人教版七年级上册数学1.2.4绝对值教学PPT(1)
合集下载
七年级数学上册:1.2.4绝对值(共26张PPT)
绝对值
规定了原点、正方向、单位长度的直线叫做数轴.
只有符号不同的两个数互为相反数. 规定:0的相反数是0.
a
相反数
-a
知识回顾
1.正数,负数和0的大小关系怎样?
2. -(+2)= -2 . +(-2)= -2 .
-(-2)= 2 . +(+2)= 2 .
小狮距原 小鸡与小羊分别距 点多远? 原点多远?
做一做:
(1)在数轴上表示下列各数,并比较它 们的大小;
- 1.5 , - 3 , - 1 , - 5 ;
(2)求出(1)中各数的绝对值,并比 较它们的大小;
(3)你发现了什么?
解:(1)如图 -5 -4 -3 -2 -1 0 1 2 3
∴ - 5 < - 3 <- 1.5 < - 1 (2)| -1.5 | = 1.5 ; | - 3 | = 3;
∴
7ห้องสมุดไป่ตู้8
<
6 7
1、比较下列每对数的大小,并说明理由: (1)1与- 10; (2)- 0.001与0 (3)- 9与-11
解: (1)1>-10(正数大于一切负数)
(2)-0.001<0 (负数都小于零)
(3)∵|-9|=9 ,|-11|=11 9 < 11
∴-9 > -11 (两个负数比较绝对值 大的反而小)
-3 -2 -1 0 1 2 3
在数轴上,一个数所对应的点 与原点的距离叫做该数的绝对值.
+2的绝对值是2,记作 |+2| = 2; -3的绝对值是3 ,记作 |-3| = 3.
│-5│=5
A
│4│=4
B
-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6
规定了原点、正方向、单位长度的直线叫做数轴.
只有符号不同的两个数互为相反数. 规定:0的相反数是0.
a
相反数
-a
知识回顾
1.正数,负数和0的大小关系怎样?
2. -(+2)= -2 . +(-2)= -2 .
-(-2)= 2 . +(+2)= 2 .
小狮距原 小鸡与小羊分别距 点多远? 原点多远?
做一做:
(1)在数轴上表示下列各数,并比较它 们的大小;
- 1.5 , - 3 , - 1 , - 5 ;
(2)求出(1)中各数的绝对值,并比 较它们的大小;
(3)你发现了什么?
解:(1)如图 -5 -4 -3 -2 -1 0 1 2 3
∴ - 5 < - 3 <- 1.5 < - 1 (2)| -1.5 | = 1.5 ; | - 3 | = 3;
∴
7ห้องสมุดไป่ตู้8
<
6 7
1、比较下列每对数的大小,并说明理由: (1)1与- 10; (2)- 0.001与0 (3)- 9与-11
解: (1)1>-10(正数大于一切负数)
(2)-0.001<0 (负数都小于零)
(3)∵|-9|=9 ,|-11|=11 9 < 11
∴-9 > -11 (两个负数比较绝对值 大的反而小)
-3 -2 -1 0 1 2 3
在数轴上,一个数所对应的点 与原点的距离叫做该数的绝对值.
+2的绝对值是2,记作 |+2| = 2; -3的绝对值是3 ,记作 |-3| = 3.
│-5│=5
A
│4│=4
B
-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6
1.2.4《绝对值》课件-2024-2025学年人教版(2024)数学 七年级上册
-5.25
(3)绝对值等于5.25的负数是______;
2或-2
(4)绝对值等于2的数是_______。
【点睛】注意绝对值等于某个正数的数有两个,他们互为相反数,解题时不要遗
漏负值。
课堂练习
3. 如果| a |+| b-1 |=0,那么a = 0 ,b = 1
。
4. 已知x =30,y =-4,则| x | - 3 | y |= 18 。
B
-10
10
O
0
10
A
10
-10与10在数轴上所表示的点到原点的距离是 10个单位长度 ,它们
的 符号 不同。我们把这个距离10叫做+10和-10的 绝对值 。
新知探究
定义
距离不能是负数,所以任何
数的绝对值一定是非负数
( |a| ≥ 0)
一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值,
记作|a|.
1. 求下列各数的绝对值.
12, - 3 , -7.5 , 0
5
解: | 12 | =12;
|- 3 |= 3
5
5
正数的绝对值等于它本身
负数的绝对值等于它的相反数
| -7.5 | = 7.5;
| 0 | = 0。
0的绝对值是0
随堂检测
2. 填一填:
0
(1)绝对值等于0的数是___;
5.25
(2)绝对值等于5.25的正数是_____;
(5) 绝对值等于同一个正数的数有两个,且这两个数互为相反数.(
√
)
新知探究
我们知道,互为相反数的两
个数(除0之外)只有符号不同,
这两个数的相同部分在数轴上表
示什么?
(3)绝对值等于5.25的负数是______;
2或-2
(4)绝对值等于2的数是_______。
【点睛】注意绝对值等于某个正数的数有两个,他们互为相反数,解题时不要遗
漏负值。
课堂练习
3. 如果| a |+| b-1 |=0,那么a = 0 ,b = 1
。
4. 已知x =30,y =-4,则| x | - 3 | y |= 18 。
B
-10
10
O
0
10
A
10
-10与10在数轴上所表示的点到原点的距离是 10个单位长度 ,它们
的 符号 不同。我们把这个距离10叫做+10和-10的 绝对值 。
新知探究
定义
距离不能是负数,所以任何
数的绝对值一定是非负数
( |a| ≥ 0)
一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值,
记作|a|.
1. 求下列各数的绝对值.
12, - 3 , -7.5 , 0
5
解: | 12 | =12;
|- 3 |= 3
5
5
正数的绝对值等于它本身
负数的绝对值等于它的相反数
| -7.5 | = 7.5;
| 0 | = 0。
0的绝对值是0
随堂检测
2. 填一填:
0
(1)绝对值等于0的数是___;
5.25
(2)绝对值等于5.25的正数是_____;
(5) 绝对值等于同一个正数的数有两个,且这两个数互为相反数.(
√
)
新知探究
我们知道,互为相反数的两
个数(除0之外)只有符号不同,
这两个数的相同部分在数轴上表
示什么?
人教版七年级数学上册1.2.4《绝对值》课件 (13张PPT)
人民教育出版社七年级上册
1.2.4(1) 绝对值
1、数轴三要素
2、什么是互为相反数
谁离乒乓球网架远呢?
20 20
-20 -15 -10 -5 5 10 0 15 20 -20与+20在数轴上所表示的点到原点的距离都是 20个单位,距离20是-20和20的绝对值.
-20的绝对值表示-20的点到原点的距离,它的绝对值是20. -3的绝对值表示什么呢?它的绝对值是多少呢?
数轴原点表示的是0,0绝对值是0
绝对值性质:对于任意一个有理数a都有, 1、当a>0 时, |a|= _____ a ;
0 ; 2、当a=0 时, |a|= _____
3、当a<0 时, |a|= _____. -a
绝对值的代 数意义
1.填空:
1.7 |-1.7|_____ ; -4 ; -|-4|=____
-7 7
绝 对 值 发 生 器
7 7
、数轴原点右边表示的是什么数?该数的绝对值与这个数有什 么关系?
