人教版八年级数学上册因式分解专题练习

合集下载

八年级数学上册《第十四章 因式分解》同步训练题及答案(人教版)

八年级数学上册《第十四章 因式分解》同步训练题及答案(人教版)

八年级数学上册《第十四章因式分解》同步训练题及答案(人教版)学校:___________班级:___________姓名:___________考号:___________一、选择题1.下列等式中,从左到右的变形是因式分解的是()A.x(x−2)=x2−2x B.(x−1)2=x2−2x−1C.x2−4=(x+2)(x−2)D.x2+3x+2=x(x+3)+22.用提公因式法分解因式4x3y3+6x3y−2xy2时,应提取的公因式是()A.2x3y3B.−2x3y2C.12x3y3D.2xy3.下列四个多项式中,能用提公因式法进行因式分解的是()①16x2﹣8x;②x2+6x+9;③4x2﹣1;④3a﹣9ab.A.①和②B.③和④C.①和④D.②和③4.将多项式x−x2因式分解正确的是( )A.x(1−x)B.x(x−1)C.x(1−x2)D.x(x2−1) 5.下列多项式中,能因式分解得到(x+y)(x﹣y)的是()A.x2+y2B.x2﹣y2C.﹣x2﹣y2D.-x2+y2 6.已知a、b、c是三角形的边长,那么代数式(a−b)2−c2的值是()A.小于零B.等于零C.大于零D.大小不确定7.已知:a+b=5,a−b=1则a2−b2=()A.5 B.4 C.3 D.28.下列各式中,代数式()是x3y+4x2y2+4xy3的一个因式.A.x2y2B.x+y C.x+2y D.x﹣y二、填空题9.分解因式:36x2−4=.10.将多项式−5a2+3ab提出公因式−a后,另一个因式为.11.分解因式:(x−3)2−2x+6=.12.在实数范围内分解因式:4x2+4xy−y2=.13.已知a−b=1,ab=2则a2b−ab2的值为.三、解答题14.分解因式(1)4a3b−2a2b2(2)x2−4x+4(3)2m2−18(4)a2+7a−1815.若△ABC的三边长分别为a、b、c,且b2+2ab=c2+2ac,判断△ABC的形状.16.如果n是正整数,求证:3n+2-2n+2+3n-2n能被10整除.17.已知,长方形的周长为30cm,两相邻的边长为x cm,y cm,且x3+x2y-4xy2-4y3=0,求长方形的对角线长和面积.18.阅读下列材料:材料1:将一个形如x2+px+q的二次三项式因式分解时,如果能满足q=mn且p=m+n,则可以把x2+px+q因式分解成(x+m)(+n)的形式,如x2+4x+3=(x+1)(x+3);x2﹣4x﹣12=(x﹣6)(x+2)材料2:因式分解:(x+y)2+2(x+y)+1解:将“x+y”看成一个整体,令x+y=A,则原式=A2+2A+1=(A+1)2,再将“A”还原,得原式=(x+y+1)2上述解题方法用到“整体思想”,“整体思想”是数学解题中常见的一种思想方法.请你解答下列问题:(1)根据材料1,把x2﹣6x+8分解因式;(2)结合材料1和材料2,完成下面小题:分解因式:(x﹣y)2+4(x﹣y)+3参考答案1.C2.D3.C4.A5.B6.A7.A8.C9.4(3x+1)(3x−1)10.5a−3b11.(x−3)(x−5)12.(2x+y+√2y)(2x+y−√2y)13.214.(1)解:4a3b−2a2b2=2a2b(2a−b)(2)解:x2−4x+4=(x−2)2(3)解:2m2−18=2(m2−9)=2(m+3)(m−3)(4)解:a2+7a−18=(a+9)(a−2)15.解:∵b2+2ab=c2+2ac∴b2−c2+2ab−2ac=(b+c)(b−c)+2a(b−c)=(b−c)(b+c+2a)=0∵△ABC的三边长分别为a、b、c∴b−c=0∴b=c∴△ABC是等腰三角形.16.证明:∵3n+2-2n+2+3n-2n=3n⋅ 32-2n⋅ 22+3n-2n=3n(32+1)-2n(22+1)=10 ⋅ 3n-10 ⋅ 2n-1=10(3n-2n-1).∴3n+2-2n+2+3n-2n能被10整除.17.∵长方形周长为30cm∴2(x+y)=30,化简得:x+y=15x3+x2y−4xy2−4y3= x2(x+y)−4y2(x+y)= (x+y)(x2−4y2)= (x+y)(x+2y)(x−2y)∵x3+x2y−4xy2−4y3=0(x+y)(x+2y)(x−2y)=0∵x>0∴(x+y)(x+2y)≠0则x−2y=0,即x=2y∵x+y=15∴3y=15,解得:y=5∴x=2y=10∴长方形的对角线长:√x2+y2=√102+52=√125=5√5(cm)长方形的面积:xy=10×5=50(cm2) .18.(1)解:∵8=(−4)×(−2),−6=(−4)+(−2)∴ x2﹣6x+8 =(x−4)(x−2)(2)解:令x−y=A∵3=1×3,4=1+3则(x﹣y)2+4(x﹣y)+3 =(A+3)(A+1)∴(x﹣y)2+4(x﹣y)+3 = (x−y+3)(x−y+1)。

人教版八年级上册数学整式乘法和因式分解计算题

人教版八年级上册数学整式乘法和因式分解计算题

人教版八年级上册数学整式乘法和因式分解1.因式分解:(1)2a b ab - (2)228x -2.因式分解(1)a 2(x +y )﹣b 2(x +y ) (2)x 4﹣8x 2+16.3.计算:(1)(x 2y )3•(﹣2xy 3)2;(2)(xny 3n )2+(x 2y 6)n ;(3)(x 2y 3)4+(﹣x )8•(y 6)2;(4)a •a 2•a 3+(﹣2a 3)2﹣(﹣a )6.4.计算: (1)()()232a a -+;(2)()()23210432563a b ab a b a ⋅--÷.5.分解因式: (1)2693x xy x -+;(2)2xy x-;6.因式分解:(1)x3y﹣xy3;(2)(x+2)(x+4)+x2﹣47.分解因式:(1)2(m﹣n)2﹣m(n﹣m);(2)(x2﹣4xy+4y2)+(﹣4x+8y)+4.8.因式分解:(1)4ab b+(2)232x x-+(3)221 4a b b-+-(4)2464a-9.计算:(1)()()2323322a a a a a ⋅⋅+-(2)()()3223a a b ⋅- 10.因式分解: (1)322369x y x y xy -+(2)()()236x x y x y x -+-11.计算:(1)分解因式:34x x - (2)计算:214?4x y x ⎛⎫- ⎪⎝⎭12.把下列各式分解因式: (1)a 3﹣a(2)16x 2y 2﹣(x 2+4y 2)2 13.因式分解: (1)32246x x x -+-; (2)222(4)16a a +-. 14.分解因式: (1)x 3y -2x 2y 2+xy 3(2) a 2(x -1)2+4a (1-x ) (3)(x 2+y 2)2-4x 2y 2 15.用乘法公式计算:(1)()()()2232349x x x -+-(2)()()33x y x y +--+ 16.分解因式(1)()()mn m n m n m --- (2)229()16()m n m n +-- 17.分解因式:(1)2a (x ﹣y )+b (y ﹣x ); (2)(x 2 +1)2﹣4x 2. 18.计算:(1)(﹣2m 2n 3)2+(3m 3n 4)•(12-mn 2)3;(2)(x +2y )2﹣(x +y )(3x ﹣y )﹣5y 2 19.因式分解: (1)2232x -(2)3223242x y x y xy ++ 20.因式分解: (1)2ax a -+ (2)214x x ++21.先化简,再求值:()()2222x y x x y y ⎡⎤---÷⎣⎦,其中1x =,2y =. 22.化简求值:[(x ﹣2y )2﹣2(x +y )(3x ﹣y )﹣6y 2]÷2x ,其中12,.2x y =-=23.先化简,再求值:2(2)(2)(2)2(2)(4)x y x y x y x x y x ⎡⎤-+-+--÷-⎣⎦,其中12x =-,1y =.24.先化简再求值:()()()22224x y x y x y x y y +-+--++()其中:112x y ==,. 25.先化简,再求值:[(x ﹣y )2+(x +y )(x ﹣y )]÷2x ,其中x =2021,y =﹣2020. 26.先化简,再求值:[(xy +2)(xy ﹣2)﹣2(xy +1)2+6]÷(xy ),其中x =10,y =﹣125. 27.先化简,再求值:2(2)2()()(23)x y y x x y y y x ---+--,其中1,33x y ==-28.(1)已知225a b +=,()29a b +=,求44a b +的值; (2)若x 满足()()9715x x --=-,求()()2297x x -+-的值.29.(1)已知4a 2﹣a ﹣4=0,求代数式(2a ﹣3)(2a +3)+(a ﹣1)2+(1+a )(2﹣a )的值;(2)已知a ,b 满足a 2+b 2﹣10a ﹣4b +29=0,且a ,b 为等腰三角形△ABC 的边长.求△ABC 的周长.30.化简并求值:当12x =-时,求代数式()()()2353535x x x +--+的值.31.先化简,再求值:[(﹣a +b )(﹣a ﹣b )+(2a ﹣b )2﹣a (a +3b )]÷2a ,其中a =3,b =2 32.计算:1| (2)322332()(2)x x x x x +--33.先化简.再求值:2(1)(4)3x x x -+--,其中14x =-.34.先化简,后求值:()()()21232322x y x y x y y ⎛⎫⎡⎤+---÷ ⎪⎣⎦⎝⎭,其中1x =,12y = 35.先化简,再求值:()()()()2233102x y x y x y y x +-+--⎤⎦÷-⎡⎣.其中x =-2022,12y =-.36.先化简,再求值:2(2)(1)(1)a a a +----,其中 a = -1.37.先化简,再求值:2()3()(2)(2)x y x x y x y x y +-+++-,其中1x =,1y =-. 38.先化简,再求值:()()()2232321x x x -+-+ ,其中12x =-. 39.因式分解:24(7)9(7)a x x +-+.40.先化简,再求值:()()()()()22233333x y x y y x x y x y ⎡⎤+----+-÷⎣⎦,其中x ,y 满足()2210x y ++-=. 41.因式分解 (1)am an ap -+ (2)214x - (3)21664x x -+(4)22(32)(23)x m n y n m -+- 42.计算题 (1)()22333a a a ⋅+-(2)2()()()x y y x y x --+-(3)()3246102a a a a -+÷(4)2(1)|2-+ 43.因式分解. (1)()69m m ++; (2)222(1)4a a +-. 44.利用乘法公式计算:(1)2197(2)(x ﹣2y +4)(x +2y ﹣4)45.已知两个实数a ,b 满足10a b +=,24ab =,且a b <;分别求值; (1)22a b +; (2)-a b ; (3)23a b +.46.先化简,再求值:2(2)(3)(2)x x x +-+-其中,13x =-47.计算:234228(2)342x x x x x ⋅--+÷.48.先化简,再求值:[(2x +y )(2x ﹣y )﹣3(2x 2﹣xy )+y 2]÷(﹣12x ),其中x =﹣12,y =23.49.按要求完成下列各小题 (1)因式分解: ①269x x - ①2288a b ab b -+;(2)先化简,再求值:()()()3222242x y x y x x y x +---÷,其中2x =-,12y -=.50.因式分解:228x y y -.51.先化简,再求值:[(x -y )2+x (2y -x )+2y 2]÷y ,其中x =12,y =1. 52.先化简,再求值:()()()()222213x x x x x -+-+++,其中12x =-. 53.分解因式 (1)236x xy -; (2)269ax ax a ++; (3)223m m --.54.先化简,再求值:()()()211(21)221x x x x x +-+---,其中2x =. 55.因式分解:()()224a x y b y x -+-56.分解因式: (1)2255x y -; (2)3269m m m ++57.若220220x x +-=,求2(23)(23)(54)(1)x x x x x +--+--的值.58.先化简,再求值:2(2)6()()(2)x y x x y x y x y --+++-,其中x ,y 满足21(2)0x y -++=.59.因式分解: (1)3244m m m -+ (2)()2242a a b -- 60.因式分解: (1)235x y y - (2)()()x x y y y x -+- 61.计算: (1)218()4xy xy ⋅-(2)2(2)4()x y x x y ---62.先化简,再求值:()()22333244y x xy y x xy ⎡⎤⎡⎤----+-⎣⎦⎣⎦,其中2x =,1y =63.计算:(1)()()()21212a a a a +--+ (2)()()()224x y x y x y ---+ 64.因式分解: (1)4x 2-8x +4; (2)(x +y )2-4y (x +y ) 65.先化简,再求值:(1)2(2)()()2x y x y x y y ⎡⎤-+--÷⎣⎦,其中2x =,4y =; (2)()2426()3()()a a a b a b a -÷--+-,其中2223a b +=. 66.(1)已知3x y +=,1xy =,求22x y +的值.(2)已知2210x x --=,求322544x x x +-+的值. (3)已知22810410x y x y +-++=,求()2021x y +的值.67.计算:(1)()272643x x x x x ⋅+⋅-(2)()()()()2511313a a a a +-+-+(3)()()22141x x x --- (4)()()2323x y x y --+- 68.分解因式: (1)2m mn m -+ (2)3212a a a -- (3)()()22413x x +-- (4)421881y y -+69.先化简,再求值:()()()()2253a b a b a a b a b +-+---,其中a =-3,32b =. 70.已知(a +b )2=17,(a ﹣b )2=13,求: (1)a 2+b 2的值; (2)ab 的值. 71.计算: (1)322x x x x ⋅+⋅(2)()()()222x y x y x y +-+- 72.因式分解: (1)()()22a m b m -+- (2)322a a a -+73.先化简,再求值:(x +3y )2+(x +2y )(x -2y )-2x 2,其中x =-2,y =-1. 74.将下列各式分解因式: (1)2x (m -n )-(n -m ) (2)4m 2﹣n 2(3)3m 2n -12mn +12n (4)2a 3b ﹣18ab 375.先化简,再求值:2(23)(2)(2)(2)x y x y x y y ⎡⎤+-+-÷-⎣⎦,其中13x =,12y =-. 76.已知()27x y +=,()25x y -=. (1)求22x y +值; (2)求xy 的值. 77.先化简,再求值:(1)()()()332x x x x +---,其中4x =.(2)()()()222a b a b a b a +-++-,其中3a =,13b =-.78.计算:(1)()()()22x y x y x y x ⎡⎤-++-÷⎣⎦(2)()()()2312x x x +--- 79.因式分解: (1)24100x -; (2)22242m mn n -+; (3)()22214a a +-.80.计算:(1)()3322m m m m ⋅+-÷;(2)2(23)(2)(2)x x x +-+-; (3)(23)(23)a b c a b c +--+.81.先化简,再求值:()()()3222484a b a b ab a b ab +-+-÷,其中a =3,b =-1.82.计算:()2482a a a a -⋅-÷. 83.因式分解: (1)29a - (2)22363x xy y ++84.先化简,再求值323()(2)(2)(2)a b ab a b a b a ÷-----+--,其中2a =,1b =-. 85.化简求值:221(2)(2)242xy xy x y xy ⎛⎫⎡⎤+--+÷- ⎪⎣⎦⎝⎭,其中x =10,y =-125. 86.先化简,再求值:()()2462a b a a b -+-,其中a =2,b =-1. 87.先化简,再求值:()()()()231124x x x x x +++--+,其中6x =.88.先化简,再求值:()()()22222a b a b a b b ⎡⎤--+-÷⎣⎦,其中1,1a b =-=.89.先化简,再求值:()()()336x x x x +---,其中=x 90.计算:423a a a a ⋅+⋅91.先化简,再求值:()()()()21233x x x x x +--+-+,其中x =-1. 92.把下列多项式因式分解:(1)()()326x y y --- (2)22344xy x y y --93.已知:2()34x y +=,2()14x y -=,分别求22x y +和xy 的值.94.两个边长分别为a 和b 的正方形如图放置(图1),其未叠合部分(阴影)面积为S 1;若再在图1中大正方形的右下角摆放一个边长为b 的小正方形(如图2),两个小正方形叠合部分(阴影)面积为S 2.(1)用含a 、b 的代数式分别表示S 1、S 2; (2)若a +b =10,ab =23,求S 1+S 2的值;(3)当S 1+S 2=29时,求出图3中阴影部分的面积S 3.95.如图,边长为a 的正方形中有一个边长为b (b <a )的小正方形,如图2是由图1中的阴影部分拼成的一个长方形.(1)设图1阴影部分的面积为1S ,图2中阴影部分的面积为2S ,请直接用含a ,b 的式子表示1S = ,2S = ,写出上述过程中所揭示的乘法公式 ; (2)直接应用,利用这个公式计算: ①(﹣12x -y )(y -12x ); ①102×98(3)拓展应用,试利用这个公式求下面代数式的结果.(3+1)×(32+1)×(34+1)×(38+1)×(316+1)......×(31024+1)+196.两个边长分别为a 和b 的正方形如图放置(图1),其未叠合部分(阴影)面积为1S ;若再在图1中大正方形的右下角摆放一个边长为b 的小正方形(如图2),两个小正方形叠合部分(阴影)面积为2S .(1)用含a ,b 的代数式分别表示12S S 、;(2)若=1640a b ab +=,,求12S S +的值;(3)当1276S S +=时,求出图3中阴影部分的面积3S .97.数学教科书中这样写道:“我们把多项式222a ab b ++及222a ab b -+叫做完全平方式”,如果一个多项式不是完全平方式,我们常做如下变形:先添加一个适当的项,使式子中出现完全平方式,再减去这个项,使整个式子的值不变,这种方法叫做配方法,配方法是一种重要的解决问题的数学方法,经常用来解决一些与非负数有关的问题或求代数式最大值,最小值等.例如:()22223214(1)4x x x x x +-=++-=+-;例如求代数式2246x x +-的最小值;()2222462232(1)8x x x x x +-=+-=+-.根据阅读材料用配方法解决下列问题:(1)分解因式:265m m -+________;(2)当a ,b 为何值时,多项式2241033a b a b +-++有最小值,并求出这个最小值;(3)已知8a b -=,24200ab c c +-+=,求a b c ++的值.98.将222()2a b a ab b +=++变形,得222()2a b a b ab +=+-,()()22212⎡⎤=+-+⎣⎦ab a b a b ,请根据以上变形解答下列问题: (1)已知225a b +=,2()9a b +=,则ab =________,a -b =_______.(2)若x 满足()()7515x x --=-,求22(7)(5)x x -+-的值.(3)如图,在长方形ABFD 中,DA ①AB ,FB ①AB ,AD =AC ,BE =BC .连接CD ,CE ,若AC ·BC =10,直接写出图中阴影部分的面积.99.(1)先化简,再求值:()()()222222x y x y x y y x ⎡⎤-+--+÷⎣⎦;且x ,y 满足2(2)|3|0x y -+-=.(2)如图,某市有一块长为(2)a b +米,宽为()a b +米的长方形地块,规划部门计划将阴影部分进行绿化,中间将修建一座雕像.试用含a ,b 的代数式表示绿化的面积是多少平方米?100.阅读理解,材料1:常用的分解因式的方法有提取公因式法、公式法,但有很多的多项式只用上述方法就无法分解.如x 2﹣4y 2﹣2x +4y ,但我们细心察这个式子就会发现,前两项符合平方差公式,后两项提取公因式,前后两部分分别分解图式后会产生公因式,然后提取公因式就可以完成整个式子的分解因式了:x 2﹣4y 2﹣2x +4y=(x +2y )(x ﹣2y )﹣2(x ﹣2y )=(x ﹣2y )(x +2y ﹣2).这种分解因式的方法叫分组分解法.材料2:对于x 3﹣(n 2+1)x +n 这类特殊的代数式可以按下面的方法分解因式: x 3﹣(n 2+1)x +n=x 3﹣n 2x ﹣x +n=x (x 2﹣n 2)﹣(x ﹣n )=x (x +n )(x ﹣n )﹣(x ﹣n )=(x ﹣n )(x 2+nx ﹣1)解决问题:(1)分解因式:①a2﹣4a﹣b2+4;①x3﹣5x+2.(2)①ABC三边a,b,c满足a2﹣ab﹣ac+bc=0,判断①ABC的形状.参考答案:1.(1)(1)ab a -(2)2(2)(2)x x +-2.(1)(a +b )(a ﹣b )(x +y )(2)(x +2)2(x ﹣2)2 3.(1)4x 8y 9(2)2x 2ny 6n(3)2x 8y 12(4)4a 64.(1)226a a +-(2)7422a b -5.(1)()3231x x y -+(2)()()11x y y +-6.(1)xy (x +y )(x ﹣y )(2)2(x +2)(x +1)7.(1)()()32.m n m n --(2)()222.x y -+8.(1)(41)b a +(2)(1)(2)x x -- (3)11()()22a b a b -++-(4)()()444a a +-9.(1)-6a 6(2)- 24a 5b10.(1)2(3)xy x y -(2)()(3)2x x y x --11.(1)(2)(2)x x x -+;(2)3-x y12.(1)()()11a a a +-(2)()()2222x y x y -+-13.(1)22(23)x x x --+(2)22(2)(2)a a +-14.(1)xy (x -y )2(2)a (x -1)(ax -a -4)(3)(x +y )2(x -y )2 15.(1)42167281x x -+(2)2269x y y -+-16.(1)()()1m m n n -+(2)()()77m n n m --17.(1)(2a -b )(x -y )(2)(x +1)2(x -1)218.(1)46610348m n m n -(2)222x xy -+19.(1)()()244x x +-(2)()22xy x y +20.(1)(1)(1)a x x -+- (2)21()2x21.2y -x ,322.542xy --,323.12x y +();1424.()22x y -,1225.x -y ,126.4xy -+,24527.23x xy -,4328.(1)17;(2)34 29.(1)4a 2-a -6;-2;(2)12 30.3050x +,3531.2a 72-b ,﹣132.(1)3(2)62x -33.22x -,52-34.820x y -;-235.-2x y ,2021-36.45a +;137.223x xy y ---,-3 38.410x --,-839.()()()72323x a a ++- 40.43x y -,-1141.(1)()a m n p -+(2)()()121+2x x -(3)()28x -(4)()()(32)x y x y m n -+- 42.(1)569a a +(2)222-x xy(3)2235a a -+(4)443.(1)2(3)m +;(2)22(1)(1)a a +-44.(1)38809(2)2241616x y y -++ 45.(1)52;(2)2-;(3)2646.310x +,947.69x -48.46x y -,6-49.(1)①()323x x -;①()222b a - (2)224xy y -;-350.()()222y x x -+ 51.352.45x +,353.(1)()32x x y -(2)()23a x +(3)()()31m m -+54.x 2-2x ,055.()()()22x y a b a b -+- 56.(1)()()5x y x y +-(2)()23m m +57.-405458.-9xy ;1859.(1)m (m -2)2(2)(3a -2b )(a +2b )60.(1)3()()y x y x y +-(2)2()x y -61.(1)232x y -(2)2y62.24x xy y --;-2 63.(1)4(2)254y xy -64.(1)24(1)x -(2)()(3)x y x y +-65.(1)32-x y,5-;(2)()2213-+a b ,1-. 66.(1)7;(2)7;(3)-1 67.(1)8x -(2)2734a a -+-(3)1(4)22694x x y68.(1)()1m m n -+(2)()()43a a a -+(3)()()315x x -+(4)()()2233y y +-69.2222a b --,452-70.(1)15(2)171.(1)2x 4;(2)2xy +5y 272.(1)(m -2)(a +b );(2)a (a -1)273.6xy +5y 2,17.74.(1)(m -n )(2x +1);(2)(2m +n )(2m -n );(3)3n (m -2)2;(4)2ab (a +3b )(a -3b ) 75.65x y --;1276.(1)6 (2)1277.(1)92,1x -+-(2)2,2ab -78.(1)x y -(2)97x +79.(1)4(5)(5)x x +-(2)22()m n -(3)22(1)(1)a a +-80.(1)0(2)231213x x ++(3)222496a b bc c -+- 81.22a ab -,2182.083.(1)(a +3)(a -3);(2)3(x +y )2.84.2284a b -+,-28 85.2xy ,-45.86.222b a -,7-. 87.28x -+,4-88.2b a -;389.69x -;390.52a91.-x 2+4x +10,5.92.(1)(3)(2)y x --(2)2(2)y x y --93.24,594.(1)S 1=a 2﹣b 2;S 2=2b 2﹣ab(2)31 (3)29295.(1)a 2-b 2;(a +b )(a -b );a 2-b 2=(a +b )(a -b ) (2)①14x 2-y 2;①9996 (3)2048312+ 96.(1)22212;2S a b S b ab =-=-;(2)12136S S +=;(3)338S =.97.(1)(m -1)(m ﹣5)(2)当a =2,b =﹣5时,多项式a 2+b 2﹣4a +10b +33有最小值为4.(3)298.(1)2,1或-1(2)34(3)1099.(1)32x y +,6;(2)()223a ab b ++平方米 100.(1)①()()22a b a b +---;①()()2221x x x -+-; (2)①ABC 是等腰三角形。

