新定义函数-中考新题型

合集下载

专题2.4新定义的四种题型与真题训练-中考数学考前30天迅速提分复习方案(上海专用)(解析版)

专题2.4新定义的四种题型与真题训练-中考数学考前30天迅速提分复习方案(上海专用)(解析版)

专题2.4新定义的四种题型与真题训练题型一:函数中新定义问题1.(2022青浦一模18)如图,一次函数y =ax +b (a <0,b >0)的图象与x 轴,y 轴分别相交于点A ,点B ,将它绕点O 逆时针旋转90°后,与x 轴相交于点C ,我们将图象过点A ,B ,C 的二次函数叫做与这个一次函数关联的二次函数.如果一次函数y =﹣kx +k (k >0)的关联二次函数是y =mx 2+2mx +c (m ≠0),那么这个一次函数的解析式为.【解答】解:对y =﹣kx +k ,当x =0时,y =k ,当y =0时,x =1,∴A (1,0),B (0,k ),∴C (﹣k ,0),将A 、B 、C 的坐标代入y =mx 2+2mx +c 得,,解得:或或,∵m ≠0,k >0,∴m =﹣1,k =3,c =3,∴一次函数的解析式为y =﹣3x +3,故答案为:y =﹣3x +3.2.(2022黄埔一模18)若抛物线2111y ax b x c =++的顶点为A ,抛物线2222y ax b x c =-++的顶点为B ,且满足顶点A 在抛物线2y 上,顶点B 在抛物线1y 上,则称抛物线1y 与抛物线2y 互为“关联抛物线”,已知顶点为M 的抛物线()223y x =-+与顶点为N 的抛物线互为“关联抛物线”,直线MN 与x 轴正半轴交于点D ,如果3tan 4MDO ∠=,那么顶点为N 的抛物线的表达式为_________【详解】设顶点为N 的抛物线顶点坐标N 为(a ,b )已知抛物线()223y x =-+的顶点坐标M 为(2,3)∵3tan 4MDO ∠=,∴34M M N y x x =-,即3324Dx =-,解得24D x =±∵直线MN 与x 轴正半轴交于点D,∴D 点坐标为(6,0)则直线MD 解析式为3(6)4y x =--N 点在直线MD 3(6)4y x =--上,N 点也在抛物线()223y x =-+故有()23(6)423b a b a ⎧=--⎪⎨⎪=-+⎩,化简得2394247b a b a a ⎧=-+⎪⎨⎪=-+⎩联立得2394742a a a --=-+,化简得2135042a a -+=解得a =54或a =2(舍),将a =54代入3942b a =-有359157257442161616b =-⨯+=-+=解得545716a b ⎧=⎪⎪⎨⎪=⎪⎩,故N 点坐标为(54,5716)则顶点为N 的抛物线的表达式为2557()416y a x =-+将(2,3)代入2557()416y a x =-+有,25573(2416a =-+化简得95731616a =+,解得a =-1故顶点为N 的抛物线的表达式为2557(416y x =--+故答案为:2557()416y x =--+.3.(2020杨浦二模)定义:对于函数y =f (x ),如果当a ≤x ≤b 时,m ≤y ≤n ,且满足n ﹣m =k (b ﹣a )(k 是常数),那么称此函数为“k 级函数”.如:正比例函数y =﹣3x ,当1≤x ≤3时,﹣9≤y ≤﹣3,则﹣3﹣(﹣9)=k (3﹣1),求得k =3,所以函数y =﹣3x 为“3级函数”.如果一次函数y =2x ﹣1(1≤x ≤5)为“k 级函数”,那么k 的值是.【分析】根据一次函数y =2x ﹣1(1≤x ≤5)为“k 级函数”解答即可.【解答】解:因为一次函数y=2x﹣1(1≤x≤5)为“k级函数”,可得:k=2,故答案为:2.题型二:三角形中的新定义1.(2022嘉定一模18)如图,在△ABC中,∠C=90°,BC=2,,点D在边AC上,CD:AD=1:3,联结BD,点E在线段BD上,如果∠BCE=∠A,那么CE=.【解答】解:过点E作EF⊥BC,垂足为F,∵∠ACB=90°,BC=2,,∴AC===4,∵CD:AD=1:3,∴CD=1,∵∠BCE=∠A,∠ACB=∠CFE=90°,∴△ABC∽△CEF,∴===2,∴设EF为a,则CF为2a,BF为2﹣2a,∵∠ACB=∠BFE=90°,∠CBD=∠FBE,∴△BFE∽△BCD,∴=,∴=,∴a=,∴EF=,CF=1,∴CE===,故答案为:.2、(2022杨浦一模17)新定义:已知三条平行直线,相邻两条平行线间的距离相等,我们把三个顶点分别在这样的三条平行线上的三角形称为格线三角形.如图,已知等腰Rt△ABC为“格线三角形”,且∠BAC=90°,那么直线BC与直线c的夹角α的余切值为.【解答】解:过B 作BE ⊥直线a 于E ,延长EB 交直线c 于F ,过C 作CD ⊥直线a 于D ,则∠CDA =∠AEB =90°,∵直线a ∥直线b ∥直线c ,相邻两条平行线间的距离相等(设为d ),∴BF ⊥直线c ,CD =2d ,∴BE =BF =d ,∵∠CAB =90°,∠CDA =90°,∴∠DCA +∠DAC =90°,∠EAB +∠DAC =90°,∴∠DCA =∠EAB ,在△CDA 和△AEB 中,,∴△CDA ≌△AEB (AAS ),∴AE =CD =2d ,AD =BE =d ,∴CF =DE =AE +AD =2d +d =3d ,∵BF =d ,∴cotα===3,故答案为:3.3.(2022长宁一模17)定义:在△A 中,点D 和点E 分别在AB 边、AC 边上,且DE //BC ,点D 、点E 之间距离与直线DE 与直线BC 间的距离之比称为DE 关于BC 的横纵比.已知,在△A 中,4,BC BC =上的高长为3,DE 关于BC 的横纵比为2:3,则DE =_______.【详解】如图,AF BC ⊥于F ,交DE 于点G ,//DE BC ,ADE ABC ∴△△∽,AG DE ⊥,DE AGBC AF∴=,3AF = DE 关于BC 的横纵比为2:3,4BC =,23DE GF ∴=设2DE a =,则3GF a =,33AG AF GF a∴=-=-23343a a -∴=,解得23a =,43DE ∴=,故答案为:434.(2022虹口一模17)在网格中,每个小正方形的顶点称为格点,以格点为顶点的三角形称为“格点三角形”.如图,在4×4的网格中,△ABC 是一个格点三角形,如果△DEF 也是该网格中的一个格点三角形,它与△ABC 相似且面积最大,那么△DEF 与△ABC 相似比的值是.【解答】解:由表格可得:AB =,BC =2,AC =,如图所示:作△DEF ,DE =,DF =,EF =5,∵===,∴△DEF ∽△ABC ,则△DEF 与△ABC 相似比的值是.故答案为:.5.(2020松江二模)如果一个三角形中有一个内角的度数是另外两个内角度数差的2倍,我们就称这个三角形为“奇巧三角形”.已知一个直角三角形是“奇巧三角形”,那么该三角形的最小内角等于度.【分析】设直角三角形的最小内角为x ,另一个内角为y ,根据三角形的内角和列方程组即可得到结论.【解答】解:设直角三角形的最小内角为x ,另一个内角为y ,由题意得,,解得:,答:该三角形的最小内角等于22.5°,故答案为:22.5.6.(2020嘉定二模)定义:如果三角形的两个内角∠α与∠β满足∠α=2∠β,那么,我们将这样的三角形称为“倍角三角形”,如果一个等腰三角形是“倍角三角形”,那么这个等腰三角形的腰长与底边长的比值为【考查内容】新定义题型,黄金三角形【评析】中等【解析】当∠α为底角时,用内角和公式求得∠β= 36,此时为黄金三角形,腰长与底边长的比值215+;当当∠α为顶角时,用内角和公式求得∠β= 45,此时为等腰直角三角形,腰长与底边长的比值22。

中考数学专题-新定义与阅读理解创新型问题-(解析版)

中考数学专题-新定义与阅读理解创新型问题-(解析版)

新定义与阅读理解创新型问题一、单选题1.(四川省雅安市2021年中考数学真题)定义:{}()min ,()a a b a b b a b ≤⎧=⎨>⎩,若函数()2min 123y x x x =+-++,,则该函数的最大值为( )A .0B .2C .3D .4【答案】C 【分析】根据题目中所给的运算法则,分两种情况进行求解即可. 【详解】 令(),y min a b =,当2123x x x +≤-++时,即220x x --≤时,1y x =+, 令22w x x =-- ,则w 与x 轴的交点坐标为(2,0),(-1,0), ∴当0w ≤时,12x -≤≤, ∴1y x =+(12x -≤≤), ∴y 随x 的增大而增大, ∴当x =2时,3y =最大;当2123x x x +>-++时,即220x x -->时,2y x 2x 3=-++, 令22w x x =-- ,则w 与x 轴的交点坐标为(2,0),(-1,0), ∴当0w >时,2x >或1x <-, ∴2y x 2x 3=-++(2x >或1x <-), ∴2y x 2x 3=-++的对称轴为x =1, ∴当2x >时,y 随x 的增大而减小, ∴当x =2时,2y x 2x 3=-++=3, ∴当2x >时,y <3;当1x <-,y 随x 的增大而增大, ∴当x =-1时,2y x 2x 3=-++=0; ∴当1x <-时,y <0;综上,()2min 123y x x x =+-++,的最大值为3. 故选C . 【点睛】本题是新定义运算与二次函数相结合的题目,解题时要注意分情况讨论,不要漏解.2.(广东省2021年中考真题数学试卷)我国南宋时期数学家秦九韶曾提出利用三角形的三边求面积的公式,此公式与古希腊几何学家海伦提出的公式如出一辙,即三角形的三边长分别为a ,b ,c ,记2a b cp ++=,则其面积S =.这个公式也被称为海伦-秦九韶公式.若5,4p c ==,则此三角形面积的最大值为( )A B .4C .D .5【答案】C 【分析】由已知可得a +b =6,5S ab ==-,把b =6-a 代入S 的表达式中得:256S a a -+S 的最大值.【详解】 ∴p =5,c =4,2a b cp ++= ∴a +b =2p -c =6∴55S ab ==-由a +b =6,得b =6-a ,代入上式,得:25(6)5565S a a a a =--=-+-设2+65y a a =--,当2+65y a a =--取得最大值时,S 也取得最大值 ∴22+65(3)4y a a a =--=--+ ∴当a =3时,y 取得最大值4∴S =故选:C . 【点睛】本题考查了二次函数的性质,关键是由已知得出a +b =6,把面积最大值问题转化为二次函数的最大值问题. 3.(内蒙古通辽市2021年中考数学真题)定义:一次函数y ax b =+的特征数为[],a b ,若一次函数2y x m =-+的图象向上平移3个单位长度后与反比例函数3y x=-的图象交于A ,B 两点,且点A ,B 关于原点对称,则一次函数2y x m =-+的特征数是( ) A .[]2,3 B .[]2,3-C .[]2,3-D .[]2,3--【答案】D 【分析】先求出平移后的直线解析式为23y x m =-++,根据与反比例函数3y x=-的图象交于A ,B 两点,且点A ,B 关于原点对称,得到直线23y x m =-++经过原点,从而求出m ,根据特征数的定义即可求解. 【详解】解:由题意得一次函数2y x m =-+的图象向上平移3个单位长度后解析式为23y x m =-++, ∴直线23y x m =-++与反比例函数3y x=-的图象交于A ,B 两点,且点A ,B 关于原点对称, ∴点A ,B ,O 在同一直线上, ∴直线23y x m =-++经过原点, ∴m +3=0, ∴m =-3,∴一次函数2y x m =-+的解析式为23y x =--, ∴一次函数2y x m =-+的特征数是[]2,3--. 故选:D 【点睛】本题考查了新定义,直线的平移,一次函数与反比例函数交点,中心对称等知识,综合性较强,根据点A ,B 关于原点对称得到平移后直线经过原点是解题关键.4.(江苏省无锡市2021年中考数学真题)设1(,)P x y ,2(,)Q x y 分别是函数1C ,2C 图象上的点,当a x b≤≤时,总有1211y y -£-£恒成立,则称函数1C ,2C 在a x b ≤≤上是“逼近函数”,a x b ≤≤为“逼近区间”.则下列结论:①函数5y x =-,32y x =+在12x ≤≤上是“逼近函数”; ①函数5y x =-,24y x x =-在34x ≤≤上是“逼近函数”; ①01x ≤≤是函数21y x =-,22y x x =-的“逼近区间”; ①23x ≤≤是函数5y x =-,24y x x =-的“逼近区间”. 其中,正确的有( ) A .①① B .①① C .①① D .①①【答案】A 【分析】分别求出12y y -的函数表达式,再在各个x 所在的范围内,求出12y y -的范围,逐一判断各个选项,即可求解. 【详解】解:∴∴15y x =-,232y x =+,∴()()1253227y y x x x -=--+=--,当12x ≤≤时,12119y y -£-£-, ∴函数5y x =-,32y x =+在12x ≤≤上不是“逼近函数”;∴∴15y x =-,224y x x =-,∴()()12225554x y y x x x x --=--=-+-,当34x ≤≤时,1211y y -£-£,函数5y x =-,24y x x =-在34x ≤≤上是“逼近函数”;∴∴211y x =-,222y x x =-, ∴()()22122112x x x y y x x -=--=-+--,当01x ≤≤时,12314y y -£-£-, ∴01x ≤≤是函数21y x =-,22y x x =-的“逼近区间”;∴∴15y x =-,224y x x =-,∴()()12225554x y y x x x x --=--=-+-,当23x ≤≤时,12514y y £-£, ∴23x ≤≤不是函数5y x =-,24y x x =-的“逼近区间”. 故选A 【点睛】本题主要考查一次函数与二次函数的性质,掌握一次函数与二次函数的增减性,是解题的关键. 5.(2021·广西来宾市·中考真题)定义一种运算:,,a a ba b b a b ≥⎧*=⎨<⎩,则不等式(21)(2)3x x +*->的解集是( ) A .1x >或13x < B .113x -<<C .1x >或1x <-D .13x >或1x <- 【答案】C 【分析】根据新定义运算规则,分别从212x x +≥-和212x x +<-两种情况列出关于x 的不等式,求解后即可得出结论. 【详解】解:由题意得,当212x x +≥-时, 即13x ≥时,(21)(2)21x x x +*-=+, 则213x +>, 解得1x >,∴此时原不等式的解集为1x >; 当212x x +<-时, 即13x <时,(21)(2)2x x x +*-=-, 则23x ->, 解得1x <-,∴此时原不等式的解集为1x <-;综上所述,不等式(21)(2)3x x +*->的解集是1x >或1x <-. 故选:C . 【点睛】本题主要考查解一元一次不等式,解题的关键是根据新定义运算规则列出关于x 的不等式.6.(2021·广西中考真题)如{}1,2,M x =,我们叫集合M ,其中1,2,x 叫做集合M 的元素.集合中的元素具有确定性(如x 必然存在),互异性(如1x ≠,2x ≠),无序性(即改变元素的顺序,集合不变).若集合{},1,2N x =,我们说M N =.已知集合{}1,0,A a =,集合1,,b B a a a ⎧⎫=⎨⎬⎩⎭,若A B =,则b a -的值是( ) A .-1 B .0C .1D .2【答案】C 【分析】根据集合的确定性、互异性、无序性,对于集合B 的元素通过分析,与A 的元素对应分类讨论即可. 【详解】解:∴集合B 的元素1,ba a,a ,可得, ∴0a ≠, ∴10≠a,0b a =,∴0b =,当11a =时,1a =,{}1,0,1A =,{}1,1,0B =,不满足互异性,情况不存在, 当1a a=时,1a =±,1a =(舍),1a =-时,{}1,0,1A =-,{}1,1,0B =-,满足题意, 此时,=1b a -. 故选:C 【点睛】本题考查集合的互异性、确定性、无序性。

2025年中考数学思想方法复习系列 【新定义问题】函数中的新定义问题(原卷版)

2025年中考数学思想方法复习系列 【新定义问题】函数中的新定义问题(原卷版)

函数中的新定义问题知识方法精讲1.一次函数的性质一次函数的性质:k>0,y随x的增大而增大,函数从左到右上升;k<0,y随x的增大而减小,函数从左到右下降.由于y=kx+b与y轴交于(0,b),当b>0时,(0,b)在y轴的正半轴上,直线与y轴交于正半轴;当b<0时,(0,b)在y轴的负半轴,直线与y轴交于负半轴.2.正比例函数的性质正比例函数的性质.3.一次函数图象上点的坐标特征一次函数y=kx+b,(k≠0,且k,b为常数)的图象是一条直线.它与x轴的交点坐标是(﹣,0);与y轴的交点坐标是(0,b).直线上任意一点的坐标都满足函数关系式y=kx+b.4.一次函数与一元一次不等式(1)一次函数与一元一次不等式的关系从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.(2)用画函数图象的方法解不等式kx+b>0(或<0)对应一次函数y=kx+b,它与x轴交点为(﹣,0).当k>0时,不等式kx+b>0的解为:x>,不等式kx+b<0的解为:x<;当k<0,不等式kx+b>0的解为:x<,不等式kx+b<0的解为:x>.5.一次函数综合题(1)一次函数与几何图形的面积问题首先要根据题意画出草图,结合图形分析其中的几何图形,再求出面积.(2)一次函数的优化问题通常一次函数的最值问题首先由不等式找到x的取值范围,进而利用一次函数的增减性在前面范围内的前提下求出最值.(3)用函数图象解决实际问题从已知函数图象中获取信息,求出函数值、函数表达式,并解答相应的问题.6.二次函数的性质二次函数y=ax2+bx+c(a≠0)的顶点坐标是(﹣,),对称轴直线x=﹣,二次函数y=ax2+bx+c(a≠0)的图象具有如下性质:①当a>0时,抛物线y=ax2+bx+c(a≠0)的开口向上,x<﹣时,y随x的增大而减小;x>﹣时,y随x的增大而增大;x=﹣时,y取得最小值,即顶点是抛物线的最低点.②当a<0时,抛物线y=ax2+bx+c(a≠0)的开口向下,x<﹣时,y随x的增大而增大;x>﹣时,y随x的增大而减小;x=﹣时,y取得最大值,即顶点是抛物线的最高点.③抛物线y=ax2+bx+c(a≠0)的图象可由抛物线y=ax2的图象向右或向左平移|﹣|个单位,再向上或向下平移||个单位得到的.7.二次函数图象与系数的关系二次函数y=ax2+bx+c(a≠0)①二次项系数a决定抛物线的开口方向和大小.当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;|a|还可以决定开口大小,|a|越大开口就越小.②一次项系数b和二次项系数a共同决定对称轴的位置.当a与b同号时(即ab>0),对称轴在y轴左侧;当a与b异号时(即ab<0),对称轴在y轴右侧.(简称:左同右异)③.常数项c决定抛物线与y轴交点.抛物线与y轴交于(0,c).④抛物线与x轴交点个数.△=b2﹣4ac>0时,抛物线与x轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac<0时,抛物线与x轴没有交点.8.二次函数图象上点的坐标特征二次函数y=ax2+bx+c(a≠0)的图象是抛物线,顶点坐标是(﹣,).①抛物线是关于对称轴x=﹣成轴对称,所以抛物线上的点关于对称轴对称,且都满足函数函数关系式.顶点是抛物线的最高点或最低点.②抛物线与y轴交点的纵坐标是函数解析中的c值.③抛物线与x轴的两个交点关于对称轴对称,设两个交点分别是(x1,0),(x2,0),则其对称轴为x=.9.二次函数图象与几何变换由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.10.二次函数的最值(1)当a>0时,抛物线在对称轴左侧,y随x的增大而减少;在对称轴右侧,y随x的增大而增大,因为图象有最低点,所以函数有最小值,当x=时,y=.(2)当a<0时,抛物线在对称轴左侧,y随x的增大而增大;在对称轴右侧,y随x的增大而减少,因为图象有最高点,所以函数有最大值,当x=时,y=.(3)确定一个二次函数的最值,首先看自变量的取值范围,当自变量取全体实数时,其最值为抛物线顶点坐标的纵坐标;当自变量取某个范围时,要分别求出顶点和函数端点处的函数值,比较这些函数值,从而获得最值.11.抛物线与x轴的交点求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标,令y=0,即ax2+bx+c =0,解关于x的一元二次方程即可求得交点横坐标.(1)二次函数y=ax2+bx+c(a,b,c是常数,a≠0)的交点与一元二次方程ax2+bx+c=0根之间的关系.△=b2﹣4ac决定抛物线与x轴的交点个数.△=b2﹣4ac>0时,抛物线与x轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac<0时,抛物线与x轴没有交点.(2)二次函数的交点式:y=a(x﹣x1)(x﹣x2)(a,b,c是常数,a≠0),可直接得到抛物线与x轴的交点坐标(x1,0),(x2,0).12.二次函数与不等式(组)二次函数y=ax2+bx+c(a、b、c是常数,a≠0)与不等式的关系①函数值y与某个数值m之间的不等关系,一般要转化成关于x的不等式,解不等式求得自变量x的取值范围.②利用两个函数图象在直角坐标系中的上下位置关系求自变量的取值范围,可作图利用交点直观求解,也可把两个函数解析式列成不等式求解.13.二次函数综合题(1)二次函数图象与其他函数图象相结合问题解决此类问题时,先根据给定的函数或函数图象判断出系数的符号,然后判断新的函数关系式中系数的符号,再根据系数与图象的位置关系判断出图象特征,则符合所有特征的图象即为正确选项.(2)二次函数与方程、几何知识的综合应用将函数知识与方程、几何知识有机地结合在一起.这类试题一般难度较大.解这类问题关键是善于将函数问题转化为方程问题,善于利用几何图形的有关性质、定理和二次函数的知识,并注意挖掘题目中的一些隐含条件.(3)二次函数在实际生活中的应用题从实际问题中分析变量之间的关系,建立二次函数模型.关键在于观察、分析、创建,建立直角坐标系下的二次函数图象,然后数形结合解决问题,需要我们注意的是自变量及函数的取值范围要使实际问题有意义.14.解新定义题型的方法:方法一:从定义知识的新情景问题入手这种题型它要求学生在新定义的条件下,对提出的说法作出判断,主要考查学生阅读理解能力,分析问题和解决问题的能力.因此在解这类型题时就必须先认真阅读,正理解新定义的含义;再运用新定义解决问题;然后得出结论。

