ANSYS地震分析实例

合集下载

ANSYS_地震分析算例

ANSYS_地震分析算例

ANSYS_地震分析算例地震是指地球上因地壳运动而产生的震动现象。

在地震发生后,建筑物的结构稳定性和抗震性能至关重要,因为地震可以对建筑物造成严重破坏。

因此,在建设和设计建筑物时,地震分析变得非常重要。

在此我将介绍一种用ANSYS进行地震分析的算例。

在地震分析中,我们首先需要建立一个合适的模型。

在这个算例中,我们将使用ANSYS提供的有限元分析方法。

首先,我们需要创建一个建筑物的三维模型。

在建筑物的模型中,我们需要包括所有的结构细节,例如建筑物的基础、柱子、梁和地板等。

我们可以使用ANSYS的几何建模工具来创建这个模型。

接下来,我们需要为建筑物定义材料特性。

建筑物的材料特性会对地震分析的结果产生重要影响。

例如,不同种类的混凝土、钢铁和木材等材料在地震作用下的响应是不同的。

我们需要使用ANSYS的材料库来定义这些材料的特性。

完成模型和材料定义后,我们需要定义地震荷载。

地震荷载是指地震发生时作用在建筑结构上的力量。

地震荷载可以根据地震的震级和地震波的性质来确定。

我们可以使用ANSYS的预处理工具来定义这些地震荷载。

接下来,我们需要定义边界条件。

边界条件是指建筑物与外部环境之间的约束关系。

例如,建筑物的基础是固定的,地震发生时不能移动。

我们需要使用ANSYS的加载工具来定义这些边界条件。

完成了模型、材料、地震荷载和边界条件的定义后,我们可以进行地震分析。

地震分析是指通过模拟地震发生时结构的动力响应来评估建筑物的抗震性能。

在ANSYS中,我们可以使用动力分析工具来进行这个分析。

在地震分析过程中,我们可以观察到各个部位的应力和位移等响应。

这些响应可以帮助我们评估建筑物的破坏机制和结构的安全性能。

例如,我们可以观察到柱子是否出现弯曲、梁是否发生裂缝等。

根据地震分析的结果,我们可以对建筑物的设计和结构进行优化。

例如,我们可以调整柱子和梁的尺寸、材质和布置方式,以提高建筑物的抗震能力。

综上所述,通过ANSYS进行地震分析可以帮助我们评估和优化建筑物的抗震性能。

ANSYS地震分析实例

ANSYS地震分析实例

ANSYS地震分析实例土木工程中除了常见的静力分析以外,动力分析,特别是结构在地震荷载作用下的受力分析,也是土木工程中经常碰到的题目。

结构的地震分析根据现行抗震规范要求,一般分为以下两类:基于结构自振特性的地震反应谱分析和基于特定地震波的地震时程分析。

本算例将以一个4质点的弹簧-质点体系来说明如何使用有限元软件进行地震分析。

更复杂结构的分析其基本过程也与之类似。

关键知识点:(a) 模态分析(b) 谱分析(c) 地震反应谱输进(d) 地震时程输进(e) 时程动力分析(1) 在ANSYS窗口顶部静态菜单,进进Parameters菜单,选择Scalar Parameters选项,在输进窗口中填进DAMPRATIO=0.02,即所有振型的阻尼比为2%(2) ANSYS主菜单Preprocessor->Element type->Add/Edit/Delete,添加Beam 188单元(3) 在Element Types窗口中,选择Beam 188单元,选择Options,进进Beam 188的选项窗口,将第7个和第8个选项,Stress/Strain (Sect Points) K7, Stress/Strain (Sect Nods) K8,从None 改为Max and Min Only。

即要求Beam 188单元输出积分点和节点上的最大、最小应力和应变(4) 在Element Types 窗口中,继续添加Mass 21集中质量单元(5) 下面输进材料参数,进进ANSYS主菜单Preprocessor->Material Props-> Material Models菜单,在Material Model Number 1中添加Structural-> Linear-> Elastic->Isotropic 属性,输进材料的弹性模量EX和泊松比PRXY分别为210E9和0.3。

ANSYS地震反应谱分析实例

ANSYS地震反应谱分析实例

ANSYS地震反应谱分析实例/COM,ANSYS地震反应谱分析⽰例/PREP7!定义参数B=15 !基本尺⼨A1=1000 !第⼀个⾯积A2=1000 !第⼆个⾯积A3=1000 !第三个⾯积NMODE=10!定义截⾯ET,1,BEAM4 !⼆维杆单元R,1,0.25,0.0052,0.0052,0.5,0.5!定义材料特性MP,EX,1,2.0E11MP,PRXY,1,,0.3MP,DENS,1,7.8E3!定义节点N,1,-B,0,0N,2,0,0,0N,3,-B,0,BN,4,0,0,BN,5,-B,0,2*BN,6,0,0,2*BN,7,-B,0,3*BN,8,0,0,3*B!定义单元E,1,3E,2,4E,3,5E,4,6E,3,4E,5,6E,5,7E,6,8E,7,8!边界条件D,1,ALL,0,,2FINISH!静⼒分析/SOLUD,1,ALL,0,,2SFBEAM,1,1,PRES,100000,SFBEAM,3,1,PRES,100000,SFBEAM,7,1,PRES,100000,SOLVEFINISHALLSEL!模态分析/SOLUANTYPE,2MODOPT,SUBSP,10 !⼦空间法MXPAND,10, , ,1SOLVE!存储各模态频率*DIM,FRE,,NMODE*DO,I,1,NMODE*GET,FRE(I),MODE,I,FREQ ! OBTAIN MODE FREQENCY FOR MODE I *ENDDOFINISHALLSEL!计算反应谱数据(依据规范GB50011-2001 第5.1.5条)!地震影响系数GRAV=9.81!重⼒加速度GTG=0.35 !特性周期AMAX=0.08!⽔平地震影响系数最⼤值C=0.05 !阻尼⽐!*DIM,A,,NMODE*DIM,T,,NMODE*DO,I,1,NMODET(I)=1.0/FRE(I)*ENDDOR=0.9+(0.05-C)/(0.5+5.0*C)P1=0.02+(0.05-C)/8P2=1+(0.05-C)/(0.06+1.7*C)*DO,I,1,NMODE*IF,T(I),GE,0.0,AND,T(I),LT,0.1,THENA(I)=(0.45+(10.0*P2-4.5)*T(I))*AMAX*GRAV*ELSEIF,T(I),GE,0.1,AND,T(I),LE,TGA(I)=P2*AMAX*GRAV*ELSEIF,T(I),GT,TG,AND,T(I),LE,5*TGA(I)=(TG/T(I))**R*P2*AMAX*GRAV*ELSEA(I)=(P2*0.2**R-P1*(T(I)-5*TG))*AMAX*GRAV*ENDIF*ENDDO!反应谱分析/SOLUANTYPE,SPECTRSPOPT,SPRS ! 单点反应谱SED,1,, ! 反应⽅向为X轴SVTYP,2 ! 加速度谱! 反应谱数据FREQ,FRE(1),FRE(2),FRE(3),FRE(4),FRE(5),FRE(6),FRE(7),FRE(8),FRE(9) FREQ,FRE(10)SV,,A(1),A(2),A(3),A(4),A(5),A(6),A(7),A(8),A(9)SV,,A(10)SRSS,0.0,DISP ! 设置震形组合⽅式SOLVEFINISH/POST1SET,LIST/INPUT,,MCOM!计算反应谱⼯况!***************查看反应谱结果******************ALLSEL,ALLFINISH。

Ansys-谱分析实例(地震位移谱分析)

Ansys-谱分析实例(地震位移谱分析)

二.地震位移谱分析如图所示为一板梁结构,试计算在Y方向地震位移谱作用下的构件响应情况。

板梁结构相关参数见下表所示。

板梁结构几何参数和材料参数相应谱板梁结构(模型图)进行题目2的分析。

第一步是建立实体模型(如图4),并选择梁单元和壳单元模拟梁和板进行求解。

建此模型并无特别的难处,只要定义关键点正确,还有就是在建模过程当中注意对全局坐标系的运用,很容易就能做出模型。

此题的难点在于对梁和板的分析求解。

进行求解,首先进行的就是模态分析,约束好六条梁,就可以进行模态的分析求解了。

模态分析后,相应的就进行频谱分析,在输入频率和位移后开始运算求解。

此后进行模态扩展分析,最后进行模态合并分析。

分析完后,再对结果进行查看。

通过命令Main Menu>General Postproc>List Results>Nodal Solution查看节点位移结果、节点等效应力结果(图5)及反作用力结果(图6)。