人教版八年级数学上册 14.3.2 用公式法进行因式分解 同步练习(含答案)

人教版八年级数学上册 14.3.2 用公式法进行因式分解 同步练习(含答案)

用公式法进行因式分解一、填空题(本大题共20小题,共60.0分)1.分解因式:xy2+8xy+16x= ______ .2.因式分解:4m2-36= ______ .3.因式分解:2a3-8ab2= ______ .4.将多项式mn2+2mn+m因式分解的结果是______ .5.把多项式4ax2-9ay2分解因式的结果是______ .6.因式分解:2x2-32x4= ______ .7.因式分解:a2b-4ab+4b= ______ .8.分解因式:mx2-4m= ______ .9.分解因式a2b-a的结果为______ .10.分解因式:2ax2-8a= ______ .11.分解因式:2m2-8= ______ .12.分解因式:ma2+2mab+mb2= ______ .13.分解因式:a2b-b3= ______ .14.分解因式:x(x-1)-y(y-1)= ______ .15.分解因式:ax3y-1axy= ______ .416.因式分解:3y2-12= ______ .17.因式分解:m2n-6mn+9n= ______ .18.因式分解:a2b-ab+1b= ______ .419.分解因式-a3+2a2b-ab2= ______ .20.分解因式:a2b+4ab+4b= ______ .二、计算题(本大题共30小题,共180.0分)21.分解因式(1)a2(a-b)+4b2(b-a)(2)m4-1(3)-3a+12a2-12a3.22.把下列多项式分解因式:(1)6x2y-9xy;(2)4a2-1;(3)n2(n-6)+9n.23.把下列各式因式分解(1)ap-aq+am(2)a2-4(3)a2-2a+1(4)ax2+2axy+ay2.24.分解因式:x+xy+xy2(1)14(2)(m+n)3-4(m+n)25.因式分解:(1)x(x-2)-3(2-x)(2)x2-10x+25.26.把下列各式进行因式分解:(1)a3-6a2+5a;(2)(x2+x)2-(x+1)2;(3)4x2-16xy+16y2.27.因式分解:(1)x2-y2(2)-4a2b+4ab2-b3.28.分解因式(1)x3-16x(2)8a2-8a+2.(2)b4-4ab3+4ab2.30.分解因式:(1)2x2-4x(2)a2(x-y)-9b2(x-y)(3)4ab2-4a2b-b3(4)(y2-1)2+6(1-y2)+9.31.分解因式:(1)3a2+6ab+3b2(2)9(m+n)2-(m-n)2.32.因式分解:(1)a(x-y)-b(y-x)(2)3ax2-12ay2(3)(x+y)2+4(x+y+1)33.分解因式:(1)a(x-y)-b(y-x);(2)16x2-64;(3)(x2+y2)2-4x2y2.34.分解因式(1)4x3y-xy3(2)-x2+4xy-4y2.35.分解下列因式:(1)9a2-1(2)p3-16p2+64p.36.因式分解:(1)x2-10xy+25y2(2)3a2-12ab+12b2(3)(x2+y2)2-4x2y2(4)9x4-81y4.37.将下列各式分解因式(1)16a2b2-1(2)12ab-6(a2+b2)38.把下列各式因式分解(1)4a2-16(2)(x2+4)2-16x2.39.把下列多项式因式分解:(1)x3y-2x2y+xy;(2)9a2(x-y)+4b2(y-x).40.分解因式(1)x3-xy2(2)(x+2)(x+4)+1.41.因式分解:-3a3b+6a2b2-3ab3.42.把下列各式分解因式:①4m(x-y)-n(x-y);②2t2-50;③(x2+y2)2-4x2y2.43.因式分解(1)x2-5x-6(2)2ma2-8mb2(3)a3-6a2b+9ab2.44.分解因式:2x2-12x+18.45.分解因式:(1)x3+2x2+x(2)x3y3-xy.46.因式分解:(1)ax2-2ax+a(2)24(a-b)2-8(b-a)47.因式分解:(1)4x2-16y2(2)x2-10x+25.48.分解因式(1)m(a-3)+2(3-a)(2)x2-6x+9.49.因式分解:6xy2-9x2y-y2.50.分解因式(1)x2(a+b)-a-b(2)a3b-2a2b2+ab3(3)y4-3y3-4y2(4)-(a2+2)2+6(a2+2)-9.用公式法进行因式分解答案和解析【答案】1.x(y+4)22.4(m+3)(m-3)5.a (2x +3y )(2x -3y )6.2x 2(1+4x )(1-4x )7.b (a -2)28.m (x +2)(x -2)9.a (ab -1)10.2a (x +2)(x -2)11.2(m +2)(m -2)12.m (a +b )213.b (a +b )(a -b )14.(x -y )(x +y -1)15.axy (x +12)(x -12)16.3(y +2)(y -2)17.n (m -3)218.b (a -12)219.-a (a -b )220.b (a +2)221.解:(1)原式=a 2(a -b )-4b 2(a -b )=(a -b )(a 2-4b 2)=(a -b )(a +2b )(a -2b );(2)原式=(m 2+1)(m 2-1)=(m 2+1)(m +1)(m -1);(3)原式=-3a (4a 2-4a +1)=-3a (2a -1)2.22.解:(1)原式=3xy (2x -3);(2)原式=(2a +1)(2a -1);(3)原式=n (n 2-6n +9)=n (n -3)2.23.解:(1)原式=a (p -q +m );(2)原式=(a +2)(a -2);(3)原式=(a -1)2;(4)原式=a (x 2+2xy +y 2)=a (x +y )2.24.解:(1)原式=14x (1+4y +4y 2)=14x (1+2y )2;(2)原式=(m +n )[(m +n )2-4]=(m +n )(m +n +2)(m +n -2).25.解:(1)原式=x (x -2)+3(x -2)=(x -2)(x +3);(2)原式=(x -5)2.26.解:(1)原式=a (a 2-6a +5)=a (a -1)(a -5);(2)原式=(x 2+x +x +1)(x 2+x -x -1)=(x +1)2(x +1)(x -1);(3)原式=4(x 2-4xy +4y 2)=4(x -2y )2.27.解:(1)原式=(x +y )(x -y );(2)原式=-b (4a 2-4ab +b 2)=-b (2a -b )2.28.解:(1)原式=x (x 2-16)=x (x +4)(x -4);(2)原式=2(4a 2-4a +1)=2(2a -1)2.29.解:(1)原式=3(m 4-16)=3(m 2+4)(m +2)(m -2);30.解:(1)原式=2x(x-2);(2)原式=(x-y)(a2-9b2)=(x-y)(a+3b)(a-3b);(3)原式=-b(b2-4ab+4a2)=-b(2a-b)2;(4)原式=(y2-1)2-6(y2-1)+9=(y2-4)2=(y+2)2(y-2)2.31.解:(1)原式=3(a2+2ab+b2)=3(a+b)2;(2)原式=[3(m+n)+m-n][3(m+n)-(m-n)]=(4m+2n)(2m+4n)=4(2m+n)(m+2n).32.解:(1)原式=a(x-y)+b(x-y)=(x-y)(a+b);(2)原式=3a(x2-4y2)=3a(x+2y)(x-2y);(3)原式=(x+y)2+4(x+y)+4=(x+y+2)2.33.解:(1)原式=a(x-y)+b(x-y)=(x-y)(a+b);(2)原式=16(x2-4)=16(x+2)(x-2);(3)原式=(x2+y2+2xy)(x2+y2-2xy)=(x+y)2(x-y)2.34.解:(1)原式=4xy(x2-y2)=4xy(x+y)(x-y);(2)原式=-(x2-4xy+4y2)=-(x-2y)2.35.解:(1)原式=(3a+1)(3a-1);(2)原式=p(p2-16p+64)=p(p-8)2.36.解:(1)原式=(x-5y)2;(2)原式=3(a2-4ab+4b2)=3(a-2b)2;(3)原式=(x2+y2+2xy)(x2+y2-2xy)=(x+y)2(x-y)2;(4)原式=9(a2+3y2)(x2-3y2).37.解:(1)原式=(4ab+1)(4ab-1);(2)原式=-6(a2-2ab+b2)=-6(a-b)2.38.解:(1)原式=4(a2-4)=4(a+2)(a-2);(2)原式=(x2+4+4x)(x2+4-4x)=(x-2)2(x+2)2.39.解:(1)原式=xy(x2-2x+1)=xy(x-1)2;(2)原式=9a2(x-y)-4b2(x-y)=(x-y)(3a+2b)(3a-2b).40.解:(1)原式=x(x2-y2)=x(x+y)(x-y);(2)原式=(x+3)2.41.解:原式=-3ab(a2-2ab+b2)=-3ab(a-b)2.42.解:①4m(x-y)-n(x-y)=(x-y)(4m-n);②2t2-50=2(t2-25)=2(t+5)(t-5);③(x2+y2)2-4x2y2=(x2+y2+2xy)(x2+y2-2xy)=(x+y)2(x-y)2.43.解:(1)原式=(x-6)(x+1);(2)原式=2m(a2-4b2)=2m(a+2b)(a-2b);(3)原式=a(a2-6ab+9b2)=a(a-3b)2.44.解:原式=2(x2-6x+9)=2(x-3)2.45.解:(1)原式=x(x2+2x+1)=x(x+1)2;(2)原式=xy(x2y2-1)=xy(xy+1)(xy-1).(2)原式=24(a-b)2+8(a-b)=8(a-b)[3(a-b)+1]=8(a-b)(3a-3b+1).47.解:(1)原式=(2x+4y)(2x-4y);(2)原式=(x-5)2.48.解:(1)原式=m(a-3)-2(a-3)=(a-3)(m-2);(2)原式=(x-3)2.49.解:原式=-y(9x2-6xy+y).50.解:(1)原式=x2(a+b)-(a+b)=(a+b)(x2-1)=(a+b)(x+1)(x-1);(2)原式=ab(a2-2ab+b2)=ab(a-b)2;(3)原式=y2(y2-3y-4)=y2(y-4)(y+1);(4)原式=-[(a2+2)-3]2=-(a-1)2(a+1)2.。

人教版八年级数学上册14.3因式分解 (培优) 专练(含答案解析)

 人教版八年级数学上册14.3因式分解 (培优) 专练(含答案解析)

