境 (24)6.2.5监测设施 (24)6.3现场巡视频率 (24)6.4现场巡视工作实施方法 (25)7监测点位初始值的采集、报审程序及监测工作程序 (25)7.1监测点埋设后报审程序 (25)7.2初始值的采集及报审程序 (25)7.3监测工作程序 (26)8监测预警分级及监测频率 (26)8.1预警等级划分 (26)8.2监测项目预警值及控制值 (27)8.3风险预警管理程序 (27)8.4预警应急处置措施 (28)8.5北一路站附属结构工程监测项目及频率 (28)9 监测资料的收集整理和信息反馈 (29)9.1、监控监测数据的分析与预测 (29)9.1.1监测成果整理 (29)9.1.2内业数据处理 (30)9.1.3监测资料的收集整理 (30)9.2监测信息反馈 (31)9.3监测管理体系及质量保证措施 (32)10 监测成果分析及成果要求 (33)10.1监测成果分析 (33)10.2监测要求 (33)10.3监测上报的内容 (33)10.3.1现场监测资料的要求 (33)10.3.2日报资料内容 (35)10.3.3阶段性报告资料内容 (36)10.3.4总结报告资料内容 (34)11 监测组织机构、人员及仪器设备 (34)12 监测工作安全、环境保护保障措施 (35)12.1人员的保护措施 (35)12.2仪器的保护措施 (36)12.3监测点的保护 (36)12.4环境安全保护保障措施 (36)13 应急预案 (37)14 监测停测标准 (37)1工程概况1.1工程概况车站环境:车站位于兴华北街与北二路交叉路口南侧,沿兴华北街南北向布置。
地铁施工变形监测专项施工方案样本
***市都市轨道交通2号线一期工程十标车站施工监测方案有限公司3月目录1概述 01.1工程概况 01.2工程设计与施工概况 01.3工程地质及水文地质条件 (1)2监测目 (5)3技术原则 (5)4监测工作内容 (5)4.1监测对象、项目及布点 (5)4.2监测频率及周期 (6)4.3监测控制指标 (7)5 监测作业办法 (9)5.1现场安全巡视 (9)5.2周边环境监测 (10)5.3墙体水平位移 (13)5.4轴力监测 (17)5.5地下管线沉降监测 (18)5.6地下水位监测 (19)5.7墙顶竖向位移监测 (19)5.8墙顶水平位移监测 (19)5.9坑底隆起回弹 (21)6监测信息反馈 (22)6.1信息反馈流程 (22)6.2监测成果内容 (23)6.3与第三方监测单位数据沟通 (23)6.4监测数据报警解决 (23)7 监测人员及仪器配备 (24)7.1拟投入监测人员 (24)7.2拟投入仪器设备 (25)8监测应急方案 (25)8.1应急反映监测流程 (27)8.2应急反映过程中应注意事项 (27)9测量坐标系选取 (28)9.1平面坐标系 (28)9.2高程基准 (28)9.3控制网复测 (28)10 质量及安全保障办法 (28)10.1项目质量管理办法 (28)10.2项目安全生产管理 (29)***市轨道交通2号线一期工程车站施工监测方案1概述1.1 工程概况车站为***市轨道交通2号线一期工程终点站,站内设立交叉渡线,交叉渡线连接出入段线进入车辆段,车站正线预留远期延伸线接驳条件,拟建车站位于新城区昆仑大道南侧地块内,沿昆仑大道南侧呈东西向布置。
昆仑大道红线宽60m,现状道路宽53.5m,双向8车道,车流量较大,车站施工对昆仑大道交通无影响。
场地空旷开阔,周边除个别单层民用建筑外无其她建筑物,车站基坑西南侧约25m处为近东西向无名沟渠,水沟宽约15m,水深约1m,汇入场地西侧约250m废黄河,勘察期间该水渠水位标高33.57m。
天津地铁施工监测方案
第一节、投入本监测项目使用的仪器设备表由于本工程为天津市滨海新区首条地铁B1线开工建设的首座车站,工程意义重大,而且工程地质和水文地质情况相当复杂,环境和基坑保护工作的责任相当重大,因此我单位拟投入最好的仪器设备用于本项目的监测工作:平面位移测量选用测量机器人—TCA2003全站仪,水准测量选用电子水准仪DINI12,深部水平位移测量(测斜)选用进口的美国新科测斜仪。
