衡水金卷2018年高考模拟卷(五)数学(文)试题含答案
衡水金卷2018年高考模拟数学(理)试题(五)-有答案
2018年普通高等学校招生全国统一考试模拟试题理数(五)第Ⅰ卷一、选择题:本大题共12个小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集U R =,集合{}223,A y y x x x R ==++∈,集合1,(1,3)B y y x x x ⎧⎫==-∈⎨⎬⎩⎭,则()U C A B =( )A .(0,2)B .80,3⎛⎫ ⎪⎝⎭ C .82,3⎛⎫ ⎪⎝⎭D .(,2)-∞2. 已知3sin(3)2sin 2a a ππ⎛⎫+=+ ⎪⎝⎭,则sin()4sin 25sin(2)2cos(2)a a a a ππππ⎛⎫--+ ⎪⎝⎭=++-( )A .12 B .13 C .16 D .16- 3. 设i 为虚数单位,现有下列四个命题:1p :若复数z 满足()()5z i i --=,则6z i =;2p :复数22z i=-+的共轭复数为1+i 3p :已知复数1z i =+,设1(,)ia bi ab R z-+=∈,那么2a b +=-; 4p :若z 表示复数z 的共轭复数,z 表示复数z 的模,则2zz z =.其中的真命题为( )A .13,p pB .14,p pC .23,p pD . 24,p p4.在中心为O 的正六边形ABCDEF 的电子游戏盘中(如图),按下开关键后,电子弹从O 点射出后最后落入正六边形的六个角孔内,且每次只能射出一个,现视A ,B ,C ,D ,E ,F 对应的角孔的分数依次记为1,2,3,4,5,6,若连续按下两次开关,记事件M 为“两次落入角孔的分数之和为偶数”,事件N 为“两次落入角孔的分数都为偶数”,则(|)P N M =( ) A .23 B .14 C. 13 D .125. 某几何体的正视图与俯视图如图,则其侧视图可以为( )A .B . C. D .6. 河南洛阳的龙门石窟是中国石刻艺术宝库之一,现为世界文化遗产,龙门石窟与莫高窟、云冈石窟、麦积山石窟并称中国四大石窟.现有一石窟的某处“浮雕像”共7层,每上层的数量是下层的2倍,总共有1016个“浮雕像”,这些“浮雕像”构成一幅优美的图案,若从最下层往上“浮雕像”的数量构成一个数列{}n a ,则235log ()a a ⋅的值为( )A .8B .10 C. 12 D .167. 下列函数在其定义域内既是增函数又是奇函数的是( )A . 2()sin f x x x =B . ()1f x x x =-+ C. 1()lg 1xf x x+=- D .()x x f x ππ-=- 8.下面推理过程中使用了类比推理方法,其中推理正确的个数是①“数轴上两点间距离公式为AB =平面上两点间距离公式为AB =,类比推出“空间内两点间的距离公式为AB =AB|=√(x2-x1)2+(y2-y1)2+(z2-z1)②“代数运算中的完全平方公式222()2a b a a b b +=+⋅+”类比推出“向量中的运算222()2a b a a b b +=+⋅+仍成立“;③“平面内两不重合的直线不平行就相交”类比到空间“空间内两不重合的直线不平行就相交“也成立;④“圆221x y +=上点00(,)P x y 处的切线方程为001x x y y +=”,类比推出“椭圆22221x y a b+=(0)a b >>上点00(,)P x y 处的切线方程为00221x x y ya b+=”.A . 1B .2 C. 3 D .4 9.已知直线y a =与正切函数tan (0)3y x πωω⎛⎫=+> ⎪⎝⎭相邻两支曲线的交点的横坐标分别为1x ,2x ,且有212x x π-=,假设函数tan ((0,))3y x x πωπ⎛⎫=+∈ ⎪⎝⎭的两个不同的零点分别为3x ,443()x x x >,若在区间(0,)π内存在两个不同的实数5x ,665()x x x >,与3x ,4x 调整顺序后,构成等差数列,则{}56tan (,)3y x x x x πω⎛⎫=+∈ ⎪⎝⎭的值为( )A . C. D . 10. 已知抛物线24x y =的焦点为F ,双曲线22221(0,0)x y a b a b-=>>的右焦点为1(,0)F c ,过点1,F F 的直线与抛物线在第一象限的交点为M ,且抛物线在点M 处的切线与直线y =垂直,则ab 的最大值为( )A B . 32.211. 已知函数()f x 的导函数()x f x e '= (其中e 为自然对数的底数),且(0)f ,(2)f 为方程222(1)(1)()0x e x c e c -++++=的两根,则函数2()()F x x x x +-,(]0,1x ∈的值域为( )A .(]0,2e -B . (]0,1e - C. (]0,e D .(]0,1e + 12.底面为菱形且侧棱垂直于底面的四棱柱1111ABCD A BC D -中,E ,F 分别是1BB ,1DD 的中点,过点A ,E ,1C ,F 的平面截直四棱柱1111ABCD A BC D -,得到平面四边形1AEC F ,G 为AE 的中点,且3FG =,当截面的面积取最大值时,sin()3EAF π∠+的值为( )A .410B .10 C.10D .10第Ⅱ卷本卷包括必考题和选考题两部分.第13∽21题为必考题,每个试题考生都必须作答.第22∽23题为选考题,考生根据要求作答.二、填空题:本题共4小题,每小题5分.13.已知函数5()(1)(3)f x x x =-+,()f x '为()f x 的导函数,则()f x '的展开式中2x 项的系数是 .14.已知向量(1a =,2340b b --=,向量a ,b 的夹角为3π,设(,)c ma nb m n R =+∈,若()c a b ⊥+,则mn的值为 . 15.已知函数222()xmx x f x e +-=,[]1,m e ∈,[]1,2x ∈,max min ()()()g m f x f x =-,则关于m 的不等式24()g m e≥的解集为 .16.已知数列{}n a 的通项公式为n a n t =+,数列{}n b 为公比小于1的等比数列,且满足148b b ⋅=,236b b +=,设22n nn n n a b a b c -+=+,在数列{}n c 中,若4()n c c n N *≤∈,则实数t 的取值范围为 .三、解答题 :解答应写出文字说明、证明过程或演算步骤.17. 已知函数2()2sin 23(0)f x x x ωωω=+->在半个周期内的图象的如图所示,H 为图象的最高点,E ,F 是图象与直线y =2()EH EF EH ⋅=.(1)求ω的值及函数的值域;(2)若0()f x =,且0102,33x ⎛⎫∈-- ⎪⎝⎭,求0(2)f x +的值.18. 如图所示的四棱锥P ABCD -中,底面ABCD 为矩形,AC BD E =,PB 的中点为F ,2PA AD a ==,异面直线PD 与AC 所成的角为3π,PA ⊥平面ABCD . (1)证明://EF 平面PAD ;(2)求二面角E AF B --的余弦值的大小.19. 207年8月8日晚我国四川九赛沟县发生了7.0级地震,为了解与掌握一些基本的地震安全防护知识,某小学在9月份开学初对全校学生进行了为期一周的知识讲座,事后并进行了测试(满分100分),根据测试成绩评定为“合格”(60分以上包含60分)、“不合格”两个等级,同时对相应等级进行量化:“合格”定为10分,“不合(1)求,,a b c 的值;(2)用分层抽样的方法,从评定等级为“合格”和“不合格”的学生中抽取10人进行座谈,现再从这10人中任选4人,记所选4人的量化总分为ξ,求ξ的分布列及数学期望()E ξ; (3)设函数()()()E f D ξξξ=(其中()D ξ表示ξ的方差)是评估安全教育方案成效的一种模拟函数.当() 2.5f ξ≥时,认定教育方案是有效的;否则认定教育方案应需调整,试以此函数为参考依据.在(2)的条件下,判断该校是否应调整安全教育方案?20. 如图所示,在平面直角坐标系xOy 中,椭圆2222:1(0)x y E a b a b +=>>的中心在原点,点12P ⎫⎪⎭在椭圆E.(1)求椭圆E 的标准方程;(2)动直线1:l y k x =交椭圆E 于A ,B 两点,C 是椭圆E 上一点,直线OC 的斜率为2k ,且1214k k =,M 是线段OC 上一点,圆M 的半径为r ,且23r AB =,求OC r21.已知函数21()4f x x a x=+-,()()g x f x b =+,其中,a b 为常数. (1)当(0,)x ∈+∞,且0a >时,求函数()()x xf x ϕ=的单调区间及极值;(2)已知3b >-,b Z ∈,若函数()f x 有2个零点,(())f g x 有6个零点,试确定b 的值. 请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22.选修4-4:坐标系与参数方程在平面直角坐标系xOy 中,曲线1C 的参数方程为12cos 2sin x y θθ=-+⎧⎨=⎩ (θ为参数)以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系.(1)求曲线1C 的普通方程和极坐标方程; (2)直线2C 的极坐标方程为2()3R πθρ=∈,若1C 与2C 的公共点为,A B ,且C 是曲线1C 的中心,求ABC ∆的面积.23.选修4-5:不等式选讲已知函数()32f x x =-,()2g x x =+. (1)求不等式()()f x g x <的解集;(2)求函数()()()h x f x g x =-的单调区间与最值.理数(五)一、选择题1-5: ADBDB 6-10: CCCCB 11、12:CC二、填空题13. -540 14. 52-15. 2,4e e ⎡⎤⎢⎥-⎣⎦16.[]4,2-- 三、解答题17.解:函数化简得()22sin 24sin 23f x x x x πωωω⎛⎫=+=+ ⎪⎝⎭因为2()EH EF EH ⋅=,所以2()()EH EH HF EH ⋅+=,所以0EH HF ⋅=,所以HF HE ⊥,所以EFH ∆是等腰直角三角形.又因为点H 到直线EF 的距离为4,所以8EF =,所以函数()f x 的周期为16.所以16πω=,函数()f x的值域是44⎡-++⎣.(2)由(1),知()4sin 83f x x ππ⎛⎫=++ ⎪⎝⎭因为0()f x =,所以0sin 83x ππ⎛⎫+= ⎪⎝⎭因为0102,33x ⎛⎫∈-- ⎪⎝⎭,所以0,83124x ππππ⎛⎫+∈- ⎪⎝⎭,所以0cos 8310x ππ⎛⎫+=⎪⎝⎭,所以00(2)4sin 843f x x πππ⎛⎫+=++ ⎪⎝⎭ 04sin 834x πππ⎡⎤⎛⎫=++ ⎪⎢⎥⎝⎭⎣⎦004sin cos 4cos sin 834834x x ππππππ⎛⎫⎛⎫=+++⋅ ⎪ ⎪⎝⎭⎝⎭4422⎛=⨯⨯+= ⎝⎭18.解:(1)由已知ABCD 为矩形,且AC BD E =,所以E 为BD 的中点.又因为F 为PB 的中点,所以在BPD ∆中,//EF PD ,又因为PD ⊂平面PAD ,EF ⊄平面PAD , 因此//EF 平面PAD .(2)由(1)可知//EF PD ,所以异面直线PD 与AC 所成的角即为AEF ∠ (或AEF ∠的补角). 所以3AEF π∠=或23AEF π∠=. 设AB x =,在AEF ∆中,AE =,1EF PD ===,又由PA ⊥平面ABCD 可知PA AB ⊥,且F 为中点,因此12AF PB==AE AF =,所以3AEF π∠=,所以AEF ∆为等=,即2x a =,因为AB ,AP ,AD 两两垂直,分别以AB ,AP ,AD 所在直线为x 轴,y 轴,z 轴建立空间直角坐标系,如图所示,则(0,0,0)A ,(2,0,0)B a ,(0,2,0)P a ,(0,0,2)D a ,所以(,0,)E a a ,(,,0)F a a . 由AD AB ⊥,AD AP ⊥,ABAP A =,可得AD ⊥平面ABP ,可取平面ABF 的一个法向量为1(0,0,1)n =.设平面AEF 的一个法向量为2(,,)n x y z =,由220,(,,)(,,0)0,0,(,,)(,0,)00.0n AF x y z a a x y x y z a a x z n AE ⎧⋅=⋅=+=⎧⎧⎪⇒⇒⎨⎨⎨⋅=+=⋅=⎩⎩⎪⎩令11x y z =-⇒==,所以2(1,1,1)n =-. 因此121212cos 3n n n n n n ⋅⋅===,又二面角E AF B --为锐角,故二面角E AF B --的19. 解:(1)由频率分布直方图可知,得分在[)2040,的频率为0.005200.1⨯=,故抽取的学生答卷数为6600.1=,又由频率分布直方图可知,得分在[]80,100的频率为0.2,所以600.212b =⨯=.又62460a b +++=,得30a b +=,所以18a =.180.0156020c ==⨯.(2)“合格”与“不合格”的人数比例为36:243:2=,因此抽取的10人中“合格”有6人,“不合格”有4人,所以ξ有40,35,30,25,20共5种可能的取值.4464101(40)14C P C ξ===,31644108(35)21C C P C ξ===,22644103(30)7C C P C ξ===,13644104(25)35C C P C ξ===, 444101(20)210C P C ξ===.的分布列为所以()4035302520321421735210E ξ=⨯+⨯+⨯+⨯+⨯=. (3)由(2)可得2222218341()(4032)(3532)(3032)(2532)(2032)161421735210D ξ=-⨯+-⨯+-⨯+-⨯+-⨯=, 所以()32()2 2.5()16E f D ξξξ===<. 故可以认为该校的安全教育方案是无效的,需要调整安全教育方案.20. 解:(1)因为1)2P 在椭圆E 上,所以223114a b +=.又2e =2222222,24,311,41,e a a b b a b c ⎧=⎪⎪⎧=⎪+=⇒⎨⎨=⎩⎪-=⎪⎪⎩,故椭圆E 的标准方程为2214x y += (2)设11(,)A x y ,22(,)B x y ,、联立方程22221111,4(14)10x y k x x y k x ⎧+=⎪⎪⇒+--=⎨⎪=⎪⎩.由0∆>,得1k R ∈,且121x x +=1221114x x k ⋅=-+,所以21AB x =-===由题意可知圆M的半径23r AB ==由题设知12211144k k k k =⇒=,因此直线OC 的方程为114y x k =.联立方程22121122221161,,4141,1414k x y x k k x y y k ⎧⎧==⎪⎪+⎪⎪⇒⎨⎨⎪⎪=+=⎪⎪+⎩⎩因此OC ==所以OCr =====因为210k >,所以2211330314411k k <<⇒<-<++,从而有3342<<,即得3342OC r <<. 因此OC r 的取值范围为33,42⎛⎫⎪⎝⎭. 21.解:(1)因为3()()41x xf x x ax ϕ==+-,所以2()12x x a ϕ'=-,令2120x a x -=⇒=x =. 当x ⎛∈ ⎝时,()0x ϕ'<,函数()x ϕ单调递减;x ⎫∈∞⎪⎪⎭时,()0x ϕ'>,函数()x ϕ单调递增. 因此()xϕ的极小值为3411a ϕ=⨯+-. (2)若函数()f x 存在2个零点,则方程214a x x =+有2个不同的实根,设21()4h x x x=+,则322181()8x h x x x x-'=-=.令()0h x '>,得12x >; 令()0h x '<,得0x <,或102x <<, 所以()h x 在区间(,0)-∞,10,2⎛⎫ ⎪⎝⎭内单调递减,在区间1,2⎛⎫+∞ ⎪⎝⎭内单调递增,且当0x <时,令21()40h x x x =+=,可得322x =-,所以32,2x ⎛⎫∈-∞- ⎪ ⎪⎝⎭,()0h x >;32,02x ⎛⎫∈- ⎪ ⎪⎝⎭,()0h x <,因此函数21()4h x x x=+的草图如图所示,所以()h x 的极小值为132h ⎛⎫= ⎪⎝⎭.由()h x 的图象可知3a =.因为1(1)32h h ⎛⎫-==⎪⎝⎭,所以令(())0f g x =,得1()2g x =或()1g x =-,即1()2f x b =-或()1f x b =--, 而(())f g x 有6个零点,故方程1()2f x b =-与()1f x b =--都有三个不同的解,所以102b ->,且10b -->,所以1b <-.又因为3b -<,b Z ∈,所以2b =-. 22. 解:(1)由曲线1C 的参数方程消去参数θ,得其普通方程为22(1)4x y ++=.将cos x ρθ=,sin y ρθ=代入上式并化简,得其极坐标方程为2+2cos 3ρρθ=.(2)将23πθ=代入得2+2cos 3ρρθ=. 得230ρρ--=.设12(,)3A πρ,22,3B πρ⎛⎫ ⎪⎝⎭,则12+1ρρ=,123ρρ=-, 所以()2121212413AB ρρρρρρ=-=+-=又由(1),知(1,0)C -,且由(2)知直线AB 30x y +=,所以(1,0)C -到AB 的距离是303d -+==,所以CAB ∆的面积1339132S ==. 23. 解:(1)由于()()f x g x <, 即为322x x -<+,当20x +>时,对上式两边平方,得22291244431650x x x x x x -+<++⇒-+<,即得1(31)(5)053x x x --<⇒<<,当20x +≤时,原不等式的解集为空集,因此()()f x g x <的解集为153⎛⎫⎪⎝⎭,,(2)由题可知35,,2()()()232331,,2x x h x f x g x x x x x ⎧-≥⎪⎪=-=---=⎨⎪-+<⎪⎩作图如下,由3,5,372,317222x y x A y x y ⎧=⎪=-⎧⎪⎛⎫⇒⇒-⎨⎨ ⎪=-+⎝⎭⎩⎪=-⎪⎩. 由图易知函数()h x 的递减区间为3,2⎛⎫-∞ ⎪⎝⎭,递增区间为3,2⎛⎫+∞ ⎪⎝⎭,并且最小值为min 37()22h x h ⎛⎫==- ⎪⎝⎭,无最大值.。
衡水金卷2018年高考模拟数学(文)试题(四)有答案
