ABAQUS 关键字 BEAM GENERAL SECTION英
4abaqus里的单词翻译包括音标方便记忆

Shape [ʃeɪp]加工Loft [lɒft]放样Circular hole ['sɜːkjʊlə] [həʊl] 圆孔Blend [blend] 熔接Round/Fillet [raʊnd]['fɪlɪt]内/外圆角Chamfer ['tʃæmfə] 倒角Tansform 转换Suppress [sə'pres]禁用Attachment [ə'tætʃm(ə)nt]附加Partition [pɑː'tɪʃ(ə)n]分区CAD Parameters ~ [pə'ræmɪtɚ] CAD参数View Cut 视图切片Points from file/By picking ~ ['pɪkɪŋ]来自文件的或拾取的点Point along direction ~ [ə'lɒŋ] [daɪˈrekʃn]沿某一方向的点Remove attachments ~ [ə'tætʃm(ə)nt]删除附加体Mid surface 中面Assign [ə'saɪn]指定Assign thickness and offset ~['θɪknɪs]~~指定厚度和偏移量On context ~['kɒntekst]上下文帮助On module ~ ['mɒdjuːl]模块帮助Getting started ~ ['stɑːtɪd]入门指南Keyword browser ['braʊzə]关键字浏览器Release notes [rɪ'liːs] [nəʊt]发布记录Invoke context sensitive help [ɪn'vəʊk] ['kɒntekst]['sensɪtɪv]~打开上下文帮助Composite ['kɒmpəzɪt]复合Beam section orientation [biːm]梁截面方向Rebar reference orientation ['riːbɑː]['ref(ə)r(ə)ns] 钢筋参考方向Element normal ['elɪm(ə)nt] ['nɔːm(ə)l]单元法向Element tangent ~[ˈtændʒənt]单元切向Profile ['prəʊfaɪl]剖面Special ['speʃ(ə)l]特殊设置Stringer ['strɪŋə]纵梁Inertia [ɪ'nɜːʃə]惯性Springs/Dashpots [sprɪŋ] ['dæʃpɒt]弹簧/阻尼器Regenerate [rɪ'dʒenəreɪt]重生成Resume [rɪ'zju:m]恢复Evaluate [ɪ'væljʊeɪt]评估Elasticity [elæ'stɪsɪtɪ; iː-; ɪ-]弹性Elastic [ɪ'læstɪk]弹性Hyperelastic ['haɪpə]~超弹性Plasticity [plæ'stɪsɪtɪ]塑性Plastic ['plæstɪk]塑性Isotropic [,aɪsə(ʊ)'trɒpɪk]各向同性Engineering constants ~ ['kɔnstənts]工程常数Lamina ['læmɪnə]单层板Orthotropic [,ɔːθə(ʊ)'trəʊpɪk; -'trɒpɪk]正交Anisotropic [,ænaɪsə(ʊ)'trɒpɪk]各向异性Traction ['trækʃ(ə)n]面作用力Coupled traction ['kʌpld] ['trækʃ(ə)n]耦合表面作用力Shear [ʃɪə]剪力Moduli time scale (for viscoelasticity) ['mɑdʒə,lai] ~ [skeɪl]~ ['viskəu,ilæs'tisiti]模量时间尺度(用于粘弹性)No compression ~ [kəm'preʃ(ə)n]无压缩No tension ~ ['tenʃ(ə)n]无拉伸Modulus ['mɒdjʊləs]模量Ratio ['reɪʃɪəʊ]比Long-term ~ [tɜːm]长期Instantaneous [,ɪnst(ə)n'teɪnɪəs]瞬态Suboptions 子选项Fail stress ~ [stres]破坏应力Fail strain ~ [streɪn]破坏应变Ten stress (fiber dir) ~~ ['faɪbɚ]~拉应力(纤维方向)Com stress (fiber dir) 压应力(纤维方向)Ten stress (transv dir) 拉应力(传递方向)trans英[trɑːnz]美[trænz]•abbr. 翻译(translate)•pref. 表“横穿”;表“进入”•n. 传动装置;变速箱Shear strength [ʃɪə] [streŋθ;streŋkθ]剪切强度Stress limit [stres] ['lɪmɪt]应力限制塑性变形还没写。
Abaqus软件使用英文教程beam_tutorial

Abaqus Beam TutorialProblem DescriptionThe two dimensional bridge structure, which consists of steel T‐sections, is simply supported at its lower corners. A uniform distributed load of 1000 N/m is applied to the lower horizontal members in the vertical downward direction. Determine the stresses and the vertical displacements.Analysis Steps1.Start Abaqus and choose to create a new model database2.In the model tree double click on the “Parts” node (or right click on “parts” and select Create)3.In the Create Part dialog box (shown above) name the part anda.Select “2D Planar”b.Select “Deformable”c.Select “Wire”d.Set approximate size = 20e.Click “Continue…”4.Create the geometry shown below (not discussed here) the new material and give it a descriptionb.Click on the “Mechanical” tabÎElasticityÎElasticc.Define Young’s Modulus and Poisson’s Ratio (use SI units)i.WARNING: There are no predefined system of units within Abaqus, so the user is responsiblefor ensuring that the correct values are specifiedd.Click “OK” the profile and select “T” for the shapei.Note that the “T” shape is one of several predefined cross‐sectionsb.C lick “Continue…”c.Enter the values for the profile shown belowd.Click “OK”7.Double click on the “Sections” node in the model tree the section “BeamProperties” and select “Beam” for both the category and the typeb.Click “Continue…”c.Leave the section integration set to “During Analysis”d.Select the profile created above (T‐Section)e.Select the material created above (Steel)f.Click “OK”8.Expand the “Parts” node in the model tree, expand the node of the part just created, and double click on“Section Assignments”a.Select the entire geometry in the viewport and press Enterb.Select the section created above (BeamProperties)c.Click “OK”9.Expand the “Assembly” node in the model tree and then double click on “Instances”a.Select “Dependent” for the instance typeb.Click “OK”10.Double click on the “Steps” node in the model tree the step, set the procedure to “General”, and select “Static, General”b.Click “Continue…”c.Give the step a descriptiond.Click “OK”11.Expand the Field Output Requests node in the model tree, and then double click on F‐Output‐1 (F‐Output‐1 wasautomatically generated when creating the step)a.Uncheck the variables “Strains” and “Contact”b.Click “OK”12.Expand the History Output Requests node in the model tree, and then right click on H‐Output‐1 (H‐Output‐1 wasautomatically generated when creating the step) and select Delete13.Double click on the “BCs” node in the model tree the boundary conditioned “Pinned” and select “Displacement/Rotation” for the typeb.Click “Continue…”c.Select the lower‐left vertex of the geometry and press “Done” in the prompt aread.Check the U1 and U2 displacements and set them to 0e.Click “OK”f.Repeat for the lower‐right vertex, but model a roller restraint (only U2 fixed) instead14.Double click on the “Loads” node in the model tree the load “Distributed load” and select “Line load” as the typeb.Click “Continue…”c.Select the lower horizontal edges of the geometry press “Done” in the prompt aread.Specify component 2 = ‐1000i.Note that because we have been using standard SI units the load applied is ‐1000 N/m, which isa total of ‐10,000 N distributed across the lower horizontal memberse.Click “OK”15.In the model tree double click on “Mesh” for the Bridge part, and in the toolbox area click on the “AssignElement Type” icona.Highlight all members in the viewport and select Doneb.Select “Standard” for element typec.Select “Linear” for geometric orderd.Select “Beam” for familye.Note that the name of the element (B21) and its description are given below the element controlsf.Click “OK”16.In the toolbox area click on the “Seed Edge: By Number” icon (hold down icon to bring up the other options)a.Select the entire geometry, except the lower horizontal lines, and click “Done” in the prompt areab.Define the number of elements along the edges as 5c.Repeat for the lower horizontal lines, except specify 10 elements along the edges17.In the toolbox area click on the “Mesh Part” icona.Click “Yes” in the prompt area18.In the menu bar select ViewÎPart Display Optionsa.Check the Render beam profiles option on the General tabb.Click “OK”19.Change the Module to “Property”a.Click on the “Assign Beam Orientation” iconb.Select the entire geometry from the viewportc.Click “Done” in the prompt aread.Accept the default value of the approximate n1 direction20.Note that the preview shows that the beam cross sections are not all orientated as desired (see ProblemDescription)21.In the toolbox area click on the “Assign Beam/Truss Tangent” icona.Click on the sections of the geometry that are off by 180 degrees22.In the model tree double click on the “Job” node the job “Bridge”b.Click “Continue…”c.Give the job a descriptiond.Click “OK”23.In the model tree right click on the job just created (Bridge) and select “Submit”a.While Abaqus is solving the problem right click on the job submitted (Bridge), and select “Monitor”b.In the Monitor window check that there are no errors or warningsi.If there are errors, investigate the cause(s) before resolvingii.If there are warnings, determine if the warnings are relevant, some warnings can be safely ignored24.In the model tree right click on the submitted and successfully completed job (Bridge), and select “Results”25.In the menu bar click on ViewportÎViewport Annotations Optionsa.Uncheck the “Show compass option”b.The locations of viewport items can be specified on the corresponding tab in the Viewport AnnotationsOptionsc.Click “OK”26.Display the deformed contour of the (Von) Mises stress overlaid with the undeformed geometrya.In the toolbox area click on the following iconsi.“Plot Contours on Deformed Shape”ii.“Allow Multiple Plot States”iii.“Plot Undeformed Shape”27. In the toolbox area click on the “Common Plot Options” icona. Note that the Deformation Scale Factor can be set on the “Basic” tabb. On the “Labels” tab check the show node symbols iconc. Click “OK”28.To determine the stress values, from the menu bar click ToolsÎQuerya.Check the boxes labeled “Nodes” and “S, Mises”b.In the viewport mouse over the element of interestc.Note that Abaqus reports stress values from the integration points, which may differ slightly from thevalues determined by projecting values from the surrounding integration points to the nodesi.The minimum and maximum stress values contained in the legend are from the stressesprojected to the nodesd.Click on an element to store it in the “Selected Probe Values” portion of the dialogue boxe.Click “Cancel”29.To change the output being displayed, in the menu bar click on ResultsÎField Outputa.Select “Spatial displacement at nodes”ponent = U2b.Click “OK”30.To create a text file containing the stresses, vertical displacements, and reaction forces (including the total), inthe menu bar click on ReportÎField Outputa.For the output variable select (Von) Misesb.On the Setup tab specify the name and the location for the text filec.Uncheck the “Column totals” optiond.Click “Apply”e.Back on the Variable tab change the position to “Unique Nodal”f.Uncheck the stress variable, and select the U2 spatial displacementg.Click “Apply”h.On the Variable tab, uncheck Spatial displacement and select the RF2 reaction forcei.On the Setup tab, check the “Column totals” optionj.Click “OK”31.Open the .rpt file with any text editora.One thing to check is that the total reaction force is equal to the applied load (‐10,000 N)。
abaqus中generalized定义梁截面