人教版八年级数学上册:14.3因式分解(培优)专练习题一.选择题(共12小题)1.已知a,b,c是正整数,a>b,且a2﹣ab﹣ac+bc=11,则a﹣c等于( )A.﹣1B.﹣1或﹣11C.1D.1或112.已知d=x4﹣2x3+x2﹣12x﹣5,则当x2﹣2x﹣5=0时,d的值为( )A.25B.20C.15D.103.将a3b﹣ab进行因式分解,正确的是( )A.a(a2b﹣b)B.ab(a﹣1)2C.ab(a+1)(a﹣1)D.ab(a2﹣1)4.已知:a=﹣226x+2017,b=﹣226x+2018,c=﹣226x+2019,请你巧妙的求出代数式a2+b2+c2﹣ab﹣bc﹣ca的值( )A.3B.2C.1D.05.已知a+b=3,ab=1,则多项式a2b+ab2﹣a﹣b的值为( )A.﹣1B.0C.3D.66.已知496﹣1可以被60到70之间的某两个整数整除,则这两个数是( )A.61,63B.63,65C.65,67D.63,647.对于算式20183﹣2018,下列说法错误的是( )A.能被2016整除B.能被2017整除C.能被2018整除D.能被2019整除8.已知a=2018x+2018,b=2018x+2019,c=2018x+2020,则a2+b2+c2﹣ab﹣ac﹣bc的值是( )A.0B.1C.2D.39.分解因式b2(x﹣3)+b(x﹣3)的正确结果是( )A.(x﹣3)(b2+b)B.b(x﹣3)(b+1)C.(x﹣3)(b2﹣b)D.b(x﹣3)(b﹣1)10.多项式x2+7x﹣18因式分解的结果是( )A.(x﹣1)(x+18)B.(x+2)(x+9)C.(x﹣3)(x+6)D.(x﹣2)(x+9)11.若k为任意整数,且993﹣99能被k整除,则k不可能是( )A.50B.100C.98D.9712.任何一个正整数n都可以写成两个正整数相乘的形式,我们把两个乘数的差的绝对值最小的一种分解n=p×q(p≤q)称为正整数n的最佳分解,并定义一个新运算.例如:12=1×12=2×6=3×4,则.那么以下结论中:①;②;③若n是一个完全平方数,则F(n)=1;④若n是一个完全立方数(即n=a3,a是正整数),则.正确的个数为( )A.1个B.2个C.3个D.4个二.填空题(共6小题)13.已知a=,b=,c=,则代数式2(a2+b2+c2﹣ab﹣bc﹣ac)的值是 .14.已知a=2005x+2006,b=2005x+2007,c=2005x+2008,则a2+b2+c2﹣ab﹣ac﹣bc= .15.已知a,b,c满足a+b+c=1,a2+b2+c2=3,a3+b3+c3=5.则a4+b4+c4的值是 .16.已知ab=3,a+b=5,则a3b+2a2b2+ab3的值 .17.已知x,y,z是△ABC的三边,且满足2xy+x2=2yz+z2,则△ABC的形状是 .18.已知a2+a﹣1=0,则a3+2a2+2019= .三.解答题(共5小题)19.因式分解:a2﹣2ab+b2﹣1.20.因式分解.(1)a2(x+y)﹣4b2(x+y)(2)p2(a﹣1)+p(1﹣a)(3).21.已知a,b,c为△ABC的三边,且满足a2c2﹣b2c2=a4﹣b4,试判定△ABC的形状.22.观察下列各式.①4×1×2+1=(1+2)2;②4×2×3+1=(2+3)2;③4×3×4+1=(3+4)2…(1)根据你观察、归纳,发现的规律,写出4×2016×2017+1可以是哪个数的平方?(2)试猜想第n个等式,并通过计算验证它是否成立.(3)利用前面的规律,将4(x2+x)(x2+x+1)+1因式分解.23.定义:若数p可以表示成P=x2+y2﹣xy(x,y为自然数)的形式,则称P为“希尔伯特”数.例如:3=22+11﹣2×1,39=72+52﹣7×5,147=132+112﹣13×11…所以3,39,147是“希尔伯特”数.(1)请写出两个10以内的“希尔伯特”数.(2)像39,147这样的“希尔伯特”数都是可以用连续两个奇数按定义给出的运算表达出来,试说明所有用连续两个奇数表达出的“希尔伯特”数一定被4除余3.(3)已知两个“希尔伯特”数,它们都可以用连续两个奇数按定义给出的运算表达出来,且它们的差是224,求这两个“希尔伯特”数.人教版八年级数学上册14.3因式分解培优专练习题参考答案与试题解析一.选择题(共12小题)1.已知a,b,c是正整数,a>b,且a2﹣ab﹣ac+bc=11,则a﹣c等于( )A.﹣1B.﹣1或﹣11C.1D.1或11【解答】解:a2﹣ab﹣ac+bc=11(a2﹣ab)﹣(ac﹣bc)=11a(a﹣b)﹣c(a﹣b)=11(a﹣b)(a﹣c)=11∵a>b,∴a﹣b>0,a,b,c是正整数,∴a﹣b=1或11,a﹣c=11或1.故选:D.2.已知d=x4﹣2x3+x2﹣12x﹣5,则当x2﹣2x﹣5=0时,d的值为( )A.25B.20C.15D.10【解答】解法一:∵x2﹣2x﹣5=0,∴x2=2x+5,∴d=x4﹣2x3+x2﹣12x﹣5,=(2x+5)2﹣2x(2x+5)+x2﹣12x﹣5=4x2+20x+25﹣4x2﹣10x+x2﹣12x﹣5=x2﹣2x﹣5+25=25.解法二:∵x2﹣2x﹣5=0,∴x2﹣2x=5,∴d=x4﹣2x3+x2﹣12x﹣5=x2(x2﹣2x+1)﹣12x﹣5=6x2﹣12x﹣5=6(x2﹣2x)﹣5=6×5﹣5=25.故选:A.3.将a3b﹣ab进行因式分解,正确的是( )A.a(a2b﹣b)B.ab(a﹣1)2C.ab(a+1)(a﹣1)D.ab(a2﹣1)【解答】解:a3b﹣ab=ab(a2﹣1)=ab(a+1)(a﹣1),故选:C.4.已知:a=﹣226x+2017,b=﹣226x+2018,c=﹣226x+2019,请你巧妙的求出代数式a2+b2+c2﹣ab﹣bc﹣ca的值( )A.3B.2C.1D.0【解答】解:∵a=﹣226x+2017,b=﹣226x+2018,c=﹣226x+2019,∴a﹣b=﹣1,b﹣c=﹣1,a﹣c=﹣2,∴a2+b2+c2﹣ab﹣bc﹣ca======3,故选:A.5.已知a+b=3,ab=1,则多项式a2b+ab2﹣a﹣b的值为( )A.﹣1B.0C.3D.6【解答】解:a2b+ab2﹣a﹣b=(a2b﹣a)+(ab2﹣b)=a(ab﹣1)+b(ab﹣1)=(ab﹣1)(a+b)将a+b=3,ab=1代入,得原式=0.故选:B.6.已知496﹣1可以被60到70之间的某两个整数整除,则这两个数是( )A.61,63B.63,65C.65,67D.63,64【解答】解:利用平方式公式进行分解该数字:496﹣1=(448+1)(448﹣1)=(448+1)(424+1)(424﹣1)=(448+1)(424+1)(412+1)(46+1)(43+1)(43﹣1)=(448+1)(424+1)(412+1)(46+1)×65×63故选:B.7.对于算式20183﹣2018,下列说法错误的是( )A.能被2016整除B.能被2017整除C.能被2018整除D.能被2019整除【解答】解:20183﹣2018=2018(20182﹣1)=2018×(2018+1)(2018﹣1)=2018×2019×20172018×2019×2017能被2017、2018、2019整除,不能被2016整除.故选:A.8.已知a=2018x+2018,b=2018x+2019,c=2018x+2020,则a2+b2+c2﹣ab﹣ac﹣bc的值是( )A.0B.1C.2D.3【解答】解:∵a=2018x+2018,b=2018x+2019,c=2018x+2020,∴a﹣b=﹣1,a﹣c=﹣2,b﹣c=﹣1,∴a2+b2+c2﹣ab﹣ac﹣bc=====3,故选:D.9.分解因式b2(x﹣3)+b(x﹣3)的正确结果是( )A.(x﹣3)(b2+b)B.b(x﹣3)(b+1)C.(x﹣3)(b2﹣b)D.b(x﹣3)(b﹣1)【解答】解:b2(x﹣3)+b(x﹣3),=b(x﹣3)(b+1).故选:B.10.多项式x2+7x﹣18因式分解的结果是( )A.(x﹣1)(x+18)B.(x+2)(x+9)C.(x﹣3)(x+6)D.(x﹣2)(x+9)【解答】解:原式=(x﹣2)(x+9).故选:D.11.若k为任意整数,且993﹣99能被k整除,则k不可能是( )A.50B.100C.98D.97【解答】解:∵993﹣99=99×(992﹣1)=99×(99+1)×(99﹣1)=99×100×98,∴k可能是99、100、98或50,故选:D.12.任何一个正整数n都可以写成两个正整数相乘的形式,我们把两个乘数的差的绝对值最小的一种分解n=p×q(p≤q)称为正整数n的最佳分解,并定义一个新运算.例如:12=1×12=2×6=3×4,则.那么以下结论中:①;②;③若n是一个完全平方数,则F(n)=1;④若n是一个完全立方数(即n=a3,a是正整数),则.正确的个数为( )A.1个B.2个C.3个D.4个【解答】解:依据新运算可得①2=1×2,则,正确;②24=1×24=2×12=3×8=4×6,则,正确;③若n是一个完全平方数,则F(n)=1,正确;④若n是一个完全立方数(即n=a3,a是正整数),如64=43=8×8,则F(n)不一定等于,故错误.故选:C.二.填空题(共6小题)13.已知a=,b=,c=,则代数式2(a2+b2+c2﹣ab﹣bc﹣ac)的值是 6 .【解答】解:a﹣b=﹣1,a﹣c=﹣2,b﹣c=﹣1,2(a2+b2+c2﹣ab﹣bc﹣ac)=2a2+2b2+2c2﹣2ab﹣2bc﹣2ac=(a﹣b)2+(a﹣c)2+(b﹣c)2=(﹣1)2+(﹣4)2+(﹣1)2=1+4+1=6故答案为6.14.已知a=2005x+2006,b=2005x+2007,c=2005x+2008,则a2+b2+c2﹣ab﹣ac﹣bc= 3 .【解答】解:∵a=2005x+2006,b=2005x+2007,c=2005x+2008,∴a﹣b=﹣1,a﹣c=﹣2,b﹣c=﹣1,则原式=(2a2+2b2+2c2﹣2ab﹣2ac﹣2bc)=[(a﹣b)2+(a﹣c)2+(b﹣c)2]=3.故答案为:3.15.已知a,b,c满足a+b+c=1,a2+b2+c2=3,a3+b3+c3=5.则a4+b4+c4的值是 .【解答】解:∵(a+b+c)2=a2+b2+c2+2(ab+bc+ac),a+b+c=1,a2+b2+c2=3,∴1=3+2(ab+bc+ac),∴ab+bc+ac=﹣1,∵a3+b3+c3﹣3abc=(a+b+c)(a2+b2+c2﹣ab﹣bc﹣ac),a3+b3+c3=5∴5﹣3abc=3+1∴abc=,∵(ab+bc+ac)2=a2b2+b2c2+a2c2+2abc(a+b+c)∴1=a2b2+b2c2+a2c2+∴a2b2+b2c2+a2c2=∵(a2+b2+c2)2=a4+b4+c4+2(a2b2+b2c2+a2c2)∴9=a4+b4+c4+∴a4+b4+c4=.故答案为:.16.已知ab=3,a+b=5,则a3b+2a2b2+ab3的值 75 .【解答】解:∵a3b+2a2b2+ab3=ab(a2+2ab+b2)=ab(a+b)2又已知ab=3,a+b=5,∴原式=3×52=75故答案为:75.17.已知x,y,z是△ABC的三边,且满足2xy+x2=2yz+z2,则△ABC的形状是 等腰三角形 .【解答】解:∵2xy+x2=2yz+z2,∴2xy+x2﹣2yz﹣z2=0,因式分解得:(x﹣z)(x+z+2y)=0,∵x,y,z是△ABC的三边,∴x+z+2y≠0,∴x﹣z=0,∴x=z,∴△ABC是等腰三角形;故答案为:等腰三角形.18.已知a2+a﹣1=0,则a3+2a2+2019= 2020 .【解答】解:∵a2+a﹣1=0∴a2+a=1∴a3+a2=a又∵a3+2a2+2019=a3+a2+a2+2019=a+a2+2019=1+2019=2020∴a3+2a2+2019=2020三.解答题(共5小题)19.因式分解:a2﹣2ab+b2﹣1.【解答】解:a2﹣2ab+b2﹣1,=(a﹣b)2﹣1,=(a﹣b+1)(a﹣b﹣1).20.因式分解.(1)a2(x+y)﹣4b2(x+y)(2)p2(a﹣1)+p(1﹣a)(3).【解答】解:(1)原式=(x+y)(a2﹣4b2)=(x+y)(a+2b)(a﹣2b);(2)原式=(a﹣1)(p2﹣p)=p(a﹣1)(p﹣1);(3)原式===.21.已知a,b,c为△ABC的三边,且满足a2c2﹣b2c2=a4﹣b4,试判定△ABC的形状.【解答】解:∵a2c2﹣b2c2=a4﹣b4,∴a4﹣b4﹣a2c2+b2c2=0,∴(a4﹣b4)﹣(a2c2﹣b2c2)=0,∴(a2+b2)(a2﹣b2)﹣c2(a2﹣b2)=0,∴(a2+b2﹣c2)(a2﹣b2)=0得:a2+b2=c2或a=b,或者a2+b2=c2且a=b,即△ABC为直角三角形或等腰三角形或等腰直角三角形.22.观察下列各式.①4×1×2+1=(1+2)2;②4×2×3+1=(2+3)2;③4×3×4+1=(3+4)2…(1)根据你观察、归纳,发现的规律,写出4×2016×2017+1可以是哪个数的平方?(2)试猜想第n个等式,并通过计算验证它是否成立.(3)利用前面的规律,将4(x2+x)(x2+x+1)+1因式分解.【解答】解:(1)根据观察、归纳、发现的规律,得到4×2016×2017+1=(2016+2017)2=40332;(2)猜想第n个等式为4n(n+1)+1=(2n+1)2,理由如下:∵左边=4n(n+1)+1=4n2+4n+1,右边=(2n+1)2=4n2+4n+1,∴左边=右边,∴4n(n+1)+1=(2n+1)2;(3)利用前面的规律,可知4(x2+x)(x2+x+1)+1=(x2+x+x2+x+1)2=(x2+2x+1)2=(x+1)4.23.定义:若数p可以表示成P=x2+y2﹣xy(x,y为自然数)的形式,则称P为“希尔伯特”数.例如:3=22+11﹣2×1,39=72+52﹣7×5,147=132+112﹣13×11…所以3,39,147是“希尔伯特”数.(1)请写出两个10以内的“希尔伯特”数.(2)像39,147这样的“希尔伯特”数都是可以用连续两个奇数按定义给出的运算表达出来,试说明所有用连续两个奇数表达出的“希尔伯特”数一定被4除余3.(3)已知两个“希尔伯特”数,它们都可以用连续两个奇数按定义给出的运算表达出来,且它们的差是224,求这两个“希尔伯特”数.【解答】解:(1)∵0=02+02×0,1=12+02﹣1×0,3=22+11﹣2×1,4=22+02﹣2×0,7=22+32﹣2×3,9=32+02﹣3×0,∴10以内的“希尔伯特”数有0,1,3,4,7,9;(2)设“希尔伯特”数为(2n+1)2+(2n﹣1)2﹣(2n+1)(2n﹣1).(n为自然数)∵(2n+1)2+(2n﹣1)2﹣(2n+1)(2n﹣1)=4n2+3,∵4n2能被4整除,∴所有用连续两个奇数表达出的“希尔伯特”数一定被4除余3.(3)设两个“希尔伯特”数分别为:(2m+1)2+(2m﹣1)2﹣(2m+1)(2m﹣1)和(2n+1)2+(2n﹣1)2﹣(2n+1)(2n﹣1).(m,n为自然数).由题意:(2m+1)2+(2m﹣1)2﹣(2m+1)(2m﹣1)﹣[(2n+1)2+(2n﹣1)2﹣(2n+1)(2n﹣1)]=224,∴m2﹣n2=56,∴(m+n)(m﹣n)=56,可得整数解:或,∴这两个“希尔伯特”数分别为:327和103或903和679.。

人教版八年级数学上册因式分解专项练习(含知识点)

人教版八年级数学上册因式分解专项练习(含知识点)

八年级数学因式分解专项练习一、填空题:1、=-222y y x ; 2、=+-3632a a3、2x ²-4xy -2x = (x -2y -1)4、4a ³b ²-10a ²b ³ = 2a ²b ² ( )5、(1-a)mn +a -1=( )(mn -1)6、m(m -n)²-(n -m)²=( )( )7、x ²-( )+16y ² =( ) ²8、a ²-4(a -b)²=( )·( )9、16(x -y)²-9(x +y)² =( )·( ) 10、(a +b)³-(a +b)=(a +b)·( )·( ) 11、x ²+3x +2=( )( )12、已知x ²+px +12=(x -2)(x -6),则p= 13、若。

=,,则b a b b a ==+-+-0122214、若()22416-=+-x mx x ,那么m=15、如果。

,则=+=+-==+2222,7,0y x xy y x xy y x16、已知31=+a a ,则221a a +的值是 17、如果2a+3b=1,那么3-4a-6b=18、若n mx x ++2是一个完全平方式,则n m 、的关系是 19、分解因式:2212a b ab -+-=20、如果()()22122163a b a b +++-=,那么a b +的值为二、选择题:21、下列各式从左到右的变形中,是因式分解的为............( )A 、bx ax b a x -=-)(B 、222)1)(1(1y x x y x ++-=+- C 、)1)(1(12-+=-x x xD 、c b a x c bx ax ++=++)(22、一个多项式分解因式的结果是)2)(2(33b b -+,那么这个多项式是.................................................( )A 、46-bB 、64b -C 、46+bD 、46--b23、下列各式是完全平方式的是...........................( ) A 、412+-x xB 、21x +C 、1++xy xD 、122-+x x24、把多项式)2()2(2a m a m -+-分解因式等于...............( ) A 、))(2(2m m a +- B 、))(2(2m m a --C 、m(a-2)(m-1)D 、m(a-2)(m+1)25、2222)(4)(12)(9b a b a b a ++-+-因式分解的结果是.........( ) A 、2)5(b a - B 、2)5(b a + C 、)23)(23(b a b a +- D 、2)25(b a -26、下列多项式中,含有因式)1(+y 的多项式是.............( )A 、2232x xy y --B 、22)1()1(--+y yC 、)1()1(22--+y yD 、1)1(2)1(2++++y y 27、分解因式14-x 得....................................( ) A 、)1)(1(22-+x x B 、22)1()1(-+x x C 、)1)(1)(1(2++-x x x D 、3)1)(1(+-x x28、已知多项式c bx x ++22分解因式为)1)(3(2+-x x ,则c b ,的值为.................................................( ) A 、1,3-==c b B 、2,6=-=c b C 、4,6-=-=c b D 、6,4-=-=c b29、c b a 、、是△ABC 的三边,且bc ac ab c b a ++=++222,那么△ABC 的形状是.............................................( ) A 、直角三角形 B 、等腰三角形 C 、等腰直角三角形 D 、等边三角形30、()()22x a x ax a -++的计算结果是....................( )(A)、3232x ax a +-(B)、33x a -(C)、3232x a x a +-(D)、222322x ax a a ++-31、用提提公因式法分解因式5a(x -y)-10b ·(x -y),提出的公因式应当为...........................................( ) A 、5a -10b B 、5a +10b C 、5(x -y) D 、y -x32、把-8m ³+12m ²+4m 分解因式,结果是..................( ) A 、-4m(2m ²-3m) B 、-4m(2m ²+3m -1) C 、-4m(2m ²-3m -1) D 、-2m(4m ²-6m +2) 33、把16-x4分解因式,其结果是..........................( ) A 、(2-x)4 B 、(4+x ²)( 4-x ²) C 、(4+x ²)(2+x)(2-x) D 、(2+x)³(2-x)34、把a4-2a ²b ²+b4分解因式,结果是......................( ) A 、a ² (a ²-2b ²)+b4 B 、(a ²-b ²)² C 、(a -b)4 D 、(a +b)²(a -b)²35、把多项式2x ²-2x +21分解因式,其结果是..............( )A 、(2x -21)²B 、2(x -21)²C 、(x -21)²D 、21(x -1) ²36、若9a ²+6(k -3)a +1是完全平方式,则 k 的值是.........( ) A 、±4 B 、±2 C 、3 D 、4或237、-(2x -y )(2x +y)是下列哪个多项式分解因式的结果...( ) A 、4x ²-y ² B 、4x ²+y ² C 、-4x ²-y ² D 、-4x ²+y ²38、多项式x2+3x -54分解因式为........................( ) A 、(x +6)(x -9) B 、(x -6)(x +9)C 、(x +6)(x +9)D 、 (x -6)(x -9)39、若a 、b 、c 为一个三角形的三边,则代数式(a -c )²-b ²的值为.................................................( ) A 、一定为正数 B 、一定为负数 C 、可能为正数,也可能为负数 D 、可能为零40、下列分解因式正确的是..............................( )(A)32(1)x x x x -=-. (B)26(3)(2)m m m m +-=+-. (C)2(4)(4)16a a a +-=-. (D)22()()x y x y x y +=+-. 41、如图:矩形花园ABCD 中,a AB =,b AD =, 花园中建有一条矩形道路LMPQ 及一条平行 四边形道路RSTK 。

2022-2023学年人教版八年级数学上册《14-3因式分解》解答题专题提升训练(附答案)

2022-2023学年人教版八年级数学上册《14-3因式分解》解答题专题提升训练(附答案)