2018年普通高等学校招生全国统一考试模拟试题文数(四)第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}0,1,3A =,()(){}120B x x x =+-<,则A B =I ( ) A .{}0 B .{}0,1,3 C .{}0,1 D .{}0,1,2 2.若复数3i12iz -+=-(i 是虚数单位),则4i z +=( ) A 2610.2 D .43.若,,a b c ∈R ,且a b >,则下列不等式一定成立的是( )A .c c a b >B .20c a b >-C .22a b >D .2211a bc c >++ 4.下列结论中正确的个数是( ) ①“3x π=”是“1sin 22x π⎛⎫+= ⎪⎝⎭”的充分不必要条件; ②命题“,sin 1x x ∀∈≤R ”的否定是“,sin 1x x ∀∈>R ”; ③函数()cos f x x x =在区间[)0,+∞内有且仅有两个零点.A .1B .2C .3D .05.已知关于x 的不等式2680kx kx k -++≥对任意的x ∈R 恒成立,若k 的取值范围为区间D ,在区间[]1,3-上随机取一个数k ,则k D ∈的概率是( )A .12 B .13 C .14 D .156.我国古代名著《庄子·天下篇》中有一句名言“一尺之棰,目取其半,万事不竭”,其意思是:一尺长木棍,每天截取一半,永远截不完.现将该木棍依此规律截取,如图所示的程序框图的功能就是计算截取7天后所剩木棍的长度(单位:尺),则空白处可填入的是( )A .S S i =-B .1S S i =- C .2S S i =- D .12S S i=-7.如图所示是一个几何体的三视图,则该几何体的体积为( )A .163π B .643 C .16643π+ D .1664π+ 8.已知某函数在[],ππ-上的图象如图所示,则该函数的解析式可能是( )A .sin 2xy = B .cos y x x =+ C .ln cos y x = D .sin y x x =+9.《九章算术》卷第五《商功》中有记载:“刍甍者,下有袤有广,而上有袤无广.刍,草也.甍,屋盖也.”翻译为“底面有长有宽为矩形,顶部只有长没有宽为一条棱.刍甍字面意思为茅草屋顶.”现有一个刍甍,如图,四边形ABCD 为正方形,四边形ABFE 、CDEF 为两个全等的等腰梯形,4AB =,12EF AB ∥,若这个刍甍的体积为403,则CF 的长为( )A .1B .2C .3D .410.在ABC ∆中,角,,A B C 的对边分别为,,a b c ,cos cos 2cos a B b A c C +=,7c =ABC ∆的面积为332,则ABC ∆的周长为( )A .17.27+.47+.5711.设12,F F 分别是椭圆()2222:10x y E a b a b +=>>的左,右焦点,过点1F 的直线交椭圆E 于,A B 两点,若12AF F ∆的面积是12BF F ∆的三倍,23cos 5AF B ∠=,则椭圆E 的离心率为( )A .12 B .23C .32D .2212.已知定义在区间0,2π⎛⎫⎪⎝⎭上的函数()f x ,()f x '为其导函数,且()()sin cos 0f x x f x x '->恒成立,则( ) A .226f f ππ⎛⎫⎛⎫>⎪ ⎪⎝⎭⎝⎭ B 3243ππ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭C 363f ππ⎛⎫⎛⎫<⎪ ⎪⎝⎭⎝⎭D .()12sin16f f π⎛⎫< ⎪⎝⎭第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.某乡镇中学有初级职称教师160人,中级职称教师30人,高级职称教师10人,要从其中抽取20人进行体检,如果采用分层抽样的方法,则高级职称教师应该抽取的人数为 .14.已知平面向量,a b r r ,7,4a b ==r r ,且6a b +=r r ,则a r 在b r方向上的投影是 .15.若双曲线()222210,0x y a b a b-=>>的渐近线与圆(2232x y -+=相交,则此双曲线的离心率的取值范围是 .16.已知三棱锥P ABC -的各顶点都在同一球面上,且PA ⊥平面ABC ,若2AB =,1AC =,60BAC ∠=︒,4PA =,则球的体积为 .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. 已知数列{}n a 满足11a =,()1n n n na na a n +=-∈*N . (1)求数列{}n a 的通项公式;(2)若数列{}n b 的前n 项和为n S ,23n n S b =-,求数列{}n n b a ⋅的前n 项和n T . 18. 在直三棱柱111ABC A B C -中,AD ⊥平面1A BC ,其垂足D 落在直线1A B 上. (1)求证:BC ⊥平面1A AB ; (2)若3AD =2AB BC ==,P 为AC 的中点,求三棱锥1P A BC -的体积.19. 某市甲、乙两地为了争创“市级文明城市”,现市文明委对甲、乙两地各派10名专家进行打分评优,所得分数情况如下茎叶图所示.(1)分别计算甲、乙两地所得分数的平均值,并计算乙地得分的中位数;(2)从乙地所得分数在[)60,80间的成绩中随机抽取2份做进一步分析,求所抽取的成绩中,至少有一份分数在[)75,80间的概率;(3)在甲、乙两地所得分数超过90分的成绩中抽取其中2份分析其合理性,求这2份成绩都是来自甲地的概率.20. 已知点()00,M x y 在圆22:4O x y +=上运动,且存在一定点()6,0N ,点(),P x y 为线段MN 的中点.(1)求点P 的轨迹C 的方程;(2)过()0,1A 且斜率为k 的直线l 与点P 的轨迹C 交于不同的两点,E F ,是否存在实数k 使得12OE OF ⋅=uu u r uu u r,并说明理由.21. 已知函数()()ln f x x ax a =-∈R . (1)求函数()f x 的单调区间;(2)当1a =时,方程()()2f x m m =<-有两个相异实根12,x x ,且12x x <,证明:2122x x ⋅<.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22.选修4-4:坐标系与参数方程在平面直角坐标系xOy 中,曲线C 的参数方程为3,sin x y αα⎧=⎪⎨=⎪⎩(α是参数),以原点O 为极点,x 轴的正半轴为极轴建立极坐标系,直线l 的极坐标方程为sin 24πρθ⎛⎫-= ⎪⎝⎭. (1)将直线l 的极坐标方程化为普通方程,并求出直线l 的倾斜角; (2)求曲线C 上的点到直线l 的最大距离. 23.选修4-5:不等式选讲已知函数()()22f x x x a a =++->-,若()7f x ≥的解集是{3x x ≤-或}4x ≥. (1)求实数a 的值;(2)若x ∀∈R ,不等式()()31f x f m ≥+恒成立,求实数m 的取值范围.文数(四)答案一、选择题1-5:CBDAC 6-10:BCACD 11、12:DC二、填空题13.1 14.13815.(3 16205π三、解答题17.解:(1)∵1n n n na na a +=-, ∴11n n a n a n++=. ∴121121n n n n n a a a a a a a a ---=⋅⋅⋅⋅L 121121n n n n n -=⋅⋅⋅⋅=--L , ∴数列{}n a 的通项公式为n a n =. (2)由23n n S b =-,得13b =, 又()11232n n S b n --=-≥, ∴1122n n n n n b S S b b --=-=-, 即()122,n n b b n n -=≥∈*N ,∴数列{}n b 是以3为首项,2为公比的等比数列, ∴()132n n b n -=⋅∈*N ,∴132n n n b a n -⋅=⋅,∴()012131222322n n T n -=⋅+⋅+⋅++⋅L ,()123231222322n n T n =⋅+⋅+⋅++⋅L ,两式相减,得()0121322222n n n T n --=++++-⋅L ()3121nn ⎡⎤=--⎣⎦,∴()3123nn T n =-+.18.解:(1)∵三棱柱111ABC A B C -为直三棱柱, ∴1A A ⊥平面ABC .又BC ⊂平面ABC ,∴1A A BC ⊥. ∵AD ⊥平面1A BC ,且BC ⊂平面1A BC , ∴AD BC ⊥.又1A A ⊂平面1A AB ,AD ⊂平面1A AB ,1A A AD A =I , ∴BC ⊥平面1A AB .(2)在直三棱柱111ABC A B C -中,1A A AB ⊥. ∵AD ⊥平面1A BC ,其垂足D 落在直线1A B 上, ∴1AD A B ⊥. 在Rt ABD ∆中,3AD =2AB BC ==,∴3sin AD ABD AB ∠== 即60ABD ∠=︒,在1Rt ABA ∆中,1tan6023A A AB =︒=由(1)知,BC ⊥平面1A AB ,AB ⊂平面1A AB , 从而BC AB ⊥, ∴1122222ABC S AB BC =⋅=⨯⨯=. ∵F 为AC 的中点, ∴112BCF ABC S S ∆==. ∴11113P A BC A PBC BCF V V S AA --∆==⋅=12312333⨯⨯=. 19.解:(1)由题得,甲地得分的平均数为()17778838580898892979986.810⨯+++++++++=, 乙地得分的平均数为()1657275798280848696918110⨯+++++++++=, 乙地得分的中位数为8280812+=. (2)由茎叶图可知,乙地得分中分数在[)60,80间的有65,72,75,79四份成绩,随机抽取2份的情况有:()65,72,()65,75,()65,79,()72,75,()72,79,()75,79,共6种,其中至少有一份分数在[)70,80间的情况有:()65,75,()65,79,()72,75,()72,79,()75,79,共5种. 故所求概率56P =. (3)甲、乙两地所得分数中超过90分的一共有5份,记甲地中的三份分别为,,A B C ,乙地中的两份分别为,a b .随机抽取其中2份,所有情况如下:(),A B ,(),A C ,(),B C ,(),a b ,(),A a ,(),A b ,(),B a ,(),B b ,(),C a ,(),C b ,一共10种.其中两份成绩都来自甲地的有3种情况:(),A B ,(),A C ,(),B C ,. 故所求概率310p =. 20.解:(1)由中点坐标公式,得00622x x y y +⎧=⎪⎪⎨⎪=⎪⎩即()f x ,()f x .∵点()00,M x y 在圆224x y +=上运动,∴2204x y +=, 即()()222624x y -+=, 整理,得()2231x y -+=.∴点P 的轨迹C 的方程为()2231x y -+=.(2)设()11,E x y ,()22,F x y ,直线l 的方程是1y kx =+,代入圆()2231x y -+=.可得()()2212390k x k x +--+=, 由232240k k ∆=-->,得304k -<<, 且()122231k x x k -+=+,12291x x k =+, ∴()()()2212121212291111k y y kx kx k x x k x x k =++=+++=++()()22222432391111k k k k k k k --+=++++. ∴2121228610121k k AB AB x x y y k++⋅=+==+uu u r uu u r , 解得12k =或1,不满足0∆>.∴不存在实数12k =使得OF . 21.解:(1)由题得,()()110ax f x a x x x-=-=>. 当0a <时,由于0x >,可得10ax ->, 即()0f x '>.∴()f x 在区间()0,+∞内单调递增, 当0a >时,由()0f x '>,得10x a<<, 由()0f x '<,得1x a>, ∴()f x 在区间10,a ⎛⎫ ⎪⎝⎭内单调递增,在区间1,a ⎛⎫+∞ ⎪⎝⎭内单调递减. (2)由(1)可设,方程()()2f x m m =<-的两个相异实根12,x x ,满足ln 0x x m --=, 且101x <<,21x >,即1122ln ln 0x x m x x m --=--=. 由题意,可知11ln 2ln 22x x m -=<-<-,又由(1)可知,()ln f x x x =-在区间()1,+∞内单调递减,故22x >. 令()ln g x x x m =--, 则()1112211223ln ln 2g x g x x x x ⎛⎫-=-++-⎪⎝⎭. 令()()223lnt ln 22h t t t t=-++->, 则()()()2221t t h t t -+'=-. 当2t >时,()0h t '<,()h t 是减函数, ∴()()322ln 202h t h <--<. ∴当22x >时,()12220g x g x ⎛⎫-<⎪⎝⎭, 即()1212g x g x ⎛⎫<⎪⎝⎭. ∵()g x 在区间()0,1内单调递增,∴1222x x <,故2122x x ⋅<. 22.解;(1)由sin 24πρθ⎛⎫-= ⎪⎝⎭, 得sin cos 2ρθρθ-=, 将cos sin x y ρθρθ=⎧⎨=⎩代入上式,化简,得2y x =+.所以直线l 的倾斜角为4π. (2)在曲线C 上任取一点()3cos ,sin Aαα,则点A 到直线l 的距离3cos sin 22d αα-+=,当()sin 601α-︒=-时,d 取得最大值,且最大值是22. 23.解:(1)∵2a >-,∴()22,2,2,2,22,.x a x f x a x a x a x a -+-<-⎧⎪=+-≤≤⎨⎪+->⎩作出函数()f x 的图象,如图所示:由()7f x ≥的解集为{3x x ≤-或4x ≥及函数图象, 可得627,827,a a +-=⎧⎨+-=⎩解得3a =.(2)由题知,x ∀∈R ,不等式()()31f x f m ≥+恒成立, 即x ∀∈R ,不等式32332x x m m ⎡++-⎤≥++-⎣⎦恒成立, 由(1)可知,235x x ++-≥(当且仅当23x -≤≤时取等号), ∴3235m m ++-≤⨯,当3m ≤-时,3215m m ---+≤, ∴8m ≥-,∴83m -≤≤-,当32m -<<时,3215m m +-+≤,成立; 当2m ≥时,3215m m ++-≤, ∴7m ≤, ∴27m ≤≤,综上所述,实数m 的取值范围为[]8,7-.。
2018年普通高等学校招生全国统一考试模拟(五)(衡水金卷调研卷)文数试题-附答案精品
2018年普通高等学校招生全国统一考试模拟试题文数(五)第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设全集R U =,集合{}10A x x =+≥,101x B xx ⎧+⎫=<⎨⎬-⎩⎭,则图中阴影部分所表示人集合为A .{}1x x ≥- B .{}1x x <- C .{}11x x -≤≤- D .﹛1x x <-或1x ≥﹜ 2.已知复数123z i =+,2z a i =+(a R ∈,i 为虚数单位),若1218z z i =+,则a 的值为 A .12B .1C .2D .4 3.已知函数()f x 的图象关于原点对称,且在区间[]5,2--上单调递减,最小值为5,则()f x 在区间[]2,5上A .单调递增,最大值为5B .单调递减,最小值为5-C .单调递减,最大值为5-D .单调递减,最小值为54.已知直线231x +=与x ,y 轴的正半轴分别交于点A ,B ,与直线0x y +=交于点C ,若OC OA OB λμ=+(O 为坐标原点),则λ,μ的值分别为 A .2λ=,1μ=- B .4λ=,3μ=- C. 2λ=-,3μ= D .1λ=-,2μ=5.已知122log 3a =,22log 3b =,1232c ⎛⎫= ⎪⎝⎭,32d e =,则A .d c a b >>>B .d b c a >>> C.c d a b >>> D .a c b d >>>6.已知0a >,0b >,则点()1,2P 在直线b y x a =的右下方是双曲线22221x y a b-=的离心率e 的取值范围为()3,+∞的A .充要条件B .充分不必要条件 C.必要不充分条件 D .既不充分也不必要条件 7.已知α、β是两个不同的平面,给出下列四个条件:①存在一条直线a ,a α⊥,a β⊥;②存在一个平面γ,γα⊥,γβ⊥;③存在两条平行直线a 、b ,a α⊂,b β⊂,//a β,//b α;④存在两条异面直线a 、b ,a α⊂,b β⊂,//a β,//b α,则可以推出//αβ的是 A .①③ B .②④ C. ①④ D .②③ 8.已知直线2y =与函数()()tan 0,2f x x πωϕωϕ⎛⎫=+><⎪⎝⎭图象的相邻两个交点间的距离为6,点()1,3P 在函数()f x 的图像上,则函数()()12log g x f x =的单调递减区间为A .()()6,26k k k Z ππππ-+∈B .(),63k k k Z ππππ⎛⎫-+∈ ⎪⎝⎭C. ()11,63k k k Z ⎛⎫-+∈ ⎪⎝⎭D .()()61,26k k k Z -+∈ 9.在如图所求的程序框图中,若输出n 的值为4,则输入的x 的取值范围为A .13,84⎡⎤⎢⎥⎣⎦B .[]3,13 C.[)9,33 D .913,84⎡⎫⎪⎢⎣⎭10.已知某几何体的三视图如图所求,则该几何体的表面积为A .295937144a ππ⎛⎫++- ⎪ ⎪⎝⎭ B .2959144a ππ⎛⎫+- ⎪ ⎪⎝⎭C.29593744a ππ⎛⎫++ ⎪ ⎪⎝⎭ D .295937144a ππ⎛⎫-+- ⎪ ⎪⎝⎭11.甲、乙两人各自在400米长的直线形跑道上跑步,则在任一时刻两人在跑道上相距不超过50米的概率是 A .18 B .1136 C.1564D .14 12.已知定义在R 上的可导函数()f x 的导函数为()'f x ,满足()()'f x f x <,且()102f =,则不等式()102x f x e -<的解集为A .1,2⎛⎫-∞ ⎪⎝⎭ B .()0,+∞ C.1,2⎛⎫+∞ ⎪⎝⎭D .(),0-∞ 第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.已知函数()2log ,2,2,2,x x f x x x ≥⎧⎪=⎨+<⎪⎩则()()()3ff f -的值为 .14.已知命题:P x R ∀∈,()22log 0x x a ++>恒成立,命题[]0:2,2Q x ∃∈-,使得022xa≤,若命题P Q∧为真命题,则实数a 的取值范围为 .15.已知()222210x y a b a b +≤>>表示的区域为1D ,不等式组0,0,0,bx cy bc bx cy bc bx cy bc bx cy bc -+≥⎧⎪--≤⎪⎨+-≤⎪⎪++≥⎩表示的区域为2D ,其中()2220a b c c =+>,记1D 与2D 的公共区域为D ,且D 的面积S 为23,圆2234x y +=内切于区域D 的边界,则椭圆()2222:10x y C a b a b+=>>的离心率为 .16.我国南宋著名数学家秦九韶在他的著作《数书九章》卷五“田域类”里有一个题目:“问有沙田一段,有三斜,其小斜一十三里,中斜一十四里,大斜一十五里.里法三百步.欲知为田几何.”这道题讲的是有一个三角形沙田,三边分别为13里,14里,15里,假设1里按500米计算,则该三角形沙田外接圆的半径为 米.三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. 已知数列{}n a 满足11a =,134n n a a +=+,*n N ∈.(1)证明:数列{}2n a +是等比数列,并求数列{}n a 的通项公式; (2)设()3log 22n n n a b a +=+,求数列{}n b 的前n 项和n T .18. 现从某医院中随机抽取了七位医护人员的关爱患者考核分数(患者考核:10分制),用相关的特征量y 表示;医护专业知识考核分数(试卷考试:100分制),用相关的特征量x 表示,数据如下表: 特征量1 2 3 4 5 6 7 x98 88 96 91 90 92 96 y9.98.69.59.09.19.29.8(1)求y 关于x 的线性回归方程(计算结果精确到0.01);(2)利用(1)中的线性回归方程,分析医护专业考核分数的变化对关爱患者考核分数的影响,并估计某医护人员的医护专业知识考核分数为95分时,他的关爱患者考核分数(精确到0.1);(3)现要从医护专业知识考核分数95分以下的医护人员中选派2人参加组建的“九寨沟灾后医护小分队”培训,求这两人中至少有一人考核分数在90分以下的概率.附:回归方程y bx a =+中斜率和截距的最小二乘法估计公式分别为()()()121niii nii x x y y b x x ==--=-∑∑,a y bx =-.19. 如图,在四棱锥P ABCD -中,底面ABCD 是边长为a 的菱形,PD ⊥平面ABCD ,60BAD ∠=,2PD a =,O 为AC 与BD 的交点,E 为棱PB 上一点.(1)证明:平面EAC ⊥平面PBD ;(2)若//PD 平面EAC ,三棱锥P EAD -的体积为183,求a 的值. 20. 