通过图片我们看清晰的看到梁和板的受力情况及变形情况,在板与梁的连接处,板所受的应力最大,这些地方较容易受到破坏,故可考虑对其进行加固。

而梁主要是中间两层变形较大,所以在设计时应充分考虑材料的选用及直径的大小。

1.指定分析标题1.选取菜单路径Utility Menu | File | Change Jobname,将弹出Change Jobname (修改文件名)对话框。

2.在Enter new jobname (输入新文件名)文本框中输入文字“CH”,为本分析实例的数据库文件名。

单击对话框中的“OK”按钮,完成文件名的修改。

3.选取菜单路径Utility Menu | File | Change Title,将弹出Change Title (修改标题)对话框。

4.在Enter new title (输入新标题)文本框中输入文字“response analysis of a beam-shell structure”,为本分析实例的标题名。

ANSYS地震反应谱SRSS分析精品文档11页

ANSYS地震反应谱SRSS分析精品文档11页

ANSYS地震反应谱SRSS分析我在ANSYS中作地震分解反应谱分析,一次X方向,一次Y方向,他们要求是独立互不干扰的,可是采用直进行一次模态分析的话,他生成的*.mcom文件好像是包含了前面的计算结果,命令流如下:!进入PREP7并建模/PREP7B=15 !基本尺寸A1=1000 !第一个面积A2=1000 !第二个面积A3=1000 !第三个面积ET,1,beam4 !二维杆单元R,1,0.25,0.0052,0.0052,0.5,0.5 !以参数形式的实参MP,EX,1,2.0E11 !杨氏模量mp,PRXY,1,,0.3mp,dens,1,7.8e3N,1,-B,0,0 !定义结点N,2,0,0,0N,3,-B,0,bN,4,0,0,bN,5,-B,0,2*bN,6,0,0,2*bN,7,-B,0,3*bN,8,0,0,3*bE,1,3 !定义单元E,2,4E,3,5E,4,6E,3,4E,5,6e,5,7e,6,8e,7,8D,1,ALL,0,,2FINISH!!进入求解器,定义载荷和求解/SOLUD,1,ALL,0,,2 !结点UX=UY=0sfbeam,1,1,PRES,100000,sfbeam,3,1,PRES,100000,sfbeam,7,1,PRES,100000,SOLVEFINISHallselNMODE=10/SOL!*ANTYPE,2!*MSAVE,0!*MODOPT,LANB,NMODEEQSLV,SPARMXPAND,NMODE , , ,1LUMPM,0PSTRES,0!*MODOPT,LANB,NMODE ,0,0, ,OFFSOLVE*DIM,FRE,,NMODE*DO,I,1,NMODE*GET,FRE(I),MODE,I,FREQ ! OBTAIN MODE FREQENCY FOR MODE I *ENDDOFINISH!地震影响系数grav=9.81tg=0.35amax=0.08c=0.05!*dim,a,,nmode*dim,t,,nmode*do,i,1,nmodet(i)=1.0/fre(i)*enddor=0.9+(0.05-c)/(0.5+5.0*c)p1=0.02+(0.05-c)/8p2=1+(0.05-c)/(0.06+1.7*c)*do,i,1,nmode*if,t(i),ge,0.0,and,t(i),lt,0.1,thena(i)=(0.45+(10.0*p2-4.5)*t(i))*amax*grav*elseif,t(i),ge,0.1,and,t(i),le,tga(i)=p2*amax*grav*elseif,t(i),gt,tg,and,t(i),le,5*tga(i)=(tg/t(i))**r*p2*amax*grav*elsea(i)=(p2*0.2**r-p1*(t(i)-5*tg))*amax*grav*endif*enddo!! X-方向谱分析Spectrum analysis along Global X-axis direction/SOLUANTYPE,SPECTR ! Spectrum analysisSPOPT,SPRS ! Single point spectrumSED,1,, ! Global X-axis as spectrum directionSVTYP,2 ! Seismic acceleration response spectrum! Frequency points and Spectrum values for SV vs. freq. tableFREQ,fre(1),fre(2),fre(3),fre(4),fre(5),fre(6),fre(7),fre(8),fre(9)FREQ,fre(10)SV,,a(1),a(2),a(3),a(4),a(5),a(6),a(7),a(8),a(9)SV,,a(10)FINISH!/SOLU!ANTYPE,MODAL ! Mode-frequency analysis!EXPASS,ON!MXPAND,nmode,,,YES,0.0 ! Expand nmode shapes, calculate element stresses !SOLVE!FINISH/SOLUANTYPE,SPECTRSRSS,0.0,DISP ! Square Root of Sum of Squares Mode combination! with signif=0.0 and displacement solution requested SOLVEFINISH/POST1SET,LIST/INPUT,,mcom!***************EARTHQUAKE X******************ALLSEL,ALLFINISH! Y-方向谱分析Spectrum analysis along Global X-axis direction!!**********************************************!/SOL!!*!ANTYPE,2!!*!MSAVE,0!!*!MODOPT,LANB,NMODE!EQSLV,SPAR!MXPAND,NMODE , , ,1!LUMPM,0!PSTRES,0!!*!MODOPT,LANB,NMODE ,0,0, ,OFF!SOLVE!FINISH!!**********************************************/SOLULSCLEAR,LSOPTANTYPE,SPECTR ! Spectrum analysisSPOPT,SPRS ! Single point spectrumSED,,1, ! Global Y-axis as spectrum directionSVTYP,2 ! Seismic acceleration response spectrumFREQ! Frequency points and Spectrum values for SV vs. freq. tableFREQ,fre(1),fre(2),fre(3),fre(4),fre(5),fre(6),fre(7),fre(8),fre(9)FREQ,fre(10)SV,,a(1),a(2),a(3),a(4),a(5),a(6),a(7),a(8),a(9)SV,,a(10)SOLVEFINISH!/SOLU!ANTYPE,MODAL ! Mode-frequency analysis!EXPASS,ON!MXPAND,nmode,,,YES,0.0 ! Expand nmode shapes, calculate element stresses!SOLVE!FINISH/SOLUANTYPE,SPECTRSRSS,0.0,DISP ! Square Root of Sum of Squares Mode combination! with signif=0.0 and displacement solution requestedSOLVEFINISH/POST1SET,LIST/INPUT,,mcom!***************EARTHQUAKE Y******************ALLSEL,ALLFINISH这里在进行X方向的反应谱分析以后,进行Y方向的分析,可是他生成的*.mcom文件如下:/COM,ANSYS RELEASE 8.0 UP20190930 09:28:42 07/23/2019/COM, truss.mcomLCOPER,ZEROLCDEFI,1, 1, 1LCFACT,1, 0.263825E-17LCASE,1LCOPER,SQUARELCDEFI,1, 1, 2LCFACT,1, 8.55778LCOPER,ADD,1,MULT,1LCDEFI,1, 1, 3LCFACT,1, -0.188669E-13LCOPER,ADD,1,MULT,1LCDEFI,1, 1, 4LCFACT,1, -0.871099E-15LCOPER,ADD,1,MULT,1LCDEFI,1, 1, 5LCFACT,1, -0.757013LCOPER,ADD,1,MULT,1LCDEFI,1, 1, 6LCFACT,1, 0.967307E-13LCOPER,ADD,1,MULT,1LCDEFI,1, 1, 7LCFACT,1, 0.533141E-13LCOPER,ADD,1,MULT,1LCDEFI,1, 1, 8LCFACT,1, -0.203699LCOPER,ADD,1,MULT,1LCDEFI,1, 1, 9LCFACT,1, 0.445795E-13LCOPER,ADD,1,MULT,1LCDEFI,1, 1, 10LCFACT,1, -0.387808E-13LCOPER,ADD,1,MULT,1LCOPER,SQRT/COM,ANSYS RELEASE 8.0 UP20190930 09:28:42 07/23/2019/COM, truss.mcomLCOPER,SQUARE !注意这里没有清空数据库LCDEFI,1, 1, 1LCFACT,1, 50.7528LCOPER,ADD,1,MULT,1LCDEFI,1, 1, 2LCFACT,1, 0.887017E-14LCOPER,ADD,1,MULT,1LCDEFI,1, 1, 3LCFACT,1, 0.612824E-13LCOPER,ADD,1,MULT,1LCDEFI,1, 1, 4LCFACT,1, -1.96484LCOPER,ADD,1,MULT,1LCDEFI,1, 1, 5LCFACT,1, -0.331613E-13LCOPER,ADD,1,MULT,1LCDEFI,1, 1, 6LCFACT,1, 0.330459E-13LCOPER,ADD,1,MULT,1LCDEFI,1, 1, 7LCFACT,1, 0.366569LCOPER,ADD,1,MULT,1LCDEFI,1, 1, 8LCFACT,1, -0.976991E-13LCOPER,ADD,1,MULT,1LCDEFI,1, 1, 9LCFACT,1, 0.417313E-13LCOPER,ADD,1,MULT,1LCDEFI,1, 1, 10LCFACT,1, 0.401040E-13LCOPER,ADD,1,MULT,1LCOPER,SQRT我感觉这样好像是X和Y两个方向地震的叠加,可是如果在座Y方向的地震以前把注释掉的模态分析在做一下这样的Y方向的地震的*.mcom就是:/COM, truss.mcomLCOPER,ZERO !注意这里清空数据库LCDEFI,1, 1, 1LCFACT,1, 50.7528LCOPER,ADD,1,MULT,1LCDEFI,1, 1, 2LCFACT,1, 0.887017E-14LCOPER,ADD,1,MULT,1LCDEFI,1, 1, 3LCFACT,1, 0.612824E-13LCOPER,ADD,1,MULT,1LCDEFI,1, 1, 4LCFACT,1, -1.96484LCOPER,ADD,1,MULT,1LCDEFI,1, 1, 5LCFACT,1, -0.331613E-13LCOPER,ADD,1,MULT,1LCDEFI,1, 1, 6LCFACT,1, 0.330459E-13LCOPER,ADD,1,MULT,1LCDEFI,1, 1, 7LCFACT,1, 0.366569LCOPER,ADD,1,MULT,1LCDEFI,1, 1, 8LCFACT,1, -0.976991E-13LCOPER,ADD,1,MULT,1LCDEFI,1, 1, 9LCFACT,1, 0.417313E-13LCOPER,ADD,1,MULT,1LCDEFI,1, 1, 10LCFACT,1, 0.401040E-13LCOPER,ADD,1,MULT,1LCOPER,SQRT如果在X方向后不作Y方向的地震,他的*.mcom:/COM,ANSYS RELEASE 8.0 UP20190930 08:46:23 07/23/2019 /COM, truss.mcomLCOPER,ZEROLCDEFI,1, 1, 1LCFACT,1, 0.263825E-17LCASE,1LCOPER,SQUARELCDEFI,1, 1, 2LCFACT,1, 8.55778LCOPER,ADD,1,MULT,1LCDEFI,1, 1, 3LCFACT,1, -0.188669E-13LCOPER,ADD,1,MULT,1LCDEFI,1, 1, 4LCFACT,1, -0.871099E-15LCOPER,ADD,1,MULT,1LCDEFI,1, 1, 5LCFACT,1, -0.757013LCOPER,ADD,1,MULT,1LCDEFI,1, 1, 6LCFACT,1, 0.967307E-13LCOPER,ADD,1,MULT,1LCDEFI,1, 1, 7LCFACT,1, 0.533141E-13LCOPER,ADD,1,MULT,1LCDEFI,1, 1, 8LCFACT,1, -0.203699LCOPER,ADD,1,MULT,1LCDEFI,1, 1, 9LCFACT,1, 0.445795E-13LCOPER,ADD,1,MULT,1LCDEFI,1, 1, 10LCFACT,1, -0.387808E-13LCOPER,ADD,1,MULT,1LCOPER,SQRT可是在X后作Y他不清空数据库,需要进行两次模态分析,这很耗时间对于大型结构,请大家讨论讨论如何处理呢?Re:讨论:ANSYS地震反应谱SRSS分析本人是学土木工程的,平时主要用Patran+Nastran对结构做线性分析,偶尔使用Ansys对结构做地震反应谱分析,但对Ansys的命令流不熟悉。