2022-2023学年人教版八年级数学上册《14.3因式分解》解答题专题提升训练(附答案)1.分解因式:(1)5x2﹣5y2;(2)m3+6m2+9m.2.因式分解:(1)2a2b﹣a3﹣ab2;(2)9(a﹣b)2﹣(a+b)2.3.分解因式:(1)a2(b﹣2)+(2﹣b);(2)2x2+2x+.4.把下列各式因式分解:(1)﹣6x2+4xy;(2)3a2+12a+12;(3)2x(a﹣2)﹣y(2﹣a);(4)4a4﹣16a2.5.因式分解(1)a3﹣2a2b+ab2(2)4(m+n)2﹣(m﹣n)2(3)x2﹣2x﹣15(4)1﹣a2﹣4b2+4ab6.已知a+b=,ab=﹣,求代数式a3b+2a2b2+ab3的值.7.(1)因式分解:2a2(a﹣b)﹣8(a﹣b);(2)利用因式分解简化计算:2002﹣400×199+1992.8.观察下面的因式分解过程:am+an+bm+bn=(am+an)+(bm+bn)=a(m+n)+b(m+n)=(m+n)(a+b)利用这种方法解决下列问题:(1)因式分解:2a+6b﹣3am﹣9bm(2)△ABC三边a,b,c满足a2﹣ac﹣ab+bc=0,判断△ABC的形状.9.下面是某同学对多项式(x2﹣3x+4)(x2﹣3x+6)+1进行因式分解的过程.解:设x2﹣3x=m原式=(m+4)(m+6)+1(第一步)=m2+10m+25(第二步)=(m+5)2(第三步)=(x2﹣3x+5)2(第四步)回答下列问题:(1)该同学第二步到第三步运用了因式分解的.A.提取公因式;B.平方差公式;C.完全平方公式(2)请你模仿以上方法尝试对多项式(x2+2x)(x2+2x+6)+9进行因式分解.(3)因式分解:(x2﹣4x+6)(x2﹣4x+2)+4=(在横线处直接写出因式分解的结果).10.△ABC三边a、b、c满足a2+c2+2b2﹣2ab﹣2bc=0,判断△ABC的形状,并说明理由.11.常用的分解因式的方法有提取公因式法、公式法及十字相乘法.但有更多的多项式只用上述方法就无法分解,如x2﹣4y2﹣2x+4y,我们细心观察这个式子就会发现,前两项符合平方差公式,后两项可提取公因式,前后两部分分别分解因式后会产生公因式,然后提取公因式就可以完成整个式子的分解因式了.过程为:x2﹣4y2﹣2x+4y=(x+2y)(x ﹣2y)﹣2(x﹣2y)=(x﹣2y)(x+2y﹣2).这种分解因式的方法叫分组分解法.利用这种方法解决下列问题:(1)分解因式x2﹣2xy+y2﹣16;(2)已知:x+y=7,x﹣y=5.求:x2﹣y2﹣2y+2x的值.(3)△ABC三边a,b,c满足a2﹣ab﹣ac+bc=0,判断△ABC的形状.12.下面是某同学对多项式(x2﹣4x+2)(x2﹣4x+6)+4进行因式分解的过程.解:设x2﹣4x=a,则原式=(a+2)(a+6)+4(第一步)=a2+8a+16(第二步)=(a+4)2(第三步)=(x2﹣4x+4)2(第四步)回答下列问题:(1)该同学第二步到第三步运用了因式分解的A.提取公因式B.平方差公式C.两数和的完全平方公式D.两数差的完全平方公式(2)该同学因式分解的结果是否彻底?.(填“彻底”或“不彻底”)若彻底,直接跳到第(3)问;若不彻底,请先直接写出因式分解的最后结果:.(3)请你模仿以上方法尝试对多项式(x2﹣2x)(x2﹣2x+2)+1进行因式分解.13.甲、乙两个同学因式分解x2+ax+b时,甲看错了a,分解结果为(x+4)(x﹣8),乙看错了b,分解结果为(x﹣2)(x+6).求多项式x2+ax+b分解因式的正确结果.14.阅读下面材料完成分解因式.x2+(p+q)x+pq型式子的因式分解x2+(p+q)x+pq=x2+px+qx+pq=(x2+px)+(qx+pq)=x(x+p)+q(x+p)=(x+P)(x+q)这样,我们得到x2+(p+q)x+pq=(x+p)(x+q).利用上式可以将某些二次项系数为1的二次三项式分解因式例把x2+3x+2分解因式分析:x2+3x+2中的二次项系数为1,常数项2=1×2,一次项系数3=1+2,这是一个x2+(p+q)x+pq型式子.解:x2+3x+2=x2+(1+2)x+2=(x+1)(x+2)请仿照上面的方法将下列多项式分解因式,(1)x2+10x+24;.(2)3a2﹣3ab﹣36b2.15.因为x2+2x﹣3=(x+3)(x﹣1),这说明多项式x2+2x﹣3有一个因式为x﹣1,我们把x =1代入此多项式发现x=1能使多项式x2+2x﹣3的值为0.利用上述阅读材料求解:(1)若x﹣3是多项式x2+kx+12的一个因式,求k的值;(2)若(x﹣3)和(x﹣4)是多项式x3+mx2+12x+n的两个因式,试求m,n的值.(3)在(2)的条件下,把多项式x3+mx2+12x+n因式分解.16.把下列各多项式因式分解:(1)﹣3x3y2+6x2y3﹣3xy4;(2)3x(a﹣b)﹣6y(b﹣a);(3)18b(a﹣b)2+12(b﹣a)3;(4)(x2+16y2)2﹣64x2y2;(5)(m2﹣5)2+8(m2﹣5)+16;(6)16x4﹣72x2y2+81y4.17.先阅读,再分解因式x3﹣1=x3﹣x2+x2﹣1=x2(x﹣1)+(x+1)(x﹣1)=(x﹣1)(x2+x+1)参考上述做法,将下列多项式因式分解(1)a3+1(2)a4+4.18.先阅读下列材料,再解答下列问题:材料:因式分解:(x+y)2+2(x+y)+1.解:将“x+y”看成整体,设x+y=m,则原式=m2+2m+1=(m+1)2.再将x+y=m代入,得原式=(x+y+1)2.上述解题用到的是“整体思想”,“整体思想”是数学解题中常用的一种思想方法.请你写出下列因式分解的结果:(1)因式分解:1﹣2(x﹣y)+(x﹣y)2=;(2)因式分解:25(a﹣1)2﹣10(a﹣1)+1=;(3)因式分解:(y2﹣4y)(y2﹣4y+8)+16=.19.请先阅读下列文字与例题,再回答后面的问题:当因式分解中,无法直接运用提取公因式和乘法公式时,我们往往可以尝试将一个多项式分组后,再运用提取公因式或运用乘法公式继续分解的方法是分组分解法.例如:(1)am+an+bm+bn=(am+an)+(bm+bn)=a(m+n)+b(m+n)=(m+n)(a+b)(2)x2﹣y2﹣2y﹣1=x2﹣(y2+2y+1)=x2﹣(y+1)2=(x+y+1)(x﹣y﹣1)(1)根据上面的知识,我们可以将下列多项式进行分解:ax﹣ay﹣bx+by=()﹣()=()();x2﹣y2+x﹣y=()+()=()()(2)分解下列因式:①ab﹣ac+b﹣c;②﹣4b2+9a2﹣6ac+c2.20.现有足够多的甲、乙、丙三种卡片,如图1所示.(1)选用其中若干张卡片拼成一个长方形(图2).①请用两种不同的方法表示长方形(图2)的面积(用含有a,b的代数式表示).②若b=a,且长方形(图2)的面积是35,求一张乙卡片的面积.(2)若从中取若干张卡片拼成一个面积为4a2+4ab+b2的正方形,求出拼成的正方形的边长.参考答案1.解:(1)原式=5(x2﹣y2)=5(x+y)(x﹣y);(2)原式=m(m2+6m+9)=m(m+3)2.2.解:(1)2a2b﹣a3﹣ab2=﹣a(a2﹣2ab+b2)=﹣a(a﹣b)2;(2)9(a﹣b)2﹣(a+b)2=[3(a﹣b)+(a+b)][3(a﹣b)﹣(a+b)]=(3a﹣3b+a+b)(3a﹣3b﹣a﹣b)=(4a﹣2b)(2a﹣4b)=4(2a﹣b)(a﹣2b).3.解:(1)a2(b﹣2)+(2﹣b)=(b﹣2)(a2﹣1)=(b﹣2)(a+1)(a﹣1);(2)2x2+2x+=(4x2+4x+1)=(2x+1)2.4.解:(1)﹣6x2+4xy=﹣2x(3x﹣2y);(2)3a2+12a+12=3(a2+4a+4)=3(a+2)2;(3)2x(a﹣2)﹣y(2﹣a)=2x(a﹣2)+y(a﹣2)=(a﹣2)(2x+y);(4)4a4﹣16a2=4a2(a2﹣4)=4a2(a+2)(a﹣2).5.解:(1)原式=a(a2﹣2ab+b2)=a(a﹣b)2;(2)原式=[2(m+n)+(m﹣n)][2(m+n)﹣(m﹣n)]=(2m+2n+m﹣n)(2m+2n﹣m+n)=(3m+n)(m+3n);(3)原式=(x+3)(x﹣5);(4)原式=1﹣(a2﹣4ab+4b2)=1﹣(a﹣2b)2=(1+a﹣2b)(1﹣a+2b).6.解:a3b+2a2b2+ab3=a3b+a2b2+a2b2+ab3=a2b(a+b)+ab2(a+b)=(a2b+ab2)(a+b)=ab(a+b)(a+b)∵a+b=,ab=﹣,∴原式=﹣××=﹣;∴代数式a3b+2a2b2+ab3的值是﹣.7.解:(1)2a2(a﹣b)﹣8(a﹣b)=2(a﹣b)(a2﹣4)=2(a﹣b)(a+2)(a﹣2);(2)2002﹣400×199+1992=2002﹣2×200×199+1992=(200﹣199)2=1.8.解:(1)2a+6b﹣3am﹣9bm=(2a+6b)﹣(3am+9bm)=2(a+3b)﹣3m(a+3b)=(a+3b)(2﹣3m);或2a+6b﹣3am﹣9bm=(2a﹣3am)+(6b﹣9bm)=a(2﹣3m)+3b(2﹣3m)=(2﹣3m)(a+3b);(2)∵a2﹣ac﹣ab+bc=0,∴(a2﹣ac)﹣(ab﹣bc)=0,∴a(a﹣c)﹣b(a﹣c)=0,∴(a﹣c)(a﹣b)=0,∴a﹣c=0或a﹣b=0,∴a=c或a=b,∴△ABC是等腰三角形.9.解:(1)该同学第二步到第三步运用了因式分解的完全平方公式.故答案为:C;(2)设x2+2x=y,原式=y(y+6)+9=y2+6y+9=(y+3)2=(x2+2x+3)2;(3)设x2﹣4x+2=z,原式=z(z+4)+4=z2+4z+4=(z+2)2=(x2﹣4x+2+2)2=(x2﹣4x+4)2=[(x﹣2)2]2=(x﹣2)4.故答案为:(x﹣2)4.10.解:∵a2+c2+2b2﹣2ab﹣2bc=(a﹣b)2+(b﹣c)2=0,∴a=b=c,∴△ABC是等边三角形.11.解:(1)x2﹣2xy+y2﹣16=(x﹣y)2﹣42=(x﹣y+4)(x﹣y﹣4);(2)x2﹣y2﹣2y+2x=(x2﹣y2)+(2x﹣2y)=(x﹣y)(x+y+2)∵x+y=7,x﹣y=5,∴原式=(x﹣y)(x+y+2)=5×(7+2)=45;(3)∵a2﹣ab﹣ac+bc=0∴a(a﹣b)﹣c(a﹣b)=(a﹣b)(a﹣c)=0,∴a=b或a=c,∴△ABC是等腰三角形.12.解:(1)从第二步到第三步是两个数和的完全平方式,故选:C.(2)分解因式必须分解到每一个多项式都不能再分解为止,而(x2﹣4x+4)2=(x﹣2)4,故答案为:不彻底,(x﹣2)4.(3)设x2﹣2x=a,则原式=a(a+2)+1=a2+2a+1=(a+1)2=(x2﹣2x+1)2=(x﹣1)4.13.解:∵甲看错了a,分解结果为(x+2)(x+4),但b是正确的,(x+4)(x﹣8)=x2﹣4x﹣32,∴b=﹣32,∵(x﹣2)(x+6)=x2+4x﹣12,乙看错了b,但a是正确的,∴a=4,∴x2+ax+b=x2+4x﹣32=(x+8)(x﹣4).14.解:(1)x2+10x+24=(x+4)(x+6);(2)3a2﹣3ab﹣36b2=3(a2﹣ab﹣12b2)=3(a﹣4b)(a+3b).15.解:(1)∵x﹣3是多项式x2+kx+12的一个因式∴x=3时,x2+kx+12=0∴9+3k+12=0∴3k=﹣21∴k=﹣7∴k的值为﹣7.(2)(x﹣3)和(x﹣4)是多项式x3+mx2+12x+n的两个因式∴x=3和x=4时,x3+mx2+12x+n=0∴解得∴m、n的值分别为﹣7和0.(3)∵m=﹣7,n=0,∴x3+mx2+12x+n可化为:x3﹣7x2+12x ∴x3﹣7x2+12x=x(x2﹣7x+12)=x(x﹣3)(x﹣4)16.解:(1)﹣3x3y2+6x2y3﹣3xy4=﹣3xy2(x2﹣2xy+y2)=﹣3xy2(x﹣y)2;(2)3x(a﹣b)﹣6y(b﹣a)=3x(a﹣b)+6y(a﹣b)=3(a﹣b)(x+2y);(3)18b(a﹣b)2+12(b﹣a)3=18b(a﹣b)2﹣12(a﹣b)3=6(a﹣b)2[3b﹣2(a﹣b)]=6(a﹣b)2(3b﹣2a+2b)=6(a﹣b)2(5b﹣2a);(4)(x2+16y2)2﹣64x2y2;=(x2+16y2)2﹣(8xy)2=(x2+16y2+8xy)(x2+16y2﹣8xy)=(x+4y)2(x﹣4y)2;(5)(m2﹣5)2+8(m2﹣5)+16=(m2﹣5+4)2=(m2﹣1)2=[(m+1)(m﹣1)]2=(m+1)2(m﹣1)2;(6)16x4﹣72x2y2+81y4=(4x2﹣9y2)2=[(2x+3y)(2x﹣3y)]2=(2x+3y)2(2x﹣3y)2.17.解:(1)原式=a3+a2﹣a2﹣1=a2(a+1)﹣(a+1)(a﹣1)=(a+1)(a2﹣a+1);(2)原式=a4+4a2+4﹣4a2=(a2+2)2﹣(2a)2=(a2+2+2a)(a2+2﹣2a).18.解:(1)设x﹣y=a,原式=1﹣2a+a2=(1﹣a)2;将x﹣y=a代入,原式=(1﹣x+y)2;(2)设a﹣1=m,原式=25m2﹣10m+1=(5m﹣1)2;a﹣1=m代入,原式=(5a﹣6)2;(3)设y2﹣4y=a,原式=a(a+8)+16=a2+8a+16=(a+4)2,将y2﹣4y=a代入,原式=(y2﹣4y+4)2=(y﹣2)4.故答案分别为:(1﹣x+y)2;(5a﹣6)2;(y﹣2)4.19.解:(1)ax﹣ay﹣bx+by=(ax﹣ay)﹣(bx﹣by)=(a﹣b)(x﹣y);x2﹣y2+x﹣y=(x﹣y)(x+y)+x﹣y=(x+y+1)(x﹣y)故答案为:ax﹣ay;bx﹣by;(a﹣b);(x﹣y);x2﹣y2;x﹣y;(x+y+1);(x﹣y).(2)①ab﹣ac+b﹣c=a(b﹣c)+(b﹣c)=(a+1)(b﹣c);②﹣4b2+9a2﹣6ac+c2=9a2﹣6ac+c2﹣4b2=(3a﹣c)2﹣(2b)2=(3a﹣c+2b)(3a﹣c﹣2b)20.解:(1)①大长方形的长是(2a+b),宽是(a+b),面积为(2a+b)(a+b);大长方形面积等于图中6个图形的面积和为2a2+3ab+b2;②根据题意得,(2a+b)(a+b)=35,∵b=a,∴a(a+a)=35,∴a=2或﹣2(舍弃)∴b=3,∴ab=6,∴一张乙卡片的面积为6;(2)∵4a2+4ab+b2=(2a+b)2,∴拼成的正方形的边长为2a+b.。

八年级上册数学因式分解(人教版)练习题及答案

八年级上册数学因式分解(人教版)练习题及答案

八年级上册数学因式分解(人教版)练习题及答案因式分解练题一、选择题1.已知y2+my+16是完全平方式,则m的值是()A.8B.4C.±8D.±42.下列多项式能用完全平方公式分解因式的是()A.x2-6x-9B.a2-16a+32C.x2-2xy+4y2D.4a2-4a+13.下列各式属于正确分解因式的是()A.1+4x2=(1+2x)2B.6a-9-a2=-(a-3)2C.1+4m-4m2=(1-2m)2D.x2+xy+y2=(x+y)24.把x4-2x2y2+y4分解因式,结果是()A.(x-y)4B.(x2-y2)4C.[(x+y)(x-y)]2D (x+y)2(x-y)2二、填空题5.已知9x2-6xy+k是完全平方式,则k的值是________.6.9a2+(________)+25b2=(3a-5b)2 7.-4x2+4xy+(_______)=-(_______).8.a2+14a+49=25,则a的值是_________.三、解答题9.把下列各式分化因式:①a2+10a+25②m2-12mn+36n2③xy3-2x2y2+x3y④(x2+4y2)2-16x2y2110.已知x=-19,y=12,求代数式4x2+12xy+9y2的值.11.已知│x-y+1│与x2+8x+16互为相反数,求x2+2xy+y2的值.四、探究题12.你知道数学中的整体思想吗?解题中,•若把注意力和着眼点放在问题的整体上,多方位思考、XXX、探究,进行整体思考、整体变形,•从不同的方面确定解题策略,能使问题迅速获解.你能用整体的思想方法把下列式子分解因式吗?①(x+2y)2-2(x+2y)+1②(a+b)2-4(a+b-1)。

人教版八年级数学上册《14.3 因式分解》同步练习题-带有答案

人教版八年级数学上册《14.3 因式分解》同步练习题-带有答案

人教版八年级数学上册《14.3 因式分解》同步练习题-带有答案一、选择题1.下列各式从左至右是因式分解的是()A.a2−4=(a+2)(a−2)B.x2−y2−1=(x+y)(x−y)−1C.(x+y)2=x2+xy+y2D.(x−y)2=x2+2xy+y22.a2−(b−c)2有一个因式是a+b−c,则另一个因式为()A.a−b−c B.a+b+c C.a+b−c D.a−b+c3.把(a+b)2+4(a+b)+4分解因式得()A.(a+b+1)2B.(a+b−1)2C.(a+b+2)2D.(a+b−2)24.下列各式能用完全平方公式分解因式的有();③m2n2+4−4mn;④a2−2ab+4b2;⑤x2−8x+9①4x2−4xy−y2;②−1−a−a24A.1个B.2个C.3个D.4个5.计算(−2)100+(−2)99的结果为()A.−299B.299C.2100D.-26.把x2+3x+c分解因式得(x+1)(x+2),则c的值是()A.3 B.2 C.-3 D.17.下列因式分解正确的是()A.x2−x=x(x+1)B.a2−3a−4=a(a−3)−4C.a2+b2−2ab=(a+b)2D.x2−y2=(x+y)(x−y)8.若x2-y2=100,x+y=-25,则x-y的值是()A.5 B.4 C.-4 D.以上都不对二、填空题9.2a2与4ab的公因式为.10.因式分解:2m2−4m=.11.一个多项式,把它因式分解后有一个因式为(x+1),请你写出一个符合条件的多项式:。

12.若有理数m使得二次三项式x2+mx+16能用完全平方公式因式分解,则m=.13.当a=3,a-b=1时,代数式a2-ab的值是三、解答题14.因式分解:(1)(2)15.已知,xy=3,求的值.16.生活中我们经常用到密码,例如支付宝支付时.有一种用“因式分解”法产生的密码,方便记忆,其原理是:将一个多项式分解因式,如多项式:x3+2x2﹣x﹣2可以因式分解为(x﹣1)(x+1)(x+2),当x=29时,x﹣1=28,x+1=30,x+2=31,此时可以得到数字密码283031.(1)根据上述方法,当x=15,y=5时,对于多项式x3﹣xy2分解因式后可以形成哪些数字密码?(2)已知一个直角三角形的周长是24,斜边长为11,其中两条直角边分别为x、y,求出一个由多项式x3y+xy3分解因式后得到的密码(只需一个即可).17.下面是某同学对多项式进行因式分解的过程.解:设,原式(第一步),(第二步)(第三步),(第四步)(1)该同学第二步到第三步运用进行因式分解;(2)该同学是否完成了将该多项式因式分解?若没有完成,请直接写出因式分解的最后结果.(3)请你模仿以上方法尝试对多项式进行因式分解.参考答案1.A2.D3.C4.B5.B6.B7.D8.C9.2a10.2m(m−2)11.x2−1(答案不唯一)12.±813.314.(1)解:;(2)解:.15.解:∵,∴原式.16.解:(1)x3﹣xy2=x(x﹣y)(x+y)当x=15,y=5时,x﹣y=10,x+y=20可得数字密码是151020;也可以是152010;101520;102015,201510,201015;(2)由题意得:{x+y=13x2+y2=121解得xy=24 而x3y+xy3=xy(x2+y2)所以可得数字密码为24121.17.(1)完全平方公式(2)否;(3)解:设则原式。