已知动圆C 恒过点1,02⎛⎫⎪⎝⎭,且与直线12x =-相切.(1)求圆心C 的轨迹方程;(2)若过点()3,0P 的直线交轨迹C 于A ,B 两点,直线OA ,OB (O 为坐标原点)分别交直线3x =-于点M ,N ,证明:以MN 为直径的圆被x 轴截得的弦长为定值. 21. 已知函数()()322316f x x a x ax =-++,a R ∈.(1)若对于任意的()0,x ∈+∞,()()6ln f x f x x +-≥恒成立,求实数a 的取值范围; (2)若1a >,设函数()f x 在区间[]1,2上的最大值、最小值分别为()M a 、()m a ,记()()()h a M a m a =-,求()h a 的最小值.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22.选修4-4:坐标系与参数方程在平面直角坐标系xOy 中,已知直线11,2:322x t l y t⎧=--⎪⎪⎨⎪=+⎪⎩(t 为参数),曲线12cos ,:22sin x C y ϕϕ=+⎧⎨=-⎩(ϕ为参数),以原点O 为极点,x 轴的正半轴为极轴建立坐标系. (1)写出直线l 的普通方程与曲线C 的极坐标方程; (2)设直线l 与曲线C 交于A ,B 两点,求ABC ∆的面积. 23.选修4-5:不等式选讲 已知函数()21f x x x =+--. (1)求不等式()2f x ≥的解集;(2)记()f x 的最大值为k ,证明:对任意的正数a ,b ,c ,当a b c k ++=时,有a b c k ++≤成立.试卷答案一、选择题1-5:BCCCA 6-10:ACDDA 11、12:CB二、填空题13.2log 3 14.5,24⎛⎤⎥⎝⎦15.12或32 16.4062.5 三、解答题17.解:(1)由134n n a a +=+, 得()1232n n a a ++=+, 即1232n n a a ++=+,且123a +=,所以数列{}2n a +是以3为首项,3为公比的等比数列. 所以12333n n n a -+=⨯=,故数列{}n a 的通项公式为()*32n n a n N --∈.(2)由(1)知,23n n a +=,所以3log 333n n n n nb ==. 所以1231231233333n n nnT b b b b =++++=++++.① 234111231333333n n n n nT +-=+++++.② ①-②,得234211111333333n n T =+++++13n n += 11111331113223313nn n n n n ++⎡⎤⎛⎫-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦=-=--⋅-, 所以332323044343443n n n nn n T +=-=-⋅⋅⋅.故数列{}n b 的前n 项和323443n n n T +=-⋅. 18.解:(1)由题得,98889691909296937x ++++++==. 9.98.69.59.09.19.29.89.37y ++++++==.()()()()198939.99.3niii x x y y =--=-⨯-+∑()()()()88938.69.396939.59.3-⨯-+-⨯-+ ()()()()91939.09.390939.19.3-⨯-+-⨯-+ ()()()()92939.29.396939.89.39.9-⨯-+-⨯-=()()()()22221989388939693nii x x =-=-+-+-∑()()()()2222919390939293969382+-+-+-+-=.所以()()()1219.90.1282niii nii x x y y b x x ==--==≈-∑∑. 9.30.1293 1.86a =-⨯=-.所以线性回归方程为0.12 1.86y x =-. (2)由于0.120b =>.所以随着医护专业知识的提高,个人的关爱患者的心态会变得更温和,耐心,因此关爱患者的考核分数也会稳步提高.当95x =时,0.1295 1.869.5y =⨯-≈.(3)由于95分以下的分数有88,90,91,92,共4个,则从中任选两个的所有情况有()88,90,()88,91,()88,92,()90,91,()90,92,()91,92,共6种.则这两个人中至少有一个分数在90分以下的情况有()88,90,()88,91,()88,92,共3种. 故选派的这两个人中至少有一人考核分数在90分以下的概率3162P ==.19.解:(1)因为PD ⊥平面ABCD ,AC ⊂平面ABCD ,所以PD AC ⊥. 又四边形ABCD 为菱形,所以AC BD ⊥, 又PDBD D =,所以AC ⊥平面PBD . 而AC ⊂平面EAC , 所以平面EAC ⊥平面PBD .(2)因为//PD 平面EAC ,平面EAC平面PBD OE =.所以//PD OE .又O 为AC 与BD 的交点, 所以O 是BD 的中点,所以E 是PB 的中点. 因为四边形ABCD 是菱形,且60BAD ∠=, 所以取AD 的中点H ,连接BH ,可知BH AD ⊥,又因为PD ⊥平面ABCD , 所以PD BH ⊥. 又PDPD D =,所以BH ⊥平面PAD . 由于AB a =,所以32BH a =. 因此E 到平面PAD 的距离11332224d BH a a ==⨯=, 所以3111332183332412P EAD E PAD PAD V V S d a a a a --∆==⨯=⨯⨯⨯⨯==. 解得6a =,故a 的值为6. 20.解:(1)由题意得,点C 与点1,02⎛⎫⎪⎝⎭的距离始终等于点C 到直线12x =-的距离.因此由抛物线的定义,可知圆心C 的轨迹为以1,02⎛⎫⎪⎝⎭为焦点,12x =-为准线的抛物线.所以122p =,即1p =. 所以圆心C 的轨迹方程为22y x =. (2)由圆心C 的轨迹方程为22y x =,可设()2112,2A t t ,()2222,2B t t ,()120t t ≠, 则()21323,2PA t t =-,()22223,2PB t t =-,由A ,P ,B 三点花线,可知()()2212232322320t t t t -⋅--⋅=,即()()()()22122231122312123223230230230t t t t t t t t t t t t t t t t --+=⇒-+-=⇒+-=.因为12t t ≠,所以1232t t =-. 又依题得,直线OA 的方程为11y x t =. 令3x =-,得133,M t ⎛⎫--⎪⎝⎭. 同理可知133,N t ⎛⎫--⎪⎝⎭. 因此以MN 为直径的圆的方程可设为()()1233330x x y y t t ⎛⎫⎛⎫+++++= ⎪⎪⎝⎭⎝⎭. 化简得()22121233930x y y t t t t ⎛⎫+++++=⎪⎝⎭,即()()212212123930t t x y y t t t t +++++=. 将1232t t =-代入上式,可知()()22123260x y t t y ++-+-=, 在上式中令0y =,可知136x =-+,236x =--,因此以MN 为直径的圆被x 轴截得的弦长为12363626x x -=-+++=,为定值. 21.解:(1)因为()()()2616ln f x f x a x x +-=-+≥对任意的()0,x ∈+∞恒成立,所以()2ln 1xa x-+≥. 令()2ln x g x x =,0x >,则()'212ln x g x x -=. 令()'0g x =,则x e =.当()0,x e ∈时,()'0g x >,()g x 在区间()0,e 上单调递增;当(),x e ∈+∞时,()'0g x <,()g x 在区间(),e +∞上单调递减.所以()()max 12g x g e e==, 所以()112a e -+≥,即112a e≤--, 所以实数a 的取值范围为1,12e ⎛⎤-∞--⎥⎝⎦. (2)因为()()322316f x x a x ax =-++, 所以()131f a =-,()24f =.所以()()()()'2661661f x x a x a x x a =-++=--. 令()'0fx =,则1x =或a .①若513a <≤, 当()1,x a ∈时,()'0f x <,()f x 在区间()1,a 上单调递减;当(),2x a ∈时,()'0fx >,()f x 在区间(),2a 上单调递增.又因为()()12f f ≤,所以()()24M a f -=,()()323m a f a a a ==-+,所以()()()()32324334h a M a m a a a a a =-=--+=-+.因为()()'236320h a a a a a =-=-<,所以()h a 在区间51,3⎛⎤ ⎥⎝⎦上单调递减,所以当51,3a ⎛⎤∈ ⎥⎝⎦时,()h a 的最小值为58327h ⎛⎫= ⎪⎝⎭.②若523a <<, 当()1,x a ∈时,()'0f x <,()f x 在区间()1,a 上单调递减;当(),2x a ∈时,()'0f x >,()f x 在区间(),2a 上单调递增.又因为()()12f f >,所以()()131M a f a =--,()()323m a f a a a -=-+.因为()()2'2363310h a a a a =-+=->, 所以()h a 在区间5,23⎛⎫ ⎪⎝⎭上单调递增. 所以当5,23a ⎛⎫∈ ⎪⎝⎭时,()58327h a h ⎛⎫>=⎪⎝⎭. ③若2a ≥, 当()1,2x ∈时,()'0f x <,()f x 在区间()1,2上单调递减,所以()()131M a f a ==-,()()24m a f -=.所以()()()31435h a M a m a a a =-=--=-,所以()h a 在区间[)2,+∞上的最小值为()21h =.综上所述,()h a 的最小值为827. 22.解:(1)将直线11,2:322x t l y t ⎧=--⎪⎪⎨⎪=+⎪⎩消去参数t , 得3320x y ++-=,故直线l 的普通方程为3320x y ++-=.将曲线12cos ,:22sin x C y ϕϕ=+⎧⎨=-⎩化为普通方程为()()22124x y -+-=, 即222410x y x y +--+=,将222x y ρ=+,cos x ρθ=,sin y ρθ=代入上式,可得曲线C 的极坐标方程为22cos 4sin 10ρρθρθ--+=.(2)由(1)可知,圆心()1,2C 到直线:3320l x y ++-=的距离为()23232331d ++-==+. 则222432AB R d =-=-=(R 为圆C 半径). 所以1123322ABC S AB d ∆=⨯=⨯⨯=. 故所求ABC ∆面积为ABC ∆的面积为3.23.解:(1)由题知,()3,2,21,21,3. 1.x f x x x x -<-⎧⎪=+-≤≤⎨⎪>⎩所以()2f x ≥,即32,2x -≥⎧⎨<-⎩或212,21x x +≥⎧⎨-≤≤⎩或32,1.x ≥⎧⎨>⎩解得12x ≥. 故原不等式的解集为1,2⎡⎫+∞⎪⎢⎣⎭. (2)因为()21213f x x x x x =+--≤+-+=(当且仅当()()210x x +-≥时取等号), 所以3k =,因此有3a b c ++=. 所以111a b c a b c ++=⋅+⋅+⋅111333322222a b c a b c +++++++≤++===(当且仅当1a b c ===时取等号), 故不等式a b c k ++≤得证.。
2018年普通高等学校招生全国统一考试【衡水金卷】模拟试题理数试题(解析版)
2018年普通高等学校招生全国统一考试模拟试题理数(四)第Ⅰ卷一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知虚数单位,复数对应的点在复平面的()A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】D【解析】因为=所对应的点为,在第四项限.故答案为:D.2. 已知集合,,若,则实数的取值范围为()A. B. C. D.【答案】D【解析】},若,则故答案为:D.3. 设,,,,为实数,且,,下列不等式正确的是()A. B. C. D.【答案】D【解析】取a=2,b=4,c=3,d=2,d-a=0,c-b=-1,此时d-a>c-b,A错误;取a=2,b=3,小,则,,此时,B错误;取b=3,a=,c=1,d=-3,,C错误;对于D ,D正确. 故选D.4. 设随机变量,则使得成立的一个必要不充分条件为()A. 或B.C.D. 或【答案】A【解析】由,得到=,故3m=3,得到m=1,则使得成立的充要条件为m=1,故B错误;因为是的真子集,故原题的必要不充分条件为或.故答案为:A.5. 执行如图所示的程序框图,若输出的结果,则判断框内实数应填入的整数值为()A. 998B. 999C. 1000D. 1001【答案】A【解析】因为令则故当根据题意此时退出循环,满足题意,则实数M应填入的整数值为998,故答案为:A.6. 已知公差不为0的等差数列的前项和为,若,则下列选项中结果为0的是()A. B. C. D.【答案】C【解析】由得到,因为公差不为0,故=0,由等差数列的性质得到,故答案为:C.7. 设,分别为双曲线(,)的左、右顶点,过左顶点的直线交双曲线右支于点,连接,设直线与直线的斜率分别为,,若,互为倒数,则双曲线的离心率为()A. B. C. D.【答案】B【解析】由圆锥曲线的结论知道故答案为:B.8. 如图所示,网格纸上小正方形的边长为1,粗实线画出的是几何体的三视图,则该几何体的体积为()A. B. C. 16 D.【答案】A【解析】由已知中的三视图得到该几何体是一个半圆柱挖去了一个三棱锥,底面面积为,高为4,该几何体的体积为故答案为:A .9. 已知曲线和直线所围成图形的面积是,则的展开式中项的系数为()A. 480B. 160C. 1280D. 640【答案】D【解析】由题意得到两曲线围成的面积为=故答案为:D.点睛:这个题目考查的是二项式中的特定项的系数问题,在做二项式的问题时,看清楚题目是求二项式系数还是系数,还要注意在求系数和时,是不是缺少首项;解决这类问题常用的方法有赋值法,求导后赋值,积分后赋值等. 10. 在平面直角坐标系中,为坐标原点,,,,,设,,若,,且,则的最大值为()A. 7B. 10C. 8D. 12【答案】B【解析】已知,,,得到因为,,故有不等式组表示出平面区域,是封闭的三角形区域,当目标函数过点(2,4)时取得最大值,为10.故答案为:B.点睛:利用线性规划求最值的步骤:(1)在平面直角坐标系内作出可行域;(2)考虑目标函数的几何意义,将目标函数进行变形.常见的类型有截距型(型)、斜率型(型)和距离型(型);(3)确定最优解:根据目标函数的类型,并结合可行域确定最优解;(4)求最值:将最优解代入目标函数即可求出最大值或最小值;注意解答本题时不要忽视斜率不存在的情形.11. 如图所示,椭圆有这样的光学性质:从椭圆的一个焦点出发的光线,经椭圆反射后,反射光线经过椭圆的另一个焦点.根据椭圆的光学性质解决下题:已知曲线的方程为,其左、右焦点分别是,,直线与椭圆切于点,且,过点且与直线垂直的直线与椭圆长轴交于点,则()A. B. C. D.【答案】C【解析】由椭圆的光学性质得到直线平分角,因为由,得到,故.故答案为:C.12. 将给定的一个数列:,,,…按照一定的规则依顺序用括号将它分组,则可以得到以组为单位的序列.如在上述数列中,我们将作为第一组,将,作为第二组,将,,作为第三组,…,依次类推,第组有个元素(),即可得到以组为单位的序列:,,,…,我们通常称此数列为分群数列.其中第1个括号称为第1群,第2个括号称为第2群,第3个数列称为第3群,…,第个括号称为第群,从而数列称为这个分群数列的原数列.如果某一个元素在分群数列的第个群众,且从第个括号的左端起是第个,则称这个元素为第群众的第个元素.已知数列1,1,3,1,3,9,1,3,9,27,…,将数列分群,其中,第1群为(1),第2群为(1,3),第3群为(1,3,),…,以此类推.设该数列前项和,若使得成立的最小位于第个群,则()A. 11B. 10C. 9D. 8【答案】B【解析】由题意得到该数列的前r组共有个元素,其和为则r=9时,故使得N>14900成立的最小值a位于第十个群.故答案为:B.点睛:这个题目考查的是新定义题型,属于数列中的归纳推理求和问题;对于这类题目,可以先找一些特殊情况,总结一下规律,再进行推广,得到递推关系,或者直接从变量较小的情况开始归纳得到递推关系.第Ⅱ卷二、填空题(每题5分,满分20分,将答案填在答题纸上)13. 若函数为偶函数,则__________.【答案】-1【解析】由偶函数的定义得到,即=即恒成立,k=-1.故答案为:-1.14. 已知,,则__________.【答案】【解析】=,故=,因为,故=,故,故.故答案为:.15. 中华民族具有五千多年连绵不断的文明历史,创造了博大精深的中华文化,为人类文明进步作出了不可磨灭的贡献.为弘扬传统文化,某校组织了国学知识大赛,该校最终有四名选手、、、参加了总决赛,总决赛设置了一、二、三等奖各一个,无并列.比赛结束后,对说:“你没有获得一等奖”,对说:“你获得了二等奖”;对大家说:“我未获得三等奖”,对、、说:“你妈三人中有一人未获奖”,四位选手中仅有一人撒谎,则选手获奖情形共计__________种.(用数字作答)【答案】12【解析】设选手ABCD获得一等奖,二等奖,三等奖,分别用表示获得的奖次,其中i=0时,表示为获奖,若C说谎,则若B说谎则等九种情况,若A说谎则若D说谎则,公12种情况.故答案为:12.16. 已知为的重心,点、分别在边,上,且存在实数,使得.若,则__________.【答案】3【解析】设连接AG并延长交BC于M,此时M为BC的中点,故故存在实数t使得,得到故答案为:3.点睛:本题考查了向量共线定理、平面向量基本定理、考查了推理能力与计算能力,属于中档题.在解决多元的范围或最值问题时,常用的解决方法有:多元化一元,线性规划的应用,均值不等式的应用,“乘1法”与基本不等式的性质,等.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. 在中,内角,,所对的边分别为,,,已知.(1)求角的大小;(2)若的面积,为边的中点,,求.【答案】(1);(2)5.【解析】试题分析:(1)由正弦定理,得,又,进而得到;(2)的面积,得,两边平方得到,结合两个方程得到结果.解析:(1)因为,由正弦定理,得.又,所以,即.因为,故.所以.(2)由的面积,得.又为边的中点,故,因此,故,即,故.所以.18. 市场份额又称市场占有率,它在很大程度上反映了企业的竞争地位和盈利能力,是企业非常重视的一个指标.近年来,服务机器人与工业机器人以迅猛的增速占据了中国机器人领域庞大的市场份额,随着“一带一路”的积极推动,包括机器人产业在内的众多行业得到了更广阔的的发展空间,某市场研究人员为了了解某机器人制造企业的经营状况,对该机器人制造企业2017年1月至6月的市场份额进行了调查,得到如下资料:市场份额(1)请根据上表提供的数据,用最小二乘法求出关于的线性回归方程,并预测该企业2017年7月份的市场份额;(2)如图是该机器人制造企业记录的2017年6月1日至6月30日之间的产品销售频数(单位:天)统计图.设销售产品数量为,经统计,当时,企业每天亏损约为200万元,当时,企业平均每天收人约为400万元;当时,企业平均每天收人约为700万元。
衡水金卷2018年普通高等学校招生全国统一考试模拟试题(一)文科数学(解析版)