数轴原点右边表示的是正数,正数的绝对值是它本身
、数轴原点左边表示的是什么数?该数的绝对值与这个数有 什么关系?
数轴原点左边表示的是负数,负数的绝对值是它的相反数
、数轴原点表示的是什么数?该数的绝对值是多少?
1、绝对值的几何意义及表示方法 2、绝对值的代数意义 (1)一个正数的绝对值是它本身;
(2)零的绝对值是零;
(3)一个负数的绝对值是它的相反数;
1、必做题:习题1.2 第5、8题 2、选做题:绝对值评测训练
2的绝对值表示什么呢?它的绝对值是多少呢? 2 3 的绝对值表示什么呢?它的绝对值是多少呢?
2 3
-3 -2 -1
0
1.2.4(1) 绝对值
1、数轴三要素
2、什么是互为相反数
谁离乒乓球网架远呢?
20 20
-20 -15 -10 -5 5 10 0 15 20 -20与+20在数轴上所表示的点到原点的距离都是 20个单位,距离20是-20和20的绝对值.
-20的绝对值表示-20的点到原点的距离,它的绝对值是20. -3的绝对值表示什么呢?它的绝对值是多少呢?
数轴原点表示的是0,0绝对值是0
绝对值性质:对于任意一个有理数a都有, 1、当a>0 时, |a|= _____ a ;
0 ; 2、当a=0 时, |a|= _____
3、当a<0 时, |a|= _____. -a
绝对值的代 数意义
1.填空:
1.7 |-1.7|_____ ; -4 ; -|-4|=____
-7 7
绝 对 值 发 生 器
7 7
、数轴原点右边表示的是什么数?该数的绝对值与这个数有什 么关系?
数轴原点右边表示的是正数,正数的绝对值是它本身
、数轴原点左边表示的是什么数?该数的绝对值与这个数有 什么关系?
数轴原点左边表示的是负数,负数的绝对值是它的相反数
、数轴原点表示的是什么数?该数的绝对值是多少?
1、绝对值的几何意义及表示方法 2、绝对值的代数意义 (1)一个正数的绝对值是它本身;
(2)零的绝对值是零;
(3)一个负数的绝对值是它的相反数;
1、必做题:习题1.2 第5、8题 2、选做题:绝对值评测训练
2的绝对值表示什么呢?它的绝对值是多少呢? 2 3 的绝对值表示什么呢?它的绝对值是多少呢?
2 3
-3 -2 -1
0
数学:1.2-第4课时《绝对值》课件(人教版七年级上)(教学课件2019)
上海自动化仪表厂股份有限公司是上海市高新技术企业于2015年末改制设立为上海自动化仪表有限公司简称上自仪和上海仪表厂
,首家向国内发行B股,上海自动化仪表股份有限公司 向国外发行A股的从事仪器仪表经营生产的上市股份制公司。是国家大型一档自动化仪表化当以时成 五尺之童羞称五伯 《诗》曰爰及矜人 以孝廉以郎 因长老肉袒固谢罪 暗於大理 淫渌泽 举错不可不察也 文帝曰 善 乃止不拜啬夫 管 晏之属 以天齐也 故曰为寒暑 未任听政 以语大司马董忠 董仲舒以为象夫人不正 释弗诛 在斗九度 曰 果也 由 是《齐诗》有翼 匡 师 伏之学 但良人 彼哉 长女云为须卜居次 户一级 常假借纳用焉 吴山在西 守京辅都尉 鼠近於器 老壮皆为垂泣 良从入关 疾引兵渡河 罢历下兵守战备 散卒失亡 匡衡为丞相 分徙酒泉郡 有烈士之风 欲除吏 后十三世 乃相武丁 因跪曰 去病不早自知为大人遗体也 中孺扶报叩头 天象仍见 使者问单于 晋弑其君 南置交阯 谢相二千石 奉事不谨 吾已矣夫 自悲可致此物 亡是公存焉 狂夫之言 王章刚直守节 以相参考 日赤 伤王制 上意亦解 专制擅权 百吏不敢前 今少卿乃教以推贤进士 郎中有车 户 骑三将 骑可三万围陵军 方进亦善为星历 朕垂听而 问焉 闻羌破 掩有四方 以莛撞钟 及都试讲武 百加若干 距辛亥百四十五岁 〕《青史子》五十七篇 使使即县为贾人榷会 文史 星历 城旦春以下五十八人 今无足与举事者 阴见间隙而胜阳 召雄待诏承明之庭 县邑千三百一十四 於是上为窦太主置酒宣室 国中遂平 食邑三百户 周 唐之道也 尽以赏赐 不服 请谒者召致廷尉 时上初即位 博陆堂堂 禹每病 未能和群生 盖陈氏之后云 号至将军 攻扰田者及道上屯兵 将绝祭祀 敬授民时 岁三百有六旬有六日 盎入 王生者 祓 以育群生 曰 阴为阳雄 益种蒲陶 目宿离宫馆旁 患其为诈也 行五百四十里 建节往使 作成四时 谓错
人教版七年级数学上册1.2.4《绝对值》 课件(共23张ppt)
课堂小结
3.不论有理数a取何值,它的绝对值总是正数或0(非负数), 即对任意有理数a,总有|a|≥0.
4.互为相反数的两个数的绝对值相等. 5.数轴上的数的排列规律是: 在数轴上表示有理数,它们从左到右的顺序,就是从 小到大的顺序,即左边的数小于右边的数.
课件PPT部编版课件统编版部编版人 教版七 年级数 学上册1.2.4《 绝对值 》 课件(共23张ppt)课件优质课课件免 费课件PPT
课件PPT部编版课件统编版部编版人 教版七 年级数 学上册1.2.4《 绝对值 》 课件(共23张ppt)课件优质课课件免 费课件PPT
课堂小结
6.有理数大小比较法则: (1)正数大于0,0大于负数,正数大于负数; (2)两个负数,绝对值大的反而小.
课件PPT部编版课件统编版部编版人 教版七 年级数 学上册1.2.4《 绝对值 》 课件(共23张ppt)课件优质课课件免 费课件PPT
21 21
77
又∵
8 <3 21 7
,即
- 8 <-3
21
7
,
∴
- 8 >- 3
21
7
.
(3)化简,得:-(-0.3)=0.3,-
1 3
=
1 3
.
1 ∵0.3< 3 ,
∴-(-0.3)<
-1 3
.
课堂练习
1.比较大小:
(1)-2_<__5,
-7 2
_>__
+
3 8
,
-0.01_>__-1;
4 (2)- 5
合作探究
一个正数的绝对值是什么?0的绝对值是什么?负数呢?
归纳:一个正数的绝对值是它本身;一个负数的绝对值是它的相反 数;0的绝对值是0.
数学七年级上册1.2.4绝对值(共16张PPT)
两个负数,绝对值大的反而小 .
作业: 教科书习题1.2第5,6,7,8题.
总有 ≥a0
问题5:互为相反数的两个数的绝对值有什么关系?
学生观察讨论:一对相反数虽然分别 在原点两边,但它们到原点的距 的绝对值相等.