这些仪器的测量精度和稳定性在同类型仪器中处于顶尖水平。
同时在确保安全的前提下,本着经济合理的原则,在基坑监测中埋设的传感器选择国内信誉好、质量有保障、有长期合作关系的生产厂商。
主要的仪器设备见下表,并保证所使用的仪器均在其鉴定有效期内:11 打印机HP 2300元 4 输出设备12 电子手薄PDA SONY 2400元 4 现场记录13 对讲机GP88S MORTOROLA 2800元8 现场通讯主要仪器的图件及性能如下:美国天宝DINI电子水准仪,世界上精度最高的电子水准仪,每公里往返测中误差0.3mm,测量时间3秒,补偿器±15′自动补偿范围,补偿精度0.2″保证了大风天气、高架、桥面颤动恶劣条件下准确无误的作业。
瑞士Leica公司生产的TCA2003全自动全站仪测量机器人,高精度仪器的典范,能自动对中,自动记录观测数据,测角精度指标±0.5″,测距精度指标为1mm+1ppm。
美国新科公司生产测斜仪,Digitilt DataMate Ⅱ读数仪,配Digitilt inclinometer系列探头,能自动记录观测数据。
系统总量程为±53°,系统精度±0.01mm/500mm,灵敏度±10弧秒(±0.05mm/m)。
国内公司生产的CJY-80沉降仪,分辨率±1mm,重复误差±3mm,温度范围-300C~+800C,标准孔102~152mm。
国内公司生产的SWJ-90型钢尺水位计,分辨率±1mm,重复误差±2mm。
地铁工程专项监测方案
地铁工程专项监测方案一、背景介绍地铁工程在城市交通建设中发挥着重要的作用,对于提高交通效率,降低交通压力,改善城市交通环境具有重要意义。
然而,在地铁工程建设过程中,可能会存在一些潜在的风险和安全隐患,为了确保地铁工程的安全可靠运营,专项监测工作十分必要。
专项监测工作是指在地铁工程建设过程中对工程地质、结构、水文水质等方面进行监测,及时发现并解决问题,保障地铁工程建设和运营安全的一项重要工作。
本专项监测方案将对地铁工程中的地质监测、结构监测、水文水质监测等方面进行详细的介绍和规划。
二、监测目标1. 地质监测:监测地铁隧道施工中的地质灾害风险,包括滑坡、地裂、地下水涌出等情况,保障地铁隧道稳定施工和运营安全。
2. 结构监测:监测地铁工程中的结构变化,包括地铁隧道和地下车站的变形、渗水等情况,保障地铁工程的结构安全。
3. 水文水质监测:监测地铁工程施工中的地下水位和水质变化情况,及时发现并解决地下水涌出、水质污染等问题,保障地铁工程的建设和运营安全。
三、监测内容1. 地质监测内容:(1)地质构造监测:对地铁隧道施工区域的地质构造进行监测,发现和评估地质灾害的风险。
(2)地下水位监测:对地铁隧道施工中的地下水位进行监测,及时掌握地下水位的变化情况。
(3)地下水渗流监测:对地铁隧道施工中的地下水渗流进行监测,及时发现地下水涌出的情况。
2. 结构监测内容:(1)地铁隧道变形监测:对地铁隧道的变形进行监测,包括地表沉降、支护结构的变形等情况。
(2)地下车站渗水监测:对地下车站的渗水情况进行监测,发现并及时处理地下车站的渗水问题。
3. 水文水质监测内容:(1)地下水位监测:对地铁工程施工区域的地下水位进行监测,及时掌握地下水位的变化情况。
(2)地下水质监测:对地下水的水质进行监测,包括地下水中的溶解氧、PH值、重金属等指标的监测。
四、监测方法1. 地质监测方法:(1)地质构造监测:采用地质勘探、地质雷达探测等方法,对地下隧道施工区域的地质构造进行监测。
地铁工程检测方案
地铁工程检测方案一、前言地铁工程的建设是一个复杂而严谨的过程,需要严格的检测与监测来确保其安全与可靠性。
地铁线路、车站、隧道等各个部分的工程都需要进行全面的检测,以保证其结构的稳固和安全的运营。
本文将详细介绍地铁工程的检测方案,包括建设前、建设中和建设后的各个环节的检测内容和方法。