2024年九年级中考数学专题复习:新定义型问题与二次函数相关的问题含参考答案

2024年九年级中考数学专题复习:新定义型问题与二次函数相关的问题含参考答案

2024年九年级中考数学专题复习:新定义型问题与二次函数相关的问题一、单选题1在R 上定义运算⊗:x ⊗y =x (1-y ),若不等式(x -a )⊗x +a <1对任意实数x 成立,则实数a 的取值范围()A.-1<a <1B.0<a <2C.-12<a <32D.-32<a <122我们定义一种新函数:形如y =ax 2+bx +c a ≠0,b 2-4ac >0 的函数叫做“鹊桥”函数.数学兴趣小组画出一个“鹊桥”函数y =x 2+bx +c 的图象如图所示,则下列结论正确的是()A.bc <0B.当x =1时,函数的最大值是4C.当直线y =x +m 与该图象恰有三个公共点时,则m =1D.关于x 的方程x 2+bx +c =3的所有实数根的和为43我们定义:若点A 在某一个函数的图象上,且点A 的横纵坐标相等,我们称点A 为这个函数的“好点”.若关于x 的二次函数y =ax 2+tx -3t 对于任意的常数t ,恒有两个“好点”,则a 的取值范围为()A.0<a <13B.0<a <12C.13<a <12D.12<a <14对于实数a ,b ,定义符号min a ,b ,其意义为:min a ,b =ba ≥baa <b .例如:min =2,-1 =-1,若关于x 的函数y =min 2x -1,-x +3,x 2-ax 则使该函数的最大值小于0时a 的范围是()A.a >2B.-1<a <0C.1<a <2D.a >35定义:两个不相交的函数图象在平行于y 轴方向上的最短距离称为这两个函数的“完美距离”.抛物线y =2x 2-5x +3与直线y =-2x -1的“完美距离”为()A.238B.3C.278D.2186定义运算“※”为:a ※b =ab 2(b >0)-ab2b ≤0,如:1※-2 =-1×(-2)2=-4,则函数y =2※x 的图象大致是()A. B.C. D.7新定义:若一个点的纵坐标是横坐标的2倍,则称这个点为二倍点.若二次函数y=x2-x+c(c为常数)在-2<x<4的图象上存在两个二倍点,则c的取值范围是()A.-2<c<14B.-2<c<94C.-4<c<14D.-4<c<948对于任意实数a和b,定义新运算,a#b=a2-ab a≥bb2-ab a<b有下列四个结论,其中正确的结论个数为()①2#-1的运算结果为6;②方程3x#x-2=0的解为x1=0,x2=-1;③当x<5时,函数y=2#x-3的图像经过第一、二、四象限;④函数y=2x#x-1的图像不经过第二、四象限.A.1个B.2个C.3个D.4个二、填空题9定义:两个不相交的函数图象在竖直方向上的最短距离,叫做这两个函数的“向心值”.则抛物线y =x2-2x+3与直线y=x-2的“向心值”为.10定义一种新的运算“早”,运算规则如下:(1)当a≥b时,a♀b=a;(2)当a<b时,a♀b=b2.那么当-2≤x≤2时,1♀x♀x-2♀x的最大值是.11对于实数a,b,定义运算:“☆”为a☆b=a2-ab-2a,如:2☆3=22-2×3-2×2=-6,若m,n 是二次函数y=x2-2x-3的图象与x轴的交点的横坐标,则m☆n=.12定义新运算:对于任意实数a,b,都有a⊗b=ab-a+b,例如 2⊗=2×3-2+3=1.若y关于x的函数y=kx+1⊗x-1的图象与x轴仅有一个公共点,则实数k的值为.13新定义:若一个点的纵坐标是横坐标的2倍,则称这个点为二倍点.若二次函数y=x2-x+c(c(c 为常数)在-2<x<4的图象上存在两个二倍点,则c的取值范围是.14新定义:任意两数m,n,按规定y=mn-m+n得到一个新数y,称所得新数y为数m,n的“愉悦数”.则当m=2x+1,n=x-1,且m,n的“愉悦数”y为正整数时,正整数x的值是.15定义:在平面直角坐标系中,若点A满足横、纵坐标都为整数,则把点A叫做“整点”.如:B3,0、C-1,3都是“整点”.抛物线y=ax2+2ax+a-2a>0与x轴交于点M,N两点,若该抛物线在M、N 之间的部分与线段MN所围的区域(包括边界)恰有5个整点,则a的取值范围是.16定义:对角线互相垂直的四边形为垂美四边形.已知垂美四边形ABCD的对角线AC、BD满足AC+BD=12,则当AC=时,四边形ABCD的面积最大.三、解答题17新定义:[a,b,c]为二次函数y=ax2+bx+c(a≠0,a,b,c为实数)的“图象数”,如:y=-x2+2x+ 3的“图象数”为[-1,2,3].(1)图像数为[1,-1,0]的二次函数表达式为.(2)求证:“图象数”为[1,m+3,m]的二次函数的图象与x轴恒有两个交点.18定义:若x,y满足x2=4y+t,y2=4x+t且x≠y(t为常数),则称点M(x,y)为“和谐点”.(1)请直接判断点(1,-5)是否为“和谐点”;(2)P(2,m)是“和谐点”,求m值;(-3<x<-1)的图象上存在“和谐点”,求k的取值范围.(3)若双曲线y=kx19某网店有(万件)商品,计划在元旦旺季售出商品x(万件),经市场调查测算,花费t(万元)进行促销后,商品的剩余量3-x与促销费t之间的关系为3-x=kt+1(其中k为常数),如果不搞促销活动,只能售出1(万件)商品.(1)要使促销后商品的剩余量不大于0.1(万件),促销费t至少为多少(万元)?(2)已知商品的进价为32(元/件),另有固定成本3(万元),定义每件售出商品的平均成本为32+3x(元),若将商品售价为:“每件售出商品平均成本的1.5倍”与“每件售出商品平均促销费的一半”之和,则当促销费t为多少(万元)时,该网店售出商品的总利润最大?此时商品的剩余量为多少?20我们定义一种新函数:形如y=ax2+bx+ca≠0,b2-4ac>0的函数叫作“华为”函数.如图,小丽同学画出了“华为”函数y=x2-2x-3的图像,根据该图像解答下列问题:(1)求该函数图像与x轴和y轴的交点坐标.(2)当函数值y随x值的增大而减小时,求自变量x的取值范围.2024年九年级中考数学专题复习:新定义型问题与二次函数相关的问题一、单选题1在R 上定义运算⊗:x ⊗y =x (1-y ),若不等式(x -a )⊗x +a <1对任意实数x 成立,则实数a 的取值范围()A.-1<a <1B.0<a <2C.-12<a <32D.-32<a <12【答案】C【分析】本题的考点是函数恒成立问题,主要考查了函数恒成立问题,关键是理解新定义的运算,掌握将不等式转化为二次不等式,解决恒成立问题转化成图象恒在x 轴上方,从而有△<0,解△<0即可.【详解】根据运算法则得x -a ⊗x +a =x -a 1-x -a <1化简得:x 2-x -a 2+a +1>0在R 上恒成立,即Δ<0,1-4-a ²+a +1 <0,即4a 2-4a -3<0,解得-12<a <32,故选:C .2我们定义一种新函数:形如y =ax 2+bx +c a ≠0,b 2-4ac >0 的函数叫做“鹊桥”函数.数学兴趣小组画出一个“鹊桥”函数y =x 2+bx +c 的图象如图所示,则下列结论正确的是()A.bc <0B.当x =1时,函数的最大值是4C.当直线y =x +m 与该图象恰有三个公共点时,则m =1D.关于x 的方程x 2+bx +c =3的所有实数根的和为4【答案】D【分析】本题考查二次函数的应用、新定义、二次函数的性质,由-1,0 ,3,0 是函数图象和x 轴的交点,利用待定系数法求得b 、c 的值可判断A 错误;根据图象可判断B 错误;由图象可判断C 错误;由题意可得x 2-2x -3=3或x 2-2x -3=-3,利用根与系数的关系可判断D 正确.利用数形结合的思想解答是解题的关键.【详解】解:∵-1,0 ,3,0 是函数图象和x 轴的交点,∴1-b +c =09+3b +c =0,解得:b =-2c =-3 ,∴bc =-2 ×-3 =6>0,故A 错误;由图象可得,函数没有最大值,故B 错误;如图,当直线y =x +m 与该图象恰有三个公共点时,应该有2条直线,故C 错误;关于x 的方程x 2+bx +c =3,即x 2-2x -3=3或x 2-2x -3=-3,当x 2-2x -3=3时,x 1+x 2=--21=2,当x 2-2x -3=-3时,x 3+x 4=--21=2,∴关于x 的方程x 2+bx +c =3的所有实数根的和为2+2=4,故D 正确,故选:D .3我们定义:若点A 在某一个函数的图象上,且点A 的横纵坐标相等,我们称点A 为这个函数的“好点”.若关于x 的二次函数y =ax 2+tx -3t 对于任意的常数t ,恒有两个“好点”,则a 的取值范围为()A.0<a <13B.0<a <12C.13<a <12D.12<a <1【答案】A【分析】“好点”A 的横纵坐标相等,即:x =y =ax 2+tx -3t a ≠0 ,Δ=(t -1)2+12at >0,整理得:t 2-2-12a t +1=0,△1=(2-12a )2-4<0,即可求解.【详解】解:“好点”A 的横纵坐标相等,∴x =y =ax 2+tx -3t a ≠0 ,∴ax 2+t -1 x -3t =0,Δ=b 2-4ac =(t -1)2+12at >0,整理得:t 2-2-12a t +1>0,∵1>0,故当Δ<0时,抛物线开口向上,且与x 轴没有交点,故上式成立,△1=(2-12a )2-4<0,解得:0<a <13,故选:A .【点睛】本题考查的是二次函数图象与系数的关系,要求学生熟悉函数的基本性质,能熟练求解函数与坐标轴的交点及顶点的坐标等.4对于实数a ,b ,定义符号min a ,b ,其意义为:min a ,b =ba ≥baa <b .例如:min =2,-1 =-1,若关于x 的函数y =min 2x -1,-x +3,x 2-ax 则使该函数的最大值小于0时a 的范围是()A.a >2B.-1<a <0C.1<a <2D.a >3【答案】D【分析】画出y =2x -1,y =-x +3,y =x 2-ax 的函数图象,根据题意,最大值小于0时,结合函数图象,即可求解.【详解】解:如图所示,y =min 2x -1,-x +3,x 2-ax 即为函数图象的红色部分,由y=x2-ax,令y=0,则x2-ax=0解得:x1=0,x2=a∵y=x2-ax经过原点,y=-x+3与x轴的交点为3,0,∴当y=min2x-1,-x+3,x2-ax最大值小于0时,则y=x2-ax与x轴的交点在3,0的右侧,∴a>3故选:D【点睛】本题考查了新定义、一元一次不等式以及二次函数、一次函数的交点问题,认真阅读理解其意义,并利用数形结合的思想解决函数的最值问题.5定义:两个不相交的函数图象在平行于y轴方向上的最短距离称为这两个函数的“完美距离”.抛物线y=2x2-5x+3与直线y=-2x-1的“完美距离”为()A.238B.3 C.278D.218【答案】A【分析】先判断抛物线与直线无交点,再根据定义和二次函数的性质求解即可.【详解】解:由2x2-5x+3=-2x-1得2x2-3x+4=0,∵Δ=-32-4×2×4=-23<0,∴方程2x2-3x+4=0没有实数根,∴抛物线y=2x2-5x+3与直线y=-2x-1不相交,设w=2x2-5x+3--2x-1=2x2-3x+4=2x-342+238,∵2>0,∴当x=34时,w有最小值为23 8,即抛物线y=2x2-5x+3与直线y=-2x-1的“完美距离”为23 8,故选:A.【点睛】本题考查二次函数的性质、一元二次方程根的判别式,理解题中定义,熟练掌握二次函数的性质是解答的关键.6定义运算“※”为:a※b=ab2(b>0)-ab2b≤0,如:1※-2 =-1×(-2)2=-4,则函数y=2※x的图象大致是()A. B.C. D.【答案】D【分析】根据定义运算“※”为:a※b=ab2(b>0)-ab2b≤0,可得y=2※x的函数解析式,根据函数解析式,可得函数图象.【详解】解:y=2※x=2x2(x>0) -2x2x≤0,x>0时,图象是y=2x2对称轴右侧的部分;x≤0时,图象是y=-2x2对称轴左侧的部分,故选:D.【点睛】本题考查了二次函数的图象,利用定义运算“※”为:a※b=ab2(b>0)-ab2b≤0得出分段函数是解题关键.7新定义:若一个点的纵坐标是横坐标的2倍,则称这个点为二倍点.若二次函数y=x2-x+c(c为常数)在-2<x<4的图象上存在两个二倍点,则c的取值范围是()A.-2<c<14B.-2<c<94C.-4<c<14D.-4<c<94【答案】D【分析】由点的纵坐标是横坐标的2倍可得二倍点在直线y=2x上,由-2<x<4可得二倍点所在线段AB的端点坐标,结合图象,通过求抛物线与线段交点求解.【详解】解:由题意可得二倍点所在直线为y=2x,将x=-2代入y=2x得y=-4,将x=4代入y=2x得y=8,设A(-2,-4),B(4,8),如图,联立方程x2-x+c=2x,当△>0时,抛物线与直线y=2x有两个交点,即9-4c>0,解得c<9 4,此时,直线x=-2和直线x=4与抛物线交点在点A,B上方时,抛物线与线段AB有两个交点,把x=-2代入y=x2-x+c得y=6+c,把x=4代入y=x2-x+c得y=12+c,∴6+c>-4 12+c>8 ,解得c>-4,∴-4<c<94满足题意.故选:D.【点睛】本题考查二次函数图象与系数的关系,解题关键掌握函数与方程及不等式的关系,将代数问题转化为图形问题求解.8对于任意实数a和b,定义新运算,a#b=a2-ab a≥bb2-ab a<b有下列四个结论,其中正确的结论个数为()①2#-1的运算结果为6;②方程3x#x-2=0的解为x1=0,x2=-1;③当x<5时,函数y=2#x-3的图像经过第一、二、四象限;④函数y=2x#x-1的图像不经过第二、四象限.A.1个B.2个C.3个D.4个【答案】C【分析】本题主要考查了实数的运算,解一元二次方程,二次函数的性质,熟练掌握解一元二次方程的方法以及二次函数的性质是解题的关键.根据新定义的运算即可判断①;分两种情况讨论得到一元二次方程,解方程即可判断②;根据二次函数的性质即可判断③;利用二次函数的图像即可判断④.【详解】解:①∵2>-1,∴2#-1=22-2×-1=6,故正确;②当3x≥x-2时,即x≥-1时,方程为9x2-3x x-2=0,整理得6x2+6x=0,解得x1=0,x2=-1,当3x <x -2时,即x <-1时,方程为x -2 2-3x x -2 =0,整理得x 2-x -2=0,解得x =2或x =-1(不符合题意,舍去),∴方程3x #x -2 =0的解为x 1=0,x 2=-1,故正确;③∵当x <5时,函数y =2#x -3 =4-2x -3 =-2x +10,∴函数y =2#x -3 的图像经过第一、二象限,故错误;④当2x ≥x -1时,即x ≥-1时,函数为y =4x 2-2x x -1 =2x +12 2-12,当2x <x -1时,即x <-1时,函数为y =x -1 2-2x x -1 =-x 2+1,画出函数图像如下:由图可知函数图像不经过第二、四象限,故正确;故选:C .二、填空题9定义:两个不相交的函数图象在竖直方向上的最短距离,叫做这两个函数的“向心值”.则抛物线y =x 2-2x +3与直线y =x -2的“向心值”为.【答案】114【分析】此题考查了一次函数,二次函数的性质以及新定义问题,解题的关键是熟练掌握正确分析“向心值”的概念.根据“向心值”的概念让两个表达式相减,然后求解得到的二次函数最小值即可.【详解】解:∵两个不相交的函数图象在竖直方向上的最短距离为这两个函数的“向心值”,∴设“向心值”为w ,∴w =x 2-2x +3-x -2 =x 2-3x +5=x -322+114,∴w 的最小值为114.故答案为:114.10定义一种新的运算“早”,运算规则如下:(1)当a ≥b 时,a ♀b =a ;(2)当a <b 时,a ♀b =b 2.那么当-2≤x ≤2时,1♀x ♀x -2♀x 的最大值是.【答案】2【分析】本题主要考查了新运算法则、二次函数的性质等知识点,掌握分类讨论思想是解题的关键.分-2≤x ≤1和1≤x ≤2两种情况,分别根据新运算法则求出最值,然后进行比较即可解答.【详解】解:当-2≤x ≤1时,1♀x ♀x -2♀x =1♀x -2=1-2=-1;当1≤x≤2时,1♀x=x2♀x-2=x2-2;♀x-2♀x∵a=1>0,对称轴为x=0,1≤x≤2,∴当x=2时,x2-2有最大值,22-2=2,∴1♀x的最大值是2.♀x-2♀x故答案为:2.11对于实数a,b,定义运算:“☆”为a☆b=a2-ab-2a,如:2☆3=22-2×3-2×2=-6,若m,n 是二次函数y=x2-2x-3的图象与x轴的交点的横坐标,则m☆n=.【答案】6【分析】本题考查了二次函数与一元二次方程的关系,新定义下的实数运算.熟练掌握二次函数与一元二次方程的关系是解题的关键.由题意知,m,n是x2-2x-3=0的两个根,解得x=-1或x=3,分当m=-1,n=3时;当m=3,n=-1时两种情况计算求解即可.【详解】解:由题意知,m,n是x2-2x-3=0的两个根,x+1=0,x-3∴x+1=0或x-3=0,解得x=-1或x=3,当m=-1,n=3时,m☆n=m2-mn-2m=m m-n-2=-1×-1-3-2=6;当m=3,n=-1时,m☆n=m2-mn-2m=m m-n-2=6;=3×3+1-2故答案为:6.12定义新运算:对于任意实数a,b,都有a⊗b=ab-a+b=1.若y关,例如 2⊗=2×3-2+3于x的函数y=kx+1的图象与x轴仅有一个公共点,则实数k的值为.⊗x-1【答案】-1或0/0或-1【分析】由定义的新运算求得y关于x的函数为:y=-x2+kx+k,再由y关于x函数的图象与x轴仅有一个公共点得到,求解即可.【详解】解:∵a⊗b=ab-a+b,∴y=kx+1⊗x-1=kx+1+x-1-kx+1x-1=kx2-2kx-1即y=kx2-2kx-1,∵y=kx2-2kx-1的图象与x轴仅有一个公共点,令y=0,得kx2-2kx-1=0,∴Δ=b2-4ac=4k2+4k=0,∴k2+k=0,解得:k=0或k=-1.故答案为:-1或0.【点睛】本题主要考查了一元二次方程的根与二次函数图像和x轴交点坐标的关系,解题关键是熟记:一元二次方程有两个根,说明二次函数图像和x轴的横坐标有两个交点;一元二次方程有一个根,说明二次函数图像和x轴的横坐标有一个交点;一元二次方程(在实数范围)无解,说明二次函数图像和x轴的横坐标没有交点.13新定义:若一个点的纵坐标是横坐标的2倍,则称这个点为二倍点.若二次函数y=x2-x+c(c(c 为常数)在-2<x<4的图象上存在两个二倍点,则c的取值范围是.【答案】-4<c <94【分析】由点的纵坐标是横坐标的2倍可得二倍点在直线y =2x 上,由-2<x <4可得二倍点所在线段AB 的端点坐标,结合图象,通过求抛物线与线段交点求解.【详解】解:由题意可得二倍点所在直线为y =2x ,将x =-2代入y =2x 得y =-4,将x =4代入y =2x 得y =8,设A (-2,-4),B (4,8),如图,联立方程x 2-x +c =2x ,当∆>0时,抛物线与直线y =2x 有两个交点,即9-4c >0,解得c <94,此时,直线x =-2和直线x =4与抛物线交点在点A ,B 上方时,抛物线与线段AB 有两个交点,把x =-2代入y =x 2-x +c 得y =6+c ,把x =4代入y =x 2-x +c 得y =12+c ,∴6+c >-412+c >8 ,解得c >-4,∴-4<c <94满足题意.故答案为:-4<c <94.【点睛】本题考查二次函数图象与系数的关系,解题关键掌握函数与方程及不等式的关系,将代数问题转化为图形问题求解.14新定义:任意两数m ,n ,按规定y =m n-m +n 得到一个新数y ,称所得新数y 为数m ,n 的“愉悦数”.则当m =2x +1,n =x -1,且m ,n 的“愉悦数”y 为正整数时,正整数x 的值是.【答案】2【分析】根据“愉悦数”的定义,将m 、n 代入y =m n -m +n 得到一个关于x 的方程,然后再求解即可.【详解】解:当m =2x +1,n =x -1,且m ,n 的“愉悦数”y =2x +1x -1-2x +1 +x -1 >0化简得:-x 2+x +3x -1>0∵x 是正整数∴x -1>0即:x -1>0-x 2+x +3>0解得:1<x <1+132∵x 是正整数∴x =2.故答案是2.【点睛】本题主要考查运用二次函数解不等式、分式的混合运算等知识点,正确运用二次函数解不等式成为解答本题的关键.15定义:在平面直角坐标系中,若点A 满足横、纵坐标都为整数,则把点A 叫做“整点”.如:B 3,0 、C -1,3 都是“整点”.抛物线y =ax 2+2ax +a -2a >0 与x 轴交于点M ,N 两点,若该抛物线在M 、N 之间的部分与线段MN 所围的区域(包括边界)恰有5个整点,则a 的取值范围是.【答案】1<a ≤2【分析】画出图象,找到该抛物线在M 、N 之间的部分与线段MN 所围的区域(包括边界)恰有5个整点的边界,利用与y 交点位置可得a 的取值范围.【详解】解:抛物线y =ax 2+2ax +a -2(a >0)化为顶点式为y =a (x +1)2-2,∴函数的对称轴:x =-1,顶点坐标为(-1,-2),∴M 和N 两点关于x =-1对称,根据题意,抛物线在M 、N 之间的部分与线段MN 所围的区域(包括边界)恰有5个整点,这些整点是(0,0),(-1,0),(-1,-1),(-1,-2),(-2,0),如图所示:∵当x =0时,y =a -2,∴-1<a -2≤0,当x =1时,y =4a -2>0,即:-1<a -2≤04a -2>0,解得1<a ≤2,故答案为:1<a ≤2.【点睛】本题考查抛物线与x 轴的交点、配方法确定顶点坐标、待定系数法等知识,利用函数图象确定与y 轴交点位置是本题的关键.16定义:对角线互相垂直的四边形为垂美四边形.已知垂美四边形ABCD 的对角线AC 、BD 满足AC +BD =12,则当AC =时,四边形ABCD 的面积最大.【答案】6【分析】根据垂美四边形的性质列出函数解析式,进行求解即可.【详解】解:∵四边形ABCD 的对角线互相垂直,∴S ABCD =12AC ∙BD ,∵AC +BD =12,∴BD =12-AC ,∴S 四边形ABCD =12AC ∙BD =12AC 12-AC =-12AC 2+6AC ,∵-12<0且0<AC <12,当AC =-62×-12=6时,函数有最大值,∴AC =6时,面积有最大值;故答案是6.【点睛】本题主要考查了二次函数的应用,准确分析计算是解题的关键.三、解答题17新定义:[a ,b ,c ]为二次函数y =ax 2+bx +c (a ≠0,a ,b ,c 为实数)的“图象数”,如:y =-x 2+2x +3的“图象数”为[-1,2,3].(1)图像数为[1,-1,0]的二次函数表达式为.(2)求证:“图象数”为[1,m +3,m ]的二次函数的图象与x 轴恒有两个交点.【答案】(1)y =x 2-x(2)见详解【分析】本题考查了抛物线与轴的交点:(1)根据新定义得到二次函数的解析式即可;(2)根据新定义得到二次函数的解析式为y =x 2+m +3 x +m ,然后根据判别式的意义得到Δ=m +3 2-4m =m +1 2+8>0,从而求证.【详解】(1)解:图像数为[1,-1,0]的二次函数表达式为:y =x 2-x .(2)解:“图象数”为[1,m +3,m ]的二次函数表达式为:y =x 2+m +3 x +m .当y =0时,x 2+m +3 x +m =0Δ=m +3 2-4m =m +1 2+8>0∴该一元二次方程有两个不相等的实数根,即“图象数”为[1,m +3,m ]的二次函数的图象与x 轴恒有两个交点.18定义:若x ,y 满足x 2=4y +t ,y 2=4x +t 且x ≠y (t 为常数),则称点M (x ,y )为“和谐点”.(1)请直接判断点(1,-5)是否为“和谐点”;(2)P (2,m )是“和谐点”,求m 值;(3)若双曲线y =k x(-3<x <-1)的图象上存在“和谐点”,求k 的取值范围.【答案】(1)点1,-5 是“和谐点”(2)m =-6(3)k 的取值范围为3<k ≤4【分析】(1)由题意得,x 2-4y =y 2-4x ,由12-4×-5 =-5 2-4×1,可得点1,-5 是“和谐点”;(2)由题意知,22-4m =m 2-8,即m 2+4m -12=0,计算求出满足要求的解即可;(3)设点a,b为双曲线y=kx(-3<x<-1)上的“和谐点”,则a2=4b+t,b2=4a+t,b=ka(-3<a<-1),即a-ba+b+4=0,可得b=-a-4,由b=ka,可得k=ab=a-a-4=-a2-4a=-a+22+4,且-3<a<-1,然后利用二次函数的图象与性质求取值范围即可.【详解】(1)解:∵x2=4y+t,y2=4x+t,∴x2-4y=t,y2-4x=t,∴x2-4y=y2-4x,∵12-4×-5=-52-4×1,∴点1,-5是“和谐点”;(2)解:∵P2,m是“和谐点”,∴22=4m+t,m2=4×2+t,∴22-4m=t,m2-8=t,∴22-4m=m2-8,即m2+4m-12=0,解得m1=-6,m2=2(不合题意,舍去)∴m=-6;(3)解:设点a,b为双曲线y=kx(-3<x<-1)上的“和谐点”,∴a2=4b+t,b2=4a+t,b=ka(-3<a<-1),∴a2-4b=b2-4a,即a2-b2+4a-4b=0,∴a-ba+b+4=0,∵a≠b,∴a+b+4=0,即b=-a-4,∵b=ka(-3<a<-1),∴k=ab=a-a-4=-a2-4a=-a+22+4,且-3<a<-1,∵-1<0,∴图象开口向下,当a=-2时,k max=4,当a=-1时,k=--1+22+4=3;当a=-3时,k=--3+22+4=3;∴k的取值范围为3<k≤4.【点睛】本题考查了新定义下的实数运算,因式分解法解一元二次方程,二次函数的图象与性质,平方差公式,二次函数的最值,反比例函数解析式等知识.理解题意,熟练掌握因式分解法解一元二次方程,平方差公式,二次函数的图象与性质是解题的关键.19某网店有(万件)商品,计划在元旦旺季售出商品x(万件),经市场调查测算,花费t(万元)进行促销后,商品的剩余量3-x与促销费t之间的关系为3-x=kt+1(其中k为常数),如果不搞促销活动,只能售出1(万件)商品.(1)要使促销后商品的剩余量不大于0.1(万件),促销费t至少为多少(万元)?(2)已知商品的进价为32(元/件),另有固定成本3(万元),定义每件售出商品的平均成本为32+3x(元),若将商品售价为:“每件售出商品平均成本的1.5倍”与“每件售出商品平均促销费的一半”之和,则当促销费t为多少(万元)时,该网店售出商品的总利润最大?此时商品的剩余量为多少?【答案】(1)至少为19万元(2)当促销费为7万元时,网店利润最大为42万元,此时商品的剩余量为0.25万件【分析】题目主要考查不等式的应用及函数的应用,(1)根据题意得出k=2,代入原不等式求解即可;(2)设网店的利润y(万元),根据题意得出相应的函数关系式,然后再由其性质求解即可;理解题意列出相应的函数关系式是解题关键.【详解】(1)解:∵3-x=kt+1,当t=0时,x=1,∴k=2,∴3-x=2t+1,∵2t+1≤0.1,解得:t≥19;(2)设网店的利润y(万元),根据题意得:y=x3+32xx×1.5+t2x-3+32x+t=992-32t+1-t2=50-32t+1+t+12≤50-232t+1×t+12=42,当且仅当32t+1=t+12即t=7时,等号成立,此时3-x=0.25,当促销费为7万元时,网店利润最大为42万元,此时商品的剩余量为0.25万件.20我们定义一种新函数:形如y=ax2+bx+ca≠0,b2-4ac>0的函数叫作“华为”函数.如图,小丽同学画出了“华为”函数y=x2-2x-3的图像,根据该图像解答下列问题:(1)求该函数图像与x轴和y轴的交点坐标.(2)当函数值y随x值的增大而减小时,求自变量x的取值范围.【答案】(1)与x轴交点坐标-1,0,3,0,与y轴交点坐标0,3(2)x≤-1或1≤x≤3【分析】(1)分别令y=0和x=0,然后求解,即可获得答案;(2)首先确定该函数图像的对称轴,然后结合图像,即可获得答案.【详解】(1)解:令y=0,即x2-2x-3=0,可得x2-2x-3=0,∴x+1x-3=0,解得x1=-1,x2=3,∴函数图像与x轴的交点坐标为-1,0和3,0,令x=0,则y=x2-2x-3=-3=3,∴函数图像与y轴的交点坐标为0,3;(2)该图像具有对称性,对称轴是直线x=-b=1,2a函数图像与x轴的交点坐标为-1,0,和3,0观察图像可知,当x≤-1或1≤x≤3时,函数值y随x值的增大而减小.【点睛】本题主要考查了二次函数图像与x轴交点、二次函数图像与y轴交点、解一元二方程、二次函数图像与性质等知识,解题关键是运用数形结合的思想分析问题.。

专题31中考热点新定义问题专项训练(原卷版)

专题31中考热点新定义问题专项训练(原卷版)