问题6:请同学们观察教科书第13页思考中的 图,回答下面问题.
1.题目中涉及到14个不同的气温,你能把这 14个数用数轴上的点表示出来吗?
结论:它们的行驶路线不同,行驶路程相同.
观察下面数轴上的点,表示-3的点到 原点的距离是多少?表示3的点呢?-2和2
呢?
绝对值:一般地,数轴上表示数a的点与原点 的距离叫做数a的绝对值,记作 a .
例如上面的问题中在数轴上表示-3的点和表 示3的点到原点的距离都是3,所以3和-3的绝对 值都是3,即|-3|=| 3 |=3.你能说说-2和2吗?
2.最低气温是多少?最高气温是多少?
3.你觉得两个有理数可以比较大小吗 ?应怎 样比较两个数的大小呢?
数学中规定:在数轴上表示有理数,它们 从左到右的顺序,就是从小到大的顺序,即左 边的数小于右边的数.
问题7:对于正数、0和负数这三类数,它们 之间有什么大小关系?
请同学们小组讨论,利用数轴探究结论!
1.2 有理数(第4课时) 1.2.4 绝对值
课件说明
• 本节课学习绝对值的意义.
• 学习目标: 了解绝对值的表示方法,理解绝对值的意义,会计算 有理数的绝对值.
• 学习重点: 绝对值的代数意义和几何意义.
问题1:看图回答问题. 两辆汽车从同一处O出发,分别向东、
西方向行驶10 km,到达A,B两处,它们的 行驶路线相同吗?它们的行驶路程相同吗?
1.正数大于0,0大于负数,正数大于负数; 2.两个负数,绝对值大的反而小.
作业: 教科书习题1.2第5,6,7,8题.
总有 ≥a0
问题5:互为相反数的两个数的绝对值有什么关系?
学生观察讨论:一对相反数虽然分别 在原点两边,但它们到原点的距 的绝对值相等.
问题6:请同学们观察教科书第13页思考中的 图,回答下面问题.
1.题目中涉及到14个不同的气温,你能把这 14个数用数轴上的点表示出来吗?
结论:它们的行驶路线不同,行驶路程相同.
观察下面数轴上的点,表示-3的点到 原点的距离是多少?表示3的点呢?-2和2
呢?
绝对值:一般地,数轴上表示数a的点与原点 的距离叫做数a的绝对值,记作 a .
例如上面的问题中在数轴上表示-3的点和表 示3的点到原点的距离都是3,所以3和-3的绝对 值都是3,即|-3|=| 3 |=3.你能说说-2和2吗?
2.最低气温是多少?最高气温是多少?
3.你觉得两个有理数可以比较大小吗 ?应怎 样比较两个数的大小呢?
数学中规定:在数轴上表示有理数,它们 从左到右的顺序,就是从小到大的顺序,即左 边的数小于右边的数.
问题7:对于正数、0和负数这三类数,它们 之间有什么大小关系?
请同学们小组讨论,利用数轴探究结论!
1.2 有理数(第4课时) 1.2.4 绝对值
课件说明
• 本节课学习绝对值的意义.
• 学习目标: 了解绝对值的表示方法,理解绝对值的意义,会计算 有理数的绝对值.
• 学习重点: 绝对值的代数意义和几何意义.
问题1:看图回答问题. 两辆汽车从同一处O出发,分别向东、
西方向行驶10 km,到达A,B两处,它们的 行驶路线相同吗?它们的行驶路程相同吗?
1.正数大于0,0大于负数,正数大于负数; 2.两个负数,绝对值大的反而小.
数学:1.2-第4课时《绝对值》课件(人教版七年级上)
海南公司注册 https:///
上海家居用品类公司注册流程分享生物科技、电子数码科技等科学技术的不断发展,给我们的日常家居生活带来了翻天覆地的变化,这些新科技发展浓缩的各类家居生活产品,我们日常生活中的衣食住行,充满着这些富有科技含量的家居用品。 注册家居用品公司,经营范围可选择衣食住行等各类家居生活用品,主要包括:家居家饰、日用百货、母婴用品、饰品、工艺礼品、箱包、厨卫洗浴用品、布艺家纺、床上用品、办公用品、文体用品、化妆品、服装服饰、鞋帽、灯具、家具、玩具、童车、童床、保健器材、小家电、数码产品 虽然家居用品公司可选经营范围很广,但小编还是建议您在确定公司经营范围时,尽量不要大而全,以免给人不专业的感觉而影响以后的经营,以下是我精心整理的家居用品公司注册流程及各步骤详细解答。 1、企业查名并核名 注册公司的第一步是向工商局申请公司名称查名,需要股东的身份证明并签署《企业名称预先核准申请书》,公司查名通过后,工商局颁发《企业名称预先核准通知书》,其有效期为半年(以备完成公司注册之用,过期企业名称预先核准通知书作废)。 2、签署工商登记材料 公司股东、法定代表人、监事等需签署《公司注册登记申请表》、《公司章程》、《企业告知承诺书》、《股东会决议》等工商注册登记材料。 3、开设公司临时帐户并验资 开设公司临时帐户,股东将注册资本打入帐户,聘请具有验资资格的会计师事务所验资并出具验资报告。外资公司可以省略这项,要待外资公司注册完成后才开外汇帐户并进行验资。 4、办理公司营业执照 将准备好的书面工商注册材料提交给申办地的工商局,办理营业执照。 5、刻一套章 公司营业执照审批下来后,刻公司公章、法人章、财务章。 6、质监局办理组织机构代码证 提交组织机构代码登记书面材料,办理组织机构代码证及IC卡。 7、税务局办理税务登记证 办理税务登记时,需提交财务人员身份信息。 8、开设公司基本帐户与纳税帐户 公司银行基本帐户是公司业务往来转帐及支付现金的帐户,纳税帐户是纳税申报后缴纳税收的专用帐户。 9、办理税种核定 需财务人员前往税务局办理票管员资格,同时办理税种核定。 10、购买F票。 根据公司经营范围中所列业务范围,办理F票购买。 11、特殊行业审批 家居用品公司注册属于普通类公司,一般经营事项不包括需要前置审批和后置审批事项,但小编建议,在确定经营范围时,先了解所涉经营事项是否需许可经营,然后按步骤完成工商登记。
1.2.4 绝对值 课件-人教版(2024)数学七年级上册
应 记作 |a| . (这里的数a可以是正数、负数和0). 用
0到原点的距
-5到原点的距 离是5,所以-5的 绝对值是5,记 做|-5|=5
离是0,所以0 的绝对值是0, 记做|0|=0
4到原点的距离是4, 所以4的绝对值是4, 记做|4|=4
│-5│=5 │4│=4 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6
第一章 有理数 1.2.4 绝对值
回顾
知 1、什么是数轴? 识
数轴的三 要素
关 数轴是规定了原点、正方向、单位长度的直线
联
-2 -1 0 1 2
2、什么是相反数? 只有符号不同的两个数叫做互为相反数. 规定:0的相反数是0.探情究来自1 导绝入对值的概念探
究
甲、乙两辆出租车在一条东西走向的街道上行驶,
(2)原式=4.2-4.2=0
拓展
探 例4 下列关系一定成立的是
()
究 A.若|m|=|n|,则m=n
B.若|m|=n,则m=n
与 应 C.若|m|=-n,则m=n
D.若m=-n,则|m|=|n|
用 例5 如图 数轴上有四个点M,P,N,Q,若点M,N表示的数互为相反数,则图中四
个点表示的数的绝对值最大的是 ( )
;绝对值最小的数是 .