ANSYS地震分析算例

ANSYS地震分析算例

02 地震分析算例 (ANSYS)土木工程中除了常见的静力分析以外,动力分析,特别是结构在地震荷载作用下的受力分析,也是土木工程中经常遇到的问题。

结构的地震分析根据现行抗震规范要求,一般分为以下两类:基于结构自振特性的地震反应谱分析和基于特定地震波的地震时程分析。

本算例将以一个4质点的弹簧-质点体系来说明如何使用有限元软件进行地震分析。

更复杂结构的分析其基本过程也与之类似。

关键知识点:(a) 模态分析(b) 谱分析(c) 地震反应谱输入(d) 地震时程输入(e) 时程动力分析(1) 在ANSYS窗口顶部静态菜单,进入Parameters菜单,选择Scalar Parameters选项,在输入窗口中填入DAMPRATIO=0.02,即所有振型的阻尼比为2%(2) ANSYS主菜单Preprocessor->Element type->Add/Edit/Delete,添加Beam 188单元(3) 在Element Types窗口中,选择Beam 188单元,选择Options,进入Beam 188的选项窗口,将第7个和第8个选项,Stress/Strain (Sect Points) K7, Stress/Strain (Sect Nods) K8,从None改为Max and Min Only。

即要求Beam 188单元输出积分点和节点上的最大、最小应力和应变(4) 在Element Types 窗口中,继续添加Mass 21集中质量单元(5) 下面输入材料参数,进入ANSYS主菜单Preprocessor->Material Props-> Material Models菜单,在Material Model Number 1中添加Structural-> Linear-> Elastic->Isotropic属性,输入材料的弹性模量EX和泊松比PRXY分别为210E9和0.3。

ANSYS中进行地震谱分析-ANSYSWorkbench-CAE软件-沈沉C...

ANSYS中进行地震谱分析-ANSYSWorkbench-CAE软件-沈沉C...

ANSYS中进行地震谱分析-ANSYSWorkbench-CAE软件-沈沉C...ANSYS中进行地震谱分析转自:这几天仔细研究了如何使用ANSYS进行地震谱分析的问题。

和大家分享下,不过有些问题我也不是太明白。

大家一起讨论。

地震谱分析的步骤:•建模•模态分析,并进行模态扩展•谱分析•查看结果这几个步骤是我结合ANSYS帮助文档中的介绍和里面的实例总结出来的,应该说是可靠的。

网上有很多文章介绍地震谱分析的,但是里面有很多出入,只能靠自己的一步一步地摸索,到底哪种方式才是正解。

首先说明一下,这里的地震谱是选自GR-63-CORE中的加速度频谱值。

所以在ANSYS中应该选用单点响应谱分析,即Single-Point Response Spectrum (SPRS)。

并不是有的地方说的PSD谱分析,因为GR-63-CORE中给出的根本就不是PSD谱。

下面把求解的代码附上,供大家参考:/SOLUANTYPE,MODALMODOPT,SUBSP,10MXPAND,10,,,YES !模态扩展,求解单元结果SOLVEFINISH/SOLUANTYPE,SPECTR ! 谱分析SPOPT,SPRS ! 单点响应谱分析,SED,,,1 ! Z轴,可对另外两个轴方向重新求解SVTYP,2 ! 加速度谱FREQ,0.3,0.6,2.0,5.0,15.0,50.0 ! 频率点SV,,0.2,2.0,5.0,5.0,1.6,1.6 ! 谱值SOLVEFINISH/POST1SET,LIST ! 固有频率*GET,MC1,MODE,1,MCOEF ! 一阶频率的模态系数MC1SET,1,1,MC1PLNSOL,U,Z,1 ! 节点位移结果ETABLE,SBYB,SMISC,33PLETAB,SBYB ! 单元应力结果,这里是对Beam188单元建的单元表,其它单元需做改变验证了几个问题:•SPOPT,SPRS这就后面加不加Element calculation key选项对结果没影响,即有的地方写成SPOPT,SPRS,,YES。