2018年普通高等学校招生全国统一考试模拟试题文数(一)第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合,,则()A. B. C. D.【答案】B【解析】由题意得又,所以,选B.2. 若,,则角是()A. 第一象限角B. 第二象限角C. 第三象限角D. 第四象限角【答案】D【解析】由,得,又,所以,所以为第四象限角,选D.3. 已知复数,(其中为虚数单位,),若的模等于,则实数的值为()A. B. C. D.【答案】C【解析】,所以,所以选C.4. 已知向量,,若,则()A. B. C. D.【答案】A【解析】由,得,即,代入下式,选A.5. 已知函数是定义在上的偶函数,且在区间上单调递增,记,,,则,,的大小关系为()A. B. C. D.【答案】A【解析】函数是定义在上的偶函数,所以f(x)=f(-x)=f(|x|),所以,而且在区间上单调递增,所以,选A.【点睛】由函数的单调性比较函数值的大小,关键要把所以x值全转化到函数的同一个单调区间,通过比较x的大小,进一步比较出函数值的大小。
6. 《九章算术》卷第六《均输》中,有如下问题:“今有五人分五钱,令上二人所得与下三人等.问各得几何?”若将这五人从上到下分别记为甲、乙、丙、丁、戊,且五人所得依次成等差数列,则乙与丙两人共分得()A. 钱B. 钱C. 钱D. 钱【答案】C【解析】设甲、乙、丙、丁、戊五人所得分别为,公差为,则有则,所以,故选C.【点睛】本题的关键是转化为等差数列型,而对于等差数列,我们常用基本量,用这两个基本量来表示所有量。
7. 已知双曲线:(,)的左右焦点分别为,,双曲线与圆()在第一象限交于点,且,则双曲线的离心率是()A. B. C. D.【答案】A【解析】由题意得,,根据双曲线定义,有即,故选C. 8. 已知一几何体的正视图、侧视图如图所示,则该几何体的俯视图不可能是()A. B.C. D.【答案】D【解析】由图可知,选项D对的几何体为长方体与三棱柱的组合,其侧视图中间的线不可视,应为虚线,故该几何体的俯视图不可能是D,选D.9. 定义运算为执行如图所示的程序框图输出的值,则的值为()A. B. C. D.【答案】A【解析】因为,所以=,而,所以= ,所以=,选A.10. 已知函数有两个零点,,且满足,,则的取值范围为()A. B. C. D.【答案】A【解析】由题意得,画出可行域,如下图,B(1,0),C(-,0).目标函数z=几何意义为可行域内的点到定义P(-2,2)连线的斜率,由图可知,,选A.【点睛】线性规划中常见目标函数的转化公式:(1)截距型:,与直线的截距相关联,若,当的最值情况和z的一致;若,当的最值情况和的相反;(2)斜率型:与的斜率,常见的变形:,,.(3)点点距离型:表示到两点距离的平方;11. 已知抛物线:的焦点为,准线为,过点作直线分别交抛物线与直线于点,(如图所示),若,则()A. B. C. D.【答案】C【解析】过点P作PA垂直于直线于点A,设直线与x轴交于点B,由抛物线的定义,可知|PA|=|PF|,易知所以,设|PF|=t,由,得|QP|=2t,所以,故选C.【点睛】过焦点的直线与准线相交,常通过抛物线上的点向准线作垂线,这样可以用抛物线定义与两直角三角形相似的几何方法解题。
2018届河北省【衡水金卷】2018年普通高校招生全国卷 I A 信息卷 高三理科数学(五)试题(解析版)
2018年普通高等学校招生全国统一考试模拟试题理数(五)第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 若集合,则()A. B. C. D. ∅【答案】B【解析】故选2. 已知为虚数单位,复数的虚部为,则实数()A. B. C. D.【答案】C【解析】则故选3. 函数的最大值为()A. B. C. D.【答案】C【解析】当时,取得最大值为故选4. 如图,分别以为圆心,正方形的边长为半径圆弧,交成图中阴影部分,现向正方形内投入个质点,则该点落在阴影部分的概率为()A. B. C. D.【答案】B【解析】设正方形的面积为,阴影部分由两个弓形构成,每个弓形的面积为故所求的概率为故选5. 已知为坐标原点,分别在双曲线第一象限和第二象限的渐近线上取点,若的正切值为,则双曲线离心率为()A. B. C. D.【答案】B【解析】双曲线的渐近线方程为设一条渐近线的倾斜角为,斜率为则,或(舍去),故选6. 若点满足,则的最小值为()A. B. C. D.【答案】A【解析】如图:目标函数的几何意义是可行域内的点与连线长度的平方由图可知长度最小值为到的距离故选7. 按下面的程序框图,如果输入的,则输出的的取值范围为()A. B. C. D.【答案】A【解析】由程序框图可得:,时,时,时,故选8. 将函数的图象向右平移个单位,得到函数的图象,则图象的一个对称中心是()A. B. C. D.【答案】C【解析】由,当时,得对称中心为故选9. 展开式中,项的系数是()A. B. C. D.【答案】C【解析】两边求导得:两边同乘以得到:则原式故项的系数为故选10. 如图是一三棱锥的三视图,则此三棱锥内切球的体积为()A. B. C. D.【答案】D【解析】把此三棱锥嵌入长宽高分别为:的长方体三棱锥即为所求的三棱锥其中,,,则,故可求得三棱锥各面面积分别为:,,,故表面积为三棱锥体积设内切球半径为,则故三棱锥内切球体积故选11. 已知函数是定义在内的奇函数,且满足,若在区间上,,则()A. B. C. D.【答案】B【解析】令,则故函数的周期为,函数是定义在内的奇函数,,故对,对,当时,所求原式故选点睛:本题考查了运用函数的奇偶性和周期性求值,利用已知条件先求出函数周期性,在求函数值时利用递推关系分别求出、、、的表达式,从而能够计算出最后结果,本题的关键是求出在周期性下的值。
{衡水金卷}2018届河北省高考一模数学试题(文)及答案解析
2018届高三毕业班第一次模拟演练文科数学试卷第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合(){}lg 2M x y x ==+,{}21x N y y ==-,则M N =U ( ) A .R B .()1,-+∞ C .()2,-+∞ D .[)2,-+∞2.已知i 为虚数单位,复数3i 2iz =-,则z 的实部与虚数之差为( )A .15-B .35 C .35- D .153.已知圆锥曲线()22102cos x y θπθ+=<<=θ( )A .6π B .56π C .3π D .23π4.已知等比数列{}n a 中,2341a a a =,67864a a a =,则5a =( ) A .2± B .-2 C .2 D .4 5.已知命题p :“001,01x x ∃∈<-R ”的否定是“1,01x x ∀∈≥-R ”;命题q :“2019x >”的一个必要不充分条件是“2018x >”,则下列命题为真命题的是( ) A .q ⌝ B .p q ∧ C .()p q ⌝∧ D .()p q ∨⌝6.我国古代《九章算术》里,记载了一个“商功”的例子:今有刍童,上广二丈,袤三丈,下广三丈,袤四丈,高三丈.问积几何?其意思是:今有上下底面皆为长方形的草垛(如图所示),上底宽2丈,长3丈;下底宽3丈,长4丈;高3丈.问它的体积是多少?该书提供的算法是:上底长的2倍与下底长的和与上底宽相乘,同样下底长的2倍与上底长的和与下底宽相乘,再次相加,再乘以高,最后除以6.则这个问题中的刍童的体积为( )A .13.25立方丈B .26.5立方丈C .53立方丈D .106立方丈7.如图的折线图是某公司2017年1月至12月份的收入与支出数据,若从7月至12月这6个月中任意选2个月的数据进行分析,则这2个月中至少有一个月利润(利润=收入-支出)不低于40万的概率为( )A .15 B .25 C .35 D .458.执行上面的程序框图,若输出的S 值为-2,则①中应填( )A .98?n <B .99?n <C .100?n <D .101?n < 9.已知一个几何体的三视图如下图所示,则该几何体的表面积为( )A .(2116π+B .(2124π++C .16+D .8163π+10.已知函数()()2cos 0f x x ωω=->的图象向左平移02πϕϕ⎛⎫<< ⎪⎝⎭个单位,所得的部分函数图象如图所示,则ϕ的值为( )A .6πB .56π C .12π D .512π 11.已知ABC ∆的内角,,A B C 的对边分别为,,a b c,且cos sin a B B b c +=+,1b =,点D 是ABC ∆的重心,且AD =,则ABC ∆的外接圆的半径为( ) A .1 B .2 C .3 D .412.若函数()y f x =满足:①()f x 的图象是中心对称图形;②若x D ∈时,()f x 图象上的点到其对称中心的距离不超过一个正数M ,则称()f x 是区间D 上的“M 对称函数”.若函数()()()310f x x m m =++>是区间[]4,2-上的“M 对称函数”,则实数M 的取值范围是( )A.)⎡+∞⎣B.)+∞ C.(D.()+∞第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.已知()4tan 3απ-=-,则22sin 2cos sin 2ααα-= . 14.若幂函数()16=3a f x ax+的图象上存在点P ,其坐标(),x y 满足约束条件2,6,,y x x y y m -≤⎧⎪+≤⎨⎪≥⎩则实数m 的最大值为 .15.已知在直角梯形ABCD 中,22AB AD CD ===,90ADC ∠=︒,若点M 在线段AC 上,则MB MD +uuu r uuu r的取值范围为 .16.已知抛物线2:8C x y =的焦点为F ,准线为1l ,直线2l 与抛物线C 相切于点P ,记点P 到直线1l 的距离为1d ,点F 到直线2l 的距离为2d ,则212d d +的最大值为 . 三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17. 已知数列{}n a 的前n 项和为n S ,且12a =,12n n S an =+. (1)求数列{}n a 的通项公式; (2)记()221161n n n n a b a a ++=,数列{}n b 的前n 项和为n T ,求n T . 18. 在矩形ABCD 中,3AB =,2AD =,点E 是线段CD 上靠近点D 的一个三等分点,点F 是线段AD 上的一个动点,且()01DF DA λλ=≤≤.如图,将BCE ∆沿BE 折起至BEG ∆,使得平面BEG ⊥平面ABED .(1)当12λ=时,求证:EF BG ⊥; (2)是否存在λ,使得三棱锥D EFG -与三棱锥B EFG -的体积之比为14:?若存在,求出λ的值;若不存在,请说明理由.19. 某公司在某条商业街分别开有两家业务上有关联的零售商店,这两家商店的日纯利润变化情况如下表所示:(1)从这几天的日纯利润来看,哪一家商店的日平均纯利润多些?(2)由表中数据可以认为这两家商店的日纯利润之间有较强的线性相关关系. (ⅰ)试求y 与x 之间的线性回归方程;(ⅱ)预测当B 店日纯利润不低于2万元时,A 店日纯利润的大致范围(精确到小数点后两位);(3)根据上述5日内的日纯利润变化情况来看,哪家商店经营状况更好?附:线性回归方程ˆˆˆybx a =+中,()()()1122211ˆn ni iiii i nni ii i x y nx y x x yyb x nxx x ====---==--∑∑∑∑,ˆˆay bx =-. 参考数据:()()510.691ii i x x yy =--=∑,521()0.5ii x x =-=∑. 20. 已知圆C 的圆心为原点,其半径与椭圆22:143x y D +=的左焦点和上顶点的连线线段长度相等. (1)求圆C 的标准方程;(2)过椭圆右焦点的动直线2l (其斜率不为0)交圆C 于,A B 两点,试探究在x 轴正半轴上是否存在定点E ,使得直线AE 与BE 的斜率之和为0?若存在,求出点E 的坐标,若不存在,请说明理由. 21. 已知函数()2e x f x ax =(a ∈R ,e 为自然对数的底数). (1)当0a ≠时,讨论函数()f x 的单调性;(2)若关于x 的不等式()e 1e x x f x x ++≥在区间(],0-∞上恒成立,求实数a 的取值范围. 请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分. 22.选修4-4:坐标系与参数方程以平面直角坐标系的原点为极点,x 轴的正半轴为极轴,取相同的长度单位建立极坐标系,已知直线l 的极坐标方程是sin 13πρθ⎛⎫-= ⎪⎝⎭,圆C 的参数方程为1cos ,sin x r y r ϕϕ=+⎧⎨=⎩(ϕ为参数,0r >). (1)若直线l 与圆C 有公共点,求实数r 的取值范围;(2)当2r =时,过点()2,0D 且与直线l 平行的直线l '交圆C 于,A B 两点,求11DA DB-的值. 23.选修4-5:不等式选讲 已知函数()211f x x x =++-. (1)解不等式()3f x ≤;(2)若函数()2201822019g x x a x =--+-,若对于任意的1x ∈R ,都存在2x ∈R ,使得()()12f x g x =成立,求实数a 的取值范围.衡水金卷·2018届高三模拟联考(一)文数答案一、选择题1-5:CBDCC 6-10:BDBAC 11、12:AA 二、填空题 13.112 14.2 15.⎣ 16.12 三、解答题 17.解:(1)由12n n S an =+,得()21n n S n a =+, 当2n ≥时,112n n S na --=, 两式相减,得()121n n a a n n n -=≥-,又121a =,∴2na n=,∴()2n a n n =∈*N . (2)由(1)知,()221161n n n n a b a a ++==()()2222211111n n n n n +=-++, ∴12222111123n n T b b b n =+++=--++L L ()()()22221121111n n n n n +-=-=+++. 18.解:(1)当12λ=时,点F 是AD 的中点. ∴112DF AD ==,113DE CD ==,90ADC ∠=︒,∴45DEF ∠=︒. ∵223CE CD ==,2BC =,90BCD ∠=︒, ∴45BEC ∠=︒. ∴BE EF ⊥.又平面GBE ⊥平面ABED ,平面GBE I 平面ABED BE =,EF ⊂平面ABED , ∴EF ⊥平面BEG . ∵BG ⊂平面BEG , ∴EF BG ⊥.(2)∵2DF DA λλ==,∴1122DEF S λλ∆=⨯⨯=, ()11322BEF ABF DEFABED S S S S ∆∆∆=--=⨯+⨯梯形()1322122λλλ-⨯⨯--=+, 由::D EFG B EFG G DEF G BEF V V V V ----=()::1214DFE BEF S S λλ∆∆==+=:,解得12λ=, ∴当12λ=时,三棱锥D EFG -与三棱锥B EFG -的体积之比为1:4.19.解:(1)由题意,可知0.20.50.80.9 1.10.75x ++++==(万元);0.230.220.51 1.50.695y ++++==(万元).所以从平均水平来讲,A 家商店的日平均纯利润要更多些.(2)(ⅰ)根据题意,得()()()51521ˆ 1.382iii ii x x y y bx x ==--==-∑∑,所以ˆ0.69 1.3820.70.2774a=-⨯=-, 所以y 与x 之间的回归方程为ˆ 1.3820.2774yx =-. (ⅱ)令2y ≥,得1.3820.27742x -≥, 解得 1.65x ≥,即B 店日纯利润不低于2万元时,A 店日纯利润大约不低于1.65万元.(3)A 店的日纯利润的方差为()()()222210.20.70.50.70.80.75A s ⎡=⨯-+-+-+⎣()()220.90.7 1.10.70.1⎤-+-=⎦, B 店的日纯利润的方差为()()()222210.230.690.220.690.50.695Bs ⎡=⨯-+-+-+⎣()()2210.69 1.50.690.24⎤-+-≈⎦. 因为,x y 相差不大,但22A B s s <,所以A 店日纯利润更集中一些,故从日纯利润变化情况来看,A 店经营状况更好.20.解:(1)由题知,椭圆22:143x y D +=的左焦点为()1,0-,上顶点为(,故圆的半径2r ==,所以圆C 的标准方程为224x y +=. (2)假设存在符合条件的点E . 设(),0E t ,()11,A x y ,()22,B x y , 当直线2l 的斜率存在时, 设直线2l 的方程为()1y k x =-.由()224,1,x y y k x ⎧+=⎪⎨=-⎪⎩得()22221240k x k x k +-+-=,所以212221k x x k +=+,212241k x x k -=+.由0AE BE k k +=,得12120AE BE y yk k x t x t=-⇒+=--, 即()()1212121102k x k x x x x t x t --+=⇒--()()12120t x x t -+++=⇒()()2222242120411k k t t t k k -+-+=⇒=++.即()4,0E .当直线2l的斜率不存在时,直线2l 的方程为1x =,与圆C的交点坐标分别为(,(1,,显然满足0AE BE k k +=.所以当点E 为()4,0时,0AE BE k k +=.21.解:(1)由题知,()22e e x x f x ax ax '=+=()()2e 2e 2x x a x x a x x +=+. 当0a >时,令()0f x '>,得0x >或2x <-.所以函数()f x 的单调递增区间为(),2-∞-,()0,+∞,单调递减区间为()2,0-. 当0a <时,令()0f x '>,得20x -<<.所以函数()f x 的单调递减区间为(),2-∞-,()0,+∞,单调递增区间为()2,0-. (2)()e 1e x x f x x ++≥⇒()2e 110x ax x +-+≥. 依题意,当0x ≤时,()2e 110x ax x +-+≥, 即当0x ≤时,2110e xax x +-+≥. 设()211ex h x ax x =+-+, 则()121e x h x ax '=+-11222e x ax ⎛⎫=+-⎪⎝⎭, 设()1122e x m x ax =+-, 则()12e x m x a '=+.①当12a ≥-时,当0x <时,112e 2x >,从而()0m x '>,∴()1122ex m x ax =+-在区间(),0-∞上单调递增,又∵()00m =,∴当0x <时,()0m x <,从而当0x <时,()0h x '<, ∴()211e xh x ax x =+-+在区间(),0-∞上单调递减, 又∵()00h =,从而当0x ≤时,()0h x ≥, 即2110e xax x +-+≥. 于是当0x ≤时,()e 1e x x f x x ++≥; ②当12a <-时,令()0m x '=,得102ex a +=, ∴1ln 02x a ⎛⎫=-< ⎪⎝⎭, 当1ln ,02x a ⎛⎫⎛⎫∈-⎪ ⎪⎝⎭⎝⎭时,()0m x '<,∴()1122e x m x ax =+-在区间1ln ,02a ⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭上单调递减, 又∵()00m =,∴当1ln ,02x a ⎛⎫⎛⎫∈-⎪ ⎪⎝⎭⎝⎭时,()0m x >, 从而当1ln ,02x a ⎛⎫⎛⎫∈-⎪ ⎪⎝⎭⎝⎭时,()0h x '>, ∴()211e x h x ax x =+-+在区间1ln ,02a ⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭上单调递增, 又∵()00h =, 从而当1ln ,02x a ⎛⎫⎛⎫∈-⎪ ⎪⎝⎭⎝⎭时,()0h x <,即2110e xax x +-+<,不合题意. 综上所述,实数a 的取值范围为1,2⎡⎫-+∞⎪⎢⎣⎭.22.解:(1)由sin 13πρθ⎛⎫-= ⎪⎝⎭,得sin coscos sin133ππρθθ⎛⎫-= ⎪⎝⎭,即112y x =,故直线l 20y -+=. 由1cos ,sin ,x r y r ϕϕ=+⎧⎨=⎩得1cos ,sin ,x r y r ϕϕ-=⎧⎨=⎩所以圆C 的普通方程为()2221x y r -+=.若直线l 与圆C 有公共点,则圆心()1,0到直线l 的距离d r =≤,即r ≥,故实数r 的取值范围为⎫+∞⎪⎪⎣⎭. (2)因为直线l '的倾斜角为3π,且过点()2,0D ,{衡水金卷}2018届河北省高考一模数学试题(文)及答案解析11 所以直线l '的参数方程为2,2tx y ⎧=+⎪⎪⎨⎪=⎪⎩(t 为参数),①圆C 的方程为()2214x y -+=,②联立①②,得230t t +-=,设,A B 两点对应的参数分别为12,t t ,则121t t +=-,123t t =-, 故12121113DB DAt t DA DB DA DB t t -+-===⋅.23.解:(1)依题意,得()13,,212,1,23, 1.x x f x x x x x ⎧-≤-⎪⎪⎪=+-<<⎨⎪≥⎪⎪⎩由()3f x ≤,得1,233x x ⎧≤-⎪⎨⎪-≤⎩或11,223x x ⎧-<<⎪⎨⎪+≤⎩或1,3 3.x x ≥⎧⎨≤⎩解得11x -≤≤.即不等式()3f x ≤的解集为{}11x x -≤≤.(2)由(1)知,()min 1322f x f ⎛⎫=-= ⎪⎝⎭,()2201822019g x x a x =--+-≥22018220191x a x a ---+=-, 则312a -≤, 解得1522a -≤≤,即实数a 的取值范围为15,22⎡⎤-⎢⎥⎣⎦.。