一、介绍在abaqus中,generalized定义梁截面是指通过用户定义的截面属性来描述梁的横截面特性,例如截面面积、惯性矩、受拉强度等。
这种方法可以让用户自定义梁的截面形状,适用于各种特殊的梁截面形式,如T型梁、工字梁等。
本文将介绍在abaqus中如何使用generalized 定义梁截面,以及如何进行相关的数值分析。
二、generalized定义梁截面的原理1. 梁截面属性在abaqus中,generalized定义梁截面的关键在于定义梁的截面属性。
这些属性包括但不限于:截面面积、受拉强度、受压强度、剪切强度、弯矩方向的惯性矩、弯矩垂直方向的惯性矩等。
通过定义这些属性,用户可以自定义梁的截面形状和材料特性。
2. 截面类型在generalized定义梁截面中,用户可以选择不同的截面类型,包括:矩形截面、圆形截面、工字形截面、T型截面等。
用户可以根据实际需求选择合适的截面类型,并按照实际梁的截面形状进行定义。
三、如何定义generalized梁截面1. 在命令窗口中输入相关命令在abaqus中,用户可以通过命令窗口输入相关命令来定义generalized梁截面。
这些命令包括:*BEAM SECTION, *BEAMGENERAL SECTION等。
用户可以根据具体的梁截面形式选择合适的命令,并按照命令提示依次输入截面属性参数、材料参数等信息。
2. 使用abaqus CAE进行图形化定义除了通过命令窗口输入命令外,用户还可以使用abaqus CAE进行图形化界面的定义。
在abaqus CAE中,用户可以通过菜单栏中的梁截面定义工具进行相关操作。
通过图形化界面,用户可以方便地定义梁截面属性、截面类型等信息。
四、使用generalized梁截面进行数值分析1. 定义梁截面在进行数值分析前,用户需要先定义具体的梁截面属性。
通过上述介绍的方法,用户可以在abaqus中定义generalized梁截面,并将其与具体的梁单元相对应。
ABAQUS关键字(keywords)

ABAQUS帮助里关键字(keywords)翻译(2013-03-06 10:42:48)转载▼分类:abaqus转自人人网总规则1、关键字必须以*号开头,且关键字前无空格2、**为注释行,它可以出现在中的任何地方3、当关键字后带有时,关键词后必须采用逗号隔开4、参数间都采用逗号隔开5、关键词可以采用简写的方式,只要程序能识别就可以了6、不需使用隔行符,如果参数比较多,一行放不下,可以另起一行,只要在上一行的末尾加逗号便可以-----------------------------------------------------------------------------------------------------------------------------------------*AMPLITUDE:幅值这个选项允许任意的载荷、和其它指定的数值在一个分析步中随时间的变化(或者在ABAQUS/Standard分析中随着的变化)。
必需的参数:NAME:幅值曲线的名字可选参数:DEFINITION:设置definition=Tabular(默认)给出表格形式的幅值-时间(或幅值-频率)定义。
设置DEFINITION=EQUALLY SPACED/PERIODIC/MODULATED/DECAY/SMOOTH STEP/SOLUTION DEPENDENT或BUBBLE来定义其他形式的幅值曲线。
INPUT:设置该参数等于替换输入文件名字。
TIME:设置TIME=STEP TIME(默认)则表示分析步时间或频率。
TIME=TOTAL TIME表示总时间。
VALUE:设置VALUE=RELATIVE(默认),定义相对幅值。
VALUE=ABSOLUTE表示绝对幅值,此时,行中载荷选项内的值将被省略,而且当温度是指定给已定义了温度TEMPERATURE=GRADIENTS(默认)梁上或壳上的,不能使用ABSOLUTE。
ABAQUS 关键字 BEAM GENERAL SECTION汉

*BEAM 一般部分在不需要对截面进行数值积分时指定光束截面。
当不需要在截面上进行数值积分时,此选项用于定义线性或非线性光束截面响应。
在这种情况下,将梁截面几何形状和材料描述组合在一起;没有*材料引用与此选项关联。
产品:ABAQUS/标准阿巴库斯/显式类型:模型数据级别:零件零件实例引用:•"使用一般光束部分定义截面行为,"ABAQUS 分析用户手册第 23.3.7 节•"光束建模:概述,"ABAQUS 分析用户手册第 23.3.1 节所需参数:Elset设置此参数等于为节定义的元素集的名称。
ABAQUS/显式中所需的参数,ABAQUS/标准中的可选参数:密度设置此参数等于光束材料的质量密度(单位体积质量)。
在ABAQUS/标准分析中,只有当需要元素的质量(如动态分析或重力加载)时,才需要此参数。
当节 = 网格化时,不能使用此参数。
Optional parameters:DEPENDENCIES当"部分 = 非线性常规"或"节"= "网格化"时,不能使用此参数。
设置此参数等于除温度外,材料模组定义中包含的字段变量依赖项数。
如果省略此参数,则假定moduli 是恒定的或仅取决于温度。
鱼设置此参数等于有效泊松的比例,以便由于梁轴的应变,在截面中提供均匀应变(因此当梁拉伸时横截面区域会发生变化)。
有效泊松比率的值必须在 +1.0 和 0.5 之间。
默认值为POISSON|0。
值 0.5 将强制元素的不可压缩行为。
对于具有节和PIPE 的PIPE 元素,此参数也将与在第三条数据线上给出的Young 模量一起使用,以计算由于箍应变而引起的轴向应变。
此参数仅用于大排量分析。
它不用于元素类型B23、B33 或等效的"混合"元素(仅在ABAQUS/标准中可用)。
ROTARY INERTIAThis parameter is relevant only for three-dimensional Timoshenko beam elements.Set ROTARY INERTIA=EXACT (default) to use the exact rotary inertia corresponding to the beam cross-section geometry in dynamic and eigenfrequency extraction procedures.设置旋转惯性=ISOTROPIC对横截面使用近似旋转惯性。
ABAQUS 关键字 BEAM ADDED INERTIA英