ANSYS地震作用分析应用实例解析--楼房地震波瞬态分析

ANSYS地震作用分析应用实例解析--楼房地震波瞬态分析

1. 问题描述某框架-筒体结构,总高度54m,18层,层高3m,结构平面图如下图所示。

求其在地震荷载下的瞬态响应。

结构平面主要承重构件的截面尺寸及混凝土强度标号见下表。

为计算方便,钢筋混凝土的密度统一取为2700kg/m^3,弹性模量按照混凝土的弹性模量取值,泊松比取值为0.2。

2. 命令流/FILNAME,GAO_LOU ! 定义工作文件名/TITLE,THE ANALYSIS OF GAO_LOU ! 定义工作标题/PREP7 ! 进入前处理器ET,1,BEAM188 ! 定义单元类型ET,2,SHELL63 !R,2,0.2 ! 定义楼板及外墙厚度R,3,0.3 ! 定义筒体厚度MP,EX,1,3.25E10 ! 定义材料弹性模量MP,PRXY,1,0.2 ! 定义材料泊松比MP,DENS,1,2700 ! 定义材料密度MP,EX,2,3.0E10 !MP,PRXY,2,0.2 !MP,DENS,2,2700 !SECTYPE,1,BEAM,RECT ! 定义框架柱截面形状SECDATA,1.1,1.1 ! 定义框架柱截面尺寸SECTYPE,2,BEAM,RECT ! 定义外环梁截面形状SECDATA,0.4,0.6 ! 定义外环梁截面尺寸SECTYPE,3,BEAM,RECT ! 定义内框架梁截面形状SECDATA,0.5,0.8 ! 定义内框架梁截面尺寸SECTYPE,4,BEAM,RECT ! 定义次梁截面形状SECDATA,0.3,0.5 ! 定义次梁截面尺寸K,5000,22,8,72 ! 设置BEAM188单元方向K,1 ! 创建第一层关键点K,12,44KFILL,1,12KGEN,5,1,12,1, ,4 ! 创建整个模型的关键点KGEN,19,1,60,1, , ,3/VIEW,1,1,1,1 ! 改变视角/ANGLE,1,270,XM,0/REPLOT*DO,I,1,1021,60 ! 利用DO循环建立框架柱模型L,I,I+60*ENDDOLGEN,3,1,18,1,8, , ,2LGEN,2,1,54,1, ,16, ,48LGEN,2,1,18,1, ,8, ,24LGEN,2,37,54,1, ,8, ,24LGEN,2,1,144,1,28, , ,7LATT,1, ,1, ,5000, ,1 ! 定义线单元属性LESIZE,ALL,1.5 ! 指定线单元的长度LMESH,ALL ! 划分单元LSEL,U, , ,ALL ! 去掉框架柱的线元素L,61,65 ! 建立外环梁模型L,65,89L,89,92L,92,68L,68,72L,72,120L,120,109L,109,61LGEN,18,289,296,1, , ,3,60LATT,1, ,1, ,5000, ,2LESIZE,ALL,2LMESH,ALLLSEL,U, , ,ALLL,63,111 ! 建立内框架梁模型L,85,89L,89,113L,70,118L,92,96L,92,116LGEN,18,433,438,1, , ,3,60LATT,1, ,1, ,5000, ,3 LESIZE,ALL,2LMESH,ALLLSEL,U, , ,ALLL,62,110 ! 建立次梁模型L,64,112L,69,117L,71,119L,97,108L,73,77L,80,84L,90,102L,91,103LGEN,18,541,549,1, , ,3,60LATT,1, ,1, ,5000, ,4 LESIZE,ALL,2 LMESH,ALL*DO,I,61,64,1 ! 利用DO循环建立楼层板模型A,I,I+1,I+13,I+12*ENDDOAGEN,4,1,4,1, ,4, ,12*DO,I,68,71,1A,I,I+1,I+13,I+12*ENDDOAGEN,4,17,21,1, ,4, ,12*DO,I,89,91,1A,I,I+1,I+13,I+12*ENDDOAGEN,18,1,35,1, , ,3,60A,1133,1136,1124,1121 ALLSEL,ALL*DO,I,61,64,1A,I,I+1,I+61,I+60*ENDDO*DO,I,89,91,1A,I,I+1,I+61,I+60 *ENDDO*DO,I,68,71,1 A,I,I+1,I+61,I+60 *ENDDO*DO,I,109,112,1 A,I,I+1,I+61,I+60 *ENDDO*DO,I,116,119,1 A,I,I+1,I+61,I+60 *ENDDO*DO,I,61,97,12 A,I,I+12,I+72,I+60 *ENDDO*DO,I,65,77,12 A,I,I+12,I+72,I+60 *ENDDO*DO,I,68,80,12 A,I,I+12,I+72,I+60 *ENDDO*DO,I,72,108,12 A,I,I+12,I+72,I+60 *ENDDOAGEN,17,632,662,1, , ,3,60AATT,2,2,2 ! 定义楼层板及外墙单元属性、材料属性及实常数AESIZE,ALL,2 ! 指定面单元的大小AMESH,ALL ! 划分面单元ASEL,U, , ,ALL ! 去掉楼层板及外墙的面元素A,41,44,1124,1121AATT,1,3,2AESIZE,ALL,2AMESH,ALLASEL,U,MAT,,1A,41,53,1133,1121A,44,56,1136,1124AATT,1,3,2 ! 定义筒体单元属性、材料属性及实常数AESIZE,ALL,1.5AMESH,ALLNUMMRG,ALL, , , ,LOW ! 合并重复节点单元,编号取较小者NUMCMP,ALL ! 压缩节点单元等编号ALLSEL,ALL/SOLUNSEL,S,LOC,Z,-1,0 ! 选择框架柱和筒体与地面接触的所有节点D,ALL, , , , , ,ALL, , , , , ! 对框架柱和筒体与地面接触的所有节点施加约束ACEL,0,0,9.81 ! 施加重力场*DIM,TJX,ARRAY,2,50,0 ! 定义地震波数据矩阵*DIM,TJY,ARRAY,2,50,0*CREATE,ANSUITMP ! 创建地震波数据表*VREAD,TJX(1,1),’TJX’,’TXT’,’’,50 ! 读入地震波数据文件(E9.3,E11.3)*END/INPUT,ANSUITMP*CREATE,ANSUITMP*VREAD,TJY(1,1),’TJY’,’TXT’,’’,50 ! 读入地震波数据文件(E9.3,E11.3)*END/INPUT,ANSUITMPANTYPE,4 ! 指定分析类型*DO,T,1,50,1TIME,0.1*TKBC,0NSUB,10ACEL,TJX(2,T),TJY(2,T) ! 施加横向、竖向加速度NSEL,ALLSOLVE*ENDDO/POST26NSOL,2,2,U,X,UX_NODE2 ! 创建最底层节点在X方向的位移变量STORE,MERGE ! 存储最底层节点在X方向的位移变量NSOL,3,2,U,Y,UY_NODE2STORE,MERGENSOL,8,2,U,Z,UZ_NODE2STORE,MERGENSOL,4,35,U,X,UX_NODE35STORE,MERGENSOL,5,35,U,Y,UY_NODE35STORE,MERGENSOL,9,35,U,Z,UZ_NODE35STORE,MERGENSOL,6,70,U,X,UX_NODE70STORE,MERGENSOL,7,70,U,Y,UY_NODE70STORE,MERGENSOL,10,70,U,Z,UZ_NODE70STORE,MERGEXV AR,1PLV AR,2,4,6 ! 显示第3层节点在X方向的瞬态响应XV AR,1PLV AR,3,5,7 ! 显示第3层节点在Y方向的瞬态响应XV AR,1PLV AR,8,9,10 ! 显示第3层节点在Z方向的瞬态响应声明:本套资料由本人总结概括,如果您在使用过程中发现本套资料有不当或错误之处请联系本人。