衡水金卷2018年高考模拟数学(文)试题(五)有答案
2018年普通高等学校招生全国统一考试模拟试题文数(五)第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设全集R U =,集合{}10A xx =+≥,101x B xx ⎧+⎫=<⎨⎬-⎩⎭,则图中阴影部分所表示人集合为A .{}1x x ≥- B .{}1x x <- C .{}11x x -≤≤- D .﹛1x x <-或1x ≥﹜ 2.已知复数123z i =+,2z a i =+(a R ∈,i 为虚数单位),若1218z z i =+,则a 的值为 A .12B .1C .2D .4 3.已知函数()f x 的图象关于原点对称,且在区间[]5,2--上单调递减,最小值为5,则()f x 在区间[]2,5上 A .单调递增,最大值为5 B .单调递减,最小值为5- C .单调递减,最大值为5- D .单调递减,最小值为54.已知直线231x +=与x ,y 轴的正半轴分别交于点A ,B ,与直线0x y +=交于点C ,若OC OA OB λμ=+u u u r u u u r u u u r(O 为坐标原点),则λ,μ的值分别为A .2λ=,1μ=-B .4λ=,3μ=- C. 2λ=-,3μ= D .1λ=-,2μ=5.已知122log 3a =,22log 3b =,1232c ⎛⎫= ⎪⎝⎭,32d e =,则A .d c a b >>>B .d b c a >>> C.c d a b >>> D .a c b d >>>6.已知0a >,0b >,则点(2P 在直线by x a=的右下方是双曲线22221x y a b -=的离心率e 的取值范围为)3,+∞的A .充要条件B .充分不必要条件 C.必要不充分条件 D .既不充分也不必要条件 7.已知α、β是两个不同的平面,给出下列四个条件:①存在一条直线a ,a α⊥,a β⊥;②存在一个平面γ,γα⊥,γβ⊥;③存在两条平行直线a 、b ,a α⊂,b β⊂,//a β,//b α;④存在两条异面直线a 、b ,a α⊂,b β⊂,//a β,//b α,则可以推出//αβ的是A .①③B .②④ C. ①④ D .②③ 8.已知直线2y =与函数()()tan 0,2f x x πωϕωϕ⎛⎫=+><⎪⎝⎭图象的相邻两个交点间的距离为6,点()1,3P 在函数()f x 的图像上,则函数()()12log g x f x =的单调递减区间为A .()()6,26k k k Z ππππ-+∈B .(),63k k k Z ππππ⎛⎫-+∈ ⎪⎝⎭C. ()11,63k k k Z ⎛⎫-+∈ ⎪⎝⎭D .()()61,26k k k Z -+∈ 9.在如图所求的程序框图中,若输出n 的值为4,则输入的x 的取值范围为A .13,84⎡⎤⎢⎥⎣⎦ B .[]3,13 C.[)9,33 D .913,84⎡⎫⎪⎢⎣⎭10.已知某几何体的三视图如图所求,则该几何体的表面积为A .29593714a ππ⎫-⎪⎪⎝⎭ B .295914a ππ⎫-⎪⎪⎝⎭C.29593744a ππ⎛⎫+⎪ ⎪⎝⎭ D .295937144a ππ⎛⎫- ⎪ ⎪⎝⎭11.甲、乙两人各自在400米长的直线形跑道上跑步,则在任一时刻两人在跑道上相距不超过50米的概率是 A .18 B .1136 C.1564D .14 12.已知定义在R 上的可导函数()f x 的导函数为()'fx ,满足()()'f x f x <,且()102f =,则不等式()102x f x e -<的解集为A .1,2⎛⎫-∞ ⎪⎝⎭ B .()0,+∞ C.1,2⎛⎫+∞ ⎪⎝⎭D .(),0-∞ 第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.已知函数()2log ,2,2,2,x x f x x x ≥⎧⎪=⎨+<⎪⎩则()()()3ff f -的值为 .14.已知命题:P x R ∀∈,()22log 0x x a ++>恒成立,命题[]0:2,2Q x ∃∈-,使得022xa ≤,若命题P Q ∧为真命题,则实数a 的取值范围为 .15.已知()222210x y a b a b +≤>>表示的区域为1D ,不等式组0,0,0,bx cy bc bx cy bc bx cy bc bx cy bc -+≥⎧⎪--≤⎪⎨+-≤⎪⎪++≥⎩表示的区域为2D ,其中()2220a b c c =+>,记1D 与2D 的公共区域为D ,且D 的面积S 为232234x y +=内切于区域D 的边界,则椭圆()2222:10x y C a b a b+=>>的离心率为 .16.我国南宋著名数学家秦九韶在他的著作《数书九章》卷五“田域类”里有一个题目:“问有沙田一段,有三斜,其小斜一十三里,中斜一十四里,大斜一十五里.里法三百步.欲知为田几何.”这道题讲的是有一个三角形沙田,三边分别为13里,14里,15里,假设1里按500米计算,则该三角形沙田外接圆的半径为 米.三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. 已知数列{}n a 满足11a =,134n n a a +=+,*n N ∈.(1)证明:数列{}2n a +是等比数列,并求数列{}n a 的通项公式; (2)设()3log 22n n n a b a +=+,求数列{}n b 的前n 项和n T .18. 现从某医院中随机抽取了七位医护人员的关爱患者考核分数(患者考核:10分制),用相关的特征量y 表示;医护专业知识考核分数(试卷考试:100分制),用相关的特征量x 表示,数据如下表: 特征量1 2 3 4 5 6 7 x98 88 96 91 90 92 96 y9.98.69.59.09.19.29.8(2)利用(1)中的线性回归方程,分析医护专业考核分数的变化对关爱患者考核分数的影响,并估计某医护人员的医护专业知识考核分数为95分时,他的关爱患者考核分数(精确到0.1);(3)现要从医护专业知识考核分数95分以下的医护人员中选派2人参加组建的“九寨沟灾后医护小分队”培训,求这两人中至少有一人考核分数在90分以下的概率.附:回归方程$$y bx a=+$中斜率和截距的最小二乘法估计公式分别为()()()121ni iiniix x y ybx x==--=-∑∑$,$$a y bx=-$.19. 如图,在四棱锥P ABCD-中,底面ABCD是边长为a的菱形,PD⊥平面ABCD,60BAD∠=o,2PD a=,O为AC与BD的交点,E为棱PB上一点.(1)证明:平面EAC⊥平面PBD;(2)若//PD平面EAC,三棱锥P EAD-的体积为183a的值.20. 已知动圆C恒过点1,02⎛⎫⎪⎝⎭,且与直线12x=-相切.(1)求圆心C的轨迹方程;(2)若过点()3,0P的直线交轨迹C于A,B两点,直线OA,OB(O为坐标原点)分别交直线3x=-于点M,N,证明:以MN为直径的圆被x轴截得的弦长为定值.21. 已知函数()()322316f x x a x ax=-++,a R∈.(1)若对于任意的()0,x∈+∞,()()6lnf x f x x+-≥恒成立,求实数a的取值范围;(2)若1a>,设函数()f x在区间[]1,2上的最大值、最小值分别为()M a、()m a,记()()()h a M a m a=-,求()h a的最小值.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22.选修4-4:坐标系与参数方程在平面直角坐标系xOy中,已知直线11,2:322x tly⎧=--⎪⎪⎨⎪=+⎪⎩(t为参数),曲线12cos,:22sinxCyϕϕ=+⎧⎨=-⎩(ϕ为参数),以原点O为极点,x轴的正半轴为极轴建立坐标系.(1)写出直线l的普通方程与曲线C的极坐标方程;(2)设直线l与曲线C交于A,B两点,求ABC∆的面积.23.选修4-5:不等式选讲已知函数()21f x x x=+--.(1)求不等式()2f x≥的解集;(2)记()f x 的最大值为k ,证明:对任意的正数a ,b ,c ,当a b c k ++=a b c k 成立.试卷答案一、选择题1-5:BCCCA 6-10:ACDDA 11、12:CB二、填空题13.2log 3 14.5,24⎛⎤⎥⎝⎦15.12或32 16.4062.5 三、解答题17.解:(1)由134n n a a +=+, 得()1232n n a a ++=+, 即1232n n a a ++=+,且123a +=,所以数列{}2n a +是以3为首项,3为公比的等比数列.所以12333n nn a -+=⨯=,故数列{}n a 的通项公式为()*32n n a n N --∈.(2)由(1)知,23nn a +=,所以3log 333n n n n nb ==. 所以1231231233333n n nnT b b b b =++++=++++L L .① 234111231333333n n n n nT +-=+++++L .② ①-②,得234211111333333n n T =+++++L 13n n+=11111331113223313nn n n n n ++⎡⎤⎛⎫-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦=-=--⋅-, 所以332323044343443n n n nn n T +=-=-⋅⋅⋅. 故数列{}n b 的前n 项和323443n nn T +=-⋅. 18.解:(1)由题得,98889691909296937x ++++++==.9.98.69.59.09.19.29.89.37y ++++++==.()()()()198939.99.3niii x x y y =--=-⨯-+∑()()()()88938.69.396939.59.3-⨯-+-⨯-+ ()()()()91939.09.390939.19.3-⨯-+-⨯-+ ()()()()92939.29.396939.89.39.9-⨯-+-⨯-=()()()()22221989388939693ni i x x=-=-+-+-∑()()()()2222919390939293969382+-+-+-+-=.所以()()()1219.90.1282niii nii x x y y bx x ==--==≈-∑∑$. $9.30.1293 1.86a=-⨯=-. 所以线性回归方程为$0.12 1.86y x =-.(2)由于0.120b=>$. 所以随着医护专业知识的提高,个人的关爱患者的心态会变得更温和,耐心,因此关爱患者的考核分数也会稳步提高.当95x =时,$0.1295 1.869.5y =⨯-≈.(3)由于95分以下的分数有88,90,91,92,共4个,则从中任选两个的所有情况有()88,90,()88,91,()88,92,()90,91,()90,92,()91,92,共6种.则这两个人中至少有一个分数在90分以下的情况有()88,90,()88,91,()88,92,共3种.故选派的这两个人中至少有一人考核分数在90分以下的概率3162P ==. 19.解:(1)因为PD ⊥平面ABCD ,AC ⊂平面ABCD ,所以PD AC ⊥. 又四边形ABCD 为菱形,所以AC BD ⊥, 又PD BD D =I , 所以AC ⊥平面PBD . 而AC ⊂平面EAC , 所以平面EAC ⊥平面PBD .(2)因为//PD 平面EAC ,平面EAC I 平面PBD OE =. 所以//PD OE .又O 为AC 与BD 的交点, 所以O 是BD 的中点,所以E 是PB 的中点. 因为四边形ABCD 是菱形,且60BAD ∠=o , 所以取AD 的中点H ,连接BH ,可知BH AD ⊥,又因为PD ⊥平面ABCD , 所以PD BH ⊥. 又PD PD D =I , 所以BH ⊥平面PAD . 由于AB a =,所以32BH a =. 因此E 到平面PAD 的距离113322d BH ===, 所以3111332183332P EAD E PAD PAD V V S d a a --∆==⨯=⨯⨯⨯==. 解得6a =,故a 的值为6. 20.解:(1)由题意得,点C 与点1,02⎛⎫⎪⎝⎭的距离始终等于点C 到直线12x =-的距离.因此由抛物线的定义,可知圆心C 的轨迹为以1,02⎛⎫⎪⎝⎭为焦点,12x =-为准线的抛物线.所以122p =,即1p =. 所以圆心C 的轨迹方程为22y x =.(2)由圆心C 的轨迹方程为22y x =,可设()2112,2A t t ,()2222,2B t t ,()120t t ≠, 则()21323,2PA t t =-u u u r,()22223,2PB t t =-u u u r,由A ,P ,B 三点花线,可知()()2212232322320t t t t -⋅--⋅=,即()()()()22122231122312123223230230230t t t t t t t t t t t t t t t t --+=⇒-+-=⇒+-=.因为12t t ≠,所以1232t t =-. 又依题得,直线OA 的方程为11y x t =. 令3x =-,得133,M t ⎛⎫--⎪⎝⎭. 同理可知133,N t ⎛⎫--⎪⎝⎭. 因此以MN 为直径的圆的方程可设为()()1233330x x y y t t ⎛⎫⎛⎫+++++= ⎪⎪⎝⎭⎝⎭. 化简得()22121233930x y y t t t t ⎛⎫+++++=⎪⎝⎭,即()()212212123930t t x y y t t t t +++++=. 将1232t t =-代入上式,可知()()22123260x y t t y ++-+-=, 在上式中令0y =,可知136x =-236x =-因此以MN 为直径的圆被x 轴截得的弦长为12363626x x -=-=. 21.解:(1)因为()()()2616ln f x f x a x x +-=-+≥对任意的()0,x ∈+∞恒成立,所以()2ln 1xa x -+≥. 令()2ln x g x x =,0x >,则()'212ln x g x x -=. 令()'0g x =,则x e =当(x e ∈时,()'0g x >,()g x 在区间(e 上单调递增;当),x e ∈+∞时,()'0g x <,()g x 在区间(),e +∞上单调递减.所以()max 12g x g e e ==,所以()112a e -+≥,即112a e≤--, 所以实数a 的取值范围为1,12e ⎛⎤-∞--⎥⎝⎦. (2)因为()()322316f x x a x ax =-++, 所以()131f a =-,()24f =. 所以()()()()'2661661f x x a x a x x a =-++=--.令()'0fx =,则1x =或a .①若513a <≤, 当()1,x a ∈时,()'0f x <,()f x 在区间()1,a 上单调递减;当(),2x a ∈时,()'0fx >,()f x 在区间(),2a 上单调递增.又因为()()12f f ≤,所以()()24M a f -=,()()323m a f a a a ==-+, 所以()()()()32324334h a M a m a a a a a =-=--+=-+. 因为()()'236320h a a a a a =-=-<,所以()h a 在区间51,3⎛⎤⎥⎝⎦上单调递减,所以当51,3a ⎛⎤∈ ⎥⎝⎦时,()h a 的最小值为58327h ⎛⎫= ⎪⎝⎭.②若523a <<, 当()1,x a ∈时,()'0f x <,()f x 在区间()1,a 上单调递减;当(),2x a ∈时,()'0fx >,()f x 在区间(),2a 上单调递增.又因为()()12f f >,所以()()131M a f a =--,()()323m a f a a a -=-+. 因为()()2'2363310h a a a a =-+=->, 所以()h a 在区间5,23⎛⎫ ⎪⎝⎭上单调递增.所以当5,23a ⎛⎫∈ ⎪⎝⎭时,()58327h a h ⎛⎫>= ⎪⎝⎭. ③若2a ≥, 当()1,2x ∈时,()'0fx <,()f x 在区间()1,2上单调递减,所以()()131M a f a ==-,()()24m a f -=. 所以()()()31435h a M a m a a a =-=--=-, 所以()h a 在区间[)2,+∞上的最小值为()21h =. 综上所述,()h a 的最小值为827. 22.解:(1)将直线11,2:32x t l y ⎧=--⎪⎪⎨⎪=+⎪⎩消去参数t ,3320x y ++=,故直线l 3320x y ++=. 将曲线12cos ,:22sin x C y ϕϕ=+⎧⎨=-⎩化为普通方程为()()22124x y -+-=,即222410x y x y +--+=,将222x y ρ=+,cos x ρθ=,sin y ρθ=代入上式, 可得曲线C 的极坐标方程为22cos 4sin 10ρρθρθ--+=.(2)由(1)可知,圆心()1,2C 到直线3320l x y ++=的距离为()23232331d ++-==+.则222432AB R d =-=-=(R 为圆C 半径).所以1123322ABC S AB d ∆=⨯=⨯=. 故所求ABC ∆面积为ABC ∆323.解:(1)由题知,()3,2,21,21,3. 1.x f x x x x -<-⎧⎪=+-≤≤⎨⎪>⎩所以()2f x ≥,即32,2x -≥⎧⎨<-⎩或212,21x x +≥⎧⎨-≤≤⎩或32,1.x ≥⎧⎨>⎩解得12x ≥.故原不等式的解集为1,2⎡⎫+∞⎪⎢⎣⎭.(2)因为()21213f x x x x x =+--≤+-+=(当且仅当()()210x x +-≥时取等号), 所以3k =,因此有3a b c ++=. 111a b c a b c =⋅⋅⋅111333322222a b c a b c +++++++≤++===(当且仅当1a b c ===时取等号), a b c k ≤得证.。
衡水金卷2018年高考模拟数学(文)试题(二)-有答案