八年级上册数学因式分解题80道

八年级上册数学因式分解题80道

八年级上册数学因式分解题80道一、因式分解练习题(80道)(一)不带解析的题目(60道)1. x^2 - 92. 4x^2 - 163. x^2 - 25y^24. 9x^2 - 15. 16x^2 - 9y^26. x^3 - x7. x^3 - 2x^2+x8. 2x^2 - 89. 3x^2 - 2710. 5x^2 - 12511. x^4 - 112. x^4 - 1613. x^2+6x + 914. x^2+8x+1615. x^2 - 10x + 2516. 4x^2+12x + 917. 9x^2 - 6x+118. 16x^2+24x+919. x^2 - 4x - 520. x^2+2x - 1521. x^2 - 6x - 722. x^2+7x+1023. x^2 - 8x+1224. 2x^2+5x - 325. 3x^2 - 7x+226. 4x^2 - 4x - 327. 5x^2+8x - 428. 6x^2 - 11x+329. x^3+2x^2 - 3x30. x^3 - 3x^2 - 4x31. x^2y - 9y32. x^3y - 4xy33. 2x^2y - 8y34. 3x^3y - 27xy35. x^2(x - y)+y^2(y - x)36. x^3 - x^2 - x+137. x^3+x^2 - x - 138. 2x^3 - 2x^2 - 3x+339. 3x^3+3x^2 - 6x - 640. x^2 - 1 + 2y - y^241. x^2 - y^2 - 2y - 142. x^2+2xy+y^2 - 143. x^2 - 2xy+y^2 - 944. x^4 - 2x^2+145. x^4+2x^2+146. x^4 - 8x^2+1647. x^5 - x^348. x^6 - x^449. x^3y - x^2y^2 - xy^350. 2x^4 - 3251. 3x^4 - 4852. x^3+3x^2+3x + 153. x^3 - 3x^2+3x - 154. x^2(x + 1)-y^2(y + 1)55. x^3+2x^2y+xy^256. x^3 - 2x^2y+xy^257. x^2 - 4xy+4y^2 - 958. x^2+6xy+9y^2 - 1659. x^2 - 5xy+6y^260. x^2+3xy - 10y^2(二)带解析的题目(20道)1. 题目:分解因式x^2 - 9- 解析:这是一个平方差的形式,x^2-9 = x^2 - 3^2=(x + 3)(x - 3)。

最新人教版八年级数学上册因式分解专项复习(含参考答案)

最新人教版八年级数学上册因式分解专项复习(含参考答案)

因式分解专项复习☞解读考点 知 识 点 名师点晴因式分解的概念就是把一个多项式化为几个整式的乘积的形式.因式分解与整式乘法是互逆运算.因式分解是将一个多项式化成几个整式积的形式的恒等变形,若结果不是积的形式,则不是因式分解,还要注意分解要彻底.因式分解的方法1.提取公因式法:ma +mb -mc=m (a+b-c ) 确定好公因式是解题的关键2.公式法:(1)平方差公式:a2-b2=(a+b )(a-b ); (2)完全平方公式:a2±2ab +b2=(a ±b )2.要熟记公式的特点,两项式时考虑平方差公式,三项式进考虑完全平方公式化.3.十字相乘法:x2+(p+q )x+pq=(x+p )(x+q )这个是课后的内容,不做硬性的要求,熟练运用在高中学习就会轻松许多.一定要熟记公式的特点.因式分解的步骤一“提”(取公因式),二“用”(公式). 一“提”(取公因式),二“用”(公式). 要分解到不能在分解为止.☞2年中考 【2015年题组】1.(2015北海)下列因式分解正确的是( )A .24(4)(4)x x x -=+-B .221(2)1x x x x ++=++C .363(6)mx my m x y -=-D .242(2)x x +=+ 【答案】D .考点:1.因式分解-运用公式法;2.因式分解-提公因式法.2.(2015贺州)把多项式22344x y xy x --分解因式的结果是( )A .34()xy x y x --B .2(2)x x y --C .22(44)x xy y x --D .22(44)x xy y x --++ 【答案】B . 【解析】试题分析:原式=22(44)x x xy y --+=2(2)x x y --,故选B .考点:提公因式法与公式法的综合运用.3.(2015宜宾)把代数式3231212x x x -+分解因式,结果正确的是( )A .23(44)x x x -+B .23(4)x x -C .3(2)(2)x x x +-D .23(2)x x -【答案】D . 【解析】试题分析:原式=23(44)x x x -+=23(2)x x -,故选D .考点:提公因式法与公式法的综合运用. 4.(2015毕节)下列因式分解正确的是( ) A .4322269(69)a b a b a b a b a a -+=-+ B .2211()42x x x -+=-C .2224(2)x x x -+=-D .224(4)(4)x y x y x y -=+- 【答案】B . 【解析】试题分析:A .4322269(69)a b a b a b a b a a -+=-+=22(3)a b a -,错误;B .2211()42x x x -+=-,正确;C .224x x -+不能分解,错误;D .224(2)(2)x y x y x y -=+-,错误; 故选B .考点:1.因式分解-运用公式法;2.因式分解-提公因式法.5.(2015临沂)多项式2mx m -与多项式221x x -+的公因式是( ) A .1x - B .1x + C .21x - D .()21x -【答案】A .考点:公因式.6.(2015枣庄)如图,边长为a ,b 的矩形的周长为14,面积为10,则22a b ab +的值为( )A .140B .70C .35D .24 【答案】B . 【解析】试题分析:根据题意得:a+b=14÷2=7,ab=10,∴22a b ab +=ab (a+b )=10×7=70;故选B .考点:因式分解的应用.7.(2015烟台)下列等式不一定成立的是( )A .(0)a a b b b =≠B .3521a a a -•= C .224(2)(2)a b a b a b -=+- D .326(2)4a a -=【答案】A .考点:1.二次根式的乘除法;2.幂的乘方与积的乘方;3.因式分解-运用公式法;4.负整数指数幂.8.(2015杭州)下列各式的变形中,正确的是( )A .22()()x y x y x y ---+=- B .11xx xx --= C .2243(2)1x x x -+=-+ D .21()1x x x x ÷+=+【答案】A . 【解析】试题分析:A .22()()x y x y x y ---+=-,正确;B .211x x xx --=,错误; C .2243(2)1x x x -+=--,错误; D .21()1x x x x ÷+=+,错误;故选A .考点:1.平方差公式;2.整式的除法;3.因式分解-十字相乘法等;4.分式的加减法. 9.(2015南京)分解因式()(4)a b a b ab --+的结果是 .【答案】2(2)a b -.【解析】试题分析:()(4)a b a b ab --+=2254a ab b ab -++=2244a ab b -+=2(2)a b -.故答案为:2(2)a b -.考点:因式分解-运用公式法.10.(2015巴中)分解因式:2242a a -+= .【答案】22(1)a -.【解析】试题分析:原式=22(21)a a -+=22(1)a -.故答案为:22(1)a -.考点:提公因式法与公式法的综合运用.11.(2015绵阳)在实数范围内因式分解:23x y y -= .【答案】)3)(3(-+x x y . 【解析】试题分析:原式=2(3)y x -=)3)(3(-+x x y ,故答案为:)3)(3(-+x x y . 考点:实数范围内分解因式.12.(2015内江)已知实数a ,b 满足:211a a +=,211b b +=,则2015a b-|= .【答案】1.考点:1.因式分解的应用;2.零指数幂;3.条件求值;4.综合题;5.压轴题.13.(2015北京市)分解因式:325105x x x -+= .【答案】25(1)x x -.【解析】试题分析:原式=25(21)x x x -+=25(1)x x -.故答案为:25(1)x x -.考点:提公因式法与公式法的综合运用.14.(2015甘南州)已知210a a --=,则322015a a a --+= .【答案】2015. 【解析】 试题分析:∵210a a --=,∴21a a -=,∴322015a a a --+=2()+2015a a a a --=2015a a -+=2015,故答案为:2015.考点:1.因式分解的应用;2.条件求值;3.代数式求值;4.综合题.15.(2015株洲)因式分解:2(2)16(2)x x x ---= .【答案】(2)(4)(4)x x x -+-. 【解析】试题分析:原式=2(2)(16)x x --=(2)(4)(4)x x x -+-.故答案为:(2)(4)(4)x x x -+-.考点:提公因式法与公式法的综合运用.16.(2015东营)分解因式:2412()9()x y x y +-+-= . 【答案】2(332)x y -+.考点:因式分解-运用公式法.17.(2015菏泽)若2(3)()x x m x x n ++=-+对x 恒成立,则n= .【答案】4. 【解析】试题分析:∵2(3)()x x m x x n ++=-+,∴22(3)3x x m x n x n ++=+--,故31n -=,解得:n=4.故答案为:4.考点:因式分解-十字相乘法等.18.(2015重庆市)如果把一个自然数各数位上的数字从最高位到个位依次排出的一串数字,与从个位到最高位依次排出的一串数字完全相同,那么我们把这样的自然数称为“和谐数”.例如自然数12321,从最高位到个位依次排出的一串数字是:1,2,3,2,1,从个位到最高位依次排出的一串数字仍是:1,2,3,2,1,因此12321是一个“和谐数”,再加22,545,3883,345543,…,都是“和谐数”.(1)请你直接写出3个四位“和谐数”;请你猜想任意一个四位“和谐数”能否被11整除?并说明理由;(2)已知一个能被11整除的三位“和谐数”,设其个位上的数字x (1≤x ≤4,x 为自然数),十位上的数字为y ,求y 与x 的函数关系式.【答案】(1)四位“和谐数”:1221,1331,1111,6666…(答案不唯一),能;(2)y=2x (1≤x ≤4,x 为自然数).考点:1.因式分解的应用;2.规律型:数字的变化类;3.新定义.【2014年题组】1.(2014年常德中考)下面分解因式正确的是()A.x2+2x+1=x(x+2)+1 B. (x2﹣4)x=x3﹣4xC. ax+bx=(a+b)xD. m2﹣2mn+n2=(m+n)2【答案】C.【解析】试题分析:A、x2+2x+1=x(x+2)+1,不是因式分解,故错误;B、(x2﹣4)x=x3﹣4x,不是因式分解,故错误;C、ax+bx=(a+b)x,是因式分解,故正确;D、m2﹣2mn+n2=(m﹣n)2,故错误.故选C.考点:1.因式分解-运用公式法;2.因式分解-提公因式法.2.(2014年海南中考)下列式子从左到右变形是因式分解的是()A.()2a4a21a a421+-=+- B.()()2a4a21a3a7+-=-+C.()()2a3a7a4a21-+=+- D.()22a4a21a225+-=+-【答案】B.考点:因式分解的意义.3.(2014年无锡中考)分解因式:x3﹣4x= .【答案】()() x x2x2+-.【解析】试题分析:()()() 32x4x x x4x x2x2 -=-=+-.考点:提公因式法和应用公式法因式分解.4.(2014年株洲中考)分解因式:x2+3x(x﹣3)﹣9=【答案】(x﹣3)(4x+3).【解析】试题分析: x2+3x(x﹣3)﹣9=x2﹣9+3x(x﹣3)=(x﹣3)(x+3)+3x(x﹣3)=(x﹣3)(x+3+3x)=(x﹣3)(4x+3).考点:因式分解.5.(2014年徐州中考)若ab=2,a﹣b=﹣1,则代数式a2b﹣ab2的值等于.【答案】﹣2.【解析】试题分析:∵ab=2,a﹣b=﹣1,∴a2b﹣ab2=ab(a﹣b)=2×(﹣1)=﹣2.考点:1.求代数式的值;2.提公因式法因式分解;3.整体思想的应用.6.(2014年眉山中考)分解因式:225xy x-=__________________.【答案】x(y+5)(y﹣5).【解析】试题分析:原式=x(y2﹣25)=x(y+5)(y﹣5).考点:提公因式法与公式法的综合运用.7.(2014年绍兴中考)分解因式:2a a- = .【答案】() a a1-.【解析】试题分析:() 2a a a a1-=-.考点:提公因式法因式分解.8.(2014年台州中考)因式分解3a 4a -的结果是 .【答案】()()a a 2a 2+-.考点:提公因式法和应用公式法因式分解.9.(2014年泸州中考)分解因式:23a 6a 3++= .【答案】()23a 1+.【解析】 试题分析:()()2223a 6a 33a 2a 13a 1++=++=+.考点:提公因式法和应用公式法因式分解.10.(2014年北海中考)因式分解:x2y ﹣2xy2= . 【答案】()xy x 2y -.【解析】 试题分析:()22x y 2xy xy x 2y -=-.考点:提公因式法因式分解. ☞考点归纳归纳 1:因式分解的有关概念 基础知识归纳:因式分解:把一个多项式化成几个整式的积的形式,叫做因式分解,因式分解与整式乘法是互逆运算. 注意问题归纳:符合因式分解的等式左边是多项式,右边是整式积的形式. 2.因式分解与整式乘法是互逆运算.【例1】下列式子从左到右变形是因式分解的是( )()2a 4a 21a a 421+-=+- B .()()2a 4a 21a 3a 7+-=-+ C .()()2a 3a 7a 4a 21-+=+- D .()22a 4a 21a 225+-=+-【答案】B .考点:因式分解的有关概念.归纳 2:提取公因式法分解因式基础知识归纳:将多项式各项中的公因式提出来这个方法是提公因式法,公因式系数是各项系数的最大公约数,相同字母取最低次幂.提取公因式法:ma+mb-mc=m(a+b-c)注意问题归纳:提公因式要注意系数;要注意查找相同字母,要提净.【例2】若ab=2,a﹣b=﹣1,则代数式a2b﹣ab2的值等于.【答案】﹣2.考点:因式分解-提公因式法.【例3】因式分解:2a3ab+=.【答案】() a a3+.【解析】() 2a3ab a a3+=+.考点:因式分解-提公因式法.归纳 3:运用公式法分解因式基础知识归纳:运用平方差公式:a2-b2=(a+b)(a-b);运用完全平方公式:a2±2ab+b2=(a±b)2.注意问题归纳:首先要看是否有公因式,有公因式必须要先提公因式,然后才能运用公式,注意公式的特点,要选项择合适的方法进行因式分解.【例4】3x2y-27y= ;【答案】3y(x+3)(x-3).【解析】原式=3y(x2-9)=3y(x+3)(x-3).考点:提公因式法与公式法的综合运用.【例5】将多项式m2n-2mn+n因式分解的结果是.【答案】n(m-1)2.【解析】m2n-2mn+n,=n(m2-2m+1),=n(m-1)2.考点:提公因式法与公式法的综合运用.归纳 4:综合运用多种方法分解因式基础知识归纳:因式分解的步骤为:一提公因式;二看公式.公式包括平方差公式与完全平方公式,要能用公式法分解必须有平方项,如果是平方差就用平方差公式来分解,如果是平方和需要看还有没有两数乘积的2倍,如果没有两数乘积的2倍还不能分解.解答这类题时一些学生往往因分解因式的步骤、方法掌握不熟练,对一些乘法公式的特点记不准确而误选其它选项.注意问题归纳:可以提取公因式的要先提取公因式,注意一定要分解彻底.【例6】分解因式:x2+3x(x﹣3)﹣9=【答案】(x﹣3)(4x+3).考点:因式分解-分组分解法.【例】7分解因式:x3-5x2+6x=【答案】x(x-3)(x-2).【解析】x3-5x2+6x=x(x2-5x+6)=x(x-3)(x-2).考点:因式分解-十字相乘法.☞1年模拟1.(2015届四川省成都市外国语学校中考直升模拟)若多项式x4+mx3+nx-16含有因式(x-2)和(x-1),则mn的值是()A.100 B.0 C.-100 D.50【答案】C.【解析】试题分析:设x4+mx3+nx-16=(x-1)(x-2)(x2+ax+b),则x4+mx3+nx-16=x4+(a-3)x3+(b-3a+2)x2+(2a-3b)x+2b.比较系数得:a-3=m,b-3a+2=0,2a-3b=n,2b=-16,解得:a=-2,b=-8,m=-5,n=20,所以mn=-5×20=-100.故选C.考点:因式分解的意义.2.(2015届广东省佛山市初中毕业班综合测试)因式分解2x2-8的结果是()A.(2x+4)(x-4) B.(x+2)(x-2)C.2 (x+2)(x-2) D.2(x+4)(x-4)【答案】C .【解析】试题分析:2x2-8=2(x2-4)2(x+2)(x-2).故选C .考点:提公因式法与公式法的综合运用.3.(2015届河北省中考模拟二)现有一列式子:①552-452;②5552-4452;③55552-44452…则第⑧个式子的计算结果用科学记数法可表示为( )A .1.1111111×1016B .1.1111111×1027C .1.111111×1056D .1.1111111×1017【答案】D .考点:1.因式分解-运用公式法;2.科学记数法—表示较大的数.4.(2014-2015学年山东省潍坊市诸城市实验中学中考三模)分解因式:2x2﹣12x+32= .【答案】2(x ﹣8)(x+2).【解析】试题分析:原式提取2,再利用十字相乘法分解,原式=2(x2﹣6x+16)=2(x ﹣8)(x+2).故答案为:2(x ﹣8)(x+2).考点:提公因式法与公式法的综合运用.5.(2015届北京市平谷区中考二模)把a ﹣4ab2分解因式的结果是 .【答案】a (1+2b )(1﹣2b ).【解析】试题分析:先提取公因式,再利用平方差公式法,进而分解因式得出即可.考点:提公因式法与公式法的综合运用.6.(2015届北京市门头沟区中考二模)分解因式:29ax a -= .【答案】(3)(3)a x x -+.【解析】试题分析:29ax a - =2(9)a x -=(3)(3)a x x -+.故答案为:(3)(3)a x x -+. 考点:提公因式法与公式法的综合运用.7.(2015届四川省成都市外国语学校中考直升模拟)若a2-3a+1=0,则3a3-8a2+a+231a += .【答案】2.考点:1.因式分解的应用;2.条件求值.8.(2015届安徽省安庆市中考二模)因式分解:﹣3x2+3x ﹣= .【答案】﹣3(x ﹣21)2.【解析】试题分析:原式=﹣3(x2﹣x+41)=﹣3(x ﹣21)2.故答案为:﹣3(x ﹣21)2. 考点:提公因式法与公式法的综合运用.9.(2015届山东省威海市乳山市中考一模)分解因式:a3b-2a2b2+ab3= .【答案】ab (a-b )2.【解析】试题解析:a3b-2a2b2+ab3=ab (a2-2ab+b2)=ab (a-b )2.故答案为:ab (a-b )2. 考点:提公因式法与公式法的综合运用.10.(2015届山东省济南市平阴县中考二模)分解因式:3ax2-3ay2= .【答案】3a (x+y )(x-y ).【解析】试题分析:3ax2-3ay2=3a (x2-y2)=3a (x+y )(x-y ).故答案为:3a (x+y )(x-y ). 考点:提公因式法与公式法的综合运用.11.(2015届山东省聊城市中考模拟)因式分解:4a3-12a2+9a= .【答案】a (2a-3)2.【解析】试题分析:4a3-12a2+9a=a (4a2-12a+9)=a (2a-3)2.故答案为:a (2a-3)2. 考点:提公因式法与公式法的综合运用.12.(2015届山东省潍坊市昌乐县中考一模)把3x3-6x2y+3xy2分解因式的结果是 .【答案】3x (x-y )2.13.(2015届广东省广州市中考模拟)分解因式:x2+xy= .【答案】x(x+y).【解析】试题分析:x2+xy=x(x+y).故答案为:x(x+y).考点:因式分解-提公因式法.14.(2015届广东省深圳市龙华新区中考二模)因式分解:2a3-8a= .【答案】2a(a+2)(a-2).【解析】试题分析:2a3-8a=2a(a2-4)=2a(a+2)(a-2).故答案为:2a(a+2)(a-2).考点:提公因式法与公式法的综合运用.15.(2015届江苏省南京市建邺区中考一模)若a-b=3,ab=2,则a2b-ab2= .【答案】6.【解析】试题分析:∵a-b=3,ab=2,∴a2b-ab2=ab(a-b)=2×3=6.故答案为:6.考点:因式分解-提公因式法.16.(2015届河北省中考模拟二)若M=(2015-1985)2,O=(2015-1985)×(2014-1986),N=(2014-1986)2,则M+N-2O的值为.【答案】4.【解析】试题分析:∵M=(2015-1985)2,O=(2015-1985)×(2014-1986),N=(2014-1986)2,∴M+N-2O=(2015-1985)2-2(2015-1985)×(2014-1986)+(2014-1986)2=[(2015-1985)-(2014-1986)]2=4.故答案为:4.考点:因式分解-运用公式法.17.(2015届浙江省宁波市江东区4月中考模拟)分解因式:a3﹣9a= .【答案】a(a+3)(a﹣3).考点:提公因式法与公式法的综合运用.18.(2015届湖北省黄石市6月中考模拟)分解因式:xy2﹣2xy+x=__________.【答案】x(y-1)2.【解析】试题分析:先提公因式x,再对剩余项利用完全平方公式分解因式.即xy2-2xy+x=x(y2-2y+1)=x(y-1)2.故答案为:x(y-1)2.19.(2015届浙江省宁波市江东区4月中考模拟)如图1是一种包装盒的表面展开图,将它围起来可得到一个几何体的模型.(1)这个几何体模型的名称是.(2)如图2是根据a,b,h的取值画出的几何体的主视图和俯视图(图中实线表示的长方形),请在网格中画出该几何体的左视图.(3)若h=a+b,且a,b满足14a2+b2﹣a﹣6b+10=0,求该几何体的表面积.【答案】(1)长方体或底面为长方形的直棱柱;(2)图形略;(3)62.考点:1.因式分解的应用;2.由三视图判断几何体;3.作图-三视图.。