专题31 中考热点新定义问题专项训练(原卷版)专题诠释:新定义题型是近几年来中考的热点问题。

它常集合数形结合思想,类比思想,转化思想,分类讨论思想,方程思想,函数思想于一体。

常以压轴题身份出现。

本专题精选新定义问题共20条,欢迎使用。

一.选择题1.(2021•河北模拟)对于实数x,y,我们定义符号max{x,y}的意义:当x≥y时,max{x,y}=x,当x<y时,max{x,y}=y.例如max{﹣1,﹣2}=﹣1,max{3,π}=π,则关于x的函数y=max{3x,x+2}的图象为()A.B.C.D.二.填空题2.(2021•深圳模拟)用“●”“□”定义新运算:对于数a,b,都有a●b=a和a□b=b.例如3●2=3,3□2=2,则(2020□2021)●(2021□2020)=.3.(2021•碑林区校级模拟)(正多边形的每个内角都相等)如图,在正八边形ABCDEFGH中,对角线BF 的延长线与边DE的延长线交于点M,则∠M的大小为.4.(2019•福田区三模)对于m,n(n≥m)我们定义运算A n m=n(n﹣1)(n﹣2)(n﹣3)…(n﹣(m﹣1)),A73=7×6×5=210,请你计算A42=.6.(2022秋•魏县期中)若x是不等于1的实数,我们把11−x 称为x的差倒数,如2的差倒数是11−2=−1,﹣1的差倒数为11−(−1)=12,现已知x1=13,x2是x1的差倒数,x3是x2的差倒数,x4是x3的差倒数,…,依此类推,则x2022的值为.三.解答题7.(2021秋•汉阳区期中)对任意一个四位数n,如果千位与十位上的数字之和为9,百位与个位上的数字之和也为9,则称n为“极数”.(1)请任意写出两个“极数”,;(2)猜想任意一个“极数”是否是99的倍数,请说明理由;(3)如果一个正整数a是另一个正整数b的平方,则称正整数a是完全平方数.若四位数m为“极数”,记D(m)=m33,则满足D(m)是完全平方数的所有m的值是.8.(2022秋•胶州市期末)《道德经》中的“道生一,一生二,二生三,三生万物”道出了自然数的特征.在数的学习过程中,我们会对其中一些具有某种特性的数进行研究,如学习自然数时,我们研究了奇数、偶数、质数、合数等.现在我们来研究另一种特殊的自然数——“纯数”.定义:对于自然数n,在计算n+(n+1)+(n+2)时,各数位都不产生进位,则称这个自然数n为“纯数”.例如:32是“纯数”,因为计算32+33+34时,各数位都不产生进位;23不是“纯数”,因为计算23+24+25时,个位产生了进位.(1)判断2022是否是“纯数”?请说明理由;(2)请直接写出2023到2050之间的“纯数”;(3)不大于100的“纯数”的个数为.9.(2021•任城区二模)如果一个三角形有一条边上的高等于这条边的一半,那么我们把这个三角形叫做“半高三角形”.这条高称为“半高”.如图1,对于△ABC,BC边上的高AD等于BC的一半,△ABC就是“半高三角形”.此时,称△ABC是“BC边半高三角形”,AD是“BC边半高”;如图2,对于△EFG,EF边上的高GH等于EF的一半,△EFG就是半高三角形,此时,称△EFG是EF边半高三角形,GH 是“EF边半高”.(1)在Rt△ABC中,∠ACB=90°,AB=10cm,若ABC是“BC边半高三角形”,则AC=cm;(2)若一个三角形既是等腰三角形又是半高三角形,且“半高”长为2cm,则该等腰三角形底边长的所有可能值为.(3)如图3,平面直角坐标系内,直线y=x+2与抛物线y=x2交于R,S两点,点P是抛物线y=x2上的一个动点,点Q是坐标系内一点,且使得△RSQ为“RS边半高三角形”.当点P介于点R与点S之间,且PQ取得最小值时,求点P的坐标.10.(2022春•梁平区期末)在平面直角坐标系中,对于任意两点A(a,b),B(c,d),若点T(x,y)满足x=a+c3,y=b+d3那么称点T是点A,B的融合点.例如:A=(﹣1,8),B=(4,﹣2),当点T(x,y)满足x=−1+43=1,y=8+(−2)3=2时,则点T(1,2)是点A,B的融合点.(1)已知点A(﹣1,5),B(7,7),C(2,4),请说明其中一个点是另外两个点的融合点.(2)如图,点D(3,0),点E(t,2t+3)是直线l:y=2x+3上任意一点,点T(x,y)是点D,E的融合点.①试确定y与x的关系式.②若直线ET交x轴于点H,当∠TDH为直角时,求直线ET的解析式.11.(2019•浙江)如图,在平面直角坐标系中,正方形OABC的边长为4,边OA,OC分别在x轴,y轴的正半轴上,把正方形OABC的内部及边上,横、纵坐标均为整数的点称为好点.点P为抛物线y=﹣(x ﹣m)2+m+2的顶点.(1)当m=0时,求该抛物线下方(包括边界)的好点个数.(2)当m=3时,求该抛物线上的好点坐标.(3)若点P在正方形OABC内部,该抛物线下方(包括边界)恰好存在8个好点,求m的取值范围.12.(2022•亭湖区校级三模)定义:有两个相邻内角互余的四边形称为邻余四边形,这两个角的夹边称为邻余线.(1)如图1,在△ABC中,AB=AC,AD是△ABC的角平分线,E,F分别是BD,AD上的点.求证:四边形ABEF是邻余四边形.(2)如图2,在5×4的方格纸中,A,B在格点上,请画出一个符合条件的邻余四边形ABEF,使AB 是邻余线,E,F在格点上.(3)如图3,在(1)的条件下,取EF中点M,连接DM并延长交AB于点Q,延长EF交AC于点N.若N为AC的中点,DE=4BE,QB=6,求邻余线AB的长.13.(2021•南丰县模拟)如果一个四边形的对角线把四边形分成两个三角形,一个是等边三角形,另一个是该对角线所对的角为60°的三角形,我们把这条对角线叫做这个四边形的理想对角线,这个四边形称为理想四边形.(1)如图1,在Rt△ABC中,∠ACB=90°,∠B=30°,CD⊥AB,E为BC中点,连接DE.求证:四边形ADEC为理想四边形;(2)如图2,△ABD是等边三角形,若BD为理想对角线,为使四边形ABCD为理想四边形,小明同学给出了他的设计图(见设计后的图),其中圆心角∠BOD=120°;请你解释他这样设计的合理性.(3)在(2)的条件下,①若△BCD为直角三角形,BC=3,求AC的长度;②如图3,若CD=x,BC=y,AC=z,请直接写出x,y,z之间的数量关系.14.(2020•朝阳区一模)在平面直角坐标系xOy中,点A(t,0),B(t+2,0),C(n,1),若射线OC上存在点P,使得△ABP是以AB为腰的等腰三角形,就称点P为线段AB关于射线OC的等腰点.(1)如图,t=0,①若n=0,则线段AB关于射线OC的等腰点的坐标是;②若n<0,且线段AB关于射线OC的等腰点的纵坐标小于1,求n的取值范围;(2)若n=√33,且射线OC上只存在一个线段AB关于射线OC的等腰点,则t的取值范围是.15.(2022•房山区模拟)对于平面直角坐标系xOy中的图形W1和图形W2,给出如下定义:在图形W1上存在两点A,B(点A,B可以重合),在图形W2上存在两点M,N(点M,N可以重合)使得AM=2BN,则称图形W1和图形W2满足限距关系.(1)如图1,点C(√3,0),D(0,﹣1),E(0,1),点P在线段CE上运动(点P可以与点C,E重合),连接OP,DP.①线段OP的最小值为,最大值为;线段DP的取值范围是;②在点O,点D中,点与线段DE满足限距关系;(2)在(1)的条件下,如图2,⊙O的半径为1,线段FG与x轴、y轴正半轴分别交于点F,G,且FG∥EC,若线段FG与⊙O满足限距关系,求点F横坐标的取值范围;(3)⊙O的半径为r(r>0),点H,K是⊙O上的两个点,分别以H,K为圆心,2为半径作圆得到⊙H 和⊙K,若对于任意点H,K,⊙H和⊙K都满足限距关系,直接写出r的取值范围.16.(2022•西城区校级模拟)点P (x 1,y 1),Q (x 2,y 2)是平面直角坐标系中不同的两个点,且x 1≠x 2.若存在一个正数k ,使点P ,Q 的坐标满足|y 1﹣y 2|=k |x 1﹣x 2|,则称P ,Q 为一对“限斜点”,k 叫做点P ,Q 的“限斜系数”,记作k (P ,Q ).由定义可知,k (P ,Q )=k (Q ,P ).例:若P (1,0),Q (3,12),有|0−12|=14|1﹣3|,所以点P ,Q 为一对“限斜点”,且“限斜系数”为14. 已知点A (1,0),B (2,0),C (2,﹣2),D (2,12). (1)在点A ,B ,C ,D 中,找出一对“限斜点”: ,它们的“限斜系数”为 ;(2)若存在点E ,使得点E ,A 是一对“限斜点”,点E ,B 也是一对“限斜点”,且它们的“限斜系数”均为1.求点E 的坐标;(3)⊙O 半径为3,点M 为⊙O 上一点,满足MT =1的所有点T ,都与点C 是一对“限斜点”,且都满足k (T ,C )≥1,直接写出点M 的横坐标x M 的取值范围.17.(2020•密云区一模)对于平面直角坐标系xOy 中的任意一点P ,给出如下定义:经过点P 且平行于两坐标轴夹角平分线的直线,叫做点P 的“特征线”.例如:点M (1,3)的特征线是y =x +2和y =﹣x +4;(1)若点D 的其中一条特征线是y =x +1,则在D 1(2,2)、D 2(﹣1,0)、D 3(﹣3,4)三个点中,可能是点D 的点有 ;(2)已知点P (﹣1,2)的平行于第二、四象限夹角平分线的特征线与x 轴相交于点A ,直线y =kx +b (k ≠0)经过点P ,且与x 轴交于点B .若使△BP A 的面积不小于6,求k 的取值范围;(3)已知点C (2,0),T (t ,0),且⊙T 的半径为1.当⊙T 与点C 的特征线存在交点时,直接写出t 的取值范围.18.(2022秋•西城区校级期中)已知函数y=x2+bx+c(x≥2)的图象过点A(2,1),B(5,4).(1)直接写出y=x2+bx+c(x≥2)的解析式;(2)如图,请补全分段函数y={−x2+2x+1(x<2)x2+bx+c(x≥2)的图象(不要求列表).并回答以下问题:①写出此分段函数的一条性质:;②若此分段函数的图象与直线y=m有三个公共点,请结合函数图象直接写出实数m的取值范围;(3)横、纵坐标都是整数的点叫做整点,记(2)中函数的图象与直线y=12x−1围成的封闭区域(不含边界)为“W区域”,请直接写出区域内所有整点的坐标.20.(2021春•丰台区校级月考)在平面直角坐标系xOy中,过⊙T(半径为r)外一点P引它的一条切线,切点为Q,若0<PQ≤2r,则称点P为⊙T的伴随点.(1)当⊙O的半径为1时,①在点A(﹣3,0),B(﹣1,√3),C(2,﹣1)中,⊙O的伴随点是;②点D在直线y=﹣x+3上,且点D是⊙O的伴随点,求点D的横坐标d的取值范围;(2)⊙M的圆心为M(m,0),半径为3,直线y=2x+3与x轴,y轴分别交于点E,F.若线段EF上的所有点都是⊙M的伴随点,直接写出m的取值范围.19.(2020•丰台区校级开学)已知:点P为图形M上任意一点,点Q为图形N上任意一点,若点P与点Q 之间的距离PQ始终满足PQ>0,则称图形M与图形N相离.(1)已知点A(1,2)、B(0,﹣5)、C(2,﹣1)、D(3,4).①与直线y=3x﹣5相离的点是;②若直线y=3x+b与△ABC相离,求b的取值范围;(2)设直线y=x+3、直线y=﹣x+3及直线y=﹣3围成的图形为W,正方形T的对角线长为2,两条对角线分别平行于坐标轴,该正方形对角线的交点坐标为(t,0),直接写出正方形T与图形W相离的t 的取值范围.。

中考数学专题训练:关于二次函数的新定义(附参考答案)

中考数学专题训练:关于二次函数的新定义(附参考答案)

1 / 2中考数学专题训练:关于二次函数的新定义(附参考答案)1.若将抛物线平移,有一个点既在平移前的抛物线上,又在平移后的抛物线上,则称这个点为“平衡点”.现将抛物线C1:y =(x -2)2-4向右平移m(m >0)个单位长度后得到新的抛物线C2,若(4,n)为“平衡点”,则m 的值为( )A .2B .1C .4D .32.新定义:[a ,b ,c]为二次函数y =ax2+bx +c(a ≠0,a ,b ,c 为实数)的“图象数”,如:y =x2-2x +3的“图象数”为[1,-2,3].若“图象数”是[m ,2m +4,2m +4]的二次函数的图象与x 轴只有一个交点,则m 的值为( )A .-2B .14C .-2或2D .23.定义:在平面直角坐标系中,过一点P 分别作坐标轴的垂线,这两条垂线与坐标轴围成一个矩形,若矩形的周长值与面积值相等,则点P 叫做“和谐点”,所围成的矩形叫做“和谐矩形”.已知点P 是抛物线y =x2+k 上的“和谐点”,所围成的“和谐矩形”的面积为16,则k 的值可以是( )A .16B .4C .-12D .-184.定义:我们将顶点的横坐标和纵坐标互为相反数的二次函数称为“互异二次函数”.如图,在正方形OABC 中,点A(0,2),点C(2,0),则互异二次函数y =(x -m)2-m 与正方形OABC 有交点时m 的最大值和最小值分别是( )A .4,-1B .5−√172,-1 C .4,0 D .5+√172,-15.定义:[a ,b ,c]为二次函数y =ax2+bx +c(a ≠0)的特征数,下面给出特征数为[m ,1-m ,2-m]的二次函数的一些结论:①当m =1时,函数图象的对称轴是y 轴;②当m =2时,函数图象过原点;③当m >0时,函数有最小值;④如果m <0,当x >12时,y 随x 的增大而减小.其中所有正确结论的序号是__________.6.定义:在平面直角坐标系中,O 为坐标原点,设点P 的坐标为(x ,y),当x <0时,点P 的变换点P ′的坐标为(-x ,y);当x ≥0时,点P 的变换点P ′的坐标为(-y ,x).抛物线y =(x -2)2+n 与x 轴交于点C ,D(点C 在点D 的左侧),顶点为E ,点P 在该抛物线上.若点P 的变换点P ′在抛物线的对称轴上,且四边形ECP ′D 是菱形,则满足该条件的所有n 值的和为________.7.对某一个函数给出如下定义:若存在实数m >0,对于任意的函数值y ,都满足-m ≤y ≤m ,则称这个函数是有界函数,在所有满足条件的m 中,其最小值称为这个函数的边界值.例如,2 / 2 如图中的函数是有界函数,其边界值是1.将函数y =-x2+1(-2≤x ≤t ,t ≥0)的图象向上平移t 个单位长度,得到的函数的边界值n 满足94≤n ≤52时,则t 的取值范围是________________________.参考答案1.C 2.C3.C 4.D 5.①②③ 6.-13 7.≤t ≤34或54≤t ≤32。

2023北京中考数学备考微专题——二次函数“新定义”学生版

2023北京中考数学备考微专题——二次函数“新定义”学生版

2023北京中考数学备考微专题——二次函数“新定义”1.在平面直角坐标系xOy中,已知一条开口向上的抛物线,连接此抛物线上关于对称轴对称的两点A,B(A点在B点左侧),以AB为直径作⊙M.取线段AB下方的抛物线部分和线段AB上方的圆弧部分(含端点A,B),组成一个封闭图形,我们称这种图形为“抛物圆”,其中线段AB叫做“横径”,线段AB的垂直平分线被“抛物圆”截得的线段叫做“纵径”,规定“纵径”长度和“横径”长度的比值叫做此“抛物圆”的“扁度”.(1)已知抛物线y=x2.①若点A横坐标为﹣2,则得到的“抛物圆”的“横径”长为,“纵径”长为;②若点A横坐标为t,用t表示此“抛物圆”的“纵径”长,并求出当它的“扁度”为2时t的值;(2)已知抛物线y=x2﹣2ax+a2+a,若点A在直线y=﹣4ax+a上,求“抛物圆”的“扁度”不超过3时a的取值范围.2.在平面直角坐标系xOy中,已知四边形OABC是平行四边形,点A(4,0),∠AOC=60°,点C的纵坐标为,点D是边BC上一点,连接OD,将线段OD绕点O逆时针旋转60°得到线段OE.给出如下定义:如果抛物线y=ax2+bx(a≠0)同时经过点A,E,则称抛物线y=ax2+bx(a≠0)为关于点A,E的“伴随抛物线”.(1)如图1,当点D与点C重合时,点E的坐标为,此时关于点A,E的“伴随抛物线”的解析式为;(2)如图2,当点D在边BC上运动时,连接CE.①当CE取最小值时,求关于点A,E的“伴随抛物线”的解析式;②若关于点A,E的“伴随抛物线”y=ax2+bx(a≠0)存在,直接写出a的取值范围.3.定义:若两个函数的图象关于某一点Q中心对称,则称这两个函数关于点Q互为“对称函数”.例如,函数y=x2与y=﹣x2关于原点O互为“对称函数”.(1)函数y=﹣x+1关于原点O的“对称函数”的函数解析式为,函数y=(x ﹣2)2﹣1关于原点O的“对称函数”的函数解析式为;(2)已知函数y=x2﹣2x与函数G关于点Q(0,1)互为“对称函数”,若函数y=x2﹣2x与函数G的函数值y都随自变量x的增大而减小,求x的取值范围;(3)已知点A(0,1),点B(4,1),点C(2,0),二次函数y=ax2﹣2ax﹣3a(a>0),与函数N关于点C互为“对称函数”,将二次函数y=ax2﹣2ax﹣3a(a>0)与函数N的图象组成的图形记为W,若图形W与线段AB恰有2个公共点,直接写出a的取值范围.4.对某一个函数给出如下定义:如果存在实数M,对于任意的函数值y,都满足y≤M,那么称这个函数是有上界函数.在所有满足条件的M中,其最小值称为这个函数的上确界.例如,图中的函数y=﹣(x﹣3)2+2是有上界函数,其上确界是2.(1)函数①y=x2+2x+1和②y=2x﹣3(x≤2)中是有上界函数的为(只填序号即可),其上确界为;(2)如果函数y=﹣x+2(a≤x≤b,b>a)的上确界是b,且这个函数的最小值不超过2a+1,求a的取值范围;(3)如果函数y=x2﹣2ax+2(1≤x≤5)是以3为上确界的有上界函数,求实数a的值.5.定义:如果抛物线C1的顶点在抛物线C2上,同时,抛物线C2的顶点在抛物线C1上,则称抛物线C1与C2关联.例如,如图,抛物线y=x2的顶点(0,0)在抛物线y=﹣x2+2x 上,抛物线y=﹣x2+2x的顶点(1,1)也在抛物线y=x2上,所以抛物线y=x2与y=﹣x2+2x关联.(1)已知抛物线C1:y=(x+1)2﹣2,分别判断抛物线C2:y=﹣x2+2x+1和抛物线C3:y=2x2+2x+1与抛物线C1是否关联;(2)抛物线M1:的顶点为A,动点P的坐标为(t,2),将抛物线M1绕点P(t,2)旋转180°得到抛物线M2,若抛物线M1与M2关联,求抛物线M2的解析式;(3)抛物线M1:的顶点为A,点B是与M1关联的抛物线的顶点,将线段AB绕点A按顺时针方向旋转90°得到线段AB1,若点B1恰好在y轴上,请直接写出点B1的纵坐标.6.定义:若点P(a,b)在函数y=的图象上,将以a为二次项系数,b为一次项系数构造的二次函数y=ax2+bx称为函数y=的一个“二次派生函数”.(1)点(2,)在函数y=的图象上,则它的“二次派生函数”是;(2)若“二次派生函数”y=ax2+bx经过点(1,2),求a,b的值;(3)若函数y=ax+b是函数y=的一个“一次派生函数”,在平面直角坐标系xOy中,同时画出“一次派生函数”y=ax+b和“二次派生函数”y=ax2+bx的图象,当﹣4<x<1时,“一次派生函数”始终大于“二次派生函数”,求点P的坐标.。

专题05新定义问题中考题型训练(原卷版)

专题05新定义问题中考题型训练(原卷版)

专题5 新定义问题中考题型训练1.(2022•娄底)若10x=N,则称x是以10为底N的对数.记作:x=lgN.例如:102=100,则2=lg100;100=1,则0=lg1.对数运算满足:当M>0,N>0时,lgM+lgN=lg(MN).例如:lg3+lg5=lg15,则(lg5)2+lg5×lg2+lg2的值为()A.5B.2C.1D.02.(2022•重庆)在多项式x﹣y﹣z﹣m﹣n中任意加括号,加括号后仍只有减法运算,然后按给出的运算顺序重新运算,称此为“加算操作”.例如:(x﹣y)﹣(z﹣m﹣n)=x﹣y﹣z+m+n,x﹣y﹣(z﹣m)﹣n =x﹣y﹣z+m﹣n,….下列说法:①至少存在一种“加算操作”,使其运算结果与原多项式相等;②不存在任何“加算操作”,使其运算结果与原多项式之和为0;③所有可能的“加算操作”共有8种不同运算结果.其中正确的个数是()A.0B.1C.2D.33.(2022•常德)我们发现:=3,=3,=3,…,=3,一般地,对于正整数a,b,如果满足=a时,称(a,b)为一组完美方根数对.如上面(3,6)是一组完美方根数对,则下面4个结论:①(4,12)是完美方根数对;②(9,91)是完美方根数对;③若(a,380)是完美方根数对,则a=20;④若(x,y)是完美方根数对,则点P(x,y)在抛物线y=x2﹣x上,其中正确的结论有()A.1个B.2个C.3个D.4个4.(2022•南通)定义:函数图象上到两坐标轴的距离都不大于n(n≥0)的点叫做这个函数图象的“n阶方点”.例如,点(,)是函数y=x图象的“阶方点”;点(2,1)是函数y=图象的“2阶方点”.(1)在①(﹣2,﹣);②(﹣1,﹣1);③(1,1)三点中,是反比例函数y=图象的“1阶方点”的有(填序号);(2)若y关于x的一次函数y=ax﹣3a+1图象的“2阶方点”有且只有一个,求a的值;(3)若y关于x的二次函数y=﹣(x﹣n)2﹣2n+1图象的“n阶方点”一定存在,请直接写出n的取值范围.5.(2022•安顺)在平面直角坐标系中,如果点P的横坐标和纵坐标相等,则称点P为和谐点.例如:点(1,1),(,),(﹣,﹣),……都是和谐点.(1)判断函数y=2x+1的图象上是否存在和谐点,若存在,求出其和谐点的坐标;(2)若二次函数y=ax2+6x+c(a≠0)的图象上有且只有一个和谐点(,).①求a,c的值;②若1≤x≤m时,函数y=ax2+6x+c+(a≠0)的最小值为﹣1,最大值为3,求实数m的取值范围.6.(2022•遵义)新定义:我们把抛物线y=ax2+bx+c(其中ab≠0)与抛物线y=bx2+ax+c称为“关联抛物线”.例如:抛物线y=2x2+3x+1的“关联抛物线”为:y=3x2+2x+1.已知抛物线C1:y=4ax2+ax+4a﹣3(a≠0)的“关联抛物线”为C2.(1)写出C2的解析式(用含a的式子表示)及顶点坐标;(2)若a>0,过x轴上一点P,作x轴的垂线分别交抛物线C1,C2于点M,N.①当MN=6a时,求点P的坐标;②当a﹣4≤x≤a﹣2时,C2的最大值与最小值的差为2a,求a的值.7.(2022•重庆)对于一个各数位上的数字均不为0的三位自然数N,若N能被它的各数位上的数字之和m 整除,则称N是m的“和倍数”.例如:∵247÷(2+4+7)=247÷13=19,∴247是13的“和倍数”.又如:∵214÷(2+1+4)=214÷7=30……4,∴214不是“和倍数”.(1)判断357,441是否是“和倍数”?说明理由;(2)三位数A是12的“和倍数”,a,b,c分别是数A其中一个数位上的数字,且a>b>c.在a,b,c中任选两个组成两位数,其中最大的两位数记为F(A),最小的两位数记为G(A),若为整数,求出满足条件的所有数A.8.(2022•长沙)若关于x的函数y,当t﹣≤x≤t+时,函数y的最大值为M,最小值为N,令函数h=,我们不妨把函数h称之为函数y的“共同体函数”.(1)①若函数y=4044x,当t=1时,求函数y的“共同体函数”h的值;②若函数y=kx+b(k≠0,k,b为常数),求函数y的“共同体函数”h的解析式;(2)若函数y=(x≥1),求函数y的“共同体函数”h的最大值;(3)若函数y=﹣x2+4x+k,是否存在实数k,使得函数y的最大值等于函数y的“共同体函数“h的最小值.若存在,求出k的值;若不存在,请说明理由.9.(2022•湘西州)定义:由两条与x轴有着相同的交点,并且开口方向相同的抛物线所围成的封闭曲线称为“月牙线”,如图①,抛物线C1:y=x2+2x﹣3与抛物线C2:y=ax2+2ax+c组成一个开口向上的“月牙线”,抛物线C1和抛物线C2与x轴有着相同的交点A(﹣3,0)、B(点B在点A右侧),与y轴的交点分别为G、H(0,﹣1).(1)求抛物线C2的解析式和点G的坐标.(2)点M是x轴下方抛物线C1上的点,过点M作MN⊥x轴于点N,交抛物线C2于点D,求线段MN 与线段DM的长度的比值.(3)如图②,点E是点H关于抛物线对称轴的对称点,连接EG,在x轴上是否存在点F,使得△EFG 是以EG为腰的等腰三角形?若存在,请求出点F的坐标;若不存在,请说明理由.10.(2022•德州)教材呈现以下是人教版八年级上册数学教材第53页的部分内容.如图,四边形ABCD中,AD=CD,AB=CB.我们把这种两组邻边分别相等的四边形叫做“筝形”.概念理解(1)根据上面教材的内容,请写出“筝形”的一条性质:;(2)如图1,在△ABC中,AD⊥BC,垂足为D,△EAB与△DAB关于AB所在的直线对称,△F AC与△DAC关于AC所在的直线对称,延长EB,FC相交于点G.请写出图中的“筝形”:;(写出一个即可)应用拓展(3)如图2,在(2)的条件下,连接EF,分别交AB,AC于点M,H,连接BH.①求证:∠BAC=∠FEG;②求证:∠AHB=90°.1.(2023•叙州区校级模拟)新定义:[a,b,c]为二次函数y=ax2+bx+c(a≠0,a,b,c为实数)的“图象数”,如:y=x2﹣2x+3的“图象数”为[1,﹣2,3],若“图象数”是[m,2m+4,2m+4]的二次函数的图象与x轴只有一个交点,则m的值为()A.﹣2B.C.﹣2或2D.22.(2023•苏州模拟)定义:如果三角形的一个内角是另一个内角的2倍,那么称这个三角形为“倍角三角形”.若△ABC是“倍角三角形”,∠A=90°,BC=4,则△ABC的面积为.3.(2022•西湖区一模)已知y1,y2均为关于x的函数,当x=a时,函数值分别为A1,A2,若对于实数a,当0<a<1时,都有﹣1<A1﹣A2<1,则称y1,y2为亲函数,则以下函数y1和y2是亲函数的是()A.y1=x2+1,y2=B.y1=x2+1,y2=2x﹣1C.y1=x2﹣1,y2=D.y1=x2﹣1,y2=2x﹣14.(2022•平桂区一模)在数的学习过程中,我们总会对其中一些具有某种特性的数充满好奇,如学习自然数时,我们发现一种特殊的自然数——“好数”.定义:对于三位自然数n,各位数字都不为0,且百位数字与十位数字之和恰好能被个位数字整除,则称这个自然数n为“好数”.例如:426是“好数”,因为4,2,6都不为0,且4+2=6,6能被6整除;643不是“好数”,因为6+4=10,10不能被3整除.则百位数字比十位数字大5的所有“好数”的个数是()A.8B.7C.6D.55.(2022•威县校级模拟)如图,在平面直角坐标系中,矩形OABC的顶点坐标分别为A(8,0),C(0,6).把横,纵坐标均为偶数的点称为偶点.(1)矩形OABC(不包含边界)内的偶点的个数为.(2)若双曲线L:y=上(x>0)将矩形OABC(不包含边界)内的偶点平均分布在其两侧,则k的整数值有个.6.(2022•宁波模拟)在平面直角坐标系xOy中,对于点P(a,b),若点P′的坐标为(ka+b,a+)(其中k为常数且k≠0),则称点P′为点P的“k关联点”.已知点A在反比例函数y=的图象上运动,且点A是点B的“关联点”,当线段OB最短时,点B的坐标为.7.(2022•天府新区模拟)给定一个矩形,如果存在另一个矩形,它的周长和面积分别是已知矩形的周长和面积的2倍,则我们称这个矩形是给定矩形的“加倍矩形”,当已知矩形的长和宽分别为3和1时,其“加倍矩形”的对角线长为.8.(2022•武侯区校级模拟)对于给定△ABC内(包含边界)的点P,若点P到△ABC其中两边的距离相等,我们称点P为△ABC的“等距点”,这段距离的最大值称为△ABC的“特征距离”.如图,在平面直角坐标系xOy中,已知点A(6,0),动点M(m,3),连接OM,AM.则△OAM的“特征距离”的最大值为.9.(2022•金牛区模拟)射线AB绕点A逆时针旋转a°,射线BA绕点B顺时针旋转b°,0°<a<90°,0°<b<90°,旋转后的两条射线交点为C,如果将逆时针方向旋转记为“+”,顺时针方向旋转记为“﹣”,则称(a,﹣b)为点C关于线段AB的“双角坐标”,如图1,已知△ABC,点C关于线段AB的“双角坐标”为(50,﹣60),点C关于线段BA的“双角坐标”为(﹣60,50).如图2,直线AB:y=x+交x轴、y轴于点A、B,若点D关于线段AB的“双角坐标”为(﹣m,n),y轴上一点E关于线段AB 的“双角坐标”为(﹣n,m),AE与BD交点为F,若△ADE与△ADF相似,则点F在该平面直角坐标系内的坐标是.10.(2022•长沙县校级三模)约定:若三角形一边上的中线将三角形分得的两个小三角形中有一个三角形与原三角形相似,我们则称原三角形为关于该边的“优美三角形”.例如:如图1,在△ABC中,AD为边BC上的中线,△ABD与△ABC相似,那么称△ABC为关于边BC的“优美三角形”.(1)如图2,在△ABC中,BC=AB,求证:△ABC为关于边BC的“优美三角形”;(2)如图3,已知△ABC为关于边BC的“优美三角形”,点D是△ABC边BC的中点,以BD为直径的⊙O恰好经过点A.①求证:直线CA与⊙O相切;②若⊙O的直径为2,求线段AB的长;(3)已知三角形ABC为关于边BC的“优美三角形”,BC=4,∠B=30°,求△ABC的面积.11.(2023•定远县校级一模)定义:我们知道,四边形的一条对角线把这个四边形分成了两个三角形,如果这两个三角形相似(不全等),我们就把这条对角线叫做这个四边形的“相似对角线”.(1)如图1,△ABC的三个顶点均在正方形网格中的格点上,若四边形ABCD是以AC为“相似对角线”的四边形,请只用无刻度的直尺,就可以在网格中画出点D,请你在图1中找出满足条件的点D,保留画图痕迹(找出2个即可)(2)①如图2,在四边形ABCD中,∠DAB=90°,∠DCB=135°,对角线AC平分∠DAB.请问AC 是四边形ABCD的“相似对角线”吗?请说明理由;②若AC=,求AD•AB的值.(3)如图3,在(2)的条件下,若∠D=∠ACB=90°时,将△ADC以A为位似中心,位似比为:缩小得到△AEF,连接CE、BF,在△AEF绕点A旋转的过程中,当CE所在的直线垂直于AF时,请你直接写出BF的长.12.(2022•开福区校级一模)我们不妨定义:有两边之比为1:的三角形叫敬“勤业三角形”.(1)下列各三角形中,一定是“勤业三角形”的是;(填序号)①等边三角形;②等腰直角三角形;③含30°角的直角三角形;④含120°角的等腰三角形.(2)如图1,△ABC是⊙O的内接三角形,AC为直径,D为AB上一点,且BD=2AD,作DE⊥OA,交线段OA于点F,交⊙O于点E,连接BE交AC于点G.试判断△AED和△ABE是否是“勤业三角形”?如果是,请给出证明,并求出的值;如果不是,请说明理由;(3)如图2,在(2)的条件下,当AF:FG=2:3时,求∠BED的余弦值.。