2018年普通高等学校招生全国统一考试模拟试题(衡水金卷调研卷)文数二第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}3,2,1,0,1,2,3A =---,集合{}1,0,1,3A =-,集合{}3,2,1,3B =---,则()U C A B ⋃=( ) A .{}3,2,1-- B .{}2,1,1-- C .{}2 D .{}1,2,3-2. 已知复数z 满足()20181z i i +=(i 是虚数单位),则复数z 在复平面内对应的点所在象限为( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限3.函数()()ln 21f x x =++的定义域为( )A .1,22⎡⎤-⎢⎥⎣⎦B .1,22⎡⎫-⎪⎢⎣⎭C .1,22⎛⎤- ⎥⎝⎦D .1,22⎛⎫- ⎪⎝⎭4.三世纪中期,魏晋时期的数学家刘徽首创割圆术,为计算圆周率建立了严密的理论和完善的算法.所谓割圆术,就是不断倍增圆内接正多边形的边数求出圆周率的方法.如图是刘徽利用正六边形计算圆周率时所画的示意图,现项园中随机投掷一个点,则该点落在正六边形内的概率为( )A B C5.已知双曲线()222210,0x y a b a b-=>>的一条渐近线与直线4310x y ++=垂直,且焦点在圆()22126x y +-=上,则该双曲线的标准方程为( )A .221916x y -= B .221169x y -= C .22134x y -= D .22143x y -= 6.执行如图所示的程序框图,若输入的0.05t =,则输出的n 为( )A .3B .4C .5D .67.已知数列{}n a 的前n 项和为n S ,1133,2n n a a S ++==,则5a =( ) A .33 B .43 C .53 D .638.已知将函数()()sin 206f x x πωω⎛⎫=+> ⎪⎝⎭的图象向左平移3π个单位长度得到函数()g x 的图象,若函数()g x 图象的两条相邻的对称轴间的距离为2π,则函数()g x 的—个对称中心为( ) A .,06π⎛⎫- ⎪⎝⎭ B .,06π⎛⎫ ⎪⎝⎭ C .,012π⎛⎫- ⎪⎝⎭ D .,012π⎛⎫ ⎪⎝⎭9.榫卯是在两个木构件上所采用的一中凹凸结合的连接方式,凸出部分叫榫,凹进部分叫卯,榫和卯咬合,起到连接作用,代表建筑有:北京的紫禁城、天坛祈年殿、山西悬空寺等,如图所示是一种榫卯的三视图,其表面积为( )A .812π+B .816π+C .912π+D .916π+10.已知实数,x y 满足约束条件0,20,3,x y x y x -≥⎧⎪+-≥⎨⎪≤⎩当且仅当1x y ==时,目标函数z kx y =+取大值,则实数k 的取值范围是( )A .(),1-∞B .(),1-∞-C .()1,-+∞D .()1,+∞11.已知0a >,命题:p 函数()()2lg 23f x ax x =++的值域为R ,命题:q 函数()ag x x x=+在区间()1,+∞内单调递增.若p q ⌝∧是真命题,则实数a 的取值范围是( )A .(],0-∞B .1,3⎛⎤-∞ ⎥⎝⎦C .10,3⎛⎤ ⎥⎝⎦D .1,13⎛⎤⎥⎝⎦12.若函数()ln ,0x x f x x >⎧⎪=⎨≤⎪⎩与()1g x x a =++的图像上存在关于y 轴对称的点,则实数a 的取值范围是( )A .RB .(],e -∞-C .[),e +∞D .∅第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.已知在ABC ∆中,D 为BC 边上的点,20BD CD +=,若(),AD mAB nAC m n R =+∈,则n = .14.已知焦点在x 轴上的椭圆222121x y m m +=+20y -+=上,则椭圆的离心率为 .15.在锐角ABC ∆中,角,,A B C 所对的边分别为,,a b c ,若()sin cos sin 1cos C A B C =-,且,3A b π==,则c = .16.如图,在矩形ABCD 中,2AD =,E 为AB 边上的点,项将ADE ∆沿DE 翻折至A DE '∆,使得点A '在平面EBCD 上的投影在CD 上,且直线A D '与平面EBCD 所成角为30︒,则线段AE 的长为 .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.已知等差数列{}n a 的前n 项和为n S ,15965,3a a a S =+=. (1)求数列{}n a 的通项公式;(2)若数列{}n b 满足11n n n b a a ++=,且16b a =,求数列1n b ⎧⎫⎨⎬⎩⎭的前n 项和n T .18.如图,四棱锥P ABCD -的底面ABCD 是边长为2的正方形,平面PAB ⊥平面ABCD ,点E 是PD 的中点,棱PA 与平面BCE 交于点F .(1)求证://AD EF ;(2)若PAB ∆是正三角形,求三棱锥P BEF -的体积.19.某市统计局就某地居民的收入调查了10000人,并根据所得数据画出样本的频率分布直方图(每个分组包括左端点,不包括右端点,如第一组表示收入在[)1000,1500).(1)求居民收入在[)3000,3500的频率;(2)根据频率分布直方图算出样本数据的中位数及样本数据的平均数;(3)为了分析居民的收人与年龄、职业等方面的关系,必须按月收入再从这10000人中按分层抽样方法抽出100人作进一步分析,则月收入在[)2500,3000内应抽取多少人?20.已知点F 为抛物线()2:20C y px p =>的焦点,过F 的直线l 交抛物线于,A B 两点. (1)若直线l 的斜率为1,8AB =,求抛物线C 的方程;(2)若抛物线C 的准线与x 轴交于点()1,0P -,(:2:1APF BPF S S ∆∆=,求PA PB ⋅的值. 21.已知函数()2ln ,f x x x ax a R =++∈.(1)当1a =时,求曲线()f x 在1x =处的切线方程;(2)若()1212,x x x x <是函数()f x 的导函数()f x '的两个零点,当(),3a ∈-∞-时,求证:()()123ln 24f x f x ->-. 请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22.选修4-4:坐标系与参数方程在平面直角坐标系xOy 中,已知曲线1C 的参数方程为2143x t y t =-⎧⎨=-+⎩(t 为参数),以原点O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线2C 的极坐标方程为4πρθ⎛⎫=- ⎪⎝⎭.(1)求曲线1C 的普通方程与2C 的直角坐标方程; (2)判断曲线12,C C 是否相交,若相交,求出相交弦长. 23.选修4-5:不等式选讲 已知函数()212f x x x =-++. (1)求不等式()0f x >的解集;(2)若对任意的[),x m ∈+∞,都有()f x x m ≤-成立,求实数m 的取值范围.试卷答案一、选择题1-5: CBDAB 6-10: CCDBB 11、12:DC二、填空题13.1314. 23三、解答题17. 解:(1)设等差数列{}n a 的公差为d , 由15965,3a a a S =+=, 得 ()()6535458652d d d ⨯+++=⨯+, 解得2d =.所以()()()*1152123n a a n d n n n N =+-=+-=+∈. (2)由(1)得,1626315b a ==⨯+=. 又因为11n n n b a a ++=,所以当2n ≥时,()()12321n n n b a a n n -==++ 当1n =时,15315b =⨯=,符合上式, 所以()()2321n b n n =++. 所以()()11111232122123n b n n n n ⎛⎫==- ⎪++++⎝⎭. 所以1111111235572123n T n n ⎛⎫=-+-++- ⎪++⎝⎭()1112323323n n n ⎛⎫=-= ⎪++⎝⎭. 18. 解:(1)因为底面ABCD 是边长为2的正方形, 所以//BC AD .又因为BC ⊄平面PAD ,AD ⊂平面PAD , 所以//BC 平面PAD .又因为,,,B C E F 四点共面,且平面BCEF ⋂平面PAD EF =,所以//BC EF .又因为//BC AD ,所以//AD EF . (2)因为//AD EF ,点E 是PD 的中点, 所以点F 为PA 的中点,112EF AD ==. 又因为平面PAB ⊥平面ABCD ,平面PAB ⋂平面,ABCD AB AD AB =⊥, 所以AD ⊥平面PAB ,所以EF ⊥平面PAB . 又因为PAB ∆是正三角形, 所以2PA PB AB ===,所以12PBF PBA S S ∆∆==又1EF =,所以113P BEF B PEF V V --===故三棱锥P BEF -. 19.解:(1)由题知,月收入在[)3000,3500的频率为0.00035000.15⨯=.(2)从左数第一组的频率为0.00025000.1⨯=,第二组的频率为0.00045000.2⨯=, 第三组的频率为0.00055000.25⨯=, ∴中位数在第三组, 设中位数为2000x +,则0.00050.50.10.2x ⨯=--,解得400x =, ∴中位数为2400.由12500.117500.222500.2527500.2532500.1537500.052400⨯+⨯+⨯+⨯+⨯+⨯=, 得样本数据的平均数为2400.(3)月收入在[)2500,3000的频数为0.25100002500⨯=(人), ∵抽取的样本容量为100, ∴抽取的比例为100110000100=, ∴月收入在[)2500,3000内应抽取的人数为1250025100⨯=(人). 20.解:(1)由题意知,直线l 的方程为2p y x =-. 联立2,22,p y x y px ⎧=-⎪⎨⎪=⎩得22304p x px -+=. 设,A B 两点的坐标分别为()(),,,A A B B x y x y , 则3A B x x p +=.由抛物线的性质,可得4822A B A B p pAB FA FB x x x x p p =+=+++=++==, 解得2p =,所以抛物线C 的方程为24y x =.(2)由题意,得()1,0F ,抛物线2:4C y x =, 设直线l 的方程为1x my =+,()()1122,,,A x y B x y , 联立21,4,x my y x =+⎧⎨=⎩得2440y my --=.所以12124,4,y y m y y +=⎧⎨=-⎩①因为(:2:1APF BPF S S ∆∆=,所以2AF BF=因为,,A F B 三点共线,且,AF FB 方向相同, 所以()23AF FB =-,所以()(()11221,231,x y x y --=-, 所以)122y y =,代入①,得))222314,2 4.y m y⎧=⎪⎨=-⎪⎩解得212m =, 又因为()1,0P -,所以()()11221,,1,PA x y PB x y =+=+, 所以()()11221,1,PA PB x y x y ⋅=+⋅+()1212121x x x x y y =++++()()()1212111114my my my my =+++++++- ()212122m y y m y y =++2224842m m m =-+==.21.解:(1)当1a =-时,()2ln f x x x x =+-,()121f x x x'=+-, 所以()1ln1110f =+-=,()11212f '=+-=. 所以曲线()f x 在1x =处的切线方程为()21y x =-,即220x y --=.(2)由题得,()()212120x ax f x x a x x x++'=++=>.因为12,x x 是导函数()f x '的两个零点, 所以12,x x 是方程210ax ax ++=的两根, 故121210,22a x x x x +=->=. 令()221g x x ax =++, 因为(),3a ∈-∞-,所以13022a g +⎛⎫=< ⎪⎝⎭,()130g a =+<,所以()1210,,1,2x x ⎛⎫∈∈+∞ ⎪⎝⎭,且22112221,21ax x ax x =--=--, 所以()()()()()2222111212121222ln ln x x f x f x x x ax ax x x x x -=+-+-=--+, 又因为1212x x =,所以1212x x =,所以()()()()2212121221ln 2,1,4f x f x x x x x -=--∈+∞, 令()2222,t x =∈+∞,()()()121ln 22t h t f x f x t t=-=--. 因为()()22211110222t h t t t t -'=+-=>, 所以()h t 在区间()2,+∞内单调递增, 所以()()32ln 24h t h >=-, 即()()123ln 24f x f x ->-. 22.解:(1)由题知,将曲线1C 的参数方程消去参数t , 可得曲线1C 的普通方程为210x y +-=.由4πρθ⎛⎫=- ⎪⎝⎭,得()22cos sin ρρθρθ=+.将222x y ρ=+,cos ,sin x y ρθρθ==代入上式, 得2222x y x y +=+, 即()()22112x y -+-=.故曲线2C 的直角坐标方程为()()22112x y -+-=. (2)由(1)知,圆2C 的圆心为()1,1,半径R , 因为圆心到直线1C的距离d ==<, 所以曲线12,C C 相交,所以相交弦长为23.解:(1)当2x ≤-时,不等式转化为()()2120x x --++>,解得2x ≤-; 当122x -<<时,不等式转化为()()2120x x ---+>,解得123x -<<-; 当12x ≥时,不等式转化为()()2120x x --+>,解得3x >. 综上所述,不等式()0f x >的解集为{13x x <-或}3x >.(2)由(1)得,()3,2,131,2,213,,2x x f x x x x x ⎧⎪-+≤-⎪⎪=---<<⎨⎪⎪-≥⎪⎩作出其函数图象如图所示:令y x m =-,若对任意的[),x m ∈+∞,都有()f x x m ≤-成立,即函数()f x 的图象在直线y x m =-的下方或在直线y x m =-上. 当2m ≤-时,30m -+≤,无解; 当122m -<<时,310m --≤,解得1132m -≤<; 当12m ≥时,30m -≤,解得132m ≤≤. 综上可知,当133m -≤≤时满足条件,故实数m 的取值范围是1,33⎡⎤-⎢⎥⎣⎦.。
衡水金卷2018届高三大联考word答案全数学(文)
12.已知 的内角 的对边分别是 ,且 ,若 ,则 的取值范围为( )
A. B. C. D.
第Ⅱ卷(共90分)
二、填空题(每题5分,满分20分,将答案填在答题纸上)
13.已知向量 , ,若 ,则 .
14.已知函数 ,若曲线 在点 处的切线经过圆 : 的圆心,则实数 的值为.
15.已知实数 满足约束条件 则 的取值范围为(用区间表示).
二、填空题
13.1 14. 15. 16.
三、解答题
17.解:(1)设数列 的公比为 ,
则 ,
又 ,
∴ , 或 , (舍).
∴ ,即 .
故 ( ).
(2)由(1)得, .
∴
.
18.解:(1)连接 交 于点 ,连接 .
在三棱柱 中,四边形 是平行四边形.
∴点 是 的中点.
∵点 为 的中点,
∴ .
(2)记 ,求数列 的前 项和 .
18.如图,在三棱柱 中, 平面 , , ,点 为 的中点.
(1)证明: 平面 ;
(2)求三棱锥 的体积.
19.随着资本市场的强势进入,互联网共享单车“忽如一夜春风来”,遍布了一二线城市的大街小巷.为了解共享单车在 市的使用情况,某调查机构借助网络进行了问卷调查,并从参与调查的网友中抽取了200人进行抽样分析,得到下表(单位:人):
A. B. C. D.
6.下列函数中,与函数 的定义域、单调性与奇偶性均一致的函数是( )
A. B.
C. D.
7.如图是一个空间几何体的正视图和俯视图,则它的侧视图为( )
A. B. C. D.
8.设 , , ,则 的大小关系为( )
A. B. C. D.
经典文档衡水金卷2018年普通高等学校招生全国统一考试模拟试题(压轴卷)文科数学(一)
2018 年普通高等学校招生全国统一考试模拟试题文科数学(一)本试卷共 4 页,23 题(含选考题)。
全卷满分150 分。
考试用时120 分钟。
第Ⅰ卷一、选择题:本题共12 小題,毎小题 5 分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合 A (x, y) y x ,B(x, y) y 2 ,则AI BA. 2B. 2,2C. ( 2,2) D, ( 2,2),(2,2)2.已知i为虚数单位,若复数复数为2z (a 2a 3) (a 3)i是纯虚数,则复数12a ii的共轭A.475 5i或3155iB.4755iC.3155iD.3155i3.在某次月考中,一名生物老师从他所任教的某班中抽取了甲、乙两组学生的生物成绩(每组恰好各10 人),并将获取的成绩制作成如图所示的茎叶图.观察茎叶图,下面说法错误的是A.甲组学生的生物成绩高分人数少于乙组B.甲组学生的生物成绩比乙组学生的生物成绩更稳定C.甲组学生与乙组学生的生物平均成绩相同D.甲组学生与乙组学生生物成绩的中位数相同4.已知双曲线C:2 2x y2 2 1(a 0,b 0)a b的渐近线与动曲线y (x 2) 3( R) 在第一象限内相交于一定点A,则双曲线 C 的离心率为A. 54B.53C. 2D.435.如图,在长方体ABCD -A1B1C1D1 中,点E,F 分别为B1C1,C1D1 的中点,则四棱锥A -B1FFD1 的正视图与侧视图分別为A.②,③B,④,② C. ②,① D. ②,④6.已知等差数列a n 的前孢项和为S n ,且a1 10, a2 a3 a4 a5 a6 20 ,则“S n取得最小值’的’一个充分不必要条件是A .n=5 或6 B.n=5 或6 或7 C.n=6 D.n=117.我国古代《九章算术》里,记载了一个例子:今有羡除,下广六尺,上广一丈,深三尺,末广八尺,无深,袤七尺,问积几何? 该问题中的羡除是如图所示的五面体ABCDEF ,其三个侧面皆为等腰梯形,两个底面为直角三角形,其中.AB=6 尺,CD=10 尺,EF=8 尺,AB ,CD 之间的距离为 3 尺,CD,EF’间的距离为7 尺,则异面直线DF‘与AB 所成的角的正弦值为A .9130130B.7130130C.97D.798.设3a log ,b ln 3,执行如图所示的程序框图,则输出的S 的值为2A .9+ln 3B.3-ln 3C.11D.1x x9.函数 f (x) 2 2 2的部分图象可能是10.将函数 f (x) 2cos x 的图象向右平移 6 个单位,再将所得图象上所有点的横坐标变为原来的1( 0) 倍,得到函数g(x)的图象,若函数g(x)在区间3( , )4 4上是增函效,则则的取值范围是A.2[ ,2]9B.2(0, ]9C.26 32[ , ]9 9D.2 26 14(0, ] U[ , ]9 9 311.已知函数2,x 1f (x) x22x ,x 1,若方程 2[ f ( x)] mf (x) 1 0(m R) 恰有 4 个不同的实根,则实数m 的取值范围为A,5(0, )2B.5(2, )2C. (2, )D.5( , )212.若过抛物线 2 2 ( 0)x py p 或2 2 ( 0)y px p 的焦点 F 的直与该抛物线交于A,B两点,则称线段AB 为该抛物线的焦点弦,此时有以下性质成立:1 1 2AF BF P。
衡水金卷2018年普通高等学校招生全国统一考试模拟试卷 分科综合卷 理科数学(五)
第 Ⅰ卷 一、选择题:本大题共 12 个小题,每小题 5 分,共 60 分.在每小题给出的四个选项中,只有一项 是符合题目要求的.