人教版八年级上册因式分解练习100道题

人教版八年级上册因式分解练习100道题
100.)把 分解因式是()
成绩:家长签字:日期:
☆昨天的努力就是今天的实力☆
93.)若 ,则x=_______,y=________
94.)若 ,则 _________
95.)计算 ________
96.)运用平方差公式分解: -_______=(a+7)(a-_____)
97.)完全平方式 。
98.)若a、b、c,这三个数中有两个数相等,则 _________
99.)若 ,则 __________
66.)把(a+b)²−4(a²−b²)+4(a−b)²分解因式为()
67.)
68)已知x,y为任意有理数,记M = x²+y²,N = 2xy,则M与N的大小关系为()
69)对于任何整数m,多项式( 4m+5)²−9都能( )
A.被8整除Bቤተ መጻሕፍቲ ባይዱ被m整除
C.被(m−1)整除D.被(2m−1)整除
70.)将−3x²n−6xn分解因式,结果是()
9.)(x+y)(a-b-c)+(x-y)(b+c-a)
10.)a²-a-b²-b
11.)(3a-b)²-4(3a-b)(a+3b)+4(a+3b)²
12.)(a+3)²-6(a+3)
13.)(x+1)²(x+2)-(x+1)(x+2)²
14.)16x²-81
15.)9x²-30x+25
16.)x²-7x-30
71.)多项式(x+y−z)(x−y+z)−(y+z−x)(z−x−y)的公因式是( )
72.)若 是完全平方式,则 的值等于_____。
73.) 则 =____ =____
74.) 与 的公因式是_

部编数学八年级上册专题07因式分解的六种方法大全(解析版)(人教版)含答案

部编数学八年级上册专题07因式分解的六种方法大全(解析版)(人教版)含答案

专题07 因式分解的六种方法大全题型一、提取公因式法与公式法综合例.分解因式:32214a ab ab -+=______.【答案】21()2a ab -【详解】解:32214a a b ab -+=221()4a a ab b -+=21()2a ab -.故答案是:21()2a ab -.【变式训练1】因式分解:322882x x y xy -+=________________.【答案】22(2)x x y -【详解】解:原式=2x (4x 2−4xy +y 2)=2x (2x −y )2故答案为:2x (2x −y )2.【变式训练2】因式分解:21222a b ab b -+=_________.【答案】21(2)2b a -【详解】22211122(44)(2)222a b ab b b a a b a -+=-+=-故答案为:21(2)2b a -.【变式训练3】分解因式:a 4﹣3a 2﹣4=_____.【答案】(a 2+1)(a +2)(a ﹣2)【详解】解:a 4﹣3a 2﹣4=(a 2+1)(a 2﹣4)=(a 2+1)(a +2)(a ﹣2),故答案为:(a 2+1)(a +2)(a ﹣2).【变式训练4】小军是一位密码编译爱好者,在他的密码手册中,有这样一条信息:x y -,-a b ,c ,22x y -,a ,x y +,分别对应下列六个字:抗,胜,必,利,我,疫.现将()()2222ac x y bc x y ---因式分解,结果呈现的密码信息可能是( )A .抗疫胜利B .抗疫必胜C .我必胜利D .我必抗疫【答案】B【详解】解:原式=()()22x y ac bc --()()()c a b x y x y =-+-Q x y -,-a b ,c ,22x y -,a ,x y +,分别对应下列六个字:抗,胜,必,利,我,疫.x y \-对应抗,x y +对应疫,c 对应必,-a b 对应胜故结果呈现的密码信息可能是为:抗疫必胜故选:B题型二、十字相乘法例.将多项式()211a a --+因式分解,结果正确的是( )A .1a -B .()()12a a --C .()21a -D .()()11a a +-【答案】B【详解】解:()211a a --+=2211a a a -+-+=232a a -+=()()12a a --.故选B .【变式训练1】多项式239514x x +-可因式分解成(3)()x a bx c ++,其中a 、b 、c 均为整数,求2a c +之值为何?( )A .12-B .3-C .3D .12【答案】A【详解】解:利用十字相乘法,把239514x x +-多项式因式分解,可得,239514(32)(137)x x x x +-=+-∵多项式239514x x +-可因式分解成(3x +a )(bx +c )∴ 2a =,13b =,7c =-∴222(7)12a c +=+´-=-故选:A .【变式训练2】分解因式:321024a a a +-=____.【答案】()()122a a a +-【详解】解:()()()32210241024122a a a a a a a a a +-=+-=+-.故答案为:()()122a a a +-【变式训练3】因为()()22331x x x x +-=+-,这说明多项式223x x +-有一个因式为1x -,我们把1x =代入此多项式发现1x =能使多项式223x x +-的值为0.利用上述阅读材料求解:(1)若()3x +是多项式212x kx ++的一个因式,求k 的值;(2)若()3x -和()4x -是多项式3212x mx x n +++的两个因式,试求m ,n 的值.(3)在(2)的条件下,把多项式3212x mx x n +++因式分解.【答案】(1)7k =;(2)7m =-,0n =;(3)(3)(4)x x x --【解析】(1)解:Q 3x +是多项式212x kx ++的一个因式,\当3x =-时,21293120x kx k ++=-+=,解得7k =;(2)Q (3)x -和(4)x -是多项式3212x mx x n +++的两个因式,\3232331230441240m n m n ì+´+´+=í+´+´+=î,解得70m n =-ìí=î.\7m =-,0n =.(3)解:由(2)得3212x mx x n +++即为32712x x x -+,\32712x x x-+2(712)x x x =-+(3)(4)x x x =--.题型四、分组法例.分解因式:4322221x x x x ++++【答案】22(1)(1)x x ++【详解】解:4322221x x x x ++++423(21)(22)x x x x =++++,222(1)2(1)x x x ++=+,22(1)(1)2x x x +=++22(1)(1)x x =++【变式训练1】已知221m a b =+-,4614n a b =--,则m 与n 的大小关系是()A .m n ³B .m >nC .m n £D .m <n【答案】A【详解】解:∵221m a b =+-,4614n a b =--,∴()()2214614b a m b n a -=---+-2246114b b a a =+--++()()224469a a b b =-++++()()2223a b =-++0³m n \³,故选A【变式训练2】分解因式:224b 12c 9c -++.【答案】()()23c b 23c b +++-【详解】解:224b 12c 9c -++=()22412c 9c b ++-=()2223c b +-=()()23c b 23c b +++-【变式训练3】分解因式:2244x y y -+-=__________.【答案】(2)(2)x y x y +--+【详解】解:2244x y y -+-22(44)x y y =--+22(2)x y =--(2)(2)x y x y =+--+故答案为:(2)(2)x y x y +--+.【变式训练4】阅读理解:把多项式am an bm bn +++分解因式.解法:()()am an bm bn am an bm bn +++=+++()()a m nb m n =+++()()m n a b =++观察上述因式分解的过程,回答下列问题:(1)分解因式:222mb mc b bc -+-.(2)ABC V 三边a 、b 、c 满足2440a bc ac ab -+-=,判断ABC V 的形状.【答案】(1)(2)()b c m b -+;(2)等腰三角形【解析】(1)解:222mb mc b bc-+-()2(2)2mb mc b bc =-+-(2)(2)m b c b b c =-+- (2)()b c m b =-+(2)解:∵2440a bc ac ab -+-=,∴2440a ab ac bc -+-=,∴()()40a a b c a b -+-=,∴()()40a b a c -+=,∵40a c +>,∴0a b -=,∴a b =,∴ABC V C 的形状是等腰三角形.题型四、添项、拆项法例.分解因式;.x 3﹣3x 2﹣6x +8=_______.【答案】(x ﹣4)(x ﹣1)(x +2)【详解】解:x 3﹣3x 2﹣6x +8=3232268x x x x x -+--+=()()323288x x x x -+--=()()()1281x x x x ----=()()128x x x ---éùëû=()()2128x x x ---=(x ﹣4)(x ﹣1)(x +2),故答案为:(x ﹣4)(x ﹣1)(x +2).【变式训练1】把多项式分解因式:x 3﹣2x 2+1=_________________.【答案】(x ﹣1)(x 2﹣x ﹣1)【详解】解:原式=x 3﹣x 2﹣x 2+1=x 2(x ﹣1)﹣(x +1)(x ﹣1)=(x ﹣1)(x 2﹣x ﹣1)故答案为:(x ﹣1)(x 2﹣x ﹣1)【变式训练2】因式分解:a a a 32+3+3+2【答案】()()a a a 2=+2++1【详解】原式()a a a 32=+3+3+1+1()a 33=+1+1()()()a a a 2éù=+1+1+1-+1+1ëû()()a a a 2=+2++1.故答案为:()()a a a 2=+2++1【变式训练3】添项、拆项是因式分解中常用的方法,比如分解多项式21a -可以用如下方法分解因式:①()()()()22111111a a a a a a a a a -=-+-=-+-=-+;又比如多项式31a -可以这样分解:②()()()()()3322221111111a a a a a a a a a a a a a a -=-+-+-=-+-+-=-++;仿照以上方法,分解多项式51a -的结果是______.【答案】()()43211a a a a a -++++【详解】解:51a -54433221a a a a a a a a a =-+-+-+-+-()()()()43211111a a a a a a a a a =-+-+-+-+-()()43211a a a a a =-++++,故答案为:()()43211a a a a a -++++题型五、换元法(整体思想)例.因式分解:()()()()222222261516121x x x x x x ++++++++【答案】()()229411x x x +++【解析】解:()()()()222222261516121x x x x x x ++++++++()()2222212216122x x x x x x =++++++++()()2294121x x x x =++++()()229411x x x =+++【变式训练1】分解因式:()()()222241211y x y x y +--+-【答案】()2221x y x y -++【详解】()()()222241211y x y x y +--+-=()()()()222412111y x y y x y +-+-+-=()()2211y x y éù+--ëû=()2221x y x y -++【变式训练2】因式分解:(x 2+4x )2﹣(x 2+4x )﹣20.【答案】2(5)(1)(2)x x x +-+【详解】解:原式=(x 2+4x ﹣5)(x 2+4x +4)=(x +5)(x ﹣1)(x +2)2.【变式训练3】因式分解:(1)2223238x x x x +-+-()() (2)421x x x --+【答案】(1)()()()()1241x x x x +++-;(2)()()3211x x x -+-.【详解】解:(1)原式=()()223234x x x x +++-=()()()()1241x x x x +++-;(2)原式=()()2211xx x ---=()()()2111x x x x +---=()()2111x x x éù-+-ëû=()()3211x x x -+-.题型六、主元法例.分解因式:2222372x y z xy yz xz --+++.【答案】(2)(3)x y z x y z =+--+【详解】解:2222372x y z xy yz xz--+++222(2)(273)x y z x y yz z =++--+=2(2)(2)(3)x y z x y z y z ++---∴原式(2)(3)x y z x y z =+--+.【变式训练1】因式分解:(1)a b c ab ac bc abc1+++++++(2)()()a a b b b 6+11+4+3-1-2(3)()()()y y x x y y 22+1+1+2+2+1【答案】(1)()()()a b c =+1+1+1;(2)()()b b 3+2-1;(3)()()yx y yx x y =++1++【详解】(1)把a 视为未知数,其它视为参数.原式a ab ac abc b c bc =++++1+++()()a b c bc b c bc =1++++1+++()()a b c bc =+11+++()()()a b c =+1+1+1;(2)原式=()a b a b b 226+11+4+3--2,b b 23--2=()()b b 3+2-1,再次运用十字相乘法可知原式()()a b a b =2+3+23+-1;(3)选x 为主元,原式()()yx y yx x y =++1++.【变式训练2】因式分解:(1)a b ab bc ac222--++2(2)()x a b x a ab b 222+2+-3+10-3【答案】(1)()()a b b c 2+-+;(2)()()x a b x a ab b x a b x a b 222+2+-3+10-3=+3--+3【详解】(1)首先将原式按a 的降幂排列,写成关于a 的二次三项式()a c b a bc b 222+2-+-,此时的“常数bc b 2-”提取公因式b 即可分解成()b c b -,再运用十字相乘法便可很快将原式分解成()()a b a b c 2+-+;(2)这是x 的二次式,“常数项”可分解为()()a ab b a b a b 22-3+10-3=-3--3再对整个式子运用十字相乘()()()x a b x a ab b x a b x a b 222+2+-3+10-3=+3--+3.【变式训练3】因式分解:a b ab a c ac abc b c bc 222222-+--3++【答案】()()a b c ab ac bc =--+-【详解】原式()()()b c a b c bc a b c bc 22222=+-++3++()()()b c a b c bc a bc b c 222=+-++3++[()][()]a b c b c a bc =-++-()()a b c ab ac bc =--+-.课后作业1.如果2240m m +-=,那么20182019202032m m m --的值为( )A .2018m B .2018m -C .1D .-1【答案】B【详解】解:∵2m 2+m -4=0,∴-2m 2-m =-4,∴3m 2018-m 2019-2m 2020=m 2018×(3-m -2m 2)=m 2018×(3-4)=m 2018×(-1)=-m 2018,故选:B .2.如图,有一张边长为b 的正方形纸板,在它的四角各剪去边长为a 的正方形.然后将四周突出的部分折起,制成一个无盖的长方体纸盒.用M 表示其底面积与侧面积的差,则M 可因式分解为( )A .()()62b a b a --B .()()32b a b a --C .()()5b a b a --D .()22b a -【详解】解:底面积为(b ﹣2a )2,侧面积为a •(b ﹣2a )•4=4a •(b ﹣2a ),∴M =(b ﹣2a )2﹣4a •(b ﹣2a ),提取公式(b ﹣2a ),M =(b ﹣2a )•(b ﹣2a ﹣4a ),=(b ﹣6a )(b ﹣2a )故选:A .3.已知250x y -+=,则224201x y y -+-=______.【答案】24【详解】解:250x y -+=Q ,25x y \-=-,224201x y y \-+-()()22201x y x y y =+-+-()52201x y y =-++-5101x y =-+-()521x y =--- 251=-24=,故答案为:24.4.分解因式:2232x y xy y -+=____________.【答案】2()y x y -【详解】解:222223(2)(2)=-++=--x y xy y x xy y y x y y ;故答案为:2()y x y -5.阅读下列材料:因式分解的常用方法有提公因式法和公式法,但有的多项式仅用上述方法就无法分解,如22216x xy y -+-.我们细心观察这个式子就会发现,前三项符合完全平方公式,进行变形后可以与第四项结合再运用平方差公式进行分解.22216x xy y -+-()216x y =--()()44x y x y =-+--.这种因式分解的方法叫分组分解法.利用这种分组的思想方法解决下列问题:(1)因式分解:226925a ab b -+-;(2)因式分解:22424x y x y --+;(3)△ABC 三边a 、b 、c 满足2222220a c b ab bc ++--=,判断△ABC 的形状并说明理由.【答案】(1)()()3535a b a b ---+;(2)()()222x y x y -+-;(3)△ABC 是等边三角形,理由见解析【解析】(1)解:226925a ab b -+-()2325a b =--()()3535a b a b =---+;(2)解:22424x y x y--+()()()2222x y x y x y =-+--()()222x y x y =-+-;(3)解:△ABC 是等边三角形,理由如下:∵2222220a c b ab bc ++--=,∴()()2222220a ab b c bc b -+-++=,∴()()220a b b c -+-=,∵()20a b -³,()20b c -³,∴a -b =0,且b -c =0,∴a =b ,且b =c ,∴a =b =c ,∴△ABC 是等边三角形.6.把下列各式因式分解:(1)2416x -;(2)23216164a b a ab --.【答案】(1)4(2)(2)x x +-(2)24(2)a a b --【解析】(1)解:2224164(2)4(2)(2)x x x x -=-=+-.(2)23216164a b a ab --224(44)a ab a b =--224(2)4a a ab b éù=--+ëû24(2)a a b =--.7.(1)把下面四个图形拼成一个大长方形,并据此写出一个多项式的因式分解.(2)已知ABC V 的三边长为a ,b ,c ,且满足220a b ac bc --+=,请判断ABC V 的形状.【答案】(1)答案见解析(2)ABC V 是等腰三角形【详解】(1)拼接如图:拼接成的长方形的面积还可以表示为一个正方形和三个长方形的面积之和:22212132x x x x x +++´=++g g ;拼接成的长方形的面积:长´宽()()21x x =++;∴据此可得到因式分解的式子为:()()23221++=++x x x x .故答案为:()()23221++=++x x x x .(2)∵220a b ac bc --+=,∴()()()0a b a b c a b +---=,∴()()0a b a b c -+-=.∵ABC V 的三边长为a ,b ,c ,∴a b c +>,∴0a b c +->,∴0a b -=,∴a b =,V是等腰三角形.∴ABCV是等腰三角形.故答案为:ABC。

人教版数学八年级上册 整式的乘法与因式分解专题练习(解析版)