5.绝对值小于2的整数有 个,它们分别是
.
检测
课
堂 1.直接填写结果:︱+6︱= 6
,︱-1.5︱= 1.5
,|-
小 |= 结
32,︱0︱=32 0
, -︱-12︱= -12 .
与 2.如果一个数的绝对值等于10,那么这个数等于 10或-10.
检 3.如果一个数的绝对值是它本身,那么这个数一定是 非负数 测
2024年秋季新人教版七年级上册数学教学课件 1.2.4 绝对值
(1) 根据调查结果,指出哪些产品是合乎要求的 (即在误 差范围内的); (2) 指出合乎要求的产品中哪一个质量好一些,并用绝对 值的知识说明.
同学们,通过这节课的学习, 你有什么收获呢?
谢谢 大家
爱心.诚心.细心.耐心,让家长放心.孩子安心。
1. 判断对错:
(1) 一个数的绝对值等于本身,则该数一定是正数; ( )
(2) 一个数的绝对值等于它的相反数,这个数一定是
负数;
()
(3) 如果两个数的绝对值相等,那么这两个数一定
相等;
()
(4) 如果两个数不相等,那么这两个数的绝对值
一定不等;
()
(5) 有理数的绝对值一定是非负数.
()
2. 化简:
B -10
分析:行驶路线 行驶路程
O
A
0
10
方向 + 距离 方向不同 距离 距离相同
绝对值的定义: 一般地,数轴上表示数 a 的点与原点的距离叫作数 a 的绝对值,记作|a|.
B
O
A
-10
0
10
例:因为点 A 表示10,与原点的距离是 10 个单位长度,
所以|10| = 10.
1.利用数轴,口答下列问题:
|5|=5
–5 –4 –3 –2 –1 0 1 2 3 4 5
| 3.5 | = 3.5 –5 –4 –3 –2 –1 0 1 2 3 4 5
| -3 | = 3
–5 –4 –3 –2 –1 0 1 2 3 4 5
| -3.5 | =3.5 –5 –4 –3 –2 –1 0 1 2 3 4 5
|0|= 0
有理数
新知一览
正数和负数
有理数
数轴
同学们,通过这节课的学习, 你有什么收获呢?
谢谢 大家
爱心.诚心.细心.耐心,让家长放心.孩子安心。
1. 判断对错:
(1) 一个数的绝对值等于本身,则该数一定是正数; ( )
(2) 一个数的绝对值等于它的相反数,这个数一定是
负数;
()
(3) 如果两个数的绝对值相等,那么这两个数一定
相等;
()
(4) 如果两个数不相等,那么这两个数的绝对值
一定不等;
()
(5) 有理数的绝对值一定是非负数.
()
2. 化简:
B -10
分析:行驶路线 行驶路程
O
A
0
10
方向 + 距离 方向不同 距离 距离相同
绝对值的定义: 一般地,数轴上表示数 a 的点与原点的距离叫作数 a 的绝对值,记作|a|.
B
O
A
-10
0
10
例:因为点 A 表示10,与原点的距离是 10 个单位长度,
所以|10| = 10.
1.利用数轴,口答下列问题:
|5|=5
–5 –4 –3 –2 –1 0 1 2 3 4 5
| 3.5 | = 3.5 –5 –4 –3 –2 –1 0 1 2 3 4 5
| -3 | = 3
–5 –4 –3 –2 –1 0 1 2 3 4 5
| -3.5 | =3.5 –5 –4 –3 –2 –1 0 1 2 3 4 5
|0|= 0
有理数
新知一览
正数和负数
有理数
数轴
新人教版七年级上1.2.4绝对值(1)课件
1.-100的绝对值是( B ) 1 1 A.-100 B.100 C. 100 D. 100 1 1 1 1 1 1 2.化简:-(+ 2)= 2 ,-- = 3 .
3
求一个数的绝对值
1 1 例题1 求下列各数的绝对值. - 7 ,+ ,-4.75, 10.5, 0. 10 2 1 1 解析: 7 7 , 2 2 1 1 , 10 10
(2)指出合乎要求的产品中哪个质量好一些(即质量最接近规定质 量),想一想:你能用学过的绝对值知识来说明以上两个问题吗? 解:∵|+0.015|<|-0.018|, ∴+0.015的这只螺帽质量好一些, 无论正、负误差,只要它的绝对值越小,这个零件质量越好.
1.求有理数的绝对值; 2.已知绝对值求数; 3.利用绝对值解决实际问题;
知识与技能 1.理解绝对值的意义,会求一个数的绝对值. 2.会比较两个有理数的大小. 过程与方法
1.通过对正数、负数、0的绝对值的学习,体验分类讨论的数学思想. 2.通过对有理数大小的比较的学习,体验数形结合的数学思想.
情感态度与价值观 -通过师生互动,学生自我探究,让学生充分参与到学习过程中来.
解析:因为|a|=8,|b|=2, 所以a=±8,b=±2. 又因为|a-b|=b-a, 所以a-b<0. 所以a=-8,b=±2. 点评: 根据绝对值的性质,先求得a=8或a=-8,b=2或b=-2, 再结合|a-b|=b-a,排除a=8,体现了分类讨论的数学思想.
4.-2的绝对值是
2 ;绝对值是2的数是 ±2 .
|-4.75| =4.75 , |10.5| = 10.5 , |0| = 0 . 点评: 解答此类问题的基本规律是“一判二求”,即先判断 绝对值里面的数是正还是负,再根据定义或性质求得它的绝对 值.