*BEAM ADDED INERTIADefine additional beam inertia.This option is used in conjunction with the *BEAM SECTION or *BEAM GENERAL SECTION option to define additional mass and rotary inertia per unit length in shear flexible Timoshenko beam elements. This option is also used to define mass proportional damping (for direct-integration dynamic analysis) and in ABAQUS/Standard composite damping (for modal dynamic analysis) associated with the added inertia.Products: ABAQUS/Standard ABAQUS/ExplicitType: Model dataLevel: Part Part Instance AssemblyReferences:•“Choosing a beam element,” Section 23.3.3 of the ABAQUS Analysis User's Manual•“Beam section behavior,” Section 23.3.5 of the ABAQUS Analysis User's ManualOptional parameters:ALPHASet this parameter equal to the factor to create inertia proportional damping for addedinertia associated with this option when used in direct-integration dynamics. This value isignored in modal dynamics. The default is ALPHA=0.0. (Units of T–1.)COMPOSITEThis parameter applies only to ABAQUS/Standard analyses.Set this parameter equal to the fraction of critical damping to be used with the beam elements when calculating composite damping factors for the modes when used in modal dynamics. This value is ignored in direct-integration dynamics. The default is COMPOSITE=0.0.Data line to define additional beam inertia:First line:1.Mass per unit length.1.Local 1-coordinate of the center of mass within the beam cross-section, .1.Local 2-coordinate of the center of mass within the beam cross-section, .1.Orientation angle for the first axis of the oriented system relative to the first beam cross-sectional direction in which the rotary inertia is given, (in degrees). Only relevant forbeams in space; otherwise, leave blank.1.Rotary inertia around the center of mass about the 1-axis in the local inertia system, .1.Rotary inertia around the center of mass about the 2-axis in the local inertia system, . Onlyrelevant for beams in space; otherwise, leave blank.1.Product of inertia, . Only relevant for beams in space; otherwise, leave blank.The rotary inertia should be given in units of ML. ABAQUS does not use any specific physical units, so the user's choice must be consistent.Repeat this set of data lines as often as necessary to define the additional beam inertia.。
5abaqus里的单词翻译包括音标方便记忆

Plastic ['plæstɪk]塑性Use strain-rate-dependent data ~ [streɪn][reɪt] [dɪ'pɛndənt]['deɪtə] 使用与应变率相关的数据∙ Rate [reɪt] n. 比率,率;速度;价格;等级∙vt. 认为;估价;责骂∙vi. 责骂;被评价Yield stress [jiːld][stres]屈服应力Plastic strain 塑性应变Hardening ['hɑːdənɪŋ]硬化Kinematic [,kɪnɪ'mætɪk] 运动Combined [kəm'baɪnd]组合Damping [dæmpɪŋ]阻尼∙Alpha ['ælfə] n. 希腊语的第一个字母∙Beta ['biːtə] n. 贝它(希腊字母表的第二个字母)Composite ['kɒmpəzɪt]复合Structural ['strʌktʃərəl]结构Expansion [ɪk'spænʃ(ə)n; ek-] 膨胀Use user subroutine:UEXPAN ~~ ['sʌbruːtiːn]~使用用户子程序:UEXPAN ∙Subroutine ['sʌbruːtiːn]n. [计] 子程序Expansion coeff alpha ~ [kəuf]~膨胀系数 alpha∙ Coeff [kəuf] n. 多项式系数Viscosity [vɪ'skɒsɪtɪ]粘性Dynamic viscosity [daɪ'næmɪk]~动力粘度∙ Dynamic [daɪ'næmɪk] adj. 动态的;动力的;动力学的;有活力的∙n. 动态;动力Category ['kætɪg(ə)rɪ]类别Homogeneous [,hɒmə(ʊ)'dʒiːnɪəs; -'dʒen-]均质Generalized plane strain ['dʒɛnrəlaɪzd]~~广义平面应变∙ Generalized ['dʒɛnrəlaɪzd] adj. 广义的,普遍的;无显著特点的∙v. 推广(generalize的过去分词);对…进行概括;使…一般化Eulerian 欧拉Composite ['kɒmpəzɪt]复合Element distribution ['elɪm(ə)nt][dɪstrɪ'bjuːʃ(ə)n]单元分布Nodal distribution ['nəʊdəl]结点分布Thickness integration rule ~ ['ɪntə'greʃən]~厚度积分规则Idealization [aɪ'dɪəlɪ'zeʃən]辅助显示(理想化)No idealization 无理想化Membrane only ['membreɪn] ~ 只有膜Bending only ['bendɪŋ]~只弯Advanced [æd'vɑːnst]高级Section Poisson’s ratio ~ ['pwasɔn] ['reɪʃɪəʊ] 截面泊松比Use analysis default ~~ [dɪ'fɔːlt; 'diːfɔːlt]使用默认值Specify value ['spesɪfaɪ]~指定值Thickness modulus ~ ['mɒdjʊləs]厚度模量Temperature variation [temprətʃə(r)][veərɪ'eɪʃ(ə)n]温度变化Linear through thickness ['lɪnɪə][θruː]['θɪknɪs]厚度方向线性Piecewise linear over ['pɪs,waɪs] ['lɪnɪə] ~分段线性Transverse shear stiffnesses [trænz'vɜːs; trɑːnz-; -ns-][ʃɪə] ['stɪfnɪs] 横向剪切刚度Specify values ['spesɪfaɪ] ['væljʊz]指定值Truss [trʌs]桁架Beam shape [biːm][ʃeɪp]梁形状Temperature variation [temprətʃə(r)] [veərɪ'eɪʃ(ə)n]温度变化Linear by gradients ~~['greɪdɪənt]梯度线性Interpolated from temperature points [ɪn'tɝpə,let]~~~从温度点内插Use consistent mass matrix formulation ~ [kən'sɪst(ə)nt]使用一致质量矩阵方法∙ Consistent [kən'sɪst(ə)nt] adj. 始终如一的,一致的;坚持的∙Mass [mæs] n. 块,团;群众,民众;大量,众多;质量∙adj. 群众的,民众的;大规模的,集中的∙vi. 聚集起来,聚集∙vt. 使集合∙matrix ['meɪtrɪks] n. [数] 矩阵;模型;[生物][地质] 基质;母体;子宫;[地质] 脉石∙formulation [fɔːmjʊ'leɪʃn] n. 构想,规划;公式化;简洁陈述Specify transverse shear 指定横向剪切Slenderness compensation Slenderness 补偿∙ Slenderness ['slɛndɚnɪs] n. 细长;苗条∙Compensation [kɒmpen'seɪʃ(ə)n] n. 补偿;报酬;赔偿金Calculate from elastic material properties 依据弹性材料属性进行计算∙ Calculate ['kælkjʊleɪt] vi. 计算;以为;作打算∙vt. 计算;预测;认为;打算∙elastic [ɪ'læstɪk] adj. 有弹性的;灵活的;易伸缩的∙n. 松紧带;橡皮圈Cross-sectional area [krɒs]['eərɪə]横截面面积Constant through thickness ['kɒnst(ə)nt]厚度常数∙ Constant ['kɒnst(ə)nt] adj. 不变的;恒定的;经常的∙n. [数] 常数;恒量Gasket ['gæskɪt]垫圈Stabilization stiffness [,steɪbɪlaɪ'zeɪʃən]['stɪfnɪs]稳定刚度Use nodal coordinates ['nəʊdəl] [kəu'ɔ:dineits]使用结点坐标Initial gap [ɪ'nɪʃəl][gæp]初始间隙Initial void [vɒɪd]初始空腔Cross-sectional area,width,or out-of-plane thickness 横截面面积,宽度,或者平面外厚度∙ Width [wɪtθ; wɪdθ]n. 宽度;广度Select the regions to be assigned a section 选择要指派截面的区域∙ Regions ['riːdʒ(ə)n] n. 地区;范围;部位Method ['meθəd]方法。
ABAQUS 单元总结与分析技巧