2024中考数学新定义及探究题专题 《二次函数及新定义》 (含解析)

2024中考数学新定义及探究题专题 《二次函数及新定义》 (含解析)

2024中考数学新定义及探究题专题《二次函数及新定义》(学生版)【类型1二次函数问题中的新定义问题】1.(2023春·山东济南·九年级统考期末)新定义:若一个点的纵坐标是横坐标的2倍,则称这个点为二倍点.若二次函数(c为常数)在的图象上存在两个二倍点,则c的取值范围是()A.B.C.D.2.(2023春·湖北咸宁·九年级统考期中)定义:我们将顶点的横坐标和纵坐标互为相反数的二次函数称为“互异二次函数”.若互异二次函数的对称轴为直线x=1且图象经过点(﹣1,0),则这个互异二次函数的二次项系数是()A.B.C.1D.﹣13.(2023春·广西南宁·九年级统考期中)新定义:在平面直角坐标系中,对于点P(m,n)和点P′(m,n′),若满足m≥0时,n′=n-4;m<0时,n′=-n,则称点P′(m,n′)是点P(m,n)的限变点.例如:点P1(2,5)的限变点是P1′(2,1),点P2(-2,3)的限变点是P2′(-2,-3).若点P(m,n)在二次函数y=-x2+4x+2的图象上,则当-1≤m≤3时,其限变点P′的纵坐标n'的取值范围是()A.B.C.D.4.(2023春·湖南长沙·九年级长沙市开福区青竹湖湘一外国语学校校考期末)定义:我们不妨把纵坐标是横坐标2倍的点称为“青竹点”.例如:点、……都是“青竹点”.显然,函数的图象上有两个“青竹点”:和.(1)下列函数中,函数图象上存在“青竹点”的,请在横线上打“√”,不存在“青竹点”的,请打“×”.①________;②________;③________.(2)若抛物线(m为常数)上存在两个不同的“青竹点”,求m的取值范围;(3)若函数的图象上存在唯一的一个“青竹点”,且当时,a的最小值为c,求c的值.5.(2023春·江苏泰州·九年级统考期中)定义:两个二次项系数之和为,对称轴相同,且图像与轴交点也相同的二次函数互为友好同轴二次函数.例如:的友好同轴二次函数为.(1)函数的友好同轴二次函数为.(2)当时,函数的友好同轴二次函数有最大值为,求的值.(3)已知点分别在二次函数及其友好同轴二次函数的图像上,比较的大小,并说明理由.6.(2023春·浙江金华·九年级校考期中)定义:若抛物线y=ax2+bx+c与x轴两交点间的距离为4,称此抛物线为定弦抛物线.(1)判断抛物线y=x2+2x﹣3是否是定弦抛物线,请说明理由;(2)当一定弦抛物线的对称轴为直线x=1,且它的图像与坐标轴的交点间的连线所围成的图形是直角三角形,求该抛物线的表达式;(3)若定弦抛物线y=x2+bx+c(b<0)与x轴交于A、B两点(A在B左边),当2≤x≤4时,该抛物线的最大值与最小值之差等于OB之间的距离,求b的值.7.(2023春·浙江·九年级期末)定义:若抛物线与抛物线.同时满足且,则称这两条抛物线是一对“共轭抛物线”.(1)已知抛物线与是一对共轭抛物线,求的解析式;(2)如图1,将一副边长为的正方形七巧板拼成图2的形式,若以BC中点为原点,直线BC为x轴建立平面直角坐标系,设经过点A,E,D的抛物线为,经过A、B、C的抛物线为,请立接写出、的解析式并判断它们是否为一对共轭抛物线.8.(2023春·湖南长沙·九年级校联考期末)定义:如果抛物线与轴交于点,,那么我们把线段叫做雅礼弦,两点之间的距离称为抛物线的雅礼弦长.(1)求抛物线的雅礼弦长;(2)求抛物线的雅礼弦长的取值范围;(3)设,为正整数,且,抛物线的雅礼弦长为,抛物线的雅礼弦长为,,试求出与之间的函数关系式,若不论为何值,恒成立,求,的值.9.(2023春·河南濮阳·九年级统考期中)小明在课外学习时遇到这样一个问题:定义:如果二次函数y=a1x2+b1x+c1(a1≠0)与y=a2x2+b2x+c2(a2≠0)满足a1+a2=0,b1=b2,c1+c2=0,则称这两个函数互为“旋转函数”.求函数y=x2-3x-2的“旋转函数”.小明是这样思考的:由函数y=x2-3x-2可知,a1=1,b1=-3,c1=-2,根据a1+a2=0,b1=b2,c1+c2=0,求出a2,b2,c2,就能确定这个函数的“旋转函数”.请参考小明的方法解决下面问题:(1)直接写出函数y=x2-3x-2的“旋转函数”;(2)若函数与y=x2-2nx+n互为“旋转函数”,求(m+n)2020的值;(3)已知函数的图象与x轴交于点A、B两点(A在B的左边),与y轴交于点C,点A、B、C关于原点的对称点分别是A1,B1,C1,试证明经过点A1,B1,C1的二次函数与函数互为“旋转函数”10.(2023春·山西大同·九年级统考期中)请阅读下列材料,并完成相应的任务:定义:我们把自变量为的二次函数与(,)称为一对“亲密函数”,如的“亲密函数”是.任务:(1)写出二次函数的“亲密函数”:______;(2)二次函数的图像与轴交点的横坐标为1和,它的“亲密函数”的图像与轴交点的横坐标为______,猜想二次函数()的图像与轴交点的横坐标与其“亲密函数”的图像与轴交点的横坐标之间的关系是______;(3)二次函数的图像与轴交点的横坐标为1和,请利用(2)中的结论直接写出二次函数的图像与轴交点的横坐标.【类型2二次函数与一次函数综合问题中的新定义问题】1.(2023春·九年级课时练习)定义:由a,b构造的二次函数叫做一次函数y=ax+b的“滋生函数”,一次函数y=ax+b叫做二次函数的“本源函数”(a,b为常数,且).若一次函数y=ax+b的“滋生函数”是,那么二次函数的“本源函数”是.2.(2023春·浙江湖州·九年级统考期中)定义:如果函数图象上存在横、纵坐标相等的点,则称该点为函数的不动点.例如,点是函数的不动点.已知二次函数(是实数).(1)若点是该二次函数的一个不动点,求的值;(2)若该二次函数始终存在不动点,求的取值范围.3.(2023·安徽·模拟预测)已知函数与函数,定义“和函数”.(1)若,则“和函数”;(2)若“和函数”为,则,;(3)若该“和函数”的顶点在直线上,求.4.(2023·北京·模拟预测)城市的许多街道是相互垂直或平行的,因此,往往不能沿直线行走到达目的地,只能按直角拐弯的方式行走.可以按照街道的垂直和平行方向建立平面直角坐标系,对两点和,用以下方式定义两点间距离:.(1)①已知点,则______.②函数的图象如图①所示,是图象上一点,,求点的坐标.(2)函数的图象如图②所示,是图象上一点,求的最小值及对应的点的坐标.5.(2023春·上海·九年级上海市民办新复兴初级中学校考期中)我们定义【,,】为函数的“特征数”,如:函数的“特征数”是【2,,5】,函数的“特征数”是【0,1,2】(1)若一个函数的“特征数”是【1,,1】,将此函数图像先向左平移2个单位,再向上平移1个单位,得到一个图像对应的函数“特征数”是______;(2)将“特征数”是【0,,】的图像向上平移2个单位,得到一个新函数,这个函数的解析式是______;(3)在(2)中,平移前后的两个函数图像分别与轴交于A、两点,与直线分别交于、两点,在给出的平面直角坐标系中画出图形,并求出以A、、、四点为顶点的四边形的面积;(4)若(3)中的四边形与“特征数”是【1,,】的函数图像有交点,求满足条件的实数的取值范围.6.(2023春·福建龙岩·九年级校考期末)定义:对于给定的两个函数,任取自变量x的一个值,当x<0时,它们对应的函数值互为相反数;当x≥0时,它们对应的函数值相等.我们称这样的两个函数互为相关函数.例如:一次函数,它的相关函数为(1)已知点A(-2,1)在一次函数的相关函数的图象上时,求a的值.(2)已知二次函数.当点B(m,)在这个函数的相关函数的图象上时,求m的值.7.(2023春·江苏南通·九年级统考期末)定义:若图形与图形有且只有两个公共点,则称图形与图形互为“双联图形”,即图形是图形的“双联图形”,图形是图形的“双联图形”.(1)若直线与抛物线互为“双联图形”,且直线不是双曲线的“双联图形”,求实数的取值范围;(2)如图2,已知,,三点.若二次函数的图象与互为“双联图形”,直接写出的取值范围.8.(2023春·北京·九年级北京市第三中学校考期中)定义:在平面直角坐标系中,图形G 上点P(x,y)的纵坐标y与其横坐标x的差y﹣x称为P点的“坐标差”,而图形G上所有点的“坐标差”中的最大值称为图形G的“特征值”.(1)①点A(1,3)的“坐标差”为;②抛物线y=﹣x2+3x+3的“特征值”为;(2)某二次函数y=﹣x2+bx+c(c≠0)的“特征值”为1,点B(m,0)与点C分别是此二次函数的图象与x轴和y轴的交点,且点B与点C的“坐标差”相等.①直接写出m=;(用含c的式子表示)②求b的值.9.(2023春·北京·九年级人大附中校考期中)对某一个函数给出如下定义:若存在实数,对于任意的函数值,都满足,则称这个函数是有界函数,在所有满足条件的中,其最小值称为这个函数的边界值.例如,如图中的函数是有界函数,其边界值是.(1)直接写出有界函数的边界值;(2)已知函数是有界函数,且边界值为3,直接写出的最大值;(3)将函数的图象向下平移个单位,得到的函数的边界值是,直接写出的取值范围,使得.10.(2023春·湖南长沙·九年级校考期中)若定义:若一个函数图像上存在纵坐标是横坐标2倍的点,则把该函数称为“明德函数”,该点称为“明德点”,例如:“明德函数”,其“明德点”为(1,2).(1)①判断:函数__________“明德函数”(填“是”或“不是”);②函数的图像上的明德点是___________;(2)若抛物线上有两个“明德点”,求m的取值范围;(3)若函数的图像上存在唯一的一个“明德点”,且当时,的最小值为,求的值.【类型3二次函数与几何图形综合问题中的新定义问题】1.(2023春·四川绵阳·九年级统考期末)定义:我们将顶点的横坐标和纵坐标互为相反数的二次函数称为“互异二次函数”.如图,在正方形中,点,点,则互异二次函数与正方形有交点时的最大值和最小值分别是()A.4,-1B.,-1C.4,0D.,-1 2.(2023春·山东济南·九年级统考期末)定义:关于x轴对称且对称轴相同的两条抛物线叫作“同轴对称抛物线”.例如:y1=(x﹣1)2﹣2的“同轴对称抛物线”为y2=﹣(x﹣1)2+2.(1)请写出抛物线y1=(x﹣1)2﹣2的顶点坐标;及其“同轴对称抛物线”y2=﹣(x﹣1)2+2的顶点坐标;(2)求抛物线y=﹣2x2+4x+3的“同轴对称抛物线”的解析式.(3)如图,在平面直角坐标系中,点B是抛物线L:y=ax2﹣4ax+1上一点,点B的横坐标为1,过点B作x轴的垂线,交抛物线L的“同轴对称抛物线”于点C,分别作点B、C关于抛物线对称轴对称的点、,连接BC、、、.①当四边形为正方形时,求a的值.②当抛物线L与其“同轴对称抛物线”围成的封闭区域内(不包括边界)共有11个横、纵坐标均为整数的点时,直接写出a的取值范围.3.(2023春·北京门头沟·九年级大峪中学校考期中)定义:对于平面直角坐标系上的点和抛物线,我们称是抛物线的相伴点,抛物线是点的相伴抛物线.如图,已知点,,.(1)点的相伴抛物线的解析式为______;过,两点的抛物线的相伴点坐标为______;(2)设点在直线上运动:①点的相伴抛物线的顶点都在同一条抛物线上,求抛物线的解析式.②当点的相伴抛物线的顶点落在内部时,请直接写出的取值范围.4.(2023春·浙江绍兴·九年级校联考期中)定义:如图1,抛物线与x轴交于A,B两点,点P在该抛物线上(P点与A.B两点不重合),如果△ABP中PA与PB两条边的三边满足其中一边是另一边倍,则称点P为抛物线的“好”点.(1)命题:P(0,3)是抛物线的“好”点.该命题是_____(真或假)命题.(2)如图2,已知抛物线C:与轴交于A,B两点,点P(1,2)是抛物线C的“好”点,求抛物线C的函数表达式.=S△AB P的Q点(异于点P)的(3)在(2)的条件下,点Q在抛物线C上,求满足条件S△ABQ坐标.5.(2023·安徽安庆·九年级统考期末)在平面直角坐标系中,我们定义直线y=ax-a为抛物线y=ax2+bx+c(a、b、c为常数,a≠0)的“梦想直线”;有一个顶点在抛物线上,另有一个顶点在y轴上的三角形为其“梦想三角形”.已知抛物线y=-与其“梦想直线”交于A、B两点(点A在点B的左侧),与x轴负半轴交于点C.(1)填空:该抛物线的“梦想直线”的解析式为______,点A的坐标为______,点B的坐标为______.(2)如图,点M为线段CB上一动点,将△ACM以AM所在直线为对称轴翻折,点C的对称点为N,若△AMN为该抛物线的“梦想三角形”,求点M的坐标.6.(2023春·湖南长沙·九年级统考期中)定义:在线段MN上存在点P、Q将线段MN分为相等的三部分,则称P、Q为线段MN的三等分点.已知一次函数y=﹣x+3的图象与x、y轴分别交于点M、N,且A、C为线段MN的三等分点(点A在点C的左边).(1)直接写出点A、C的坐标;(2)①二次函数的图象恰好经过点O、A、C,试求此二次函数的解析式;②过点A、C分别作AB、CD垂直x轴于B、D两点,在此抛物线O、C之间取一点P(点P不与O、C重合)作PF⊥x轴于点F,PF交OC于点E,是否存在点P使得AP=BE?若存在,求出点P的坐标?若不存在,试说明理由;(3)在(2)的条件下,将△OAB沿AC方向移动到△O'A'B'(点A'在线段AC上,且不与C重合),△O'A'B'与△OCD重叠部分的面积为S,试求当S=时点A'的坐标.7.(2023春·安徽合肥·九年级统考期中)定义:在平面直角坐标系中,图形G上点P(x,y)的纵坐标y与其横坐标x的差y﹣x称为点P的“坐标差”,而图形G上所有点的“坐标差”中的最大值称为图形G的“特征值”.(1)求点A(2,1)的“坐标差”和抛物线y=﹣x2+3x+4的“特征值”.(2)某二次函数=﹣x2+bx+c(c≠0)的“特征值”为﹣1,点B与点C分别是此二次函数的图象与x轴和y轴的交点,且点B与点C的“坐标差”相等,求此二次函数的解析式.(3)如图所示,二次函数y=﹣x2+px+q的图象顶点在“坐标差”为2的一次函数的图象上,四边形DEFO是矩形,点E的坐标为(7,3),点O为坐标原点,点D在x轴上,当二次函数y=﹣x2+px+q的图象与矩形的边有四个交点时,求p的取值范围.8.(2023·浙江杭州·九年级统考期中)新定义:我们把两个面积相等但不全等的三角形叫做偏等积三角形.(1)初步尝试如图1,已知等腰直角△ABC,∠ACB=90°,请将它分成两个三角形,使它们成为偏等积三角形.(2)理解运用如图2,已知△ACD为直角三角形,∠ADC=90°,以AC,AD为边向外作正方向ACFB和正方形ADGE,连接BE,求证:△ACD与△ABE为偏等积三角形.(3)综合探究如图3,二次函数y=x2–x–5的图象与x轴交于A,B两点,与y轴交于点C,在二次函数的图象上是否存在一点D,使△ABC与△ABD是偏等积三角形?若存在,请求出点D的坐标;若不存在,请说明理由.9.(2023春·江西赣州·九年级统考期末)我们给出如下定义:在平面直角坐标系xOy中,如果一条抛物线平移后得到的抛物线经过原抛物线的顶点,那么这条抛物线叫做原抛物线的过顶抛物线.如下图,抛物线F2都是抛物线F1的过顶抛物线,设F1的顶点为A,F2的对称轴分别交F1、F2于点D、B,点C是点A关于直线BD的对称点.(1)如图1,如果抛物线y=x2的过顶抛物线为y=ax2+bx,C(2,0),那么①a=,b=.②如果顺次连接A、B、C、D四点,那么四边形ABCD为()A.平行四边形B.矩形C.菱形D.正方形(2)如图2,抛物线y=ax2+c的过顶抛物线为F2,B(2,c-1).求四边形ABCD的面积.(3)如果抛物线的过顶抛物线是F2,四边形ABCD的面积为,请直接写出点B的坐标.10.(2023春·江西赣州·九年级校考期末)定义:在平面直角坐标系中,抛物线y=a+bx+c (a≠0)与直线y=m交于点A、C(点C在点A右边)将抛物线y=a+bx+c沿直线y=m翻折,翻折前后两抛物线的顶点分别为点B、D.我们将两抛物线之间形成的封闭图形称为惊喜线,四边形ABCD称为惊喜四边形,对角线BD与AC之比称为惊喜度(Degreeofsurprise),记作|D|=.(1)图①是抛物线y=﹣2x﹣3沿直线y=0翻折后得到惊喜线.则点A坐标,点B 坐标,惊喜四边形ABCD属于所学过的哪种特殊平行四边形,|D|为.(2)如果抛物线y=m﹣6m(m>0)沿直线y=m翻折后所得惊喜线的惊喜度为1,求m的值.(3)如果抛物线y=﹣6m沿直线y=m翻折后所得的惊喜线在m﹣1≤x≤m+3时,其最高点的纵坐标为16,求m的值并直接写出惊喜度|D|2024中考数学新定义及探究题专题《二次函数及新定义》(解析版)【类型1二次函数问题中的新定义问题】1.(2023春·山东济南·九年级统考期末)新定义:若一个点的纵坐标是横坐标的2倍,则称这个点为二倍点.若二次函数(c为常数)在的图象上存在两个二倍点,则c的取值范围是()A.B.C.D.【答案】D【分析】由点的纵坐标是横坐标的2倍可得二倍点在直线上,由可得二倍点所在线段的端点坐标,结合图象,通过求抛物线与线段的交点求解.【详解】解:由题意可得二倍点所在直线为,将代入得,将代入得,设,,如图,联立与,得方程,即抛物线与直线有两个交点,,解得,当直线和直线与抛物线交点在点A,上方时,抛物线与线段有两个交点,把代入,得,把代入得,,解得,.故选D.【点睛】本题考查二次函数图象与正比例函数图象的交点问题,解题关键掌握函数与方程及不等式的关系,将代数问题转化为图形问题求解.2.(2023春·湖北咸宁·九年级统考期中)定义:我们将顶点的横坐标和纵坐标互为相反数的二次函数称为“互异二次函数”.若互异二次函数的对称轴为直线x=1且图象经过点(﹣1,0),则这个互异二次函数的二次项系数是()A.B.C.1D.﹣1【答案】B【分析】根据函数的对称轴和互异二次函数的特点计算即可;【详解】由题可知:此函数的横坐标与纵坐标互为相反数,且对称轴为直线x=1且图象经过点(﹣1,0),设此函数为,∴,解得:,∴此函数的二次项系数为;故选B.【点睛】本题主要考查了二次函数的性质,准确计算是解题的关键.3.(2023春·广西南宁·九年级统考期中)新定义:在平面直角坐标系中,对于点P(m,n)和点P′(m,n′),若满足m≥0时,n′=n-4;m<0时,n′=-n,则称点P′(m,n′)是点P(m,n)的限变点.例如:点P1(2,5)的限变点是P1′(2,1),点P2(-2,3)的限变点是P2′(-2,-3).若点P(m,n)在二次函数y=-x2+4x+2的图象上,则当-1≤m≤3时,其限变点P′的纵坐标n'的取值范围是()A.B.C.D.【答案】D【分析】根据新定义得到当m≥0时,n′=-m2+4m+2-4=-(m-2)2+2,在0≤m≤3时,得到-2≤n′≤2;当m<0时,n′=m2-4m-2=(m-2)2-6,在-1≤m<0时,得到-2≤n′≤3,即可得到限变点P′的纵坐标n'的取值范围是-2≤n′≤3.【详解】解:由题意可知,当m≥0时,n′=-m2+4m+2-4=-(m-2)2+2,∴当0≤m≤3时,-2≤n′≤2,当m<0时,n′=m2-4m-2=(m-2)2-6,∴当-1≤m<0时,-2<n′≤3,综上,当-1≤m≤3时,其限变点P′的纵坐标n'的取值范围是-2≤n′≤3,故选:D.【点睛】本题主要考查了二次函数图象上点的坐标特征,解题的关键是根据限变点的定义得到n′关于m的函数.4.(2023春·湖南长沙·九年级长沙市开福区青竹湖湘一外国语学校校考期末)定义:我们不妨把纵坐标是横坐标2倍的点称为“青竹点”.例如:点、……都是“青竹点”.显然,函数的图象上有两个“青竹点”:和.(1)下列函数中,函数图象上存在“青竹点”的,请在横线上打“√”,不存在“青竹点”的,请打“×”.①________;②________;③________.(2)若抛物线(m为常数)上存在两个不同的“青竹点”,求m的取值范围;(3)若函数的图象上存在唯一的一个“青竹点”,且当时,a的最小值为c,求c的值.【答案】(1)×;√;×(2)(3)【分析】(1)根据“青一函数”的定义直接判断即可;(2)根据题意得出关于的一元二次方程,再根据根的判别式得出关于m的不等式,即可求解;(3)根据题意得出关于的一元二次方程,再根据根的判别式得出关于a的二次函数,利用二次函数最值求解即可.【详解】(1)解:①令,方程无解,∴函数图像上不存在“青竹点”,故答案为:×;②令,解得:,,∴函数图像上存在“青竹点”和,故答案为:√;③令,方程无解,∴函数图像上不存在“青竹点”,故答案为:×;(2)解:由题意得,整理,得,∵抛物线(m为常数)上存在两个不同的“青竹点”,∴,解得;(3)解:由题意得整理,得∵函数的图像上存在唯一的一个“青竹点”,∴整理,得∴当时,a的最小值为,∵当时,a的最小值为c,∴∴,【点睛】本题属于函数背景下新定义问题,主要考查二次函数的性质,二次函数与一元二次方程的关系,解题关键是掌握二次函数图象与系数的关系,掌握二次函数与方程的关系,一元二次方程根的判别式.5.(2023春·江苏泰州·九年级统考期中)定义:两个二次项系数之和为,对称轴相同,且图像与轴交点也相同的二次函数互为友好同轴二次函数.例如:的友好同轴二次函数为.(1)函数的友好同轴二次函数为.(2)当时,函数的友好同轴二次函数有最大值为,求的值.(3)已知点分别在二次函数及其友好同轴二次函数的图像上,比较的大小,并说明理由.【答案】(1);(2);(3)当时,;当时,;当时,【分析】(1)根据友好同轴二次函数的定义,找出的友好同轴二次函数即可;(2)根据友好同轴二次函数的定义,找出的友好同轴二次函数,判断函数图像开口方向,利用函数的对称轴和自变量范围进行最大值讨论;(3)先根据友好同轴二次函数的定义,找出的友好同轴二次函数,再把两点代入,作差后比较大小,为含参数的二次不等式,求解的范围即可.【详解】(1)设友好同轴二次函数为,由函数可知,对称轴为直线,与轴交点为,,,对称轴为直线,,友好同轴二次函数为;(2)由函数可求得,该函数的友好同轴二次函数为;①当时,时,,解得:;②当时,时,,解得:;综上所述,;(3)由函数可求得,该函数的友好同轴二次函数为,把分别代入可得,,,则,,,①当时,,即,,解得:;②当时,,即,,解得:;③当时,,即,,解得:;综上所述,当时,;当时,;当时,.【点睛】本题考查二次函数的性质以及新定义问题,掌握二次函数的基本性质以及研究手段,准确根据题意求出符合要求的友好同轴二次函数是解题关键.6.(2023春·浙江金华·九年级校考期中)定义:若抛物线y=ax2+bx+c与x轴两交点间的距离为4,称此抛物线为定弦抛物线.(1)判断抛物线y=x2+2x﹣3是否是定弦抛物线,请说明理由;(2)当一定弦抛物线的对称轴为直线x=1,且它的图像与坐标轴的交点间的连线所围成的图形是直角三角形,求该抛物线的表达式;(3)若定弦抛物线y=x2+bx+c(b<0)与x轴交于A、B两点(A在B左边),当2≤x≤4时,该抛物线的最大值与最小值之差等于OB之间的距离,求b的值.【答案】(1)是定弦抛物线,理由见解析(2)或(3)b=﹣4或【分析】(1)令y=0,求出与x轴的交点坐标,可判断;(2)分开口向上向下讨论,利用定弦抛物线的定义和对称轴可求出与x轴交点坐标,用相似求出与y轴交点坐标,代入可得答案;(3)根据对称轴和所给范围分情况讨论即可.【详解】(1)解:当y=0时,x2+2x﹣3=0,解得:x1=1,x2=﹣3,则|x1-x2|=4,即该抛物线是定弦抛物线;(2):当该抛物线开口向下时,如图所示.∵该定弦抛物线的对称轴为直线x=1,设则解得:∴C(﹣1,0),D(3,0),∵△CED为直角三角形∴由题意可得∠CED=90°,∵EO⊥CD,∴△CEO∽△EDO,∴OE2=OC·OD=3,∴E(0,)设该定弦抛物线表达式为,把E(0,)代入求得∴该定弦抛物线表达式为,当该抛物线开口向上时,同理可得该定弦抛物线表达式为,∴综上所述,该定弦抛物线表达式为或;(3)解:若≤2,则在2≤x≤4中,当x=4时该定弦抛物线取最大值,当x=2时该定弦抛物线取最小值.∴l6+4b+c-(4+2b+c)=+2,解得:b=﹣4,∵≤2,∴b≥﹣4,即b=﹣4,若≤3,则在2≤x≤4中,当x=4时该定弦抛物线取最大值,当x=时该定弦抛物线取最小值.∴16+4b+c﹣=+2,解得:b1=﹣4,b2=﹣14,∵2≤≤3,∴﹣6≤b≤﹣4,∴b1=﹣4,b2=﹣14(舍去),若≤4,则在2≤x≤4中,当x=2时该定弦抛物线取最大值,当x=时该定弦抛物线取最小值.∴4+2b+c﹣=+2,解得:b=﹣5,∵≤4,∴﹣8≤b<﹣6,∴b=﹣5不合题意,舍去,若>4,则在2≤x≤4中,当x=2时该定弦抛物线取最大值,当x=4时该定弦抛物线取最小值.∴4+2b+c-(16+4b+c)=+2,解得:b=-,∵>4,∴b<﹣8,∴b=﹣,∴综上所述b=﹣4或.【点睛】本题考查了二次函数的综合性质,包括与x轴交点问题,最值问题,以及和相似的结合,准确地理解定弦抛物线的定义以及分类讨论是解决本题的关键.7.(2023春·浙江·九年级期末)定义:若抛物线与抛物线.同时满足且,则称这两条抛物线是一对“共轭抛物线”.(1)已知抛物线与是一对共轭抛物线,求的解析式;(2)如图1,将一副边长为的正方形七巧板拼成图2的形式,若以BC中点为原点,直线BC为x轴建立平面直角坐标系,设经过点A,E,D的抛物线为,经过A、B、C的抛物线为,请立接写出、的解析式并判断它们是否为一对共轭抛物线.【答案】(1)(2),,、是一对共轭抛物线【分析】(1)将化作顶点式,可求出,和的值,根据“共轭抛物线”的定义可求出,和的值,进而求出的解析式;(2)根据七巧板各个图形之间的关系可求出各个图形的边长,进而可表示点,,,,的坐标,分别求出和的解析式,再根据“共轭抛物线”的定义可求解.【详解】(1)解:,∴,,,∵抛物线与是一对共轭抛物线,∴,且,.(2)解:如图,由题意得,,则,,,,,∵点为的中点,∴,∴,,,,,∴可设抛物线,与抛物线,∴,,解得:,,∴抛物线,抛物线,∴,,,,,,∵,,∴满足且,∴、是一对共轭抛物线.【点睛】本题属于二次函数的新定义类问题,主要考查利用待定系数法求函数表达式,二次函数的顶点式,一般式及交点式三种方式的变换,熟知相关运算是解题关键.8.(2023春·湖南长沙·九年级校联考期末)定义:如果抛物线与轴交于点,,那么我们把线段叫做雅礼弦,两点之间的距离称为抛物线。