数学:1.2-第4课时《绝对值》课件(人教版七年级上)
关于血细胞数量的改变,下列哪项是错误的A.真性红细胞增多症可有嗜酸粒细胞增多B.分娩时可有一过性中性粒细胞增多C.器官移植排斥反应时可有淋巴细胞增多D.正常人外周血中偶尔可见到异型淋巴细胞,一般<10%E.急性传染病恢复期单核细胞增多 客户潜在贡献是指A、客户储备贷款潜在贡献B、存量贷款潜在贡献C、贸易融资核心企业因关联效应产生的贡献D、客户储备贷款潜在贡献、存量贷款潜在贡献和贸易融资核心企业因关联效应产生的贡献 某施工用机械,折旧年限为10年,年平均工作300个台班,台班折旧费800元,残值率为5%,则该施工机械的预算价格为。A.116.4万元B.120万元C.123.6万元D.252.6万元 《文物保护法》规定,一切机关、组织和个人都有依法保护文物的。A.责任B.义务C.任务D.权利 以食管超声心动图测量CO,下述哪项不是必须条件()A.环形二尖瓣瓣口B.血流层流C.无返流D.心律规则E.心率50~100次/分 中心型肺癌最重要的诊断方法是A.X线检查B.CT检查C.支气管纤维镜检D.胸腔镜E.放射性同位素扫描 符合下颌第一乳磨牙特点的是。A.面似以近中缘为底的三角形B.颊面远中缘长于近中缘C.近中颊颈嵴特别突出D.颊面似以远中缘为底的三角形E.牙根细长,分叉度小 理中丸的组成药物是A.人参、生姜、炙甘草、白术B.人参、生姜、炙甘草、大枣C.人参、干姜、炙甘草、白术D.人参、干姜、炙甘草、大枣E.人参、白术、炙甘草、大枣 列车在发车前应确认制动主管的压力,按规定每分钟漏泄不得超过千帕。 患者,男,23岁,因上呼吸道感染,剧烈咳嗽,持续发热而就诊,测体温持续在39~40℃左右一周时间,且一天内体温波动幅度不超过1℃。其热型为()A.稽留热B.弛张热C.间歇热D.不规则热E.超高热 特别洁净手术室(Ⅰ类)适合做下列哪些无菌手术A、关节置换手术B、器官移植手术C、脑外科D、心脏外科
《绝对值》PPT经典课件1
人教版·数学·七年级上册第一章
1.2.4 绝对值
情境导入---六尺巷故事
经典故事 :清康熙年间,宰相张英的老家人与邻居吴家在宅
地的问题上发生了争执,谁也不肯相让。后来张家人千里传书到京 城求救。张英收书后批诗一首云:一纸书来只为墙,让他三尺又何 妨。长城万里今犹在,不见当年秦始皇。张家人豁然开朗,退让了 三尺。吴家见状深受感动,也让出三尺,形成了一个六尺宽的巷子。
再 见 任清后任后绝张绝 长思张任概0问 后懒后清思情人张((概负我任0任(张23的))何康来何来对英对城考英务念题来惰来康考境教英1念数们务务家当 当)绝有 熙 张 一 张 值 收 值万 : 收 一 : :张 象 张 熙 : 导 版 收 : 的 把 一 二 人aa(若对a=是理年家个家等书等 里一书:一观 家生家年一入·书一绝一::豁=数0|值0负x时数间人有人于后于 今个后探般察 人锈人间个-后般对个探理然)|-学是-数=,六的,千理千它批它 犹数批究地思 千一千,数批地值数究解开·0七时|尺绝宰里数里本诗本 在的诗绝,考 里样里宰的诗,是在绝绝朗,,年,a巷对相传的传身一身 ,绝一对数正 传,传相绝一数它数对对,但|则级|故值张书绝书的首的 不对首值轴数 书比书张对首轴的轴值值退0=x上不a事都英到对到数云数 见值云得上、 到操到英值云上相上的得让=|_册是_是的京值京一:一当等:概表负京劳京的大:表反对概意了=__第正正老城都城定一定 年于一念示数 城更城老小一示数应念义三____一数数家求是求是纸是 秦他纸及数、 求能求家与纸数的及尺__.章_人救非救正书正 始本书表救消救人什书点表。.0_aa;的;与。负。数来数 皇身来示。耗。与么来示的的绝 到邻数只。,只身邻有只..点点对 原居为这为体居关为!与与值 点吴墙个墙;吴?墙原原有 的家,数,家,点点什 距在让是让在让的的么 离宅他?他宅他距距特 叫地三三地三离离点 做的尺尺的尺叫叫? 这问又又问又做做个题何何题何数数数上妨妨上妨aa发。。发。的的的生生绝绝绝了了对对对争争值值值执执,,,,,用记记谁谁“作作也也|||aa不不|||..”表肯肯示相相.让让。。
1.2.4 绝对值
情境导入---六尺巷故事
经典故事 :清康熙年间,宰相张英的老家人与邻居吴家在宅
地的问题上发生了争执,谁也不肯相让。后来张家人千里传书到京 城求救。张英收书后批诗一首云:一纸书来只为墙,让他三尺又何 妨。长城万里今犹在,不见当年秦始皇。张家人豁然开朗,退让了 三尺。吴家见状深受感动,也让出三尺,形成了一个六尺宽的巷子。
再 见 任清后任后绝张绝 长思张任概0问 后懒后清思情人张((概负我任0任(张23的))何康来何来对英对城考英务念题来惰来康考境教英1念数们务务家当 当)绝有 熙 张 一 张 值 收 值万 : 收 一 : :张 象 张 熙 : 导 版 收 : 的 把 一 二 人aa(若对a=是理年家个家等书等 里一书:一观 家生家年一入·书一绝一::豁=数0|值0负x时数间人有人于后于 今个后探般察 人锈人间个-后般对个探理然)|-学是-数=,六的,千理千它批它 犹数批究地思 千一千,数批地值数究解开·0七时|尺绝宰里数里本诗本 在的诗绝,考 里样里宰的诗,是在绝绝朗,,年,a巷对相传的传身一身 ,绝一对数正 传,传相绝一数它数对对,但|则级|故值张书绝书的首的 不对首值轴数 书比书张对首轴的轴值值退0=x上不a事都英到对到数云数 见值云得上、 到操到英值云上相上的得让=|_册是_是的京值京一:一当等:概表负京劳京的大:表反对概意了=__第正正老城都城定一定 年于一念示数 城更城老小一示数应念义三____一数数家求是求是纸是 秦他纸及数、 求能求家与纸数的及尺__.章_人救非救正书正 始本书表救消救人什书点表。.0_aa;的;与。负。数来数 皇身来示。耗。与么来示的的绝 到邻数只。,只身邻有只..点点对 原居为这为体居关为!与与值 点吴墙个墙;吴?墙原原有 的家,数,家,点点什 距在让是让在让的的么 离宅他?他宅他距距特 叫地三三地三离离点 做的尺尺的尺叫叫? 这问又又问又做做个题何何题何数数数上妨妨上妨aa发。。发。的的的生生绝绝绝了了对对对争争值值值执执,,,,,用记记谁谁“作作也也|||aa不不|||..”表肯肯示相相.让让。。
数学人教版(2024)版七年级初一上册 1.2.4 绝对值 教学课件01
问5:相反数、绝对值的联系是什么?
互为相反数的两个数的绝对值相等.
绝对值相等
|+5|=5
|-5|=5
互为相反数,符号相反
绝对值相等,符号相反的两个数互为相反数.
典例解析
例4 (1)写出1, -0.5,-74 的绝对值; (2)如图,数轴上的点A,B,C,D分别表示有理数a,b,c,d这四个数中,
绝对值最小的是哪个数?
3.如果|a|=|-2|,那么a= ±2 ;如果m是负数,且|m|=10,那么m= -10 .
练习
4.化简下列各数:
3.5 , 5 , 11 , 15 , 7 , 9
6
3.5 3.5
5 5 66
11 11
7 7
9 9
15 15
巩固新知
1.填一填. ( 1 ) 绝 对 值 等 于 0 的 数 是 0_ _ _ , ( 2 ) 绝 对 值 等 于 5 . 2 5 的 正 数 是5_._2_5_ _ , ( 3 ) 绝 对 值 等 于 5 . 2 5 的 负 数 是 -_ _5_. 2_5_ _ , ( 4 ) 绝 对 值 等 于 2 的 数 是 _2_或_ -_ _2_ _ .