基于ANSYSWorkbench的楼房地震响应分析(附源文件)

基于ANSYSWorkbench的楼房地震响应分析(附源文件)

基于ANSYSWorkbench的楼房地震响应分析(附源⽂件)依据上篇⽂章关于振动⽅⾯的科普,⼯作中遇到的往往是实际模型在地震中的计算,根据计算结果可以判别出该研究对象是否安全,在地震情况下是否可以正常⼯作,亦或者可以根据计算的受⼒分布图,推断出研究对象损坏的部件分布位置,或者说是容易损坏的⼯作零件。

本⽂将根据楼层在仿真地震中的计算提供ANSYS仿真思路,由于实际接触以及实际响应谱更为复杂,本⽂以⼀栋楼房在地震谱中的响应谱分析为例旨在说明ANSYS在地震以及预防地震⽅⾯可以提供的帮助。

振动问题都应计算研究对象的固有频率,与之前⽂章相类似的,本⽂应以modal模块起步,在modal模块的solution中,右击solution,选中transfer data to new并选择response spectrum。

由于笔者是在inventor中建模分析,这⾥稍有不同,也不再赘述。

建模mesh等步骤在此因不是重点,笔者不再赘述,本⽂将附带源⽂件,感兴趣的朋友可以⾃⾏前往下载。

由于上篇⽂章选择20阶固有频率,导致计算⽂件较⼤,⼤约有500MB,这⾥为节约时间,仅选取10阶固有频率。

固定楼房4⽀柱底部,计算得出楼房10阶固有频率,其计算结果如下。

mode Frequency(Hz)136.446236.483361.7354167.555167.646175.497178.598179.799181.0710244.95第⼀阶模态第⼆阶模态第三阶模态在响应谱中插⼊RS Displacement,选取相关条件,设定振动⽅向为Z⽅向,插⼊⾃定义响应谱数据,点击solve即可计算出相关结果,按照实际⼯程中需求,可以得出等效应⼒,形变等等数据。

综上所述,本⽂以⼀栋楼房的振动为例,计算出楼房所受等效应⼒等参数,⽽由于实际⼯程中振动⽅向更趋向于三个不同⽅向,即x,y,z轴三个⽅向,所以应该需要添加不同⽅向的响应谱并进⾏计算分析。

ansys地震时程分析

ansys地震时程分析

在ANSYS里做地震分析时,需要对结构施加地震惯性荷载,地震惯性力是通过加速度的方式输入进结构的,然后与结构的质量一起形成动力计算时的惯性荷载,下面说一下在ANSYS 里施加地震惯性力的方法。

首先,将三个方向的地震加速度放到一个文本文件里,如accexyz.txt,在这个数据文件里共放三列数据,每列为一个方向的地震加速度值,这里仅给出数据文件中前几行的数据:-0.227109E-02 -0.209046E+00 0.467072E+01-0.413893E-02 -0.168195E+00 0.261523E+01-0.574753E-02 -0.157890E+00 0.809014E-01-0.731227E-02 -0.152996E+00 0.119975E+01-0.876865E-02 -0.138102E+00 0.130902E+01-0.101067E-01 -0.131582E+00 0.143611E+00 .......................然后,再建一个文本文件用来存放三个方向的地震加速度时间点,如time.txt,在这个数据文件里仅一列数据,对应于加速度数据文件里每一行的时间点,这里给出数据文件中前几行数据:0.100000E-010.200000E-010.300000E-010.400000E-010.500000E-010.600000E-01.......................编写如下的命令流文件,并命名为acce.inp*dim,ACCEXYZ,TABLE,2000,3 !01行*vread,ACCEXYZ(1,1),accexyz,txt,,JIK,3,2000 !02行(3e16.6) !03行*vread,ACCEXYZ(1,0),time,txt !04行(e16.6) !05行ACCEXYZ(0,1)=1 !06行ACCEXYZ(0,2)=2 !07行,同上ACCEXYZ(0,3)=3 !08行,同上finish/SOLUANTYPE,transbtime=0.01 !定义计算起始时间etime=15.00 !定义计算结束时间dtime=0.01 !定义计算时间步长*DO,itime,btime,etime,dtimetime,itimeAUTOTS,0NSUBST,1, , ,1KBC,1acel,ACCEXYZ(itime,1),ACCEXYZ(itime,2),ACCEXYZ(itime,3) !施加三个方向的地震加速度SOLVE*ENDDO最后,在命令窗口里输入/input,acce,inp即可对结构进行地震动力分析。

ANSYS地震反应谱SRSS分析

ANSYS地震反应谱SRSS分析
! Frequency points and Spectrum values for SV vs. freq. table FREQ,fre(1),fre(2),fre(3),fre(4),fre(5),fre(6),fre(7),fre(8),fre(9) FREQ,fre(10) SV,,a(1),a(2),a(3),a(4),a(5),a(6),a(7),a(8),a(9) SV,,a(10) SOLVE FINISH
!/SOLU !ANTYPE,MODAL ! Mode-frequency analysis !EXPASS,ON !MXPAND,nmode,,,YES,0.0 ! Expand nmode shapes, calculate element stresses !SOLVE !FINISH
/SOLU ANTYPE,SPECTR SRSS,0.0,DISP ! Square Root of Sum of Squares Mode combination
/SOLU ANTYPE,SPECTR ! Spectrum analysis SPOPT,SPRS ! Single point spectrum SED,1,, ! Global X-axis as spectrum direction SVTYP,2 ! Seismic acceleration response spectrum
! with signif=0.0 and displacement solution requested SOLVE FINISH
/POST1 SET,LIST /INPUT,,mcom !***************EARTHQUAKE X****************** ALLSEL,ALL FINISH

ANSYS地震分析算例

ANSYS地震分析算例

ANSYS地震分析算例算例描述:在一个城市里,设计师计划建造一座高楼大厦。

然而,由于该地区位于地震活动带,设计师决定对该高楼进行地震分析,以确保其在地震时的稳定性。

假设该高楼大厦的结构为钢筋混凝土框架结构。

设计师希望通过地震分析来确定该结构的最大位移、最大应力和最大应变等参数,并评估结构的稳定性。

地震分析步骤:1.确定模型和边界条件:-在ANSYS中创建高楼大厦的模型。

可以使用ANSYS提供的建模工具,通过绘制位于平面上的轮廓线进行模型创建。

-定义地震加载条件:确定地震波的性质和加载方向,并将其应用于模型的适当位置。

-设置边界条件:确定结构的支撑方式,如固定支座或固定边界条件。

2.材料和单元属性设置:-模型中的材料属性:定义使用的材料的弹性模量、泊松比和密度等特性。

-定义单元属性:选择适当的单元类型,并设置单元的尺寸和属性值。

3.进行静态分析:-应用静态载荷:为了模拟自重和其他永久载荷,将这些载荷应用到模型中。

-执行静态分析:运行ANSYS分析以计算静态应力和变形。

4.开展地震分析:-应用地震波加载:将地震波加载应用于模型的适当位置。

-执行动态分析:运行ANSYS分析以计算结构在地震荷载下的动态响应。

5.结果分析:-输出结果:分析完毕后,ANSYS将提供关于位移、应力、应变和变形等参数的结果。

-结果评估:根据结果评估结构的稳定性和安全性。

可以根据设计准则或标准来判断结构是否合格。

总结:地震分析是建筑和结构设计中至关重要的一步。

ANSYS提供了强大的分析工具,可以帮助工程师和建筑师评估建筑结构在地震荷载下的响应。

通过ANSYS地震分析,设计者可以确定结构的稳定性和安全性,并采取必要的措施来增加其抗震能力。

ANSYS谱分析报告地实例——板梁结构

ANSYS谱分析报告地实例——板梁结构

谱分析的实例——板梁结构一单点响应谱分析的算例某板梁结构如图3所示,计算在Y方向的地震位移响应谱作用下整个结构的响应情况。

板梁结构结构的基本尺寸如图 3所示,地震谱如表5所示,其它数据如下:1.材料是A3钢,相关参数如下:杨氏模量=2e11N/m 2泊松比=0.3密度=7.8e 3Kg/m 32.板壳:厚度=2e-3m3.梁几何特性如下:截面面积=1.6e-5 m 2惯性矩=64/3e-12 m 4宽度=4e-3m高度=4e-3m图3板梁结构模型(mm)谱表1 GUI方式分析过程第1步:指定分析标题并设置分析范畴1、取菜单途径Utility Menu>File>Change Title。