abaqus单元小结[zz]默认分类2009-04-28 20:37 阅读53 评论0 字号:大大中中小小1、单元表征单元族:单元名字里开始的字母标志着这种单元属于哪一个单元族。
C3D8I是实体单元;S4R是壳单元;CINPE4是无限元;梁单元;刚体单元;膜单元;特殊目的单元,例如弹簧,粘壶和质量;桁架单元。
自由度dof(和单元族直接相关):每一节点处的平动和转动1 1方向的平动2 2方向的平动3 3方向的平动4 绕1轴的转动5 绕2轴的转动6 绕3轴的转动7 开口截面梁单元的翘曲8 声压或孔隙压力9 电势11 度(或物质扩散分析中归一化浓度)12+梁和壳厚度上其它点的温度轴对称单元1 r方向的平动2 z方向的平动6 r-z方向的转动节点数:决定单元插值的阶数数学描述:定义单元行为的数学理论积分:应用数值方法在每一单元的体积上对不同的变量进行积分。
大部分单元采用高斯积分方法计算单元内每一高斯点处的材料响应。
单元末尾用字母“R”识别减缩积分单元,否则是全积分单元。
ABAQUS拥有广泛适用于结构应用的庞大单元库。
单元类型的选择对模拟计算的精度和效率有重大的影响;节点的有效自由度依赖于此节点所在的单元类型;单元的名字完整地标明了单元族、单元的数学描述、节点数及积分类型;所用的单元都必须指定单元性质选项。
单元性质选项不仅用来提供定义单元几何形状的附加数据,而且用来识别相关的材料性质定义;对于实体单元,ABAQUS参考整体笛卡尔坐标系来定义单元的输出变量,如应力和应变。
可以用*ORIENTATION选项将整体坐标系改为局部坐标系;对于三维壳单元,ABAQUS参考建立在壳表面上的一个坐标系来定义单元的输出变量。
可以用*ORIENTATION选项更改这个参考坐标系。
2.实体单元(C)实体单元可在其任何表面与其他单元连接起来。
C3D:三维单元CAX:无扭曲轴对称单元,模拟3600的环,用于分析受轴对称载荷作用,具有轴对称几何形状的结构;CPE:平面应变单元,假定离面应变ε33为零,用力模拟厚结构;CPS:平面应力单元,假定离面应力σ33为零,用力模拟薄结构;广义平面应变单元包括附加的推广:离面应变可以随着模型平面内的位置线性变化。
ABAQUS 关键字 BEAM FLUID INERTIA英

*BEAM FLUID INERTIADefine additional beam inertia due to immersion in a fluid.This option is used in conjunction with the *BEAM SECTION or *BEAM GENERAL SECTION option to include added inertia effects in Timoshenko beam elements due to immersion in an inviscid fluid.Products: ABAQUS/Standard ABAQUS/ExplicitType: Model dataLevel: Part Part Instance AssemblyReferences:•“Beam section behavior,” Section 23.3.5 of the ABAQUS Analysis User's Manual•“Acoustic, shock, and coupled acoustic-structural analysis,” Section 6.9.1 of the ABAQUS Analysis User's Manual•“Loading due to an incident dilatational wave field,” Section 6.3.1 of the ABAQUS Theory ManualOptional, mutually exclusive parameters:FULLUse this parameter to specify a fully submerged beam (default).HALFUse this parameter to specify a half-submerged beam.Data line to define beam fluid inertia:First (and only) line:1.Mass density of fluid.1.Local 1-coordinate of the center of the cylindrical cross-section with respect to the beamcross-section, x.1.Local 2-coordinate of the center of the cylindrical cross-section with respect to the beamcross-section, y.1.Radius of the cylindrical cross-section, r.1.Added mass coefficient, (default = 1.0), for lateral motions of the beam.1.Added mass coefficient, (default = 0.0), for motions along the axis of the beam. Thiscoefficient affects only the term added to the free end(s) of the beam.。
Abaqus关键字翻译

Abaqus关键字翻译总规则1、关键字必须以*号开头,且关键字前无空格2、**为注释行,它可以出现在文件中的任何地方3、当关键字后带有参数时,关键词后必须采用逗号隔开4、参数间都采用逗号隔开5、关键词可以采用简写的方式,只要程序能识别就可以了6、不需使用隔行符,如果参数比较多,一行放不下,可以另起一行,只要在上一行的末尾加逗号便可以 *AMPLITUDE:定义幅值曲线这个选项允许任意的载荷、位移和其它指定变量的数值在一个分析步中随时间的变化(或者在ABAQUS/Standard分析中随着频率的变化)。
必需的参数:NAME:设置幅值曲线的名字可选参数:DEFINITION:设置definition=Tabular(默认)给出表格形式的幅值-时间(或幅值-频率)定义。
设置DEFINITION=EQUALLY SPACED/PERIODIC/MODULATED/DECAY/SMOOTHSTEP/SOLUTION DEPENDENT或BUBBLE来定义其他形式的幅值曲线。
INPUT:设置该参数等于替换输入文件名字。
TIME:设置TIME=STEP TIME(默认)则表示分析步时间或频率。
TIME=TOTAL TIME表示总时间。
VALUE:设置VALUE=RELATIVE(默认),定义相对幅值。
VALUE=ABSOLUTE表示绝对幅值,此时,数据行中载荷选项内的值将被省略,而且当温度是指定给已定义了温度TEMPERATURE=GRADIENTS(默认)梁上或壳单元上的节点,不能使用ABSOLUTE。
对于DEFINITION=TABULAR的可选参数: SMOOTH:设置该参数等于 DEFINITION=TABULAR的数据行第一行1、时间或频率2、第一点的幅值(绝对或相对)3、时间或频率4、第二点的幅值(绝对或相对) 等等基本形式:*Amplitude,name=Amp-10.,0.,0.2,1.5,0.4,2.,1.,1. *BEAM SECTION:当需要数值积分时定义梁截面 *BOND:定义绑定和绑定属性 *BOUNDARY:定义边界条件用来在节点定义边界条件或在子模型分析中指定被驱动的节点。
abaqus中英文