新定义函数-中考新题型

新定义函数-中考新题型

3的实数b的取值范围.变式如果二次函数的二次项系数为l,则此二次函数可表示为y=x2+px+q,我们称[p,q]为此函数的特征数,如函数y=x2+2x+3的特征数是[2,3].(1)若一个函数的特征数为[-2,1],求此函数图象的顶点坐标.(2)探究下列问题:①若一个函数的特征数为[4,-1],将此函数的图象先向右平移1个单位,再向上平移1个单位,求得到的图象对应的函数的特征数.②若一个函数的特征数为[2,3],问此函数的图象经过怎样的平移,才能使得到的图象对应的函数的特征数为[3,4]?例3.如图1,抛物线y =ax 2+bx +c (a >0)的顶点为M ,直线y =m 与x 轴平行,且与抛物线交于点A ,B ,若△AMB 为等腰直角三角形,我们把抛物线上A ,B 两点之间的部分与线段AB 围成的图形称为该抛物线对应的准蝶形,线段AB 称为碟宽,顶点M 称为碟顶,点M 到线段AB 的距离称为碟高.(1)抛物线212y x =对应的碟宽为 ;抛物线y =4x 2对应的碟宽为 ;抛物线y =ax 2(a >0)对应的碟宽为 ;抛物线y =a (x -2)2+3(a >0)对应的碟宽为 ;(2)抛物线2543y ax ax =--(a >0)对应的碟宽为6,且在x 轴上,求a 的值;(3)将抛物线y =a n x 2+b n x +c n (a n >0)的对应准蝶形记为F n (n =1,2,3…),定义F 1,F 2,…,F n 为相似准蝶形,相应的碟宽之比即为相似比.若F n 与F n ﹣1的相似比为12,且F n 的碟顶是F n ﹣1的碟宽的中点,现将(2)中求得的抛物线记为y 1,其对应的准蝶形记为F 1. ①求抛物线y 2的表达式;②若F 1的碟高为h 1,F 2的碟高为h 2,…F n 的碟高为h n ,则h n = ,F n 的碟宽有端点横坐标为2;若F 1,F 2,…,F n 的碟宽右端点在一条直线上,请直接写出该直线的表达式;若不是,请说明理由。

新定义函数-中考新题型

新定义函数-中考新题型

新定义函数-中考新题型函数图形变换方法总结:1.掌握函数平移的规律,包括一次函数、反比例函数和二次函数;2.确定函数的特征点为基准移动函数,并确定移动后的解析式;3.根据题目要求结合函数性质解决问题。

例1.我们规定:形如()ax ky a b k k ab x b+=≠+、、为常数,且的函数叫做“奇特函数”.当0a b ==时,“奇特函数”axk y x b+=+就是反比例函数(0)k y k x=≠. (1) 若矩形的两边长分别是2和3,当这两边长分别增加x 和y 后,得到的新矩形的面积为8 ,求y 与x 之间的函数关系式,并判断这个函数是否为“奇特函数”;(2) 如图,在平面直角坐标系中,点O 为原点,矩形OABC 的顶点A ,C 的坐标分别为(9,0)、(0,3).点D 是OA 的中点,连结OB ,CD 交于点E ,“奇特函数”6ax ky x +=-的图象经过B ,E 两点.①求这个“奇特函数”的解析式; ②把反比例函数3y x =的图象向右平移6个单位,再向上平移 个单位就可得到①中所得“奇特函数”的图象.过线段BE 中点M 的一条直线l 与这个“奇特函数”的图象交于P ,Q 两点,若以B 、E、P、Q为顶点组成的四边形面积为1610,请直3接写出点P的坐标.例2.定义{a,b,c}为函数y=ax2+bx+c的“特征数”.如:函数y=x2-2x+3的“特征数”是{1,-2,3},函数y =2x +3的“特征数”是{0,2,3},函数y =-x 的“特征数”是{0,-1,0}(1)将“特征数”是30,,13⎧⎫⎪⎪⎨⎬⎪⎪⎩⎭的函数图象向下平移2个单位,得到一个新函数,这个新函数的解析式是313y x =-;(2)在(1)中,平移前后的两个函数分别与y 轴交于A 、B 两点,与直线3x =分别交于D 、C 两点,判断以A 、B 、C 、D 四点为顶点的四边形形状,请说明理由并计算其周长;(3)若(2)中的四边形与“特征数”是211,2b,b 2⎧⎫-+⎨⎬⎩⎭的函数图象的有交点,求满足条件的实数b 的取值范围.变式如果二次函数的二次项系数为l,则此二次函数可表示为y=x2+px+q,我们称[p,q]为此函数的特征数,如函数y=x2+2x+3的特征数是[2,3].(1)若一个函数的特征数为[-2,1],求此函数图象的顶点坐标.(2)探究下列问题:①若一个函数的特征数为[4,-1],将此函数的图象先向右平移1个单位,再向上平移1个单位,求得到的图象对应的函数的特征数.②若一个函数的特征数为[2,3],问此函数的图象经过怎样的平移,才能使得到的图象对应的函数的特征数为[3,4]?例3.如图1,抛物线y=ax2+bx+c(a>0)的顶点为M,直线y=m与x轴平行,且与抛物线交于点A ,B ,若△AMB 为等腰直角三角形,我们把抛物线上A ,B 两点之间的部分与线段AB 围成的图形称为该抛物线对应的准蝶形,线段AB 称为碟宽,顶点M 称为碟顶,点M 到线段AB 的距离称为碟高. (1)抛物线212y x =对应的碟宽为 ;抛物线y =4x 2对应的碟宽为 ;抛物线y =ax 2(a >0)对应的碟宽为 ;抛物线y =a (x -2)2+3(a >0)对应的碟宽为 ; (2)抛物线2543y ax ax =--(a >0)对应的碟宽为6,且在x 轴上,求a 的值;(3)将抛物线y =a n x 2+b n x +c n (a n >0)的对应准蝶形记为F n (n =1,2,3…),定义F 1,F 2,…,F n 为相似准蝶形,相应的碟宽之比即为相似比.若F n 与F n ﹣1的相似比为12,且F n 的碟顶是F n ﹣1的碟宽的中点,现将(2)中求得的抛物线记为y 1,其对应的准蝶形记为F 1. ①求抛物线y 2的表达式;②若F 1的碟高为h 1,F 2的碟高为h 2,…F n 的碟高为h n ,则h n = ,F n 的碟宽有端点横坐标为2;若F 1,F 2,…,F n 的碟宽右端点在一条直线上,请直接写出该直线的表达式;若不是,请说明理由。

中考真题分类整理:新定义型(附答案)

中考真题分类整理:新定义型(附答案)

一、选择题1.(2020·岳阳)对于一个函数,自变量x 取a 时,函数值y 也等于a ,我们称a 为这个函数的不动点.如果二次函数y =x 2+2x +c 有两个相异的不动点x 1、x 2,且x 1<1<x 2,则c 的取值范围是() A .c <-3 B .c <-2 C .14c <D .c <1 【答案】B【解析】 当y =x 时,x =x 2+2x +c ,即为x 2+x +c =0,由题意可知:x 1,x 2是该方程的两个实数根,所以12121x x x x c+=-⎧⎨⋅=⎩∵x 1<1<x 2,∴(x 1-1)(x 2-1)<0, 即x 1x 2-(x 1+x 2) +1<0, ∴c -(-1)+1<0, ∴c <-2.又知方程有两个不相等的实数根,故Δ>0, 即12-4c >0, 解得:c <14.∴c 的取值范围为c <-2 .2.(2020·济宁)−1,-1的差类推,那么a 1+a 2+…+a 100的值是() A .-7.5 B .7.5 C .5.5 D .-5.5 【答案】A【解析】二、填空题18.(2020·娄底) 已知点P()00,x y 到直线y kx b =+的距离可表示为d =0,1)到直线y =2x+6的距离d ==y x =与4y x =-之间的距离为___________. 【答案】.【解析】在直线y x =上任取点,不妨取(0,0),根据两条平行线之间距离的定义可知,(0,0)到直线4y x =-的距离就是两平行直线y x =与4y x =-之间的距离.d ===. 16.(2020·常德)规定:如果一个四边形有一组对边平行,一组邻边相等,那么四边形为广义菱形.根据规定判断下面四个结论:①正方形和菱形都是广义菱形;②平行四边形是广义菱形;③对角线互相垂直,且两组邻边分别相等的四边形是广义菱形;④若M 、N 的坐标分别为(0,1),(0,-1),P 是二次函数y =x 2的图象上在第一象限内的任意一点,PQ 垂直直线y =-1于点Q ,则四边形PMNQ 是广义菱形.其中正确的是 .(填序号)【答案】①④【解析】正方形和菱形满足一组对边平行,一组邻边相等,故都是广义菱形,故①正确;平行四边形虽然满足一组对边平行,但是邻边不一定相等,因此不是广义菱形,故②错误;对角线互相垂直,且两组邻边分别相等的四边形的对边不一定平行,邻边也不一定相等,因此不是广义菱形,故③错误;④中的四边形PMNQ 满足MN ∥PQ ,设P (m ,0)(m >0),∵PM=+1,PQ =-(-1)=+1,∴PM =PQ ,故四边形PMNQ 是广义菱形.综上所述正确的是①④.17.(2020·陇南)定义:等腰三角形的顶角与其一个底角的度数的比值k 称为这个等腰三角形的“特征值”.若等腰△ABC 中,∠A =80°,则它的特征值k = .【答案】85或14. 【解析】当∠A 是顶角时,底角是50°,则k=808505=;当∠A 是底角时,则底角是20°,k=201804=,故答案为:85或14.三、解答题1.(2020·重庆A 卷)《道德经》中的“道生一,一生二,二生三,三生万物”道出了自然数的特征.在数的学习过程中,我们会对其中一些具有某种特性的数进行研究,如学习自然数时,我们研究了奇数、偶数、质数、合数等.现在我们来研究另一种特珠的自然数—“纯数”.定义:对于自然数n ,在计算n +(n +1)+(n +2)时,各数位都不产生进位,则称这个自然数n 为“纯数”,例如:32是”纯数”,因为计算32+33+34时,各数位都不产生进位;23不是“纯数”,因为计算23+24+25时,个位产生了进位.(1)判断2019和2020是否是“纯数”?请说明理由; (2)求出不大于100的“纯数”的个数.解:(1)2019不是“纯数”,2020是“纯数”,理由如下:∵在计算2019+2020+2021时,个位产生了进位,而计算2020+2021+2022时,各数位都不产生进位,∴2019不是“纯数”,2020是“纯数”.(2)由题意可知,连续三个自然数的个位不同,其他位都相同,并且连续的三个自然数个位为0、1、2时,不会产生进位;其他位的数字为0、1、2、3时,不会产生进位.现分三种情况讨论如下:①当这个数为一位自然数时,只能是0、1、2,共3个;14214m 214m 214m②当这个数为二位自然数时,十位只能为1、2、3,个位只能为0、1、2,即10、11、12、20、21、22、30、31、32共9个; ③当这个数为100时,易知100是“纯数”. 综上,不大于100的“纯数”的个数为3+9+1=13.2.(2020·重庆B 卷)在数的学习过程中,我们总会对其中一些具有某种特性的数进行研究,如学习自然数时,我们研究了偶数、奇数、合数、质数等. 现在我们来研究一种特殊的自然数——“纯数”.定义:对于自然数,在通过列竖式进行的运算时各位都不产生进位现象,则称这个自然数为“纯数”.例如:是“纯数”,因为在列竖式计算时各位都不产生进位现象; 不是“纯数”,因为在列竖式计算时个位产生了进位. ⑴请直接写出1949到2019之间的“纯数”;⑵求出不大于100的“纯数”的个数,并说明理由.解:(1)1949到2019之间的“纯数”为2000、2001、2002、2010、2011、2012 . (2)由题意:不大于100的“纯数”包含:一位数、两位数和三位数100若n 为一位数,则有n +(n +1)+(n +2)<10,解得:n <3,所以:小于10的“纯数数”有0、1、2,共3个.两位数须满足:十位数可以是1、2、3,个位数可以是0、1、2,列举共有9个分别是10、11、12、20、21、22、30、31、32;三位数为100,共1个所以:不大于100的“纯数”共有13个.3.(2020·衢州)定义:在平面直角坐标系中,对于任意两点A (a ,b ),B (c ,d ),若点T (x ,y )满是x =3a c +,y =3b d +,那么称点T 是点A ,B 的融合点。

中考数学 新定义题型专题03 函数中的新定义问题(老师版)

中考数学 新定义题型专题03 函数中的新定义问题(老师版)

专题03 函数中的新定义问题一、考情分析"新定义"型问题是指在问题中定义了初中数学中没有学过的一些概念、新运算、新符号,要求学生读懂题意并结合已有知识进行理解,而后根据新定义进行运算、推理、迁移的一种题型。

它一般分为三种类型: (1)定义新运算;(2)定义初、高中知识衔接"新知识"; (3)定义新概念。

这类试题考查考生对"新定义"的理解和认识,以及灵活运用知识的能力,解题时需要将"新定义"的知识与已学知识联系起来,利用已有的知识经验来解决问题.利用的数学思想:(1)转化的思想,把未知的问题转化为学过的知识解决。