2、输入文字“Single-point response analysis of a shell-beam structure”,然后单击OK。

第2步:定义单元类型1、选取菜单途径Main Menu>Preprocessor>ElementType>Add/Edit/ Delete,弹出Element Types对话框。

2、单击Add,弹出Library of Element Types对话框。

3、在左边的滚动框中单击“Structural Shell”。

4、在右边的滚动框中单击“shell63”。

5、单击Apply。

6、在右边的滚动框中单击“beam4”。

7、单击OK。

8、单击Element Types对话框中的Close按钮。

第3步:定义单元实常数1、选取菜单途径Main Menu>Preprocessor>Real Constants,弹出Real Constants对话框。

2、单击Add,弹出Element Type for Real Constants对话框。

3、选择1号单元,单击OK,弹出Real Constants for Shell63对话框。

4、在TK(I)处输入2e-3。

ANSYS_地震分析算例

ANSYS_地震分析算例

ANSYS_地震分析算例地震是地球上常见的自然灾害之一,对建筑物和结构物的破坏性非常大。

为了确保建筑物在地震中的安全性,工程师常常使用ANSYS软件进行地震分析。

地震分析是通过对建筑物进行动力学分析,计算出其在地震荷载下的响应,从而评估其结构的抗震性能。

在ANSYS中进行地震分析的主要步骤包括:建立模型、施加地震载荷、求解以及分析结果的评估。

首先,需要在ANSYS中建立建筑物的有限元模型。

通常情况下,建筑物可以被简化成一个由节点和单元组成的网格模型。

节点代表建筑物的连接点,单元则代表该连接点附近的结构元素。

节点和单元的选择要根据具体的建筑物结构进行,以保证计算结果的准确性。

接下来,需要施加地震载荷。

地震荷载可以通过指定地震力谱、地震加速度或者地震方波来进行定义。

这些地震载荷将会在计算过程中施加在建筑物的不同部位。

为了模拟真实情况,还需要考虑建筑物的质量、刚度以及其它相关参数。

然后,可以对建筑物施加地震载荷进行求解。

ANSYS的求解器可以根据所定义的地震载荷和建筑物的有限元模型,计算出整个建筑物在地震作用下的响应。

这些响应结果包括建筑物的位移、应力、应变等。

最后,对分析结果进行评估。

通过分析结果,可以评估建筑物的抗震能力,并且可以对结构进行优化设计。

如果建筑物在地震作用下的应力和应变超过了材料的承载能力,那么就需要重新考虑建筑物的结构设计,以确保其能够承受地震荷载。

在ANSYS中进行地震分析的算例很多,下面以一个简单的算例为例进行说明。

假设有一个三层楼的建筑物,使用钢筋混凝土框架结构。

首先,在ANSYS中建立该建筑物的有限元模型,包括梁、柱、地基等。

然后,根据所在地的地震条件,施加不同方向上的地震载荷。

接着,使用ANSYS的求解器进行求解,计算出建筑物在地震作用下的位移、应力、应变等响应结果。

最后,根据分析结果,对建筑物的结构进行优化设计,确保其能够在地震中保持稳固。

总之,ANSYS软件在地震分析方面具有很强的功能和应用性。

ANSYS地震分析算例

ANSYS地震分析算例

ANSYS地震分析算例地震分析是通过模拟地震波在结构体系中传播和反应的过程,来评估结构的抗震性能。

ANSYS提供了丰富的工具和功能来支持地震分析,包括地震波输入、地震响应计算和结构的抗震设计。

接下来,我们将介绍一个ANSYS地震分析的算例,来说明如何使用ANSYS进行地震分析。

首先,我们需要定义地震波的输入。

在ANSYS中,可以通过加载事先记录的地震波时程数据来模拟地震波。

这些地震波数据可以从观测站或数字模拟中获取。

通过加载地震波数据,可以将地震波的荷载施加在相应的结构上。

其次,我们需要建立地震分析的数值模型。

在ANSYS中,可以使用各种元素和材料模型来表示结构。

对于地震分析,通常会使用3D有限元模型。

在建立数值模型时,需要根据实际情况定义结构的几何形态和材料特性。

建议使用精细的网格划分来确保模型的准确性和可靠性。

然后,我们需要设置地震分析的边界条件。

这包括定义结构的支撑条件、荷载施加方式以及结构的初始条件等。

在地震分析中,结构通常会受到来自地震波的水平和垂直方向两个方向上的振动力。

因此,需要设置适当的支撑条件和加载方式来模拟地震波对结构的影响。

接着,我们可以进行地震分析计算。

在ANSYS中,可以使用不同的求解方法来进行地震分析,包括静力分析、模态分析和时程历程分析。

静力分析适用于弹性结构,可以用来评估结构在地震荷载下的变形和应力分布。

模态分析可以计算结构的固有频率和振型,并用于评估结构的抗震性能。

时程历程分析是一种更为准确的地震分析方法,可以模拟地震波在结构中的传播和反应的过程。

最后,我们可以进行地震分析结果的后处理。

在ANSYS中,可以使用各种功能来对地震分析的结果进行可视化和分析。

可以绘制结构的变形图、应力分布图和振动模态图,以评估结构的抗震性能。

此外,还可以计算结构的位移响应和应力峰值,以更详细地评估结构的动力响应。

总结起来,ANSYS提供了一个完整的地震分析解决方案,可以用于评估结构的抗震性能。

地震分析算例_ANSYS

地震分析算例_ANSYS

地震分析算例_ANSYS地震分析是指通过数值模拟和分析地震过程及其对结构物的影响,以评估结构物在地震中的性能和安全性。

在这个算例中,我们将使用ANSYS 软件进行地震分析,分析一个简单的二维框架结构在地震中的响应。

下面是详细的步骤和算例设置:1.几何建模:我们首先在ANSYS中进行几何建模,绘制一个二维的框架结构。

框架由4个节点组成,其中1号和4号节点是固定支座,2号和3号节点是自由节点。

我们可以设置框架的长度、宽度、高度等参数。

2.材料属性:我们需要为框架结构定义材料属性,包括弹性模量和泊松比等。

这些参数可以根据实际的材料特性进行设置。

3.边界条件:我们将1号和4号节点设置为固定支座,以防止结构物在地震中发生位移。

4.地震负荷:我们需要定义地震负荷,即地震的加速度记录。

这些加速度记录可以根据地震现场的实测数据来确定。

在ANSYS中,可以将地震加速度记录分为不同的时程,并将其作为负荷应用在结构上。

5.模型分析:在所有参数设置好后,我们可以进行模型分析。

在ANSYS中,可以选择静力分析或动力分析进行地震分析。

如果选择静力分析,将根据结构物的初始状态和地震负荷计算结构物的响应。

如果选择动力分析,则可以考虑结构物的动态特性和阻尼效应。

6.结果评估:结果评估可以包括结构物的最大位移、最大应力、最大应变等信息,以及结构物的破坏模式和安全性评估等。

在ANSYS中,可以通过可视化和结果输出等方式来进行结果评估。

总结:在这个地震分析算例中,我们使用ANSYS软件对一个二维框架结构进行了地震响应的模拟和分析。

通过设置几何模型、材料属性、边界条件和地震负荷等参数,进行模型分析并评估结构物的性能和安全性。

通过这个算例,我们可以更好地理解地震分析的过程和方法,并为实际工程项目提供参考和指导。

ANSYS分析悬臂梁的地震反应分析(命令流)

ANSYS分析悬臂梁的地震反应分析(命令流)