abaqus中英文ABAQUS专业术语中英文对照前后处理器模块——ABAQUS/CAE几何体建模——GeometryGeometry Creation Tools(几何体生成工具)2-D Sketcher(二维草图)Sketch T ools and Options(草图工具和选项)Geometry Import/Export(几何体导入和导出)Geometry Repair T ools(几何体修补工具)Mesh Edit(网格编辑)模型装配——AssemblyInstance Tools(实例工具)Sets and Surfaces(集合和表面)Display Groups(显式组)Merge/Cut T ools(合并/剪切操作)定义材料性质——PropertiesMaterial Models(材料模型)General(一般性质)Elasticity(弹性性质)Electrical properties(电性质)Mass diffusion(质量扩散)Plasticity(塑性性质)Pore fluid properties(孔隙流体性质)Thermal properties(热性质)Gasket(垫片)Acoustic medium(声学介质)Equation of state (EOS) materials(状态方程)User materials(用户自定义材料)Hyperelastic material evaluation(超弹性材料评估)Sections(截面性质)Solid(实体)homogeneous(各向同性的), generalized plane strain(广义平面应变的Shell(壳)homogeneous(各向同性的), composite(复合材料壳单元), membrane (薄膜),surface (rebar layers)(带钢筋层的曲面)Beam(梁) beam(梁), truss(杆)Point(点)mass(质量单元), rotary inertia(转动惯量), damping(阻尼), capacitance(电容)Gasket(垫片)Beam section profiles(梁截面形状)Skin(蒙皮)Orientations(材料方向)分析流程功能——AnalysisGeneral, Linear and Nonlinear Analyses(通用,线性和非线性分析)Static stress/displacement analysis(静力分析)Viscoelastic/viscoplastic response(粘弹/粘塑响应)Dynamic stress/displacement analysis(动力分析)Heat transfer analysis(热传导分析)Mass diffusion analysis(质量扩散分析)Acoustic analysis(声学分析)Coupled problems(耦合问题)– Thermo-mechanical(热固)– Thermo-electrical(热电)– Piezoelectric(压电)– Pore fluid flow-mechanical(孔隙流动)– Thermo-mechanical mass diffusion(热-固-质量扩散)– Shock and acoustic-structural(冲击和声固耦合)Linear Perturbation Analyses(线性摄动分析)Static stress/displacement analysis(应力位移静力分析)– Linear static stress/displacement analysis(应力位移线性静力分析)– Eigenvalue buckling estimates(特征值屈曲分析)Dynamic stress/displacement analysis(应力位移动力学分析)– Natural frequency extraction(自振频率提取)– Complex eigenvalue extraction(复频率提取)– Transient response via modal superposition(通过模态叠加法计算瞬态响应)–Steady-state response to harmonic loading (简谐载荷下的稳态响应)– Response spectrum analysis(响应谱分析)– Random response analysis(随机响应分析)Analysis Controls(分析控制)Output Requests(输出请求)定义约束和接触——Constraints and InteractionsContact(接触)General contact (ABAQUS/Explicit)(通用接触)Surface-to-surface contact(面面接触)Self-contact(自接触)Contact Properties(接触性质)Constraints(约束)Thermal(热)Loads(载荷)Mechanical(机械)Bolt load(螺栓预紧力)Thermal(热)Acoustic(声场)Fluid(流体)Electrical(电)Mass diffusion(质量扩散)Fields(场)Multiple load cases(多工况)Connectors(连接单元)Boundary Conditions(边界条件)Nodal(节点位移)Velocity(速度)Acceleration(加速度)Velocity/angular velocity(角速度)Submodel(子模型)Pore pressure(孔压)Electric potential(电势)Temperatures(温度)网格划分——MeshingMesh Seeding(网格种子)Structured Meshing(结构化分网)Surface Meshing(表面分网)Solid Meshing(实体分网)Virtual Topology(虚拟拓扑)单元库——Element Library Beam(梁单元)Truss(杆单元)Connector(连接单元)Shell(壳单元)Membrane(薄膜单元)Continuum(实体单元)Elbow(弯管单元)Gasket(垫片单元)Pipe(管道单元)后处理——VisualizationModel plotting(模型图)Deformed, contour, vector/tensor, path, tickmark, overlay, material orient ations, X–Y plots(变形图,云图、矢量/张量图、材料方向图、X-Y曲线图等)Animations(动画)Stress linearization(应力线性化)Tabular data reports(数据报表)Probe/query tools(查询工具)Diagnostics visualization(结果诊断)过程自动化——Process AutomationPython scripting(Python脚本)GUI toolkit(用户界面工具包)Macro manager(宏管理器)隐式求解器模块——ABAQUS/STANDARD分析类型——Analysis TypesGeneral, Linear and Nonlinear Analyses(通用,线性和非线性分析) Static stress/displacement analysis(静力分析)Direct cyclic analysis(直接载荷循环分析)Viscoelastic/viscoplastic response(粘弹性和粘塑性)Dynamic stress/displacement analysis(动力学分析)Steady-state transport analysis(稳态传输分析)Heat transfer analysis(热传导分析)Mass diffusion analysis(质量扩散分析)Acoustic analysis(声场分析)Coupled analysis(耦合分析)Linear Perturbation Analyses(线性摄动分析)分析和建模技术——Analysis and Modeling Techniques求解技术——Solution Techniques材料定义——Material DefinitionsElastic Mechanical Properties(弹性机械性质)Inelastic Mechanical Properties(非弹性机械性质)Additional Material Properties(其他材料性质)单元库——Element LibraryContinuum(实体单元)Membranes(薄膜单元)Beams(梁单元)Pipes(管道单元)Elbows(弯管单元)Frame Elements(框架单元)Trusses(杆单元)Gasket Elements(垫片单元)Inertial Elements(惯性单元)Rigid Elements(刚体单元)Capacitance Elements(热容单元)Connector Elements(连接单元)Springs, Dashpots, Flexible Joints(弹簧,阻尼器,柔性接头)Distributed Coupling(分布耦合)Special-Purpose Elements(特殊用途单元)User-Defined Elements(用户自定义单元)预设条件——Prescribed Conditions约束和接触——Constraints and Interactions Kinematic Constraints(自由度约束)Surface-Based Contact Modeling(基于表面的接触建模)Element-Based Contact Modeling(基于单元的接触建模)Cavity Radiation(空腔辐射)用户子程序——User Subroutines显式求解器模块——ABAQUS/EXPLICIT分析类型——Analysis Types非线性显示动力学分析分析和建模技术——Analysis and Modeling Techniques 材料定义——Material DefinitionsElastic Mechanical Properties(弹性机械性质)Inelastic Mechanical Properties(非弹性机械性质)Additional Material Properties(其他材料性质)单元库——Element LibraryContinuum(实体单元)Structural(结构单元)Inertial Elements(惯性单元)Rigid Elements(刚体单元)Capacitance Elements(热容单元)Connector Elements(连接单元)Springs, Dashpots(弹簧和阻尼器)预设条件——Prescribed Conditions约束和接触——Constraints and InteractionsKinematic Constraints(自由度约束)Contact Modeling(接触建模)。
ABAQUS帮助里关键字(keywords)翻译

ABAQUS帮助里关键字(keywords)翻译ABAQUS帮助里关键字(keywords)翻译总规则1、关键字必须以*号开头,且关键字前无空格2、**为注释行,它可以出现在中的任何地方3、当关键字后带有时,关键词后必须采用逗号隔开4、参数间都采用逗号隔开5、关键词可以采用简写的方式,只要程序能识别就可以了6、不需使用隔行符,如果参数比较多,一行放不下,可以另起一行,只要在上一行的末尾加逗号便可以----------------------------------------------------------------------------------------------------------------------------------------- *AMPLITUDE:幅值这个选项允许任意的载荷、和其它指定的数值在一个分析步中随时间的变化(或者在ABAQUS/Standard分析中随着的变化)。
必需的参数:NAME:幅值曲线的名字可选参数:DEFINITION:设置definition=Tabular(默认)给出表格形式的幅值-时间(或幅值-频率)定义。
设置DEFINITION=EQUALLY SPACED/PERIODIC/MODULATED/DECAY/SMOOTHSTEP/SOLUTION DEPENDENT或BUBBLE来定义其他形式的幅值曲线。
INPUT:设置该参数等于替换输入文件名字。
TIME:设置TIME=STEP TIME(默认)则表示分析步时间或频率。
TIME=TOTAL TIME表示总时间。
VALUE:设置VALUE=RELATIVE(默认),定义相对幅值。
VALUE=ABSOLUTE表示绝对幅值,此时,行中载荷选项内的值将被省略,而且当温度是指定给已定义了温度TEMPERATURE=GRADIENTS(默认)梁上或壳上的,不能使用ABSOLUTE。
对于DEFINITION=TABULAR的可选参数:SMOOTH:设置该参数等于DEFINITION=TABULAR的数据行第一行1、时间或频率2、第一点的幅值(绝对或相对)3、时间或频率4、第二点的幅值(绝对或相对) 等等基本形式:*Amplitude,name=Amp-10.,0.,0.2,1.5,0.4,2.,1.,1.*BEAM SECTION:当需要数值积分时定义梁截面*BOND:定义绑定和绑定属性*BOUNDARY:定义边界条件用来在节点定义边界条件或在子模型分析中指定被驱动的节点。
abaqus关键字翻译

规则1、关键字必须以*号开头,且关键字前无空格2、**为注释行,它可以出现在文件中的任何地方3、当关键字后带有参数时,关键词后必须采用逗号隔开4、参数间都采用逗号隔开5、关键词可以采用简写的方式,只要程序能识别就可以了6、不需使用隔行符,如果参数比较多,一行放不下,可以另起一行,只要在上一行的末尾加逗号便可以*AMPLITUDE:定义幅值曲线这个选项允许任意的载荷、位移和其它指定变量的数值在一个分析步中随时间的变化(或者在ABAQUS/Standard分析中随着频率的变化)。
必需的参数:NAME:设置幅值曲线的名字可选参数:DEFINITION:设置definition=Tabular(默认)给出表格形式的幅值-时间(或幅值-频率)定义。
设置DEFINITION=EQUALLY SPACED/PERIODIC/MODULATED/DECAY/SMOOTH STEP/SOLUTION DEPENDENT或BUBBLE来定义其他形式的幅值曲线。
INPUT:设置该参数等于替换输入文件名字。
TIME:设置TIME=STEP TIME(默认)则表示分析步时间或频率。
TIME=TOTAL TIME表示总时间。
V ALUE:设置V ALUE=RELATIVE(默认),定义相对幅值。
V ALUE=ABSOLUTE表示绝对幅值,此时,数据行中载荷选项内的值将被省略,而且当温度是指定给已定义了温度TEMPERATURE=GRADIENTS(默认)梁上或壳单元上的节点,不能使用ABSOLUTE。
对于DEFINITION=TABULAR的可选参数:SMOOTH:设置该参数等于DEFINITION=TABULAR的数据行第一行1、时间或频率2、第一点的幅值(绝对或相对)3、时间或频率4、第二点的幅值(绝对或相对) 等等基本形式:*Amplitude,name=Amp-10.,0.,0.2,1.5,0.4,2.,1.,1.*BEAM SECTION:当需要数值积分时定义梁截面*BOND:定义绑定和绑定属性*BOUNDARY:定义边界条件用来在节点定义边界条件或在子模型分析中指定被驱动的节点。
ABAQUS 关键字 AXIAL英