二、地铁工程建设前的检测1. 地质勘察地铁线路的建设前需要进行详细的地质勘察,以了解地下地层情况。
地质勘察内容包括地质岩土层分布、岩层的性质及厚度、地下水情况等,以确定地铁线路的走向和深度。
地质勘察的方法包括地质钻孔、地质雷达探测、地质断层勘测等。
通过这些方法,可以了解地下地质情况,为地铁工程的设计提供参考依据。
2. 环境监测地铁线路的建设对周边环境有一定的影响,需要对建设前的环境进行监测,以了解周边的地下水、地表水、土壤和环境噪音等情况。
环境监测的方法包括水质采样分析、土壤采样分析、噪音监测等。
通过这些监测可以了解周边环境的情况,并采取相应的措施,减少对周边环境的影响。
3. 结构安全评估地铁线路建设前需要对建筑结构的安全性进行评估,以保证建筑在地铁运营时能够安全稳定地运行。
结构安全评估的内容包括地铁站、隧道、桥梁等结构的承载能力、抗震性能等。
结构安全评估的方法可以采用有限元分析、结构振动测试、地基沉降监测等。
通过这些方法可以了解结构的安全性能,为地铁工程的设计提供参考数据。
三、地铁工程建设中的检测1. 施工过程监测地铁工程建设中需要对施工过程进行监测,以保证施工质量和进度。
施工过程监测的内容包括土方开挖、基坑开挖、桩基施工、混凝土浇筑等工程的施工质量。
施工过程监测的方法包括地下水位监测、地表沉降监测、混凝土强度监测等。
通过这些监测可以掌握施工过程的情况,及时发现问题并采取措施进行处理。
2. 材料质量检测地铁工程建设中需要对使用的各种材料进行质量检测,以保证材料的质量符合要求。
材料质量检测的内容包括水泥、混凝土、钢筋等材料的质量和性能。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
地铁工程施工监测方案
监测目的:一是通过对监测信息的分析指导后续工程的施工,二是确保周围建筑物的稳定及施工安全,三是为今后类似工程的建设提供经验.
根据招标文件中有关施工监测部分的精神,结合本工程的地理位置及基坑的开挖深度和工程结构型式的特点来考虑,我们认为监测重点为监测围护结构的水平位移及沉降、地表变形、钢支撑受力、地下水位以及地下管线变形等方面监测。
1.监测组织与程序
建立专业监测小组,根据业主要求委托有资质和有业绩的单位进行,并由具备独立资质有丰富施工经验、监测经验及有结构受力计算、分析能力的工程技术人员组成。
负责监测方案的制定、监测仪器的埋设和调试、监测数据的收集、整理和分析,并采用先进可靠的计算软件,快速、及时准确的反馈信息,指导施工。
同时与预测的数据进行对照,有利于及时发现异常,及早采取措施。
2. 监测项目
地下工程按信息化设计,现场监控量测是监视围岩稳定、判断支护衬砌设计是否合理安全、施工方法是否正确的重要手段,通过监控量测:将监测数据与预测值相比较,判断前一步施工工艺和支护参数是否符合预期要求,以确定和调整下一步施工,确保施工安全和地表建筑物、地下管线的安全。
将现场测量的数据、信息及时反馈,以修改和完善设计,使设计达到优质安全、经济合理。
将现场测量的数据与理论预测值比较,用反分析法进行分析计算,使设计更符合实际,以便指导今后的工程建设。
测点布置、监测手段与监测频率
现场监控量测项目、测点布置、监测手段与监测频率详见明挖段监控量测表。
3.监测方案及相应措施
1)地面沉降
(1)监测方法:主要监测基坑开挖引起的地表变形情况。
监测方法是在地表埋设测点,用水准仪进行下沉的量测。
根据量测结果进行回归分析,判断基坑开挖对地表变形的影响。
(2)测点布置原则:测点布置在基坑周围地面上,间距10~20米。
(3)量测频率:见监测项目汇总表
(4)量测精度:±1mm
(5)相应对策:当地表沉降速度过大,加快监测频率,必要时,停工检查原因,采用加强支撑和加固地层的措施保证施工安全。
2)基坑开挖引起的地下管线变形监测。
(1)监测方法:本车站施工范围内及周围地下管线较多,根据招标文件,针对每一根管线,提出初步的保护措施,管线分布及保护方案详见管线布置示意图。