(2)对全新的概念,需要灵活的迁移运用。

二、精选考题1.在平面直角坐标系中,有系列抛物线2131(44n y nx nx n n =--++为正整数).系列抛物线的顶点分别为1M ,2M ,3M ,⋯,n M . (1)下列结论正确的序号是 ①②④ . ①系列抛物线的对称轴是直线32x =-;②系列抛物线有公共交点(4,1)-和(1,1); ③系列抛物线都是由抛物线214y x =-平移所得;④任意两条相邻抛物线顶点的距离相等;(2)对于任意一条与x 轴垂直的直线x a =,与系列抛物线的交点分别为1N ,2N ,3N ,⋯,n N .①当0a =时,1n n N N -= ;②试判断相邻两点之间的距离是否相等,若相等,直接写出相邻两点之间的距离1n n N N -;若不相等,说明理由;③以1n n N N -为边作正方形,若正方形的另二个点落在对称轴上,求a 的值.【解答】解:(1)系列抛物线的对称轴是直线3341222()4nb x a n -=-=-=-⨯-,故①正确; 221311(34)1444n y nx nx n n x x =--++=-+-+,令2340x x +-=.解得4x =-或1x =,∴系列抛物线有公共交点为(4,1)-,(1,1),故②正确;系列抛物线二次项的系数为14n -,与抛物线214y x =-的系数不同,∴系列抛物线不是由抛物线214y x =-平移所得,故③错误;2221319913251(3)1()1444444216n y nx nx n n x x n n x n =--++=-++-++=-+++,∴系列抛物线的顶点坐标为3(2-,251)16n +. 12516n n M M -∴=,即任意两条相邻抛物线顶点的距离都等于2516,故④正确; 综上,正确的有①②④, 故答案为:①②④;(2)当x a =时,213144n y na na n =--++,2221131133(1)(1)(1)1444444n y n a n a n na a na a n -=----+-+=-+-++,21113144n n n n N N y y a a --∴=-=+-;①当0a =时,11n n N N -=; 故答案为:1;②相邻两点之间的距离相等,距离为2113144n n N N a a -=+-;③系列抛物线的对称轴是直线32x =-;当32a <-时,由题意得:21331442a a a +-=-+;整理得2720a a ++=.解得a =a = 当32a >-时,整理得2100a a --=,解得a =a =综上,a 的值为72-或12+ 2.我们不妨约定:在平面直角坐标系中,若某函数图象上至少存在不同的两点关于直线(x n n =为常数)对称,则把该函数称之为“()X n 函数”. (1)在下列关于x 的函数中,是“()X n 函数”的是 ②③ (填序号); ①6y x=;②|4|y x =;③225y x x =--. (2)若关于x 的函数||(y x h h =-为常数)是“X (3)函数”,与||(my m x=为常数,0)m >相交于(A A x ,)A y 、(B B x ,)B y 两点,A 在B 的左边,5B A x x -=,求m 的值;(3)若关于x 的“()X n 函数” 24(y ax bx a =++,b 为常数)经过点(1,1)-,且1n =,当1t x t -时,函数的最大值为1y ,最小值为2y ,且1212y y -=,求t 的值. 【解答】解;(1)解:根据定义,函数关于直线(x n n =为常数)对称,即该函数图象是轴对称图形 ①6y x=的图象是中心对称图象,不符合题意: ②|4|y x =,③225y x x =--的图象是轴对称图形,符合题意. 故答案为:②③. (2)||y x h =-是“X (3)”函数, 3h ∴=,如图,3y x =-与x 轴交于C 点,与y 轴交于D 点,作AM x ⊥轴交于M 点,BN x ⊥轴交于N 点,(3,0)C ∴,(0,3)D -, 45BCN OCD ∴∠=∠=︒,由对称性可知,45ACM OCD ∠=∠=︒, AM CM ∴=,BN CN =, 5B A x x -=,5MN ∴=,设CN x =,则5MC x =-, (3,)B x x ∴+,(2,5)A x x --, (3)(2)(5)0x x x x ∴++--=, 1x ∴=,(4,1)B ∴, 4m ∴=;(3)由题意得4112a b b a -+=⎧⎪⎨-=⎪⎩,解得12a b =-⎧⎨=⎩,∴此“()X n 函数”为224y x x =-++,①当1t <时,x t =时,2124y t t =-++,1x t =-时,22(1)y t =--十2(1)4t -+,22121(24)[(1)2(1)4]232y y t t t t t -=-++---+-+=-+=,54t ∴=(舍); ②当11t -,即2t 时,1x t =-时,21(1)y t =--十2(1)4t -+, x t =时,2224y t t =-++,22121(1)2(1)4(24)232y y t t t t t -=--+-+--++=-=, 74t ∴=(舍); ⑧当312t <时, 1x =时,15y =,1x t =-时,22(1)y t =--十2(1)4t -+,221215[(1)2(1)4]442y y t t t t -=---+-+=-+=,2t ∴=, 又312t <,2t ∴=. ④322t <时, 1x =时,15y =,x t =时,22y t =-十24t +,221215(24)442y y t t t t -=--++=-+=,1t ∴=,又因为322t <,1t ∴=.综上所述:22t =-或12t =+. 3.我们知道,对于二次函数2()y a x m k =++的图象,可由函数2y ax =的图象进行向左或向右平移一次、再向上或向下移一次平移得到,我们称函数2y ax =为“基本函数”,而称由它平移得到的二次函数2()y a x m k =++为“基本函数” 2y ax =的“朋友函数”.左右、上所学的函数:二次函数2y ax =,函数y kx =和反比例函数ky x=都可以作为“基本函数”,并进行向左或向右平移一次、再向上或向下平移一次得到相应的“朋友函数”.如一次函数25y x =-是基本函数2y x =的朋友函数,由252(1)3y x x =-=--朋友路径可以是向右平移1个单位,再向下平移3个单位,朋友距离=(1)探究一:小明同学经过思考后,为函数25y x =-又找到了一条朋友路径为由基本函数2y x =先向 左平移1个单位 ,再向下平移7个单位,相应的朋友距离为 .(2)探究二:已知函数263y x x =-+,求它的基本函数,朋友路径,和相应的朋友距离. (3)探究三:为函数341x y x +=+和它的基本函数1y x =,找到朋友路径,并求相应的朋友距离.【解答】解:(1)2(1)7y x =+-,∴向左平移1个单位;=故答案为:向左平移1个单位; (2)2263(3)6y x x x =-+=--,∴基本函数为2y x =;原抛物线的顶点坐标为(0,0),新抛物线的顶点坐标为(3,6)-,∴朋友路径为先向右平移3个单位,再向下平移6个单位;=; (3)函数341x y x +=+可化为131y x =++,∴朋友路径为先向左平移1个单位,再向上平移3个单位..4.定义:1(A x ,1)y ,2(B x ,2)y ,3(C x ,3)y 是二次函数2()y ax bx c m x n =++图象上任意三个不重合的点,若满足1y ,2y ,3y 中任意两数之和大于第三个数,住意两数之差小于第三个数,且1y ,2y ,3y 都大于0,则称函数2y ax bx c =++是m x n 上的“仿三角形函数”.(1)①函数2(12)y x x =的最小值是m ,最大值是n ,则2m < n ;(填写“>”,“ <”或“=” )②函数2y x = 12x 上的“仿三角形函数”;(填写“是”或者“不是” )(2)若二次函数函数223y ax ax =-+是12x 上的“仿三角形函数”,求a 的取值范围; (3)若函数22y x mx =-在312x 上是“仿三角形函数”,求m 的取值范围. 【解答】解:(1)①12x ,∴当1x =时,函数的最小值为1m =,当4x =时,函数的最大值为4n =, 2m n ∴<,故答案为:<;②当 1.1x =时,函数的最小值为1.21, 当2x =时,函数的最大值为4, 当1x =时,函数值为1, 1.2114+<,∴函数2y x = 不是12x 上的“仿三角形函数”;故答案为:不是;(2)当1x =时,3y a =-+,当2x =时,3y =,①当0a >时,函数223y ax ax =-+是12x 上的“仿三角形函数”, 则302(3)3a a -+>⎧⎨-+⎩,解得:302a<; ②当0a <时,函数223y ax ax =-+是12x 上的“仿三角形函数”, 则233a ⨯-+,30a ∴-<;综上所述,a 的取值范围为302a <或30a -<; (3)2222()y x mx x m m =-=--,∴函数最小值为2m -,当1x =时,12y m =-; 32x =时,934y m =-; ①当1m 时,1x =时120y m =-<,不满足题意; ②当1m <时,函数22y x mx =-在312x 上是“仿三角形函数”, 则12092(12)34m m m ->⎧⎪⎨--⎪⎩, 解得:14m -;综上所述:若函数22y x mx =-在312x上是“仿三角形函数”时m 的取值范围为14m -. 5.定义:当x a =时,其对应的函数值为y f =(a ),若f (a )a =成立,则称a 为函数y 的不动点.例如:函数234y x x =-+,当2x =时,y f =(2)223242=-⨯+=,因为f (2)2=成立,所以2为函数y 的不动点.对于函数2(1)(21)3y t x t x =+-+-,(1)当0t =时,分别判断1-和0是否为该函数的不动点,并说明理由; (2)若函数有且只有一个不动点,求此时t 的值;(3)将函数图象向下平移(0)m m >个单位长度,4t -时,判断平移后函数不动点的个数. 【解答】解:(1)1-是函数y 的不动点;0不是函数y 的不动点;理由如下: 当0t =时,23y x x =--, 当1x =-时,1y x =-=, 当0x =时,30y =-≠,1∴-是函数y 的不动点;0不是函数y 的不动点.(2)由不动点的定义可知,函数的不动点在y x =上, 当1t =-时,函数3y x =-,此时函数没有不动点; 当1t ≠-时,令2(1)(21)3x t x t x =+-+-,整理得,2(1)(22)30t x t x +-+-=, 函数有一个不动点,∴△2(22)12(1)0t t =+++=,整理得4(1)(4)0t t ++=,1t ∴=-(舍)或4t =-;综上可知,符合题意的t 的值为4-;(3)向下平移后的函数为:2(1)(21)3y t x t x m =+-+--, 当1t =-时,3y x m =--,函数没有不动点; 当1t ≠-时,令2(1)(21)3x t x t x m =+-+--, 整理得,2(1)(22)30t x t x m +-+--=,∴△2(22)(1)(3)0t t m =++++=,整理得△4(1)(4)t t m =+++,0m >,4t -,40t m ∴++>,当41t -<-时,△0<,平移后函数不动点的个数为0个; 当1t =-时,不是二次函数;当1t >-时,△0>,平移后函数不动点的个数为2个.综上可知,当41t --时,平移后函数不动点的个数为0个;当1t >-时,平移后函数不动点的个数为2个.6.在平面直角坐标系xOy 中,O 为坐标原点,定义1(P x ,1)y ,2(Q x ,2)y 两点之间的“直角距离”为1212(,)||||d P O x x y y =-+-,二次函数234y x x =-+的图象如图所示. (1)点A 为图象与y 轴的交点,点(1,)B b -在该二次函数的图象上,求(,)d A B 的值. (2)点C 是二次函数234(0)y x x x =-+图象上的一点,记点C 的横坐标为m . ①求(,)d O C 的最小值及对应的点C 的坐标.②当1t m t +时,(,)d O C 的最大值为p ,最小值为q ,若34p q -=,求t 的值.【解答】解:(1)把0x =代入234y x x =-+,得4y =,∴点A 坐标为(0,4),把(1,)b -代入234y x x =-+,得1348b =++=,∴点B 坐标为(1,8)-,(,)|10||84|5d A B ∴=--+-=.(2)①223734()24y x x x =-+=-+,∴抛物线开口向上,顶点坐标为3(2,7)4,74y∴, 点C 在抛物线上,2(,34)C m m m ∴-+,2(,)|0||340|d O C m m m ∴=-+-+-,0m ,27344m m -+, (d O ∴,22)24(1)3C m m m =-+=-+,∴当1m =时,(,)d O C 最小值为3,此时点C 坐标为(1,2). ②(d O ,2)(1)3C m =-+,∴当01m <时,(,)d O C 随m 增大而减小,当1m 时,(,)d O C 随m 增大而增大,把m t =代入(d O ,2)(1)3C m =-+得(d O ,2)(1)3C t =-+, 把1m t =+代入入(d O ,2)(1)3C m =-+得2(,)3d O C t =+, 当111t t +-=-时,12t =,当102t<时,(,)d O C 的最小值3q =,最大值2(1)3p t =-+, 23(1)4p q t -=-=,解得312t =+(不符合题意,舍去),312t =-, 当112t <时,(,)d O C 的最小值3q =,最大值23p t =+, 234p q t -==, 解得32t =,32t =-(不符合题意,舍去).当1t >时,(,)d O C 的最小值2(1)3q t =-+,最大值23p t =+, 223(1)4p q t t -=--=, 解得78t =(不符合题意,舍去), 综上所述,312t =-或32. 7.定义:如图,已知点M 是一次函数3y x =图象上的一个动点,M 的半径为2,线段OM 与M 交于点A .若点P 在M 上,且满足2PA =,则称点P 为M 的“等径点”. (1)若点M 的横坐标为3时,M 的“等径点”是 (1,33)或(4,23) ; (2)若M 的“等径点” P 恰好在y 轴上,求圆心M 的坐标;(3)若M 的“等径点” P 在二次函数22323y x x =++的图象上,求点P 的坐标.【解答】解:(1)点M 在一次函数3y x =图象上,∴可设点M 的坐标为(3)a a ,过点M 作MN x ⊥轴于点N , 则||ON a =,|3|MN a =, 2||OM a ∴=,30OMN ∴∠=︒,60MON ∠=︒.①点P 为M 的“等径点”,且当点P 在OM 左侧时,如下图所示,2PA PM AM ===, PAM ∴∆是等边三角形,60PMA MON ∴∠=∠=︒, //PM x ∴轴, (2,3)P a a ∴-;②点P 为M 的“等径点”,且当点P 在OM 右侧时,如下图所示,设AP '与MN 交于点Q ,此时60P AM MON ∠'=∠=︒, //P A x ∴'轴, MN AP ∴⊥',90MQP ∴∠'=︒,30QMP ∠'=︒,1QP ∴'=,MQ =(P a ∴'+.当点M 横坐标为3时,3a =,则M 的“等径点”是或(4,;故答案为:或(4,;(2)由(1)知,M 的“等径点” P 为()a -或(a +-. 当M 的“等径点” P 恰好在y 轴上,则点P 的横坐标为0, 20a ∴-=或10a +=,解得2a =或1a =-,∴点M 的坐标为(2,或(1,-;(3)由(1)知,M 的“等径点” P 为()a -或(a +-.令2x a =-,y =,则y =+;令1x a =+,y =-y =-M ∴的“等径点” P 在直线y =+上或直线y =-令2y x =+++,解得0x =或x =∴点P 的坐标为(0,或(3-+.令2y x =++-,方程无解.综上所述:点P 的坐标为(0,或(3-+.8.定义:若抛物线2111()y a x h k =++与抛物线2222()y a x h k =++.同时满足214a a =-且2114k k =-,则称这两条抛物线是一对“共轭抛物线”. (1)已知抛物线2114y x bx c =-++与2223y x x =--是一对共轭抛物线,求1y 的解析式;(2)如图1,将一副边长为2的形式,若以BC 中点为原点,直线BC 为x 轴建立平面直角坐标系,设经过点A ,E ,D 的抛物线为1y ,经过A 、B 、C 的抛物线为2y ,请立接写出1y 、2y 的解析式并判断它们是否为一对共轭抛物线.【解答】解:(1)22223(1)4y x x x =--=--, 21a ∴=,1h =-,24k =-,抛物线2114y x bx c =-++与2223y x x =--是一对共轭抛物线,21144a a ∴==--,1h =-且21164k k ==-, 22111163(1)164424y x x x ∴=--+=-++.(2)由题意可得,42DF AF ==4AG GF DG GF ====, 2EG =,2HG =,4BC =,2OF =,点O 为BC 的中点, 2BO OC ∴==,(2,0)B ∴-,(2,0)C ,(4,6)A -,(4,6)D ,(0,8)E ,∴可设抛物线11(4)(4)6y a x x =+-+,与抛物线22(2)(2)y a x x =+-,11668a ∴-+=,2(42)(42)6a -+--=,解得:118a =-,212a =,∴抛物线2111(4)(4)6888y x x x =-+-+=-+,抛物线2211(2)(2)222y x x x =+-=-,118a ∴=-,0h =,18k =,212a =,0h =且22k =-, 11(2)82-⨯-=,1824-⨯=-, ∴满足214a a =-且2114k k =-,1y ∴、2y 是一对共轭抛物线.9.阅读理解:我们把一条直线倾斜角α的正切值叫做这条直线的斜率,用小写字母k 表示.一般的,直线(0)y kx b k =+≠中的k ,叫做这条直线的斜率,则有tan k α=.探究发现:某数学兴趣小组利用以上材料,通过多次验证和查阅资料探究得出:经过两点1(P x ,1)y ,2(Q x ,212)()y x x ≠的直线y kx b =+的斜率为:2121PQ y y k x x -=-. 启发应用:(1)应用以上结论直接写出过(3,2)A ,(1,2)B -两点的直线AB 的斜率k 为 2 ; 深入探究:数学兴趣小组继续深入研究直线的“斜率”问题,得到结论:任意两条不和坐标轴平行的直线互相垂直时,这两条直线的斜率之积是定值.(2)①已知(6,1)C --,(2,9)D ,(0,2)E ,(10,6)F -,当直线CD 与直线EF 互相垂直时,请求出直线CD 与直线EF 的斜率之积;②事实上,任意两条不和坐标轴平行的直线互相垂直时,这两条直线的斜率之积是定值,由①可知这个定值为 .③如图,M 为以点M 为圆心,MN 的长为半径的圆.已知(1,2)M ,(3,5)N ,请结合(2)中的结论,求出过点N 的M 的切线l 的解析式.【解答】解:(1)根据题目中的新概念可知:22213k --==-. 故答案为:2.(2)①(6,1)C --,(2,9)D ,(0,2)E ,(10,6)F -,∴直线CD 的斜率为:9(1)52(6)4CD k --==--,直线EF 的斜率为:6241005EF k --==--, 1CD EF k k ∴⋅=-,∴直线CD 与直线EF 的斜率之积为1-,②由①可得这个定值为:1-, 故答案为:1-.③设直线MN 的解析式为:11y k x b =+, 切线的解析式为y kx b =+, ∴1111253k b k b =+⎧⎨=+⎩,132k ∴=,112b =, ∴直线MN 的解析式为:3122y x =+, 圆的切线与过切点的半径垂直, 11k k ∴=-,132k =, 23k ∴=-,把(3,5)N 代入y kx b =+, 得:35k b +=,把23k =-代入35k b +=,得:7b =,∴切线的解析式为273y x =-+.10.在平面直角坐标系xOy 中.O 的半径为1,对于直线l 和线段AB ,给出如下定义:若将线段AB 关于直线l 对称,可以得到O 的弦(A B A ''',B '分别为A ,B 的对应点),则称线段AB 是O 的关于直线l 对称的“关联线段”.例如:在图1中,线段AB 是O 的关于直线l 对称的“关联线段”.(1)如图2,点1A ,1B ,2A ,2B ,3A ,3B 的横、纵坐标都是整数.①在线段11A B ,22A B ,33A B 中,O 的关于直线2y x =+对称的“关联线段”是 11A B ; ②若线段11A B ,22A B ,33A B 中,存在O 的关于直线y x m =-+对称的“关联线段”,则m = ;(2)已知直线3(0)3y x b b =-+>交x 轴于点C ,在ABC ∆中,3AC =,1AB =.若线段AB 是O 的关于直线3(0)3y x b b =-+>对称的“关联线段”,直接写出b 的最大值和最小值,以及相应的BC长.【解答】解:(1)①分别画出线段11A B ,22A B ,33A B 关于直线2y x =+对称线段,如图, 发现线段11A B 的对称线段是O 的弦,∴线段11A B ,22A B ,33A B 中,O 的关于直线2y x =+对称的“关联线段”是11A B ,故答案为:11A B ;②从图象性质可知,直线y x m =-+与x 轴的夹角为45︒,∴线段11A B ⊥直线y x m =-+,∴线段11A B 关于直线y x m =-+对称线段还在直线11A B 上,显然不可能是O 的弦,线段335A B =O 的最长的弦为2,∴线段33A B 的对称线段不可能是O 的弦,线段22A B 是O 的关于直线y x m =-+对称的“关联线段”,而线段22//A B 直线y x m =-+,线段22A B∴线段22A B 的对称线段线段22A B ''线段22A B ,且线段22A B ''=平移这条线段,使其在O 上,有两种可能, 第一种情况:2A '、2B '的坐标分别为(0,1)、(1,0), 此时3m =;第二种情况:2A '、2B '的坐标分别为(1,0)-、(0,1)-, 此时2m =, 故答案为:3或2;(2)直线(0)y x b b =+>交x 轴于点C ,当0y =时,0y b =+=,解得:x =,OC ∴,b 最大时就是OC 最大, b 最小时就是CO 长最小,线段AB 是O 的关于直线(0)y x b b =+>对称的“关联线段”,∴线段AB 关于直线y b =+对称线段A B ''在O 上, 3AC AC ∴''==,在△A CO '中,AC OA OC AC OA '-''+',∴当A '为(1,0)-时,如图3,OC 最小,此时C 点坐标为(2,0),将点C 代入直线y b =+中,20b +=,解得:b = 过点B '作B D AC '⊥'于点D , 1A B AO B O ''='='=, 60B A D ∴∠''=︒,12A D ∴'=,32B D '=,15322CD ∴=-=,在Rt △B DC '中,2253()()722B C '=+=;∴当A '为(1,0)时,如图3,OC 最大,此时C 点坐标为(4,0),将点C 代入直线33y x b =-+中, 3403b -⨯+=,解得:433b =, 过点B '作B D AC '⊥'于点D , 1A B AO B O ''='='=, 60B A D ∴∠''=︒,12A D ∴'=,32B D '=,17322CD ∴=+=,在Rt △B DC '中,2273()()1322B C '=+=,b ∴的最大值为433,13BC =;最小值为233,7BC =.11.我们不妨约定:在平面直角坐标系中,若某函数图象上至少存在不同的两点关于直线(x n n =为常数)对称,则把该函数称之为“()X n 函数”. (1)在下列关于x 的函数中,是“()X n 函数”的,请在相应题目后面的括号中打“√”,不是“()X n 函数”的打“⨯”. ①(0)my m x=≠ ⨯ ②|2|y x = ③225y x x =+-(2)若关于x 的函数||(y x h h =-为常数)是“X (2)函数”,与||(my m x=为常数,0)m >相交于(A A x ,)A y 、(B B x ,)B y 两点,A 在B 的左边,4B A x x -=,求m 的值;(3)若关于x 的“()X n 函数” 24(y ax bx a =++,b 为常数)经过点(1,1)-,且1n =,当1t x t -时,函数的最大值为1y ,最小值为2y ,且122y y -=,求t 的值.【解答】解;(1)①设(,)m a a 关于x n =对称的点为(2,)mn a a-,令2x n a =-,则2my n a=-,若2m m n a a=-,则a n =, ∴(0)m y m x =≠不是“()X n 函数”; ②设(,|2|)a a 关于x n =对称的点为(2,|2|)n a a -,令2x n a =-,则|2(2)||42|y n a n a =-=-,若|42||2|n a a -=,则a n =或0n =,|2|y x ∴=是“(0)X 函数”; ③设2(,25)a a a +-关于x n =对称的点为2(2,25)n a a a -+-,令2x n a =-,则2(2)2(2)5y n a n a =-+--,若2225(2)2(2)5a a n a n a +-=-+--,则有n a =或1n =-,225y x x ∴=+-是“(1)X -函数”;故答案为:⨯,√,√;(2)|y x =一|h 是“X (2)”函数, 2h ∴=,如图,2y x =-与x 轴交于C 点,与y 轴交于D 点,作AM x ⊥轴交于M 点,BN x ⊥轴交于N 点,(2,0)C ∴,(0,2)D -,45BCN OCD ∴∠=∠=︒,由对称性可知,45ACM OCD ∠=∠=︒,AM CM ∴=,BN CN =,4B A x x -=,4MN ∴=,设CN x =,则4MC x =-,(2B ∴十x ,)x ,(2,4)A x x --,(2)(2)(4)0x x x x ∴++--=,1x ∴=,(3,1)B ∴,3m ∴=;(3)由题意得4112a b b a-+=⎧⎪⎨-=⎪⎩, 解得12a b =-⎧⎨=⎩, ∴此“()X n 函数”为224y x x =-++,①当1t <时,x t =时,2124y t t =-++,1x t =-时,22(1)y t =--十2(1)4t -+,2212(24)[(1)2(1)4]232y y t t t t t -=-++---+-+=-+=,12t ∴=; ②当11t -,即2t 时,1x t =-时,21(1)y t =--十2(1)4t -+,x t =时,2224y t t =-++,1y 一222(1)2(1)4(24)232y t t t t t =--+-+--++=-=,52t ∴=; ③当312t <时, 1x =时,15y =,1x t =-时,22(1)y t =--十2(1)4t -+,22125[(1)2(1)4]442y y t t t t -=---+-+=-+=,2t ∴=±(舍去):④322t <时, 1x =时,15y =,x t =时,2224y t t =-++,22125(24)212y y t t t t -=--++=-+=,12t ∴=±(舍去), 综上所述:12或52.12.定义:我们把一次函数(0)y kx b k =+≠与正比例函数y x =的交点称为一次函数(0)y kx b k =+≠的“不动点”.例如求21y x =-的“不动点”:联立方程21y x y x =-⎧⎨=⎩,解得11x y =⎧⎨=⎩,则21y x =-的“不动点”为(1,1). (1)由定义可知,一次函数32y x =+的“不动点”为 (1,1)-- ;(2)若一次函数y mx n =+的“不动点”为(2,1)n -,求m 、n 的值;(3)若直线3(0)y kx k =-≠与x 轴交于点A ,与y 轴交于点B ,且直线3y kx =-上没有“不动点”,若P 点为x 轴上一个动点,使得3ABP ABO S S ∆∆=,求满足条件的P 点坐标.【解答】解:(1)联立32y x y x =+⎧⎨=⎩, 解得11x y =-⎧⎨=-⎩, ∴一次函数32y x =+的“不动点”为(1,1)--,故答案为:(1,1)--;(2)一次函数y mx n =+的“不动点”为(2,1)n -,12n ∴-=,3n ∴=,∴ “不动点”为(2,2),223m ∴=+, 解得12m =-; (3)直线3y kx =-上没有“不动点”,∴直线3y kx =-与直线y x =平行,1k ∴=,3y x ∴=-,(3,0)A ∴,(0,3)B -,设(,0)P t ,|3|AP t ∴=-,1|3|32ABP S t ∆∴=⨯-⨯, 1332ABO S ∆=⨯⨯, 3ABP ABO S S ∆∆=,|3|9t ∴-=,12t ∴=或6t =-,(6,0)P ∴-或(12,0)P .13.对某一个函数给出如下定义:如果存在实数M ,对于任意的函数值y ,都满足y M ,那么称这个函数是有上界函数.在所有满足条件的M 中,其最小值称为这个函数的上确界.例如,图中的函数2(3)2y x =--+是有上界函数,其上确界是2.(1)函数①221y x x =++和②23(2)y x x =-中是有上界函数的为 ② (只填序号即可),其上确界为 ;(2)如果函数2(,)y x a x b b a =-+>的上确界是b ,且这个函数的最小值不超过21a +,求a 的取值范围;(3)如果函数222(15)y x ax x =-+是以3为上确界的有上界函数,求实数a 的值.【解答】解:(1)①2221(1)0y x x x =++=+,∴①无上确界;②23(2)y x x =-,1y ∴,∴②有上确界,且上确界为1,故答案为:②,1;(2)2y x =-+,y 随x 值的增大而减小,∴当a x b 时,22b y a -+-+,上确界是b ,2a b ∴-+=,函数的最小值不超过21a +,221b a ∴-++,1a ∴-,b a >,2a a ∴-+>,1a ∴<,a ∴的取值范围为:11a -<;(3)222y x ax =-+的对称轴为直线x a =,当1a 时,y 的最大值为251022710a a -+=-, 3为上确界,27103a ∴-=,2.4a ∴=(舍);当5a 时,y 的最大值为12232a a -+=-, 3为上确界,323a ∴-=,0a ∴=(舍);当13a <时,y 的最大值为251022710a a -+=-, 3为上确界,27103a ∴-=,2.4a ∴=;当35a <<时,y 的最大值为12232a a -+=-, 3为上确界,323a ∴-=,0a ∴=,综上所述:a 的值为2.4.14.对某一个函数给出如下定义:若存在实数0m >,对于任意的函数值y ,都满足m y m -,则称这个函数是有界函数,在所有满足条件的m 中,其最小值称为这个函数的边界值.例如,如图中的函数是有界函数,其边界值是1.将函数21(2,0)y x x t t =-+-的图象向上平移t 个单位,得到的函数的边界值n 满足9542n 时,则t 的取值范围是 1324t 或5342t .【解答】解:由题干可得函数21y x t =-++在2x t -时,函数最大值或最小值为n ,9542n , 0t >,抛物线21y x t =-++开口向下,顶点坐标为(0,1)t +,1t ∴+为函数最大值,当512t +=时,32t =, 302t ∴<, 当2t =时,直线2x =-与直线x t =与抛物线交点关于对称轴对称, 302t ∴<时,直线2x =-与抛物线交点为最低点, 把2x =-代入21y x t =-++得3y t =-+,当532t -+=-时,12t =, 12t ∴, 当95142t +时,5342t , 当59324t --+-时,1324t , ∴1324t 或5342t 满足题意. 故答案为:1324t 或5342t . 15.定义:若实数x ,y 满足2x y t =+,2y x t =+,且x y ≠,t 为常数,则称点(,)x y 为“轮换点”.例如,点(1,2)-满足:2123=-+,2(2)13-=+,则点(1,2)-是“轮换点”.已知:在直角坐标系xOy 中,点(,)A m n .(1)1(3,2)A -和2(2,3)A -两点中,点 2A 是“轮换点”;(2)若二次函数21(0)y ax bx c a =++≠上有且仅有一个“轮换点”,且满足:①当1x =时,8y =,②241b ac -=,求二次函数解析式;(3)若点A 是“轮换点”,用含t 的代数式表示m n ⋅,并求t 的取值范围.【解答】解:(1)根据实数x ,y 满足2x y t =+,2y x t =+,且x y ≠,t 为常数,则称点(,)x y 为“轮换点”,1(3,2)A -,则23211=-+,此时2(2)311-≠+,1(3,2)A ∴-不是轮换点;2(2,3)A -,则2237=-+,此时2(3)27-=+,2(2,3)A ∴-是轮换点.故答案为:2A ;(2)设点(,)m n 是轮换点,由题意可知:2m n t =+①,且2n m t =+②,①-②得到:22m n n m -=-,即:(1)()0m n m n ++-=, 10m n ∴++=或0m n -=;当m n =时,则2am bm c m ++=,即:2(1)0am b m c +-+=,二次函数21(0)y ax bx c a =++≠上有且仅有一个“轮换点”, 2(1)0am b m c ∴+-+=有两个相等的根,即:2(1)40b ac --=, 又241b ac -=,22211b b b ∴-+=-,解得:b l =,40ac ∴=,且0a ≠,0c ∴=,当1x =时,8y =,8a b c ∴++=,7a ∴=,217y x x ∴=+;当10m n ++=时,21am bm c m ∴++=--,即:2(1)10am b m c ++++=,同理得:2(1)4(1)0b a c +-+=,241b ac -=,21b a ∴=-;8a b c ++=,93c a ∴=-,241b ac -=,216400a a ∴-=, 解得:52a =或0a = (舍去), 4b ∴=,32c =, 2153422y x x ∴=++, 综上所述,二次函数解析式为:217y x x =+或2153422y x x =++; (3)点(,)A m n 是“轮换点”,2m n t ∴=+①,2n m t =+②,①-②得:220m n m n -+-=,()(1)0m m m n ∴-++=,由“轮换点“定义可知:m n ≠,10m n ∴++=,1m n ∴+=-,①+②得:222m m n n t -+-=,222()21m n t m n t ∴+=++=-,2()221m n mn t ∴+-=-,1221mn t ∴-=-,1mn t ∴=-,m n ≠,2()0m n ∴->,2220m mn n ∴-+>,2()40m n mn ∴+->,把1m n +=-代入,得:140mn ->,14mn ∴<, 114t ∴-<, 34t ∴>, 故1mn t =-,34t >. 16.二次函数图象是抛物线,抛物线是指平面内到一个定点F 和一条定直线l 距离相等的点的轨迹.其中定点F 叫抛物线的焦点,定直线l 叫抛物线的准线. ①抛物线2(0)y ax a =≠的焦点为1(0,)4F a ,准线为14y a =-,例如,抛物线213y x =的焦点是3(0,)4F ;准线是34y =-;抛物线23y x =-的焦点是 是1(0,)12- 准线是 ; ②将抛物线2(0)y ax a =≠向右平移h 个单位、再向上平移k 个单位(0,0)h k >>,可得抛物线2()(0)y a x h k a =-+≠;因此抛物线2()(0)y a x h k a =-+≠的焦点是1(,)4F h k a +,准线为14y k a =-+.例如,抛物线2113y x =+的焦点是7(0,)4F ,准线是14y =;抛物线21(1)2y x =+的焦点是 准线为 .根据以上材料解决下列问题:(1)完成题中的填空;(2)已知二次函数的解析式为221y x x =+-.①求其图象的焦点F 的坐标以及准线解析式;②求过点F 且与x 轴平行的直线与二次函数221y x x =+-图象交点的坐标. ③抛物线上一点P ,点P 与坐标原点O 、F 点构成三角形,求POF ∆周长的最小值,以及P点的坐标.【解答】解:(1)①根据新定义,可得11144(3)12y a ===-⨯-, 所以抛物线23y x =-的焦点是1(0,)12-; 故答案是:1(0,)12-;112x =-; ②根据新定义,可得1h =-,111014242k a +=+=⨯,所以抛物线21(1)2y x =+的焦点是1(1,)2-,准线是12y =-;故答案是:1(1,)2-;12y =-;(2)①将221y x x =+-化为顶点式得:2(1)2y x =+- 根据新定义,可得1h =-,11724414k a +=-=-⨯, 所以可得抛物线221y x x =+-的焦点坐标7(1,)4F --,准线解析式为94y =-;②由①知7(1,)4F --,所以过点F 且与x 轴平行的直线是74y =-,将74y =-代入221y x x =+-得:27214x x -=+-,解得:12x =-或32x =-,所以,过点F 且与x 轴平行的直线与二次函数221y x x =+-图象交点的坐标为17(,)24--和37(,)24--. ③二次函数图象是抛物线,抛物线是指平面内到一个定点F 和一条定直线l 距离相等的点的轨迹.过原点O 向二次函数221y x x =+-的准线94y =-作垂线.P ∴点坐标为(0,1)-.OPF ∴∆周长OF OP PF =++,PF PQ =,OP PQ OQ +=,OPF ∆周长OF PQ =+. OPF ∴∆周长的最小值即OP ⊥直线2y =-.|2|2OF OQ +=-=+OPF ∴∆周长的最小值为2+. P ∴点的坐标为(0,1)-,OPF ∆周长的最小值为2+.17.将抛物线2y ax =的图象(如图1)绕原点顺时针旋转90度后可得新的抛物线图象(如图2),记为21:C y x a=.【概念与理解】将抛物线214y x =和22y x =按上述方法操作后可得新的抛物线图象,记为:1:C 214y x =;2:C . 【猜想与证明】在平面直角坐标系中,点(,0)M x 在x 轴正半轴上,过点M 作平行于y 轴的直线,分别交抛物线1C 于点A 、B ,交抛物线2C 于点C 、D ,如图3所示. (1)填空:当1x =时,AB CD = ;当2x =时,ABCD= ; (2)猜想:对任意(0)x x >上述结论是否仍然成立?若成立,请证明你的猜想;若不成立,请说明理由. 【探究与应用】(3)利用上面的结论,可得AOB ∆与COD ∆面积比为 ;(4)若AOB ∆和COD ∆中有一个是直角三角形时,求COD ∆与AOB ∆面积之差; 【联想与拓展】(5)若抛物线23:C y mx =、24:(0)C y nx m n =<<,(,0)M k 在x 轴正半轴上,如图所示,过点M 作平行于y 轴的直线,分别交抛物线3C 于点A 、B ,交抛物线4C 于点C 、D .过点A 作x 轴的平行线交抛物线4C 于点E ,过点D 作x 轴的平行线交抛物线3C 于点F .对于x 轴上任取一点P ,均有PAE ∆与PDF ∆面积的比值1:3,请直接写出m 和n 之间满足的等量关系是 .【解答】解:【概念与理解】 根据题中的定义可知:211:4C y x =;22:C y x =; 故答案为:214y x =;2y x =; 【猜想与证明】(1)把1x =代入1C 中,得214y =, 12y ∴=±,1(1,)2A ∴,1(1,)2B -.1AB ∴=;把1x =代入2C 中,得21y =, 1y ∴=±,(1,1)C ∴,(1,1)D -. 2CD ∴=.∴12AB CD =. 把2x =代入1C 中,得212y =,y ∴=2A ∴,(1,2B .AB ∴=;把2x =代入2C 中,得22y =,y ∴=C ∴,(1,D .CD ∴=∴12AB CD ==. 故答案为:12;12.(2)成立,理由如下: 211:4C y x =,0x >,1y ∴=;2y =(A x ∴,(,B x ;AB ∴=;22:C y x =,0x >,1y ∴=2y =(A x ∴,(,B x ;AB ∴=12AB CD ==. 【探究与应用】(3)AOB ∆的面积12h AB =⋅;COD ∆的面积12h CD =⋅,111::222AOB COD S S h AB h CD ∆∆∴=⋅⋅=.故答案为:12. (4)①AOB ∆是直角三角形时,AM BM == OM AM ∴=,x ∴=,解得14x =或0x =(舍去); 14OM ∴=,12AB =,1CD =,11111112424216COD AOB S S S ∆∆∴=-=⨯⨯-⨯⨯=;当COD ∆中有一个是直角三角形时,CM DM =OM AM ∴=,则x =1x =或0x =(舍去); 1OM ∴=,1AB =,2CD =,1111211222COD AOB S S S ∆∆∴=-=⨯⨯-⨯⨯=.∴面积差为116或12; 【联想与拓展】(5)由题意23:C y mx =、24:(0)C y nx m n =<<,(,0)M k 在x 轴正半轴上, 当x k =时,2y mk =,2y nk =,解得y =或y =(A k ∴,(,B k ,(C k ,(,D k ,//AE x 轴,//DF x 轴,(mk E n ∴,(nkF m,, mk AE k n ∴=-,nkDF k m=-, 1()2PAE mk S k n ∆∴=-,1()2PDF nk S k m∆=-, PAE ∆与PDF ∆面积的比值1:3,11[()]:[()]1:322mk nkk k n m∴--=, 整理得,339n m =. 故答案为:339n m =.18.阅读下面的材料,再回答问题.我们知道利用换元法与整体的思想方法可以解方程,分解因式等等,还可以求函数的解析式等.一般地,函数解析式表达形式为:1y x =+,223y x x =+-,3y x =.还可以表示为:()1f x x =+,2()23f x x x =+-,3()f x x=的形式.我们知道()1f x x =+和()1f t t =+和()1f u u =+等表达的意思一样的.举个例子:2(1)f x x +=,设1x t +=,则1x t =-,2()(1)f t t =-,即2()(1)f x t =-.已知:函数2(1)2f x x x +=-,求函数()f x 的解析式.分析:我们可以用换元法设1x t +=来进行求解.解:设1x t +=,则1x t =-,所以222()(1)2(1)212243f t t t t t t t t =---=-+-+=-+.所以2()43f x x x =-+.看完后,你学会了这种方法了吗?亲自试一试吧! (1)若()1f x x =-,求(3)f x -; (2)(21)1f x x +=+,求()f x 的解析式;(3)若2(1)32f x x x -=-+,求(2)f x +的解析式. 【解答】(1)令3t x =-,则()(3)1314t x f t f x x -=-==--=- (2)令21x t +=,则12t x -=,所以11()122t t f t -+=+=,所以1()2x f x += (3)同理(2),可先求出()(1)23(1)22f x x x x x =+-++=-,再可求出(2)(2)2(2)232f x x x x x +=+-+=++19.阅读理解:对于任意正实数a 、b ,2()0a b -,20a ab b ∴-,2a b ab ∴+,只有当a b =时,等号成立.结论:在2(a b ab a +、b 均为正实数)中,若ab 为定值p ,则2a b p +,只有当a b =时,a b +有最小值2p(1)根据上述内容,回答下列问题:若0m >,只有当m = 3 时,9m m+有最小值 . (2)探索应用:如图,已知(3,0)A -,(0,4)B -,P 为双曲线12(0)y x x=>图象上的任意一点,过点P 作PC x ⊥轴于点C ,PD y ⊥轴于点D .求四边形ABCD 面积的最小值. (3)判断此时四边形ABCD 的形状,说明理由.【解答】解:(1)根据题意知,992m m m m +⋅9m m=. 当9m m=时, 解得:3m =或3-(不合题意舍去), 故当3m =时,9m m+有最小值,其最小值是6. 故答案是:3;6;(2)P 为双曲线12(0)y x x=>图象上的任意一点, ∴不妨可设12(,)p x x , 则(,0)C x ,12(0,)D x. ADC ABC ABCD S S S ∆∆=+四边形.∴1122ABCD S AC OD AC OB =⨯+⨯四边形 1()2AC OD OB =⋅+ 112(3)(4)2x x =+⋅+ 18212x x=++ 92()12x x=++.又90,0xx>>,∴由阅读理解中的结论可知:9926x x x x+⋅=, 所以当9(0)x x x=>时,即当3x =时,261224ABCD S =⨯+=四边形的最小值;(3)此时四边形ABCD 是菱形,理由如下:由(2)可知:当3x =时,此时点P 的坐标为(3,4)P ,∴5AB ==,5BC ==,5CD =,5DA =,AB BC CD AD ∴===,∴四边形ABCD 是菱形(四条边相等的四边形是菱形).另解:证34OA OC OD OB ====得四边形ABCD 是平行四边形, 再由AC BD ⊥知平行四边形ABCD 是菱形.20.已知抛物线2(0)y ax bx c a =++≠与y 轴交于点C ,与x 轴交于点A 和B (点A 在点B 左侧),若ABC ∆是等腰三角形,则称抛物线2(0)y ax bx c a =++≠是“理想抛物线”. (1)判断抛物线24y x =-+是否为“理想抛物线”,并说明理由; (2)已知经过点(3,0)B 的抛物线2(0)y ax bx c a =++>是“理想抛物线”.①若点1(2,)P k y -,(1Q k -,211)(0)y y y ⋅>是抛物线上另两点,满足当4k >时,PB 与AQ 的交点始终在抛物线的对称轴上,且线段AC 的垂直平分线恰好经过点B ,求此抛物线的解析式;②是否存在整数c 使得||ABC S cn ∆=,且502n <?若存在,求出所有满足条件的整数c 的值;若不存在,请说明理由.【解答】解:(1)抛物线24y x =-+是“理想抛物线”,理由如下: 抛物线24y x =-+的对称轴为直线:0x =,∴该抛物线是关于y 轴对称,则点A 、B 关于y 轴对称,OC ∴垂直平分AB ,ABC ∴∆为等腰三角形,24y x ∴=-+是为“理想抛物线”;(2)①要满足ABC ∆是等腰三角形,则AB 可能为底边,也可能为腰; 当AB 为底边时,AC AB =,点A 、B 关于y 轴对称, 此时(3,0)B ,(3,0)A -,当4k >时,22k -<-,13k ->, 2P x ∴<-,3Q x >,AC 的垂直平分线恰好经过点B ,6BC AB ∴==,又ABC ∆是等腰三角形, 6AC AB BC ∴===, ABC ∴∆是等边三角形;又132OA AB ==,OC ∴=,(0,C ∴-;∴抛物线的交点式为:(3)(3)y a x x =+-,把点C 坐标代入,(03)(03)a -=+-.a ∴=(负值舍去),∴此时抛物线的解析式为:3)(3)y x x =+-; 当AB 为腰时,AB CB =,仍满足2P x <-,3Q x >, 120y y ⋅>,0a >,0P y ∴>,0Q y >,∴必有点P 在A 点上方,则(2,0)A -,对称轴直线12x =, 5CB AB ∴==, 3OB =,4OC ∴=,(0,4)C -,4c =-,又A B c x x a ⋅=,得23a =,32b =-;∴此时抛物线的解析式为:223432y x x =--; ②存在整数c 使得||ABC S cn ∆=,理由如下:OC 是ABC ∆的高,且0a >,开口向上,抛物线与x 轴有两个交点,1(3)||||2ABC A C S x y cn ∆∴=⋅-⋅=, 1||(3)2A n x ∴=⋅-, 502n<, 150(3)22A x ∴<⋅-, 解得23A x -<,则需要分两种情况,当20A x -<时,0c <,此时BA BC =,|3|A x ∴-=,解得22(3)9A c x =--,20A x -<,20(3)916A x ∴<--,即2016c <,此时,存在1c =-或2c =-或3c =-或4c =-满足题意; 当03A x <<时,0c >,此时,AB AC =,|3|A x ∴-296A c x =-,03A x <<,9969A x ∴-<-<,即209c <<,此时,存在1c =或2c =满足题意;综上可知,存在整数c 是使得||ABC S cn ∆=,且502n <,此时c 的值为1-或2-或3-或4-或1或2.21.对某一个函数给出如下定义:对于函数y ,若当a x b ,函数值y 满足m y n ,且满足()n m k b a -=-,则称此函数为“k 系和谐函数”.(1)已知正比例函数5(14)y x x =为“k 系和谐函数”,请求出k 的值;(2)若一次函数3(14)y px x =-为“3系和谐函数”,求p 的值;(3)已知二次函数22242y x ax a a =-+++,当11x -时,y 是“k 系和谐函数”,求k 的取值范围.【解答】解:(1)14x ,520y ∴,205(41)k ∴-=-,5k ∴=;(2)14x ,当0p >时,343p y p --,(43)(3)33p p ∴---=⨯,3p ∴=;当0p <时,433p y p --,3(43)33p p ∴---=⨯,3p ∴=-;综上所述:3p =±;(3)22222422()32y x ax a a x a a a =-+++=--++,当1x =时,262y a a =+-,当1x =-时,222y a a =--,当x a =时,232y a a =+,①当1a <-时,226222a a y a a +---,22(22)(62)(11)a a a a k ∴---+-=+,4k a ∴=-,4k ∴>;②当1a >时,226222a a y a a +---,22(62)(22)(11)a a a a k ∴+----=+,4k a ∴=,4k ∴>;③当10a -<时,226232a a y a a +-+,22(32)(62)(11)a a a a k ∴+-+-=+,2(1)k a ∴=-,14k ∴;④当01a 时,222232a a y a a --+,22(32)(22)(11)a a a a k ∴+---=+,2(1)k a ∴=+,14k ∴;综上所述:1k .22.【阅读理解】已知关于x ,y 的二次函数22222()2y x ax a a x a a =-++=-+,它的顶点坐标为(,2)a a ,故不论a 取何值时,对应的二次函数的顶点都在直线2y x =上,我们称顶点位于同一条直线上且形状相同的抛物线为同源二次函数,该条直线为根函数.【问题解决】(1)若二次函数223y x x =+-和243y x x =---是同源二次函数,求它们的根函数;(2)已知关于x ,y 的二次函数22:4441C y x mx m m =-+-+,完成下列问题: ①求满足二次函数C 的所有二次函数的根函数;②若二次函数C 与直线3x =-交于点P ,求点P 到x 轴的最小距离,并求出此时m 的值.【解答】解:(1)2223(1)4y x x x =+-=+-,∴该抛物线的顶点为(1,4)--;2243(2)1y x x x =---=-++,∴该抛物线的顶点坐标为(2,1)-.设经过点(1,4)--和点(2,1)-的直线的解析式为y kx b =+,∴421k b k b -+=-⎧⎨-+=⎩,。