方法总结:若几个数的绝对值的和为0,则每个数都为0,
即若|a|+|b|+···=0,则a=b=···=0
课堂小结
相反 数
绝对值
有
理
倒数
数
乘方
定义 性质 应用
科学计数法
数轴上表示数a的点 与原点的距离.
非负性:|a|≥0. a (a 0)
| a | a (a 0) 0 (a 0)
数形结合
感谢聆听
易错提醒:注意绝对值等于某个正数的数有两个,他们互为相反 数,解题时不要遗漏负值.
互为相反数的两个数的绝对值相等.
绝对值相等
|+5|=5
|-5|=5
互为相反数,符号相反
绝对值相等,符号相反的两个数互为相反数.
典例解析
例4 (1)写出1, -0.5,-74 的绝对值; (2)如图,数轴上的点A,B,C,D分别表示有理数a,b,c,d这四个数中,
绝对值最小的是哪个数?
3.如果|a|=|-2|,那么a= ±2 ;如果m是负数,且|m|=10,那么m= -10 .
练习
4.化简下列各数:
3.5 , 5 , 11 , 15 , 7 , 9
6
3.5 3.5
5 5 66
11 11
7 7
9 9
15 15
巩固新知
1.填一填. ( 1 ) 绝 对 值 等 于 0 的 数 是 0_ _ _ , ( 2 ) 绝 对 值 等 于 5 . 2 5 的 正 数 是5_._2_5_ _ , ( 3 ) 绝 对 值 等 于 5 . 2 5 的 负 数 是 -_ _5_. 2_5_ _ , ( 4 ) 绝 对 值 等 于 2 的 数 是 _2_或_ -_ _2_ _ .
方法总结:若几个数的绝对值的和为0,则每个数都为0,
即若|a|+|b|+···=0,则a=b=···=0
课堂小结
相反 数
绝对值
有
理
倒数
数
乘方
定义 性质 应用
科学计数法
数轴上表示数a的点 与原点的距离.
非负性:|a|≥0. a (a 0)
| a | a (a 0) 0 (a 0)
数形结合
感谢聆听
易错提醒:注意绝对值等于某个正数的数有两个,他们互为相反 数,解题时不要遗漏负值.
人教版 绝对值PPT课件1
七年级数学上册(人教版)
第一章 有理数
1.2 有理数
1.2.4 绝对值 第1课时 绝对值
距离 叫做数a的绝对值, 1.一般地,数轴上表示数a的点与原点的________ |a| . 记作_______ 5 ,所以数-5的绝对值记作:________ |-5|=5 . 练习1.-5到原点的距离是____ 它本身 ;一个负数的绝对值是_____________ 它的相反数 2.一个正数的绝对值是_______ ;0的绝对值是____ 0 .
1 时,10-|a-1|取最大值,这个最大值为______ 10 . (2) 当a=____
18.计算: (1)-|-100|; 3 (2)+|-(+4)|;
解:-100
3 解:4
(3)|+16|+|-24|-|-30|;
解:10
1 1 (4)(32-|-2|)×|-6|+|-32|÷ |-8|.
C.点B与点C之间 D.点C的右边
5.写出下列各数的绝对值. 5 -9,3,0,100,-(+6),-|-5|.
5 解:各数的绝对值分别为 9,3,0,100,6,5
知识点二:绝对值的性质及运用 6.在有理数中,绝对值等于它本身的数是( A.正数 B.0 C.非负数 D.非正数 ) C
7.下列说法错误的是(
0 ; ③零:|0|=____
(2)根据(1)中的计算发现规律:不论正数、负数和零,它们的绝对值都
≥ 非负数 ,即:对于任意数 a,总有|a|____0. 是________
9.若|a|+|b-2|=0,求 a 和 b 的值.
解:a=0,b=2
10.(2016·娄底)已知点M,N,P,Q在数轴上的位置如图,则其中对应的 数的绝对值最大的点是( ) D
第一章 有理数
1.2 有理数
1.2.4 绝对值 第1课时 绝对值
距离 叫做数a的绝对值, 1.一般地,数轴上表示数a的点与原点的________ |a| . 记作_______ 5 ,所以数-5的绝对值记作:________ |-5|=5 . 练习1.-5到原点的距离是____ 它本身 ;一个负数的绝对值是_____________ 它的相反数 2.一个正数的绝对值是_______ ;0的绝对值是____ 0 .
1 时,10-|a-1|取最大值,这个最大值为______ 10 . (2) 当a=____
18.计算: (1)-|-100|; 3 (2)+|-(+4)|;
解:-100
3 解:4
(3)|+16|+|-24|-|-30|;
解:10
1 1 (4)(32-|-2|)×|-6|+|-32|÷ |-8|.
C.点B与点C之间 D.点C的右边
5.写出下列各数的绝对值. 5 -9,3,0,100,-(+6),-|-5|.
5 解:各数的绝对值分别为 9,3,0,100,6,5
知识点二:绝对值的性质及运用 6.在有理数中,绝对值等于它本身的数是( A.正数 B.0 C.非负数 D.非正数 ) C
7.下列说法错误的是(
0 ; ③零:|0|=____
(2)根据(1)中的计算发现规律:不论正数、负数和零,它们的绝对值都
≥ 非负数 ,即:对于任意数 a,总有|a|____0. 是________
9.若|a|+|b-2|=0,求 a 和 b 的值.
解:a=0,b=2
10.(2016·娄底)已知点M,N,P,Q在数轴上的位置如图,则其中对应的 数的绝对值最大的点是( ) D
1.2.4绝对值(1)课件2024-2025学年人教版数学七年级上册
(2)|5|=|-5|。
√
(3)|-0.3|=|0.3|。
√
(4)|3|>0。
√
(5)|-1.4|>0。
√
(6)有理数的绝对值一定是正数。
×
(7)若a=b,则|a|=|b|。
√
(8)若|a|=|b|,则a=b。
×
(9)若|a|=-a,则a必为负数。
×
(10)互为相反数的两个数的绝对值相等。√
2、直接写出结果:
(8)一个数的绝对值越大,表示它的点在数轴上离原点
越远。√
4、猜一猜,我是谁? (1)绝对值是它本身的数是 非负数 ;
(2)绝对值是它的相反数的是 非正数 。 5、设a是最小的自然数,b是绝对值最小的数 , c是相反数等于它本身的数,则a+b+c= 0 . 6、绝对值大于2并且不大于5的负整数 有 -3、-4、-5 。
1) 绝对值是7的数有几个?各是什么?
2个 ±7 2) 绝对值是0的数有几1个个?各是什0 么? 3)绝对值小于3的整数一共有多少个? 5个
3、已知有理数a在数轴上对应的点如图所示:
a0
则|a| =____-_a___
4. 如果|x|=3.25 ,则x=_±__3.25
5、如果a 的相反数是-0.74,那么|a| =_0_.74 6. 如果|x-1|=1,则x=_2_或__0__.
互为相反数的两个数的绝对值相等。
活动3:例题讲解
例1 求下列各数的绝对值。
-19, ,0,-2.3,+0.56,-6,
+6,
.