ANSYS分析悬臂梁的地震反应分析/prep7ET,1,BEAM3R,1,0.09,0.000675,0.3, !0.3*0.3m截面MP,EX,1,2.06e11MP,NUXY,1,0.3MP,DAMP,1,0.02 !阻尼比0.02MP,dens,1,7.85e3!--------------------------------------------------!定义节点单元和位移约束*do,i,1,11n,i,(i-1)*0.5,0,0 !5m长,分10段*enddo*do,i,1,10e,i,i+1*enddod,1,ALL,0!--------------------------------------------------!定义和读入时程曲线NT=1000 !时程曲线有NT个点DT=0.01 !时间间隔*dim,ac,,NT!读入数据,这个数据文件可以用excel等软件来写/input,tianjin,txt !天津波东西向共10秒!--------------------------------------------------/SOLUNSUBST,1, , ,1 !1个子步OUTRES,ALL,1 !输出每个子步的结果ANTYPE,TRANS !时程分析*do,i,1,NTACEL,0,ac(i),0TIME,i*DTsolve*enddo!--------------------------------------------------/POST26NSOL,2,11,U,Y,PLVAR,2,3, , , , , , , , ,输入地震波:*DIM,AC,,NT*VREAD,AC(1,1),TIANJIN,TXT,,1关于输入的作用点,有两种:一是在模型的一个点集上输入相同的地震波二是在模型的不同点集上输入不同的地震波似水年华兄:ACEL,0,ac(i),0 ,表明输入的竖向地震作用如果想输入三个方向的,请看fini*dim,aa,TABLE,3000,1*dim,bb,TABLE,3000,1*dim,cc,TABLE,3000,1*vread,aa(1,1),acex,txt,,1 !从文件中读取数值(e16.6)*vread,bb(1,1),acey,txt,,1 !从文件中读取数值(e16.6)*vread,cc(1,1),acez,txt,,1 !从文件中读取数值(e16.6)csys,0/soluoutr,all,allnsel,allanty,transalphad,betad,*do,tm,0.01,10,0.01time,tmacel,aa(tm),bb(tm),cc(tm)lswrite,tm/0.01*enddolssolve,1,1000fini通过这个帖子,小弟学到不少东西。

ANSYS时程分析-考虑地震作用的建筑物加速度瞬态分析

ANSYS时程分析-考虑地震作用的建筑物加速度瞬态分析

! 【算例】考虑地震作用的建筑物加速度瞬态分析C*** 采用等效实体单元进行建筑物的地震加速度瞬态分析c*** 进行中央电视台新址主楼的等效几何建模*** begin ***FINISH/CLEARc*** 设置参数L=150W=150H=235PI=3.1415926 ! 底座长度! 底座宽度! 整个建筑的高度A=PI*6/180L_HL=L/2T_HL=L/2-TAN(A)*H LO_H=40TO_H=75WW=40/PREP7! 内倾角! 底座长度的1/2 ,作为角点坐标! 顶部长度的1/2 ,作为焦点的坐标! 底座的高度! 顶部悬空部分的高度! “腿”部的宽度/TITLE, EX 9.2(12) by Zeng P, Lei L P, Fang GET,1,SOLID45MP,EX,1,1e10MP,PRXY,1,0.23 MP,DENS,1,1e3 MP,DAMP,1,0.05 ! 几何建模K,,-L_HL,-L_HL, K,,L_HL,-L_HL, K,,L_HL,L_HL, K,,-L_HL,L_HL, K,,-T_HL,-T_HL,H,K,,T_HL,-T_HL,H, K,,T_HL,T_HL,H, K,,-T_HL,T_HL,H,V,1,2,3,4,5,6,7,8 ! 定义单元和材料参数! 由于采用了的简化实体模型,材料参数也进行了等效! 定义8 个角点! 根据8 个角点生成方锥体V1VGEN,2,1, , ,WW,WW,LO_H,, ! V2 (THE COPY OF V1) VGEN,2,1, , ,-WW,-WW,-LO_H,, ! V3 (THE COPY OF V1)VSBV,1,2 VSBV,4,3! V4 (V4=V1-V2) 切掉一个角! NEW_V1 (NEW_V1=V4-V3) 切掉另一个角c*** 为了实现六面体网格划分,需要对实体进行分块处理CSKP,11,0,14,34,10,1,1, ! 通过 3 个点建立局部坐标系WPCSYS,-1,11 VSBW,ALL! 基于局部坐标系建立新的工作面( workplane ) ! 用当前的工作面剖分实体CSKP,12,0,18,30,34,1,1, ! 以下的命令流与前三条的作用相同WPCSYS,-1,12 $VSBW,ALL $CSKP,13,0,27,26,25,1,1,WPCSYS,-1,13 $VSBW,ALL $CSKP,14,0,32,33,34,1,1,WPCSYS,-1,14 $VSBW,ALL $CSKP,15,0,15,31,32,1,1,WPCSYS,-1,15 $VSBW,ALL $CSKP,16,0,29,28,25,1,1,WPCSYS,-1,16 $VSBW,ALLESIZE,L/10! 定义单元尺度 VMESH,ALL ! 对体划分网格CSDELE,11,16,1, ! 删除前面建立的局部坐标系ASEL,S,LOC,Z,,, ! 选择 z=0 处的面,DA,ALL,ALL,, ! 对所选择的面施加完全的约束,即将地面固定 ALLSELFINISHc*** 进行中央电视台新址主楼的等效几何建模*** end *** c*** 进行瞬态分析/SOLU*DIM,ACC,ARRAY,6,4, ! 定义数组,在后面的语句中分别为时间和三个方! 向的加速度赋值(天津波简化数据)ACC(1,1)=0.1 $ACC(1,2)= 0.03599 $ACC(1,3)= 0.24653 $ACC(1,4)= -0.24363ACC(2,1)=0.7 $ACC(2,2)= 0.0293 $ACC(2,3)= 0.14177 $ACC(2,4)= -0.31038ACC(3,1)=1.2 $ACC(3,2)= 0.03695 $ACC(3,3)= 0.71123 $ACC(3,4)= -0.48752ACC(4,1)=1.7 $ACC(4,2)= -0.00725 $ACC(4,3)= -0.2167 $ACC(4,4)= -0.10452ACC(5,1)=2.4 $ACC(5,2)= 0.00734 $ACC(5,3)= -0.81282 $ACC(5,4)= 0.66357ACC(6,1)=3.0 $ACC(6,2)= 0.01759 $ACC(6,3)= -0.00823 $ACC(6,4)= -0.0361ANTYPE,TRANS ! 设置瞬态分析方式TIME,0.001 ! 设置初始加载步,设一个很小的数,但不能为零ACEL,0,0,0 !三个方向都施加零加速度,作为初始计算 SOLVE*DO,TT,1,6,1 !根据不同的时间步,施加加速度给整个结构 TIME,ACC(TT,1)ACEL,ACC(TT,2),ACC(TT,3),ACC(TT,4) ! 三个方向都施加加速度SOLVE *ENDDOc*** 进入时间历程后处理器 /POST26 ! 进入时间 -历程后处理 /AXLAB,x,Time(s) ! /AXLAB,y,Displacement (m) ! NSOL,2,node(-T_HL,-T_HL,H),u,X NSOL,3,node(-T_HL,-T_HL,H),u,Y NSOL,4,node(-T_HL,-T_HL,H),u,Z PLVAR,2,3,4 ! 输出该点位移随时间的变化关系曲线/AXLAB,y,von Mises Equivalent Stress (Pa) ! 定义 y 轴标题ANSOL,5,node(-L_HL+LO_H,L_HL-LO_H*tan(A),LO_H),s,eqv !定义" 腿部 " 角点(受力最!大)等效应力为 y 轴的变量plvar,5 ! 输出该点等效应力随时间的变化关系曲线FINISH!%%%%% %%%% end %%%%%%%%%%%定义 x 轴标识定义 y 轴标识!将建筑物悬空部最高点的位移设置为 2 号变量欢迎您的下载,资料仅供参考!致力为企业和个人提供合同协议,策划案计划书,学习资料等等打造全网一站式需求。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