中考数学压轴题之新定义经典题型

中考数学压轴题之新定义经典题型

中考数学压轴题之新定义经典题型【01】.在平面直角坐标系xOy 中,C 的半径为r ,P 是与圆心C 不重合的点,点P 关于O 的反称点的定义如下:若在射线CP 上存在一点P ¢,满足2CP CP r ¢+=,则称P ¢为点P 关于C 的反称点,下图为点P 及其关于C 的反称点P ¢的示意图。

的示意图。

(1)(1)当当O 的半径为1时。

时。

①分别判断点(2,1)M ,3(,0)2N ,(1(1,,3)T 关于O 的反称点是否存在,若存在?在?求其坐标;求其坐标;②点P 在直线2y x =-+上,若点P 关于O 的反称点P ¢存在,且点P ¢不在x 轴上,求点P 的横坐标的取值范围;的横坐标的取值范围; (2)(2)当当C 的圆心在x 轴上,轴上,半径为半径为1,直线3233y x =-+与x 轴,轴,y y 轴分别交于点A ,B ,若线段AB 上存在点P ,使得点P 关于C 的反称点P ¢在C 的内部,求圆心C 的横坐标的取值范围。

的横坐标的取值范围。

yPOCx1 1【02】.在平面直角坐标系xOy 中,点P 的坐标为()11,x y ,点Q 的坐标为()22,x y ,且12x x ¹,12y y ¹,若,P Q 为某个矩形的两个顶点,为某个矩形的两个顶点,且该矩形的边均与某条坐标轴且该矩形的边均与某条坐标轴垂直,则称该矩形为点P Q ,的“相关矩形”的“相关矩形”..下图为点,P Q 的“相关矩形”的示意图意图. .(1)已知点A 的坐标为()10,,①若点B 的坐标为()31,,求点,A B 的“相关矩形”的面积;的“相关矩形”的面积;②点C 在直线3x =上,若点,A C 的“相关矩形”为正方形,求直线AC 的表达式;式;(2)O ⊙的半径为2,点M 的坐标为(),3m .若在O ⊙上存在一点N ,使得点,M N的“相关矩形”为正方形,求m 的取值范围的取值范围. .【03】对于平面直角坐标系xOy 中的点P 和⊙C ,给出如下定义:若存在过点P 的直线l 交⊙C 于异于点P 的A ,B 两点,在P ,A ,B 三点中,位于中间的点恰为以另外两点为端点的线段的中点时,则称点P 为⊙C 的相邻点,直线l 为⊙C 关于点P 的相邻线的相邻线. . (1)当⊙O 的半径为1时,时, ○1分别判断在点D (,14),E (0,-3),F (4,0)中,是⊙O 的相邻点有____________________;;○2请从○1中的答案中,任选一个相邻点,在图1中做出⊙O 关于它的一条相邻线,并说明你的作图过程相邻线,并说明你的作图过程. .○3点P 在直线3y x =-+上,若点P 为⊙O 的相邻点,求点P 横坐标的取值范围;范围;(2)⊙C 的圆心在x 轴上,半径为1,直线3233y x =-+与x 轴,y 轴分别交于点M ,N ,若线段..MN 上存在⊙C 的相邻点P ,直接写出圆心C 的横坐标的取值范围.范围.21备用图1备用图2 图1【04】定义:y 是一个关于x 的函数,若对于每个实数x ,函数y 的值为三数2+x ,12+x ,205+-x 中的最小值,则函数y 叫做这三数的最小值函数.(1)画出这个最小值函数的图象,并判断点A (1, 3)是否为这个)是否为这个最小值函数图象上的点;图象上的点;(2)设这个最小值函数图象的最高点为B ,点A (1, 3),动点M (m ,m ).①直接写出△ABM 的面积,其面积是的面积,其面积是 ; ②若以M 为圆心的圆经过B A ,两点,写出点M 的坐标;的坐标;③以②中的点M 为圆心,以2为半径作圆为半径作圆. . 在此圆上找一点P ,使22PA PB +的值最小,直接写出此最小值的值最小,直接写出此最小值. .【05】在平面直角坐标系xOy 中,对于点P 和图形W ,如果线段OP 与图形W 无公共点,则称点P 为关于图形W 的“阳光点”;如果线段OP 与图形W 有公共点,则称点P 为关于图形W 的“阴影点”. (1)如图1,已知点()13A ,,()11B ,,连接AB①在()11,4P ,()21,2P ,()32,3P ,()42,1P 这四个点中,关于线段AB 的“阳光点”是;是;②线段11A B AB P ;11A B 上的所有点都是关于线段AB 的“阴影点”,且当线段11A B 向上或向下平移时,都会有11A B 上的点成为关于线段AB 的“阳光点”.若11A B 的长为4,且点1A 在1B 的上方,则点1A 的坐标为的坐标为_________________________________________________________;; (2)如图2,已知点()13C ,,C e 与y 轴相切于点D .若E e 的半径为32,圆心E 在直线343l y x =-+:上,且E e 上的所有点都是关于C e 的“阴影点”,求圆心E 的横坐标的取值范围;的横坐标的取值范围;(3)如图3,M e 的半径是3,点M 到原点的距离为5.点N 是M e 上到原点距离最近的点,点Q 和T 是坐标平面内的两个动点,且M e 上的所有点都是关于NQT D 的“阴影点”,直接写出NQT D 的周长的最小值.的周长的最小值.图1 图2 图3yxB A OyxCOD yx11O【06】给出如下规定:在平面直角坐标系xOy 中,对于点P (x ,y ),以及两个无公共点的图形1W 和2W ,若在图形1W 和2W 上分别存在点M (1x ,1y )和N (2x ,2y ),使得P 是线段MN 的中点,则称点M 和N 被点P “关联”,并称点P 为图形1W 和2W 的一个“中位点”,此时P ,M ,N 三个点的坐标满足122x x x +=,122y yy +=.(1)已知点(0,1),(4,1),(3,1),(3,2)A B C D --,连接AB ,CD .①对于线段AB 和线段CD ,若点A 和C 被点P “关联”,则点P 的坐标为____________________;; ②线段AB 和线段CD 的一个“中位点”是1(2,)2Q -,求这两条线段上被点Q “关联”的两个点的坐标;“关联”的两个点的坐标;(2)如图1,已知点R (-(-2,02,02,0)和抛物线)和抛物线1W :22y x x =-,对于抛物线1W 上的每一个点M ,在抛物线2W 上都存在点N ,使得点N 和M 被点R “关联”,请在图1中画出符合条件的抛物线2W ;(3)正方形EFGH 的顶点分别是(4,1),(4,1),(2,1),(2,1)E F G H ------,⊙T 的圆心为(3,0)T ,半径为1.请在图2中画出由正方形EFGH 和⊙T 的所有“中位点”组成的图形(若涉及平面中某个区域时可以用阴影表示),并直接写出该图形的面积.并直接写出该图形的面积.图1 图2R【06】在平面直角坐标系中,⊙C 的半径为r ,P 是与圆心C 不重合的点,点P 关于⊙C 的限距点的定义如下:若为直线PC 与⊙C 的一个交点,满足,则称为点P 关于⊙C 的限距点,右图为点P 及其关于⊙C 的限距点的示意图.的示意图. (1)当⊙O 的半径为1时.时.①分别判断点M ,N ,T 关于⊙O 的限距点是否存在?若存在,求其坐标;在?若存在,求其坐标;②点D 的坐标为(的坐标为(2,02,02,0)),DE ,DF 分别切⊙O 于点E ,点F ,点P 在△DEF 的边上的边上..若点P 关于⊙O 的限距点存在,求点的横坐标的取值范围;取值范围;(2)保持()保持(11)中D ,E ,F 三点不变,点P 在△DEF 的边上沿E →F →D →E的方向的方向运动,⊙C 的圆心C 的坐标为(1,01,0)),半径为r .请从下面两个问题中任选一个作答一个作答. .温馨提示:答对问题1得2分,答对问题2得1分,两题均答不重复计分.问题1问题2若点P 关于⊙C 的限距点存在,且随点P 的运动所形成的路径长为,则r 的最小值为的最小值为______________________________.. 若点P 关于⊙C 的限距点不存在,则r 的取值范围为的取值范围为________. ________.xOy P ¢2r PP r ¢££P ¢P¢(3,4)5(,0)2(1,2)P ¢P ¢P ¢P ¢r p P¢【07】对于某一函数给出如下定义:若存在实数p ,当其自变量的值为p 时,其函数值等于p ,则称p 为这个函数的不变值. 在函数存在不变值时,该函数的最大不变值与最小不变值之差q 称为这个函数的不变长度.特别地,当函数只有一个不变值时,其不变长度q 为零为零..例如,下图中的函数有0,1两个不变值,其不变长度q 等于1.(1)分别判断函数1y x =-,1y x=,2y x =有没有不变值?如果有,直接写出其不变长度;其不变长度;(2)函数22y x bx =-.①若其不变长度为零,求b 的值;的值;②若13b ££,求其不变长度q 的取值范围;的取值范围;(3)记函数22()y x x x m =-³的图象为1G ,将1G 沿x=m 翻折后得到的函数图象记为2G .函数G 的图象由 1G 和2G 两部分组成,若其不变长度q 满足03q ££,则m 的取值范围为的取值范围为 . .【08】P 是⊙O 内一点,过点P 作⊙O 的任意一条弦AB ,我们把P A PB ×的值称为点P 关于⊙O 的“幂值”.(1)⊙O 的半径为5,OP = 3.①如图1,若点P 恰为弦AB 的中点,则点P 关于⊙O 的“幂值”为________________;; ②判断当弦AB 的位置改变时,点P 关于⊙O 的“幂值”是否为定值,若是定值,证明你的结论;若不是定值,求点P 关于⊙O 的“幂值”的取值范围.的取值范围.(2)若⊙O 的半径为r ,OP = d ,请参考(,请参考(11)的思路,用含r 、d 的式子表示点P 关于⊙O 的“幂值”或“幂值”的取值范围的“幂值”或“幂值”的取值范围________________________;; (3)在平面直角坐标系xOy 中,⊙O 的半径为4,若在直线33y x b =+上存在点P ,使得点P 关于⊙O 的“幂值”为1313,,请写出b 的取值范围的取值范围________________________..图1POBAO备用图备用图【09】在平面直角坐标系xOy 中,中,图形图形W 在坐标轴上的投影长度定义如下:设点),(11y x P ,),(22y x Q 是图形W 上的任意两点.若21x x -的最大值为m ,则图形W 在x 轴上的投影长度m l x =;若21y y -的最大值为n ,则图形W 在y 轴上的投影长度n l y =.如图,图形W 在x 轴上的投影长度213=-=xl ;在y 轴上的投影长度404=-=y l .(1)已知点)3,3(A ,)1,4(B .如图1所示,若图形W 为△OAB ,则=xl ,=y l .(2)已知点)0,4(C ,点D 在直线26y x =-+上,若图形W 为△OCD .当y x l l =时,求点D 的坐标.的坐标.(3)若图形W 为函数2x y =)(b x a ££的图象,其中0a b £<.当该图形.当该图形满足1£=y x l l 时,请直接写出a 的取值范围.的取值范围.x yO BA 1234123x y O 1231234图1【10】.在平面直角坐标系xOy 中,对图形W 给出如下定义:若图形W 上的所有点都在以原点为顶点的角的内部或边界上,在所有满足条件的角中,其度数的最小值称为图形的坐标角度,例如,下图中的矩形ABCD 的坐标角度是9090°.°.°.(1)已知点)3,0(-A ,)1,1(--B ,在点)0,2(C ,)0,1(-D ,)2,2(-E 中,选一点,使得以该点及点A ,B 为顶点的三角形的坐标角度为9090°,则满足条件°,则满足条件的点为的点为 ; (2)将函数2ax y =)31(££a 的图象在直线1=y 下方的部分沿直线1=y 向上翻折,求所得图形坐标角度m 的取值范围;的取值范围;(3)记某个圆的半径为r ,圆心到原点的距离为l ,且)1(3-=r l ,若该圆的,若该圆的坐标角度°££°9060m .直接写出满足条件的r 的取值范围.的取值范围. O xy D C B A –1–2–312312345。

2023年中考数学专题《 函数中的新定义问题》试卷含答案解析

2023年中考数学专题《 函数中的新定义问题》试卷含答案解析

考点1 一次函数新定义问题【例1】.定义:我们把一次函数y =kx +b (k ≠0)与正比例函数y =x 的交点称为一次函数y =kx +b (k ≠0)的“不动点”.例如求y =2x ﹣1的“不动点”:联立方程,解得,则y =2x ﹣1的“不动点”为(1,1).(1)由定义可知,一次函数y =3x +2的“不动点”为 (﹣1,﹣1) ;(2)若一次函数y =mx +n 的“不动点”为(2,n ﹣1),求m 、n 的值;(3)若直线y =kx ﹣3(k ≠0)与x 轴交于点A ,与y 轴交于点B ,且直线y =kx ﹣3上没有“不动点”,若P 点为x 轴上一个动点,使得S △ABP =3S △ABO ,求满足条件的P 点坐标.解:(1)联立,解得,∴一次函数y =3x +2的“不动点”为(﹣1,﹣1),故答案为:(﹣1,﹣1);(2)∵一次函数y =mx +n 的“不动点”为(2,n ﹣1),∴n ﹣1=2,∴n =3,∴“不动点”为(2,2),∴2=2m +3,解得m =﹣;(3)∵直线y =kx ﹣3上没有“不动点”,∴直线y =kx ﹣3与直线y =x 平行,∴k =1,例题精讲∴y=x﹣3,∴A(3,0),B(0,﹣3),设P(t,0),∴AP=|3﹣t|,∴S△ABP=×|t﹣3|×3,S△ABO=×3×3,∵S△ABP=3S△ABO,∴|t﹣3|=9,∴t=12或t=﹣6,∴P(﹣6,0)或P(12,0).变式训练【变1-1】.在初中阶段的函数学习中,我们经历了“确定函数的表达式一一利用函数图象研究其性质一一运用函数解决问题”的学习过程.在画函数图象时,我们通过描点或平移的方法画出了所学的函数图象.同时,我们也学习了绝对值的意义.结合上面经历的学习过程,现在来解决下面的问题:在函数y=|kx﹣3|+b中,当x=2时,y=﹣4;当x=0时,y=﹣1.(1)求这个函数的表达式;(2)在给出的平面直角坐标系中,请用你喜欢的方法画出这个函数的图象,并写出这个函数的一条性质;(3)已知函数的图象如图所示,结合你所画的函数图象,直接写出不等式的解集.(4)若方程|x2﹣6x|﹣a=0有四个不相等的实数根,则实数a的取值范围是 0<a<9 .解:(1)∵在函数y=|kx﹣3|+b中,当x=2时,y=﹣4;当x=0时,y=﹣1,∴,解得,∴这个函数的表达式是y=|﹣3|﹣4;(2)∵y=|﹣3|﹣4,∴,∴函数y=x﹣7过点(2,﹣4)和点(4,﹣1);函数y=﹣x﹣1过点(0,﹣1)和点(﹣2,2),该函数的图象如图所示,性质:当x>2时,y的值随x的增大而增大;(3)由函数的图象可得,不等式的解集是:1≤x≤4;(4)由|x2﹣6x|﹣a=0得a=|x2﹣6x|,作出y=|x2﹣6x|的图象,由图象可知,要使方程|x2﹣6x|﹣a=0有四个不相等实数根,则0<a<9,故答案为:0<a<9.考点2 反比例函数新定义问题【例2】.探究函数性质时,我们经历了列表、描点、连线画函数图象,观察分析图象特征,概括函数性质的过程,以下是我们研究函数y=x+|﹣2x+6|+m性质及其应用的部分过程,请按要求完成下列各小题.x…﹣2﹣1012345…y…654a21b7…(1)写出函数关系式中m及表格中a,b的值;m= ﹣2 ,a= 3 ,b= 4 ;(2)根据表格中的数据在所给的平面直角坐标系中画出该函数的图象;(3)已知函数y=﹣(x﹣2)2+8的图象如图所示,结合你所画的函数图象,不等式x+|﹣2x+6|+m>﹣(x﹣2)2+8的解集为 x<0或x>4. .解:(1)由表格可知,点(3,1)在该函数图象上,∴将点(3,1)代入函数解析式可得:1=3+|﹣2×3+6|+m,解得:m=﹣2,∴原函数的解析式为:y=x+|﹣2x+6|﹣2;当x=1时,y=3;当x=4时,y=4;∴m=﹣2,a=3,b=4,故答案为:﹣2,3,4;(2)通过列表—描点—连线的方法作图,如图所示;(3)要求不等式x+|﹣2x+6|+m>﹣(x﹣2)2+8的解集,实际上求出函数y=x+|﹣2x+6|+m的图象位于函数y=﹣(x﹣2)2+8图象上方的自变量的范围,∴由图象可知,当x<0或x>4时,满足条件,故答案为:x<0或x>4.变式训练【定义】在平面内,把一个图形上任意一点与另一个图形上任意一点之间的距离的最小值,称为这两个图形之间的距离,即A,B分别是图形M和图形N上任意一点,当AB的长最小时,称这个最小值为图形M与图形N之间的距离.例如,如图1,AB⊥l1,线段AB的长度称为点A与直线l1之间的距离,当l2∥l1时,线段AB 的长度也是l1与l2之间的距离.【应用】(1)如图2,在等腰Rt△BAC中,∠A=90°,AB=AC,点D为AB边上一点,过点D作DE∥BC交AC于点E.若AB=6,AD=4,则DE与BC之间的距离是 ;(2)如图3,已知直线l3:y=﹣x+4与双曲线C1:y=(x>0)交于A(1,m)与B两点,点A与点B之间的距离是 2 ,点O与双曲线C1之间的距离是 ;【拓展】(3)按规定,住宅小区的外延到高速路的距离不超过80m时,需要在高速路旁修建与高速路相同走向的隔音屏障(如图4).有一条“东南﹣西北”走向的笔直高速路,路旁某住宅小区建筑外延呈双曲线的形状,它们之间的距离小于80m.现以高速路上某一合适位置为坐标原点,建立如图5所示的直角坐标系,此时高速路所在直线l4的函数表达式为y=﹣x,小区外延所在双曲线C2的函数表达式为y=(x>0),那么需要在高速路旁修建隔音屏障的长度是多少?解:(1)如图,过点D作DH⊥BC于点H,∵∠A=90°,AB=AC,∴∠B=45°,∵DH⊥BC,∴△BDH是等腰直角三角形,∴DH=BD,∵AB=6,AD=4,∴BD=AB﹣AD=6﹣4=2,∴DH=×2=;故答案为:;(2)把A(1,m)代入y=﹣x+4中,得:m=﹣1+4=3,∴A(1,3),把A(1,3)代入y=,得:3=,∴k=3,∴双曲线C1的解析式为y=,联立,得:﹣x+4=,即x2﹣4x+3=0,解得:x1=1,x2=3,∴B(3,1),∴AB==2;如图,作FG∥AB,且FG与双曲线y=只有一个交点,设直线FG的解析式为y=﹣x+b,则﹣x+b=,整理得:x2﹣bx+3=0,∴Δ=(﹣b)2﹣4×1×3=b2﹣12=0,∴b=2或b=﹣2(不符合题意,舍去),∴直线FG的解析式为y=﹣x+2,由﹣x+2=,解得:x1=x2=,∴K(,),∴OK==;故答案为:2,;(3)如图,设点S(a,b)是双曲线y=(x>0)上任意一点,且a<b,以点S 为圆心,80为半径作⊙S交l4于E,过点S作SF⊥直线l4于F,交y轴于W,SH⊥x轴于H,SG⊥y轴于G,则SG=a,SH=b,ab=2400,∵直线y=﹣x平分第二、四象限角,∴∠FOW=45°,∵∠OFW=∠SGW=90°,∴∠OWF=90°﹣45°=45°,∴∠SWG=∠OWF=45°,∴△WOF 和△SWG 是等腰直角三角形,∴SW =SG ,WF =OW ,∴SF =SW +WF =SG +OW =a +(b ﹣a )=(a +b ),∵EF====,∵OF =OW =(b ﹣a ),∴OE =(b ﹣a )+,设b ﹣a =m (m >0),则OE =m +≤=40,∴需要在高速路旁修建隔音屏障的长度=2OE =2×40=80,答:需要在高速路旁修建隔音屏障的长度是80米.考点3 二次函数新定义问题【例3】.小爱同学学习二次函数后,对函数y =﹣(|x |﹣1)2进行了探究.在经历列表、描点、连线步骤后,得到如图的函数图象.请根据函数图象,回答下列问题:(1)观察探究:①写出该函数的一条性质: 函数图象关于y轴对称 ;②方程﹣(|x|﹣1)2=﹣1的解为: x=﹣2或x=0或x=2 ;③若方程﹣(|x|﹣1)2=m有四个实数根,则m的取值范围是 ﹣1<m<0 .(2)延伸思考:将函数y=﹣(|x|﹣1)2的图象经过怎样的平移可得到函数y1=﹣(|x﹣1|﹣1)2+2的图象?写出平移过程,并直接写出当1<y1≤2时,自变量x的取值范围.解:(1)观察探究:①该函数的一条性质为:函数图象关于y轴对称;②方程﹣(|x|﹣1)2=﹣1的解为:x=﹣2或x=0或x=2;③若方程﹣(|x|﹣1)2=m有四个实数根,则a的取值范围是﹣1<m<0.故答案为:函数图象关于y轴对称;x=﹣2或x=0或x=2;﹣1<m<0.(2)将函数y=﹣(|x|﹣1)2的图象向右平移1个单位,向上平移2个单位可得到函数y1=﹣(|x﹣1|﹣1)2+2的图象,当1<y1≤2时,自变量x的取值范围是﹣1<x<3且x≠1,变式训练【变3-1】.我们定义一种新函数:形如y=|ax2+bx+c|(a≠0,b2﹣4ac>0)的函数叫做“鹊桥”函数.小丽同学画出了“鹊桥”函数y=|ax2+bx+c|的图象(如图所示),下列结论正确的是( )A.图象具有对称性,对称轴是直线x=1.5B.有且只有﹣1≤x≤1时,函数值y随x值的增大而增大C.若a<0,则8a+c>0D.若a<0,则a+b≥m(am+b)(m为任意实数)解:由图象可得,图象具有对称性,对称轴是直线x==1,故选项A错误,不符合题意;当﹣1≤x≤1或x>3时,函数值y随x值的增大而增大,故选项B错误,不符合题意;∵﹣=1,∴b=﹣2a,当x=﹣2时,y=4a﹣2b+c<0,∴4a﹣2b+c=4a﹣2×(﹣2a)+c=4a+4a+c=8a+c<0,故选项C错误,不符合题意;∵y=ax2+bx+c开口向下,对称轴为直线x=1,∴a+b+c≥am2+bm+c(m为任意实数),∴a+b≥m(am+b)+c,故选项D正确,符合题意;故选:D.【变3-2】.已知抛物线y=ax2+c过点A(﹣2,0)和D(﹣1,3)两点,交x轴于另一点B.(1)求抛物线解析式;(2)如图1,点P是BD上方抛物线上一点,连接AD,BD,PD,当BD平分∠ADP时,求P点坐标;(3)将抛物线图象绕原点O顺时针旋转90°形成如图2的“心形”图案,其中点M,N 分别是旋转前后抛物线的顶点,点E、F是旋转前后抛物线的交点.①直线EF的解析式是 y=x ;②点G、H是“心形”图案上两点且关于EF对称,则线段GH的最大值是  .解:(1)∵抛物线y=ax2+c过点A(﹣2,0)和D(﹣1,3)两点,∴,解得,∴抛物线解析式为y=﹣x2+4;(2)过点B作BE⊥x轴交DP延长线于点E,过D作DF⊥x于点F,由y=﹣x2+4,令y=0,则﹣x2+4=0,解得:x1=﹣2,x2=2,则B(2,0),∵DF=3,BF=2﹣(﹣1)=3,∴DF=BF,∴∠DBF=45°,∴∠DBE=45°,又∵DB=DB,BD平分∠ADP,∴△DAB≌△DEB(ASA),∴BA=BE,∵B(2,0),∴E(2,4),设直线DE的解析式为y=kx+b,则,解得,∴直线DE的解析式为y=x+,联立,解得或,则P(,);(3)①∵抛物线关于y轴对称,所以旋转后图形关于x轴对称,∴对于抛物线上任意一点P(a,b)关于原点旋转90°后对应点为P1(b,﹣a)在旋转后图形上,P1(b,﹣a)关于x轴对称的点P2(b,a)在旋转后图形上,∵P(a,b)与P2(b,a)关于y=x对称,∴图形2关于y=x对称,∴直线EF的解析式为y=x,故答案为:y=x;②如图,连接GH,交EF与点K,则GH=2GK,过点G作x轴的垂线,交EF于点I,∴当GK最大时,△GFE面积最大,又∵S△GFE=GI•(x E﹣x F),设G(m,﹣m2+4),则I(m,m),∴GI=y G﹣y I=﹣m2+4﹣m=﹣(m+)2+,∴当m=﹣时,△GFE面积最大,∴G(﹣,),由①可知G(﹣,)关于y=x的对称点H(,﹣),∴K(,),∴GK==,∴GH=2GK=,∴GH的最大值为,故答案为:.1.对于实数a,b,定义符号max|a,b|,其意义为:当a≥b时,max|a,b|=a,当a<b时,max|a,b|=b.例如max|2,﹣1|=2,若关于x的函数y=max|2x﹣1,﹣x+5|,则该函数的最小值为( )A.B.1C.D.3解:当2x﹣1≥﹣x+5时,即x≥2,y=max|2x﹣1,﹣x+5|=2x﹣1,此时x=2时,y有最小值,最小值为2×2﹣1=3;当2x﹣1≤﹣x+5时,即x≤2,y=max|2x﹣1,﹣x+5|=﹣x+5,此时x=2时,y有最小值,最小值为﹣2+5=3;综上所述,该函数的最小值为3.故选:D.2.在平面直角坐标系xOy中,对于点P(a,b),若点P′的坐标为(ka+b,a+)(其中k为常数且k≠0),则称点P′为点P的“k关联点”.已知点A在反比例函数y=的图象上运动,且点A是点B的“关联点”,当线段OB最短时,点B的坐标为 (,)或(﹣,﹣) .解:设B(x,y),∵点A是点B的“关联点”,∴A(x+y,x+)∵点A在函数y=(x>0)的图象上,∴(x+y)(x+)=,即:x+y=或x+y=﹣,当点B在直线y=﹣x+上时,设直线y=﹣x+与x轴、y轴相交于点M、N,则M(1,0)、N(0,),当OB⊥MN时,线段OB最短,此时OB==,由∠NMO=60°,可得点B(,);设直线y=﹣x﹣时,同理可得点B(﹣,﹣);故答案为:(,)或(﹣,﹣).3.定义:由a,b构造的二次函数y=ax2+(a+b)x+b叫做一次函数y=ax+b的“滋生函数”,一次函数y=ax+b叫做二次函数y=ax2+(a+b)x+b的“本源函数”(a,b为常数,且a≠0).若一次函数y=ax+b的“滋生函数”是y=ax2﹣3x+a+1,那么二次函数y=ax2﹣3x+a+1的“本源函数”是 y=﹣2x﹣1 .解:∵y=ax+b的“滋生函数”是y=ax2﹣3x+a+1,∴ax2﹣3x+a+1=ax2+(a+b)x+b,即,解得,∴y=ax2﹣3x+a+1的“本源函数”是y=﹣2x﹣1,故答案为:y=﹣2x﹣1.4.在平面直角坐标系中,如果一个点的横坐标与纵坐标相等,则称该点为“不动点”.例如(﹣3,﹣3)、(1,1)、(2023,2023)都是“不动点”.已知双曲线.(1)下列说法不正确的是 C .A.直线y=x的图象上有无数个“不动点”B.函数的图象上没有“不动点”C.直线y=x+1的图象上有无数个“不动点”D.函数y=x2的图象上有两个“不动点”(2)求双曲线上的“不动点”;。