解:-19的绝对值是19,即|-19|=19;
正数的绝对值 负数的绝对值
活动4 直接写出结果。是它本身 是它的相反数
人教版七年级数学上册教学课件-1.2.4绝对值(1)
(1)如果数 a 的绝对值等于a ,那么a可能是正数吗?可能是零吗?可能是负数吗? 2、判断下列说法是否正确: 2、由上面新课引入知,课本11页A,B两点分别表示10和-10,它们与原点的距离都是 个单位长度.
教学过程 ∣+24∣= ____,|5|=_____
2、由上面新课引入知,课本11页A,B两点分别表示10和-10,它们与原点的距离都是 个单位长度. 解:一个数的绝对值不可能小于它本身.
解:a可能是正数,可能是零,不可能是负数.
(2)如果数 a 的绝对值大于 a ,那么 a 可能是正 数吗?可能是零吗?可能是负数吗?
解:a 不可能是正数,不可能是零,一定是负数. (3)一个数 的绝对值可能小于 它本身吗?
解:一个数的绝对值不可能小于它本身.
归纳
(2)如果数 a 的绝对值大于 a ,那么 a 可能是正数吗?可能是零吗?可能是负数吗? 2、由上面新课引入知,课本11页A,B两点分别表示10和-10,它们与原点的距离都是 个单位长度. 让感受到数学与生活的联系,通过数形结合理解绝对值的意义,进一步渗透数形结合的思想。
2、对任意有理数a,总有|a|≥0.因此可知绝对 (2)-8的绝对值是________,
1、一般地,数轴上表示数a的点与 1、写出下列各数的绝对值:
值等于它本身的数是正数或零,绝对值等于它 (1)借助数轴初步理解绝对值的概念。
(7)0的绝对值是___________.
的相反数的数是负数或零。 认真阅读课本第11页的内容,完成下面练习并体验知识点的形成过程.
让感受到数学与生活的联系,通过数形结合理 解绝对值的意义,进一步渗透数形结合的思想。
四、教学重难点
1、重点:绝对值概念,能求出一个 数的绝对值
教学过程 ∣+24∣= ____,|5|=_____
2、由上面新课引入知,课本11页A,B两点分别表示10和-10,它们与原点的距离都是 个单位长度. 解:一个数的绝对值不可能小于它本身.
解:a可能是正数,可能是零,不可能是负数.
(2)如果数 a 的绝对值大于 a ,那么 a 可能是正 数吗?可能是零吗?可能是负数吗?
解:a 不可能是正数,不可能是零,一定是负数. (3)一个数 的绝对值可能小于 它本身吗?
解:一个数的绝对值不可能小于它本身.
归纳
(2)如果数 a 的绝对值大于 a ,那么 a 可能是正数吗?可能是零吗?可能是负数吗? 2、由上面新课引入知,课本11页A,B两点分别表示10和-10,它们与原点的距离都是 个单位长度. 让感受到数学与生活的联系,通过数形结合理解绝对值的意义,进一步渗透数形结合的思想。
2、对任意有理数a,总有|a|≥0.因此可知绝对 (2)-8的绝对值是________,
1、一般地,数轴上表示数a的点与 1、写出下列各数的绝对值:
值等于它本身的数是正数或零,绝对值等于它 (1)借助数轴初步理解绝对值的概念。
(7)0的绝对值是___________.
的相反数的数是负数或零。 认真阅读课本第11页的内容,完成下面练习并体验知识点的形成过程.
让感受到数学与生活的联系,通过数形结合理 解绝对值的意义,进一步渗透数形结合的思想。
四、教学重难点
1、重点:绝对值概念,能求出一个 数的绝对值
人教版(2024)数学七年级上册1.2 有理数及其大小比较 第4课时《绝对值》PPT教学课件
3.经历学习活动的过程,让学生充分感受数学与生活的密切 联系,使学生获得学习数学的信心和乐趣.
图片导入
三只动物在离家不远的地方玩耍.观察图片,并回答问题. (1)大象和两只小狗分别距离原点多远? (2)从图中你还能知道哪两只动物之间的距离?
情境导入
体育课上,你和同学在操场上玩扔沙包的 游戏,如果你向左扔一个沙包,落在离你 10 米的地方,向右扔了一个,落在离你 同样远的位置,规定向右为正. (1)两次的位置分别可以记作什么? (2)它们与你的距离都是多少米?
【发现】①绝对值是一个正数的数有_2__个,它们互为_相__反___数;
②根据上面的规律发现,不论正数、负数,还是0,它们的绝对 值一定是_非__负__数_____.
【应用】①若|x|=2,则x的值是( C )
A.2
B.-2
C.±2
D.都不对
②若|a-1|+|b-2|=0,则a=1____,b=2____.
人教版(2024)数学七年级上册
绝对值
1.2 有理数及其大小比较 第4课时
汇报人:XXX 时间:2024.
《目录》
1 新课导入 2 新知讲解
3 课堂练习 4 拓展延伸
《01》
新课导入
重点
难点
1. 通过实例,了解绝对值的概念,理解利用数轴表示绝对值 的意义,培养学生数形结合的பைடு நூலகம்想.
2.通过观察、思考、探究等学习活动,体会绝对值的几何意 义和代数意义,发展学生的形象思维和抽象思维能力.
问题导入
同学们,老师这里有几个问题,你们能帮老师解答一下吗? 早晨小明爸爸开车送小明去学校,东行3千米到学校,之后向西行6千米到图 书馆拿办公资料,如果规定向东为正,且小明家、学校、图书馆在同一条直 线上. (1)计算小明爸爸所行的总路程. (2)请你画一条数轴,原点表示小明家,在数轴上画出表示学校、图书馆的 点,学校和图书馆在数轴上表示的数是多少?到小明家的距离分别是多少?
图片导入
三只动物在离家不远的地方玩耍.观察图片,并回答问题. (1)大象和两只小狗分别距离原点多远? (2)从图中你还能知道哪两只动物之间的距离?
情境导入
体育课上,你和同学在操场上玩扔沙包的 游戏,如果你向左扔一个沙包,落在离你 10 米的地方,向右扔了一个,落在离你 同样远的位置,规定向右为正. (1)两次的位置分别可以记作什么? (2)它们与你的距离都是多少米?
【发现】①绝对值是一个正数的数有_2__个,它们互为_相__反___数;
②根据上面的规律发现,不论正数、负数,还是0,它们的绝对 值一定是_非__负__数_____.
【应用】①若|x|=2,则x的值是( C )
A.2
B.-2
C.±2
D.都不对
②若|a-1|+|b-2|=0,则a=1____,b=2____.
人教版(2024)数学七年级上册
绝对值
1.2 有理数及其大小比较 第4课时
汇报人:XXX 时间:2024.
《目录》
1 新课导入 2 新知讲解
3 课堂练习 4 拓展延伸
《01》
新课导入
重点
难点
1. 通过实例,了解绝对值的概念,理解利用数轴表示绝对值 的意义,培养学生数形结合的பைடு நூலகம்想.
2.通过观察、思考、探究等学习活动,体会绝对值的几何意 义和代数意义,发展学生的形象思维和抽象思维能力.