ANSYS地震分析实例土木工程中除了常见的静力分析以外,动力分析,特别是结构在地震荷载作用下的受力分析,也是土木工程中经常碰到的题目。

结构的地震分析根据现行抗震规范要求,一般分为以下两类:基于结构自振特性的地震反应谱分析和基于特定地震波的地震时程分析。

本算例将以一个4质点的弹簧-质点体系来说明如何使用有限元软件进行地震分析。

更复杂结构的分析其基本过程也与之类似。

关键知识点:(a) 模态分析(b) 谱分析(c) 地震反应谱输进(d) 地震时程输进(e) 时程动力分析(1) 在ANSYS窗口顶部静态菜单,进进Parameters菜单,选择Scalar Parameters选项,在输进窗口中填进DAMPRATIO=0.02,即所有振型的阻尼比为2%(2) ANSYS主菜单Preprocessor->Element type->Add/Edit/Delete,添加Beam 188单元(3) 在Element Types窗口中,选择Beam 188单元,选择Options,进进Beam 188的选项窗口,将第7个和第8个选项,Stress/Strain (Sect Points) K7, Stress/Strain (Sect Nods) K8,从None 改为Max and Min Only。

即要求Beam 188单元输出积分点和节点上的最大、最小应力和应变(4) 在Element Types 窗口中,继续添加Mass 21集中质量单元(5) 下面输进材料参数,进进ANSYS主菜单Preprocessor->Material Props-> Material Models菜单,在Material Model Number 1中添加Structural-> Linear-> Elastic->Isotropic 属性,输进材料的弹性模量EX和泊松比PRXY分别为210E9和0.3。

(6) 继续给Material Model Number 1添加Density属性,输进密度为7800。

(7) 继续给Material Model Number 1添加Damping属性,采用参数化建模,输进阻尼类型为Constant,数值为DAMPRATIO(8) 接着建立梁单元的几何属性,和上一个例子一样,采用Sections建模,进进ANSYS主菜单Preprocessor->Sections->Beam->Common Sections,选择Sub-Type为工字型,截面尺寸W1=0.2,W2=0.2, W3=0.5, t1=0.01, t2=0.01, t3=0.008(9) 通过实参数输进集中质量单元的质量和转动惯量,在ANSYS主菜单中选择Preprocessor->Real Constants->Add/Edit/Delete菜单,在Real Constants窗口中选择Add,在Element type for Real Constants选择Mass 21,在Real Constant for Number 1窗口中输进1.6E2, 1.6E2,如图所示。

即该质量单元在X和Y方向的质量都为160,由于本例子模型为平面题目,所以不必考虑Z方向的质量,同样也不考虑单元的转动惯量。

(10) 继续添加第二类集中质量,过程和上面一样,但是输进的质量数值为1.2E2, 1.2E2(11) 完成以上工作就完成了模型的基本数据预备,下面开始建立物理模型。

(12) 在ANSYS主菜单中选择Preprocessor->Modeling->Create->Keypoints->In Active CS,依次输进关键点编号和坐标:需要说明的是,关键点6为后面建立梁单元所需的截面方向控制点,在上一个例子中已经做过先容。

(13) 完成关键点输进后下面建立直线模型。

在ANSYS主菜单中选择Preprocessor->Modeling->Create->Lines->Lines->Straight Line,依次连接关键点1~5。

(14) 下面给建立完的几何模型赋予材料属性,在ANSYS菜单中选择Meshing->Mesh Attributes->Picked Lines,选中所有的直线,进进Line Attributes窗口,选择相关选项材料属性,实参数,单元类型和截面类型都为1,点击OK后输进关键点6作为截面方向控制点。

(15) 在ANSYS主菜单中选择Preprocessor->Meshing->Size Cntrls-> ManualSize-> Lines-> Picked Lines,在Element Sizes on Picked Lines窗口中设定NDIV No. of element divisions 为3,即将每条直线分为3段(16) 在ANSYS主菜单中选择Preprocessor->Meshing->Mesh->Lines,选择所有的直线,完成直线的网格划分。

(17) 为了便于后面操纵,将网格划分后的单元和节点编号进行适当的清理。

在ANSYS主菜单中选择Preprocessor->Numbering Ctrls->Merge Items,在Merge Coincident or Equivalently Defined Items 窗口中选择All,清理所有重复的元素。

同样选择Numbering Ctrls->Compress Number菜单,在Compress Number中选择All,对节点和单元进行重新编号。

(18) 下面建立集中质量单元,采取直接输进单元的方法建立。

在ANSYS主菜单中选择Preprocessor->Modeling->Create->Elements->Elem Attributes,在Element Attributes中设定单元类型编号为2 MASS 21,材料编号任意,实参数编号为1。

如图所示(19) 在ANSYS主菜单中选择Preprocessor->Modeling->Create->Elements->Auto Numbered->Thru Nodes,选择节点2,建立第一个集中质量。

(20) 再次进进第18步Element Attributes窗口,设定实参数(Real constant set number)为2。

(21) 重复19步,选择节点8,14,20,建立其他的三个集中质量单元。

(22) 到此完成所有建模工作,下面开始进行结构分析(23) 进进ANSYS主菜单中Solution功能模块,选择Solution->Define Loads->Apply->Structural->Displacement->On Nodes,选择节点1,设定约束所有的自由度。

港台化妆品(24) 首先做一次静力分析,选择ANSYS主菜单Solution->Analysis Type->New Analysis,设定分析类型为Static(25) 选择ANSYS主菜单Solution->Solve->Current LS选项,进行一次静力分析(26) 分析完后,下面进行模态分析,在ANSYS主菜单中选择Solution->Analysis Type->New Analysis,选择分析类型为Model(27) 在ANSYS主菜单中选择Solution->Analysis Type->Analysis Options,输进模态分析方法为子空间法(Subspace),求解8阶模态,同时需要作模态扩展,扩展的模态为8阶,并计算单元应力和应变,输进窗口如图(28) 再次选择ANSYS主菜单Solution->Solve->Current LS,计算当前题目(29) 这时,假如需要看结果,可以进进后处理模块,即ANSYS主菜单General Postproc,可以看到计算的各阶频率和振型。

(30) 完成结构自振分析后,下面就可以进行反应谱分析(31) 进进ANSYS主菜单Solution->Analysis Type->New Analysis,选择分析类型为Spectrum。

(32) 在ANSYS主菜单Solution->Analysis Type->Analysis Options中,选择谱分析的类型为单点输进(Sing-pt resp)(33) 在ANSYS主菜单中选择Preprocessor->Loads->Load Step Opts-> Time/Frequenc-> Damping,输进所有的阻尼为DAMPRATIO,如图所示(34) 下面需要定义地震的反应谱。

我国规范给定的是基于加速度的反应谱。

在ANSYS主菜单中选择Solution-> Load Step Opts->Spectrum->Single Point->Settings,设定反应谱类型为地震加速度,放大系数为1,输进方向为X方向(1,0,0)。

(35) 接下来开始输进地震反应谱。

这里输进的反应谱按7度多遇地震,取地震影响系数为0.08,第一组,III类场地,卓越周期Tg=0.45s。

值得留意的是,我国规范给的反应谱横坐标是周期,ANSYS定义的反应谱横坐标是频率,应该留意上述区别。

选择ANSYS主菜单Solution-> Load Step Opts->Spectrum->Single Point->Freq Table,输进频率反应谱Freq1~Freq12为0.167, 0.25, 0.333, 0., 0.5, 0.667, 1, 1.25, 1.667, 2.222, 10, , 如图(36) 选择ANSYS主菜单Solution-> Load Step Opts->Spectrum->Single Point->Spectr Values,输进对应的反应谱数值依次如下:(37) 最后选择ANSYS主菜单Solution-> Load Step Opts->Spectrum->Single Point->Mode Combine,设定振型组合方式为SRSS法,如图所示(38) 选择ANSYS主菜单Solution->Solve->Current LS,计算反应谱结果(39) 进进ANSYS主菜单后处理模块General Postproc,在ANSYS窗口顶部菜单选择File->Read input from,选择文件后缀名为*.mcom的文件(40) 进进ANSYS主菜单General Postproc->Plot Results->Deformed Shapes,选择绘制变形后外形和结构外形,得到地震反应谱分析的结构变形如图(41) 最后我们来进行地震时程分析,进行地震时程分析以前,首先要有一个地震时程记录,本例子给定的地震时程记录总长20秒,记录点间隔0.02s,共有1001个记录点。

相关文档
最新文档