1. 已 知 全 集 U R , 集 合 A y y x 2 x 3, x R , 集 合 B y y x
y | y x 1 2, x R
2
y | y 2 ,
,
1 8 B y | y x , x 1,3 y | 0 y x 3
,
U
A y | y 2
8 U A B y | y 2 y | 0 y y | 0 y 2 ,故选 A. 3
5 2 i 6i , 故 p1 正 确 ; p2 : z i 2 i
p3 : 由 题 意 , 可 得
1 i 1 i
2 1 i
2 1 i 11
1 i , 其 共 轭 复 数 是 1 i , 故 p2 错 误 ;
2
p4 :若 z 表示复数 z 的共轭复数, z 表示复数 z 的模,则 zz z .
其中的真命题为( ) A. p1 , p3 【答案】B 【 解 析 】 p1 : 若 复 数 z 满 足 z i i 5 , z B. p1 , p4 C. p2 , p3 D. p2 , p4
a bi
1 i 2 2 2 则 a 0, b 1 , 故 p3 错误; p4 : 设 z a bi , 则 z a bi , 故 zz a b z , i , 1 i
河北省衡水市衡水金卷2018届高三大联考数学(文)试卷及答案
河北省衡水市衡水金卷2018届高三大联考数学(文)试题第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}2540M x x x =-+≤,{}0,1,2,3N =,则集合M N I 中元素的个数为( )A .1B .2C .3D .42.已知命题p :x ∀∈R ,()1220x -<,则命题p ⌝为( ) A .0x ∃∈R ,()12020x -> B .x ∀∈R ,()1210x -> C .x ∀∈R ,()1210x -≥ D .0x ∃∈R ,()12020x -≥ 3.已知复数5i2i 1z =-(i 为虚数单位),则复数z 在复平面内对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限4.已知双曲线C :()2221016x y a a -=>的一个焦点为()5,0,则双曲线C 的渐近线方程为( ) A .430x y ±= B .1690x y ±=C .40x =D .4312x y ±=5.2017年8月1日是中国人民解放军建军90周年,中国人民银行发行了以此为主题的金银纪念币.如图所示的是一枚8克圆形金质纪念币,直径22毫米,面额100元.为了测算图中军旗部分的面积,现向硬币内随机投掷100粒芝麻,已知恰有30粒芝麻落在军旗内,据此可估计军旗的面积大约是( )A .2726mm 5π B.2363mm 10π C .2363mm 5π D .2363mm 20π6.下列函数中,与函数122x x y =-的定义域、单调性与奇偶性均一致的函数是( )A .sin y x =B .2y x =C .1y x =D .()()2200x x y x x ⎧-≥⎪=⎨<⎪⎩7.如图是一个空间几何体的正视图和俯视图,则它的侧视图为( )A .B .C .D .8.设55log 4log 2a =-,2ln ln 33b =+,1lg5210c =,则a b c ,,的大小关系为( ) A .a b c << B .b c a << C .c a b << D .b a c << 9.执行如图所示的程序框图,则输出的S 值为( )A .1819 B .1920 C .2021 D .12010.将函数()2sin 43f x x ⎛⎫=-⎪⎝⎭π的图象向左平移6π个单位,再把所有点的横坐标伸长到原来的2倍,得到函数()y g x =的图象,则下列关于函数()y g x =的说法错误的是( ) A .最小正周期为π B .图象关于直线12x =π对称C .图象关于点,012⎛⎫⎪⎝⎭π对称 D .初相为3π11.抛物线有如下光学性质:由焦点射出的光线经抛物线反射后平行于抛物线的对称轴;反之,平行于抛物线对称轴的入射光线经抛物线发射后必经过抛物线的焦点.已知抛物线24y x =的焦点为F ,一平行于x 轴的光线从点()3,1M 射出,经过抛物线上的点A 反射后,再经抛物线上的另一点B 射出,则直线AB 的斜率为( ) A .43 B .43- C .43± D .169- 12.已知ABC ∆的内角A B C ,,的对边分别是a b c ,,,且()()222cos cos ab c a B b A abc +-⋅+=,若2a b +=,则c 的取值范围为( )A .()0,2B .[)1,2C .1,22⎡⎫⎪⎢⎣⎭D .(]1,2第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.已知向量sin ,cos 36a ⎛⎫= ⎪⎝⎭ππr ,(),1b k =r,若a b ∥r r ,则k = .14.已知函数()32f x x x =-,若曲线()f x 在点()()1,1f 处的切线经过圆C :()222x y a +-=的圆心,则实数a 的值为 .15.已知实数x y ,满足约束条件3,,60,x y x y +≤⎧⎪⎪≥⎨⎪≥⎪⎩ππ则()sin x y +的取值范围为 (用区间表示).16.在《九章算术》中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马.若四棱锥M ABCD -为阳马,侧棱MA ⊥底面ABCD ,且2MA BC AB ===,则该阳马的外接球与内切球表面积之和为 .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.在递增的等比数列{}n a 中,1632a a ⋅=,2518a a ⋅=,其中*n ∈N .(1)求数列{}n a 的通项公式;(2)记21log n n n b a a +=+,求数列{}n b 的前n 项和n T .18.如图,在三棱柱111ABC A B C -中,1AA ⊥平面ABC ,AC BC ⊥,12AC BC CC ===,点D 为AB 的中点.(1)证明:1AC ∥平面1B CD ; (2)求三棱锥11A CDB -的体积.19.随着资本市场的强势进入,互联网共享单车“忽如一夜春风来”,遍布了一二线城市的大街小巷.为了解共享单车在A 市的使用情况,某调查机构借助网络进行了问卷调查,并从参与调查的网友中抽取了200人进行抽样分析,得到下表(单位:人):(1)根据以上数据,能否在犯错误的概率不超过0.15的前提下认为A 市使用共享单车情况与年龄有关?(2)现从所抽取的30岁以上的网友中利用分层抽样的方法再抽取5人. (i )分别求这5人中经常使用、偶尔或不用共享单车的人数;(ii )从这5人中,再随机选出2人赠送一件礼品,求选出的2人中至少有1人经常使用共享单车的概率.参考公式:()()()()()22n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.参考数据:()20P K k ≥0.15 0.10 0.05 0.025 0.010 0k2.0722.7063.8415.0246.63520.已知椭圆C :()222210x y a b a b+=>>过点()2,12,直线l :20kx y -+=与椭圆C 交于A B ,两点. (1)求椭圆C 的标准方程;(2)是否存在实数k ,使得OA OB OA OB +=-uu r uu u r uu r uu u r(其中O 为坐标原点)成立?若存在,求出实数k 的值;若不存在,请说明理由.21.已知函数()2ln 23f x x x =-+,()()()4ln 0g x f x x a x a '=++≠. (1)求函数()f x 的单调区间;(2)若关于x 的方程()g x a =有实数根,求实数a 的取值范围.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22.选修4-4:坐标系与参数方程已知曲线C 的参数方程为2cos sin x y =⎧⎨=⎩αα(α为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,直线lsin 34⎛⎫+= ⎪⎝⎭πθ. (1)求曲线C 的普通方程及直线l 的直角坐标方程; (2)求曲线C 上的点到直线l 的距离的最大值. 23.选修4-5:不等式选讲 已知函数()211f x x x =-++. (1)解不等式()3f x ≤;(2)记函数()()1g x f x x =++的值域为M ,若t M ∈,试证明:223t t -≥.衡水金卷2018届全国高三大联考文数参考答案及评分细则一、选择题1-5:CDDAB 6-10:DAABC 11、12:BB 二、填空题13.1 14.2- 15.1,12⎡⎤⎢⎥⎣⎦16.36-π 三、解答题17.解:(1)设数列{}n a 的公比为q ,则251632a a a a ⋅=⋅=, 又2518a a +=,∴22a =,516a =或216a =,52a =(舍). ∴3528a q a ==,即2q =. 故2122n n n a a q--==(*n ∈N ).(2)由(1)得,12n n b n -=+.∴12n n T b b b =+++L()()211222123n n -=+++++++++L L()112122n n n +-=+- 2212nn n +=-+.18.解:(1)连接1BC 交1B C 于点O ,连接OD .在三棱柱111ABC A B C -中,四边形11BCC B 是平行四边形. ∴点O 是1BC 的中点. ∵点D 为AB 的中点, ∴1OD AC ∥.又OD ⊂平面1B CD ,1AC ⊄平面1B CD ,∴1AC ∥平面1B CD .(2)∵AC BC =,AD BD =, ∴CD AB ⊥.在三棱柱111ABC A B C -中,由1AA ⊥平面ABC ,得平面11ABB A ⊥平面ABC . 又平面11ABB A I 平面ABC AB =. ∴CD ⊥平面11ABB A .∴点C 到平面11A DB 的距离为CD ,且sin 4CD AC ==π∴11111113A CDB C A DB A DB V V S CD --∆==⨯1111132A B AA CD =⨯⨯⨯⨯=14263⨯=. 19.解:(1)由列联表可知,()2220070406030 2.19813070100100K ⨯⨯-⨯=≈⨯⨯⨯.因为2.198 2.072>,所以能在犯错误的概率不超过0.15的前提下认为A 市使用共享单车情况与年龄有关. (2)(i )依题意可知,所抽取的5名30岁以上的网友中,经常使用共享单车的有6053100⨯=(人), 偶尔或不用共享单车的有4052100⨯=(人).(ii )设这5人中,经常使用共享单车的3人分别为a b c ,,;偶尔或不用共享单车的2人分别为d e ,.则从5人中选出2人的所有可能结果为(),a b ,(),a c ,(),a d ,(),a e ,(),b c ,(),b d ,(),b e ,(),c d ,(),c e ,(),d e ,共10种.其中没有1人经常使用共享单车的可能结果为(),d e ,共1种.故选出的2人中至少有1人经常使用共享单车的概率1911010P =-=. 20.解:(1)依题意,得22222211,,2,a b caa b c ⎧+=⎪⎪⎪=⎨⎪⎪=+⎪⎩解得24a =,22b =,22c =,故椭圆C 的标准方程为22142x y +=. (2)假设存在符合条件的实数k .依题意,联立方程222,24,y kx x y =+⎧⎨+=⎩消去y 并整理,得()2212840k xkx +++=.则()226416120k k∆=-+>,即2k >或2k <-. 设()11,A x y ,()22,B x y ,则122812k x x k +=-+,122412x x k=+. 由OA OB OA OB +=-uu r uu u r uu r uu u r ,得0OA OB ⋅=uu r uu u r.∴12120x x y y +=.∴()()1212220x x kx kx +++=. 即()()212121240kx xk x x ++++=.∴()22224116401212k k k k+-+=++. 即2284012k k -=+. 即22k =,即k =故存在实数k =OA OB OA OB +=-uu r uu u r uu r uu u r成立.21.解:(1)依题意,得()21144x f x x x x -'=-=()()1212x x x+-=,()0,x ∈+∞. 令()0f x '>,即120x ->. 解得102x <<; 令()0f x '<,即120x -<. 解得12x >. 故函数()f x 的单调递增区间为10,2⎛⎫ ⎪⎝⎭,单调递减区间为1,2⎛⎫+∞ ⎪⎝⎭. (2)由题得,()()4ln g x f x x a x '=++=1ln a x x+. 依题意,方程1ln 0a x a x +-=有实数根, 即函数()1ln h x a x a x=+-存在零点.又()2211a ax h x x x x -'=-+=.令()0h x '=,得1x a=.当0a <时,()0h x '<.即函数()h x 在区间()0,+∞上单调递减,而()110h a =->,111111e 1a ah a a a e --⎛⎫⎛⎫=+-- ⎪ ⎪⎝⎭⎝⎭1111110e e a-=-<-<.所以函数()h x 存在零点;当0a >时,()h x ',()h x 随x 的变化情况如下表:所以11ln ln h a a a a a a a ⎛⎫=+-=- ⎪⎝⎭为函数()h x 的极小值,也是最小值. 当10h a ⎛⎫> ⎪⎝⎭,即01a <<时,函数()h x 没有零点; 当10h a ⎛⎫≤⎪⎝⎭,即1a ≥时,注意到()110h a =-≤, ()11e 0e eh a a =+-=>, 所以函数()h x 存在零点.综上所述,当()[),01,a ∈-∞+∞U 时,方程()g x a =有实数根.22.解:(1)由曲线C 的参数方程2cos sin x y =⎧⎨=⎩αα(α为参数),得曲线C 的普通方程为2214x y +=. 2sin 34⎛⎫+= ⎪⎝⎭πρθ, 得()sin cos 3+=ρθθ,即3x y +=.∴直线l 的普通方程为30x y +-=.(2)设曲线C 上的一点为()2cos ,sin αα,则该点到直线l的距离d ==(其中tan 2=ϕ).当()sin 1+=-αϕ时,max d ==. 即曲线C 上的点到直线l. 23.解:(1)依题意,得()3,1,12,1,213,.2x x f x x x x x ⎧⎪-≤-⎪⎪=--<<⎨⎪⎪≥⎪⎩ 则不等式()3f x ≤即为1,33x x ≤-⎧⎨-≤⎩或11,223x x ⎧-<<⎪⎨⎪-≤⎩或1,23 3.x x ⎧≥⎪⎨⎪≤⎩ 解得11x -≤≤.故原不等式的解集为{}11x x -≤≤. (2)由题得,()()121g x f x x x =++=-+2221223x x x +≥---=, 当且仅当()()21220x x -+≤.即112x -≤≤时取等号. ∴[)3,M =+∞.∴()()22331t t t t --=-+. ∵t M ∈,∴30t -≥,10t +>. ∴()()310t t -+≥. ∴223t t -≥.。
衡水金卷高考模拟卷(三)数学(文)试题Word版含答案
衡水金卷高考模拟卷(三)数学(文)试题Word版含答案2018年普通高等学校招生全国统一考试模拟试题文数(三)第Ⅰ卷一、选择题:本大题共12个小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.)A2.)A.1 D.33.)A.4 B.5 C.3 D.24.)A5.)ABCD6.)A .80B .96C .112D .120 7.已知函数()cos 26f x x π⎛⎫=-⎪⎝⎭,将函数()f x 的图象向左平移(0)ϕϕ>个单位后,得到的图象对应的函数()g x 为奇函数,则ϕ的最小值为( )A .6π B .56π C .3πD .23π8.《九章算术》中将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为“阳马”,将四个面都为直角三角形的四面体称之为“鳖臑”.在如图所示的阳马P ABCD -中,侧棱PD ⊥底面ABCD ,从A ,B ,C ,D 四点中任取三点和顶点P 所形成的四面体中,任取两个四面体,则其中一个四面体为鳖臑的概率为( )A .14 B .23 C .35 D .3109.如图,AB 为经过抛物线22(0)y px p =>焦点F 的弦,点A ,B 在直线2px =-上的射影分别为1A ,1B ,且113AA BB =,则直线AB 的倾斜角为( )A .6π B .4π C .3πD .512π10.一个几何体的三视图如图所示,且该几何体的表面积为3242π++,则图中的x =( )A .1B .2C .32D .2211.已知数列{}n a 满足2*1232()n n a a a a n N ⋅⋅⋅=∈,且对任意的*n N ∈都有12111nt a a a ++⋅⋅⋅+<,则t 的取值范围为( ) A .1,3⎛⎫+∞ ⎪⎝⎭ B .1,3⎡⎫+∞⎪⎢⎣⎭ C .2,3⎛⎫+∞⎪⎝⎭ D .2,3⎡⎫+∞⎪⎢⎣⎭12.若存在1,x e e⎡⎤∈⎢⎥⎣⎦,不等式22ln 30x x x mx +-+≥成立,则实数m 的最大值为( )A .132e e +- B .32e e++ C .4 D .21e - 第Ⅱ卷二、填空题:本题共4小题,每小题5分.13.已知{}n a 是等差数列,n S 是其数列的前n 项和,且4103S =-,1221a a +=,则3a = .14.已知圆C 的方程为22(2)(1)1x y ++-=,则圆上的点到直线0x y -=的距离的最小值为 .15.观察三角形数组,可以推测:该数组第八行的和为 .16.已知双曲线1C :2212x y -=,曲线2C :1y x =+,P 是平面内一点,若存在过点P 的直线与1C ,2C 都有公共点,则称点P 为“差型点”.下面有4个结论: ①曲线1C 的焦点为“差型点”; ②曲线1C 与2C 有公共点;③直线y kx =与曲线2C 有公共点,则1k >; ④原点不是“差型点”.其中正确结论的个数是 .三、解答题:解答应写出文字说明、证明过程或演算步骤.17.已知ABC ∆的外接圆半径为2,内角A ,B ,C 的对边分别为a ,b ,c ,且2b =. (1)若2cos cos cos a A c B b C =+,求角C ; (2)若B 为锐角,3a c +=,求ABC ∆的面积.18.已知某地区中小学生人数和近视情况如图1和图2所示.为了解该地区中小学生的近视形成原因,用分层抽样的方法抽取2%的学生作为样本进行调查.(1)求样本容量和抽取的高中生近视人数分别是多少?(2)在抽取的n 名高中生中,平均每天学习时间超过9小时的人数为310n,其中有12名学生近视,请完成高中生平均每天学习时间与近视的列联表:平均学习时间不超过9小时平均学习时间超过9小时 总计 不近视 近视 总计(3)根据(2)中的列联表,判断是否有95%的把握认为高中生平均每天学习时间与近视有关?附:22()()()()()n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.20()P K k ≥0.10 0.05 0.025 0.010 0.001 0k2.7063.8415.0246.63510.82819.如图,在三棱锥A BCD -中,AB ⊥平面BCD ,56DBC π∠=,2BD BC ==,32AB =+,E 为AC 的中点,F 在棱CD 上,且BC EF ⊥.(1)求证:BF CF =; (2)求三棱锥A BEF -的体积.20.已知椭圆22221(0)x y a b a b+=>>的左,右焦点分别为1F ,2F ,过1F 的直线交椭圆于A ,B 两点.(1(21.21.(1(2请考生在22、23题中任选一题作答,如果多做,则按所做的第一题记分.22.选修4-4:坐标系与参数方程(1(223.选修4-5:不等式选讲.(1(2文数(三)一、选择题1-5: BDAAB 6-10: DCBCA 11、12:DA 二、填空题三、解答题17.解:(1.(2)由(1。