人教版数学八年级上册 整式的乘法与因式分解专题练习(解析版)

人教版数学八年级上册 整式的乘法与因式分解专题练习(解析版)一、八年级数学整式的乘法与因式分解选择题压轴题(难)1.多项式x 2﹣4xy ﹣2y +x +4y 2分解因式后有一个因式是x ﹣2y ,另一个因式是( ) A .x +2y +1B .x +2y ﹣1C .x ﹣2y +1D .x ﹣2y ﹣1【答案】C【解析】【分析】首先将原式重新分组,进而利用完全平方公式以及提取公因式法分解因式得出答案.【详解】解:x 2﹣4xy ﹣2y +x +4y 2=(x 2﹣4xy +4y 2)+(x ﹣2y )=(x ﹣2y )2+(x ﹣2y )=(x ﹣2y )(x ﹣2y +1).故选:C .【点睛】此题考察多项式的因式分解,项数多需用分组分解法,在分组后得到两项中含有公因式(x-2y ),将其当成整体提出,进而得到答案.2.因式分解x 2+mx ﹣12=(x +p )(x +q ),其中m 、p 、q 都为整数,则这样的m 的最大值是( )A .1B .4C .11D .12【答案】C【解析】分析:根据整式的乘法和因式分解的逆运算关系,按多项式乘以多项式法则把式子变形,然后根据p 、q 的关系判断即可.详解:∵(x +p)(x +q)= x 2+(p+q )x+pq= x 2+mx -12∴p+q=m ,pq=-12.∴pq=1×(-12)=(-1)×12=(-2)×6=2×(-6)=(-3)×4=3×(-4)=-12∴m=-11或11或4或-4或1或-1.∴m 的最大值为11.故选C.点睛:此题主要考查了整式乘法和因式分解的逆运算的关系,关键是根据整式的乘法还原因式分解的关系式,注意分类讨论的作用.3.若()(1)x m x +-的计算结果中不含x 的一次项,则m 的值是( )A .1B .-1C .2D .-2.【答案】A【解析】【分析】根据多项式相乘展开可计算出结果.【详解】()()1x m x +-=x 2+(m-1)x-m ,而计算结果不含x 项,则m-1=0,得m=1.【点睛】本题考查多项式相乘展开系数问题.4.下列多项式中,能分解因式的是:A .224a b -+B .22a b --C .4244x x --D .22a ab b -+【答案】A【解析】根据因式分解的意义,可知A 、224a b -+能用平方差公式()()22a b a b a b -=+-分解,故正确;B 、22a b --=-(22a b +),不能进行因式分解,故不正确;C 、4244x x --不符合完全平方公式()2222a ab b a b ±+=±,故不正确;D 、22a ab b -+既没有公因式,也不符合公式,故不正确.故选:A.点睛:此题主要考查了因式分解,解题时利用因式分解的方法:因式分解是把一个多项式化为几个因式积的形式.根据因式分解的一般步骤:一提(公因式)、二套(平方差公式()()22a b a b a b -=+-,完全平方公式()2222a ab b a b ±+=±)、三检查(彻底分解).5.化简()22x 的结果是( )A .x 4B .2x 2C .4x 2D .4x 【答案】C【解析】【分析】利用积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘即可.【详解】(2x)²=2²·x²=4x²,故选C.【点睛】本题考查了积的乘方,解题的关键是掌握积的乘方的运算法则.6.如图所示的是用4个全等的小长方形与1个小正方形密铺而成的正方形图案,已知该图案的面积为144,小正方形的面积为4,若分别用x 、y (x y >)表示小长方形的长和宽,则下列关系式中错误的是( )A .22100x y +=B .2x y -=C .12x y +=D .35xy =【答案】A【解析】【分析】 由正方形的面积公式可求x +y =12,x ﹣y =2,可求x =7,y =5,即可求解.【详解】由题意可得:(x +y )2=144,(x ﹣y )2=4,∴x +y =12,x ﹣y =2,故B 、C 选项不符合题意;∴x =7,y =5,∴xy =35,故D 选项不符合题意;∴x 2+y 2=84≠100,故选项A 符合题意. 故选A .【点睛】本题考查了完全平方公式的几何背景,解答本题需结合图形,利用等式的变形来解决问题.7.把228a -分解因式,结果正确的是( )A .22(4)a -B .22(2)a -C .2(2)(2)a a +-D .22(2)a +【答案】C【解析】【分析】先提公因式2,然后再利用平方差公式进行分解即可.【详解】 228a -=22(4)a -=2(2)(2)a a +-,故选C .【点睛】本题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.分解因式的步骤一般为:一提(公因式),二套(公式),三彻底.8.通过计算几何图形的面积可表示代数恒等式,图中可表示的代数恒等式是( )A .22()()a b a b a b +-=-B .222()2a b a ab b +=++C .22()22a a b a ab +=+D .222()2a b a ab b -=-+【答案】A【解析】【分析】 根据阴影部分面积的两种表示方法,即可解答.【详解】图1中阴影部分的面积为:22a b -,图2中的面积为:()()a b a b +-,则22()()a b a b a b +-=-故选:A.【点睛】本题考查了平方差公式的几何背景,解决本题的关键是表示阴影部分的面积.9.下列等式由左边向右边的变形中,属于因式分解的是 ( )A .x 2+5x -1=x(x+5)-1B .x 2-4+3x=(x+2)(x -2)+3xC .(x+2)(x -2)=x 2-4D .x 2-9=(x+3)(x -3)【答案】D【解析】【分析】根据因式分解的定义:把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,判断求解.【详解】解:A 、右边不是积的形式,故A 错误;B 、右边不是积的形式,故B 错误;C 、是整式的乘法,故C 错误;D 、x 2-9=(x+3)(x -3),属于因式分解.故选D .【点睛】此题主要考查因式分解的定义:把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解.10.下列运算中正确的是( )A .236a a a ⋅=B .()325a a =C .226235a a a +=D .()()22224a b a b a b +--=【答案】D【解析】【分析】 根据同底数幂的乘法,可判断A 和B ,根据合并同类项,可判断C ,根据平方差公式,可判断D .【详解】A. 底数不变指数相加,故A 错误;B. 底数不变指数相乘,故B 错误;C. 系数相加字母部分不变,故C 错误;D. 两数和乘以这两个数的差等于这两个数的平方差,故D 正确;故选D.【点睛】本题考查了平方差公式、合并同类项以及同底数幂的乘法,解题的关键是熟练的掌握平方差公式、合并同类项以及同底数幂的乘法的运算.二、八年级数学整式的乘法与因式分解填空题压轴题(难)11.“元旦”期间小明去永辉超市购物,恰逢永辉超市“满1400减99元”促销活动,小明准备提前购置一些年货A 和B ,已知A 和B 的单价总和是100到200之间的整数,小明粗略测算了一下发现自己所购年货总价为1305元,不能达到超市的促销活动金额. 于是小明又购买了A 、B 各一件,这样就能参加超市的促销活动,最后刚好付款1305元. 小明经仔细计算发现前面粗略测算时把A 和B 的单价看反了,那么小明实际总共买了______件年货.【答案】22【解析】【分析】设A 单价为a 元,实际购买x 件,B 单价为b 元,实际购买y 元,根据题意列出方程组130599(1)(1)1305ax by a y b x +=+⎧⎨-+-=⎩,将两个方程相加得到(1)(1)2709a x y b x y +-++-=,分解因式得()(1)33743a b x y ++-=⨯⨯⨯,由A 和B 的单价总和是100到200之间的整数得到()(1)12921a b x y ++-=⨯,由此求得答案.【详解】设A 单价为a 元,实际购买x 件,B 单价为b 元,实际购买y 元,130599(1)(1)1305ax by a y b x +=+⎧⎨-+-=⎩, ∴(1)(1)2709a x y b x y +-++-=,∴()(1)33743a b x y ++-=⨯⨯⨯,∵A 和B 的单价总和是100到200之间的整数,即100a b 200<+<,∴()(1)12921a b x y ++-=⨯,即129a b +=, 121x y +-=,∴x+y=22,故答案为:22.【点睛】此题考查因式分解,设未知数列出方程组后将两个方程相加再因式分解是关键的步骤,根据A 和B 的单价总和确定出x+y 的值.12.已知a 1•a 2•a 3•…•a 2007是彼此互不相等的负数,且M=(a 1+a 2+…+a 2006)(a 2+a 3+…+a 2007),N=(a 1+a 2+…+a 2007)(a 2+a 3+…+a 2006),那么M 与N 的大小关系是M N .【答案】M >N【解析】解:M ﹣N=(a 1+a 2+…+a 2006)(a 2+a 3+…+a 2007)﹣(a 1+a 2+…+a 2007)(a 2+a 3+…+a 2006) =(a 1+a 2+…+a 2006)(a 2+a 3+…+a 2006)+(a 1+a 2+…+a 2006)a 2007﹣(a 1+a 2+…+a 2006)(a 2+a 3+…+a 2006)﹣a 2007(a 2+a 3+…+a 2006)=(a 1+a 2+…+a 2006)a 2007﹣a 2007(a 2+a 3+…+a 2006)=a 1a 2007>0∴M >N【点评】本题主要考查了整式的混合运算.13.如图,有一张边长为x 的正方形ABCD 纸板,在它的一个角上切去一个边长为y 的正方形AEFG ,剩下图形的面积是32,过点F 作FH ⊥DC ,垂足为H.将长方形GFHD 切下,与长方形EBCH 重新拼成一个长方形,若拼成的长方形的较长的一边长为8,则正方形ABCD 的面积是____.【答案】36.【解析】【分析】根据题意列出2232,8x y x y -=+=,求出x-y=4,解方程组得到x 的值即可得到答案.【详解】由题意得: 2232,8x y x y -=+= ∵22()()x y x y x y -=+-,∴x -y=4, 解方程组48x y x y -=⎧⎨+=⎩,得62x y =⎧⎨=⎩, ∴正方形ABCD 面积为236x =,故填:36.【点睛】此题考查平方差公式的运用,根据题意求得x-y=4是解题的关键,由此解方程组即可.14.x+1x=3,则x 2+21x =_____. 【答案】7【解析】【分析】直接利用完全平方公式将已知变形,进而求出答案.【详解】解:∵x +1x =3, ∴(x +1x )2=9, ∴x 2+21x +2=9, ∴x 2+21x=7. 故答案为7.【点睛】此题主要考查了分式的混合运算,正确应用完全平方公式是解题关键.15.将4个数a ,b ,c ,d 排列成2行、2列,两边各加一条竖直线记成a b c d ,定义a bad bc c d =-,上述记号就叫做2阶行列式.若11611x x x x --=-+,则x=_________.【答案】4【解析】【分析】根据题目中所给的新定义运算方法可得方程 (x-1)(x+1)- (x-1)2=6,解方程求得x 即可.【详解】由题意可得,(x-1)(x+1)- (x-1)2=6,解得x=4.故答案为:4.【点睛】本题考查了新定义运算,根据新定义运算的运算方法列出方程是解本题的关键.16.多项式18x n+1-24x n 的公因式是_______.【答案】6x n【解析】运用公因式的概念,找出系数的最大公约数是6,相同字母的最低指数次幂是x n ,可得公因式为6x n .故答案为:6x n .17.计算:=_____.【答案】1【解析】【分析】 根据平方差公式可以使本题解答比较简便.【详解】 解:====1.【点睛】本题应根据数字特点,灵活运用运算定律会或运算技巧,灵活简算.18.已知3a b +=,2ab =-, (1)则22a b +=____;(2)则a b -=___.【答案】13; 17±【解析】试题解析:将a+b=-3两边平方得:(a+b )2=a 2+b 2+2ab=9,把ab=-2代入得:a 2+b 2-4=9,即a 2+b 2=13;(a-b )2=a 2+b 2-2ab=13+4=17,即17.19.若4x 2+20x + a 2是一个完全平方式,则a 的值是 __ .【答案】±5【解析】 225,5a a ==±20.若()2242x ax x ++=-,则a =_____.【答案】-4【解析】【分析】直接利用完全平方公式得出a 的值.【详解】解:∵()2242x ax x ++=-,a=-∴4-故答案为:4【点睛】此题主要考查了公式法分解因式,正确应用公式是解题关键.。

人教版数学八年级上册:14 整式的乘法与因式分解 专题练习(附答案)

人教版数学八年级上册:14 整式的乘法与因式分解  专题练习(附答案)