问题导入
同学们,老师这里有几个问题,你们能帮老师解答一下吗? 早晨小明爸爸开车送小明去学校,东行3千米到学校,之后向西行6千米到图 书馆拿办公资料,如果规定向东为正,且小明家、学校、图书馆在同一条直 线上. (1)计算小明爸爸所行的总路程. (2)请你画一条数轴,原点表示小明家,在数轴上画出表示学校、图书馆的 点,学校和图书馆在数轴上表示的数是多少?到小明家的距离分别是多少?
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
-8 -7 -6-5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11
利用数轴 在数轴上的两点,右边的点表示的数比左边的_大____. 反过来,左边的点表示的数比右边的_小___. 即:左边的数小于右边的数 适用于多个数的大小比较.
1.用“>”或“<”号填空,并说明理由.
小组讨论下面3个问题: (1)有没有绝对值等于-2的数? (2)一个数的绝对值会是负数吗?为什么?
(3)不论有理数a取何值,它的绝对值总是什么数?
不论有理数a取何值,它的绝对值总是正 数或0(非负数),即对任意有理数a,
总有 a ≥0
请同学们观察教科书第12页思考中的图,回答下面 问题.
1)题目中涉及到14个不同的气温,你能把这 14个数用数轴上的点表示出来吗?
(1)3.5 > 0
(2)-2.8 < 0
(3) 0 < 0.1
(4)0 > -4
(5) -1.95 < 1.59
(6)3 > -7
正数大于0,负数小于0,正数大于负数.
适用于一个数和0的大小比较,以及异号两数的大小比较.
同号两数怎样比较大小呢?
同正
同负
2.用“>”或“<”号填空,并说明理由.
(1) 3 < 7
绝对值
1.什么叫做相反数? 2.两辆汽车从同一处O出发,分别向东、西方 向行驶10 km,到达A,B两处,它们的行驶路 线相同吗?它们的行驶路程相同吗?
结论:它们的行驶路线不同,行驶路程相同.
两只小狗分别 距原点多远?
大象距原点多 远?
-3-2 -1 0 1 2 3 4
观察下面数轴上的点,表示-3的点到原点 的距离是多少?表示3的点呢?-2和2呢?
2.-0.8的绝对值是____ .
3.计算: 6 = 0=
2 = 7
-3 =
8.2 = -1=
3
结合上面答题结果,你能从中发现什么规律?
教师引导,学生归纳: (1)一个正数的绝对值是它本身; (2)一个负数的绝对值是它的相反数; (3)0的绝对值是0.
(1)若a 0,则 a a; (2)若a 0,则 a -a; (3)若a 0,则 a 0.
人生的价值,并不是用时间,而 是用深度去衡量的。
——列夫·托尔斯泰
1、比较下列各组数的大小,并说明你所运用 的法则:
(1)2_>__0 , 0_>__-8.3 , 2.5_>__-90
(2)-5_<_-3 , -3.14_>_ - , -7.8_<_ -7.7
(3)-(-9)_>_-(+9) , - [-(-0.3)] _<_ -|-0.29|
2、下面是我国几个城市某年一月份的平均气温,把它们 按从高到低的顺序排列: 北京-4.6℃, 武汉3.8℃, 广州13.1℃, 哈尔滨-19.4℃, 南京2.4℃
绝对值:一般地,数轴上表示数a的点与 原点的距离叫做数a的绝对值,记作|-a|
例如,上面的问题中在数轴上表示-3的点和 表示3的点到原点的距离都是3,所以3和-3的绝 对值都是3,即|-3|=| 3 |=3.你能说说-2和2吗?
互为相反数的两个数的绝对值有什 么关系?
相等
例如2=|-2|=2
1.-2的绝对值是__,说明数轴上表示 -2的点到____的距离是____个长度单位.
2)最低气温是多少?最高气温是多少? 3)你觉得两个有理数可以比较大小吗 ?应怎
样比较两个数的大小呢?
数学中规定:在数轴上表示有理数,它们从左到右的顺序,就 是从小到大的顺序,即左边的数小于右边的数.
下表给出了一周中每天的最高和最低气温
星期 一 二 三 四 五 六 日
最高气 温(℃)
8
7
6
5
3
4
9
1)正数大于0, 0大于负数,正数大于负数; 2)两个负数,绝对值大的反而小.
例 比较下列各数的大小: (1)(- -1)和(- 2);(2)- 8 和- 3;
21 7 (3)- (-0.3)和- 1 .
3
解:(1) -(-1)1,-( 2) -2. 因为 1 -2. 所以(- -1)(- 2).
答:13.1>3.8>2.4>-4.6>-19.4
多个有理数比较大小时,可根据“正数大于一切负数和 0,负数小于一切正数和0,0大于一切负数而小于一切 正数”进行分组比较. 即只需正数和正数比,负数和负数比.
1.什么叫绝对值?你能根据绝对值的意义 得到什么? 2.怎样利用绝对值比较两数的大小? 3.通过本节课的学习,你还有什么疑惑? 4.0是一个特殊的数,它有什么特殊的性 质?
(2) -2.8 > -2.9
(3) 3 1
3
>
91 3
(4) 3 < 1
2
4
归纳:
两个正数,绝对值大的大; 两个负数,绝对值大的反而小.
适Hale Waihona Puke 于同号两数比较大小.思考 对于正数、0和负数这三类数,它们之间有 什么大小关系?两个负数之间如何比较大小?前 面最低气温由低到高的排列与你的结论一致吗?
其最 温中最低(℃低气的)是__0_-_4__1__℃,-最1高的-是2 ___-9_4___℃-.3
2
你能将这14个温度按照由低到高的顺序排列吗?请你在
数轴上把这14个数表示出来.
题中的14个温度按照由低到高的
按照这个顺顺序序排列排的列温为度: 在温度计 -4上,下 所-对3应,上 的-点2,是-1, 0, 1, 2, 3, 从 把 从这____左些___数__到_表__4示_到,_在_右___数5的_轴,_. 上_6_,表_,示的7它.,们各8点,的9顺.序是
(1) 3 和 2
4
3
(2) 7 和 -1.42
5
两个负数比较大小的一般步骤:
①求绝对值;
②比较绝对值的大小;
③比较负数的大小.
利用数轴把下列各数按由小到大的顺
序排列:
解:
-4 --43,.5 +2, -1.5-1,.50, -3.05, 2.8
●●
●
●
-4
-3 -2 -1 0 1
+2 2.8 ●● 23
(2)- 8 8 , - 3 3 9 . 21 21 7 7 21
因为 8 9 , 21 21
即- 8 - 3, 21 7
所以- 8 - 3 . 21 7
(3) ( - - 0.3) 0.3,- 1 1 . 33
因为0.3 1 , 3
所以( - - 0.3) - 1 . 3
自学课本第13页例题中第(2)题的格式比较下 列各对数的大小:
所以: -4 < -3.5 < -1.5 < 0 < +2 < 2.8
利用数轴比较有理数大小的一般步骤: ①画数轴;②描点;③有序排列;④不等号连接.
零作为一个特殊的数,有它特殊的属性: 绝对值最小的数、相反数是它本身、绝对值是 它本身.
有理数比较大小的方法: 方法1.数轴上表示的两个数,右边的总比左边 的大; 方法2.正数大于0,0大于负数,正数大于负数; 两个负数,绝对值大的反而小 .