*AXIALUsed to define the axial behavior of beams.This option can be used only in conjunction with the *BEAM GENERAL SECTION,SECTION=NONLINEAR GENERAL option.Products: ABAQUS/Standard ABAQUS/ExplicitType: Model dataLevel: Part Part InstanceReferences:•*BEAM GENERAL SECTION•“Using a general beam section to define the section behavior,” Section 23.3.7 of theABAQUS Analysis User's ManualOptional parameters (if neither ELASTIC nor LINEAR is included, elastic-plastic response is assumed):DEPENDENCIESSet this parameter equal to the number of field variable dependencies included in the axial force–axial strain relationship, in addition to temperature. If this parameter is omitted, it is assumed that the axial force–axial strain relationship is constant or depends only ontemperature. See “Specifying field variable dependence” in “Material data definition,” Section16.1.2 of the ABAQUS Analysis User's Manual, for more information.ELASTICInclude this parameter if the axial force–axial strain relationship is nonlinear but elastic. LINEARInclude this parameter if the axial force–axial strain relationship is linear.Data lines if the LINEAR parameter is included:First line:1.Axial stiffness of the section.1.Temperature.1.First field variable.1.Second field variable.1.Etc., up to six field variables.Subsequent lines (only needed if the DEPENDENCIES parameter has a value greater than six):1.Seventh field variable.1.Etc., up to eight field variables per line.Repeat this set of data lines as often as necessary to define the axial stiffness as a function of temperature and other predefined field variables.Data lines if the LINEAR parameter is omitted:First line:1.Axial force.1.Axial strain.1.Temperature.1.First field variable.1.Second field variable.1.Etc., up to five field variables.Subsequent lines (only needed if the DEPENDENCIES parameter has a value greater than five):1.Sixth field variable.1.Etc., up to eight field variables per line.Repeat this set of data lines as often as necessary to define the axial force–axial strain relationship as a function of temperature and other predefined field variables.。
(完整版)Abaqus分析实例(梁单元计算简支梁的挠度)精讲

Abaqus分析实例(梁单元计算简支梁的挠度)精讲对于梁的分析可以使用梁单元、壳单元或是固体单元。
Abaqus的梁单元需要设定线的方向,用选中所需要的线后,输入该线梁截面的主轴1方向单位矢量(x,y,z),截面的主轴方向在截面Profile设定中有规定。
注意:因为ABAQUS软件没有UNDO功能,在建模过程中,应不时地将本题的CAE模型(阶段结果)保存,以免丢失已完成的工作。
简支梁,三点弯曲,工字钢构件,结构钢材质,E=210GPa,μ=0.28,ρ=7850kg/m3(在不计重力的静力学分析中可以不要)。
F=10k N,不计重力。
计算中点挠度,两端转角。
理论解:I=2.239×10-5m4,w中=2.769×10-3m,θ边=2.077×10-3。
文件与路径:顶部下拉菜单File, Save As ExpAbq00。
一部件1 创建部件:Module,Part,Create Part,命名为Prat-1;3D,可变形模型,线,图形大约范围10(程序默认长度单位为m)。
2 绘模型图:选用折线,从(0,0)→(2,0)→(4,0)绘出梁的轴线。
3 退出:Done。
二性质1 创建截面几何形状:Module,Property,Create Profile,命名为Profile-1,选I型截面,按图输入数据,l=0.1,h=0.2,b l=0.1,b2=0.1,t l=0.01,t2=0.01,t3=0.01,关闭。
2 定义梁方向:Module,Property,Assign Beam Orientation,选中两段线段,输入主轴1方向单位矢量(0,0,1)或(0,0,-1),关闭。
3 定义截面力学性质:Module,Property,Create Section,命名为Section-1,梁,梁,截面几何形状选Profile-1,输入E=210e9(程序默认单位为N/m2,GPa=109N/m2),G=82.03e9,ν=0.28,关闭。
ABAQUS梁单元局部坐标轴的定义