2023中考数学专项: 新定义型二次函数问题(重点突围)(学生版)

2023中考数学专项: 新定义型二次函数问题(重点突围)(学生版)

专题20新定义型二次函数问题【中考考向导航】目录【直击中考】 (1)【考向一新定义型二次函数问题】 (1)【直击中考】【考向一新定义型二次函数问题】求解体验:(1)已知抛物线23y x bx =-+-经过点(1,0-心对称的抛物线表达式是.抽象感悟:我们定义:对于抛物线(2y ax bx c a =++线,则我们又称抛物线为抛物线y 的“衍生抛物线(2)已知抛物线225y x x =--+关于点(0,m【变式训练】m轴对称且对称轴相同的两条抛物线叫作(1)请将点Q “去隐”,得到该抛物线表达式;(2)记(1)中抛物线为W (如图),W 与x 轴交于点A ,B (A 在B 的左侧),其顶点为点平移后的抛物线W '始终过点A ,点C 的对应点为C '.ⅰ)试确定点C '运动路径所对应的函数表达式;ⅱ)在直线2x =-的左侧,是否存在点C ',使ACC '△为等腰三角形?若存在,求出点说明理由.5.(2022秋·湖南长沙·九年级长沙市开福区青竹湖湘一外国语学校校考阶段练习)定义若抛物线2y ax bx c =++(0a ≠)与直线有两个交点,则称抛物线为直线的“双幸运曲线”,其交点为该直线的“幸运点”.(1)已知直线解析式为1y x =-,下列抛物线为该直线的“双幸运曲线”的是________;(填序号)①21y x =+;②22y x x =+-;③2y x x =-;(2)如图,已知直线l :4y x =-,抛物线23y x x =--为直线l 的“双幸运曲线”,“幸运点”分别为A 、B ,在直线l 上方抛物线部分是否存在点P 使△PAB 面积最大,若存在,请求出面积的最大值和点P 坐标,若不存在,请说明理由;(3)已知x 轴的“双幸运曲线”2y ax bx c =++(0a b >>)经过点(1,3),(0,2-),在x 轴的“幸运点”分别为M 、N ,试求MN 的取值范围.6.(2022·湖南湘西·统考中考真题)定义:由两条与x轴有着相同的交点,并且开口方向相同的抛物线所围成的封闭曲线称为“月牙线”,如图①,抛物线C1:y=x2+2x﹣3与抛物线C2:y=ax2+2ax+c组成一个开口向上的“月牙线”,抛物线C1和抛物线C2与x轴有着相同的交点A(﹣3,0)、B(点B在点A右侧),与y轴的交点分别为G、H(0,﹣1).(1)求抛物线C2的解析式和点G的坐标.(2)点M是x轴下方抛物线C1上的点,过点M作MN⊥x轴于点N,交抛物线C2于点D,求线段MN与线段DM 的长度的比值.(3)如图②,点E是点H关于抛物线对称轴的对称点,连接EG,在x轴上是否存在点F,使得△EFG是以EG 为腰的等腰三角形?若存在,请求出点F的坐标;若不存在,请说明理由.7.(2022秋·安徽淮北·九年级淮北市第二中学校联考阶段练习)在数学活动课上,小明兴趣小组对二次函数的图象进行了深入的探究,如果将二次函数()20y ax bx c a =++≠图象上的点(),A x y 的横坐标不变,纵坐标变为A 点的横、纵坐标之和,就会得到的一个新的点()1,A x x y +,他们把这个点1A 定义为点A 的“简朴”点.他们发现:二次函数()20y ax bx c a =++≠所有简朴点构成的图象也是一条抛物线,于是把这条抛物线定义为()20y ax bx c a =++≠的“简朴曲线”.例如,二次函数21y x x =++的“简朴曲线”就是22121y x x x x x =+++=++,请按照定义完成:(1)点()1,2P 的“简朴”点是________;(2)如果抛物线()2730y ax x a =-+≠经过点()1,3M -,求该抛物线的“简朴曲线”;(3)已知抛物线2y x bx c =++图象上的点(),B x y 的“简朴点”是()11,1B -,若该抛物线的“简朴曲线”的顶点坐标为(),m n ,当03c ≤≤时,求n 的取值范围.8.(2022春·九年级课时练习)定义:若二次函数()21y a x h k =-+的图象记为1C ,其顶点为()A h k ,,二次函数()22y a x k h =-+的图象记为2C ,其顶点为()B k h ,,我们称这样的两个二次函数互为“反顶二次函数”.分类一:若二次函数()211:C y a x h k =-+经过2C 的顶点B ,且()222:C y a x k h =-+经过1C 的顶点A ,我们就称它们互为“反顶伴侣二次函数”.(1)所有二次函数都有“反顶伴侣二次函数”是______命题.(填“真”或“假”)(2)试求出245y x x =-+的“反顶伴侣二次函数”.(3)若二次函数1C 与2C 互为“反顶伴侣二次函数”,试探究1a 与2a 的关系,并说明理由.(4)分类二:若二次函数()211:C y a x h k =-+可以绕点M 旋转180°得到二次函数2C ;()22y a x k h =-+,我们就称它们互为“反顶旋转二次函数”.①任意二次函数都有“反顶旋转二次函数”是______命题.(填“真”或“假”)②互为“反顶旋转二次函数”的对称中心点M 有什么特点?③如图,1C ,2C 互为“反顶旋转二次函数”,点E ,F 的对称点分别是点Q ,G ,且EF GQ x ∥∥轴,当四边形EFQG 为矩形时,试探究二次函数1C ,2C 的顶点有什么关系.并说明理由.t轴对称且对称轴相同的两条抛物线叫作。

中考复习25题新定义题型

中考复习25题新定义题型

中考题号复习:25题题型分析:1. 交点类问题:**点(联立解析式,运用韦达定理)2. 两个函数关系类问题:**函数(会运用到交点和最值,二次函数与x 轴交点的分布区间)3. 单个函数的性质:**函数,**点,**数(增减性、最值、斜率公式、弦长公式、点到直线的距离公式)公式分类1. 斜率公式:()()2211,,,y x B y x A 2121x x y y k --=2. 弦长公式:()()2211,,,y x B y x A 在直线b kx y +=上2121x x k AB -+=3. 点到直线的距离公式:()00,y x A 到直线b kx y +=的距离2001kb y kx d ++-=4. 二次函数最值求解5. 一元二次方程根区间分布情况一、交点类问题1. 运用联立解析式和韦达定理例1 在平面直角坐标系中,我们不妨把横坐标和纵坐标相等的点称为“梦之点”.例如点)1,1(--,)0,0(,)2,2(,…都是“梦之点”.显然,这样的“梦之点”有无数个.(1)若点P (2,m )是反比例函数ny x=(n 为常数,n ≠0)的图象上的“梦之点”,求这个反比例函数的解析式;(2)函数31y kx s =+-(k ,s 是常数)的图象上存在“梦之点”吗?若存在,请求出“梦之点”的坐标;若不存在,说明理由;(3)若二次函数21y ax bx =++(a ,b 是常数,a >0)的图象上存在两个不同的“梦之点”A 11(,)x x ,B 22(,)x x ,且满足2-<1x <2,12x x -=2,令4815722+-=b b t ,试求t 的取值范围.“诚信点”在平面直角坐标系中,如果点P 的纵坐标是横坐标的二倍,则称点P 是“诚信点”。

例如点())22,2(),4,2(,2,1--,…都是“诚信点”,显然“诚信点”有无数个。

(1)若点P (6,m )是反比例函数xny =(n 为常数,0≠n )的图像上的“诚信点”,求这个反比例函数的解析式;(2)函数q p q px y ,(2+=为常数)的图像上存在“诚信点”吗?若存在,请求出“诚信点”的坐标。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3实数b的取值范围.变式如果二次函数的二次项系数为l,则此二次函数可表示为y=x2+px+q,我们称[p,q]为此函数的特征数,如函数y=x2+2x+3的特征数是[2,3].(1)若一个函数的特征数为[-2,1],求此函数图象的顶点坐标.(2)探究下列问题:①若一个函数的特征数为[4,-1],将此函数的图象先向右平移1个单位,再向上平移1个单位,求得到的图象对应的函数的特征数.②若一个函数的特征数为[2,3],问此函数的图象经过怎样的平移,才能使得到的图象对应的函数的特征数为[3,4]?例3.如图1,抛物线y =ax 2+bx +c (a >0)的顶点为M ,直线y =m 与x 轴平行,且与抛物线交于点A ,B ,若△AMB 为等腰直角三角形,我们把抛物线上A ,B 两点之间的部分与线段AB 围成的图形称为该抛物线对应的准蝶形,线段AB 称为碟宽,顶点M 称为碟顶,点M 到线段AB 的距离称为碟高.(1)抛物线212y x =对应的碟宽为 ;抛物线y =4x 2对应的碟宽为 ;抛物线y =ax 2(a >0)对应的碟宽为 ;抛物线y =a (x -2)2+3(a >0)对应的碟宽为 ;(2)抛物线2543y ax ax =--(a >0)对应的碟宽为6,且在x 轴上,求a 的值;(3)将抛物线y =a n x 2+b n x +c n (a n >0)的对应准蝶形记为F n (n =1,2,3…),定义F 1,F 2,…,F n 为相似准蝶形,相应的碟宽之比即为相似比.若F n 与F n ﹣1的相似比为12,且F n 的碟顶是F n ﹣1的碟宽的中点,现将(2)中求得的抛物线记为y 1,其对应的准蝶形记为F 1. ①求抛物线y 2的表达式;②若F 1的碟高为h 1,F 2的碟高为h 2,…F n 的碟高为h n ,则h n = ,F n 的碟宽有端点横坐标为2;若F 1,F 2,…,F n 的碟宽右端点在一条直线上,请直接写出该直线的表达式;若不是,请说明理由。

例4.如图①,直线l:y=mx+n(m<0,n>0)与x,y轴分别相交于A,B两点,将△AOB 绕点O逆时针旋转90°得到△COD,过点A,B,D的抛物线P叫做l的关联抛物线,而l 叫做P的关联直线.(1)若l:y=-2x+2,则P表示的函数解析式为;若P:y=-x2-3x+4,则l 表示的函数解析式为.(2)求P的对称轴(用含m,n的代数式表示);(3)如图②,若l:y=-2x+4,P的对称轴与CD相交于点E,点F在l上,点Q在P的对称轴上.当以点C,E,Q,F为顶点的四边形是以CE为一边的平行四边形时,求点Q的坐标;(4)如图③,若l:y=mx-4m,G为AB中点,H为CD中点,连接GH,M为GH中点,连接OM.若OM l,P表示的函数解析式.求出点P的坐标.试题解析:(1)根据题意,得,∵,∴.∴.根据定义,是“奇特函数”.(2)①由题意得,.易得直线OB解析式为,直线CD解析式为,由解得.∴点E(3,1).将B(9,3),E(3,1)代入函数,得,整理得,解得.∴这个“奇特函数”的解析式为.②∵可化为,∴根据平移的性质,把反比例函数的图象向右平移6个单位,再向上平移2个单位就可得到.∴关于点(6,2)对称.∵B(9,3),E(3,1),∴BE中点M(6,2),即点M是的对称中心.∴以B、E、P、Q为顶点组成的四边形是平行四边形BPEQ或BQEP.由勾股定理得,.设点P到EB的距离为m,∵以B、E、P、Q为顶点组成的四边形面积为,∴.∴点P在平行于EB的直线上.∵点P在上,∴或.解得.∴点P的坐标为或或或.考点:1.新定义和阅读理解型问题;2.平移问题;3.反比例函数的性质;4.曲线上点的坐标与方程的关系;5.勾股定理;6.中心对称的性质;7.平行四边形的判定和性质;8.分类思想的应用.例2【解析】(1)根据函数“特征数”写出函数的解析式,再根据平移后一次函数的变化情况写出函数图象向下平移2个单位的新函数的解析式.(2)判断以A、B、C、D四点为顶点的四边形形状,可根据一次函数图象向下平移2个单位与原函数图象的关系,得出AB=2,并确定为平行四边形,由直线相交计算交点坐标后,求出线段BC=2,再根据菱形的判定(邻边相等的平行四边形是菱形)得出,其周长=2×4=8;(3)根据函数“特征数”写出二次函数的解析式,化为顶点式为y=(x-b)2+,确定二次函数的图象不会经过点B和点C,再将菱形顶点A(0,1),D()代入二次函数解析式得出实数b的取值范围.【解析】(1)y=(1分)“特征数”是的函数,即y=+1,该函数图象向下平移2个单位,得y=.(2)由题意可知y=向下平移两个单位得y=∴AD∥BC,AB=2.∵,∴AB∥CD.∴四边形ABCD为平行四边形.,得C点坐标为(,0),∴D()由勾股定理可得BC=2∵四边形ABCD为平行四边形,AB=2,BC=2∴四边形ABCD为菱形.∴周长为8.(3)二次函数为:y=x2-2bx+b2+,化为顶点式为:y=(x-b)2+,∴二次函数的图象不会经过点B和点C.设二次函数的图象与四边形有公共部分,当二次函数的图象经过点A时,将A(0,1),代入二次函数,解得b=-,b=(不合题意,舍去),当二次函数的图象经过点D时,将D(),代入二次函数,解得b=+,b=(不合题意,舍去),所以实数b的取值范围:.例3【解析】试题分析:(1)根据定义可算出y=ax2(a>0)的碟宽为、碟高为,由于抛物线可通过平移y=ax2(a>0)得到,得到碟宽为、碟高为,由此可得碟宽、碟高只与a有关,与别的无关,从而可得.(2)由(1)的结论,根据碟宽易得a的值.(3)①根据y1,容易得到y2.②结合画图,易知h1,h2,h3,…,h n﹣1,h n都在直线x=2上,可以考虑h n∥h n﹣1,且都过F n﹣1的碟宽中点,进而可得.画图时易知碟宽有规律递减,由此可得右端点的特点.对于“F1,F2,…,F n的碟宽右端点是否在一条直线上?”,我们可以推测任意相邻的三点是否在一条直线上,如果相邻的三个点不共线则结论不成立,反之则成立,所以可以考虑基础的几个图形关系,利用特殊点求直线方程即可.试题解析:(1)4;1;;.∵a>0,∴y=ax2的图象大致如下:其必过原点O,记AB为其碟宽,AB与y轴的交点为C,连接OA,OB.∵△DAB为等腰直角三角形,AB∥x轴,∴OC⊥AB,∴∠OCA=∠OCB=∠AOB=×90°=45°,∴△ACO与△BCO亦为等腰直角三角形,∴AC=OC=BC,∴x A=-y A,x B=y B,代入y=ax2,∴A(﹣,),B(,),C(0,),∴AB=,OC=,即y=ax2的碟宽为.①抛物线y=x2对应的a=,得碟宽为4;②抛物线y=4x2对应的a=4,得碟宽为为;③抛物线y=ax2(a>0),碟宽为;④抛物线y=a(x﹣2)2+3(a>0)可看成y=ax2向右平移2个单位长度,再向上平移3个单位长度后得到的图形,∵平移不改变形状、大小、方向,∴抛物线y=a(x﹣2)2+3(a>0)的准碟形与抛物线y=ax2的准碟形全等,∵抛物线y=ax2(a>0),碟宽为,∴抛物线y=a(x﹣2)2+3(a>0),碟宽为.(2)∵y=ax2﹣4ax﹣,∴由(1),其碟宽为,∵y=ax2﹣4ax﹣的碟宽为6,∴=6,解得A=,∴y=x2﹣x﹣=(x﹣2)2﹣3(3)①∵F1的碟宽:F2的碟宽=2:1,∴=,∵a1=,∴a2=.∵y=(x﹣2)2﹣3的碟宽AB在x轴上(A在B左边),∴A(﹣1,0),B(5,0),∴F2的碟顶坐标为(2,0),∴y2=(x﹣2)2.②∵F n的准碟形为等腰直角三角形,∴F n的碟宽为2h n,∵2h n:2h n﹣1=1:2,∴h n=h n﹣1=()2h n﹣2=()3h n﹣3=…=()n+1h1,∵h1=3,∴h n=.∵h n∥h n﹣1,且都过F n﹣1的碟宽中点,∴h1,h2,h3,…,h n﹣1,h n都在一条直线上,∵h1在直线x=2上,∴h1,h2,h3,…,h n﹣1,h n都在直线x=2上,∴F n的碟宽右端点横坐标为2+.另,F1,F2,…,F n的碟宽右端点在一条直线上,直线为y=﹣x+5.分析如下:考虑F n﹣2,F n﹣1,F n情形,关系如图2,F n﹣2,F n﹣1,F n的碟宽分别为AB,DE,GH;C,F,I分别为其碟宽的中点,都在直线x=2上,连接右端点,BE,EH.∵AB∥x轴,DE∥x轴,GH∥x轴,∴AB∥DE∥GH,∴GH平行且等于FE,DE平行且等于CB,∴四边形GFEH,四边形DCBE都为平行四边形,∴HE∥GF,EB∥DC,∵∠GFI=∠GFH=∠DCE=∠DCF,∴GF∥DC,∴HE∥EB,∵HE,EB都过E点,∴HE,EB在一条直线上,∴F n﹣2,F n﹣1,F n的碟宽的右端点是在一条直线,∴F1,F2,…,F n的碟宽的右端点是在一条直线.∵F1:y1=(x﹣2)2﹣3准碟形右端点坐标为(5,0),F2:y2=(x﹣2)2准碟形右端点坐标为(2+,),∴待定系数可得过两点的直线为y=﹣x+5,∴F1,F2,…,F n的碟宽的右端点是在直线y=﹣x+5上.考点:1、等腰直角三角形;2、二次函数的性质;3多点共线例4解析:(1)求A、B两点的坐标;(2)“蛋线”在第四象限内是否存在一点P,使得∆PBC的面积最大?若存在,求出∆PBC面积的最大值;若不存在,请说明理由;(3)当∆BDM为直角三角形时,请直接写出m的值.(参考公式:在平面直角坐标系中,若M(x1,y1),N(x2,y2),则M、N两点间的距离为MN=.(1)A(-1,0),B(3,0);(2)存在,;(3)-1或-.【解析】试题分析:(1)将y=mx2-2mx-3m化为交点式,即可得到A、B两点的坐标;(2)先用待定系数法得到抛物线C1的解析式,过点P作PQ∥y轴,交BC于Q,用待定系数法得到直线BC的解析式,再根据三角形的面积公式和配方法得到△PBC面积的最大值;(3)先表示出DM2,BD2,MB2,再分两种情况:①DM2+BD2=MB2时;②DM2+MB2=BD2时,讨论即可求得m的值.试题解析:(1)y=mx2-2mx-3m=m(x-3)(x+1),∵m≠0,∴当y=0时,x1=-1,x2=3,∴A(-1,0),B(3,0);(2)设C1:y=ax2+bx+c,将A、B、C三点的坐标代入得:,解得,故C1:y=x2-x-.依题意,设点P的坐标为(n,n2-n-)(0<n<3)则S∆PBC=S∆POC+S∆BOP-S∆BOC=××n+×3×(-n2+n+)-×3×=-(n-)2+∵-<0,∴当n=时S∆PBC的最大值是(3)y=mx2-2mx-3m=m(x-1)2-4m,顶点M坐标(1,-4m),当x=0时,y=-3m,∴D(0,-3m),B(3,0),∴DM2=(0-1)2+(-3m+4m)2=m2+1,MB2=(3-1)2+(0+4m)2=16m2+4,BD2=(3-0)2+(0+3m)2=9m2+9,当△BDM为Rt△时有:DM2+BD2=MB2或DM2+MB2=BD2.①DM2+BD2=MB2时有:m2+1+9m2+9=16m2+4,解得m=-1(∵m<0,∴m=1舍去);②DM2+MB2=BD2时有:m2+1+16m2+4=9m2+9,解得m=-(m=舍去).综上,m=-1或-时,△BDM为直角三角形.2.对于平面直角坐标系xOy中的点P(a,b),若点的坐标为(,)(其中k为常数,且),则称点为点P的“k属派生点”.例如:P(1,4)的“2属派生点”为(1+,),即(3,6).(1)①点P的“2属派生点”的坐标为____________;②若点P的“k属派生点”的坐标为(3,3),请写出一个符合条件的点P的坐标____________;(2)若点P在x轴的正半轴上,点P的“k属派生点”为点,且△为等腰直角三角形,则k的值为____________;(3)如图, 点Q的坐标为(0,),点A在函数的图象上,且点A是点B的“属派生点”,当线段B Q最短时,求B点坐标.(1)①;②(1,2)(答案不唯一);(2);(3).。

相关文档
最新文档