第十四章《整式的乘法与因式分解》专题练习目录专题1幂的运算性质的应用 (1)专题2 整式的运算及化简求值 (2)专题3 完全平方公式的变形 (4)专题4 乘法公式的应用 (5)专题5 因式分解 (6)第十四章整式的乘法与因式分解专题练习专题1幂的运算性质的应用类型1直接利用幂的运算性质进行计算1.计算:(1)a·a4=;(2)(a5)2=;(3)(-a4)3=;(4)(2y2)3=;(5)(ab3)2=;(6)(-a2b3c)3=;(7)(a2)3·a4=;(8)(-3a)2·a3=;(9)(a n b m+4)3=;(10)(-a m)5·a n=.2.计算:(1)(-a2)3+(-a3)2-a2·a3;(2)a·a2·a3+(a3)2-(2a2)3;(3)-(-x2)3·(-x2)2-x·(-x3)3;(4)(-2x2)3+(-3x3)2+(x2)2·x2;(5)(-2x2y)3-(-2x3y)2+6x6y3+2x6y2.类型2逆用幂的运算性质3.已知a x=-2,a y=3.求:(1)a x+y的值;(2)a3x的值;(3)a3x+2y的值.4.计算:0.1252 019×(-82 020).5.已知2a=m,2b=n,3a=p(a,b都是正整数),用含m,n或p的式子表示下列各式:(1)4a+b;(2)6a.专题2整式的运算及化简求值类型1整式的化简1.计算:(1)(-2a2)·(3ab2-5ab3)+8a3b2;(2)(3x-1)(2x+1);(3)(2x+5y)(3x-2y)-2x(x-3y);(4)(x-1)(x2+x+1).2.计算:(1)21x2y4÷3x2y3;(2)(8x3y3z)÷(-2xy2);(3)a 2n +2b 3c÷2a n b 2; (4)-9x 6÷13x 2÷(-x 2).3.计算:(1)(-2a 2b 3)·(-ab)2÷4a 3b 5; (2)(-5a 2b 4c 2)2÷(-ab 2c)3.4.计算:(1)[x(x 2y 2-xy)-y(x 2-x 3y)]÷x 2y ; (2)(23a 4b 7-19a 2b 6)÷(-16ab 3)2. 5.计算:(1)(-76a 3b)·65abc ; (2)(-x)5÷(-x)-2÷(-x)3;(3)6mn 2·(2-13mn 4)+(-12mn 3)2; (4)5x(x 2+2x +1)-(2x +3)(x -5).类型2 直接代入进行化简求值 6.先化简,再求值:(1)(1+x)(1-x)+x(x +2)-1,其中x =12;(2)(a +b)(a -2b)-(a +2b)(a -b),其中a =-2,b =23;(3)(x +7)(x -6)-(x -2)(x +1),其中x =2 0180.(4)(2a +3b)(3a -2b)-5a(b +1)-6a 2,其中a =-12,b =2.类型3 利用整体带入进行化简求值7.先化简,再求值:(2+a)(2-a)+a(a -5b)+3a 5b 3÷(-a 2b)2,其中ab =-12.8.若x2+4x-4=0,求3(x-1)(x-3)-6(x+1)(x-1)的值.专题3 完全平方公式的变形教材母题:已知a +b =5,ab =3,求a 2+b 2的值.解:∵a +b =5,ab =3,∴(a +b)2=25,即a 2+2ab +b 2=25. ∴a 2+b 2=25-2ab =25-6=19.【变式1】若a +b =3,a 2+b 2=7,则ab =( )A .2B .1C .-2D .-1【变式2】已知实数a ,b 满足a +b =2,ab =34,则a -b =( )A .1B .-52C .±1D .±52【变式3】已知a 2+b 2=13,(a -b)2=1,则(a +b)2= .【变式4】阅读下列材料并解答后面的问题:利用完全平方公式(a±b)2=a 2±2ab +b 2,通过配方可对a 2+b 2进行适当的变形,如a 2+b 2=(a +b)2-2ab 或a 2+b 2=(a -b)2+2ab.(1)若|x -y -5|+(xy -6)2=0,则x 2+y 2的值为 ; (2)已知a -b =2,ab =3,求a 4+b 4的值. 解题技巧:(1)a 2+b 2的变形:(1)a 2+b 2=(a +b)2-2ab ;(2)a 2+b 2=(a -b)2+2ab ;(3)a 2+b 2=12[(a +b)2+(a -b)2].(2)ab 的变形:(1)ab =12[(a +b)2-(a 2+b 2)];(2)ab =12[(a 2+b 2)-(a -b)2];(3)ab =14[(a +b)2-(a -b)2].(3)(a±b)2的变形:(1)(a +b)2=(a -b)2+4ab ; (2)(a -b)2=(a +b)2-4ab.练习:1.已知a ,b 都是正数,a -b =1,ab =2,则a +b =( )A .-3B .3C .±3D .92.已知x 2+y 2=25,x +y =7.(1)求xy 的值; (2)若y >x ,求x -y 的值.3.已知(m -53)(m -47)=24,求(m -53)2+(m -47)2的值.4.(1)请同学们观察用硬纸片拼成的图形(如图),根据图形的面积关系,写出一个代数恒等式;(2)根据(1)题中的等量关系,解决如下问题: ①若m +n =8,mn =12,求m -n 的值;②已知(2m +n)2=13,(2m -n)2=5,请利用上述等式求mn.专题4乘法公式的应用类型1直接运用乘法公式计算求值1.计算:(1)(2x+5y)2;(2)(3m-n)(-3m-n);(3)(x+2y)(x2-4y2)(x-2y);(4)(3x-2y)2(3x+2y)2.2.先化简,再求值:(1)(3+x)(3-x)+(x+1)2,其中x=2;(2)(2m+1)(2m-1)-(m-1)2+(2m)3÷(-8m),其中m满足m2+m-2=0;(3)(x+2y)2-(x-2y)2-(x+2y)(x-2y)-4y2,其中x=-2,y=1 2.类型2 运用乘法公式进行简便计算 3.用简便方法计算:(1)2 0192-2 018×2 020; (2)50120×491920;(3)2012-401; (4)(2+1)(22+1)(24+1)+1.专题5 因式分解类型1 运用提公因式法因式分解 1.分解因式:(1)3ab 2+a 2b = ; (2)2a 2-4a = ;(3)m(5-m)+2(m -5)= ; (4)5x(x -2y)3-20y(2y -x)3= . 类型2 运用公式法因式分解 2.分解因式:(1)4x 2-25= ; (2)a 2+4a +4= . 3.因式分解:(1)(2x+3)2-(x-1)2;(2)(x-1)2-6(x-1)+9.类型3先提公因式后运用公式法因式分解4.分解因式:(1)x2y-9y=;(2)ax3-axy2=.5.因式分解:(1)-4x3+8x2-4x;(2)3m(2x-y)2-3mn2.类型5运用特殊方法因式分解方法1十字相乘法阅读理解:由多项式乘法:(x+p)(x+q)=x2+(p+q)x+pq,将该式从右到左使用,即可得到“十字相乘法”进行因式分解的公式:x2+(p+q)x+pq=(x+p)(x+q),示例:分解因式:x2+5x+6=x2+(2+3)x+2×3=(x+2)(x+3).问题解决:分解因式:(1)x2+5x+4=;(2)x2-6x+8=;(3)x2+2x-3=;(4)x2-6x-7=.拓展训练:分解因式:(1)2x2+3x+1=;(2)3x2-5x+2=.方法2分组分解法【阅读材料】分解因式:mx+nx+my+ny=(mx+nx)+(my+ny)=x(m+n)+y(m+n)=(m+n)(x+y).以上分解因式的方法称为分组分解法.对于四项多项式的分组,可以是“二、二分组(如此例)”,也可以是“三、一(或一、三)分组”.根据以上阅读材料解决问题:【跟着学】分解因式:a3-b3+a2b-ab2=(a3+)-(b3+)=a2( )-(a+b)=(a+b)=.【我也可以】分解因式:4x2-2x-y2-y.拓展训练:已知a,b,c为△ABC的三边,若a2+b2+2c2-2ac-2bc=0,试判断△ABC 的形状.参考答案:专题1幂的运算性质的应用1.(1)a5;(2)a10;(3)-a12;(4)8y6;(5)a2b6;(6)-a6b9c3;(7)a10;(8)9a5;(9)a3n b3m+12;(10)-a5m+n.2.(1)(-a2)3+(-a3)2-a2·a3;解:原式=-a6+a6-a5=-a5.(2)a·a2·a3+(a3)2-(2a2)3;解:原式=a6+a6-8a6=-6a6.(3)-(-x2)3·(-x2)2-x·(-x3)3;解:原式=x6·x4+x10=2x10.(4)(-2x2)3+(-3x3)2+(x2)2·x2;解:原式=-8x6+9x6+x6=2x6.(5)(-2x2y)3-(-2x3y)2+6x6y3+2x6y2.解:原式=-8x6y3-4x6y2+6x6y3+2x6y2=-2x6y3-2x6y2.3.解:(1)a x+y=a x·a y=-2×3=-6.(2)a3x=(a x)3=(-2)3=-8.(3)a3x+2y=(a3x)·(a2y)=(a x)3·(a y)2=(-2)3·32=-8×9=-72.4.解:原式=(18)2 019×(-82 019×8) =(18)2 019×(-82 019)×8 =-(18×8)2 019×8 =-1×8=-8.5.解:(1)4a +b =4a ·4b=(22)a ·(22)b=(2a )2·(2b )2=m 2n 2.(2)6a =(2×3)a=2a ×3a=mp.专题2 整式的运算及化简求值1.(1)(-2a 2)·(3ab 2-5ab 3)+8a 3b 2;解:原式=-6a 3b 2+10a 3b 3+8a 3b 2=2a 3b 2+10a 3b 3.(2)(3x -1)(2x +1);解:原式=6x 2+3x -2x -1=6x 2+x -1.(3)(2x +5y)(3x -2y)-2x(x -3y);解:原式=6x 2+11xy -10y 2-2x 2+6xy=4x 2+17xy -10y 2.(4)(x -1)(x 2+x +1).解:原式=x 3+x 2+x -x 2-x -1=x 3-1.2.(1)21x 2y 4÷3x 2y 3;解:原式=(21÷3)·x 2-2·y 4-3=7y.(2)(8x 3y 3z)÷(-2xy 2);解:原式=[8÷(-2)]·(x 3÷x)·(y 3÷y 2)·z=-4x 2yz.(3)a 2n +2b 3c÷2a n b 2;解:原式=(1÷2)·(a 2n +2÷a n )·(b 3÷b 2)·c=12a n +2bc. (4)-9x 6÷13x 2÷(-x 2). 解:原式=[-9÷13÷(-1)]·(x 6÷x 2÷x 2)=27x 2.3.(1)(-2a 2b 3)·(-ab)2÷4a 3b 5;解:原式=(-2a 2b 3)·a 2b 2÷4a 3b 5=(-2a 4b 5)÷4a 3b 5=-12a.(2)(-5a 2b 4c 2)2÷(-ab 2c)3.解:原式=25a 4b 8c 4÷(-a 3b 6c 3)=-25ab 2c.4.(1)[x(x 2y 2-xy)-y(x 2-x 3y)]÷x 2y ;解:原式=(x 3y 2-x 2y -x 2y +x 3y 2)÷x 2y=(2x 3y 2-2x 2y)÷x 2y=2xy -2.(2)(23a 4b 7-19a 2b 6)÷(-16ab 3)2.解:原式=(23a 4b 7-19a 2b 6)÷136a 2b 6=23a 4b 7÷136a 2b 6-19a 2b 6÷136a 2b 6=24a 2b -4.5.(1)(-76a 3b)·65abc ;解:原式=-75a 3+1b 1+1c=-75a 4b 2c.(2)(-x)5÷(-x)-2÷(-x)3;解:原式=(-x)5-(-2)-3=(-x)4=x 4.(3)6mn 2·(2-13mn 4)+(-12mn 3)2; 解:原式=12mn 2-2m 2n 6+14m 2n 6 =12mn 2-74m 2n 6. (4)5x(x 2+2x +1)-(2x +3)(x -5).解:原式=5x 3+10x 2+5x -(2x 2-7x -15)=5x 3+10x 2+5x -2x 2+7x +15=5x 3+8x 2+12x +15.6.(1)(1+x)(1-x)+x(x +2)-1,其中x =12; 解:原式=1-x +x -x 2+x 2+2x -1=2x.当x =12时,原式=2×12=1. (2)(a +b)(a -2b)-(a +2b)(a -b),其中a =-2,b =23; 解:原式=a 2-ab -2b 2-(a 2+ab -2b 2)=a 2-ab -2b 2-a 2-ab +2b 2=-2ab.当a =-2,b =23时,原式=(-2)×(-2)×23=83. (3)(x +7)(x -6)-(x -2)(x +1),其中x =2 0180.解:原式=x 2-6x +7x -42-x 2-x +2x +2=2x -40. 由题意知x =1.原式=2-40=-38.(4)(2a +3b)(3a -2b)-5a(b +1)-6a 2,其中a =-12,b =2. 解:原式=6a 2+5ab -6b 2-5ab -5a -6a 2=-6b 2-5a.当a =-12,b =2时, 原式=-6×22-5×(-12) =-24+52=-2112. 7.解:原式=4-2a +2a -a 2+a 2-5ab +3a 5b 3÷a 4b 2=4-2ab.当ab =-12时,原式=4-2×(-12)=5. 8.解:原式=3x 2-12x +9-6x 2+6=-3x 2-12x +15=-3(x 2+4x)+15.∵x 2+4x -4=0,∴x 2+4x =4.∴原式=-3×4+15=3.专题3完全平方公式的变形【变式1】B【变式2】C【变式3】25.【变式4】(1)37;(2)解:a2+b2=(a-b)2+2ab=4+6=10,a4+b4=(a2+b2)2-2a2b2=102-2×32=82. 1.B2.解:(1)xy=12[(x+y)2-(x2+y2)]=12×(72-25)=12.(2)(x-y)2=(x+y)2-4xy=72-4×12=1.∵y>x,∴x-y<0.∴x-y=-1.3.解:(m-53)2+(m-47)2=[(m-53)-(m-47)]2+2(m-53)(m-47)=(-6)2+48=84.4.解:(1)(a+b)2-(a-b)2=4ab.(2)①∵(m-n)2=(m+n)2-4mn=82-4×12=16,∴m-n=4或-4.②∵(2m+n)2-(2m-n)2=4×(2m·n)=8mn,∴8mn=13-5=8.∴mn=1.专题4乘法公式的应用1.(1)(2x+5y)2;解:原式=4x2+20xy+25y2.(2)(3m-n)(-3m-n);解:原式=n2-9m2.(3)(x+2y)(x2-4y2)(x-2y);解:原式=[(x+2y)(x-2y)](x2-4y2)=(x2-4y2)(x2-4y2)=x4-8x2y2+16y4.(4)(3x-2y)2(3x+2y)2.解:原式=[(3x-2y)(3x+2y)]2=(9x2-4y2)2=81x4-72x2y2+16y4.2.(1)(3+x)(3-x)+(x+1)2,其中x=2;解:原式=9-x2+x2+2x+1=2x+10.当x=2时,原式=2×2+10=14.(2)(2m+1)(2m-1)-(m-1)2+(2m)3÷(-8m),其中m满足m2+m-2=0;解:原式=4m2-1-(m2-2m+1)+8m3÷(-8m)=4m2-1-m2+2m-1-m2=2m2+2m-2=2(m2+m-1).∵m2+m-2=0,∴m2+m=2.∴原式=2×(2-1)=2.(3)(x+2y)2-(x-2y)2-(x+2y)(x-2y)-4y2,其中x=-2,y=1 2.解:原式=(x2+4xy+4y2)-(x2-4xy+4y2)-(x2-4y2)-4y2=x2+4xy+4y2-x2+4xy-4y2-x2+4y2-4y2=-x2+8xy.当x =-2,y =12时, 原式=-(-2)2+8×(-2)×12=-12. 3.(1)2 0192-2 018×2 020;解:原式=2 0192-(2 019-1)×(2 019+1) =2 0192-(2 0192-1)=1.(2)50120×491920; 解:原式=(50+120)×(50-120) =502-(120)2 =2 500-1400=2 499399400. (3)2012-401;解:原式=(200+1)2-401=2002+2×200×1+12-401=40 000.(4)(2+1)(22+1)(24+1)+1.解:原式=(2-1)(2+1)(22+1)(24+1)+1 =(22-1)(22+1)(24+1)+1=(24-1)(24+1)+1=28-1+1=256.专题5因式分解1.(1)ab(3b+a);(2)2a(a-2);(3)(m-2)(5-m);(4)5(x-2y)3(x+4y).2.分解因式:(1)4x2-25=(2x+5)(2x-5);(2)a2+4a+4=(a+2)2.3.(1)(2x+3)2-(x-1)2;解:原式=(2x+3+x-1)(2x+3-x+1)=(3x+2)(x+4).(2)(x-1)2-6(x-1)+9.解:原式=(x-4)2.4.(1)y(x+3)(x-3);(2)ax(x+y)(x-y).5.(1)-4x3+8x2-4x;解:原式=-4x(x2-2x+1)=-4x(x-1)2.(2)3m(2x-y)2-3mn2.解:原式=3m(2x-y+n)(2x-y-n).类型5方法1十字相乘法(1)(x+1)(x+4);(2)(x-2)(x-4);(3)(x+3)(x-1);(4)(x-7)(x+1).拓展训练:(1)(2x+1)(x+1);(2)(x-1)(3x-2).方法2分组分解法【跟着学】a3-b3+a2b-ab2=(a3+a2b)-(b3+ab2)=a2(a+b)-b2(a+b)=(a2-b2)(a+b)=(a-b)(a+b)2.【我也可以】解:原式=(4x2-y2)-(2x+y)=(2x-y)(2x+y)-(2x+y)=(2x+y)(2x-y-1).拓展训练:解:∵a2+b2+2c2-2ac-2bc=0,∴a2+c2-2ac+b2+c2-2bc=0,即(a-c)2+(b-c)2=0.∴a-c=0且b-c=0,即a=c且b=c.∴a=b=c.∴△ABC是等边三角形.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

因式分解专题练习
一、填空题:
2.(a-3)(3-2a)=_______(3-a)(3-2a);
12.若m2-3m+2=(m+a)(m+b),则a=______,b=______;
15.当m=______时,x2+2(m-3)x+25是完全平方式.
二、选择题:
1.下列各式的因式分解结果中,正确的是
A.a2b+7ab-b=b(a2+7a) B.3x2y-3xy-6y=3y(x-2)(x+1)
C.8xyz-6x2y2=2xyz(4-3xy) D.-2a2+4ab-6ac=-2a(a+2b-3c) 2.多项式m(n-2)-m2(2-n)分解因式等于
A.(n-2)(m+m2) B.(n-2)(m-m2)
C.m(n-2)(m+1) D.m(n-2)(m-1)
3.在下列等式中,属于因式分解的是
A.a(x-y)+b(m+n)=ax+bm-ay+bn B.a2-2ab+b2+1=(a-b)2+1 C.-4a2+9b2=(-2a+3b)(2a+3b) D.x2-7x-8=x(x-7)-8
4.下列各式中,能用平方差公式分解因式的是
A.a2+b2 B.-a2+b2 C.-a2-b2 D.-(-a2)+b2
5.若9x2+mxy+16y2是一个完全平方式,那么m的值是
A.-12 B.±24C.12 D.±12
6.把多项式a n+4-a n+1分解得
A.a n(a4-a) B.a n-1(a3-1) C.a n+1(a-1)(a2-a+1) D.a n+1(a-1)(a2+a+1) 7.若a2+a=-1,则a4+2a3-3a2-4a+3的值为
A.8 B.7 C.10 D.12
8.已知x2+y2+2x-6y+10=0,那么x,y的值分别为
A.x=1,y=3 B.x=1,y=-3 C.x=-1,y=3 D.x=1,y=-3 9.把(m2+3m)4-8(m2+3m)2+16分解因式得
A.(m+1)4(m+2)2 B.(m-1)2(m-2)2(m2+3m-2)
C.(m+4)2(m-1)2 D.(m+1)2(m+2)2(m2+3m-2)2
10.把x2-7x-60分解因式,得
A.(x-10)(x+6);B.(x+5)(x-12);C.(x+3)(x-20) D.(x-5)(x+12)
11.把3x2-2xy-8y2分解因式,得
A.(3x+4)(x-2) B.(3x-4)(x+2)
C.(3x+4y)(x-2y) D.(3x-4y)(x+2y)
12.把a2+8ab-33b2分解因式,得
A.(a+11)(a-3) B.(a-11b)(a-3b)
C.(a+11b)(a-3b) D.(a-11b)(a+3b)
13.把x4-3x2+2分解因式,得
A.(x2-2)(x2-1); B.(x2-2)(x+1)(x-1);
C.(x2+2)(x2+1); D.(x2+2)(x+1)(x-1)
14.多项式x2-ax-bx+ab可分解因式为
A.-(x+a)(x+b) B.(x-a)(x+b)
C.(x-a)(x-b) D.(x+a)(x+b)
15.一个关于x的二次三项式,其x2项的系数是1,常数项是-12,且能分解因式,这样的二次三项式是
A.x2-11x-12或x2+11x-12 B.x2-x-12或x2+x-12
C.x2-4x-12或x2+4x-12 D.以上都可以
16.下列各式x3-x2-x+1,x2+y-xy-x,x2-2x-y2+1,(x2+3x)2-(2x+1)2中,不含有(x-1)因式的有
A.1个 B.2个C.3个D.4个
17.把9-x2+12xy-36y2分解因式为
A.(x-6y+3)(x-6x-3) B.-(x-6y+3)(x-6y-3)
C.-(x-6y+3)(x+6y-3) D.-(x-6y+3)(x-6y+3)
18.下列因式分解错误的是
A.a2-bc+ac-ab=(a-b)(a+c) B.ab-5a+3b-15=(b-5)(a+3) C.x2+3xy-2x-6y=(x+3y)(x-2)
D.x2-6xy-1+9y2=(x+3y+1)(x+3y-1)
19.已知a2x2±2x+b2是完全平方式,且a,b都不为零,则a与b的关系为A.互为倒数或互为负倒数; B.互为相反数C.相等的数; D.任意有理数20.对x4+4进行因式分解,所得的正确结论是
A.不能分解因式B.有因式x2+2x+2
C.(xy+2)(xy-8) D.(xy-2)(xy-8)
21.把a4+2a2b2+b4-a2b2分解因式为
A.(a2+b2+ab)2;B.(a2+b2+ab)(a2+b2-ab);
C.(a2-b2+ab)(a2-b2-ab); D.(a2+b2-ab)2
22.-(3x-1)(x+2y)是下列哪个多项式的分解结果
A.3x2+6xy-x-2y ; B.3x2-6xy+x-2y
C.x+2y+3x2+6xy; D.x+2y-3x2-6xy
23.64a8-b2因式分解为
A.(64a4-b)(a4+b);B.(16a2-b)(4a2+b);
C.(8a4-b)(8a4+b); D.(8a2-b)(8a4+b)
24.9(x-y)2+12(x2-y2)+4(x+y)2因式分解为
A.(5x-y)2 B.(5x+y)2 C.(3x-2y)(3x+2y) D.(5x-2y)2 25.(2y-3x)2-2(3x-2y)+1因式分解为
A.(3x-2y-1)2; B.(3x+2y+1)2;C.(3x-2y+1)2; D.(2y-3x-1)2 26.把(a+b)2-4(a2-b2)+4(a-b)2分解因式为
A.(3a-b)2B.(3b+a)2C.(3b-a)2 D.(3a+b)2
27.把a2(b+c)2-2ab(a-c)(b+c)+b2(a-c)2分解因式为
A.c(a+b)2 B.c(a-b)2C.c2(a+b)2D.c2(a-b)
28.若4xy-4x2-y2-k有一个因式为(1-2x+y),则k的值为
A.0 B.1 C.-1 D.4
29.分解因式3a2x-4b2y-3b2x+4a2y,正确的是
A.-(a2+b2)(3x+4y) B.(a-b)(a+b)(3x+4y) C.(a2+b2)(3x-4y) D.(a-b)(a+b)(3x-4y) 30.分解因式2a2+4ab+2b2-8c2,正确的是
A.2(a+b-2c) B.2(a+b+c)(a+b-c) C.(2a+b+4c)(2a+b-4c) D.2(a+b+2c)(a+b-2c)
三、因式分解:
1.m2(p-q)-p+q;2.a(ab+bc+ac)-abc;
3.x4-2y4-2x3y+xy3;4.abc(a2+b2+c2)-a3bc+2ab2c2;5.a2(b-c)+b2(c-a)+c2(a-b);6.(x2-2x)2+2x(x-2)+1;7.(x-y)2+12(y-x)z+36z2;8.x2-4ax+8ab-4b2;
9.(ax+by)2+(ay-bx)2+2(ax+by)(ay-bx);
10.(1-a2)(1-b2)-(a2-1)2(b2-1)2;
11.(x+1)2-9(x-1)2;12.4a2b2-(a2+b2-c2)2;
13.ab2-ac2+4ac-4a;14.x3n+y3n;
15.(x+y)3+125;16.(3m-2n)3+(3m+2n)3;
17.x6(x2-y2)+y6(y2-x2);18.8(x+y)3+1;
19.(a+b+c)3-a3-b3-c3;20.x2+4xy+3y2;
21.x2+18x-144;22.x4+2x2-8;
23.-m4+18m2-17;24.x5-2x3-8x;
25.x8+19x5-216x2;26.(x2-7x)2+10(x2-7x)-24;27.5+7(a+1)-6(a+1)2;28.(x2+x)(x2+x-1)-2;
29.x2+y2-x2y2-4xy-1;30.(x-1)(x-2)(x-3)(x-4)-48;
31.x2-y2-x-y;32.ax2-bx2-bx+ax-3a+3b;
33.m4+m2+1;34.a2-b2+2ac+c2;
35.a3-ab2+a-b;36.625b4-(a-b)4;
37.x6-y6+3x2y4-3x4y2;38.x2+4xy+4y2-2x-4y-35;
39.m2-a2+4ab-4b2;40.5m-5n-m2+2mn-n2.
四、证明(求值):
1.已知a+b=0,求a3-2b3+a2b-2ab2的值.
2.求证:四个连续自然数的积再加上1,一定是一个完全平方数.
3.证明:(ac-bd)2+(bc+ad)2=(a2+b2)(c2+d2).
4.已知a=k+3,b=2k+2,c=3k-1,求a2+b2+c2+2ab-2bc-2ac的值.
5.若x2+mx+n=(x-3)(x+4),求(m+n)2的值.
6.当a为何值时,多项式x2+7xy+ay2-5x+43y-24可以分解为两个一次因式的乘积.
7.若x,y为任意有理数,比较6xy与x2+9y2的大小.
8.两个连续偶数的平方差是4的倍数.。

相关文档
最新文档