ABAQUS梁单元局部坐标轴的定义ABAQUS analysis user's manual,vol429.3.8For PIPE elements use the pipe section type to specify the thin-walled pipe formulation or the thick pipe section type to specify the thick-walled pipe formulation. No other section types can be used with PIPE elements.For open-section elements use only the arbitrary, I, L, and linear generalized section types.Local orientations defined as described in “Orientations,” Section 2.2.5, cannot be used with beam elements to define local material directions. The orientation of the local beam section axes in space is discussed in “Beam element cross-section orientation,” Section 29.3.4.Input File Usage: Use either of the following options:*BEAM SECTION*BEAM GENERAL SECTIONAbaqus/CAE Usage: Property module: Create Section: select Beam as the sectionCategory and Beam as the section Typeabaqus analysis user's manual vol429.3.4 BEAM ELEMENT CROSS-SECTION ORIENTATIONProducts: Abaqus/Standard Abaqus/Explicit Abaqus/CAEReferences• “Beam modeling: overview,” Section 29.3.1• “Beam cross-section library,” Section 29.3.9• “Beam section behavior,” Section 29.3.5• “Assigning a beam orientation,” Section 12.15.3 of the Abaqus/CAE User’s Manual, in the online HTML version of this manualOverviewThe orientation of a beam cross-section:• is defined in terms of a local, right-handed axis system; and• can be user-defined or calculated by Abaqus.Beam cross-sectional axis systemThe orientation of a beam cross-section is defined in Abaqus in terms of a local, right-handed ( , , ) axis system, where is the tangent to the axis of the element, positive in the direction from the first tothe second node of the element, and and are basis vectors that define the local 1- and 2-directionsof the cross-section. is referred to as the first beam section axis, and is referred to as the normalto the beam. This beam cross-sectional axis system is illustrated in Figure 29.3.4–1.Defining the n1 -directionFor beams in a plane the -direction is always (0.0, 0.0, −1.0); that is, normal to the plane in which the motion occurs. Therefore, planar beams can bend only about the first beam-section axis.For beams in space the approximate direction of must be defined directly as part of the beamsection definition or by specifying an additional node off the beam axis as part of the element definition (see “Element definition,” Section 2.2.1). This additional node is included in the element’s connectivity list.• If an additional node is specified, the approximate direction of is defined by the vector extending from the first node of the element to the additional node.• If is defined directly for the section and an additional node is specified, the direction calculatedby using the additional node will take precedence.• If the approximate direction is not defined by either of the above methods, the default value is (0.0, 0.0, −1.0).1t 2n2n1xyzFigure 29.3.4–1 Local axis definition for beam-type elements.This approximate -direction may be used to determine the -direction (discussed below). Once the-direction has been defined or calculated, the actual -direction will be calculated as , possiblyresulting in a direction that is different from the specified direction.Input File Usage: Use the following option to specify the -direction directly for a beam section integrated during the analysis:*BEAM SECTION-direction (the data line number depends on the valueof the SECTION parameter)Use the following option to specify the -direction directly for a general beamsection:*BEAM GENERAL SECTION-direction (the data line number depends on the valueof the SECTION parameter)Use the following option to specify an additional node off the beam axis todefine the -direction:*ELEMENTAbaqus/CAE Usage: Property module: Assign→Beam Section Orientation: selectregion and enter the -directionSpecifying an additional node off the beam axis is not supported inAbaqus/CAE.Defining nodal normalsFor beams in space you can define the nodal normal ( -direction) by giving its direction cosines as the fourth, fifth, and sixth coordinates of each node definition or by giving them in a user-specified normaldefinition; see “Normal definitions at nodes,” Section 2.1.4, for details. Otherwise, the nodal normal willbe calculated by Abaqus, as described below.If the nodal normal is defined as part of the node definition, this normal is used for all of the structural elements attached to the node except those for which a user-specified normal is defined. If a user-specified normal is defined at a node for a particular element, this normal definition takes precedence over the normal defined as part of the node definition. If the specified normal subtends an angle that is greater than 20° with the plane perpendicular to the element axis, a warning message is issued in the data (.dat)file. If the angle between the normal defined as part of the node definition or the user-specified normal and is greater than 90°, the reverse of the specified normal is used.Input File Usage: Use the following option to specify the -direction as part of the nodedefinition:*NODEnode number, nodal coordinates, nodal normal coordinatesUse the following option to define a user-specified normal:*NORMALAbaqus/CAE Usage: Defining the nodal normal is not supported in Abaqus/CAE; the nodal normal calculated by Abaqus is always used.Calculation of the average nodal normals by AbaqusIf the nodal normal is not defined as part of the node definition, element normal directions at the nodeare calculated for all shell and beam elements for which a user-specified normal is not defined (the “remaining” elements). For shell elements the normal direction is orthogonal to the shell midsurface, as described in “Shell elements: overview,” Section 29.6.1. For beam elements the normal direction is the second cross-section direction, as described in “Beam element cross-section orientation,” Section 29.3.4. The following algorithm is then used to obtain an average normal (or multiple averaged normals) for the remaining elements that need a normal defined:1. If a node is connected to more than 30 remaining elements, no averaging occurs and each elementis assigned its own normal at the node. The first nodal normal is stored as the normal defined aspart of the node definition. Each subsequent normal is stored as a user-specified normal.2. If a node is shared by 30 or fewer remaining elements, the normals for all the elements connectedto the node are computed. Abaqus takes one of these elements and puts it in a set with all the other elements that have normals within 20° of it. Then:a. Each element whose normal is within 20° of the added elements is also added to this set (if itis not yet included).b. This process is repeated until the set contains for each element in the set all the other elementswhose normals are within 20°.c. If all the normals in the final set are within 20° of each other, an average normal is computedfor all the elements in the set. If any of the normals in the set are more than 20° out of linefrom even a single other normal in the set, no averaging occurs for elements in the set and aseparate normal is stored for each element.d. This process is repeated until all the elements connected to the node have had normalscomputed for them.e. The first nodal normal is stored as the normal defined as part of the node definition. Each subsequently generated nodal normal is stored as a user-specified normal.This algorithm ensures that the nodal averaging scheme has no element order dependence. A simple example illustrating this process is included below.Example: beam normal averagingConsider the three beam element model in Figure 29.3.4–2. Elements 1, 2, and 3 share a common node 10, with no user-specified normal defined.40302010321123Figure 29.3.4–2 Three-element example for nodal averaging algorithm.In the first scenario, suppose that at node 10 the normal for element 2 is within 20° of both elements1 and 3, but the normals for elements 1 and 3 are not within 20° of each other. In this case, each element is assigned its own normal: one is stored as part of the node definition and two are stored as user-specified normals.In the second scenario, suppose that at node 10 the normal for element 2 is within 20° of bothelements 1 and 3 and the normals for elements 1 and 3 are within 20° of each other. In this case, a single average normal for elements 1, 2, and 3 would be computed and stored as part of the node definition.In the last scenario, suppose that at node 10 the normal for element 2 is within 20° of element 1 butthe normal of element 3 is not within 20° of either element 1 or 2. In this case, an average normal is computed and stored for elements 1, and 2 and the normal for element 3 is stored by itself: one is stored as part of the node definition and the other is stored as a user-specified normal.Appropriate beam normalsTo ensure proper application of loads that act normal to the beam cross-section, it is important to have beam normals that correctly define the plane of the cross-section. When linear beams are used to modela curved geometry, appropriate beam normals are the normals that are averaged at the nodes. For such cases it is preferable to define the cross-sectional axis system such that beam normals lie in the plane of curvature and are properly averaged at the nodes.Initial curvature and initial twistIn Abaqus/Standard normal direction definitions can result in a beam element having an initial curvatureor an initial twist, which will affect the behavior of some elements.• When the normal to an element is not perpendicular to the beam axis (obtained by interpolationusing the nodes of the element), the beam element is curved. Initial curvature can result when youdefine the normal directly (as part of the node definition or as a user-specified normal) or can resultwhen beams intersect at a node and the normals to the beams are averaged as described above.The effect of this initial curvature is considered in cubic beam elements. Initial curvature resultingfrom normal definitions is not considered in quadratic beam elements; however, these elements do properly account for any initial curvature represented by the node positions.• Similarly, nodal-normal directions that are in different orientations about the beam axis at differentnodes imply a twist. The effect of an initial twist, which could result from normal averaging oruser-defined normal definitions, is considered in quadratic beam elements.Since the behavior of initially curved or initially twisted beams is quite different from straight beams,the changes caused by averaging the normals may result in changes in the deformation of some beam elements. You should always check the model to ensure that the changes caused by averaging the normals are intended. If the normal directions at successive nodes subtend an angle that is greater than 20°, a warning message is issued in the data (.dat) file. In addition, a warning message will be issued during input file preprocessing if the average curvature computed for a beam differs by more than 0.1 degrees per unit length or if the approximate integrated curvature for the entire beam differs by more than 5 degreesas compared to the curvature computed without nodal averaging and without user-defined normals.In Abaqus/Explicit initial curvature of the beam is not taken into account: all beam elements areassumed to be initially straight. The element’s cross-section orientation is calculated by averaging the- and -directions associated with its nodes. These two vectors are then projected onto the plane thatis perpendicular to the beam element’s axis. These projected directions and are made orthogonalto each other by rotating in this plane by an equal and opposite angle.。
abaqus 梁的分析(Beam Analysis)

F
J
uses the vector between node 14 and 43 to determine the normal in the 1 direction. Give a vector in the section definition:
Beam Section Types
F
I-SECTION J Section data: l, h, b1, b2, t1, t2, t3
b2 h t2 t1 t3 b1
2 2 1
l a b t2 t1
1
F
F
L-SECTION J Section data: a, b, t1, t2 Others: ARBITRARY, ELBOW, TRAPEZOIDAL
Specification of Beam Elements
F
F
Section Property Definition - - Two Types: -J *BEAM GENERAL SECTION direct calculations (no numerical integration on cross section) ? faster provides GENERAL section type only linear elastic J *BEAM SECTION allows any material definition uses numerical integration on cross section better for more complicated analyses Both Allow Many Different Section Types
ABAQUS关键字BEAMSECTIONGENERATE汉