本次监测主要针对基坑周边的管线及受保护的管线,监测管线的水平的和沉降。
施工监测项目表
(2)测点布置原则:地下管线所在处覆土正上方挖孔布置测点。
(3)量测频率:见监测项目汇总表
(4)量测精度:±1mm
(5)相应措施:当地下管线的位移超过警戒值时,立即会同有关部门对管线采取加固措施。
3)连续墙水平位移及沉降监测
(1)监测方法:在连续墙上端部做点,采用经纬仪和水准仪进行观测。
(2)测点布置原则:水平位移在围护结构顶部沿车站轴向每20m左右设置测点;沉降测点在围护结构上每隔15m选一点。
(3)量测频率:见监测项目汇总表
(4)量测精度:±1mm
(5)相应措施:当围护结构的水平位移及沉降超过预警值时,调整支撑参数,或同时采用地层加固措施。
确保围护结构稳定。
4)周边建筑物变形监测
(1)监测方法:主要监测建筑物的不均匀沉降、水平位移。
用精密水准仪和经纬仪进行量测。
根据量测结果判断建筑物的变形和沉降情况。
(2)测点布置原则:建筑物墙角、柱子、门边、地面等处每隔15米左右布设。
(3)量测频率:见监测项目汇总表
(4)量测精度。
±1mm
(5)相应措施:当建筑物的变形超过允许值时,加快监测频率,及时采取加强开挖部的支撑,加固地层措施,必要时,对即有建筑物的基础采取加固措施。
5)钢支撑轴力监测
(1)监测方法:采用应变仪和应变计进行量测。
(2)测点布置原则:测点布置在钢支撑的中部。
(3)量测频率:见监测项目汇总表
(4)量测精度:0.01
(5)相应对策;根据量测结果分析钢支撑的受力情况,确定是否调整钢支撑的参数。
6)地下水位变化监测
(1)监测方法:水位标高采用水位仪观测:水量采用水表进行监测;同时进行水质和水温监测;孔隙水压力采用孔隙水压计观测。
(2)测点布置原则:见表
(3)量测频率:见监测项目汇总表
(4)量测精度:±5mm
(5)相应措施:根据地下水位,水压变化情况,确定基坑开挖是否采取
排水或送水措施。
保证周围建筑物不因地下水位变化过大而引起下沉、倾斜。
7)围护结构两侧土压力及底板土压力监测
(1)监测方法:采用埋设土压力盒的办法进行评定,安置土压力盒时将其镶嵌在挡水构筑物内,使其应力膜与构筑表面齐平,并保证压力盒有良好的刚性支撑,以保证测量的可靠性。
(2)测点布置原则:选择有代表性的典性断面和部位。
(3)量测频率:见监测项目汇总表
(4)量测精度:±1kpa
(5)相应措施:根据观测数据,发现土压力数据异常,或变化速率增快时,及时找出原因,同时缩短观测的周期,采取相应的措施。
4.施工监测的要求
1)建立专业监测小组,以项目总工程师为直接领导,由具备丰富施工经验、监测经验及有结构受力计算、分析能力的工程技术人员组成。
负责及时收集、整理各项监测资料,并对资料进行计算分析对比。
2)制定详细的监测计划,并报监理工程师和业主。
这份报告内容包括施测程序、方法、使用仪器、监测精度、监测点布置、监测的频率和周期、监测人员的情况和安排,监测质量保证措施等。
3)采购元器件及有关监测元件和仪器的标定
根据监测计划,在施工前,备齐所有的监测元件和仪器。
并根据规范进行有关标定工作。
4)确定预警值
根据施工具体情况,会同设计院、监理及有关专家设定变形值、内力值及变化速率警戒值,当发现异常情况时,及时报告主管工程师和监理工程师。
并将情况通报给业主和有关部门,共同研究控制措施。
5)处理好施工和监测的关系
妥善协调好施工和监测的关系,将观测设备的埋设计划列入工程施工进度
控制计划中。
及时提供工作面,创造条件保证监测埋设工作的正常进行。
在施工工程中教育全体施工人员采取切实有效措施,防止一切观测设备、观测测点和电缆受到机械和人为的破坏,如有损坏,按监理工程师的要求及时采取补救措施,并详细作出记录备查。
6)三角网点和测点的保护
保护和保存好本合同范围内全部三角网点、水准网点和自己布设的网点,使之容易进入和通视,防止移动和破坏。
监测结果的分析、处理对监测数据及时进行处理和反馈,预测基坑及结构的稳定性,提出施工工序的调整意见。
确保工程的顺利施工。