(衡水金卷)2018年普通高等学校招生全国统一考试模拟数学试题五 理
(衡水金卷)2018年普通高等学校招生全国统一考试模拟数学试题五 理第Ⅰ卷一、选择题:本大题共12个小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集U R =,集合{}223,A y y x x x R ==++∈,集合1,(1,3)B y y x x x ⎧⎫==-∈⎨⎬⎩⎭,则()U C A B =( )A .(0,2)B .80,3⎛⎫ ⎪⎝⎭C .82,3⎛⎫⎪⎝⎭D .(,2)-∞2. 已知3sin(3)2sin 2a a ππ⎛⎫+=+ ⎪⎝⎭,则sin()4sin 25sin(2)2cos(2)a a a a ππππ⎛⎫--+ ⎪⎝⎭=++-( )A .12B .13C .16D .16-3。
设i 为虚数单位,现有下列四个命题:1p :若复数z 满足()()5z i i --=,则6z i =; 2p :复数22z i=-+的共轭复数为1+i 3p :已知复数1z i =+,设1(,)ia bi ab R z-+=∈,那么2a b +=-;4p :若z 表示复数z 的共轭复数,z 表示复数z 的模,则2zz z =。
其中的真命题为( )A .13,p pB .14,p pC .23,p pD . 24,p p4.在中心为O 的正六边形ABCDEF 的电子游戏盘中(如图),按下开关键后,电子弹从O 点射出后最后落入正六边形的六个角孔内,且每次只能射出一个,现视A ,B ,C ,D ,E ,F 对应的角孔的分数依次记为1,2,3,4,5,6,若连续按下两次开关,记事件M 为“两次落入角孔的分数之和为偶数”,事件N 为“两次落入角孔的分数都为偶数”,则(|)P N M =( )A .23B .14 C. 13 D .125。
某几何体的正视图与俯视图如图,则其侧视图可以为( )A .B . C. D .6. 河南洛阳的龙门石窟是中国石刻艺术宝库之一,现为世界文化遗产,龙门石窟与莫高窟、云冈石窟、麦积山石窟并称中国四大石窟。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018年普通高等学校招生全国统一考试模拟试题文数(五)第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设全集R U =,集合{}10A x x =+≥,101x B x x ⎧+⎫=<⎨⎬-⎩⎭,则图中阴影部分所表示人集合为A .{}1x x ≥- B .{}1x x <- C .{}11x x -≤≤- D .﹛1x x <-或1x ≥﹜2.已知复数123z i =+,2z a i =+(a R ∈,i 为虚数单位),若1218z z i =+,则a 的值为 A .12B .1C .2D .4 3.已知函数()f x 的图象关于原点对称,且在区间[]5,2--上单调递减,最小值为5,则()f x 在区间[]2,5上A .单调递增,最大值为5B .单调递减,最小值为5-C .单调递减,最大值为5-D .单调递减,最小值为54.已知直线231x +=与x ,y 轴的正半轴分别交于点A ,B ,与直线0x y +=交于点C ,若OC OA OB λμ=+(O 为坐标原点),则λ,μ的值分别为A .2λ=,1μ=-B .4λ=,3μ=- C. 2λ=-,3μ= D .1λ=-,2μ=5.已知122log 3a =,22log 3b =,1232c ⎛⎫= ⎪⎝⎭,32d e =,则A .d c a b >>>B .d b c a >>> C.c d a b >>>D .a c b d >>>6.已知0a >,0b >,则点(P 在直线by x a =的右下方是双曲线22221x y a b-=的离心率e 的取值范围为)+∞的A .充要条件B .充分不必要条件 C.必要不充分条件 D .既不充分也不必要条件7.已知α、β是两个不同的平面,给出下列四个条件:①存在一条直线a ,a α⊥,a β⊥;②存在一个平面γ,γα⊥,γβ⊥;③存在两条平行直线a 、b ,a α⊂,b β⊂,//a β,//b α;④存在两条异面直线a 、b ,a α⊂,b β⊂,//a β,//b α,则可以推出//αβ的是A .①③B .②④ C. ①④ D .②③ 8.已知直线2y =与函数()()tan 0,2f x x πωϕωϕ⎛⎫=+><⎪⎝⎭图象的相邻两个交点间的距离为6,点(P 在函数()f x 的图像上,则函数()()12log g x f x =的单调递减区间为A .()()6,26k k k Z ππππ-+∈B .(),63k k k Z ππππ⎛⎫-+∈ ⎪⎝⎭C. ()11,63k k k Z ⎛⎫-+∈ ⎪⎝⎭D .()()61,26k k k Z -+∈ 9.在如图所求的程序框图中,若输出n 的值为4,则输入的x 的取值范围为A .13,84⎡⎤⎢⎥⎣⎦B .[]3,13 C.[)9,33 D .913,84⎡⎫⎪⎢⎣⎭10.已知某几何体的三视图如图所求,则该几何体的表面积为A.29144a π⎛⎫+-⎪ ⎪⎝⎭ B.29144a π⎛⎫+- ⎪ ⎪⎝⎭C.294a π⎫⎪⎪⎝⎭ D.2914a π⎫-⎪⎪⎝⎭11.甲、乙两人各自在400米长的直线形跑道上跑步,则在任一时刻两人在跑道上相距不超过50米的概率是A .18 B .1136 C.1564D .14 12.已知定义在R 上的可导函数()f x 的导函数为()'f x ,满足()()'f x f x <,且()102f =,则不等式()102xf x e -<的解集为 A .1,2⎛⎫-∞ ⎪⎝⎭ B .()0,+∞ C.1,2⎛⎫+∞⎪⎝⎭D .(),0-∞ 第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.已知函数()2log ,2,2,2,x x f x x x ≥⎧⎪=⎨+<⎪⎩则()()()3ff f -的值为 .14.已知命题:P x R ∀∈,()22log 0x x a ++>恒成立,命题[]0:2,2Q x ∃∈-,使得022xa≤,若命题P Q ∧为真命题,则实数a 的取值范围为 .15.已知()222210x y a b a b +≤>>表示的区域为1D ,不等式组0,0,0,0bx cy bc bx cy bc bx cy bc bx cy bc -+≥⎧⎪--≤⎪⎨+-≤⎪⎪++≥⎩表示的区域为2D ,其中()2220a b c c =+>,记1D 与2D 的公共区域为D ,且D 的面积S为2234x y +=内切于区域D 的边界,则椭圆()2222:10x y C a b a b+=>>的离心率为 .16.我国南宋著名数学家秦九韶在他的著作《数书九章》卷五“田域类”里有一个题目:“问有沙田一段,有三斜,其小斜一十三里,中斜一十四里,大斜一十五里.里法三百步.欲知为田几何.”这道题讲的是有一个三角形沙田,三边分别为13里,14里,15里,假设1里按500米计算,则该三角形沙田外接圆的半径为 米.三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. 已知数列{}n a 满足11a =,134n n a a +=+,*n N ∈.(1)证明:数列{}2n a +是等比数列,并求数列{}n a 的通项公式;(2)设()3log 22n n n a b a +=+,求数列{}n b 的前n 项和n T .18. 现从某医院中随机抽取了七位医护人员的关爱患者考核分数(患者考核:10分制),用相关的特征量y 表示;医护专业知识考核分数(试卷考试:100分制),用相关的特征量x 表示,数据如下表:(1)求y 关于x 的线性回归方程(计算结果精确到0.01);(2)利用(1)中的线性回归方程,分析医护专业考核分数的变化对关爱患者考核分数的影响,并估计某医护人员的医护专业知识考核分数为95分时,他的关爱患者考核分数(精确到0.1);(3)现要从医护专业知识考核分数95分以下的医护人员中选派2人参加组建的“九寨沟灾后医护小分队”培训,求这两人中至少有一人考核分数在90分以下的概率.附:回归方程y bx a =+中斜率和截距的最小二乘法估计公式分别为()()()121niii nii x x y y b x x ==--=-∑∑,a y bx =-.19. 如图,在四棱锥P ABCD -中,底面ABCD 是边长为a 的菱形,PD ⊥平面ABCD ,60BAD ∠=,2PD a =,O 为AC 与BD 的交点,E 为棱PB 上一点.(1)证明:平面EAC ⊥平面PBD ;(2)若//PD 平面EAC ,三棱锥P EAD -的体积为a 的值. 20. 已知动圆C 恒过点1,02⎛⎫⎪⎝⎭,且与直线12x =-相切.(1)求圆心C 的轨迹方程;(2)若过点()3,0P 的直线交轨迹C 于A ,B 两点,直线OA ,OB (O 为坐标原点)分别交直线3x =-于点M ,N ,证明:以MN 为直径的圆被x 轴截得的弦长为定值. 21. 已知函数()()322316f x x a x ax =-++,a R ∈.(1)若对于任意的()0,x ∈+∞,()()6ln f x f x x +-≥恒成立,求实数a 的取值范围; (2)若1a >,设函数()f x 在区间[]1,2上的最大值、最小值分别为()M a 、()m a ,记()()()h a M a m a=-,求()h a 的最小值.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22.选修4-4:坐标系与参数方程在平面直角坐标系xOy 中,已知直线11,2:2x t l y ⎧=--⎪⎪⎨⎪=+⎪⎩(t 为参数),曲线12cos ,:22sin x C y ϕϕ=+⎧⎨=-⎩(ϕ为参数),以原点O 为极点,x 轴的正半轴为极轴建立坐标系. (1)写出直线l 的普通方程与曲线C 的极坐标方程; (2)设直线l 与曲线C 交于A ,B 两点,求ABC ∆的面积. 23.选修4-5:不等式选讲 已知函数()21f x x x =+--. (1)求不等式()2f x ≥的解集;(2)记()f x 的最大值为k ,证明:对任意的正数a ,b ,c ,当a b c k ++=时,有k ≤成立.试卷答案一、选择题1-5:BCCCA 6-10:ACDDA 11、12:CB二、填空题13.2log 3 14.5,24⎛⎤⎥⎝⎦15.1216.4062.5 三、解答题17.解:(1)由134n n a a +=+, 得()1232n n a a ++=+, 即1232n n a a ++=+,且123a +=,所以数列{}2n a +是以3为首项,3为公比的等比数列. 所以12333n n n a -+=⨯=,故数列{}n a 的通项公式为()*32n n a n N --∈.(2)由(1)知,23n n a +=,所以3log 333n n nn nb ==. 所以1231231233333n n nnT b b b b =++++=++++.① 234111231333333n n n n nT +-=+++++.② ①-②,得234211111333333n n T =+++++13n n += 11111331113223313nn n n n n ++⎡⎤⎛⎫-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦=-=--⋅-,所以332323044343443n n n nn n T +=-=-⋅⋅⋅. 故数列{}n b 的前n 项和323443n nn T +=-⋅. 18.解:(1)由题得,98889691909296937x ++++++==. 9.98.69.59.09.19.29.89.37y ++++++==.()()()()198939.99.3niii x x y y =--=-⨯-+∑()()()()88938.69.396939.59.3-⨯-+-⨯-+ ()()()()91939.09.390939.19.3-⨯-+-⨯-+ ()()()()92939.29.396939.89.39.9-⨯-+-⨯-=()()()()22221989388939693ni i x x=-=-+-+-∑()()()()2222919390939293969382+-+-+-+-=.所以()()()1219.90.1282niii ni i x x y y b x x==--==≈-∑∑. 9.30.1293 1.86a =-⨯=-.所以线性回归方程为0.12 1.86y x =-. (2)由于0.120b =>.所以随着医护专业知识的提高,个人的关爱患者的心态会变得更温和,耐心,因此关爱患者的考核分数也会稳步提高.当95x =时,0.1295 1.869.5y =⨯-≈.(3)由于95分以下的分数有88,90,91,92,共4个,则从中任选两个的所有情况有()88,90,()88,91,()88,92,()90,91,()90,92,()91,92,共6种.则这两个人中至少有一个分数在90分以下的情况有()88,90,()88,91,()88,92,共3种. 故选派的这两个人中至少有一人考核分数在90分以下的概率3162P ==. 19.解:(1)因为PD ⊥平面ABCD ,AC ⊂平面ABCD ,所以PD AC ⊥. 又四边形ABCD 为菱形,所以AC BD ⊥, 又PDBD D =,所以AC ⊥平面PBD . 而AC ⊂平面EAC , 所以平面EAC ⊥平面PBD .(2)因为//PD 平面EAC ,平面EAC平面PBD OE =.所以//PD OE .又O 为AC 与BD 的交点, 所以O 是BD 的中点,所以E 是PB 的中点. 因为四边形ABCD 是菱形,且60BAD ∠=, 所以取AD 的中点H ,连接BH ,可知BH AD ⊥,又因为PD ⊥平面ABCD , 所以PD BH ⊥. 又PDPD D =,所以BH ⊥平面PAD .由于AB a =,所以BH =.因此E 到平面PAD 的距离112224d BH a a ==⨯=,所以31112332P EAD E PAD PAD V V S d a a --∆==⨯=⨯⨯⨯==解得6a =,故a 的值为6. 20.解:(1)由题意得,点C 与点1,02⎛⎫⎪⎝⎭的距离始终等于点C 到直线12x =-的距离.因此由抛物线的定义,可知圆心C 的轨迹为以1,02⎛⎫⎪⎝⎭为焦点,12x =-为准线的抛物线.所以122p =,即1p =. 所以圆心C 的轨迹方程为22y x =. (2)由圆心C 的轨迹方程为22y x =,可设()2112,2A t t ,()2222,2B t t ,()120t t ≠, 则()21323,2PA t t =-,()22223,2PB t t =-,由A ,P ,B 三点花线,可知()()2212232322320t t t t -⋅--⋅=,即()()()()22122231122312123223230230230t t t t t t t t t t t t t t t t --+=⇒-+-=⇒+-=.因为12t t ≠,所以1232t t =-.又依题得,直线OA 的方程为11y x t =. 令3x =-,得133,M t ⎛⎫--⎪⎝⎭. 同理可知133,N t ⎛⎫-- ⎪⎝⎭.因此以MN 为直径的圆的方程可设为()()1233330x x y y t t ⎛⎫⎛⎫+++++= ⎪⎪⎝⎭⎝⎭. 化简得()22121233930x y y t t t t ⎛⎫+++++=⎪⎝⎭, 即()()212212123930t t x y y t t t t +++++=. 将1232t t =-代入上式,可知()()22123260x y t t y ++-+-=, 在上式中令0y =,可知13x =-23x =-,因此以MN 为直径的圆被x轴截得的弦长为1233x x -=-=. 21.解:(1)因为()()()2616ln f x f x a x x +-=-+≥对任意的()0,x ∈+∞恒成立,所以()2ln 1xa x -+≥. 令()2ln x g x x =,0x >,则()'212ln x g x x-=. 令()'0g x =,则x =当(x ∈时,()'0g x >,()g x在区间(上单调递增;当)x ∈+∞时,()'0g x <,()g x在区间)+∞上单调递减.所以()max 12g x g e==, 所以()112a e -+≥,即112a e≤--, 所以实数a 的取值范围为1,12e ⎛⎤-∞--⎥⎝⎦. (2)因为()()322316f x x a x ax =-++,所以()131f a =-,()24f =.所以()()()()'2661661fx x a x a x x a =-++=--. 令()'0f x =,则1x =或a . ①若513a <≤, 当()1,x a ∈时,()'0fx <,()f x 在区间()1,a 上单调递减; 当(),2x a ∈时,()'0f x >,()f x 在区间(),2a 上单调递增.又因为()()12f f ≤,所以()()24M a f -=,()()323m a f a a a ==-+, 所以()()()()32324334h a M a m a a a a a =-=--+=-+. 因为()()'236320h a a a a a =-=-<, 所以()h a 在区间51,3⎛⎤ ⎥⎝⎦上单调递减, 所以当51,3a ⎛⎤∈ ⎥⎝⎦时,()h a 的最小值为58327h ⎛⎫= ⎪⎝⎭. ②若523a <<, 当()1,x a ∈时,()'0fx <,()f x 在区间()1,a 上单调递减; 当(),2x a ∈时,()'0f x >,()f x 在区间(),2a 上单调递增.又因为()()12f f >,所以()()131M a f a =--,()()323m a f a a a -=-+. 因为()()2'2363310h a a a a =-+=->, 所以()h a 在区间5,23⎛⎫ ⎪⎝⎭上单调递增. 所以当5,23a ⎛⎫∈ ⎪⎝⎭时,()58327h a h ⎛⎫>= ⎪⎝⎭.③若2a ≥,当()1,2x ∈时,()'0f x <,()f x 在区间()1,2上单调递减,所以()()131M a f a ==-,()()24m a f -=.所以()()()31435h a M a m a a a =-=--=-,所以()h a 在区间[)2,+∞上的最小值为()21h =.综上所述,()h a 的最小值为827. 22.解:(1)将直线11,2:2x t l y ⎧=--⎪⎪⎨⎪=⎪⎩消去参数t ,20y +=,故直线l20y +=.将曲线12cos ,:22sin x C y ϕϕ=+⎧⎨=-⎩化为普通方程为()()22124x y -+-=, 即222410x y x y +--+=,将222x y ρ=+,cos x ρθ=,sin y ρθ=代入上式,可得曲线C 的极坐标方程为22cos 4sin 10ρρθρθ--+=.(2)由(1)可知,圆心()1,2C到直线20l y +=的距离为d ==.则2AB ===(R 为圆C 半径).所以11222ABC S AB d ∆=⨯=⨯=故所求ABC ∆面积为ABC ∆23.解:(1)由题知,()3,2,21,21,3. 1.x f x x x x -<-⎧⎪=+-≤≤⎨⎪>⎩所以()2f x ≥,即32,2x -≥⎧⎨<-⎩或212,21x x +≥⎧⎨-≤≤⎩或32,1.x ≥⎧⎨>⎩解得12x ≥. 故原不等式的解集为1,2⎡⎫+∞⎪⎢⎣⎭.(2)因为()21213f x x x x x =+--≤+-+=(当且仅当()()210x x +-≥时取等号), 所以3k =,因此有3a b c ++=.=111333322222a b c a b c +++++++≤++===(当且仅当1a b c ===时取等号),k ≤得证.。