ABAQUS关键字BEAMSECTIONGENERATE汉
*BEAM 截
面生成用于网格横截面的生成光束截面属性。
此选项用于计算横截面扭曲函数,定义质心和剪切中心,以及生成网格横截面的刚度和惯性属性。
这些属性被写入文件作业名.bsp,用于后续的光束分析使用 *BEAM 一般部分,节=网格化选项。
产品名称:阿巴库斯/标准
类型:历史数据
级别:步
引用:
"网格梁横截面,"ABAQUS 分析用户手册第 10.4.1 节
"光束部分行为,"ABAQUS分析用户手册第 23.3.5 节
"使用一般光束部分定义截面行为,"ABAQUS 分析用户手册第23.3.7 节
没有与此选项关联的参数或数据行。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
*BEAM GENERAL SECTIONSpecify a beam section when numerical integration over the section is not required.This option is used to define linear or nonlinear beam section response when numerical integration over the section is not required. In this case the beam section geometry and material descriptions are combined; no *MATERIAL reference is associated with this option.Products: ABAQUS/Standard ABAQUS/ExplicitType: Model dataLevel: Part Part InstanceReferences:•“Using a general beam section to define the section behavior,” Section 23.3.7 of theABAQUS Analysis User's Manual•“Beam modeling: overview,” Section 23.3.1 of the ABAQUS Analysis User's Manual Required parameter:ELSETSet this parameter equal to the name of the element set for which the section is defined. Required parameter in ABAQUS/Explicit, optional parameter in ABAQUS/Standard: DENSITYSet this parameter equal to the mass density (mass per unit volume) of the beam material. In an ABAQUS/Standard analysis this parameter is needed only when the mass of the elements is required, such as in dynamic analysis or gravity loading. This parameter cannot be used when SECTION=MESHED.Optional parameters:DEPENDENCIESThis parameter cannot be used when SECTION=NONLINEAR GENERAL orSECTION=MESHED.Set this parameter equal to the number of field variable dependencies included in the definition of material moduli, in addition to temperature. If this parameter is omitted, it is assumed that the moduli are constant or depend only on temperature.POISSONSet this parameter equal to the effective Poisson's ratio for the section to provide uniform strain in the section due to strain of the beam axis (so that the cross-sectional area changes when the beam is stretched). The value of the effective Poisson's ratio must be between –1.0 and 0.5. The default is POISSON=0. A value of 0.5 will enforce incompressible behavior of the element.For PIPE elements with SECTION=PIPE, this parameter will also be used along with theYoung's modulus given on the third data line to compute the axial strain due to hoop strain.This parameter is used only in large-displacement analysis. It is not used with element types B23, B33, or the equivalent “hybrid” elements (which are available only inABAQUS/Standard).ROTARY INERTIAThis parameter is relevant only for three-dimensional Timoshenko beam elements.Set ROTARY INERTIA=EXACT (default) to use the exact rotary inertia corresponding to the beam cross-section geometry in dynamic and eigenfrequency extraction procedures.Set ROTARY INERTIA=ISOTROPIC to use an approximate rotary inertia for the cross-section. In ABAQUS/Standard the rotary inertia associated with the torsional mode ofdeformation is used for all rotational degrees of freedom. In ABAQUS/Explicit the rotary inertia for all rotational degrees of freedom is equal to a scaled flexural inertia with a scaling factor chosen to maximize the stable time increment. ROTARY INERTIA=ISOTROPIC is not relevant and cannot be used when SECTION=MESHED; the default value of EXACT always applies for meshed sections.SECTIONSet SECTION=GENERAL (default) to define a general beam section with linear response.Set SECTION=NONLINEAR GENERAL to define general nonlinear behavior of the cross-section.Set SECTION=MESHED to define an arbitrarily shaped solid cross-section meshed with warping elements.Set this parameter equal to the name of a library section to choose a standard library section (see “Beam cross-section library,” Section 23.3.9 of the ABAQUS Analysis User's Manual).The following cross-sections are available:•ARBITRARY, for an arbitrary section.•BOX, for a rectangular, hollow box section.•CIRC, for a solid circular section.•HEX, for a hollow hexagonal section.•I, for an I-beam section.•L, for an L-beam section.•PIPE, for a hollow, circular section.•RECT, for a solid, rectangular section.•TRAPEZOID, for a trapezoidal section.ZEROThis parameter cannot be used when SECTION=MESHED.Set this parameter equal to the reference temperature for thermal expansion (), if required.The default is ZERO=0.Data lines for SECTION=GENERAL:First line:1.Area, A.1.Moment of inertia for bending about the 1-axis, .1.Moment of inertia for cross bending, .1.Moment of inertia for bending about the 2-axis, .1.Torsional rigidity, J.1.Sectorial moment, . (Only needed in ABAQUS/Standard when the section is associatedwith open-section beam elements.)1.Warping constant, . (Only needed in ABAQUS/Standard when the section is associatedwith open-section beam elements.)Second line (optional; enter a blank line if the default values are to be used):1.First direction cosine of the first beam section axis.1.Second direction cosine of the first beam section axis.1.Third direction cosine of the first beam section axis.The entries on this line must be (0, 0, ) for planar beams. The default for beams in space is (0, 0,) if the first beam section axis is not defined by an additional node in the element's connectivity. See “Beam element cross-section orientation,” Section 23.3.4 of the ABAQUS Analysis User's Manual, for details.Third line:1.Young's modulus, E.1.Torsional shear modulus, G. (Not used for beams in a plane.)1.Coefficient of thermal expansion.1.Temperature.1.First field variable.1.Second field variable.1.Etc., up to four field variables.Subsequent lines (only needed if the DEPENDENCIES parameter has a value greater than four):1.Fifth field variable.1.Etc., up to eight field variables per line.Repeat this set of data lines as often as necessary to define the properties as a function of temperature and other predefined field variables.Data lines for SECTION=NONLINEAR GENERAL:First line:1.Area, A.1.Moment of inertia for bending about the 1-axis, .1.Moment of inertia for cross bending, .1.Moment of inertia for bending about the 2-axis, .1.Torsional rigidity, J.The axial and bending behaviors of the section are defined by using the *AXIAL, *M1, *M2,*TORQUE, and *THERMAL EXPANSION options.Second line (optional):1.First direction cosine of the first beam section axis.1.Second direction cosine of the first beam section axis.1.Third direction cosine of the first beam section axis.The entries on this line must be (0, 0, ) for planar beams. The default for beams in space is (0, 0,) if the first beam section axis is not defined by an additional node in the element's connectivity. See “Beam element cross-section orientation,” Section 23.3.4 of the ABAQUS Analysis User's Manual, for details.Data lines for SECTION=MESHED:First line:1.First direction cosine of the first beam section axis.1.Second direction cosine of the first beam section axis.1.Third direction cosine of the first beam section axis.The entries on this line must be (0, 0, –1) for planar beams. The default for beams in space is (0, 0, –1) if the first beam section axis is not defined by an additional node in the element's connectivity. See “Beam element cross-section orientation,” Section 23.3.4 of the ABAQUS Analysis User's Manual, for details.Second line:The entries on this line and the following line consist of the beam section properties that result from the two-dimensional meshed cross-section generation procedure. The properties are written to the file jobname.bsp during the cross-section generation and are typically read into a subsequentbeam analysis using the *INCLUDE option. See “Meshed beam cross-sections,” Section 10.4.1 of the ABAQUS Analysis User's Manual, for details.1.Axial stiffness of the section, .1.Bending stiffness about the 1-axis of the section, .1.Stiffness for cross-bending, .1.Bending stiffness about the 2-axis of the section, .1.Torsional rigidity, .Third line:1.Total mass of the section per unit length, .1.Rotary inertia about the 1-axis of the section, .1.Rotary product of inertia, .1.Rotary inertia about the 2-axis of the section, .1.Local 1-coordinate of the center of mass, .1.Local 2-coordinate of the center of mass, .Data lines for BOX, CIRC, HEX, I, L, PIPE, RECT, and TRAPEZOID sections:First line:1.Beam section geometric data. Values should be given as specified in “Beam cross-sectionlibrary,” Section 23.3.9 of the ABAQUS Analysis User's Manual, for the chosen section type.1.Etc.Second line (optional; enter a blank line if the default values are to be used):1.First direction cosine of the first beam section axis.1.Second direction cosine of the first beam section axis.1.Third direction cosine of the first beam section axis.The entries on this line must be (0, 0, ) for planar beams. The default for beams in space is (0, 0,) if the first beam section axis is not defined by an additional node in the element's connectivity. See “Beam element cross-section orientation,” Section 23.3.4 of the ABAQUS Analysis User's Manual, for details.Third line:1.Young's modulus, E.1.Torsional shear modulus, G. (Not used for beams in a plane.)1.Coefficient of thermal expansion.1.Temperature.1.First field variable.1.Second field variable.1.Etc., up to four field variables.Subsequent lines (only needed if the DEPENDENCIES parameter has a value greater than four):1.Fifth field variable.1.Etc., up to eight field variables per line.Repeat this set of data lines as often as necessary to define the properties as a function of temperature and other predefined field variables.Data lines for SECTION=ARBITRARY:First line:1.Number of segments making up the section.1.Local 1-coordinate of first point defining the section.1.Local 2-coordinate of first point defining the section.1.Local 1-coordinate of second point defining the section.1.Local 2-coordinate of second point defining the section.1.Thickness of first segment.Second line:1.Local 1-coordinate of next section point.1.Local 2-coordinate of next section point.1.Thickness of segment ending at this point.Repeat the second data line as often as necessary to define the ARBITRARY section.Third line (optional; enter a blank line if the default values are to be used):1.First direction cosine of the first beam section axis.1.Second direction cosine of the first beam section axis.1.Third direction cosine of the first beam section axis.The entries on this line must be (0, 0, ) for planar beams. The default for beams in space is (0, 0,) if the first beam section axis is not defined by an additional node in the element's connectivity.See “Beam element cross-section orientation,” Section 23.3.4 of the ABAQUS Analysis User's Manual, for details.Fourth line:1.Young's modulus, E.1.Torsional shear modulus, G. (Not used for beams in a plane.)1.Coefficient of thermal expansion.1.Temperature.1.First field variable.1.Second field variable.1.Etc., up to four field variables.Subsequent lines (only needed if the DEPENDENCIES parameter has a value greater than four):1.Fifth field variable.1.Etc., up to eight field variables per line.Repeat this set of data lines as often as necessary to define the properties as a function of temperature and other predefined field variables.。